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Summary

The geometric structure of a biopolymer network impacts its
mechanical and biological properties. In this paper, we develop
an algorithm for extracting the network architecture of three-
dimensional (3d) fluorescently labeled collagen gels, building
on the initial work of Wu et al., (2003). Using artificially
generated images, the network extraction algorithm is then
validated for its ability to reconstruct the correct bulk
properties of the network, including fiber length, persistence
length, cross-link density, and shear modulus.

Introduction

Biopolymer networks pervade living systems. Actin networks
are critical to cell motility, microtubule networks provide
structural support for the cell cytoskeleton, collagen networks
are a primary component of the extracellular matrix, and
fibrin is an important component of blood clot formation.
Understanding the mechanical and structural properties
of biopolymer networks is critical in understanding their
biological role. Within the last 10 years, much work has
been done on understanding how the mechanical properties
of a network are influenced by its microstructure Chandran
& Barocas (2006; Head et al., 2003a, 2005; Heussinger et al.,
2007; Huisman et al., 2007; Stylianopoulos & Barocas 2007;
Van Dillen et al., 2006; Wilhelm & Frey 2003). This work is
mainly theoretical and is based on networks that are formed
by randomly placing sticks in two or three dimensions and
introducing a cross-link whenever two sticks overlap. With
the exception of Chandran & Barocas (2006), which includes
an analysis of a real collagen network that was characterized
by hand, there has been no validation that these artificial
networks accurately model the true network architecture. To
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apply this theory to experimental data, it is critical that we
measure the reticular properties of biopolymers such as the
fiber lengths, angles and cross-link locations.

A 2d slice obtained by confocal microscopy of a fluorescently
labeled collagen-I gel is shown in Figure 1. The complexity
of fiber networks makes quantification of the geometry
challenging. While software tools have been developed for
helping humans to identify the network architecture (Baradet
et al., 1995), to the author’s knowledge, there has been only
one automated algorithm developed for this task (Wu et al.,
2003) and there has been very little validation that this
algorithm accurately measures the network architecture. The
algorithm by Wu et al.,, as discussed in more detail below,
skeletonizes the image by tracing along the medial axis of the
fibers. Nisslert et al., (2007) have also used skeletonization
for quantifying 2d projections of 3d networks, but they are
unable to identify 3d network architecture directly. A variety
of 3d skeletonization algorithms for vascular networks are
reviewed by Boskamp et al., (2005) and Suri (2002), but to
our knowledge, these algorithms have not been validated for
polymer networks. An important difference between vascular
and polymer networks is that vascular networks are frequently
acyclic whereas polymer networks are not. There also exist
in the literature many 2d algorithms for extracting network
architectures, (Can et al., 1999; Tupin et al., 1998; Stoica
et al., 2004). In these papers, the original image is initially
correlated with a set of filters that are designed to detect line
features. While such methods can be generalized to 3d using
steerable filters (Aguet et al., 2005), doing so is nontrivial and
to our knowledge, the use of such code to extract 3d networks
has only been briefly mentioned (Aguet et al., 2005). Other
related work includes the development of beamlets (Donoho
& Huo 2002), where the focus is on identifying a single fiber
in a noisy image rather than on the identification of an entire
network.
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Fig. 1. A fluorescently labeled 25 μm × 25 μm slice through a collagen
gel, approximately 1 μm thick, obtained by confocal microscopy.

The one existing algorithm for identifying 3d collagen
networks (Wu et al., 2003) has been verified in only a
limited way. They have shown that their algorithm faithfully
matches the angle distribution of the fibers, but they have
not tested their algorithm’s ability to accurately identify
fiber length, persistence, or cross-link location. Furthermore,
this algorithm has only been used on images acquired by
reflectance microscopy and it has recently been observed that
this imaging modality misses many fibers that are oriented
perpendicular to the focal plane (results in preparation). In
this paper, a new algorithm for FIbeR Extraction (FIRE) is
presented. This algorithm is then tested on actual collagen
networks and on artificially generated images of known
structure and both the geometric and mechanical properties of
these networks are compared to experimental measurement.

Materials and Methods

Collagen labeling

We labeled bovine collagen type I (Inamed Biomaterials,
Fremont, CA) with the fluorescent molecule TAMRA
(Invitrogen, Carlsbad, CA), using a protocol closely derived
from Baici et al., (1980). Briefly, we injected 0.75mL of
5.9mg/mL unlabeled collagen (Inamed Biomaterials) into a
3mL dialysis cassette (Pierce, Rockford, IL) and dialyzed it
against a 0.25M sodium bicarbonate (Sigma, St. Louis, MO)
buffer containing 0.4M sodium chloride (Sigma), and a pH
adjusted to 9.5 through the addition of 10M sodium hydroxyde
(Sigma). An equal volume of TAMRA solution was prepared

from the same buffer, with a final molar concentration of dye
20 times that of collagen. The dye solution was then injected
into the cassette, which was removed from the dialysis buffer;
we left the dye to diffuse for 12-24hrs. The collagen+TAMRA
solution was then dialyzed once more against a solution of
0.2% (v/v) acetic acid (Sigma) in deionized water, with pH
adjusted to 4.0. The concentration of dyed collagen stock is
about 3.0mg/mL.

