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Abstract

In the context of neutral theories of community ecology, a novel genealogy-based

framework has recently furnished an analytic extension of Ewens� sampling multivariate

abundance distribution, which also applies to a random sample from a local community.

Here, instead of taking a multivariate approach, we further develop the sampling theory

of Hubbell’s neutral spatially implicit theory and derive simple abundance distributions

for a random sample both from a local community and a metacommunity. Our result is

given in terms of the average number of species with a given abundance in any randomly

extracted sample. Contrary to what has been widely assumed, a random sample from a

metacommunity is not fully described by the Fisher log-series, but by a new distribution.

This new sample distribution matches the log-series expectation at high biodiversity

values (h > 1) but clearly departs from it for species-poor metacommunities (h < 1).

Our theoretical framework should be helpful in the better assessment of diversity and

testing of the neutral theory by using abundance data.
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I N T R O D U C T I O N

In order to address the fundamental question of how

species abundances change in space and time, Hubbell’s

unified theory builds on the foundation of the original

theory of island biogeography (MacArthur & Wilson 1967).

The theory is developed on the basis of two principles

(Hubbell 2001): zero-sum dynamics, and a per capita

ecological equivalence among all individuals of every species

in a given trophically defined community, which also

involves neutral speciation. In particular, the principle of

ecological equivalence has generated intensive discussion

among ecologists (Yu et al. 1998; Bell 2001; Condit et al.

2002; Enquist et al. 2002; Clark & McLachlan 2003;

Magurran & Henderson 2003; McGill 2003; Kneitel &

Chase 2004). However, this controversy has been partly a

result of the difficulty in devising clear methods to test it

(McGill 2003; Volkov et al. 2003).

The discussion about the merits of Hubbell’s neutral

theory as compared with alternative theories based on the

differential ecological adaptation of species (Tilman 1982,

1990; Chesson 2000; Mouquet & Loreau 2002, 2003;

Kneitel & Chase 2004) is important both from the

theoretical and the applied point of view, because the

neutral theory is able to describe the complexity of natural

communities in a very concise way – only two numbers are

needed to characterize a natural community in a given

locality. These are h, the fundamental biodiversity number

(the potential species richness of the community), and m, the

immigration parameter (its degree of isolation).

Recently, various analytical approaches to the study of the

theory have been formulated (Vallade & Houchmandzadeh

2003; Volkov et al. 2003; Etienne & Olff 2004b; McKane

et al. 2004). In the hope of unifying previous approaches and

providing sound methods to test the theory, we calculate the

exact sample species abundance distributions (SADs) pre-

dicted by the neutral theory on the basis of a general theory

of community sampling (Dewdney 1998). In particular, we

show clearly that the metacommunity abundance distribution

is not well described by a logseries distribution (Fig. 1b). As a

consequence, we show that the logseries-based solution of

Volkov et al. (2003) is good for species-rich communities, but

gives incorrect predictions in species-poor communities.

Although biodiversity issues are unavoidable in relation to

species-rich communities, such as rain forests and coral reefs,

some of the world’s most extensive and ancient ecosystems
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contain few species. It is important to know whether the

functioning of such systems, for instance boreal forests,

bogs, or heathlands, is consistent with the neutral theory.

Given that it is far more reliable to sort individuals into

species when analysing species-poor communities, tests

based on abundance data from these communities will be

more reliable than the same tests performed by using data

from species-rich communities. Our results improve the

ability to test the neutral theory by using abundance data.

In the second part of the article, we re-analyse several

data sets: Williams� classical data (Fisher et al. 1943) on

Lepidoptera in light traps, the Barro Colorado Island (BCI)

tree plot (Condit et al. 2002), and a species-poor tree

community from Mount Washington, NH, USA (Braun

1950). Our intention here is to provide worked examples

showing the power and the limitations of this theoretical

approach. In this context, we show how to use likelihood

tests, which penalize for extra parameters, and tailored

Monte Carlo tests, looking for significance in our fitted

abundance curves. This framework is reliant on the

statistical power we gain when analysing real abundance

data. We find that deviations from neutral theory expecta-

tions are not large. Therefore, our analysis provides some

evidence that neutral zero-sum dynamics and dispersal

limitation could be assumed to be the main factors

controlling community dynamics, at least as a first approxi-

mation and given the limited amount of data we have

analysed. However, in general, noise in real data seems to be

higher than that predicted by the neutral theory. Replicated,

extensive data sets and sound methods to test against

alternative theories, are necessary to uncover other mech-

anisms controlling community dynamics.

