RSD-TR-10-84

A MODULE ARCHITECTURE FOR AN
INTEGRATED MULTI-ROBOT SYSTEM

Kang G. Shin
Mark E. Epstein
R. A. Volz

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-1109

July 1984

CENTER FOR ROBOTICS AND INTEGRATED MANUFACTURING
Robot Systems Division

COLLEGE OF ENGINEERING
THE UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109-1109

RSD-TR-10-84

A MODULE ARCHITECTURE FOR AN
INTEGRATED MULTI-ROBOT SYSTEM:!

ABSTRACT

An integrated multi-robot system (IMRS) consists of two or more robots, machinery
and sensors. Industrial processes can be categorized into five classes; independent,
loosely-, tightly-, work-coupled, or serialized motion processes.

In this report, we present first a formulation of new IMRS communication and
coordination concepts. Then, we propose an IMRS module architecture which can exe-
cute each of these five process classes with efficiency, flexibility, and reliability. The
modules within this architecture interact in a decentralized and/or centralized manner,
depending on the nature of applications. This is in a sharp contrast to most existing
multi-robot systems (MRS’s) which utilize centralized control only. The purpose of this
new architecture is to (i) improve performance by employing the inherent parallelism in
IMRS processes, (ii) make the IMRS more fault-tolerant, and (iii) provide the user with
more flexibility to facilitate a wider spectrum of applications.

"The work reported here is supported in part by the U.S. AFOSR Contract No. F49620-82-C-0089 and
Robot Systems Division, Center for Robotics and Integrated Manufacturing {CRIM), The University of
Michigan, Ann Arbor, Michigan. All correspondence should be addressed to Prof. Kang G. Shin at the
ahave address.

RSD-TR-10-84

TABLE OF CONTENTS

1. INTRODUCGTION cototoeeeeeeieeieeeieerteeeteeeeeeesssesesseseesessssesseemmsmmmnnnnnneassassasases 2
2. GENERIC ASPECTS OF AN IMRS ..o oeeeetieeeeeeetteeeee et eeeaseenensneseaes 5
2.1. Why an IMRS 7 ettt ettt e rarre e e s e e s abeee e e s e e anees 5
2.2. Design Goals ..eeveieiiiiiieeeere e e 8
3. THE CLASSES OF PARALLELISM IN AN IMRS ..o, 10
3.1. Parallelism Between Robot Processescocoeeieeviiimeeeeieeeiseeeeeevnseesenes 10
3.2. AN EXAIPIE .ooiiiiiiriiiie ettt et e e s 13
4. THE MODULE ARCHITECTURE ..ot eeeeeeeeeerseeeasaavanaane s 14
4.1. High-Level Communications in an IMRSccccoveiiiiiiiiiiee, 17
4.1.1. Vertical CommMUDICALIONS ...cevvviivrueieeeiivimiiieeeteteieeeeeeenneeeessennns 18

4.1.2. Horizontal CommuniCatiOnsccovveeeeeeiveneeeeennereennnerensneeessnesesses 21

4.2. An Example Module Architectureccccoovviiiiiiniiieniiiiiiieiecceeeee, 25
4.3. More on Module AFChIt@CtUreo..ceeveeeiiiineiiiveeeeivreeeeeneeeeeeeeeesrnaesesnnns 27

5. CONCLUDING REMARKSooiiiiiiiitt ettt 30

RSD-TR-10-84

1. INTRODUCTION

Conventionally, multi-robot systems (MRS's) are all centrally controiled; that is,
control tasks for an MRS may be distributed over a network of processors or reside in a
uniprocessor but are all executed under directives of one central task.? Although all of
the five process classes to be discussed in Section 3 can be accomplished using a central
controller, communications bottlenecking and unreliability (that occurs at the central
controller) become major problems. For this reason we need to develop a new architec-
ture which can accommodate both centralized and decentralized controls. To differen-
tiate this new architecture from the conventional MRS, define an integrated mults-robot
system (IMRS) as a collection of two or more robots, sensors, and other computer con-

trolled machinery, such that

e each robot is controlled by its own set of dedicated tasks, which communicate to

allow synchronization and concurrency between robot processes,’
e the tasks are executing in true parallelism,
o both centralized and decentralized control concepts are used, and

o tasks may be used for controlling other machinery, sensor I/O processing, com-

munication handling, or just plain computations.
We make no assumptions concerning the computers and robots used for an IMRS.

In this report we present a high-level architecture for an IMRS that explores and
integrates both the centralized and the decentralized control concepts. Emphasis is

placed on flexibility to facilitate a wide spectrum of manufacturing applications,

2 This is based on {i) several multi-robot systems that were recently displayed at the Robots 8 Exposi-
tion in Detroit and (i) works published in open literature.

3" Process” will be used to denote the industrial output of the IMRS, which is accomplished by a set of
"tasks” executing on one or more processors.

Integrated Multi-Robot System 2

RSD-TR-10-84

improved productivity by exploiting the inherent parallelism, and reliability /graceful

degradation to provide non-stop operation of the IMRS.

The general IMRS would encompass many areas of research, some of which
include sensors, collision and obstacle avoidance, artificial intelligence, and communica-
tions and concurrency. One of the most important steps is the design of the communi-
cation system that links the tasks of an IMRS. The design includes the high-level
abstractions (we term this here the module architecture), as well as the low-level com-
munication primitives. In the rest of this report, we will develop a modular architec-
ture by taking a top-down approach; (i) examining the problems we wish to solve, (ii)
investigating how unreliability, unflexibility, and communications bottlenecking can
occur while trying to solve these problems, and then (iii) designing an architecture
capable of handling these problems elegantly. We will not discuss issues concerning the
actual primitives needed for the intertask communications. For this the reader is

referred to [1], [3], [5], [19], and [20].

There are numerous robot languages designed (see (2] for a survey) which can con-
trol more than one robot simultaneously, the most advanced being AL[14]. AL allows
one program (and hence one task) to control two robots at once. By using Cobegin-
Coend pairs, a programmer can initiate two pseudo-concurrent tasks. They can be
synchronized using the EVENT data type (integer semaphores). The principal motive
behind this design was to allow cooperation via serializing each robot’s motions by
using EVENTS. This restricts the potential amount of parallelism that can be
attained. It would be more efficient to let each robot process run under the control of
its own tasks, with synchronization (or rendezvous) at designated points in the pro-

grams.

