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Summary. We propose a phase | clinical trial design that seeks to determine the cumulative
safety of a series of administrations of a fixed dose of an investigational agent. In contrast with
traditional phase | trials that are designed solely to find the maximum tolerated dose of the
agent, our design instead identifies a maximum tolerated schedule that includes a maximum
tolerated dose as well as a vector of recommended administration times. Our model is based on
a non-mixture cure model that constrains the probability of dose limiting toxicity for all patients to
increase monotonically with both dose and the number of administrations received. We assume
a specific parametric hazard function for each administration and compute the total hazard of
dose limiting toxicity for a schedule as a sum of individual administration hazards. Throughout
a variety of settings motivated by an actual study in allogeneic bone marrow transplant recipi-
ents, we demonstrate that our approach has excellent operating characteristics and performs as
well as the only other currently published design for schedule finding studies. We also present
arguments for the preference of our non-mixture cure model over the existing model.

Keywords: Adaptive design; Bayesian statistics; Dose finding study; Phase | trial; Weibull
distribution

1. Introduction

Historically, phase I clinical trials are designed to determine the quantity of a new therapeutic
agent (henceforth referred to as a ‘dose’) given to patients that leads to dose limiting toxicities
(DLTs) in a limited proportion (usually 0.20-0.40) of patients. The largest dose examined that
satisfies this criterion is known as the maximum tolerated dose (MTD). DLTs are side-effects
of the dose whose severity is so great that general use of that dose would be unacceptable,
regardless of its potential therapeutic benefit. For example, recombinant human keratinocyte
growth factor (KGF) has been studied in allogeneic bone marrow transplant (BMT) recipients
as prophylaxis against acute graft-versus-host disease. Unusually large increases in amylase and
lipase, both of which are indicators of life-threatening pancreas dysfunction, have been seen in
patients receiving KGF and are usually viewed as DLTs in phase I studies of KGF.

Various model-based, Bayesian adaptive phase I designs for identifying the MTD have been
proposed, the first of which was the continual reassessment method (CRM) of O’Quigley et al.
(1990) and later modifications proposed by Goodman et al. (1995). The CRM selects a para-
metric model (of which there are several; see O’Quigley ef al. (1990)) for the association of dose
and the probability of DLT and sequentially updates estimates for the parameters and the best
estimate of the MTD continually during the study. Although the CRM was originally designed
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to estimate parameters with Bayesian methods, O’Quigley and Shen (1996) also proposed a
maximum likelihood approach. There are other competing designs to the CRM; Rosenberger
and Haines (2002) contains a comprehensive review of current phase I trial designs. As most
model-based phase I designs assume complete follow-up for each patient, Cheung and Chap-
pell (2000) recently proposed the time-to-event CRM, which allows patients to be enrolled when
they are eligible, even if previously enrolled patients have not completed follow-up.

In many clinical settings, the agent will be given repeatedly in a sequence of administrations
and patients will be followed to assess long-term cumulative effects of the agent. For example,
in the aforementioned example, a trial in BMT patients might seek to determine how many
consecutive 2-week series of KGF administrations can be given while keeping cumulative DLT
rates below a desired threshold. The first attempt for designing such a trial was presented in
Braun et al. (2003). In their approach, they treated each schedule as a single entity or ‘dose’ and
applied a modified version of the time-to-event CRM that proved problematic. First, patients
who received an incomplete schedule, e.g. 3.5 weeks instead of 4 weeks, had to be forced to “fit’
one of the planned biweekly schedules. Thus, in the given example, only the first 2 weeks of
treatment for the patient could be used and the remaining 1.5 weeks had to be ignored. Second,
each schedule was followed with additional follow-up, causing the doses to overlap, and leading
to ambiguity about which dose contributed to a late onset DLT. This first attempt proved that a
simple model of cumulative toxicity as a function of schedule is problematic and suggests that
one should instead model how toxicity is related to each individual administration.