Collagen gel preparation

Collagen solution at final concentrations of 0.5, 1.0, and 1.5
mg/mL were prepared in batches of 1mL, which yields 5
samples for confocal imaging. The solution was composed
of the following: i) 5% 10X MEM (Invitrogen); ii) 1:4
ratio of labeled to unlabeled collagen; iii) a few μL of 1M
NaOH to neutralize the pH; iv) an appropriate amount
of DMEM (Invitrogen) to bring the total volume to 1mL.
Because collagen monomers interact quickly once the pH is
increased, collagen was always added last to the solution. To
ensure reproducible results, we always added and mixed the
components in the following order: 10X MEM, DMEM, NaOH
and finally collagen.

Collagen imaging

We used a Leica SP5 (Leica Microsystems Inc., Bannockburn,
IL) resonant confocal microscope with a 63X 1.2-NA water
immersion objective to image the collagen samples. Excitation
was provided by a 543nm HeNe laser, while emitted photons
with wavelengths between 550 and 650nm where collected
via photomultiplier tubes. The laser intensity was set at 75%
of its maximum value, at which minimal photobleaching
was observed; line- and frame- averaging increased the
signal-to-noise ratio (SNR) significantly. Each image was
1024 × 512 pixels in-plane, with each pixel 100nm ×
100nm; in the axial direction, usually 256 slices were
imaged, with a typical spacing of 100nm, though 200nm
was sometimes used, especially for sparser (0.5mg/mL)
collagen networks. The pinhole aperture was set to 1
Airy unit, the default value of the imaging software; this
corresponds to a depth-of-field of approximately half a micron.
To convert images from the Leica .LIF format to Matlab-
readable TIFF stacks, an extended version of ImageJ was used,
which is provided by the McMaster Biophotonics Laboratory
(http://www.macbiophotonics.ca/imagej/).

Bulk rheology

An AR-G2 (TA Instruments, New Castle, DE) rheometer with
a 4◦, 40mm cone-plate geometry with a 109μm gap was
used to measure the shear modulus of gels. Approximately
1.2mL of collagen solution was pipetted onto the 37◦C
preheated bottom plate of the rheometer and the cone was
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Fig. 2. A sample network illustrating the definitions in Section 3.

lowered onto the sample. A solvent trap was used to prevent
the sample from drying during the measurement. During
polymerization, the increase in the shear and viscous moduli
was probed by continuously oscillating the sample at a
fixed 0.5% strain amplitude and at a frequency of 0.2Hz.
We verified that a 0.5% shear strain was within the linear
regime by performing oscillatory strain sweeps (data not
shown).

FIbeR Extraction (FIRE)

Before describing the network extraction algorithms, we
first define a network. A network N = {V,X ,F} consists
of a list of n vertices V = {1, 2, ..., n}, with coordinates X =
{�u1, �u2, ..., �un} and m fibersF = {�f 1, �f 2, ..., �f m}. Each vertex
v i has an associated 3d vector �ui = (xi , yi , zi ) indicating the
vertex location in space, referenced to a global coordinate
origin. Each fiber �f k is a vector of pk vertex identifiers
�f k = (vk

1, vk
2, ..., vk

pk ) which indicate the vertices that fiber k
passes though. The superscript of vk

i identifies the fiber and
the subscript identifies the ordered position of the vertex in
that fiber. The order is important, although a reversal of the
order gives the identical fiber. A simple network is shown in
Figure 2.

An 8 bit image I (�u) for a volume of size L × M × N is
defined to be a mapping I (�u) : U → Z[0,255], where U = {Z[0,L ]

×Z[0,M] ×Z[0,N]}. Here Z[0,L ] denote the set of integers {0, 1,
..., L}. A flattened image is defined as J (x, y) = max z{I (x,
y, z)}, where throughout this manuscript, ẑ is taken to be the
direction perpendicular to the focal plane. A flattened image,
shown in Figure 3(a) is used to illustrate the 3d images that
are analyzed.

A new algorithm is now described that is based on the work
of Wu et al., (2003) but with significant modifications that
considerably improve the results and reduce the computation
time by over an order of magnitude. The algorithm requires a
substantial number of parameters to be adjusted by the user,
and these parameters are summarized in Appendix A, along
with a guide for choosing these parameters.