A M A S T E R E Q U A T I O N A P P R O A C H

Two complementary analytic approaches have been used to

develop Hubbell’s neutral zero-sum theory. Hubbell (2001)

re-interprets Ewens� sampling distribution (Tabare &

Ewens 1997), initially introduced in the context of genetics

(Ewens 1972; Karlin & McGregor 1972), and uses it as a

species abundance distribution of a metacommunity under-

going neutral zero-sum dynamics. Recently, by extending

this approach, Etienne & Olff (2004b) have derived the

corresponding multivariate sample distribution, also of the

local community. However, an alternative approach is

possible. Frequently insight is gained when ecological

interactions are formulated as a one-step stochastic process

governed by a master equation in continuous time

(Renshaw 1991; McKane et al. 2000; Solé et al. 2000;

Stollenwerk & Briggs 2000; Stollenwerk & Jansen 2003;

Alonso 2004). This formulation has been recently used to

address neutral zero-sum dynamics by several authors

(Vallade & Houchmandzadeh 2003; Volkov et al. 2003;

McKane et al. 2004). Incidentally, it is also important to

remark that so far all these approaches study the spatially

implicit formulation of Hubbell’s theory assuming the
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Figure 1 pZSM vs. log-series in species-poor communities. (a) We

have plotted the sample SAD after averaging over randomly

generated samples from the metacommunity made up of four

species at the frequencies observed on Mount Washington. In both

plots, the average number of species in each abundance class has

been represented along with the expected standard deviation. (b)

Abundance distribution for a random sample from a metacom-

munity such as a boreal forest [h ¼ 0.5 (e.g. Hubbell 2001, p. 147)]

predicted by neutral theory (mZSM) and by the log-series

approximation. Samples are generated by using Ewens� algorithm.

For instance, in a random sample of 500 individuals from a low

diversity metacommunity (h ¼ 0.15) there is a 0.43 probability of

finding one species being represented by more than half the

sample. The same probability calculated with the log-series yields

an incorrect prediction of 0.09.
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point-mutation mode of speciation (see Chapter 4 Hubbell

2001). It is essentially only in this case that analytic

expressions for various quantities of interest have been

given so far (but see Chave & Leigh 2002; He & Hubbell

2003; Houchmandzadeh & Vallade 2003; Chave 2004). As

far as we know, there are no, even approximate, analytic

expressions for the corresponding SADs in the spatially-

explicit formulation of the theory.

Here our starting point is a careful formulation of

metacommunity dynamics. The metacommunity is isolated

[a biogeographical region (Rosenzweig 1995)] and, there-

fore, its dynamics is only controlled by two processes:

mutation and reproduction. Vallade & Houchmandzadeh

(2003) describe metacommunity dynamics in terms of a

non-linear one-step stochastic process where birth–death

transition rates can be written as:

gn ¼ T ðnþ 1jnÞ ¼ b
nð JM � nÞ
JM ð JM � 1Þ ; ð1Þ

rn ¼ T ðn� 1jnÞ ¼ b
nð JM � nÞ
JM ð JM � 1Þ þ m

n

JM
: ð2Þ

These transition rates can be linearized for large JM, giving

rise to:

gn ¼ T ðnþ 1jnÞ ¼ b
n

JM
; ð3Þ

rn ¼ T ðn� 1jnÞ ¼ ðbþ mÞ n

JM
: ð4Þ

It is convenient in this case to rescale time by introducing

s ¼ t/JM. This now gives transition probabilities:

~gn ¼ bn; ~rn ¼ ðbþ mÞn: ð5Þ
This linear representation for rn and gn is precisely the

starting point chosen by Volkov et al. (2003) in order to

derive the stationary abundance distribution at the speci-

ation-extinction equilibrium. Kendall (1948) provides the

general solution for a one-step stochastic process with linear

transition rates in the context of a birth–death process with

immigration. Here, the linear approximation provided by

eqn 5 leads to the log-series abundance distribution at the

metacommunity level (Volkov et al. 2003). On the other

hand, Vallade & Houchmandzadeh (2003) find the exact

species abundance distribution at the speciation-extinction

equilibrium in the metacommunity, without considering any

further approximation. To stress the connection between

this exact solution and empirical data, in this report we build

the corresponding sample SADs in different asymptotically

meaningful situations.