3 Integrated Multi-Robot System

RSD-TR-10-84

Some work has been done on distributed industrial process control[18], but the
results are not easily transportable to an IMRS. St‘eusloff[IS] has described a distri-
buted, fault-tolerant system used for controlling soaking pit furnaces. The furnace sys-
tem is controlled by a real-time concurrent language called "Multicomputer PEARL.”
PEARL allows the transmission of information from one task to another by message
passing and remote procedure calls. Each furnace is controlled by its own microcom-
puter system, and the microcomputer systems are logically paired so should one system
fail, the corresponding mate computer system would control two furnaces. This system
is reported to be highly fault-tolerant, having only 11 hours of down time in more than
24,000 hours of use. This figure is indeed impressive, but the classes of parallelism
involved in the furnace application are far less complex than the classes of parallelism
needed in an IMRS. The action of one IMRS process could completely alter the action
of another IMRS process, or robots might have to work on one common process, requir-
ing tightly coupled communication and synchronization. Obviously an IMRS needs a

more intricate communications structure to handle this more dynamic environment.

There has been considerably more research in the area of communicating con-
current tasks. Numerous languages have been designed which contain primitives that
allow tasks to synchronize and communicate via various techniques. We will discuss
the issues and ideal communication primitives for an IMRS in a future report. For

some actual concurrent languages, see [3], [8], [9], [10], [17], [18], [20], and [21].

Our design approach consists of several distinct phases, beginning from the generic
nature of an IMRS to the design and evaluation of the communications system based
on process classes. The organization of this report conforms to these phases except for

the low-level communication primitives and their evaluation, which s not included due

Integrated Multi-Robot System 4

RSD-TR-10-84

to the limited size of this report. Section 2 describes the generic nature of an IMRS
such as motivations, and design goals. In Section 3 vlve identify types of parallelism in
an IMRS. In Section 4 we propose a modular architecture to facilitate such parallelism.
Section 5 concludes the report with a discussion of the remaining work to be done for

IMRS’s.

2. GENERIC ASPECTS OF AN IMRS

This section presents the reasons why IMRS’s are needed, and outlines the design
goals of an IMRS. These considerations form a foundation for the module architecture

to be proposed later in this report.

2.1. Why an IMRS ?

There are many reasons why a multi-robot system(MRS) is desirable. Two
robots could share a single set of tools, a tightly-coupled motion could exist where
each robot's actions are not independent, collision avoidance can be performed, one
robot can be used as a generalized fixture for another, or robots could help each other
when a failure occurs to reduce down time. As we shall see later, these example
processes require the use of multiple robots, but using only centralized control cannot
efficiently solve all these processes. By efficiently utilizing both the centralized and

decentralized control of an IMRS, these processes can be accomplished.

The goal of an IMRS is to outperform its counterparts, i.e. several single robot
systems or a centrally controlled MRS, including a better utilization of physical space
and computer capabilities, and increased throughput, flexibility, fault-tolerance and
capability of handling diversified manufacturing processes. Some of these are dis-

cussed below 1n detail.

5 Integrated Multi-Robot System

RSD-TR-10-84

(1) Due to the pecessity of inter-component interactions in a manufacturing cell and
the limited size of the workspace, other devices are usually located in the vicinity
of each robot for its use. These devices could include robots, automatic feeders,
gripper adapted tools, and sensors. These raise the minimum space requirement
for the manufacturing cell, and even further increase the set-up cost. With an
IMRS, a common set of tools or feeders could easily be shared by two or more

robots. By using an ‘‘intelligent’’ compiler (based on a schedule-driven robot

language),! the work for each robot could be optimally ordered to reduce the
likelihood of a resource (tool) conflict. Similarly, several robots could share one
vision system, i.e. a global sensor. This could amount to a significant space and

hardware savings, without a drop in productivity.

(2) The automation of certain processes require multiple robots. An example would
be two robots picking up a large airplane panel and moving it to an airplane
wing, after which two other robots could traverse predetermined paths riveting
the panel to the wing. This process could be coded in a single task if a language
were available that permitted the control of four or more robots, but would be
undesirable because: i) a serial program would be used for a process that is an
obvious choice for parallel computations, ii) the program would not be easily
adaptable because the code to perform four subprocesses would have to be com-
bined into one task, making it hard to isolate the code for one of the four sub-
processes, iii) if a failure were to occur (either caused by a software bug or
hardware malfunction), the one task would have to be aborted, causing a halt to

four subprocesses, thus the whole MRS would fail. These probiems can be

*A schedule-driven robot language is one which allows the programmer to list each step of the process,
giving some steps, a higher priority than others so they are performed first. Steps may be given an equal
priority to allow them to be performed in an arbitrary order.

Integrated Multi-Robot System 8

RSD-TR-10-84

partially improved by using a central task giving directives to each of four sub-
tasks responsible for the four subprocesses, bﬁt then new problems are intro-
duced: a) bottlenecking could occur between the robot tasks and the controller,
b) the reliability of the system depends on the reliability of the controller, which
may be error prone due to possible failures of sensors, communication media, pro-
cessors, etc., ¢) a modification to one of the robot process would probably cause a
change in two tasks, the controller and the subtask. Changes in both tasks may
be difficult to locate, especially if the change is done long after the original cod-
ing. It would be preferable to keep the changes local to one task only. The judi-
cious use of both centralized and decentralized controls in an IMRS would elim-
inate most of these problems. Computational parallelism would be increased,
changes to a robot task could probably be kept local to the single robot task,
synchronization between robot processes is possible and efficient, and the reliabil-
ity of the system and communications is increased because there is no one vulner-
able central controller for the multiple robot tasks. Another advantage is that
using different tasks makes it easier to allow another robot to dynamically
change its work schedule to help a failed robot process. Thus processes could be

made fault-tolerant.

Single robot systems waste a lot of CPU time, because the processor is blocked
while robot motion is being performed, which could typically take anywhere from
a tenth to over five seconds. IBM's AML [11] provides an Amove which allows
the processor to continue executing instructions up to but not inciuding the next
motion command, so computations can proceed in paralleli with robotic motion.