The 3d image is first smoothed with a gaussian filter and
then binarized, such that pixels of value one are likely to be
fibers and pixels of value zero are likely to be the background.
Two typical methods for binarizing an image are to keep a
percentage of the brightest pixels or to keep all the pixels
that are brighter than a particular value. If a percentage is
used, then the number of “on” pixels is conserved, no matter
how dense the network is. Thus the more fibers present, the
thinner each fiber will appear so that total number of bright
pixels in the binarized image is conserved. To reflect that a
denser network should have more “on” pixels, the binarization
method of selecting a pixel value threshold is used. It should be
noted that for the algorithm to be able to obtain a network that
qualitatively matches the image, the threshold must be chosen
appropriately. If it is too high, one long fiber may be broken into
many shorter, disjoint fibers. If the threshold is too low, then
fibers that are clearly separated in the original image become
blurred together. We have found that with confocal images of
fluorescently labeled collagen, it is relatively straight forward
to chose a threshold that qualitatively appears to maintain
network topology, c. f. Figure 3(b)). Furthermore, we found
that the mechanical properties of the extracted network were
relatively insensitive to the choice of threshold, as discussed
in Appendix A. However, for noisier imaging modalities
such as confocal reflectance microscopy used by Wu et al.,
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Fig. 3. Typical results after each step of FIRE. The images all come from a cube that is 5 μm on a side. a) Flattened 3d image along ẑ b) Flattened
thresholded image c) The flattened distance function (D = 0 is black, and D = 5.1 is white) d) Nucleation points, identified by dots, overlaying flattened
image e) Preliminary network after each nucleation point is extended f) Preliminary network after artificial short fibers are removed. Note that many
nucleation points near the center of the image have fewer short fibers when compared to (e). g) Fiber network after edges of like orientation are linked
together. Different colors indicate different fibers. h) Reduced network for FEA modeling. Fibers are interpolated and portions of the network that don’t
contribute to network stiffness are removed.

(2003), it may be more difficult to choose an appropriate
threshold.

Next, the minimal distance from a fiber pixel to a background
pixel is calculated using Matlab’s bwdist.m function in the
image processing toolbox, see Figure 4. Then the distance
function is smoothed with a Gaussian filter of standard
deviation σ d < 1 pixel and is represented by D (�u), with �u ∈ U .
The specific value for σ d does not significantly impact the
results. Smoothing the distance function improved the overall
fiber tracking results, but was not done in Wu et al., (2003).
It has been found in systems of blood vessels that the network
can also be extracted by tracing the ridge of the image intensity

itself (Lorigo et al., 2001), but here, significantly better results
are attained using the distance function.

The goal now is to trace along the maximal ridges of the
distance function. The process is illustrated in Figure 4. For
clarity, some definitions are provided. A box B(�u, r ) and its
boundary ∂ B(�u, r ) with radius r around a point �u ∈ U are
defined as follows.

B(�u, r ) = {�v ∈ U
∣∣||�u − �v||∞ ≤ 
r�}

∂ B(�u, r ) = {�v ∈ U
∣∣||�u − �v||∞ = 
r�}.

Here, 
 r � denotes the smallest integer that is greater than r.
The set of nucleation points, P in image space U is defined to
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Fig. 4. A visual outline for the tracing of the ridges of the distance function in 2d. Generalization to 3d is straight forward. Here, a binarized image
is represented, where the black squares indicate background and the white squares indicate fibers. The number inside each white square indicates an
approximate value that the smoothed distance function may take. In practice, it can take on floating point values, but integers are used for clarity. In step 1,
a nucleation point (�u1, indicated by the thick circle) is selected. A box of radius 
D (�u1)� is drawn (dashed line) and 4 LMPs are identified (thin circles).
The vertex list X and fiber list F are updated accordingly, with one new fiber for each LMP. In step two, the fiber in the upper left corner is extended by
one vertex to the next LMP. Note that the 3s in the upper left and lower right corners of B( �u2, 2) are both LMPs. The 3 in the upper left corner is selected
as the next vertex in the fiber because it lies in the most similar direction to the fiber orientation. This new vertex is then added to V and X , and F is again
updated accordingly. This branch will be extended until either no more LMPs can be found (indicating the branch has reached the end of the fiber) or
another nucleation point is contained within B(�un, D (�un)).

be:

P = {�u ∈ U
∣∣D (�u) ≥ max{θnuc , D (�v)} ∀�v ∈ B(�u, sxbox)}

where θ nuc = 2 and s xbox = 5, are typical parameters that
are set by the user. In words, nucleation points occur at local
maxima of D (�u), where the smoothed distance function also
exceeds a threshold θ nuc. The nucleation points for a sample
network are shown in Figure 3(d). A single nucleation point
is denoted by the thick circle in Figure 4. After identifying
the nucleation points, the next step is to trace the branches
extending from the nucleation points. For this, we define the
set of Local Maximum Points (LMPs) at nucleation point i as
follows.

{LMP}i = {�v ∈ ∂ B(�ui , ri )
∣∣

D (�v) ≥ max{θL M P , D ( �w)} ∀ �w ∈ ∂ B(�ui , ri )

s. t. ||�v − �w||∞ = 1},
where ri = 
D (�ui )�. In words LMPs occur where there is a
local maximum in D (�u) on the surface of the box∂ B( �ui , ri ) that
exceeds a critical threshold θ LMP (typically 0.2). In selecting
θ LMP, if it is too small, many short, artificial side branches are
created at each nucleation point. However, if it is too large,
some fibers are missed. We found it was best to make θ LMP

small and subsequently remove the artificial side branches
in the next processing step. In the unlikely incident that two

LMPs occur less than θ LMPdist (typically equal to 2) apart, one
of them is removed to save time. This process is illustrated in
“Step 1” of Figure 4. Each new branch is then extended until
it reaches an end and a new fiber is added to the fiber list
containing the start and end point of the branch. If the end
point is not a nucleation point, it is added to the vertex list.
Once all branches have been extended from one nucleation
point, the algorithm goes to the next one until all nucleation
points have been explored.