To keep a uniform notation, it will be useful to re-write

the result from Vallade & Houchmandzadeh (2003) as

SM ðnÞ ¼
h
n

Cð JM þ 1Þ
Cð JM þ 1 � nÞ

Cð JM þ h� nÞ
Cð JM þ hÞ ; ð6Þ

where SM (n) is the expected number of species represented

by n individuals within the metacommunity, and h, the

fundamental biodiversity number, is defined as h ¼
(JM ) 1)m/b. Since reproduction and death are coupled by

the zero-sum rule, the metacommunity size is fixed and

denoted by JM, m is the probability that an individual

undergoes a mutation per unit time and b is the probability

that it reproduces per unit time. It must be noted that

Hubbell’s definition of m is dimensionless (probability of

giving rise to a new species per birth). So, the above

definition of the biodiversity number is closely related to

Hubbell’s definition, h ¼ 2JMm.

T H E S A M P L I N G D I S T R I B U T I O N S

The distinction between a distribution within a given

community and the distribution observed in a sample from

this community is still not widely appreciated (Pielou 1969).

Dewdney (1998) showed that by assuming random sampling,

the community distribution and the sample distribution will

tend to be very similar. For instance, when the community is

described by a continuous abundance distribution such as

the famous lognormal distribution (Preston 1962), the

sample distribution becomes a finite discrete representation

of the distribution at the community level (Bulmer 1974).

However, they could differ depending on how the sampling

process has been carried out. Since Hubbell’s theory is

formally based on the Ewens� sampling theory of selectively

neutral alleles (Ewens 1972; Karlin & McGregor 1972), in

essence it is a sampling theory. As a consequence, any

analytic expression for the distribution of species abun-

dances in the recent literature (Hubbell 2001; Vallade &

Houchmandzadeh 2003; Volkov et al. 2003; Etienne & Olff

2004b) applies either to the whole community or a small

sample from it. This means that by understanding the

community size as our sample size we are turning the

community distribution into a sample distribution. However,

this is only true if the sampling is random. We think that this

point has not been stressed enough. For instance, consider

an island connected by migration to a mainland. If we sample

the island and try to test to what extent limited dispersal from

the continent and zero-sum neutral dynamics explains our

data, we should first randomize our local sampling within the

island. Otherwise, if we have only taken a sample from a

particular island locality, dispersal-limitation effects within

the island (especially if the island is large) mean that the

expressions we have for Hubbell’s spatially implicit theory

cease to apply to this case in a straightforward way. Here, by

highlighting the sampling nature of Hubbell’s theory, we

would like to re-interpret the analytic SADs of this theory in

the light of a general theory of sampling process (Pielou

1969; Dewdney 1998). This will emphasize how other

sampling processes could modify these expressions.
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We denote by S(n) the expected number of species

represented by n individuals in a sample from a given

ecological community. In the most general case, this sample

distribution is linked to the real abundance distribution,

Q(k), in the community by (Dewdney 1998; Lande et al.

2003):

S ðnÞ ¼
XJM
k¼1

f ðnjkÞQðkÞ; ð7Þ

where f(n|k) gives the probability for any species having k

individuals in the community to enter the sample with ex-

actly n individuals. This conditional probability, the sample

transformation function (Dewdney 1998), is the core of any

sampling theory. It depends on the assumptions of how

individuals enter the sample, for instance: is there species

aggregation or can we assume unbiased random sampling?

In the context of the neutral theory, the exact solution for

the expected number of species represented by n individuals

in a local sample of J individuals can be recast as a sample

distribution (eqn 7). Since we know the SAD in the

metacommunity, SM(n) (Vallade & Houchmandzadeh 2003),

all that is required is to determine the set of probabilities

f(n|k). These probabilities, rather than being random

Poissonian, should be affected by dispersal limitation,

because species in the sample do not appear randomly

from the metacommunity. An analytical expression for the

probability Ps(n; N, m, x) of finding a certain species with

relative abundance in the metacommunity x, being repre-

sented by n individuals in a local community of size N and

connected by migration to a much larger metacommunity,

has recently been found independently by several authors

(Vallade & Houchmandzadeh 2003; Volkov et al. 2003;

McKane et al. 2004, and see Appendix S1 in the Supple-

mentary Material, where its mathematical form is also

given). As stated before, by assuming unbiased random

sampling at the local level, any sample of J individuals can be

considered as an equivalent local community of that size.

Therefore, we notice that the probability Ps(n; J, m, x) is

nothing else but f(n|k), where J is the sample size, and k ¼
xJM is the abundance in the metacommunity. These

probabilities transform the distribution at the metacommu-

nity level, which is inaccessible, into the sample distribution

that will be actually encountered when we get a sample from

a dispersal-limited locality.