For this, Braun et al. (2005) constructed a new paradigm for schedule finding in which the
hazard for the time to DLT is modelled as the sum of a sequence of hazards, each associated with
one administration. The crux of this approach is to find a suitable model for the time to DLT
for each administration. Braun ez al. (2005) adopted a piecewise linear (triangle) model for the
hazard, as it is reasonable to assume that the hazard of DLT for many cytotoxic agents increases
steadily after administration, reaches a peak and then begins to decrease as the agent is cleared
from the patient. This piecewise triangular model, although simple, has several limitations.
First, none of the parameters have interpretations that relate directly to the overall probability
of DLT. Second, the hazard function is not smooth and has finite support, both of which conflict
with standard time-to-event models. Third, the model is inflexible for the inclusion of patient
level or administration level covariates. Although one could conceive of a regression model for
each parameter in the triangular hazard as a function of covariates, the direct relationship of
each covariate to the probability of DLT would be difficult or impossible to discern.

To address these limitations, we propose a parametric non-mixture cure model for
determining the maximum tolerated schedule (MTS), where in our setting ‘cured’ refers to
patients who do not experience DLT. We shall model the total hazard of DLT as a sum of single
administration hazards as done in Braun et al (2005). However, because of the limitations
that were described earlier, we shall instead model the hazard for each administration to be
proportional to a standard two-parameter Weibull density function. Given the flexibility of the
shape of this density, our model can accommodate a variety of hazard functions beyond the
‘up-and-down’ triangular hazard if so desired. Furthermore, this model includes parameters
whose values can be directly interpreted in relationship to the probability of DLT, and we can
model the marginal probability of DLT directly as a function of the number of administrations.
In Section 2, we describe basic notation and develop our parametric cure model. Section 3
contains a method for developing prior distributions for our parameters, and Section 4 con-
tains a specific outline of trial conduct using our design. Section 5 describes the performance
of our algorithm and compares it with the approach of Braun ez al. (2005). Section 6 contains
concluding remarks.
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2. Notation and cure model development

2.1. Notation

We seek a design for a phase I trial that will examine K different administration schedules of an
agent. A maximum of N patients will be enrolled in the study, and each patient will be observed
to the earlier of DLT or completion of w days of follow-up without DLT. Medical investigators
will select the value of w as a clinically meaningful duration of time that is sufficiently late to
accommodate the longest schedule. For example, in toxicity studies of possible treatments for
acute graft-versus-host disease in allogeneic BMT patients, w is often set at 100 days, as this is
the duration that is required for acute graft-versus-host disease to develop. A fixed target prob-
ability p,, is elicited from investigators and is defined as the targeted cumulative probability of

DLT by time w.
We denote schedule k, k=1,2,...,K, with a vector of m; administration times s® =
(51,552 - - -»5m,). Without loss of generality, we set 51, =0 for all k, i.e. patients receive their

first administration when entering the study. Although we are not restricted by the number of
administrations that are contained in each s nor the timing of those administrations, medical
investigators are often interested in examining schedules that have a natural order so that each
s® is completely nested within s®*1D_ Thus, the durations of the treatment schedules increase
with k and m| <my <... <mg. For example, if the first schedule was comprised of three weekly
administrations after enrolment and the second schedule was a 3-week extension of the first
schedule, sV ={0,7, 14} and s ={0,7,14,21,28,35} = {sV, s(D 4 21},

We emphasize that the study is designed with the plan that each patient will receive a series of
administrations at specific, fixed administration times as defined by sV, ...,s®). However, in
practice, patients may deviate from their assigned schedule after they begin treatment for a host
of reasons, including clinician error or delay of treatment for medical reasons that are unre-
lated to toxicity, such as infection. Therefore, we lets;={s; 1,...,8im;}, i=1,2,..., N, denote
the actual times after enrolment at which patient 7/ receives an administration, where s; 1 =0
and m; is the number of administrations received. Furthermore, although m; administrations
are planned for patients who have been assigned to schedule s¥), it may be that m; < m; either
because of administrative censoring (i.e. a new patient is enrolled, requiring an interim analysis),
patient i has recurrence of disease and further administrations are cancelled, or because patient
experienced DLT at time s; ,,,; and thus received no further administrations. If we were to model
each schedule k as a single entity, rather than modelling its constituent administrations, patients
with deviations from schedule that are unrelated to DLT would no longer provide information
for the DLT profiles of the K schedules of interest. However, by modelling each administration
separately, we develop an approach that will accommodate any administration schedule that is
observed in the study and allow those schedules to contribute information about the K sched-
ules that the study was designed to compare. Simply put, any patient who receives at least one
administration, regardless of timing, provides useful data to our model.