A single step of the fiber extension process is shown in “Step
2” of Figure 4. The tip of the current fiber is denoted by�t. During
the first extension step, the fiber direction d̂1 is defined to be
d̂1 = (�t1 − �ui )/||�t1 − �ui ||2, where the subscript on �t denotes
the vertex index along the new fiber and the subscript on
�u denotes the nucleation point index. At �tn, a box of radius

D (�tn)� is drawn. If a nucleation point lies inside the box, that
nucleation point is added to the end of the fiber and the fiber
has reached its end. If no nucleation point lies in the box, then
a new set of LMPs {�l j } are identified. If none are found, then the
fiber has reached its end. If at least one LMP is present, then
the direction of each LMP is calculated by δ̂ j = (�tn −�l j )/||�tn −
�l j ||2. Only LMPs with the property that d̂n · δ̂ j < cos(θe xt), that
could extend the fiber in a similar direction are considered and
if none exist, the fiber has reached its end. A typical value
for θ ext = 60◦. If exactly one LMP meets this criterion, then
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it is added to V and X and the current fiber is extended. If
more than one LMP meets this criterion, then the one with
the largest D (�l j ) is chosen. Finally, the fiber tip direction is
updated in the following way:

d̂n+1 = dirdecayd̂n + (1 − λdirdecay)δ̂ j

||dirdecayd̂n + (1 − λdirdecay)δ̂ j ||2

Here, λdirdecay is a number between zero and one, with a typical
value of 0.5. Its purpose is to give some memory to the fiber
direction update.

As mentioned earlier, this algorithm is similar to the one
developed by Wu et al., (2003), but it has been found that
the differences have improved the computation time by an
order of magnitude while also greatly improving the accuracy
of the network. The main difference is the use of multiple
nucleation points and the restriction that each branch extend
only in a single direction from a nucleation point. In Wu
et al., (2003), the network has a single nucleation point at
the global maximum of D (�u). A similar process of tracing
along LMP trajectories is done, but at each new LMP, multiple
branches may form. This results in the creation of many
artificial side branches. This approach also requires frequent
checks to ensure that the algorithm does not get stuck in
a loop that continually traces the same path. Loops in the
network, which are quite common, caused serious issues in
our implementation of the algorithm developed by Wu et al.,
(2003). The introduction of nucleation points also greatly
improves the algorithm’s ability to identify crosslinks.

As mentioned above, a low LMP threshold means that there
are often short fibers extending from each nucleation point, as
shown in Figure 3(e). Dangling fibers are identified as those
having length less than θ dang−L and having a tangent angle
that differs from any other incoming fiber by at leastθ dang−extend.
The dangling fibers are removed in Figure 3(f). When two
fibers touch at their end points, or have end points that are
close together, and share similar orientation at the ends, then
these two fibers are linked together to form a single, longer
fiber, as seen when comparing Figure 3(f) to Figure 3(g). This
step begins by first calculating the directions of the two fiber
ends as follows:

v1 = �f k
1 , v2 = �f k

s f i berd ir
, v3 = �f k

pk−s f i berd ir
, v4 = �f k

pk

d k
1 = (X (v2) − X (v1))/||X (v2) − X (v1)||2

d k
2 = (X (v3) − X (v4))/||X (v3) − X (v4)||2

where pk is the number of vertices in the fiber and s fiberdir

(typically equal to 4) denotes the spacing along the fiber used
to calculate the vertex direction. Next, the algorithm searches
for fiber tips that are less than θ linkd (typically equal to 8)
apart. If the angle between the two tip directions is between
θ linka (typically equal to 130◦) and 180◦, then those fibers
are linked to form a single fiber. If there is more than one
fiber tip that satisfies these properties, then the two with

an angle between them closest to 180◦ are linked. The end
output of the algorithm is the network Ñ = {Ṽ, X̃ , F̃}, where
the tilde indicates approximation to the true network. In the
following two sections, we test this algorithm by comparing
the estimated geometric and mechanical properties of the
collagen gels extracted by FIRE to those of artificially generated
networks.

