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ABSTRACT

This paper describes a graphical method for measur-
ing the real and imaginary parts of the dielectric constant,
€/e = e'-je", of materials at microwave frequencies. The
metBod is based on the network approach to dielectric measure-
ments proposed by Oliner and Altschuler in which the dielec-
tric sample fills a section of transmission line or waveguide.
In contrast to their method, the network representing the
dielectric sample is analysed in terms of the bilinear trans-
formation,

r' = EJ:—i-Eg ad - be = 4

c['+a

The analysis proceeds from the geometric properties of the
image circle in the ['- plane obtained by terminating the out-
put line in a calibrated sliding short.

The technique described retains the desirable features
of the network approach but avoids the necessity of measuring
both scattering coefficients. As a result the procedure is
more direct and, in the case of the TEM configuration, leads
to an entirely graphical solution in which the complex
dielectric constant can be read from & Smith chart overlay.
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A GRAPHICAL METHOD FOR MEASURING

DIELECTRIC CONSTANTS AT MICROWAVE FREQUENCIES

INTRODUCTION

There are many techniques for making dielectric measurements
at microwave frequencies.l One of the more interesting methods proposed
in recent years is that due to Oliner and Altschulere, in which the
dielectric sample filling a section of wave guide is represented by
a twonort microwave network as illustrated in Fig. 1. In their
method the scattering matrix of the network is determined at reference

planes T. and ’I‘2 by Descham.ps'3 procedure or, when the network can be

1
regarded as lossless, by alternative so-called precision techniques.
The complex relative dielectric constant e/eO = €'~ je" is then

obtained from either

(Y/YO)2 (TEM modes) (1a)

m
~
m
O
1

o 2 2
i e/eO = (Y/Yb> . (hog/hc) (H modes), (1b)

1+ (x.og/xc)2

where the wave admittance Y in the dielectric relative to the wave

admittance of the empty guide, Y,, is given in terms of the scattering

coefficients by 5 5
(L -8,,)° -8

(¥/1,)° = 12, (2)

2 2
(1 +87)" -85,

and Abg and Ab refer to the guide wavelength and the cutoff wavelength,

respectively, in the air-filled guide.
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Oliner and Altschuler point out that the introduction of the
network point of view to dielectric measurements results in two major
advantages over earlier methods. First, it becomes possible to employ
precision techniques in the determination of the network parameters.

For example, in Deschamps' geometrical method the image circle, represent-
ing the locus of points in the input reflection coefficient plane as a
sliding short is moved in the output waveguide, is determined by graphical
averaging. Therefore, the center of the image circle and its radius, as
well as quantities derived from them, can be determined to a higher

degree of precision than that of a single data point. The second feature
of the network method which can be exploited to advantage in dielectric
measurements concerns the concept of invariance. Briefly stated, in-
variance in the present case refers to the method of microwave network
representation or measurement which calls for a minimum number of physical
length measurements. Thus, for the confiéuration illustrated in Fig. 1

it is possible to take advantage of the known symmetry of the network to
reduce to one the number of required distance measurements. The sihgle
measurement required may be either the length of the sample, d, (location
invariant) or the location of the one of the sample faces, T, or T, (length
invariant). The desirability of employing a distance invariant method
lies in the‘fact that errors arising from physical distance measurements
are generally greater than those resulting from the electrical distance
measurements, assuming that corrections have been made for errors in the
location of the voltage minimum due to spurious discontiniuties if they

exist.



The purpose of the present paper is to describe a technique
for measuring dielectric constents which retains the desirable features
of the network approach but which can be accomplished more directly and
with a minimum of computation. In the case of the TEM configuration,
the dielectric constant can be obtained by & purely graphical procedure
in which the desired complex constant is read directly from a Smith

Chart.

