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Ciliary disorders share typical features, such as polydactyly,

renal and biliary cystic dysplasia, and retinitis pigmentosa,

which often overlap across diagnostic entities. We report on

two siblings of consanguineous parents and two unrelated chil-

dren, both of unrelated parents, with co-occurrence of Joubert

syndrome and Jeune asphyxiating thoracic dystrophy, an asso-

ciation that adds to the observation of common final patterns of

malformations in ciliary disorders. Using homozygosity map-

ping in the siblings, we were able to exclude all known genes/loci

for both syndromes except for INVS, AHI1, and three genes from

the previously described Jeune locus at 15q13. No pathogenic

variants were found in these genes by direct sequencing. In the

third child reported, sequencing of RPGRIP1L, ARL13B, AHI1,

TMEM67, OFD1, CC2D2A, and deletion analysis of NPHP1

showed no mutations. Although this study failed to identify a

mutation in the patients tested, the co-occurrence of Joubert and

Jeune syndromes is likely to represent a distinct entity caused

by mutations in a yet to be discovered gene. The mechanisms by

which certain organ systems are affected more than others in the

spectrum of ciliary diseases remain largely unknown.

� 2010 Wiley-Liss, Inc.
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INTRODUCTION

Joubert syndrome (JS) denotes a spectrum of ciliary disorders, all of

which feature episodic hyperpnea and apnea, ataxia, cognitive

impairment, abnormal eye movements, elongated midbrain teg-

mentum, dysplastic caudal medulla, and vermis hypo/dysplasia

[Joubert et al., 1969]. Microcystic renal disease, hepatic dysplasia,

and retinal disease are also recognized as part of the spectrum

[Boltshauser and Isler, 1977; Pellegrino et al., 1997; Steinlin et al.,

1997]. The ‘‘molar tooth sign’’—a result of the triad of a deep

posterior interpeduncular fossa, prominent superior cerebellar

peduncles, and vermian hypoplasia/aplasia—is observed in 82%

of patients [Maria et al., 1997, 1999]. Skeletal dysplasia is not

recognized as a feature of JS. To date, nine causative recessive genes

have been identified, all of which relate to ciliary function: AHI1

[Lagier-Tourenne et al., 2004], NPHP1 [Parisi et al., 2004], CEP290/

NPHP6 [Sayer et al., 2006], TMEM67/MKS3 [Baala et al., 2007],

RPGRIP1L [Arts et al., 2007; Delous et al., 2007], ARL13B

[Cantagrel et al., 2008], CC2D2A [Gorden et al., 2008], INPP5E

[Bielas et al., 2009; Jacoby et al., 2009], and OFD1 [Coene et al.,

2009]. Each accounts for no more than 5–10% of cases [Parisi et al.,

2007]. An additional locus has also been mapped to 11p12–q13

[Keeler et al., 2003; Valente et al., 2005].
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Jeune asphyxiating thoracic dystrophy (JATD) is a rare autoso-

mal recessive disorder characterized by a long, narrow thorax, short

-limbed short stature, polydactyly, and renal cystic dyplasia. The

skeletal dysplasia manifests as cone-shaped epiphyses in the hands

and feet, irregular metaphyses, decreased iliac cephalocaudal

height, and a trident-shaped acetabulum [Oberklaid et al.,

1977]. Renal cystic changes, either diffuse or focused in the cortex,

may be seen early in life [Barnes and Opitz, 1992]. Those who

survive early childhood frequently develop chronic kidney disease

in their later life because of diffuse tubulointerstitial fibrosis,

tubular atrophy, periglomerular fibrosis, or glomerular sclerosis.

These histopathological changes are often indistinguishable from

juvenile nephronophthisis [Bernstein et al., 1974; Kozlowski and

Masel, 1976; Donaldson et al., 1985]. A subset of JATD cases have

mapped to locus 15q13 [Morgan et al., 2003], in which the causative

gene remains unknown. Recessive mutations of IFT80 (3q25),

which encodes a component of the ciliary intraflagellar transport

(IFT) complex, have been found in another subset of patients with

JATD [Beales et al., 2007]. Mapping of a third locus, 11q14–11q23,

led to the identification of recessive mutations in DYNC2H1,

which encodes a dynein complex subunit [Dagoneau et al., 2009;

Merrill et al., 2009]. Mutations in DYNC2H1 were also found in

families affected by short-rib polydactyly type III (SRPIII). This

disorder has been proposed to lie on the severe end of a spectrum

shared with JATD [Ho et al., 2000]. The short rib polydactyly group

of skeletal dysplasias is characterized by typically lethal thoracic

hypoplasia, short limbs, polydactyly, and visceral abnormalities.