We may now introduce the expressions for Ps(n; J, m, x)

and SM(n), given by eqn 6, into the general eqn 7, to obtain

the general solution for a local community of Hubbell’s

unified theory in the form of a sample distribution:

S ðnÞ ¼
XJM
k¼1

Psðn; J ; m; k=JM ÞSM ðkÞ; ð8Þ

where n ¼ 0,…,J, and J is the sample size.

We remark again that assuming random local sampling,

the abundance distribution given in eqn 8 is also true for

the whole local community, as was found by Vallade &

Houchmandzadeh (2003). By using the general theory of the

sampling process of Dewdney (1998), this result can be

formalized, since eqn 8 can be shown to be invariant under

hypergeometric sampling.

The infinite metacommunity assumption

Since metacommunties are large, they may be considered to

be effectively infinite. If this assumption is made, then in the

asymptotic limit as JM tends to infinity, the stationary state at

the speciation-extinction equilibrium can be expressed by a

continuous abundance distribution (Vallade & Houchmand-

zadeh 2003):

fM ðxÞdx ¼ h
x
ð1 � xÞh�1

dx; ð9Þ

which represents the number of species with a relative

abundance x within the abundance interval (x, x + dx) in the

metacommunity. This expression may be deduced directly

from eqn 6 by using the asymptotic expression for gamma

functions (Abramowitz & Stegun 1965), and is central to

the derivation of the sample SADs we present here.

By using eqn 9, a corresponding asymptotic form (for an

infinite metacommunity) of eqn 8 can be also written:

SðnÞ ¼ h
Z 1

0

Psðn; J ; m; xÞ
ð1 � xÞh�1

x
dx; ð10Þ

where now n ¼ 1,…,J. In Appendix S1 (see Supplementary

Material) we relate this solution to that in Volkov et al.

(2003). Notice that none of these asymptotic forms allows

an estimation of the total species richness in the meta-

community nor of the total metacommunity size, JM : eqn 8

is required to estimate these very relevant quantities. By

summing over n ¼ 0,…, J, eqn 8 gives the expected value

for the number of species in the metacommunity. On the

other hand, if we only wish to estimate the expected number

of species entering a sample of size J, we can use either eqn

8 or eqn 10 by summing now over n ¼ 1,…, J. Carrying

out this procedure, our estimates for the average number of

species in a sample of size J match those obtained using the

formulas given in Etienne & Olff (2004a). Our asymptotic

approach relies on assuming the metacommunity to be

infinite. Numerically, we have checked that eqn 8 is only

slightly sensitive to JM when JM reaches 105–106. In a

forthcoming paper, we will develop a large JM approxima-

tion to address this point in an analytic way.

As the immigration parameter tends to 1, the general

expression for the zero-sum multinomial abundance distri-

bution, eqns 8–10, which could be called the local or
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migration-limited zero-sum multinomial (labelled through-

out this report as either localZM, or simply ZSM), has a

limiting form corresponding to a random sampling from the

metacommunity (metaZSM, or mZSM, for short). If the

metacommunity is assumed to be finite, the exact sample

distribution is again eqn 6, since it can also be shown that

this expression is invariant under the hypergeometric

transformation. In an infinite metacommunity, as m fi 1,

eqn 10 naturally gives rise to a random sampling which is

binomially distributed, the expected number of individuals

in the sample belonging to a species with relative abundance

x in the metacommunity being Jx:

S ðnÞ ¼ h
J

n

� �Z 1

0

xnð1 � xÞJ�n ð1 � xÞh�1

x
dx; ð11Þ

For large samples, the exact sample distribution given by

eqn 11 can be very well approximated by using the Poisson

distribution (Pielou 1969; Dewdney 1998):

S ðnÞ ¼ h
Z 1

0

expð�xJ Þ xJð Þn

n!

ð1 � xÞh�1

x
dx: ð12Þ

In this case, the integral can be approximately evaluated

and given as an analytic formula which is easy to use (see

Appendix S2 in Supplementary Material):