We let W; denote the duration of the entire study when patient i enters the study; by definition,
W1 =0. We also define D;;=W; — W;, for j>i, as the span of time between the enrolments of
patient i and patient j. We let T; denote the time after enrolment when patient i would experience
DLT if followed for sufficiently long; note that 7; may be greater than the maximum amount
of follow-up, w. Thus, when each patient j> 1 is enrolled, we have two quantities for each
previously enrolled patienti=1,2,...,j—1:

(a) U;j =min(T;, D;}), the amount of follow-up for patient i, and
(b) Ci;=I(U;;=T;), an indicator of whether patient i has experienced a DLT.
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For example, suppose that we have enrolled two BMT patients in our KGF study on days 0 and
45 of the study. If the third patient is enrolled on day 75 of the study, and the other two patients
have not had a DLT, we have (Uj3, C13) =(75,0) and (U3, C»3) = (30, 0). If instead the second
patient had a DLT at day 60 of the study, we would have (U»3, C»3) = (15, 1), with U3 and Ci3
unchanged. The U;; and C;; will be incorporated in a parametric survival-type likelihood that
will be described in the following section.

2.2. Cure model development

We first start by developing a probability model for the time to DLT for a single administration.
A simple approach is to select a parametric probability density function f(v|¢) consisting of
parameters ¢ whose shape adequately describes the expected pattern for the hazard of DLT.
We then define the hazard of DLT for each administration to be g(v|¢, ) =6 f(v|¢), where
6 > 0 quantifies the proportionality of g(-) to f(-). Then, V/, the time to DLT after a single ad-
ministration, has survival function

Pr(V>v) = S(v|¢, 0) =exp{—0 F(v|$)}, (D

in which F(v|¢) is the cumulative distribution function of f(v|¢). Such a modelis referred to asa
non-mixture cure model (Chen et al., 1999; Tsodikov et al., 2003) because S(co|¢, 0) =exp(—0)
and implies that a fraction of patients are cured, i.e. will never experience DLT after a single
administration. Although a cured (non-DLT) fraction is also implied in the methods of Braun
et al. (2005), it is not directly parameterized as it is in our current approach. Another benefit
of our approach over that in Braun et al. (2005) is that the single-administration hazard can be
as general as needed, provided that it is biologically plausible and is sufficiently tractable for
parameter estimation.

We recommend f(v|@) =exp(—y)av® ' exp{—v®exp(—~)}, which is a two-parameter Wei-
bull density with ¢ = («, ), >0 and —oo <y < 0o. This function implies a non-monotonic
hazard when o > 2 and also allows for a monotonically decreasing hazard when 0 < v < 2, which
may be suitable when the agent is given as a bolus with immediate exposure to maximum toxicity
that then decreases over time. In our application, we choose specifically to constrain « > 2 so
that the resulting hazard function has our desired non-monotonic pattern. Fig. 1 displays an
example of g(v|¢, ) with a =2, y=4 and § =0.3 and demonstrates that, although an infinite
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Fig. 1. Visual representation of a single-administration hazard based on a Weibull hazard with o« =2 and
v=4,with =3
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support exists for the time to DLT, the hazard for one administration basically vanishes 20 days
after administration.

In our design, the form of g(-) is unchanged between administrations and all administrations
have an additive cumulative effect on DLT. Therefore, if a patient has received administrations
at times s; = {s;.1,...,i.m; },» we define the total and cumulative hazards of DLT for time to
toxicity 7; to be

h(t|. 0, 51) = () Zl £t = sidld)/mi, @
1=
H(1|, 0,5:) = 0(m;) 121 F(t— 5|9 mi. 3)

with corresponding survival function Pr(7; > t|s;) equal to
S(tl@,0, Si)=exp{—9(mi) > F(I—Si,l|¢)/mi}- “4)
=1