SRPIII can be quite similar to type I SRP, but in general, can be

radiologically distinguished by the presence of a trident-shaped

acetabular roof, a ‘‘ball-in-cone’’ appearance at the end of the long

bones due to lateral and medial spiky metaphyseal spurs and overall

decreased severity of long bone hypoplasia [Lachman, 2007].

SRPIII can be radiographically distinguished from JATD by the

presence of medial and lateral metaphyseal spurs, more severe rib

shortening, abnormal vertebra, and less frequent observation of

phalangeal coned epiphyses [Yang et al., 1987; Lachman, 2007].

The observation of both JATD and JS occurring together in four

patients described herein strongly suggests that a single ciliary gene

important in both skeletal and cerebellar development could be

responsible for the overlapping phenotype. The aim of our study

was to search for the causative locus by screening for homozygosity

of known loci and genes implicated in both disorders, as well as

the Ellis Van Creveld gene (EVC) and inversin (INVS), using data

from single nucleotide polymorphism (SNP) arrays (Affymetrix

Genome-Wide Human 6.0 SNP array) in two siblings born of

a consanguineous union. The coding exons of genes located

in homozygous intervals shared between the siblings were then

sequenced for mutations but none were found. Sequencing of

several ciliary genes in a third child with JATD and JS did not

reveal mutations.

CLINICAL REPORTS AND METHODS

Clinical Report, Patient I
Two siblings with features of both JATD and JS were born to healthy

third cousin parents of Filipino ethnicity. A daughter was noted to

have hypotonia, developmental delay, and oculomotor apraxia at

6 months of age, and subsequent neuroimaging revealed a ‘‘molar

tooth sign,’’ with hypoplasia of the inferior vermis of the cerebellum

and elongated superior cerebellar peduncles (Fig. 1). She had mild

frontal bossing, a small thorax, and disproportionately short limbs

and digits. Radiographs demonstrated short ribs with expanded

anterior ends, brachydactyly with cone-shaped epiphyses, a trident-

shaped acetabular roof, and abnormal proximal femoral metaphy-

ses (Fig. 1). Echogenic kidneys with cortical cysts and dilated

hepatobiliary ducts were observed on ultrasound. She sat unsup-

ported at age 2 years, stood at age 4 years, and walked with aid of a

walker at age 5 years; she could speak single words by age 3 years and

sentences by age 5 years. At 31 months she developed symptomatic

renal failure requiring dialysis, and she later received a renal

transplant from a living related donor at 4 years of age. A gastro-

stomy tube was placed at age 4 years because of inadequate oral

intake. She has been admitted to hospital several times for respira-

tory tract infections compounded by reactive airways disease; she

requires bi-level positive airway pressure at night. At age 5 years she

suffered sudden loss of vision bilaterally and was diagnosed with

idiopathic elevated intracranial pressure on the basis of elevated

opening pressure with lumbar puncture. She regained some vision

following treatment with acetazolamide, further suggesting the

vision loss was likely due to increased intracranial pressure. En-

larged lateral ventricles and extra-axial CSF spaces were noted on

MRI. Also noted was a narrow upper cervical spinal canal with

hypoplasia of the first vertebra. Ophthalmological assessment

demonstrated optic disc swelling, mild myopia, and patchy cho-

roidal atrophy of the posterior poles. Small creamy white subretinal

deposits, in keeping with retinal dystrophy, were seen along the

superior temporal arcade.