THEORY

The dielectric-filled section of line or waveguide can be

represented at reference planes T, and T, by the (ABCD) circuit parameters

which relate the input and output voltages and currents, as defined in

Fig. 1, by the matrix equation:

Vl AB V2

I, co|| Ly, (3)

il

where AD-BC = 1. If we take
2, = VoI, 2y, = Vu/I, , ()
then a bilinear relationship is obtained between the impedances Zl

and Z2: AZ + B

2

This transformation has often been used in analyzing the properties

of linear two-port networks. However, it will be more convenient in

the present case to consider the network representing the dielectric
sample in terms of a bilinear transformation in the reflection coefficient
or I‘-plane. Thus, if the input and output reflection coefficients are

defined, respectively, by I



T - Ol; T = 0'2, (6)
1 Y6+Yl 2 Y0+Y2
it can be shown that
a:FE +b
r, - —2—, (M
el +4a
2
where
& = A-BY -C/Y +D
b = A+BY -C/Y -D
c = A-BY + C/Y0 -D
d = A+BY +C/Y +D . (8)

Reciprocity is assured if ad - bec = 4. If the network is symmetrical,
as in the present case, then b = -c. Equation 7 is sometimes called
the direct transformation to distinguish it from the inverse trans-

formation,
-djrl +D

I, = T . (9)
cl, -a
The matrix composed of the (abcd) parameters might be termed
the reflection matrix of the network. Although the transformation (7)
has been used by Mathisu and also by BQlinder5 employing a different
normalization, it has not enjoyed widespread use as a tool in network

analysis. As would be expected, the reflection matrix bears a close

connection to the scattering matrix. It can be shown that in general

S S b/a 2/d

n
"
i}

S S (ad-bc)/2a -c/d |. (10)

An obvious application of (10) is suggested in the appendix. The
components of the reflection matrix transform in a manner very similar

to the manner in which the scattering coefficients transform as a result

p



of a shift in reference planes. Referring to Fig. 1 the reflection

matrix at reference planes T' and T is given by

[a' b e3P o a ¥ P2 o
c! d’] ) [ 0 e‘jﬁS [c d} [() ej¢2], (11)

where ¢l = 2n£l/xbg s ¢2 = Enle/kog, and the primed coefficients are
defined by
' a'l’ + 1!
r = ——— . (12)
' I' +ar

Returning to the problem at hand the (ABCD) matrix of the

dielectric-filled section at reference planes Tl and T2 is

A B cosh 7d §i§%—2é
C D Y sinh y4& cosh 7d (13)

from which Egs. (8) yield,

a = 2 cosh yd - (Y/YO + Yb/Y) sinh 7d

b = -¢c = -(1{/1{O - YO/Y) sinh yd

4 = 2 cosh yd + (1{/3{o + YO/Y) sinh yd , (1)
where ¥ = « + jB is the propagation constant in the dielectric.

A purely algebraic relation between'Y/Yb and the (abcd) parameters can

be obtained by forming

e L ()P
L= 72 = (v/1,)° '

(15)

This expression is entirely equivalent to (2) involving the scattering
coefficients. The merit of the reflection parameter representation lies
in the simplicity of (15) as well as in the facility it provides in the

geometric interpretation of the problem. Thus, it will be shown that Ib
6



can be determined through a series of simple geometric constructions based
on the image circle diagram. The desired dielectric constant then fol-
lows from (la) or (1b).

In the interest of generality we will proceed from the initial
assumption that reference planes T and T' are located arbitrarily with

respect to the sample. Equation (12) is first re-written in the form6

L}

1 Y 2 ey el o ¥
I ac|l | -bd_[cl"+d]Lad-bc ] (16
cc|T'2-a8 lel+a E|P’2~da'r )

where the bar over a quantity designates the complex conjugate and the
primes have been omitted. One can determine the center of the image
circle and its radius from (16) by-inspection. Thus, when |['| = 1,
corres?onding to a reactive termination in the output waveguide, the
first term in (16) will be a complex constant and the magnitude of the
second term will be a constant for all values of reactance. Referring

to Fig. 2 the center of the image circle in the [ -plane is

ac - bd

e = ——= (17)
cc - dd
and the radius is
= __)* — . (18)
|cc - 4d|

There are three points in the reflection plane which are of

special interest. The iconocenter, Ib, = Sll = b/d, is the map or
]