Artificial Network Generation

We test the ability of our algorithm to extract a network
geometry using artificially generated networks with known
structure. To get the parameters for generating such networks,
we first extract the networks of gels at three different collagen
densities (0.5, 1.0, and 1.5 mg/ml). Results for a single
network at 0.5 mg/ml are shown in Figure 5 and the results
for all three densities are summarized in Figure 7. The fiber
length (L f ) is exponentially distributed with 〈L f 〉 ≈ 6 μm.
The spacing between apparent cross-links (L c ) is Poisson
distributed as expected (Head et al., 2003b), with 〈L c〉 ≈ 2.5
μm. Given a point spread function and its full width at half
maximum (FWHM), an apparent cross-link is defined to exist
wherever two fibers are less than one FWHM apart. This is
because it is impossible to distinguish unconnected fibers that
are close together from cross-linked fibers. In an attempt to
address this issue, we deconvolved the image stacks using the
Classic Maximum Likelihood Estimation restoration method
provided with Huygens Deconvolution Software (Hilversum,
The Netherlands). Deconvolution significantly reduced the
noise and also partially reduced the apparent fiber width in
the x̂ ŷ plane. However, the fibers still appeared considerably
thicker in the ẑ direction compared to the imaging plane and
distributions for L f , L c and Lp were not significantly altered
(data not shown). The fiber persistence length is log-normally
distributed with a median length 〈Lp 〉′ ≈20μm, where median
is denoted by a prime. The variance of log (Lp ) is σ p = 0.85.
The mean of the persistence length is not well defined because
it is possible for a fiber to be perfectly straight and have infinite
persistence length. The details for how the persistence length is
calculated are given in Appendix B. It should be noted that the
persistence length as defined here is not a thermal persistence
length, which is on the order of centimeters, but rather a
geometrical persistence length due to innate curvature of the
fibers. To approximate the average radius 〈r〉 of a fiber, we
assume the fibers are curvilinear with circular cross-section
and thus the total volume of the collagen fibers Vc is given by Vc

=π 〈r〉2 L tot, where L tot is the total fiber length in the network
image. Assuming that no collagen is left in solution and that
the volume of each fiber is entirely composed of collagen gives
Vc = Vgρ cv c , where Vg is the volume of the gel, ρ c is the mass
density of collagen in solution (0.5, 1.0, 1.5 mg/ml) and v c =
0.73 ml/g is the specific volume of collagen (Hulmes & Miller
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Fig. 5. Geometric properties of a single network with collagen density 0.5 mg/ml. We look at a real network extracted by FIRE, an artificial network of
known geometry, and an artificial network that is extracted from the corresponding artificial image. The histograms show the length distributions for
the actual networks and the solid lines show fits to the data, where fiber length is fit to an exponential distribution, cross-link spacing is fit to a Poisson
distribution, and persistence length is fit to a log-normal distribution. The specific parameters for the distributions are given in the text and in Figure 7.
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1979). These two equations are combined below.

〈r〉 =
√

Vgρcvc

π L tot

From this equation, we find that the estimate of 〈r〉 ≈ 30 nm.
This matches what has been observed using scanning electron
microscopy (Raub et al., 2007).

The artificial networks are generated in a cube 25.5 μm on
each side to match experiment. The networks are grown one
fiber at a time until the network achieves the target collagen
density. When fiber k is added, it is assigned an initial point
of nucleation �uk

0 inside the volume, and an initial tangent
direction �tk

0. Both are chosen from a uniform distribution. The
fiber is also assigned a target fiber length L k

f ∼ Exp(1/〈L f 〉)
and persistence length log L k

p ∼ N(log〈L p 〉′, σp ). The fiber is
assigned a plus and minus end and with equal probability,
the initial nucleation point may be extended by one micron to
�uk

1 = �uk
0 + �tk

0 or �uk
−1 = �uk

0 − �tk
0. On each ensuing step, an end

is chosen at random and the fiber extends again, following
a persistent random walk. In such a scheme, the tangent
angle changes as the fiber grows and the rule for updating the
tangent direction comes from the definition of the persistence
length Lp for a fiber with length parameterized by l (Howard
2001). 〈

cos
(
θ (l + 	l) − θ (l)

)〉
l = exp [−	l/L p ] (1)

Here, θ (l) is the angle between the tangent vector main fiber
axis which links the two end points. A typical fiber is shown in
Figure 6. Letting 	θ = θ (l + 	l) − θ (l) and Taylor expanding
about 	l gives 〈

1 − 1
2

	θ2
〉

l
≈ 1 − 1

L p
	l

〈
	θ2

〉
l ≈ 2

L p
	l

This is a discretized diffusive process in θ . Hence, the tangent
angle of a particular fiber end after n extensions in a particular
direction is given by θ k

n+1 = θ k
n + 	θ , where 	θ is a random

variable with mean 0 and variance 2	l/Lp . Any distribution
satisfying these properties could be used and here,	θ is chosen
from a normal distribution. Specifying 	θ is not enough to

Fig. 6. A typical fiber with the arc length parameterized l.

give a unique direction because there is a cone of possible new
direction vectors that differ in angle by 	θ from the previous
direction. Hence once 	θ is chosen, a specific direction vector
in the cone is chosen from a uniform distribution.

The fiber continues to extend in 1 μm increments until its
length exceeds L k

f or it reaches the edge of the 25.5 μm box. If
the fiber exceeds its maximum length, the appropriate length
is subtracted off the most recent extension and growth halts.
If the fiber intersects one of the faces of the volume, the most
recent addition is cut such that the fiber ends at that face
and extension is no longer permitted in that direction. If both
fiber ends intersect the box before the fiber reaches its target
length, then growth for that fiber halts. Once a fiber is finished
growing, the total density of the network is checked and if it is
below the target density, then a new fiber is added.