In equations (2)—(4), the parameter ¢ is now generalized to be a function of the number of
administrations, which is necessary so that the limiting cumulative probability of DLT changes
with the number of administrations and is equal to 1 —exp{—0(m;)}. We have also expressed
equations (2) and (3) as an average of hazards among administrations; if scaling by m; were
not done, then we would have S(co) =exp{—m, 0(m;)}. Instead, scaling by m; maintains 1 —
exp{—60(m;)} as the cumulative probability of DLT. We further adopt the regression model
log{0(m;)} = By + B1log(m;), 51 >0, so that the cumulative probability of DLT increases with
the number of administrations. As a result, Sy quantifies a single administration’s effect on the
probability of DLT. This model implies that the limiting cumulative probability of DLT is the
same for two patients receiving the same number of administrations, regardless of when they
receive those administrations. The administration times only impact the rate at which the limit
is reached. Other models could certainly be adopted that allow 6 to vary with the administration
times. Most importantly, our model is much more flexible than that of Braun ez a/. (2005) and
allows for the inclusion of additional covariates in both the cure fraction as well as the hazard
function. For example, if doses were to vary between the patients, we could directly incorpor-
ate dose effects either in the cure fraction or the hazard function by using standard regression
models.

The hazard and survival functions that were developed in equations (2)—(4) lead to a like-
lihood for 3 and ¢ as follows. Whenever patient j, j=2,3,..., N, enters the study, we have
an accumulated amount of follow-up U;j, for each patient i=1,2,...,j—1. We also have
Cij, an indicator of whether U;; corresponds to a DLT, and s;, a vector of m; administra-
tion times. We let D;“j ={Uij,Cij,si}, so that the total data collected on all j— 1 patients are
D;’-‘ ={D} i D} o ,Dj‘_L /.}. Using these data, the interim likelihood for our parameters before
the enrolment of patient ; is

j—1
Lj(¢.8ID}) = 1 h{Uijl$,0(8),8:}S{Uij1$,0(8),s}. )

On the basis of the priors for ¢ and 3 that were selected before the study began (as described
next in Section 3), we can sample approximate values from the posterior distribution of ¢ and
3 by using Markov chain Monte Carlo techniques (Robert and Casella, 1999). Those posterior
samples will be used to identify which schedule to assign to patient j as described in Section
4,
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3. Developing priors for ¢ and 3

We first describe the functional forms of each prior. As there are no constraints on v and [y,
we assume that both are normally distributed with respective means p, and 115, and respective
variances a%, and aéo. To reflect our need for o > 2 so that we have a non-monotonic hazard, we
assume that « is equal in distribution to Z,, + 2, where Z,, has a gamma distribution with mean
fto — 2 and variance 2. Note that there is no need to shift the distribution of « if we desire a
monotonically decreasing hazard. To satisfy our constraint that 5; >0, we assume that 1 has
a gamma distribution with mean pg, and variance 0211 .

We now discuss how to select specific hyperparameter values for each prior. To identify mean
hyperparameter values for 5y and (3, we ask the investigators to specify an a priori value Py
for the cumulative probability of DLT for schedule k,k=1,2,..., K. On the basis of the simple
linear regression model E[log{—log(1 — Py)}]=bo + b1 log(my), we use ordinary least squares
to find estimates of b and b;. We let 15, and 115, equal the estimates of by and by respectively.

To identify mean hyperparameter values for o and ~, we ask the investigators to specify
an a priori value for the limiting cumulative probability of DLT for a single administration.
We denote this value Qg and note that Qy must be less than the value of P that was elicited
earlier. On the basis of equation (1), we first derive the value 6* = —log(1 — Qg). We next ask
investigators to select two time points ¢; and t, and to supply a priori values Q| and Q for
the cumulative probabilities of DLT at #; and #, respectively, for a single administration, such
that Q1 < Q> < Qg. Plugging 6* for 0(my) into equation (4), the values Q1, #1, O and #, lead,
with some algebra, to two equations in terms of two parameters ¢ and ¢ (in place of o and ~
respectively):

log[—log{1+1log(1 — Q1)/0*}=alog(t)) — g,
log[—log{1+1log(1 — 02)/0*}]=alog(12) — g.

If we let a and § denote the respective solutions to @ and g in the above equations, we set
to =max(2.01,4) and p, =g.

