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INTRODUCTION 

Peripheral, antigen-specific tolerance can be induced by oral administration of both 
protein and hapten antigens.I Oral tolerance has been used to prevent the induction of 
experimental autoimmune diseases” and is currently being used in clinical trials for 
treatment of human autoimmune diseases.‘~’ The mechanism of oral tolerance is not 
completely understood. There have been reports suggesting that feeding antigen induces 
both anergy and regulatory T cells.’13 More recently, the mechanism of oral tolerance 
has been reported to be induction of anergy/deletion by feeding a high dose of antigenI4 
or regulatory T cells that secrete TGF-p by feeding multiple, small doses of 
Introduction of antigen into mucosal surfaces appears to inhibit peripheral cell-mediated 
immune responsesg*” but primes mucosal antibody responses’* and also peripheral antibody 
 response^.'^^" Events at the intestinal mucosa that modulate antigen uptake and processing 
(e.g., inhibition of oral tolerance induction by introduction of cholera toxin and antigen) 
also appear to have an influence on whether feeding antigen induces peripheral tolerance 
or primes a peripheral immune resp~nse.”.~’-~~ Addit ionally, the ability to generate an IL- 
4 response at the time of feeding also determines whether oral tolerance can be induced.28 
Whether introduction of antigen by feeding leads to peripheral tolerance or primes a 
peripheral immune response, it appears that migration of lymphoid cells in and out of the 
mucosal immune system to and from the peripheral immune system is a necessary compo- 
nent of oral toleran~e.”2~*~~ 

Lymphocytes leave the circulation, migrate, and accumulate at sites of inflammation 
in response to chemoattractants. Historically, leukotrienes, platelet-activating factor (PAF), 
‘and C5a have been defined as nonspecific chemoattractants responsible for mononuclear 
cell recruitment. Recently, several laboratories have identified specific chemoattractant 
cytokines (chemokines) for neutrophils as well as mononuclear and lymphoid cells. The 
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potent factors are divided into two highly conserved gene families: C-x-C and C-C, 
designated by the position of the first two cysteine~.-”~~~ The C-x-C (or a) chemokines 
are primarily chemotactic for ne~trophils.’~ The prototypic C-x-C chemokine is IL-8. The 
C-C (or p) chemokines are primarily chemotactic for mononuclear cells, basophils, and 
e o ~ i n o p h i l s . ~ ~ - ~ ~  Representatives of this family include macrophage inflammatory protein 
(M1P)-la and monocyte chemotactic protein (MCP)-1. The cellular source of the C-C 
chemokines has only recently been elucidated, MIP-la has been shown to be expressed 
primarily by mononuclear cells, neutrophils, and inflammatory f ibrobla~ts~~ and also has 
been shown to up-regulate ICAM-l,374 demonstrating the importance of this factor in 
the migration of mononuclear cells. Another member of the C-C family, MCP-1, was 
f i s t  identified as an early response gene (JE) in murine fibroblasts treated with PDGF.4’ 
MCP- 1 expression has been demonstrated in monocytes, lymphocytes, endothelial cells, 
epithelial cells, and smooth muscle cells”*42 and has been identified as a chemotactic factor 
for CD4’ T cells!3.” Recently, infection of intestinal epithelia has been shown to induce 
the production of MCP-1 ?5 

Inasmuch as migration of lymphocytes seems to be an important consequence or oral 
tolerance induction, we hypothesized that C-C chemokines might be important factors in 
the induction of oral tolerance. In the present report, we tested the in vivo role of MIP- 
la and MCP-1 in the induction of oral tolerance to human gamma globulin (HGG). 

MATERIAL AND METHODS 

Mice 

Inbred female SJL/J (H-2’) mice were purchased from Harlan Sprague Dawley (Indian- 
apolis, IN) and housed according to Northwestern University and N M  guidelines. 

Antigens 

HGG was purchased from Sigma (St. Louis, MO). Bovine MBP was a kind gift of 
Dr. Stephen D. Miller (Northwestern University). 

