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SUMMARY

To solve tridiagonal systems of linear equations, the Thomas Algorithm is a much more efficient method
than, for instance, Gaussian elimination. The algorithm uses a series of elementary row operations and
can solve a system of n equations in O(n) operations, instead of O(n3). Many variations of the Thomas
Algorithm have been developed over the years to solve very specific near-tridiagonal matrix. However,
none of these methods address the situation of a system of linear equations that could easily be solved if
elementary operations on columns are applied, instead of elementary operations on rows. The present paper
proposes an efficient method that allows the use of elementary column operations to solve linear systems
of equations using vector multiplication techniques, such as the one proposed by Thomas. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The idea behind Gaussian elimination is that, through elementary row operations, a given linear
system of equations can be reduced to a simple form (triangular, row canonical, row echelon,
etc.), which can then be solved easily through a back-substitution. The problem with that method,
however, is that the number of steps required to perform a Gaussian elimination is of the order
of O(n3). In 1949, L. H. Thomas proposed a simplified form of the elimination process to solve
tridiagonal systems [1]. This algorithm, known as the Thomas Algorithm or the Tridiagonal Matrix
Algorithm, takes advantage of the fact that a tridiagonal system of linear equations can be reduced
to four vectors of size n. The algorithm uses a series of elementary row operations on the vector
form of the system and is able to solve it in O(n) operations. The algorithm can also be expanded
to diagonally dominated systems (band matrices), with substantial reductions in the number of
operations when compared with a regular Gaussian elimination. Since diagonal linear systems of
equations occur frequently, this family of algorithms is very useful.

One of the principles of Gaussian elimination is that, by using elementary row operations, the
solution vector of the system is not modified; the operations affect only the ‘augmented matrix’.
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Algebraically, elementary row operations are achieved by applying an elementary matrix to the
left side of a vector or matrix. For a linear system of equations:

Ax=d (1)

the row multiplying matrix S is applied to both sides of the equation, without modifying x:

SAx=Sd

Hence, if matrix SA is easier to invert than matrix A, x will be easier to obtain. That principle is
the whole basis of the Gaussian–Jordan elimination; elementary multiplying matrices are applied
to both sides of the equation until the left side transforms into the identity matrix. In the case of
the Thomas Algorithm, the matrices are applied to eliminate the superdiagonal (or supradiagonal)
elements.

Many variations of the Thomas Algorithm have surfaced over the years [2, 3] with the purpose
of solving very specific near-tridiagonal matrices. However, none of these methods addresses
the problem of a system of linear equations that could easily be solved if elementary column
operations instead of elementary row operations could be applied to matrix A. In this respect,
this paper proposes an efficient method that allows the use of elementary column operation to
solve linear systems of equations, using vector multiplication techniques such as the one proposed
by Thomas [1]. First, the algebraic formulation is presented, then the solution is applied to a
simple system. Finally, the algorithm is compared with another algorithm, the Sherman–Morrison–
Woodbury algorithm [4].

2. ALGEBRAIC FORMULATION

In matrix notation, elementary column operations are represented by applying an elementary matrix
to the right side of a given matrix. For a linear system of equations, in order to preserve the
relations, the inverse of the elementary matrix must be applied to the right side of the solution
vector. If R represents an elementary column-multiplying matrix, then Equation (1) becomes

ARR−1x=d

As is the case for a regular Gaussian elimination (or the Thomas Algorithm), a succession of
R-type matrices are applied to matrix A so that the transformed matrix is easier to invert:

AR1 . . .RnR−1
n . . .R−1

1 x=d (2)

By defining y=R−1
n . . .R−1

1 x and K=AR1 . . .Rn, the new system of equations is as follows:

Ky=d

Unlike the Gaussian elimination (or the Thomas Algorithm), the inversion of matrix K will not
lead to the straightforward evaluation of x; the solution is instead obtained with:

x=R1 . . .Rny=R1 . . .RnK
−1d (3)

Numerically, this series of transformations appears to be time consuming because of the numerous
matrix multiplications. However, as is the case with the Thomas Algorithm, this process can be
adapted into a faster algorithm, depending on the type of problem. The first step of the column
inversion, Equation (2), can be replaced by a sequential term-by-term vector multiplication to
perform a forward elimination. As for the transformation applied to the solution vector, Equation
(3), the nature of the elementary matrix allows a major simplification:

x=R1 . . .Rny=y− ynf (4)

where vector f is composed of the non-diagonal elements fi of the column-multiplying elementary
matrix Ri. Hence, the n matrix multiplications are simply replaced by a vector subtraction and a
scalar multiplication.
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3. EXAMPLE OF APPLICATION

3.1. Dual contracting grid

In order to study the various effects of pyrolysis gas within a solid medium, a one-dimensional
material response implicit solver with solid ablation and pyrolysis has been developed [5, 6].
Because the solver allows cylindrical and spherical coordinates, the geometry is defined relative
to a radius. For a given computing domain, the ablating surface can either be at the inside wall
(as in circuit-breaker ablation [7]) or at the outside wall (as a in re-entry vehicle [6]). In order to
solve both types of problem, possibly at the same time, the possibility for the ablation occurring
at either end of a given wall has been implemented.