We do not derive variance hyperparameter values from elicited information; we choose rather
to treat them as tuning parameters that will determine how informative the priors will be. The
balance between ‘sufficiently informative’ and ‘not too informative’ is quite subjective but can
be assessed through a thorough sensitivity analysis in settings where the prior means and the
true distribution of DLT times greatly conflict. Specifically, we simulate the data of a handful of
subjects in each of 100 simulations so that each patient experiences DLT after very few admin-
istrations. In each simulation, the prior means are set aggressively so that the longest schedule
is tolerable (which is very contrary to the data) and each prior variance begins at a tenth of the
magnitude of its corresponding prior mean. We then examine the operating characteristics of
the design in the 100 simulations to determine how frequently the posterior reflects the data
rather than the prior. We then repeat this process, continually tuning the four variance
parameters until we find values in which the data can dominate the priors in a majority of
100 simulations. We then examine the final values of the variance hyperparameters with data
that are simulated so that none of a handful of patients experience DLT after several adminis-
trations yet the prior means are set conservatively to indicate that only the lowest schedule is
tolerable (again very contrary to the data). We then modify the prior variances as needed until
all four values appear to work well with both conservative and liberal priors that are contrary
to the data. As a final check, we draw 10000 samples from each of the selected priors and plug
those values into equation (4) to generate 10000 prior estimates of the probability of DLT by
w for each schedule k. We then plot histograms of these values for each schedule & to inspect



Non-mixture Cure Models 231

00 02 04 06 08 10 .
(@) (b)

Fig. 2. Empirical prior distributions for cumulative probability of DLT by day for each schedule (|, median):
(a) schedule 1 (median 0.08); (b) schedule 2 (median 0.15); (c) schedule 3 (median 0.22); (d) schedule 4
(median 0.28); (e) schedule 5 (median 0.34); (f) schedule 6 (median 0.39)

visually that the distributions have means tending to increase with m; and with a modest amount
of variability around each of the means. Fig. 2 is an example of such a plot in the context of the
numerical examples of Section 5. Note that the importance of this sensitivity analysis cannot
be overemphasized, and the amount of time that is focused on this aspect of the design should
constitute a significant portion of the overall time spent designing the study, as the prior cannot
be altered once the study has begun.

4. Conduct of the trial

Once suitable prior distributions have been selected, we enrol the first patient on the low-
est schedule (k=1). With each additional patient j=2,3,..., N, the following procedure is
followed.

(a) For each patienti=1,2,...,j—1, identify s;, the timing of administrations received so
far, U;;, the length of follow-up, and C;;, an indicator for the occurrence of DLT by U;;.

(b) Use the prior distributions that are developed for ¢ and 3 and the likelihood in equation
(5) to develop a posterior distribution for ¢ and 3 and use Markov chain Monte Carlo
methods to sample from this posterior distribution.

() Plug the posterior means ¢ and 3 into equation (4) and compute, for each schedule

=1,2,....K,pp=1— Sk(w|¢,ﬁ,s(k)), the estimated probability of DLT by w.

(d) Compare all p, with p,,, the target probability of DLT by w. Then, determine the schedule
k with p, closest to p,, and denote the schedule as k.

(e) Letk(j_1)denote the schedule that is assigned to patient j — 1; assign patient j to schedule
k* =min([k¢j—1)+1], k).
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(f) Stop treating any patients i=1,2,..., j— 1 who are still receiving administrations and
have received administrations beyond those included in k*.
(g) Reassign schedule k* to patientsi=1,2, ..., j— 1 who are still receiving administrations

and are assigned to a schedule other than k*.

Once all N patients have been enrolled and fully followed for a maximum of w days, the MTS
is defined as the schedule satisfying trial conduct rule (d) using the data of all N patients.