image of I"'=01in the I -plane. There are a number of geometric

constructions which can be used to obtain the iconocenter once the

8,9,10 All of these methods

image circle and its center are known.Y’
make use of a»calibrated short behind the network, and all but the

last method referenced depend on a knowledge of the wavelength in the
7



output waveguide. The other two points of interest in the reflection
plane are I'D' = a/c and I‘I' = - d/c. These points have a épecial
significance in the theory of the bilinear transformation and can be
shown to mark the center of the isometric circles for the direct and

. . . 1
inverse transformations, respectively. 1

GRAPHICAL ANALYSIS

and [

Once [ are determined I‘D' can be readily

OI
constructed by inverting r

Cl

o with respect to the image circle as

illustrated in Fig. 2. The proof of this statement is contained in

(T, -T,) (T =T = #, (19)
which follows from (17), (18), and the condition, ad-bc = 4, The
construction of the point FI’ follows in an analogous way, although
in contrast to the previous case, the angle of I1I’ will depend on
the choice of the output reference plane T. It is convenient at this
point to locate T symmetrically with respect to T' so that zl = 22.
Assuming for the moment that T has been so located, the symmetry of the
network representing the dielectric then guarantees that b = -c, and

I}, can be determined graphically by constructing the reciprocal of

T,..

ing to note that I}, is also the inverse with respect to the unit

This construction is also illustrated in Fig., 2. It is interest-

circle of fb = -¢/3 , which is the map in the output I' -plane of the
center of the image circle, I}p, via the inverse transformation (9).
The location of T is accomplished by noting that when b = =~c

the point A = -1 maps into A' at
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1+,
~D (20)

FA‘ T +I', '

The reference point A' on the image circle is determined by the angle
QA’ = arg ITA" which can be constructed from IﬂD, and IiI' as shown
in Fig. 2. Thus, in order to guarantee symmetry one locates T at that
position of the short in the output waveguide which establishes a voltage
minimum at a distance { = (n-GA,) xog/hn from T' toward the generator in
the input waveguide. It should be noted that this procedure establishes
T only to within a multiple of half a wavelength. However, an approximate
knowledge of the location of the sample suffices to remove any ambiguity.

At this point it is desirable to distinguish between the location
invariant and the length invariant procedures. In the location invariant
procedure T' is located at an arbitrary point in the input waveguide, and
T is determined from symmetry considerations as deécribed above. The
distance to the sample faces is calculated from £; = £, = (w-d)/2, where
w and d are defined in Fig. 1 and are assumed to be known. It then

remains to transform I1D' and T to reference planes Tl and T, at

I 2
the sample faces. If I‘D' and I'I. denote the isometric centers

relative to planes T' and T, andl?D and I‘I the corresponding quantities

relative to planes T, and T., then it follows from (11) that

1 2
23 -2J
I-‘D = eJ¢ FDls FI = e J¢FII) (21)
vhere § = (w - 4) n/xg. The transformation of reference planes and

the construction of Iﬁ, which is the average of I' ana I'I, is
apparent from Fig. 3. In the case of a TEM structure the desired
dielectric constant can be read directly from a Smith Chart overlay,

in view of (la) and (15), by constructing the point
10
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efe, - 1

F -1/ fé T €fe_+1° (22)

€
0

I

This construction is also shown in Fig. 3.
In the length invariant procedure one makes the initial
assumption that the front face of the sample can be located accurately

by physical means, thus making T' = T This amounts to a trivial

1
distance determination, which in rectangular waveguides can be readily
accomplished by mounting the sample in a shorting switch. Since the
analysis proceeds from the assumption of symmétry no distance measure-
ment is required in the length inVariant case and the actual location

of reference plane T is of no interest. The points I and I are

and I

I @8 determined in Fig. 2 without

derived directly from fb,
shitting reference planes.
When the losé tangent of the dielectric is relatively small
the graphical method will give rather poot percentage accuracy in the
determination of €". In this case it is advisable to determine e"
independently. This can be done most simply by using the already
determined image circle to calculate the intrinsic insertion loss of
the dielectric.™® The necessary formulas are listed below for the
convenience of the reader. If p = | fb,| is the distance of the

center of the image circle from the origin of the reflection plane, it

can be shown that

(148)%-02 +4/ (1-R)2=0

\/?1+R)2702 -«//(l-R)z-pg

204 = {n (23)