This allows only a minimal amount of parallelism, in comparison to using multi-

Integrated Multi-Robot System

RSD-TR-10-84

ple tasks.®

The IMRS approach of utilizing both centralized and decentralized control
between tasks offer many advantages over the pure centralized control currently util-
ized in industry. The design of an IMRS and a corresponding task structure is not a
simple problem. Not only must an IMRS allow simple, efficient, and modifiable solu-
tions to a broad class of problems, but it must be fault-tolerant, lend itself to distri-
buted processing, and be predictable in meeting the real-time requirements (i.e. the

failure of one task should never induce unpredictable behavior in another task).

2.2. Design Goals

There are many goals which govern the design of an IMRS. In this section we
will present the general design goals that we feel are important to take into account
when designing the software for an IMRS. Depending on the particular configuration,

these goals could have different weights.

(a) The software that controls an IMRS must be able to handle heterogeneous com-
ponents. Users may need to use different robots for different applications, or dif-

ferent computers, or different intelligent machinery in the system.

(b) The IMRS must yield a productive output in comparison to several single robot
systems. The goal of an IMRS is to provide extended capabilities beyond that of
several independently run single robot systems, but not at the expense of a pro-

ductivity decrease.

(c) At all costs, the system must be reliable and degradable. This requirement is no

different than the requirement of a distributed operating system. The failure of

*Even if several tasks are executing on a uniprocessor, it would be simple to use a context switching

Integrated Multi-Robot System 8

RSD-TR-10-84

one process should neither cause the whole system to fail, nor cause a serious per-
formance degradation. Since an IMRS actually deals with moving machinery, the
consequences of an improperly designed IMRS could be drastic. The system
should degrade gracefully by first reconfiguring robot processes and tasks, and

then informing an operator of the failure and its cause.

An efficient, easily understandable language for programming an IMRS must be
available. Since parallel computations and actions are much more difficult to
program, it is imperative that a concise, complete language be available. The
IMRS system programming language should also adhere to the design goals of a
general programming language. These goals include simplicity, reliability, adapta-

bility, efficiency, portability, and generality[8].

Automatic collision avoidance should be provided between robots with overlap-
ping workspaces. This design goal does not change our developments for a
modular architecture, but this is a necessary feature of IMRS’s. Facilities must
be provided to allow convenient collision avoidance programming for the applica-

tion programmers.

These are our design goals, which we will often refer to in our future discussions.

Note, however, that we are addressing in this report only the module architecture

problem, not such subjects as the optimal solution for collision avoidance or the ideal

robot language.

mechanism based on language primitives that introduced blocking, as done in AL [14] and DP [9].

Integrated Multi-Robot System

RSD-TR-10-84

3. THE CLASSES OF PARALLELISM IN AN IMRS

Parallelism in an IMRS exists between robot processes as well as between the com-
putational tasks. The robot process is the actual work being done by the robotic mani-
pulator, e.g., mechanical assembly, part transfer, paint spraying. Two robots might be
working on the same process, or they could be working independently. In either case
parallelism exists because two robots are simultaneously in operation. Parallelism
between tasks occurs when two tasks are executing concurrently, e.g. one task control-
ling a robot motion while a second task is sampling an A/D port. Since the produc-
tivity of an IMRS is measured by the processes being completed, it is more natural to
begin by classifying the parallelism at the robot process level. The parallelism and
structure of the robot processes will lead us to a system architecture, i.e., a module

architecture.

3.1. Parallelism Between Robot Processes

There are many ways in which parallelism could occur in an IMRS. Following is
a list of the different classes of parallelism between robot processes with an illustrative
example process containing each class of parallelism. We feel that all robot processes
can be expressed as a combination of these process classes. The term ‘“‘subprocess” is
used to denote a logical component of a process, i.e. a process can be divided into

many subprocesses.

A. Independent Processes: the work of each subprocess is independent, and the
actions taken by each subprocess to accomplish their goals are also independent.
If both subprocesses involve robots, then this means that the action of one robot
in no way directly influences the action of another robot. Since robots exist

together 1n the same environment, ‘“‘state” variables (e.g. the speed of a gate

Integrated Multi-Robot System 10

RSD-TR-10-84

11

releasing parts onto a conveyor, or the conveyor belt speed) parameterize each
process. Thus indirect influence through state -va.riables is the only way the sub-
processes of an independent process may be related. The values of these state
variables are determined by many different tasks, and thus simultaneous changes
must be handled reliably. For this reason, either proprietor or administrator
tasks (5] are needed. These tasks are used to provide exclusive access to shared
resources (e.g. the right to change a state variable) and resolve conflicts among

different concurrent tasks.

Loosely Coupled Processes: the subprocesses perform independent work, but the

‘actions taken by each subprocess depend on the actions of the other subprocess.

One examiple of loose coupling between robot subprocesses is tool sharing. If
robot A is using tool T, another robot B may be forced into either waiting for
tool T, or into performing another action not involving tool T. The work being
done by each subprocess is unrelated, but the actions taken at each step depend
on each others individual steps. Collision avoidance between two subprocesses is

another example of how two subprocesses can be loosely coupled.

Tightly Coupled Processes: the work of the subprocesses depend on each other,
and the actions taken to achieve each subprocess also depend on each other. One
example of a tightly coupled process are two robots which must grab a long steel
beam off a conveyor belt. The action of one robot subprocess must be tightly
coupled to the action of the other robot subprocess. If the robots subprocesses
were controlled independently, then the robots would move at different speeds
along independent paths, which could cause the beam to siip, or cause damage to

one of the robots.

Integrated Multi-Robot System

RSD-TR-10-84

D. Serialized Motion Processes: the work of the subprocesses depend on each other,
yet the actions taken to accomplish each subprocess are independent. We have
chosen the name serialized motion because the most practical robot process illus-
trating this interaction involves serializing the action of different robots. The
actions taken by the different robot subprocesses are independent (i.e. they can
run under their own control), yet one subprocess must wait for the other to com-
plete before it can commence. The use of one robot as a generalized fixture for

another robot is an example of this class of process.

E. Work Coupled Processes: monitor each other. Should one process crash (due to a
robot, computer, or external failure), the other process attempts to compensate.
This is identical ﬁo how PEARL[18] is used in the furnace application already
mentioned. It is obvious that the individual processes themselves will be one of
the four aforementioned processes, yet extra work must be done by an IMRS to
handle work coupled processes, so it seems appropriate to consider work coupled
processes separately. Work coupling may be one-way or two-way, depending on
the ability of the equipment to be used toward either process. Work coupling

can even be generalized to allow purely computational tasks to be monitored.