Clinical Report, Patient II
The parents of Patient I conceived again. Serial antenatal scans,

beginning at 19 weeks gestation, showed hyperechoic kidneys and

hypoplasia of the cerebellar vermis. A male infant was delivered at

term. A postnatal MRI confirmed vermian hypoplasia and a molar

tooth sign (Fig. 2). MRI also demonstrated hypoplasia of the first

cervical vertebra that appeared to be contributing to CSF outflow

obstruction and ventriculomegaly, more severe than the malfor-

mation present in his sister, Patient I. At age 3 years, he has global

developmental delay (including absence of speech), hypotonia

(unable to sit independently), oculomotor apraxia, short-limbed

short stature (height 3.4 SD below the mean and weight at the 1st

centile), hypoplastic thorax, biliary duct dilatation, and enlarged

cystic dysplastic kidneys (>95th centile) with normal renal function

and blood pressure thus far. He has had elevated serum trans-

aminases of uncertain cause. Nutrition is largely supplied via

gastrostomy tube for feeding difficulties and bi-level positive airway

pressure is provided at night. A barium swallow has demonstrated

an aberrant right subclavian artery partly indenting, but not

obstructing, his esophagus.

Clinical Report, Patient III
A child unrelated to the aforementioned siblings presented prena-

tally with a prominent cisterna magna at 19 weeks gestation. The

parents were an unrelated couple of Caribbean descent. The
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FIG. 1. Patient I. A: Elongated superior cerebellar peduncles contribute to the molar tooth sign demonstrated in T1 MRI. B: Marked hypoplasia of the ribs,

with decreased anterior–posterior diameter and thoracic volume. The anterior ends of the ribs are expanded. C: Hand radiographs demonstrate

generalized brachydactyly and wide, cone-shaped epiphyses in the proximal phalanges. D: Pelvic radiograph demonstrates trident shape of

horizontal acetabular roofs, bilateral coxa valga, and bilateral irregular widening of the proximal femoral epiphyses.

FIG. 2. Patient II. A: T2-weighted MRI demonstrating the molar tooth sign. B: Thoracic hypoplasia with broad costochondral junctions and abnormal

clavicles. C: Saggital T2 MRI view demonstrates narrowing of the subarachnoid space at the C1 level, contributing to enlargement of the subarachnoid

space caudally.
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perinatal findings of JS in this patient have been previously de-

scribed [Fluss et al., 2006], prior to an additional postnatal diag-

nosis of JATD. An amniocyte karyotype was normal 46,XY.

Additional ultrasound findings at 22 weeks included absence of

the cerebellar vermis, a smooth cortex, and moderate ventriculo-

megaly (14 mm); at 27 weeks, MRI demonstrated a dysgenetic

vermis and molar tooth sign, undersulcation, delayed operculari-

zation, postaxial polydactyly, and hypertelorism. Growth param-

eters at birth were normal (length 51 cm: 50th centile; weight

3,500 g: 25th centile; head circumference: 35.3 cm: 25th centile).

The infant had a narrow, bell-shaped chest with widely spaced

nipples, rhizomelic shortening of his upper and lower limbs,

bilateral postaxial polydactyly of his hands and feet, and a left

simian crease (Fig. 3). In addition, hypertelorism, a high forehead

with bossing, depressed nasal bridge, epicanthic folds, posteriorly

rotated and low-set ears with overfolded helices, a supernumerary

nipple and grade I hypospadias with incomplete prepuce were

observed. Episodic tachypnea was observed, which gradually re-

solved during infancy. A skeletal survey demonstrated only 11 ribs

on the right side, rib hypoplasia with broadening at the costochon-

dral junctions, and spurs from the medial acetabular roof (Fig. 3).

Radiographs of the hands at age 10 months confirmed the presence

of two phalanges in the supernumerary digits with a bifid, Y-shaped

fifth metacarpal on the left and a broad distal metaphasis of the fifth

metacarpal on the right (Fig. 3). Ultrasonography of the kidneys

liver, biliary tracts, and heart was normal. An MRI in the neonatal

period confirmed the molar tooth sign and bilateral ventriculo-

megaly as well as absence of the left olfactory sulcus and bulb and

subependymal cysts. Hearing screening and subsequent auditory

brainstem testing confirmed severe bilateral sensorineural hearing

loss. Ophthalmologic assessment showed the presence of the Duane

anomaly of extraocular movement; dilated retinal examination and

electroretinogram showed features of retinal dystrophy. An EEG

was within the normal range. He developed significant feeding

difficulties and gastro-esophageal reflux with recurrent aspiration

pneumonia, which necessitated gastrostomy tube insertion at 7

months of age. Despite tube feeding, he developed chronic lung

disease secondary to aspiration, and failure to thrive with weight,

height, and head circumference all below the 3rd centile. Global

developmental delay has been most significant for gross and fine

motor domains. At 3 years of age he could sit but could not crawl or

stand, could scribble, could pile 4–5 blocks, and could utter single

words but not phrases.