Knowing €', the desired €" is then obtained from either

12



& - 2(9?:)2

2
2n )
o 1 +( __) ¢' (TEM modes), (24)

(078

where M is the free space wave length or

€ =

a)\og '\/ [l + (Kog/xc)e] €' -(Kog/)\c)2

(H modes), (25)
i 1+ (Xog/hc)e

if

€' << €' - L . (26)
1+ (Ae/rog)?

ILLUSTRATIVE EXAMPLE

To illustrate the application of the graphical method an
example is considered in this section. Measurements were made at 9.330
kme on a sample of Catalin plastic,.l75" thick, which filled the cross-
section of an x-band waveguide. The sample was mouhted in a shorting
switch making it possible to replace quite adcurately the front face

of the sample with a short. Since T, could thus be readily determined

1
the length invariant procedure was employed. The values of reflection
coefficient as measured on the input slotted line relative to Tl as

the short was moved through successive positions separated by hog/l6
are plotted in the polar diagram of Fig. 4. The numbers indicate the
sequence of meaéurements and are not otherwise significant. Shown in
the same figure is the construction for the iconocenter, 0'., This con-

struction, which is apparent from the figure, is derived and illustrated

in Reference 8. It is to be noted that the construction of the auxiliary

13
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point O" is accomplished by drawing straight lines between those points
in the input [* plane which correspond to opéosite ends of a diameter of
the unit circlé when mapped into the outputlf ~plane.

Once O' is located the method proceeds as described in the
preceding sections. In Fig. 5 the point O' is inverted wiﬁh respect to
the image circle to obtain D',and C, the conjugate of 0!, is inverted
with respect to the unit circle to obtaiﬁ I'. Since symmetry is implied
in the construction of I', the symmetry of the sample insures that D'
and I' denote a/c and -d/c, respectively, at the sample faces. Figure
6 illustrates the determination OfliF' In this example we cannot ob-
tain e/e0 directly from the Smith chart because we do not have a TEM
structure, However, we can still use the Smith chart to obtain (Y/Yo)a,
and then determine e/eo from (1b). Reading from the impedance scale at
F, (1{/1{())2 = 8.0 - J 1.2. The value of the guide wavelength was found
by measurement to bg xog = 4,542 cm, and for x-band rectangular wave-

guide, A, = 4,572 cm., Equation (1b) then yields,
2
8.0 - ji.2 +(%—§-f;—§-)
2
4,542
ol (E.5'7'2>

4,52 - jO.60

e/eO

i

which agrees well with the published values for Catalin.

It should be pointed out that an expanded reflection plane
and Smith chart are necessary if one wishes to retain throughout the
graphical procedure the precision inherent in the original electrical

measurements.,

15
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APPENDIX

It is well known that repeated bilinear transformations can
be expressed in terms of a matrix product. Thus, if n linear networks
are connected in cascade as shown in Fig. 7, the reflection matrix of

the combination is given by

en-1 4 on-ly a] bj ap bp an bp
s e e L] (A"l)
¢ 28-lg c1 dy co dp cn dn

it

Qn-l

The factor of 2B-1 guarantees that ad-bec = 4 if ajdj - bjey = 4,

i= 1, 2, 3, ... n. The problem of determining the scattering matrix

of a cascade connection of networks is, therefore, reduced to a systematic
and relatively direct procedure through the use of (A-1) and (10). In
this application the reflection matrix bears a close resemblance to the

transmission or T-matrix%3 as might have been anticipated from

a/2 -cf2
r - [ } , (a-2)

-b/2  4/2

18
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