The first four of these process classes are summarized in Table 1. Work-coupled
processes are omitted because it is not a primitive process class, i.e. any work-coupled

process must also belong to another process class.

Integrated Multi-Robot System 12

RSD-TR-10-84

Subprocesses Actions Process Class
Independent Independent Independent
Independent Dependent Loosely-Coupled
Dependent Dependent Tightly-Coupled
Dependent Independent Serialized-Motion

Table 1 - The Four Primistive Process Classes

3.2. An Example

To illustrate the five process classes, consider the IMRS of Figure 1. This IMRS
is one that requires two robots to simultaneously move an airplane panel from one
conveyor belt to a slowly moving airplane wing on a different conveyor belt, after
which two other robots rivet the panel to the wing. The entire process can be broken
into two subprocesses; the first subprocess is moving the panel to the wing, and the
second is the riveting. These two subprocesses are both independent and serialized
motion processes. They are independent processes because they are coupled via com-
mon state variables; the speed of the conveyor carrying the body is one such state
variable. They are serialized motion processes because the riveting cannot begin until
the panel is in place. Now each of these subprocesses can be broken into two further
subprocesses. The first subprocess yields two tightly coupled subprocesses that con-
trol the robots performing the simultaneous grasping of the panel. The second sub-
process yields two loosely coupled subprocesses that control the riveting robots which

require collision avoidance. Also, suppose that should either of the riveting robots fail,

13 Integrated Multi-Robot System

RSD-TR-10-84

the panel moving robot on the same side of the conveyor would finish the riveting,

this results in two separate one-way work coupled process for fault-tolerance.

PANEL
[o oooooO:
CONVEYOR /5 S
5000000 \\ : WING
ovmer 1 %[k Z
I g

PANEL MOVING SUBPROCESS RIVETING SUBPROCESS

Figure 1 - An Ezample Multi-Robot System

The five types of parallelism between processes described above encompass a

wide variety of applications in an IMRS. If we design our module architecture to han-

dle each type of process, our system should be general enough to handle almost all (if

not all) practical applications for an IMRS.

4. THE MODULE ARCHITECTURE
An IMRS process may require several subprocesses to be performed in parallel

and/or in sequence. Each subprocess usually needs to execute a number of concurrent

tasks, each of which in turn consists of a few procedures. The module architecture

refers to the following.

Integrated Multi-Robot System

14

RSD-TR-10-84

i) The form of a module. A module will have many similarities to Ada task defini-
tions, by consisting of a specification section and a body. The specification section
will not only contain standard declarations, but also parameters used to modular-
ize the IMRS. The body will contain a major task that executes in parallel with
the other tasks in the IMRS, as well as special interrupt routines that are called

when certain conditions arise (i.e. receipt of a message).

ii) The logical structure and/or communication channeis that connect the modules in

an IMRS.

The module architecture of a real-time or concurrent language is far more complex
than the architecture of a sequential language. The architecture of a sequential
language (e.g. PL/I [12]) generally deals with procedures instead of modules, and is con-
cerned with the static organization of procedures, scoping rules, and access rights. The
real-time, concurrent language required for an IMRS can refer to the static organization
of procedures, as in the sequential language case, the task invocation and priority stra-
tegy. or the communication channel topology between concurrent tasks. Most of our
module architecture discussion focuses on the last concept. We will aiso need to discuss
task creation which forms a backbone of an IMRS, upon which the communication

channel topology is overlaid..

The module architecture needs to be well structured so IMRS's can be efficiently,
accurately, and reliably programmed. The structure must also provide flexibility, so
the application programmer can use the structure toward any particular application.
Andrews [1] discusses issues pertaining to well structured concurrent programs. And as
expected, there are tradeoffs between structured concurrent constructs {e.g. Cobegin-

Coend) and unstructured constructs (e.g. fork/join). As we discuss the communica-

15 Integrated Multi-Robot System

RSD-TR-10-84

tion topology aspect of the module architecture, we will present two structured
approaches, the vertical and horizontal approaches. We will discuss the issues affecting
the use of each approach, in the hopes that IMRS application programmers use these
structured approaches correctly. Just as a sequential language programmer can forego
if-then-else’s, do-while’s, and repeat-until’s in lieu of goto’s, so may our structures

be misused.

We propose the module architecture for an IMRS to be an n-ary tree, that is

formed by task creation.® A module will consist of a specification section, an implemen-

tation (i.e. a main task responsible for the module's function), and exception handlers.

When a task is created, it becomes a child task of the task that created it.” This
parent-child relationship between the tasks always exists, but the amount of communi-
cations between the two will be different according to the class of process that the
tasks are controlling. Under most circumstances, communication channels among child
tasks will be directly established, with the parent task playing a minor role. This is
deemed horizontal communications. Note in this case that despite the parent-child rela-
tionship via task creation, there is little need of communications between the parent
and its child tasks. However, in some cases the parent must tightly control its child
tasks. This is deemed vertical communications, which is characterized by a close-knit
relationship between a parent and its children. Note that these approaches represent

centralized and decentralized controls, respectively.

®When a task begins executing.

"This is a slight abuse of terminology, since the creation of a new task really creates a module, which
implies a whoie lot more than a task. However, our future discussions will be clearer if we talk about child
and parent tasks, since the tasks are responsible for the modules’ function.

Integrated Multi-Robot System 18

RSD-TR-10-84

4.1. High-Level Communications in an IMRS

In this section, we will discuss the vertical and horizontal modes of communica-
tions. Vertical communications is defined as communications between a task and any
of its descendant tasks. Purely vertical communications are those which occur
between a task and its immediate child tasks. If the standard n-ary tree is drawn
with children placed under their parents with an arc connecting them, communica-
tions between a parent and a descendant occur vertically in the tree. Horizontal com-
munications is defined as communications that occur between tasks that are not
related vertically (i.e. a cousin or uncle relationship exists between the tasks). Purely
horizontali communications are those which occur among the children of a common
parent. For simplicity, we only deal with the pure forms of communication here.
However, our results and arguments can be generalized to IMRS’s not constrained in

this manner.