S ðnÞ ¼ h
n

1 � n

J

� �h�1

þO
1

J 2

� �
: ð13Þ

The asymptotic distribution in eqn 11 is the asymptotic

form of the ZSM, when there is no dispersal limitation

(metaZSM, mZSM), i.e. the distribution corresponding to a

sample from a globally mixed or panmictic infinite

metacommunity. Its Poissonian approximation in eqns 12

and 13 can be seen as a compound Poisson distribution

(Bulmer 1974). There are two possible concerns about the

use of this new approximate distribution. First, the sample

size must be large ( J > 100, see Appendix S2 in the

Supplementary Material) and second, when n ¼ J and

h < 1, the exact binomial formula (eqn 11) should be used

instead. This framework should provide a better test of the

neutral theory at the metacommunity level, as well as a

better estimate of low values of the fundamental biodiversity

number. In fact, the log-series and the Poisson metaZSM

(eqn 13) are almost coincident only if the diversity values

are not small. In this context, it is conceptually important to

make the point that the Poisson metaZSM (eqn 13) is a

sample distribution with the same meaning as that given by

Fisher et al. (1943) to his log-series distribution: the expected

number of species with n individuals in a random sample

from a community. Both distributions are conceptually

different from the metacommunity steady-state SAD

(eqn 6). This SAD at the metacommunity level can only

be approximated by a log-series by taking linear transition

rates, which is equivalent to first assuming that zero-sum

dynamics is irrelevant in an infinite system and then solving

the resulting linear problem (Volkov et al. 2003). If we

proceed the other way around, i.e. we first solve the exact

problem and obtain eqn 6, and then look for the

asymptotic behaviour of this solution as JM tends to infinity,

we obtain eqn 9, which gives rise to the sample SADs we

are discussing in this paper. In contrast to the solution

reported by Volkov et al. (2003), the sample SADs reported

here keep the fingerprint of the zero-sum dynamics at the

metacommunity level, even in the case when we take the

metacommunity to be infinite.

How is the metaZSM to be tested empirically? As

Hubbell (2001, p. 318) suggests, �the best estimates of h are

likely to be obtained from pooling samples collected all

across the metacommunity�. However, as a consequence of

our findings, instead of the log-series distribution the new

metaZSM should be used as the expected sample SAD

when dealing with species-poor communities. In order to

test the theory, we need to sample a species-poor

metacommunity at random, and see whether the metaZSM

applies. Alternatively, we can pool together a large number

of samples from different localities of a metacommunity and

perform a re-sampling of R small pseudo-replicas of size J

from the whole pool of all individuals. This mimics a

random sampling of the metacommunity. Since we have R

replicas, by averaging we can empirically calculate the prob-

ability of having a species represented by n ¼ 0,1,2,…, J

individuals in a sample of size J. If the metacommunity is

very poor (h < 1, as, for instance, in a boreal forest), and

this probability is well described by a metaZSM, the shape

of the abundance distribution should show an upward bend

at the right end of the curve, as seen in Fig. 1b. If this were

the case, we should conclude that the empirical measured

sample SAD is consistent with Hubbell’s zero-sum neutral

metacommunity dynamics (see the worked example on the

boreal forest of Mount Washington, NH, USA and Fig. 1a).

M E T H O D S

Data

In order to show the applicability of this theoretical

framework, we have mainly used two data sets. The first

one is Williams� classical data on Lepidoptera (Fisher et al.

1943). These data were collected by means of a light trap in

England during the years 1933-1936. Only specimens

completely characterized by their full species name were

included in the analysis, mainly belonging to certain families

(Sphingidae, Noctuidae, Arctiidae, Geometriidae, and a few

other related families). The second is the 50 ha rainforest

plot of Barro Colorado Island (BCI), where trees larger than
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10 cm DBH were counted and sorted out up to the level of

species (Condit et al. 2002). Again, only specimens com-

pletely characterized by their full species name were

considered. Finally, as an example of a poor-species

community, we used data from a boreal forest (mid-

elevation) on Mount Washington (NH, USA) described in

Braun (1950) and also analysed in Hubbell (2001, page 147).

These data are given as the average frequencies of this

community which contains only four species (Spruce: 75%;

Balsam Fir: 16.5%; Paper Birch: 8.0%; Yellow Birch: 1.4%).

The way abundance data were plotted (Fig. 2) is intended

to reduce the noise usually present in this type of data

(Fig. S1 and Fig. 3). In Fig. 3, the y axis is the number of

species at each abundance interval. In Fig. 2, the probability

density is defined as the number of species having

abundances n within an interval divided by the abundance

interval length and the total number of species in the sample

(Pueyo 2003) (see Supplementary Material).

General fitting method: maximum likelihood

As a first step, in order to obtain maximum likelihood

estimates, we need to calculate the probability of obtaining a

data set supposing that the model and its parameter values

are known. From any sample abundance distribution, for

example eqns 7–13, we can define the probability of a

species being represented by n individuals in the sample:

pðnÞ ¼ S ðnÞPJ
i¼1 SðiÞ

; ð14Þ

where J is the sample size. Therefore, if we sort species in

terms of their abundances (S1 is the number of singleton

species in the sample, and so on), the probability of

obtaining a collection, S1,…,Sa, of a given size J can be

written as:

PrfS1; . . . ; SajModelg ¼ S !