In Vitro T-cell Proliferation/Qtokine Assays 

In vitro proliferative responses of lymph node T cells were measured according to 
established methods using [3H]TdR incorporation.46 Single cell suspensions from pooled 
lymph nodes were cultured at a density of 2 x lo6 celldmL in Dulbecco’s modified Eagle 
medium (DMEM) containing 5% FCS, 1 mM glutamine, 1 % Pen-Strep, 1 mM nonessential 
amino acids, and 5 x M 2-ME (complete DMEM-5, all components from Sigma) in 
the presence or absence of 5 pg/mL HGG. Antigen-induced cytokine production was 
assayed from 24-, 48-, and 72-h culture supernatants. Duplicate samples were tested for 
the presence of IL-2, IL-4, and IL-10 by ELISA, using cytoscreenm ELISA kits (Biosource 
International, Camarillo, CA). Transforming growth factor (TGF)-P was analyzed from 
supernatants of cells grown in serum-free medium using a modified ELISA as previously 
described.I5 IFN-y production was measured by capture ELISA using recombinant cytokine 
as a standard.& Measurement of MIP-la and MCP-1 was performed on cell culture 
supernatants, as previously de~cribed.)~ 
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Induction of Antigen-specific DTH 

Prechallenge ear thickness in metofane-anesthetized animals was measured with a 
Mitotoyo dial thickness gauge. Five Fg of antigen (in 10 pL PBS) was injected intrader- 
mally into the dorsal surface of the ear using a 100 p,L Hamilton syringe fitted with a 
30 g needle. Ear swelling was measured 24 h later and expressed in units of lo4 inches. 
HGG-induced ear-swelling responses are the result of mononuclear cell infiltration and 
show typical delayed-type hypersensitivity (DTH) kinetics (k, minimal swelling at 4 h, 
maximal swelling at 24-48 h). 

In Vivo Administration of Antibodies 

Mice were administered 0.5 mL of either rabbit anti-MIP-la or rabbit anti-MCP-1 
intraperitoneally (ip) using a 25 gauge needle. The rabbit polyclonal antisera was specific 
for its respective chemokine and did not cross-react with other known chemokines or 
cytokines, as tested by ELISA. The sera had titers > lo6. 

RESULTS 

Intragastric Administration of HGG Inhibits HGG-specific T-cell 
Proliferation and DTH 

Two groups of three mice were either given 20 mg HGG or myelin basic protein 
(MBP) (as a control) intragastrically (ig) seven days prior to immunization with 25 kg 
HGG emulsified in CFA containing 2 mglmL Mycobacterium tuberculosis. Seven days 
following immunization, draining lymph node cells were pooled and cultured with HGG; 
proliferation was measured by thymidine incorporation. FIGURE 1 shows that draining 
lymph node cells from control mice fed MBP and immunized with HGG make a recall 
T cell-proliferative response (open squares). By contrast, draining lymph node cells from 
mice fed HGG have a significantly decreased recall T cell-proliferative response (open 
circles; p < 0.01, Student’s t test) through a 2 log dose-response range. 

To determine the effect of ig administration of HGG on in vivo, cell-mediated immune 
responses, we tested DTH in groups of mice fed either HGG or MBP (control) and 
subsequently immunized with HGGICFA. Seven days following immunization, mice from 
both groups were tested for HGG-specific DTH. Prechallenge ear thickness was measured, 
5 pg of HGG was injected into each ear, and 24 h later the increased ear swelling was 
measured as an indication of DTH. In FIGURE 2 oral administration of 20 mg HGG seven 
days prior to immunization with HGG/CFA resulted in a significant decrease (p < 0.05) 
in in vivo DTH responses compared to control (MBP)-fed mice. 

Effect of Intragastric Administration of HGG on Chemokine and Cytokine 
Responses 

To test whether ig administration of HGG had an effect on the production of chemokines 
and cytokines, we fed mice either HGG or a control antigen (MBP) seven days prior to 
immunization with HGG/CFA. One week following immunization, draining lymph node 
cells from each group of mice were pooled and cultured in the presence or absence of 
HGG in v im.  The presence of chemokines and cytokines in the culture supernatants was 



136 ANNALS NEW YORK ACADEMY OF SCIENCES 

250 T- - 
7 Control i.g 

0 HGG i.g. -- 200 
s 

i’ /’ 
,/ p < O . O O l  

0 i 
0.1 1 10 100 

[HGG] pg/rnl 

FIGURE 1. Intragastric administration of HGG decreases recall proliferative responses. Groups 
of three mice were fed 20 mg of either HGG or MBP (control) seven days prior to immunization 
with 25 pg HGG in CFA. Seven days later, draining lymph node cells were pooled and tested 
for proliferative responses in the presence or absence of 5 pg/mJi HGG. The background 
proliferation for each group was less than 5000 cpm, and the standard deviation of each data 
point was less than 10% of the mean. 