Vertical communications use one task to controi its child tasks. This allows con-
venient synchronization of many child tasks, by making them await a directive from
the parent. This scheme is easy to program, and provided that i) the number of child
tasks is small, i1) the IMRS processes are not apt to be modified often, ii1) the parent
task is very reliable, and iv) the child tasks are not computationally intensive, then
vertical communications can be utilized to solve the five classes of robot processes.
However, if 1) is invalidated then communications bottlenecking could occur; if i) is
invalidated then changes will have to be made to more than one task in the system,
which may be difficult to locate; if iii) is invalidated then the system is not fault-
tolerant; and if iv) is invalidated then parallelism is not being exploited. Horizontal

communications ameliorate the IMRS significantly. Allowing tasks to communicate

17 Integrated Muiti-Robot System

RSD-TR-10-84

directly without a central controller i) reduces the chances of a bottleneck by exchang-
ing messages among children, ii) keeps all the code for each subprocess local to one
module, ii1) increases reliability because all the subprocesses do not rely on one central
control task, and iv) allows more parallelism because each child task is not blocked as
often as in the vertical case, when a child must always await a directive from the
parent. Some processes are more conveniently and efficiently programmed using verti-
cal communications, while others are best expressed horizontally. It will be shown in
the next two sections that tightly coupled processes are best expressed vertically, while
independent, work-coupled, loosely-coupled, and sersalized motion processes are best

expressed horizontally (with a minimum use for vertical communications).

4.1.1. Vertical Communications

In an IMRS, a parent will spawn child tasks to perform different subprocesses in
the work cell. Naturally the single parent could control the subprocesses without
creating additional tasks, but then parallelism is sacrificed, and reliability is
decreased (since a failure in the parent would cause the subprocesses to fail). It is
better to have concurrent child tasks with their own control logic, to perform the
subprocesses. If the parent must block until the children complete execution, then
the concurrency can be modeled in terms of concurrent subroutine calls. In most
cases, the parent will create child tasks to handle subprocesses in the IMRS, and will
continue doing other work. A message and a run-time priority will be given to the
child tasks when they are created. The child tasks will perform their function
independently of the parent. Depending on the urgency of the subprocess controlled
by the child task, the parent may wish to check on the status/progress of the child

task before the child task is completed. This may be done by having the child main-

Integrated Multi-Robot System 18

RSD-TR-10-84

tain a status information that the parent can read.

Consider a tightly coupled process of moving an airplane panel from one con-
veyor to another (Figure 1). The two controlling tasks (one for each robot subpro-
cess) must be kept in tight synchronization, one task cannot run arbitrarily ahead of
the other. Suppose the synchronization is to be performed by having each robot
move a small distance at a time. After each step i1s performed, the tolerances of the
position and forces on each gripper can be sampled, with appropriate action being
taken. This would be difficult to perform using two independently executing tasks.
If each task knows the ideal amount for each step in the (position and force trajec-
tory) interpolation, then the tasks could synchronize by using a simple signal-wait
binary semaphore. This is unrealistic because (i) it requires compile-time knowledge
of all the moves so the step size can be determined before creating the two control-
ling tasks, (i) neither task has absolute control over the whole process, and thus
resolving conflicts in concurrent tasks becomes necessary (and is hard to perform
correctly), and (iii) the frequency of messages between the two tasks will be high,
because the very nature of a tightly coupled process requires many messages to keep
two independently executing tasks tightly synchronized. The best way to solve this
problem is by utilizing a master/slave relationship between tasks. How can this
master/slave relationship best be expressed? Since the master controls the slave, the
master is in charge of creating the slave, sending the slave commands, and destroying
the slave when it becomes unnecessary. The module architecture makes a created
task a child of its creator, and thus it is natural for the slave to become a child of the
master. The master/slave relationship required to perform tightly coupled processes

is best expressed by making the parent a master, and the children slaves, with verti-

19 Integrated Multi-Robot System

RSD-TR-10-84

cal communications used between the parent and its children.?

Under what circumstances should vertical communications be used in solving
the other classes of processes? Vertical communications (that are time critical)
should only be allowed when the parent is in charge of the communications between
itself and the children. If all the children could initiate communications with the
parent, then a bottleneck could result and the parent probably may not be able to
respond quickly enough (if the number of children is large). We should not allow
vertical communications that are initiated by a child task which expects a time-
critical response. [f the other four classes of processes are to be realized with vertical
communications only, then the parent must be responsibie for initiating all the com-
munications between itself and its children. Of course, one could use vertical com-
munications initiated by children in some IMRS’s where the application programmer
knows for certain that vertical bottlenecking will not occur. But this is only accept-
able for small IMRS’s, and since in general IMRS’s will be large {e.g. automating an
entire assembly line), we do not allow a child to initiate a time-critical communica-
tion transaction with its parent. Thus if the other four process classes are to utilize
vertical communications, then the processes will have to be programmed in such a
way that the parent can initiate all the communications. Controiling independent,
serialized motion, work-, and loosely- coupled processes with vertical communications
can be done, using the child tasks in this fashion has contradicted the very reasons
child tasks were spawned; the child tasks were created to maximize parallelism,
increase reliability, and to increase adaptability. Because the parent would have to

be given the control and synchronization logic of both tasks, the child wouid become

®Depending on the nature of the tightly coupled process, a different number of child tasks may be
spawned. In some cases the process is best controlled by using the parent and a single slave child, while in
other cases it 1s better for the parent to control two or more slave chiidren.

Integrated Multi-Robot System 20

RSD-TR-10-84

a dumb slave, simply awaiting directives from the parent to perform its next step in
the process. The child tasks will almost always be- blocked, the control of a subpro-
cess depends on two tasks instead of one, and the code for one subprocess is scattered
between two tasks. The problems of using the master/slave vertical communications
for these process classes can perhaps be intuitively grasped from Table 1. The (cen-
tralized) master/slave relationship implies high dependency between processes and
actions, and is only appropriate for process classes requiring this high dependency, i.e.

tightly coupled processes only.

4.1.2. Horizontal Communications

Horizontal communications are used to avoid the above problems that arise
when using the centralized control of the vertical scheme. Child tasks are allowed to
send messages directly among each other, each being able to initiate a transfer. Hor-
izontal communications are used between child tasks of the same parent, but not
between the parent and a child. Horizontal communications are in fact preferred
over vertical communications for all but tightly coupled processes because of
improved reliability, communications efficiency, source-code adaptability, and truer
parallelism. Horizontal communications can take on many forms: IMRS state vari-
ables can be controlled by proprietors which receive requests from other child tasks
asynchronously, two tasks can query or inform each other as to their current status,

or synchronization signals can be exchanged between tasks.