Once the network has reached its target size, the final
step is to cross-link fibers at appropriate locations. As noted
above, the FIRE algorithm cannot distinguish cross-linked
fibers from fibers that appear to be cross-linked because
of blurring. Our goal here is to test whether FIRE is able
to correctly identify apparent cross-links. Calculating the
minimum distance between two segments using an algorithm
described by Eberly (1999), we create cross-links between
segments that are closer than d || = 150 nm in the focal plane
or d ⊥ = 600 nm in the perpendicular direction, where d ||
and d ⊥ are the FWHM of the fiber intensity function in the
focal plane and perpendicular to the focal plane, respectively.
When a cross-link is created between two fibers �f k and �f l ,
a new vertex is added halfway between the two fibers and
�f k and �f l are updated accordingly. An unfortunate effect is
that this cross-linking algorithm is that it reduces the fiber
persistence length c. f. Figure 7(b). This could be addressed
with a more realistic algorithm for network polymerization
where the fibers diffuse freely through space as they grow, but
development of such an algorithm is beyond the scope of this
manuscript.

From this artificial network, an artificial image is formed by
first creating a binary image with 0.1 μm resolution that is
one at every pixel that is less than 〈r〉 from a fiber and zero
elsewhere. The image is then convolved with a 3d gaussian
with standard deviation d || in the x̂ and ŷ directions and d ⊥
in the ẑ direction. Finally, uncorrelated gaussian white noise
is added to the image with a standard deviation of σ noise = 5.
Because these are 8 bit images, the noise is not permitted
to drive the signal below 0 or above 255. FIRE is then used
to extract networks from these images. An example image is
shown next to an actual network in the top row of Figure 5.

Algorithm Performance

In Figures 5 and 7, the geometric properties of real, extracted
(RE) collagen networks are compared to those of both the true,
artificial networks (AT) and the artificial networks extracted
by FIRE (AE). In Figure 5, we see that for an example network
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Fig. 7. The geometric (a-c) and mechanical (d) properties of the real
extracted (RE) networks, the artificial true (AT) networks, the artificial
extracted (AE) networks (extracted from the artificial images). In (d), we
also have real measured (RM) mechanical stiffness of actual gels. Overall,
the agreement between artificial and experimental networks is good, and
so is the agreement between the stiffness of RM and the finite element
model of RE.

at 0.5 mg/ml, L f , Lp , and L c are similar for all three networks.
Ideally, we would have also compared this algorithm to the
one developed by Wu et al., (2003), but the authors were
unable to make their code available, and due to the issues
of loops in the network, our attempt to implement the code
was not successful. One significant discrepancy between the
experimental and the artificial networks is that the artificial
networks contain short fibers that are disconnected from the
rest of the network. Fibers such as these are typically not seen in
experimental networks and this discrepancy is likely due to the
fact that in real networks, there is a large degree of branching
and fewer fiber nucleation events. Branching was not included
in the artificial network algorithm because at present, we do
not distinguish between cross-overs and branches. Somewhat
surprisingly, despite this discrepancy, RE, AT, and AE still
had similar cross-link spacing and mechanical properties,
as discussed in more detail below. The geometric properties
L f , Lp , and L c of AT and AE agree to within 10% in
Figure 7(a-c).

In evaluating the mechanical properties of the network, we
first perform two postprocessing steps: fiber interpolation and
removal of portions of the network that do not contribute
to the network stiffness. The postprocessing is described in
Appendix C. Afterwards, we use a small strain finite element
model, treating each fiber as an Euler-Bernoulli Beam (Bathe

1995), with a Young’s Modulus of 500 MPa (van der Rijt
et al., 2006). The fibers are treated as cylindrical rods with
r = 30 nm. Such a model for a collagen fiber has been
experimentally validated by Yang et al., (2008). Modeling the
cross-links between fibers is more challenging, since little is
known about their mechanical properties. Thus we choose a
simple model that assumes each apparent cross-link acts as a
pin joint with a torsional spring attached. The torsional spring
constant is chosen to be K xlink = 1 μN-μm, which gave a good
match between the shear moduli of extracted networks and the
shear moduli of actual collagen gels at three different densities,
shown in Figure 7(d). While increasing K xlink increases the
network stiffness, the power-law observation that G ∼ ρ2.2

does not change. Because FIRE is only able to detect apparent
cross-links, one could choose to remove some fraction of the
cross-links in the model and a larger K xlink would be needed to
match experiment. Since little is known about the dynamics
of polymerization, it would be difficult to justify any particular
fraction and so we did not explore this further.

The small strain shear modulus G bulk is estimated by
imposing a shear displacement u on one face of the network
while keeping the opposite face fixed. The equilibrium
configuration is solved for using the finite element method
and the energy U of the deformed network is computed.
The bulk modulus G bulk of the network can then be solved
for by noting that for small deformations U = G bulk γ 2/2,
where γ = u/L bulk is the engineering strain. We see in Figure
7(d) that the stiffness of the extracted network is in relatively
good agreement with what is measured experimentally by a
cone-plate rheometer. The stiffness of AE is about 50% larger
than for AT and this is likely due to the decrease in L c and
hence a larger number of cross-links present in the extracted
network over the true network. We believe a 50% agreement
to be relatively good since a particular protocol often
yields variations of this magnitude across different rheology
experiments.