We now highlight some important aspects in the conduct of the trial. First, all future planned
treatment for a patient is stopped once a DLT occurs. Second, conduct rule (d) uses a criterion,
as a function of treatment schedule, that is identical to the CRM criterion as a function of dose
(O’Quigley et al., 1990). If one were concerned with further limiting the rate of escalation, an
alternative criterion that was proposed in Braun et al. (2005) could be used that reflects the point
estimate py, as well as the percentage of its corresponding posterior distribution lying above
Pw- One could further modify conduct rule (d) to terminate the study if all p; were greater than
Pw» subject to a minimum accrual requirement. Third, conduct rule (e) forbids non-incremental
schedule escalation, so each patient can be assigned to at most the next longest schedule beyond
that of the preceding patient. However, we do not put any constraint on schedule de-escalation,
i.e. we enrol the next patient on the recommended schedule if it is shorter than the schedule
that is assigned to the preceding patient. Fourth, conduct rules (f) and (g) are implemented to
promote safety of the patient while increasing the likelihood that each patient is assigned to
the actual MTS. For example, assume that six patients have been enrolled before an interim
analysis in which two patients are assigned to each of the first three schedules. Suppose that the
seventh patient is enrolled and assigned to the third schedule and a day later the fifth patient
experiences toxicity. If our algorithm finds that the second schedule is the MTS (and the third
schedule is overly toxic), we reassign the seventh patient to the second schedule. The number
of patients who are impacted by such potential reassignments depends on the rate of accrual
of patients. During rapid accrual, the number of reassigned patients may be potentially larger
because those patients will have been enrolled before a substantial amount of data have been
collected on previously enrolled patients. However, if the accrual rate is slow, a minimal num-
ber of patients will be reassigned because previously enrolled patients will have been monitored
for the full observation period w. Note that schedule reassignment was not described with the
approach of Braun ez al. (2005), but it can be easily incorporated.

5. Numerical studies

We compared the performance of our design with that of Braun ez al. (2005) in a variety of
settings via simulations programmed using SAS (SAS Institute, 1999). For our hypothetical
schedule finding study, we continue with the motivating example of Braun et al (2005): the
study of KGF in BMT patients, in which investigators wished to study K =6 schedules corres-
ponding to 2, 4, 6, 8, 10 and 12 weeks of KGF therapy. Each week of therapy consisted of three
consecutive daily doses followed by four consecutive days of rest so that schedule & consisted
of my = 6k administrations. The maximum period to monitor DLT was specified to be w =100
days. Our goal was to determine how long a patient could be treated while maintaining the
cumulative probability of DLT by w to be as close as possible to the threshold value p,, =0.40.

We studied the design with a maximum sample size of N =30 patients, which is feasible in
phase I trials and one that we have also found is sufficient to determine the MTS with reasonable
accuracy. In each simulation, patient interarrival times were assumed to be uniformly distrib-
uted within 12-16 days. The first patient was assigned to the shortest schedule, with subsequent
schedule assignments determined from the process that was described in Section 4. At each
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interim analysis, a single chain of 5000 observations, after a burn-in of 1000 observations, was
drawn from the posterior distribution of each parameter. In all simulations, the 30 patients all
follow their assigned administration schedule, i.e. there are no schedule deviations nor patients
who drop out of the study because of progression of the disease. We do not present simulation
results that incorporate schedule deviations, as there is little effect on the final decision of the
trial when there are a handful of schedule deviations. This is because, as long as each patient
receives their total number of administrations, the actual timing of those administrations is of
lesser import for the overall probability of toxicity. Patients who fail to receive all their admin-
istrations will necessarily reduce the efficiency of our design, as censoring does to any study
collecting time-to-event data. If substantial censoring is likely in a trial, then the planned sample
size of the study will have to be increased to overcome the censoring and could be assessed via
simulation.

We examined eight hypothetical scenarios which were selected so that we could numerically
assess the performance of our design along a spectrum of possible ‘realities’, i.e. the eight sce-
narios were not selected from input with clinical investigators. The first six scenarios correspond
to settings in which schedule k was the MTS in scenario k, k=1,2,...,6, and there is relatively
small differential change in the DLT probabilities as the schedules increase. The final two scenar-
ios correspond to settings in which there is a large jump in DLT probabilities near the MTS; the
true MTS lay between schedules 3 and 4 in scenario 7 and was set at schedule 3 in scenario 8. The
actual probabilities of DLT within 100 days for each schedule in all scenarios are shown in Table 1.