How may horizontal message passing be realized? From a user interface per-
spective, message passing and remote procedure calls should suffice, but the underly-
ing system implementation can be modeled as follows: Each module will contain a

message routing handler, called a message handler (MH), which receives and forwards

21 Integrated Multi-Robot System

RSD-TR-10-84

messages among other modules horizontally. A message would originate from a child
task, be encoded by its MH, be relayed between sib‘ling MH’s until it reached the MH
of the destination module, upon which that MH would decode the message and relay
it to the destination task. Small, fixed length messages would be used so the com-

munications could be efficiently handled.

The message handlers will have to be fast, “intelligent” nodes, capable of decid-
ing what is most important at any given time for the IMRS, as quickly as possible (in
many ways like a scheduler). As a message is received, the task executing in the
module is interrupted to allow the MH to execute. The MH will have to decide
(based on task, message, and communication channel prioritiesj whether it is best to
allow the task to continue executing (thus queueing the message), or to suspend the
task while the message is processed. The MH will also have to decide the best route
to send a message to another module, and will have to utilize acknowledgements and
timeouts to assure reliability of communications. How the MH is controlled is a diffi-
cult problem, because an application programmer should not need to program the
implementation details. One possibility is to use a rule-based ezpert system which
allows an application programmer to simply provide the rules for making the proper
decision in real-time. The expert system will have the power to interrupt the current
thread of control, as well as dynamically change priorities of the tasks and messages
so the real-time constraints can be met. The MH's would have to be linked together
in a certain topology, i.e. ringed or clustered. These communication links are dif-
ferent from the logical links connecting a parent to its children (which just model
task creation). By providing multiple links to every moduie, the communications
become more reliable (dynamic redundancy [18]) because the failure of one channel

still allows communication by another channel.

Integrated Multi-Robot System 22

RSD-TR-10-84

To have a better understanding, consider an example case of achieving indepen-
dent processes with horizontal communications. vSuppose that 20 child tasks all
depended on the value of a particular state variable (and thus we have a 20-way
independent process). A local copy of the state variable can be kept in each child,
but changes to the state variable must be handled by communicating horizontally

with a proprietor (which can modify the state variable).® The twenty children could

be linked in a ring-like manner, with the two!® child tasks most likely to communi-
cate with the proprietor having additional links to the proprietor (this would have to
be specified by the application programmer as an MH priority for messages destined
to the proprietor). If these two child tasks are uniformly spaced among the ring,
then no message will have to traverse more than four intermediate MH's. If the mes-
sages are not being handled quickly enough due to propagation delays in the mes-
sages, then extra direct channels to the proprietor can be created. If the proprietor
receives too many requests too quickly, then the proprietor’'s MH couid send a mes-
sage to the parent, asking the parent to spawn a redundant copy of the proprietor.
The parent would make a decision based on the feasibility of the request, and would
dynamically alter the horizontal communication links if another proprietor were
spawned. Redundant copies of the proprietors may simultaneously decide to alter
the same state variable, so these conflicts must somehow be resolved. To handle this,
we let the parent verify any modification to a state variable by proprietors. The
parent would check the feasibility of the new value, and would send a message to
each child of the change. Thus using proprietors to handle independent processes

horizontally still requires a small amount of vertical communications. For increased

9A normal child task is not allowed to modify state variables.

YFor reliability reasons, there must be a minimum of two-way connectivity.

23 Integrated Muiti-Robot System

RSD-TR-10-84

reliability, multiple proprietor tasks would be work-coupled together, and a single
proprietor task can be work-coupled to any sibling; The work coupling of two tasks
would require each task to maintain a database for its mate, based on messages sent
between the tasks. Should one task notice a lapse in messages from another task,
action would be taken to find out if the other task was still functioning properly. If

not, then the work coupled task would invoke a handler to recover.

An important issue is whether or not this proposed method of communications
allows the real-time constraints to be met. If the messages must traverse paths con-
sisting of too many intermediate MH’s, then message delays could become critical.
There are two ways to overcome this problem; either include extra horizontal chan-
nels between tasks of a common process (that are not normally connected due to
nonproximity in the n-ary tree), or to arrange the child tasks in the tree so that tasks
controlling each process are located next to each other in the n-ary tree so that the
channels comprising the ring become direct channels between tasks of the common

process. The latter is preferable, since it does not introduce extra communication

channels, but is not always feasible. Thus a combination of both should be utilized.!!

Horizontal message passing is utilized by processes which do not require tight
synchronization. We have discussed how independent processes can be accomplished
using horizontal communications with a proprietor(s). Loosely-coupled, work-
coupled, and serialized motion processes can likewise be programmed horizontally, by
sending messages directly between child tasks. The basic concepts presented thus far
bear many similarities to work done in networking (3], [13], [16]. In Arpanet, for

example, messages are routed between hosts by interface message processors (IMP's).

1A mechanism for doing this is the Costart system call, which will be discussed in Section 4.3.

Integrated Multi-Robot System 24

RSD-TR-10-84

The IMP handles disassembling and encoding the messages into packets, shipping the
packets reliably to the destination IMP, and asseﬁlbling and decoding the packages
back into a single message. The differences are i) that we are dealing with tasks,
which may be executing on a distributed network, as opposed to host processors, ii)
our MH's must be user programmable to allow real-time constraints to be met, and

iil) packet switching is not employed to meet real-time constraints.