Conclusions

A new algorithm has been presented for extracting the
biopolymer network geometry from a 3d image. This
algorithm has been tested on both artificial and real networks.
It has been shown that the algorithm is able to reliably
reproduce the geometries of artificial networks of known
architecture. By tuning a single unknown parameter K xlink =
1 μN-μm, we find that the small strain modulus of the network
at three different densities, measured by cone-plate rheometry,
is in agreement with both the extracted collagen networks and
artificial networks with similar geometric properties.

A fundamental weakness of this algorithm is that the FWHM
of a fiber is much larger than the fiber diameter and thus it
is impossible to tell whether an apparent cross-link is truly a
cross-link or simply two fibers in close proximity. Ultimately,
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this issue could be addressed by observing the network
response to localized deformations or observing the network
behavior during polymerization. Either approach ultimately
requires an algorithm for extracting network geometry and
thus while FIRE does not solve this issue, it does provide a tool
that will ultimately be needed for further investigation of the
fibril cross-link properties.
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Appendix A: Image Processing Parameters

Image processing parameters at 0.1 micron resolution in the
x̂ and ŷ directions are given below. For each processing
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stage, the most sensitive parameters are described and the
methodology used for choosing these parameters is given.
While there are many parameters to chose, we find that the
parameters in each section can be chosen independently of the
rest.

Image Preprocessing
σ im 1 standard deviation of Gaussian smoothing filter for the

image function (in pixels)
θ im 0.08 binary threshold for image, given as a percentage of the

maximum pixel intensity, below which pixels are identified
as background

σ d 0.3 standard devation of Gaussian smoothing filter for the
distance function (in pixels)

The threshold θ im is chosen such that Figure 3(b) preserves as
much as the network topology from Figure 3(a) as possible. If
θ im is too high, fibers tend to get broken up into pieces whereas
if it is too low, parts of the image get blurred together. To
assess the algorithm sensitivity to this choice of threshold, we
varied θ im and measured the overall change in stiffness of the
extracted network. We found that by setting θ im = 0.01, more
pixels were included in the network and the network stiffness
roughly doubled. Doubling θ im to 0.16, and reducing the
number of pixels in the network halved the network stiffness.
Given that slightly different experimental protocols may also
generate networks that differ in modulus by a factor of two, we
consider the use FIRE for modeling the mechanical properties
of a network to be relatively insensitive to this parameter for
fluorescently labeled collagen.

Nucleation Point Identification
θ nuc 2 minimal value of D (�u) for which a point can be considered a

nucleation point (in pixels)
s xbox 5 local neighborhood of �u, used to determine whether or not the

point �u is a local maxima (in pixels).

The most robust results are found to be when θ nuc is relatively
low and there are many nucleation points along each fiber, as
shown in Figure 3(d).

Fiber Extension
θ LMP 0.2 minimal distance function value for which a point may

be considered an LMP
θ LMPdist 2 minimal distance (in pixels) between two LMPs
θ ext 60◦ maximal value of the angle between the direction of the

fiber and the direction of the candidate extension
direction.

λdirdecay 0.5 decay rate for fiber direction update

If θ LMP is too small, many short, artificial side branches are
created at each nucleation point. However, if it is too large,

some fibers are missed. We found it was best to make θ LMP

small and subsequently remove the artificial side branches in
the next processing step.

Removal of Dangling Fibers
θ dang−L 6 a fiber is removed if it is shorter than his value

(in pixels), contains only a single cross-link, and is
unaligned (defined below) with all other fibers that
share the same cross-link.

θ dang−extend 10◦ maximum difference in angle between a short fiber
(defined above) such that it is considered to be aligned
with another fiber going through the same cross-link

The purpose of this step is to remove the short fibers near the
nucleation points in Figure 3(e). These parameters should be
adjusted if the user finds that there are still many too many
artificial, dangling fibers.

Fiber Processing
s fiberdir 4 number of vertices to use in calculating the orientation

of a fiber end
θ linkd 8 maximal distance between two fibers ends for which the

fibers may be linked
θ linka 130◦ minimum angle between two fiber ends for linking of the

two fibers
θ flen 10 minimal fiber length for a fiber with one or zero

crosslinks. shorter fibers are removed

The purpose of this step is to link fibers edges of like orientation.
If the user finds that what looks to be one long fiber is broken
into many smaller fibers, θ linka may be reduced and θ linkd may
be increased.

Fiber Post-Processing for FEA model
λ 0.01 regularization constant for fitting interpolation

function to fiber subunits
s maxspace 2 maximum spacing between vertices along a fiber (in

microns)
s boundthick 15 thickness of boundaries (in pixels)

The purpose of these parameters is to reduce the computational
complexity of the network for the finite element calculation. If
the user finds that more nodes are necessary, s maxspace can be
reduced. If the user finds that the interpolated curve is overfit
to the data, then λ should be reduced, though we have not
found this to be an issue

Appendix B: Persistence Length Calculation

The persistence length is calculated for fiber �f k =
{vk

1, vk
2, ..., vk

pk } = {vk
i } by finding the best least squares fitting
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exponential for the points ck
i,s (l k

i,s ), as defined below.

l k
i ,s =

s∑
j=1

||�uk
i+ j − �uk

i+ j−1||2

t̂k
i = (�uk

i+1 − �uk
i )/||(�uk

i+1 − �uk
i )||2

ck
i ,s = t̂k

i+s · t̂k
i

In words, l k
i,s , is the contour length of fiber �f k connecting

vertex vk
i to vertex vk

i+s, t̂k
i is the tangential direction of a fiber

at vertexvk
i and ck

i,s is the cosine of the angle difference between
vertexvk

i and vertexvk
i+s . The best exponential least squares fit,

in combination with Equation 1, gives the persistence length
for fiber �f k .