determined by specific ELISA.36,w8 Administration of ig HGG results in an antigen- 
specific decrease in IL-2 and IFN-y, and an increase in IL-4 and IL-10 production (not 
shown), consistent with what has been reported in the literat~re.4~ In FIGURE 3 administra- 
tion of 20 mg HGG ig also resulted in a decrease in MIP-la production by lymph node 
cells from HGG-fed mice when compared to control-fed mice. However, to our surprise, 
ig administration of HGG had the opposite effect on production of MCP-1. FIGURE 4 
shows that lymph node cells from mice fed 20 mg HGG 7 days prior to immunization 
produce a significantly greater amount of MCP-1. These results suggest that chemokines 
are important factors in the induction of oral tolerance. 

Anti-MCP-1 Treatment in Vivo Abrogates Oral Tolerance Induction 

The differential recall production of MIP-la (FIG. 3) and MCP-1 (FIG. 4) suggested 
that MCP-I production in vivo might be important in the induction of oral tolerance. As 
a test of this hypothesis, we fed mice either HGG or ovalbumin (OVA; as a control) and 
treated ip with either normal rabbit serum (NRS) or antiserum to MIP-la or MCP-1 on 
days 0 and 2, relative to feeding. Seven days after ig administration of antigen, all mice 
were immunized with HGG/CFA. One week following immunization, cells from the 
draining lymph nodes were pooled from the three mice in each group, and antigen-specific 
recall proliferation was measured. FIGURE 5 shows the result of this experiment. Cells 
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FIGURE 2. Intragastric administration of HGG results in decreased DTH responses. Mice 
were treated as in FIGURE 1. Seven days after immunization with HGG in CFA, the two groups 
of mice were challenged with 5 pg of HGG in PBS in each ear. Twenty-four hours later, ear 
swelling was used as a measure of DTH. The results are displayed as the mean ear swelling 
2 SD of three mice per group (6 ears). The DTH response in the oral HGG groups is statistically 
different (p c 0.05) than the DTH response for the control-fed group (oral MBP). 

from mice fed OVA, treated with NRS, and immunized with HGGICFA showed a substan- 
tial antigen-specific T cell-proliferative response (group A). By contrast, cells from mice 
fed HGG, treated with N R S ,  and immunized with HGG/CFA showed a significantly 
decreased proliferative response (group B; p < 0.01 when compared to group A). Cells 
from mice fed HGG, treated with anti-MIP-la, and immunized with HGGKFA (group 
D) also showed a decreased proliferative response when compared to its control group 
(group C; p < 0.01). The proliferative response of cells from group D is not significantly 
different than that from group B, suggesting that in vivo neutralization of MIP-la does 
not have an effect on the induction of oral tolerance. However, cells from mice fed HGG, 
treated with anti-MCP-1, and immunized with HGGlCFA (group F) did not show a 
significantly different proliferative response than cells from the control-fed group (group 
E). Moreover, the proliferative response of the lymph node cells from mice fed HGG, 
treated with anti-MCP-1, and immunized with HGG-CFA (group F) was significantly 
greater (p < 0.01) than that of mice fed HGG and treated with either NRS (group B) or 
anti-MIP-la (group D). These data suggest that induction of oral tolerance can be abrogated 
by treating recipients in vivo with anti-MCP-1, but not anti-MIP-la. 

DISCUSSION 

Feeding protein antigens can result in the antigen-specific inhibition of peripheral 
immune responses50.51 as well as the priming of antigen-specific gut responses." In the 
present report, we demonstrated that feeding a high dose of HGG can inhibit T cell- 
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FIGURE 3. Intragastric (ig) administration of HGG results in the antigen-specific reduction 
in recall MIP-la production in vitro. Lymph node cells from the mice in FIGURE 1 were cultured 
in the presence or absence of 5 p g / d  HGG. MIP-la production was measured by ELISA, 
using recombinant MIP-la as a standard, and the data are shown as pg/mL. 

proliferative (FIG. 1) and DTH (FIG. 2) responses. Moreover, oral tolerance induction by 
feeding HGG selectively inhibited MIP-la production (FIG. 3) and increased MCP-1 
production (FIG. 4) by peripheral lymphoid cells. MCP-1 was found to be an important 
chemokine in the induction of oral tolerance because treatment with anti-MCP-1, but not 
M P - l a ,  at the time of feeding HGG abrogated oral tolerance (FIG. 5) .  The mechanism 
or oral tolerance induction in the present report appears to be a combination of inhibition 
of Thl and priming of Th2 cytokine responses (data not shown). Moreover, we have 
recently shown that feeding a high dose of the immunodominant peptide epitope of 
proteolipid protein results in peripheral tolerance by inducing both anergy of Thl responses 
and priming of Th2 responses (manuscript submitted). Our results are consistent with 
what has been reported for inducing oral tolerance by feeding o~albumin .~J~  