4.2. An Example Module Architecture

Figure 2 illustrates the module architecture for the airplane panel-riveting process
of Figure 1. The root task is the highest level task that creates two child tasks to per-
form the two subprocesses. Task A performs the panel moving subprocess, and task B
performs the riveting subprocess. Tasks A and B each create two other tasks to actu-
ally perform the robot subprocesses. Tasks al and a2 control the panel moving
robots, tasks bl and b2 control the riveting robots. Tasks al and bl control two of
the robots on one side of the conveyors, while tasks a2 and b2 control the two robots
on the other side of the conveyors. Task C is either a proprietor or administrator used
to listen to requests from A and B to monitor and modify the system state variables.
In this small example, one could delegate the work of the proprietor to the parent
since a vertical bottleneck will not result between two children, yet for consistency
with our prior developments, as well as with larger IMRS's, we perform the indepen-
dent process horizontally instead of vertically. This proprietor task is work coupled to
the riveting process, so a failure in the proprietor will cause task B to execute an error
handler that will recover for the proprietor. Note that the tightly coupled panel mov-
ing subprocess utilizes vertical communications, while all the other processes utilize

horizontal communications. The panei moving tasks (al and a2} receive messages

25 Integrated Muiti-Robot System

RSD-TR-10-84

from the riveting tasks (bl and b2), in order to perform work coupling. Tasks bl and
b2 communicate directly between themselves to iallow riveting without colliding
(loosely coupled). Tasks A and B use a horizontal communication channel so as to
allow synchronization between the two subprocesses. Each of the tasks indicated is
really a module, consisting of a declaration of communication channels needed, an MH,

priority rules, exception handlers, and its primary task.

Figure 2 illustrates one important feature of the module architecture of an IMRS.
First notice that one task is not confined to one process only. Task A belongs to an
independent, serialized motion, and tightly coupled process. Task B belongs to an
independent, serialized motion, loosely-, and work- coupled process. Because of the

work coupling, the child tasks al, a2, bl, and b2 also belong to more than one class of

R
I
- Yy,
SM wC
TC TC

COMMUNICATION CHANNELS

LC I - INDEPENDENT PROCESS
LC - LOOSELY COUPLED
TC - TIGHTLY COUPLED
WC - WORK COUPLED
wWC wC SM - SERIALIZED MOTION

Figure 2 - The Module Archstecture for Figure 1

Integrated Multi-Robot System 28

RSD-TR-10-84

process.

4.3. More on Module Architecture

Our proposed module architecture consists of an n-ary tree, formed by task crea-

tion. Parent tasks will create child tasks, which will communicate either horizoutally

or vertically. The module architecture provides an application programmer with the

flexibility to choose a method of communications suitable for a given process.

There are a few last remarks to be made concerning vertical and horizontal com-

munications.

27

We have discussed how an independent process may still utifize vertical commun-
ications by having the father verify requests to change a state variable by its
proprietors. This is why there is a unidirectional vertical transmission from task
C to task R in Figure 2. Similar situations can be constructed for the loosely-
and work- coupled, and serialized motion processes for which we advocated hor-

1zontal communications.

Using a strict ring-like structure for horizontal implementation of independent
processes may not be the best choice, but we chose it for illustrative purposes.
Since IMRS tasks may be clustered (e.g. one sibling task coupled to another may
not ever need to call the proprietor), a clustered topology similar to a cluster net-
work{15] may be more appropriate. Regardless of the logical MH connections,

the message handlers should try to choose the best message route dynamically.

In general, no perfect suggestions can be made on the use of vertical and horizon-
tal communications. For example, we discussed how adaptability of horizontal

communications is easier since there is no nmeed to also modify a central con-

Integrated Multi-Robot System

RSD-TR-10-84

troller. Although always true, more complex tasks are needed to perform com-
munications horizontally. Depending on the laﬁguage constructs chosen, it may
be easier to change two separate tasks than one more complicated task. This
depends on the particular IMRS application. The IMRS programmer should be

given the flexibility of choosing the method best suited for each problem.

e Not all communications needed are purely horizontal or purely vertical. The
example of Figures 1 and 2 show that there is work coupling horizontal commun-
ications between the task pairs al-bl and a2-b2 that are not pure because each

task of the pair has a different parent.

For completeness, we need to discuss a few more general features, namely task

definition, creation, and destruction.

Task Definition - We feel that tasks should be defined in a way similar to Ada. The
benefit of doing so allows one to exploit Ada’s architectural features. Several papers
have been published suggesting Ada as a language for robot programming(6], [4]. Ada
was designed to facilitate large software projects, just like programming an IMRS.
The primary advantages are data encapsulation, data abstraction, and type abstrac-
tion. Consider the form of a package: a specification and an implementation. Pure
Ada allows variables, types, tasks, or procedures to be declared in the specification.
By generalizing this notion to allow each task to contain different specification sec-
tions for different IMRS features, we can entirely modularize each IMRS task. For
example, one specification could declare what sensors a robot had, another could
declare the MH priority rules for horizontal communications, another could specify the
work schedule, another the communication channeis, etc. Since the specification sec-

tion would contain information to the operating system on how the module relates to

Integrated Multi-Robot System 28

RSD-TR-10-84

the entire IMRS the efficiency, reliability, and verifiability of an IMRS application
program (or process) could be checked and changed by looking at the specifications
that contain information pertinent to the module architecture. PEARL[18] uses this
technique by providing a SYSTEM-division for declaring I/O connections, a
PROBLEM-division for computation, a LOAD-division for fault-tolerance provisions,

and a STATIONS-division describing the capabilities of each processor.

Task Creation - There are several ways that tasks can be created. One mechanism
is the Cobegin-Coend construct, another is to let all declared tasks start simultane-
ously, another is to declare tasks in the declaration section of a procedure and let the
tasks begin execution when the procedure begins execution (as in Ada). Ada even
allows a task type, which can be used to dynamically create tasks. The Cobegin-
Coend construct is appropriate when the task structure can be fixed at compile
time(20]. This is almost suitable for an IMRS; the only problem is that the Cobegin-
Coend causes blocking of the parent. What is needed is a Costart instruction,
which is similar to a Cobegin except it is nonblocking. Besides this trivial difference,
other advantages lie in using a Costart. If the communication channels could not be
statically declared in the specification section, then the Costart could be used to
specify the desired dynamic communication channels between the children (horizon-
tally) or between the children and parent (vertically). A more important advantage is
that repetitive uses of Costart would automatically adjust the n-ary tree to give a
parent task more child tasks, and automatically readjust the MH communication
topology to optimize horizontal communications. Thus Costart would not be a sim-

ple primitive, but rather an IMRS system call accepting many parameters.