The proximity of DLT probabilities for neighbouring schedules affects the ability of any algo-
rithm to identify the target schedule. Therefore, we quantify the variability of the actual DLT
probabilities around the target p,, by using a measure A ,, which is the average absolute distance
of p, from the true DLT probabilities in each scenario. Although many factors will contribute
to the difficulty of finding the MTS, we find that A, although too simplistic as an absolute
measure of difficulty, is very useful when comparing the relative difficulty of the scenarios. The
value of A, for each scenario is shown in the final column of Table 1, with smaller values indi-
cating greater relative difficulty in locating the MTS. Thus, we predict that the MTS is easier to
identify in scenarios 1, 2, 7 and 8 and more difficult to identify in scenarios 3-6.

In all simulations, DLT times were not simulated under our assumed model; instead, DLT
times were simulated to occur uniformly over the interval [10+ 14(k — 1), 10+ 14k] under sched-
ule k. As a result, not only can we directly compare the two approaches; we can also examine the
performance of our algorithm under model misspecification for the DLT times. We did perform

Table 1. Numeric description of scenarios 1-8

Scenario Probability of DLT by w Ap

040 064 079 087 092 095 0.36
023 040 054 064 072 079 021
0.16 029 040 049 057 0.64 0.14
0.12 023 032 040 047 0.54 0.12
0.10 019 026 034 040 046 0.13
0.08 0.16 023 029 035 040 0.15
0.10 020 030 0.60 0.70 0.80 0.25
020 030 040 070 0.80 0.90 0.25

OB W —
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simulations of our design when the DLT times occurred under the model assumed, but we have
omitted those results for brevity; the results can instead be found in Liu (2007).

With regard to the prior distributions for ¢ and 3, which are common to all scenarios,
the investigators supplied the values P; =0.09, P, =0.17, P3=0.23, P;=0.29, Ps=0.35 and
Ps=0.40. Thus, they believed that the longest schedule was the M TS, a belief that led to a mis-
specified prior for all except the sixth scenario. The investigators also believed that one adminis-
tration had a limiting cumulative probability Q¢ = P;/6 (a sixth of the shortest schedule), with
corresponding cumulative probabilities of DLT Q= Q¢y/4 and Q> = Q¢/2 at times ¢; = 6 days
and r, =9 days respectively. From these elicited values, we used the methods that were described
in Section 3 to estimate the mean hyperparameter values p1o =2.2, u, =0.1, ug, =—4.3 and
i, =1.1. Through a detailed sensitivity analysis, we identified variance hyperparameter values
0,=0.50,0,=0.20,043,=1.2 and 03, =0.3 that allowed for adequate performance of our algo-
rithm. Fig. 2 displays histograms of 10000 draws from the resulting priors of F(100|¢, 6, s'?) for
j=1,...,6. Asexpected, the prior for schedule 6 is centred most closely to the target p, =0.40
and the centres of the distributions increase with the number of administrations. The prior
distributions that were used for the triangular model of Braun ez al. (2005) were derived as
they described, assuming that the longest schedule was the MTS and one administration had a
hazard of 18 days and a peak at 2 £+ 2 days.

The results in Table 2 demonstrate that both approaches do an excellent job of identifying
the MTS even when their corresponding assumed models do not reflect the actual DLT times.
However, this result is not unexpected, as the MTS that was selected at the end of the study is

Table 2. Comparison of the design proposed with that of Braun et al. (2005) with an
incorrectly specified modelt

Scenario Method Results (%) for the following schedules (and number
of weeks in parentheses):

1(2) 2(4) 3(6) 4(8) 5(10) 6(12)