The mixture energy equation that describes the heat inside the material is as follows:

d

dt

∫
cv

�E dV +
∫
cs

��ghgvg dA+
∫
cs
q̇ ′′ dA−

∫
cs

�hvcs dA=0

where � is the density, E the energy, V the volume, � the porosity of the solid, h the enthalpy,
v the velocity, A the area and q̇ ′′ the heat flux according to Fourier’s Law. Subscripts cv, cs and
g are the control volume, the control surface and the gas phase, respectively. The equation is
discretized using a control volume finite element method [8] and is solved using an Euler implicit
time integrator.

In this equation, the unknowns are the temperature T in each cell, as well as the ablation velocities
at both ends, ṡ0=vcs(r =0) and ṡF =vcs(r = R). The numerical algorithm uses neighboring values
to evaluate the temperature. Because the code uses a contracting grid scheme, the recession rate
has repercussions on each cell. Therefore, the Jacobian Matrix of the numerical scheme is an
opposite-bordered tridiagonal matrix (see Figure (1)). Assuming a grid of 6 points (i.e. 5 control
volumes), the system of linear equations is of the form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e0 c0 0 0 0 0 0

e1 b1 c1 0 0 0 g1

e2 a2 b2 c2 0 0 g2

e3 0 a3 b3 c3 0 g3

e4 0 0 a4 b4 c4 g4

e5 0 0 0 a5 b5 g5

0 0 0 0 0 aF gF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṡ0

T1

T2

T3

T4

T5

ṡF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

d2

d3

d4

d5

dF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

First, a forward elimination process is performed by applying elementary row operations, more
specifically by adding a multiple of one row to another on the augmented matrix. As with the
Thomas Algorithm, this process is done by a series of term-by-term vector multiplications (see
the Appendix for the details). The linear system of equations thus becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e0 0 0 0 0 0 g0

e1 b1 0 0 0 0 g1

e2 a2 b2 0 0 0 g2

e3 0 a3 b3 0 0 g3

e4 0 0 a4 b4 0 g4

e5 0 0 0 a5 b5 g5

0 0 0 0 0 aF gF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṡ0

T1

T2

T3

T4

T5

ṡF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

d2

d3

d4

d5

dF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 1. Opposite-bordered tridiagonal matrix.

Although the system is now easier to solve, it is still not straightforward since there are no rows
containing only one non-zero elements (i.e. the matrix is not triangular). In order to make sure
that all but the corner element of the 7th column disappear, elementary column operations need
to be performed on the matrix. The first step is to remove element g0 using the first column; to
do so, the elementary matrix R0 is applied to the right-hand side of the matrix, and R−1

0 to the
solution vector. Explicitly, this elementary column operation matrix is as follows:

R0=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 − f0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where f0=g0/e0. The same technique is used to removed g1 using the second column, and so
forth. After all those operations, the linear system of equations becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e0 0 0 0 0 0 0

e1 b1 0 0 0 0 0

e2 a2 b2 0 0 0 0

e3 0 a3 b3 0 0 0

e4 0 0 a4 b4 0 0

e5 0 0 0 a5 b5 0

0 0 0 0 0 aF gF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

yF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0

d1

d2

d3

d4

d5

dF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is to be noted that even though these column operations ultimately change only one element
of the matrix (element gF ), they still need to be performed because the inverse of those operations
need to be re-applied to the solution vector, as shown in Equation (2). In the algorithm, each one
of these operations needs to be kept in memory, in the order they were performed. Since the matrix
is now lower triangular, the system can be solved directly for y using a slightly modified version
of Thomas’ backward substitution, used to solve singly bordered tridiagonal matrices [9].

For the last step, the column operations that were performed on the matrix need to be re-applied
inversely to vector y. As explained earlier, this process can be simplified by multiplying all the
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elementary column matrices and applying this summation matrix to vector y:

R0R1R2R3R4R5y=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 − f0

0 1 0 0 0 0 − f1

0 0 1 0 0 0 − f2

0 0 0 1 0 0 − f3

0 0 0 0 1 0 − f4

0 0 0 0 0 1 − f5

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

yF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally, as seen in Equation (4), the solution of the linear systems of equations breaks down as
follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṡ0

T1

T2

T3

T4

T5

ṡF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

yF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− yF

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0

f1

f2

f3

f4

f5

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Because of the simple nature of the column-multiplication matrices Ri, the proposed method takes
only O(n) operations, as with the regular Thomas Algorithm.