Appendix C: Post Processing for Mechanical Modeling

Once the network is extracted, two additional post processing
steps are necessary before solving for the micromechanical
response: interpolation of fibers and removal of the floppy
portions of the network. To reduce the computational
complexity in solving for the equilibrium configuration of the
network, it is efficient to use fewer vertices for each fiber than
those found by FIRE. To do this, a fiber is transformed in the
following way. Each vertex of a fiber is classified as either a
fixed vertex if it lies at a fiber end or on a cross-link, or a free
vertex otherwise. The fiber is then broken into s fiber subunits,
where s is the number of fixed vertices minus one. For example,
if �f k = (vk

1, vk
2, vk

3, vk
4, vk

5, vk
6) and the fixed vertices are (vk

1, vk
4,

vk
6), then f k,1 = (vk

1, vk
2, vk

3, vk
4) ≡ (vk,1

1 , vk,1
2 , vk,1

3 , vk,1
4 ) and f k,2

= (vk
5, vk

6) ≡ (vk,2
1 , v

k,2
2 ), where the first superscript indicates

the fiber number and the second superscript indicates the
subfiber index. Each fiber subunit is then rotated into a local
coordinate system, such that the end points lie along then
x axis. The subfiber is then fit by an interpolation function.
The interpolation function is sampled at interval s maxspace and
the interpolated positions are then rotated back to the global
coordinate system to become the new vertices in the network.
If there are only two vertices (v i , v j ) in a subfiber, then a linear
interpolation is used.

h0(ξ ) = ((1 − ξ )xi + ξ xj )x̂

where ξ = (x − xi )/|x j − xi | ∈ [0, 1]. However, if the
subfiber contains more than two vertices, then that subfiber is
represented by a total of five basis functions.

g(ξ ) = h0(ξ ) +
4∑

l=0

cl hl (ξ )

h1(ξ ) = (ξ3 − 2ξ2 + ξ )ŷ, h2(ξ ) = (−ξ3 + ξ2)ŷ

h3(ξ ) = (ξ3 − 2ξ2 + ξ )ẑ, h4(ξ ) = (−ξ3 + ξ2)ẑ

The four additional basis functions are some of the cubic
Hermite polynomials that are used when constructing the
linearized stiffness matrix for a network of beams. The

constants c l are chosen to minimize the regularized least
squared error between the interpolated function and the actual
data points. For a particular fiber:

E k,i =
pk,i∑
l=1

(yl − c1h1(ξl ) − c2h2(ξl ))2

+
pk,i∑
l=1

(zl − c3h3(ξl ) − c4h4(ξl ))2 + λ

4∑
l=1

c2
l

The regularization by λ (typically equal to 0.01) is necessary
to prevent overfitting. We can directly solve for the constants
c l by differentiating the error with respect to the constants. In
the case where l = 1:

d E k,i

d c1
= 2

pk,i∑
l=1

(yl − c1h1(ξl ) − c2h2(ξl )) h1(ξl ) + 2λc1 = 0

⎛
⎝ pk,i∑

l=1

h1(ξl )2 + λ

⎞
⎠ c1 +

⎛
⎝ pk,i∑

l=1

h1(ξl )h2(ξl )

⎞
⎠ c2

=
pk,i∑
l=1

yl h1(ξl )

Differentiating with respect to other constants leads to 4
linear equations and 4 unknowns and these are solved to find
the constants. The interpolation function is then rotated back
to the global coordinate system and sampled at intervals of
s maxspace to generate an interpolated subfiber. The subfibers are
then stitched back together to create an entire interpolated
fiber. It should be noted that differentiability is not imposed at
the point where two fibers are connected.

In general, when the extracted network above is used to
generate a stiffness matrix, the matrix is singular and cannot
be solved simply by Gaussian elimination. When a deformation
is imposed upon opposing faces, an edge will only contribute
to the network stiffness if it lies on a non-repeating path
connecting the two faces. A non-repeating path is one where

Fig. 8. The dashed circles indicate the edges in the network that do not
contribute to the stiffness of the network undergoing a displacement u.
These edges can easily be identified and removed because they do not
lie on a non-repeating path that connects the two opposing faces of the
network.
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each edge in the path is visited only once. An example network
with non-contributing edges is shown in Figure 8. To reduce
the computational complexity of the finite element problem
for estimating the small strain stiffness of the networks, the
non-contributing edges are removed from the network. It
should be noted that there may exist nonrepeating paths

that lie outside of the confocal volume that that contribute
to the network stiffness. To address this issue, we have done
calculations for the network stiffness of smaller networks (12.8
μm cubes) in addition to the 25.6 μm cubes that were analyzed
in Figures 5 and 7. The two results were similar (data not
shown).
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