S1! . . . Sm!
pð1ÞS1 . . . pðaÞSa ; ð15Þ

where Si is the number of species with i individuals in the

sample, S is the number of species in the sample and a is the

maximum abundance observed in the sample. Since we are

interested in how the likelihood of our data set changes

when changing the parameters defining the model, we take

as a likelihood function:

LfS1; . . . ; Sajh;mg ¼ pð1ÞS1 . . . pðaÞSa ; ð16Þ
where we have labelled the model in terms of the parame-

ters our abundance distributions depend on. In practice, our

maximum likelihood estimates are those maximizing eqn 16,

i.e. the likelihood of the data set. Alternatively, when looking

for the maximum, it is usually suggested that the negative of

the logarithm of the likelihood should be used (Hilborn &

Mangel 1997):

LfS1; . . . ; Smjh;mg ¼ �
Xa

i¼1

Si logðpðiÞÞ: ð17Þ

The minimum of this log-likelihood function gives the

maximum likelihood estimate of the parameter and its width

information about the confidence we have in our estimates.

Confidence intervals were calculated using the method

described in Hilborn & Mangel (1997) (see Supplementary

Material).
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Figure 3 Data on BCI tree species community. A Monte Carlo

generated curve using Etienne’s algorithm (R.S. Etienne, unpub-

lished data) is also shown. Standard errors (over 1000 randomly

generated samples of 21 386 individuals) are plotted at each

abundance interval.
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The derivation of this likelihood function is consistent

with the asymptotic formulas we are using, since eqn 14 is

exact assuming an infinite system. An exact formulation for

this likelihood, valid also for finite metacommunities, is

given by Etienne & Olff (2004b), as the multivariate

probability of randomly extracting a particular collection of

individuals from a local community. However, our

alternative likelihood for large metacommunities is simpler

and has a solid foundation. In particular, it is related to the

general concept of �composite likelihood�. In high dimen-

sional problems, when the multivariate likelihood is

unknown, or very difficult to calculate, composite likelihood

methods apply and have been used successfully for

maximum likelihood estimation in ecology and other areas

(Heagerty & Lele 1998; Lele & Taper 2002).

The likelihood ratio test

The ZSM (eqn 10) is a two-parameter abundance distribu-

tion, S(n) ¼ F(n; h, m), while the mZSM (eqn 13) is a one-

parameter abundance distribution, S(n) ¼ G(n; h). Within

the framework developed here, we have shown that

F(n; h, m) collapses into G(n; h) when the degree of

isolation of the local community being sampled is zero

(m ¼ 1). This enables us to use the likelihood ratio test (see

Hilborn & Mangel 1997, and references therein) to assess

for the significance of the immigration parameter (m < 1)

and see to what extent dispersal limitation plays a significant

role in shaping our abundance data (see Supplementary

Material).

Monte Carlo tests

The fitting of the abundance curve for the Lepidoptera

community was assessed by performing two Monte Carlo

tests. These tests mimic a random sampling either from the

metacommunity or from the local community, where a

given large number of independent pseudo-samples are

generated. These pseudo-data can be used to build a Monte

Carlo v2 test as an alternative to parametric tests based on

the v2 probability distribution (Hilborn & Mangel 1997). In

cases where the assumptions for the application of classical

v2 tests are not completely fulfilled or the provided results

are not sufficiently clear, Monte Carlo v2 tests are specially

indicated (see Supplementary Material).

R E S U L T S

Species-poor communities

Since data from the boreal forest we analysed are given as

the real relative frequencies encountered in the field through

different samples taken over several years, we will assume

that they roughly describe the metacommunity composition

of this type of mid-elevated boreal forest. In order to

investigate the shape of a SAD from such a metacommu-

nity, we have generated samples of 1000 trees according to

the given relative frequencies of the four metacommunity

species. This mimics a random sampling from such a

metacommunity. We have calculated the sample SAD after

averaging a number of randomly generated samples from

the metacommunity made up by only the four species at the

frequencies observed on Mount Washington (see Fig. 1a).

The shape of the abundance distribution actually shows an

upward bend at the right end of the abundance curve. The

logseries completely fails to capture this feature. Although

the way we have generated the samples – by assuming real

frequencies at the metacommunity level – is artificial, this

simple example is meant to highlight the fact that poor

communities will naturally show this upward bend beha-

viour at the right end of the abundance curve, and that the

right sample distribution predicted by the neutral theory, the

metaZSM (but not the logseries), is able to account for this

feature.