29 Integrated Multi-Robot System

RSD-TR-10-84

Task Destruction - A task is destroyed either intentionally or unintentionally, and
the action taken depends on which is the case. If t§vo child tasks were work coupled
and one was to be destroyed because of execution completion, then the work coupling
would have to be disabled, and the intertask communications aborted. But if one
child task was to abort abnormally, then the other child would have to notice this and
alter itself to cover for the failed child. In general, the destruction of a task will cause
a reconfiguration of the task tree, will cause different (predictable) actions in other
tasks, and will alter the communication channels of an IMRS. The unintentional ter-
mination of a task {e.g. an emergency condition requiring immediate shutdown of a
process and its controlling tasks) which is not work coupied would probably lead us to
a graceful shutdown, but such decisions should be made by the application program-
mer. Error handlers could be invoked by simply signaling (or raising) a condition, as

done in Ada {7] and PL/I [12].

5. CONCLUDING REMARKS

In this report we have first investigated the various communication demands
brought about by five different types of processes, sndependent, loosely coupled, tightly
coupled, sertalized motion, and work coupled processes. Then, we have presented a
module architecture which deals with the run-time relationship of tasks, including task
creation, task destruction, and intertask communication channels. Two types of com-
munications are needed, vertical communications to handle tightly coupled processes
which require a parent task to control its child tasks in a master/slave relationship, and
horizontal communications to handie communications directly between child tasks not

requiring a central controller.

Integrated Multi-Robot System 30

RSD-TR-10-84

We feel that the work described in this report forms a foundation for developing

high performance, flexible, and fault-tolerant automation systems. However, there are

several important topics to be studied before a complete IMRS system is developed.

Following are some of such topics.

31

Determining what to include in the specification sections of a module.

Choosing an appropriate set of communication primitives. They will be based on
message and operation oriented languages [5] because of their applicability in dis-

tributed systems.

Determining how to handle the priorities of messages in the message handlers for
each task. As discussed in Section 4.2.2, this will probably have to be an expert

system, which can be easily modified if messages are not properly handled.

Evaluating the best way to define the communication topoiogy in the source pro-

gram. Port directed communication [20] may be a possibility.

Designing the Costart system call. More specifically, the parameters it should

accept and how the communication topoiogies should be adjusted on each call.

Designing an IMRS system programming language which allows simple, efficient,
and reliable programming of the IMRS processes. This will also be difficult; creat-
ing a robot programming language that can be used by people of different experi-
ences, especially one with the power to control an IMRS as we have described, will

be quite challenging.

Developing a complete operating system kernel. The V System [3] has three major
components, the interprocess communications (IPC), the kernel server, and the
device server. Our discussion of horizontal communications has many similarities

to Cheriton's [PC. The kernel will have to be developed along with the network

Integrated Multi-Robot System

(1]

[2]

[3]

[4]

(9]

(10]

[11]

RSD-TR-10-84

implementation of horizontal communications, and will prove to be difficult.
because of all the different devices and sensors which must be incorporated into

the system along with the real-time communications.

REFERENCES

Andrews, G.R., and Schneider, F.B., ”Concepts and Notations for Concurrent Pro-
gramming,” ACM Computing Surveys, March 1983, Vol. 15 No. 1, pp. 3-43.

Bonner, S., and Shin, K. G., "A Comparative Study of Robot Languages”, Com-
puter, Vol. 15, No. 12, December 1982, pp. 82-96.

Cheriton, D. R., "The V Kernel: A Software Base for Distributed Systems,” IEEE
Software, April 1984, pp. 19-42.

Gal, D., Mudge, T., and Volz, R., "Using ADA as a Robot System Programming
Language,” Proceedings From the 13th International Symposium on Industrial
Robots and ROBOTS 7, 1983, pp. 12%42-57.

Gentleman, W.M., "Message Passing Between Sequential Processes: the Reply
Primitive and the Administrator Concept,” Software Practice and Ezperience, Vol.
11, 1981, pp. 435-466

Gini, G. and Gini, M., "ADA: A Language for Robot Programming?,” Computers
in Industry, 1982, Vol. 3, No. 4, pp. 253-259.

Habermann, A., and Perry, D., Ada For Ezperienced Programmers, Addison-
Wesley, 1983.

Hansen, P. B., The Architecture of Concurrent Programs, Prentice-Hall, Inc.,
1977.

Hansen, P. B., "Distributed Processes: A Concurrent Programming Concept,”
Communications of the ACM, Nov. 1978, Vol. 21, No. 11, pp. 934-941.

Hoare, C.A.R., "Communicating Sequential Processes,” Communications of the
ACM, Aug. 1978, pp. 666-677.

IBM Corp., IBM Robot System/1: AML Concepts and User's Guide, Publication
No. GA34-0180-1, 1981.

Integrated Multi-Robot System 32

UNIVERSITY OF MICHIGAN

cornose (WA

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

33

\015 03525 01

Hughes, J. K., PL/I Structured Programming, the 2nd. Ed., John Wiley and Sons,
1979.

McQuillan, J. M. and Walden, D. C., "The ARPA Network Design Decisions,”
Computer Networks, North-Holland Publishing Co., 1977, pp. 243-289.

Mujtaba, S., and Goldman, R., "AL Users’ Manual,” SAIL Report, Jan. 1979.

Schoeffler, J. D., "Distributed Computer Systems for Industrial Process Control,”
Computer, Feb. 1984, pp. 11-18.

Shoch, J. F., and Hupp, J. A., "Measured Performance of an Ethernet Local Net-
work,” Communications of the ACM, Dec. 1980, Vol. 23, No. 12, pp. 711-721.

Silberschatz, A., " Cell: A Distributed Computing Modularization Concept,” IEEE
Transactions on Software Engineering, March 1984, vol. SE-10, no.2, pp. 178-185.

Steusloff, H. U., " Advanced Real-Time Languages for Distributed Industrial Pro-
cess Control,” Computer, Feb. 1984, pp. 37-46.

Stotts, P. D. Jr., "A Comparative Study of Concurrent Programming Languages,”
ACM SIGPLAN Notices, Sept. 1982, vol. 17, no. 9, pp. 76-87.

Wegner, P., and Smolka, S. A., "Processes, Tasks, and Monitors: A comparative
Study of Concurrent Programming Primitives,” [EEE Transactions on Software
Engineering, Vol. SE-9, No. 4, July 1983, pp. 446-462.

Welsh, J., and Lister, A., "A Comparative Study of Task Communication in Ada,”
Software- Practice and Ezperience, 1981, vol. 11, pp. 257-290. Springer-Verlag,
1982.

Integrated Multi-Robot System