1 A 9@60) 926 109 0(3) 0(2) 0(0)
B 88(58) 12(33)  0(6) 0(2) 0(1) 0(0)
2 A 2933)  61(55)  8(10)  2(I) 0(1) 0(0)
B 25(20)  60(43) 15(24)  0(8) 0(3) 0(2)
3 A 9(7) 2525 414 19(22) 6(14)  0(8)
B 8(14) 29(23) 45(32) 16(18)  2(9) 0(3)
4 A 4(10)  20(18) 27(22) 32(26) 14(13)  3(9)
B 39)  18(17)  23(18) 3428 I15(16)  7(11)
5 A 0(3) 44 1923) 26(30) 3425  17(15)
B 0(2) 2(14)  22(22)  27(0) 33(28)  16(14)
6 A 0(2) 0(4) 119 2225 2728 40(32)
B 0(3) 0(11)  12(16)  20(18) 25(22)  43(30)
7 A 1009 2525 3728 20(15)  6(11)  2(10)
B 4(11) 3727 41(36) 13(13)  4(7) 1(6)
8 A 20 2725 41(30) 1924  9(11)  2(6)
B 6(5)  30024) 42(33) 13(19)  8(l1) 1(8)

fFor each scenario, each entry is the percentage of simulations in which each schedule was
chosen as the MTS, with the average percentage of patients assigned to each schedule in paren-
theses. Rows A correspond to the results by using the model proposed; rows B correspond to
the results by using Braun ez al. (2005). Values in italics correspond to schedules within a
10-point neighbourhood of p,, =0.40.
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impacted strongly by the overall rate of DLT and less so by the actual times of DLT. The times
of DLT instead influence the schedule that was assigned to each patient during the study and
influence the overall percentage of patients that were assigned to a neighbourhood of the MTS.
And, with regard to that metric, we see that our approach does a slightly better job in some sce-
narios of assigning patients to schedules that are close to the MTS. For example, our approach
assigned an average of 55% of patients within a neighbourhood of the M TS in scenario 2, com-
pared with 43% with the approach of Braun ez al. (2005); the corresponding percentages in
scenario 6 are 60% and 52% respectively. However, no clear trend exists about which approach
does a better job of assigning patients during a study. A worthy area for future research would be
to assess formally whether one approach is more likely than the other to respond to the actual
DLT times and to adjust patient assignments accordingly. Regardless, it is very encouraging
that both approaches perform well in scenarios 7 and 8 when there is a drastic increase in the
risk of DLT at schedules beyond the true M TS, even when DLTs have a very late time of onset.
An interesting side note for our approach is in regard to the average number of patients out of
30 who received a reassignment to their originally assigned schedule. Overall, the number of
patients with treatment reassignment increased as expected with the length of the true MTS.
Specifically, the average number of patients who received reassignments were 1, 2, 4, 5, 6 and 7
for scenarios 1-6 respectively.

6. Conclusion

In this paper, we have proposed a non-mixture cure model to identify a maximally tolerated
schedule among a fixed number of possible nested treatment schedules. Via simulation, we have
demonstrated the excellent operating characteristics of our algorithm when the model assumed
is misspecified, as well as when the prior is incorrectly specified. By adopting a cure model
framework, we have created a very flexible design that can be used in a variety of settings and
allows for the adjustment of patient level characteristics as sample size permits. We re-emphasize
that we did not seek to improve the results of Braun ez al. (2005), but rather to develop a more
flexible and appealing model for the cumulative hazard of DLT. On the basis of our arguments
in Section 1 and the simulation results in Section 5, we feel that our approach is an extremely
useful contribution to the design of schedule finding studies.

Our model can be used for the design of any clinical trial in which investigators wish to mea-
sure the effect of multiple administrations on a binary outcome. Thus, our algorithm could be
used in a phase II study seeking to determine how many administrations are necessary for a
desired rate of efficacy, or in a phase III study comparing two different schedules or doses of
the same agent or two different agents in a large sample of (randomized) patients. Furthermore,
if our methods were applied to a large cohort of patients like that in a phase III trial, we could
model the single-administration hazard non-parametrically with standard techniques rather
than forcing a parametric pattern on the event times.

We could also extend our models to allow for treatment schedule finding with combinations of
two agents where both agents have a multiple-treatment schedule. In this scenario, our outcome
remains the time to DLT; however, the non-mixture cure model would incorporate main effects
of both agents in the cure fraction, as well as a term for any possible interaction between the
agents. The more challenging aspect of this design is how to incorporate both agents into the
time to DLT hazard, as the two agents will probably differ in both the number of administra-
tions, as well as the times of administration. Nonetheless, once we have a reasonable model, the
Bayesian estimation procedures that were developed in this paper could be used in the design
for evaluating the combination therapies.
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