Species-rich communities

In Table 1 we summarize our results corresponding to the

two data sets analysed from two different species-rich

communities: Williams� Lepidopetera community (Fisher

et al. 1943) and BCI (Condit et al. 2002).

Table 1 Williams� Lepidoptera community (Fisher et al. 1943) and

BCI (Condit et al., 2002)

Lepidoptera BCI

Logseries

SðnÞ ¼ a xn

n

a ¼ 40.2(28.1,51.1)

v2
o ¼ 15:7; df ¼ 10

metaZSM

(eqn 13)

Prðv2 < v2
o jdf Þ

Prðv2
MC < v2

o Þ

h ¼ 39.8(29.7,51.9)

v2
o ¼ 16; df ¼ 10

0.9

0.95

h ¼ 34.4(25.6,45.3)

v2
o ¼ 22; df ¼ 9

localZSM

(eqn 10)

Prðv2 < v2
o jdf Þ

Prðv2
MC < v2

o Þ

h ¼ 41(31.1,52.7)

m ¼ 0.77(0.3,0.95)

v2
o ¼ 15:5; df ¼ 9

0.92

0.95

h ¼ 44(32.,56.)

m ¼ 0.15(0.05,0.4)

v2
o ¼ 4:43; df ¼ 8

0.18

Ratio likelihood test

[Pr(v2 < 3.84|1) ¼ 0.95]

R ¼ 3.96 R ¼ 14.0

Probabilities Prðv2 < v2
o jdf Þ have been calculated by using the

classical v2 distribution with df degrees of freedom. Probabilities

Prðv2
MC < v2

o Þ have been computed by performing Monte Carlo

tests. R stands for the likelihood ratio which is distributed

following a v2 distribution with one degree of freedom (see Sup-

plementary Material).
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BCI data set

The abundance distribution of the tree community in Barro

Colorado island has been used as an example where the ZSM

works well (Hubbell 2001). This has been challenged (McGill

2003; Etienne & Olff 2004b), but the final conclusion of these

criticisms highlights the low discriminative power of species

abundance data (Etienne & Olff 2004b). Moreover, the

parameters defining the classical lognormal (Preston 1962) are

not derived from any dynamical theory of community organi-

zation. In the future, it will become necessary to challenge the

ZSM fit against well-defined non-neutral theories of

community dynamics. In Fig. 3, we plot the ZSM (eqn 10)

and the solution calculated by using Etienne’s algorithm,

which also gives the expected variance of each abundance

interval. Both theoretical solutions match each other and

describe the empirical data successfully. The ratio likelihood

test reveals the high significance of the parameter m.

Lepidoptera community

As can be seen in Fig. 2, the mZSM and log-series give

results for the SAD which are very close to each other. By

using large samples, and for large values of h, the logseries

closely resembles the actual sample distribution, the mZSM.

In particular, the estimates of the fundamental biodiversity

numbers are reliable by using either the mZSM or the log-

series (Fig. 2, Table 1). In general, the logseries tends to

overestimate the fundamental biodiversity number, but this

is not significant in Williams� data.

Since the Lepidoptera data were used as a first example of

the Fisher logseries (Fisher et al. 1943), in the light of the

neutral theory the natural underlying null hypothesis is that

the sample is a random sample from the metacommunity.

Furthermore, these data come from a survey carried out

over 4 years, so we can explore whether the temporal

dimension of the sampling might have turned these data

into an approximate random sampling from the metacom-

munity. However, a careful Monte Carlo test by using

Ewens� sampling allows us to reject this hypothesis. In 95%

of cases, the Monte Carlo v2 statistic was lower than the

observed value in the data (Fig. S1). This result shows that

we can reject this null hypothesis at the confidence level of

0.05 (see Supplementary Material).

We can therefore conclude that the data do not seem to be

a random sample from the metacommunity undergoing

zero-sum neutral dynamics. In fact, the original analysis of

Williams (Fisher et al. 1943) pointed to the fact that the data

deviated from the log-series to some extent. In particular,

small samples, which capture the commonest species in the

system, were more homogeneous and contained fewer

species (Fisher et al. 1943) than predicted. In the context

of neutral theory, this could be a fingerprint of some

dispersal limitation affecting the local community. To

consider this possibility, we used eqn 10 to fit the data

(Fig. S1). Since we have shown that for the general ZSM, the

sample distribution for the local community (m < 1, eqn 10),

collapses into the mZSM as m fi 1 (eqn 13), we performed a

likelihood ratio test (see Methods) to assess the significance

of the added parameter m. Twice the difference in negative

log-likelihoods turned out to be only 3.98 (see Supplement-

ary Material). Therefore, it must be concluded that the ZSM,

which gives a better goodness-of-fit by taking into account

dispersal limitation, is only slightly, but significantly, better

than the one-parametric mZSM. On the other hand, the

deviation of the real data from the theoretical localZSM

reveals that the data is quite noisy. By using the maximum

likelihood estimates for the parameters m and h, the Monte

Carlo test would allow a rejection of the general two-

parametric ZSM model (localZSM) to be made at a

confidence level of 0.05 but not at the confidence level of

0.01. In fact, by assuming the localZSM with this parameter

set, there is a 5% probability of obtaining random pseudo-

samples deviating from the expected theoretical values by

even more than the deviation observed in the real data.