One possibility that might explain why treatment with anti-MCP-1 would abrogate 
oral tolerance induction is that MCP-1 is an important factor in the generation of a Th2- 
like response after feeding HGG. We do not favor this interpretation because analysis of 
lymphocytes from mice treated with anti-MCP-1 revealed that there was no difference in 
IL-4 and TGF-6 production by peripheral T cells when compared to T ceIls from control- 
treated mice (data not shown). Moreover, addition of either recombinant MCP-1 or MIP- 
la to cultures of HGG-specific T cells did not alter the cytokine production pattern (data 
not shown). A more likely interpretation of the data in the present report is that MCP-1 
is an important chemotactic factor in the gut and/or periphery and is selectively involved 
in the chemotaxis of ThZlike regulatory cells in and out of the gut, as well as the spleen. 
A recent report has suggested that MCP-1 production is induced in intestinal epithelial 
cells following infection:' It is possible that oral administration of antigens induces MCP- 
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FIGURE 4. Intragastric (ig) administration of HGG results in the antigen-specific increase in 
recall MCP-1 production in viiro. Lymph node cells from the mice in FIGURE 1 were cultured 
in the presence or absence of 5 p@mL HGG. MCP-1 production was measured by ELISA, 
using recombinant MCP-1 as a standard, and the data are shown as pg/mL. 

1, which in turn induces the chemoattraction of ThZlike regulatory cells. By blocking 
the chemotactic effects of MCP-1 at the site of antigen intake, the influx of regulatory cells 
might be prevented, thereby preventing the induction of peripheral tolerance. Alternatively, 
MCP-1 might be involved in the efflux of regulatory cells from the gut to the periphery, 
and neutralization of MCP-1 in the gut would prevent the migration of these cells to the 
periphery. These possibilities are currently being tested. 

In addition to MCP-1,43 MIP-la is also a chemotactic factor for T cells.3s It is interesting 
that anti-MIP-la did not abrogate the induction of oral tolerance (FIG. 5) in the present 
report. If the hypothesis is that oral tolerance induces a regulatory T-cell population that 
emigrates from the gut to the periphery to effect nonresponsiveness, one might predict 
that anti-MIP-la would also abrogate induction of oral tolerance. We have previously 
shown that anti-MIP-la treatment inhibits granuloma formation in both a schistosomiasis 
model4' and a central nervous system demyelinating disease model, experimental autoim- 
mune encephalomyelitis (Em)." Both of these inflammatory disease models are induced 
by Thl-dominated responses. It is possible that MIP-la is a preferential chemoattractant 
in Thl-dominated responses and that MCP-1 is a preferential chemoattractant in Th2- 
dominated responses. The data in the present report suggest that MCP-1 is an important 
chemotactic cytokine in the induction of oral tolerance, which has been reported to be 
mediated in part by a Th2-like re~ponse.~' 

SUMMARY 

Peripheral antigen-specific tolerance can be induced by feeding protein antigens. The 
mechanism has been described as either clonal anergy/deletion or induction of antigen- 
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specific regulatory cells that produce transforming growth factor (TGF)-P, depending on 
the dose of antigen fed. Experimental autoimmune encephalomyelitis (EAE), an animal 
model for multiple sclerosis, can be prevented by feeding myelin basic protein (MBP) or 
proteolipid protein (PLP). We decided to address the role of chemokines in the induction 
of oral tolerance. We have used a model antigen system of feeding a high dose of human 
gamma globulin (HGG) to mice that have been subsequently immunized with HGG 
emulsified in CFA. The result was decreased recall proliferative, delayed-type hypersensi- 
tivity (DTH) and Thl cytokine responses. By contrast, Th2 cytokine responses were 
enhanced. Interestingly, macrophage inflammatory protein (MIP)-la production was de- 
creased, whereas monocyte chemotactic protein (MCP)- 1 production was enhanced. Tnduc- 
tion of oral tolerance was prevented by the administration of anti-MCP-1 to mice fed 
HGG. These results show that chemokines play an important role in the induction of oral 
tolerance. 
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