3.2. Other matrix configurations

The proposed algorithm may be applied to solve many types of linear systems of equations, more
specifically, when the non-tridiagonal elements of the matrix are organized into columns; some
examples are shown in Figure 2. The method can also be adapted to solve block tridiagonal
systems, using the methodology presented in [3], for instance.

4. COMPARISON

The Sherman–Morrison–Woodbury algorithm [4] can be used to solve near-tridiagonal systems of
linear equations. This algorithm is based on the idea that a small perturbation in a linear system
of equations should not change too much the difficulty to solve it. More precisely, if Ax=b is
easy to solve (or already known), the solution of Bx=d, where B=A+uvT, can be calculated
using

x=y−
[

v ·y
1+v ·z

]
z (5)
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(a)

(c)

(b)

(d)

Figure 2. Different configurations of tridiagonal linear systems of linear equations that could be solved
with the proposed algorithm: (a) split tridiagonal matrix; (b) split-bordered tridiagonal matrix; (c) cross

tridiagonal matrix; and (d) split-bordered tridiagonal matrix.

where Ay=d and Az=u. In the example presented in Section 3.1, perturbation vectors u and v
could be defined as

u=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

g1

g2

g3

g4

g5

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where � is arbitrary. Matrix A is then easily inverted to find y and z using a modified Thomas
Algorithm for a singly bordered tridiagonal system of equations, as the one presented in [9].
Because of the simplicity of vector v, the dot products of Equation (5) are straightforward, and
the solution essentially required to solve two singly bordered tridiagonal systems of equations.
Therefore, it is clear to see that, as opposed to the proposed method, the Sherman–Morrison–
Woodbury algorithm has two drawbacks; the difficulty of finding the perturbation vectors and the
time required to solve twice the reduced matrix.

Table I shows the number of floating point operations for a linear system of n equations
for the proposed algorithm, the Sherman–Morrison–Woodbury algorithm and other well-known
algorithms. As can be seen, on top of avoiding the aforementioned drawbacks, the proposed
algorithm shows a notable increase in resolution speed (almost 20%). It is obvious that the values
presented here are not absolute since they depend on the exact algorithm used; however, the general
tendency should remain the same.
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Table I. Number of floating point operations for a linear system of n
equations for different algorithms.

Algorithm type Reference
Number of floating
point operations

Tridiagonal Thomas Reference [1] 8n−7
Cyclic Thomas Reference [10] 17n−16
Singly bordered Thomas Reference [9] 12n−19
Opposite-bordered Thomas Current work 21n−39
Sherman–Morrison–Woodbury Reference [4] 25n−14

5. CONCLUSION

A new and efficient algorithm for the resolution of a certain type of near-tridiagonal linear system
of equations has been proposed. This new algorithm may be applied to solve many types of
linear systems of equations, more specifically when the non-tridiagonal elements of the matrix are
organized into columns. The algorithm takes advantage of the properties of elementary column
operation matrices to allow for a very efficient resolution. A specific applied example is shown,
using the numerical solution of an ablation and heat transfer problem. Finally, a comparison with
an already existing algorithm, the Sherman–Morrison–Woodbury Algorithm, is presented; because
of the properties of elementary column operations, the proposed algorithm demonstrates a reduced
number of floating point operations. On top of showing excellent results, the algorithm opens up
a new way to solve efficiently near-tridiagonal systems of equations.

APPENDIX

For the problem discussed in Section 3.1, the FORTRAN pseudo-code is:

c !FORWARD ELIMINATION
DO j=N-1,1,-1

f = -c(j)/b(j+1)
b(j) = b(j) + f*a(j+1)
e(j) = e(j) + f*e(j+1)
g(j) = g(j) + f*g(j+1)
d(j) = d(j) + f*d(j+1)

END DO
f = -c0/b(1)
e0 = e0 + f*e(1)
d0 = d0 + f*d(1)
g0 = f*g(1)

c !END COLUMN ELIMINATION
fc0 = -g0/e0
DO j = 1,N

g(j) = g(j) + fc0*e(j)
ENDDO
DO j = 1,N-1

fc(j) = -g(j)/b(j)
g(j+1) = g(j+1) + fc(j)*a(j+1)

ENDDO
fc(N) = -g(N)/b(N)
gF = gF + fc(N)*aF

c !BACK SUBSTITUTION
S0 = d0/e0
T(1) = (d(1) - e(1)*S0)/b(1)
DO j=2,N

T(j) = ( d(j) - e(j)*S0 - a(j)*T(j-1) ) / b(j)
END DO
SF = ( dF - aF*T(N) ) / gF

c !COLUMN CORRECTION
S0 = S0 + SF*fc0
DO j=1,N

T(j) = T(j) + SF*fc(j)
END DO
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