D I S C U S S I O N

In this report, we have analysed two contrasting examples.

Our results rely on clear analytical predictions for the

expected sample SADs of the spatially implicit formulation of

the theory. The estimated parameters for the BCI rainforest

are in agreement with previous values, in particular, with

those obtained by the Bayesian approach of Etienne & Olff

(2004b). The local community of BCI seems to be clearly

dispersal-limited. The inclusion of the immigration parameter

considerably improved the performance of the model. The

analysis of the same data as Condit et al. (2002) using a spatial

formulation of the neutral theory is consistent with this

result, at least at some spatial scales, suggesting that other

mechanisms different from zero-sum dynamics and neutral-

ity control species abundances at other spatial scales. The

significance of the parameter m for the Lepidoptera

community is not so clear. Although, the localZSM fails to

improve the fitting in a clear way, our analysis points to the

fact that species entered this local sample with a slight degree

of dispersal limitation. However, abundance classes show an

underlying variability which is not well captured by the

theoretical distribution. Notice that the theoretical variances

for each abundance interval are also given (Fig. 3, Fig. S1).

This might suggest that there is little evidence that neutral

dynamics and dispersal limitation are the main factors

controlling local dynamics of Lepidoptera community at this

spatio-temporal scale. Similar results have been found in

other insect communities (Stork 1997; Hubbell 2001; Lande

et al. 2003). However, a spatial sampling along with a spatially
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explicit neutral theory (Hubbell 2001; Chave & Leigh 2002)

might account for the observed pattern in a better way.

Nevertheless, the main limitation of our conclusions is that

they are based on only one trait of community organization.

In general, whenever possible, different community patterns

should be taken together and compared with expectations

from the theory to arrive at a coherent answer (Harte 2003).

This is particularly true when we lack replication and when

abundance data are rather noisy, as seems to be the case in

this example (Fig. S1). We stress also the importance of

having good statistical methods to test between alternative

theories of community dynamics making contrasting predic-

tions about species abundance distributions.

The Lepidoptera abundance distribution analysed here

shows a slope )1 at lower abundance classes (Fig. 2). This

feature is well captured by the theory. Extensive random

samples collected over large areas and long periods of time

(Margalef 1994) show the same pattern (Pueyo 2003). This is

a signature of neutral zero-sum dynamics at the metacom-

munity scale. It strongly suggests that neutral zero-sum

dynamics pervades metacommunities controlling rarity at

large spatio-temporal scales.

Neutral coexistence relies on the ecological equivalence of

the different species in a trophic-defined community.

Hubbell (2001) proposed that coevolution tends to act to

make all species� fitness approximately the same in a given

environment through the appearance of well balanced trade-

offs. This equalizing effect along with neutral speciation

allows a high level of diversity to be maintained. Since a great

number of stabilizing mechanisms (Chesson 2000) have been

theoretically predicted and empirically identified as respon-

sible for coexistence, mainly at short spatio-temporal scales,

it is important to elucidate whether Hubbell’s neutral theory

can be taken as a zeroth-order approximation at large spatio-

temporal scales. In order to have a reliable global picture of

biodiversity from the widest perspective, differences among

species belonging to the same trophic community might not

be so important. However, at smaller scales, a few common

species seem to be superabundant and persistent (Clark &

McLachlan 2003; Magurran & Henderson 2003). Are these

dominant species at the local level a simple consequence of

ecological drift or are they also responsible for the lack of

rare species (in comparison with the metacommunity)

through competitive exclusion or other general ecological

mechanisms (Chesson 2000)? To really achieve an under-

standing of the relative importance of neutrality and dispersal

limitation, compared to non-neutral factors in the assembly

of local communities, a synthetic theory reconciling neutral-

ity and niche assembly is needed. Some preliminary attempts

along these lines have already been made (Etienne & Olff

2004a). We believe this is a great challenge for community

ecology in the near future. The unified theory of biodiversity

is only the first step in this direction.
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