Clinical Report, Patient IV
Nonconsanguineous parents with two healthy children, and no

family history of developmental disorders or congenital anoma-

lies, presented in their third pregnancy with a female fetus with

intracranial abnormalities at 20 weeks of gestation. Mild lateral

ventriculomegaly (10–11 mm), a mildly dilated third ventricle, an

absent septum pellucidum, cerebellar hypoplasia, and increased

posterior fossa fluid spaces were observed. An MRI at 31 weeks

gestation confirmed vermis hypoplasia and also detected a small

occipital encephalocele/cervical meningocele, colpocephaly, and

thickened and horizontally oriented superior cerebellar pe-

duncles consistent with a molar tooth sign. Following an un-

complicated delivery via caesarean section at 39 weeks gestation,

mild frontal bossing, low-set ears, mild micrognathia, redundant

nuchal skin, abnormal eye movements, mild hypotonia, and

episodic tachypnea and apnea were noted. Moderate central and

severe obstructive apnea were documented on polysomnogra-

phy. She was fed through a nasoduodenal tube because of an

aspiration risk related to gastroesophageal reflux. An MRI con-

firmed the prenatal findings and also demonstrated dysplastic

cerebellar hemispheres, absent splenium of the corpus callosum,

globular-appearing basal ganglia, prominent fornices, and a

bulging dorsal medulla (Fig. 4). Renal and hepatic ultrasonogra-

phy was normal. A skeletal survey showed dysplasia. Thoracic

abnormalities included a narrow bell shape, shortening of hori-

zontally oriented ribs with flaring of the anterior ends, and

vestigial-like hypoplasia of the 12th ribs. The clavicles were

relatively long compared to the size of the thorax. Premature

ossification of the epiphyses, particularly of the proximal femora,

was observed. Limb lengths were mildly short and phalangeal

lengths were within the normal range. The pelvis demonstrated a

mild trident appearance of the acetabular margin with an infero-

lateral spur of the sciatic notch (Fig. 4). The pelvis also featured

FIG. 3. Patient III. A: Hypoplastic thorax with decreased chest circumference, protuberant abdomen, and rhizomelic limb shortening are shown. A

depressed nasal root, prominent forehead, and postaxial polydactyly are also present. B: Medial spurs of the acetabular roof as well as a narrow

sacroiliac notch are seen. The ilia are generally hypoplastic. C: Postaxial polydactyly of the right hand with two phalangeal bones in the extra digit, a

bifid metacarpal, and brachydactyly. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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flared iliac bones with decreased cephalocaudal height. The

vertebrae were normal with neither platyspondyly nor sagittal

or coronal clefting.

Homozygosity Analysis
Affymetrix 6.0 SNP array was performed by the Affymetrix clinical

laboratory (Sacramento, CA) on lymphocyte DNA from Patients I

and II. Informed consent was obtained and the study was approved

by an institutional review board. Regions of homozygosity that

entirely encompassed the genes in question (Table I) were screened

for homozygosity using the Affymetrix Genotyping ConsoleTM

software. It was also noted if the children demonstrated shared

heterozygosity indicating a possibility of pathological compound

heterozygosity or homozygosity not identical by descent. Genes for

which the siblings did not share alleles were excluded from further

analysis (CEP 290/NPHP6, TMEM67/MKS3, RPGRIP1L, ARL13B,

CC2D2A, IFT80, DYNC2H1, and EVC1).

FIG. 4. Patient IV. A: The mildly hypoplastic pelvis demonstrates narrow sacroiliac notches with inferolateral notches and flared iliac bones. B:

Thickened and elongated superior cerebellar peduncles and a deep interpeduncular fossa are seen as part of the molar tooth sign displayed in an axial

T1 view. C: Saggital T1 MRI demonstrates dysplastic cerebellar hemispheres and a hypoplastic corpus callosum.

TABLE I. Results From Homozygosity Mapping and Molecular Analyses to Rule in or Rule Out Candidate Loci Based on Previously

Described Genes/Loci for JATD and JS in Patients I and II

Region Gene
Associated
disorder(s) Segregation status Molecular

Chr9:135,345,956–139,856,799 INPP5E JS, MORM No shared allelesb

JBTS2 (CORS2) 11p12–q13:
46,023,436–59,656,135

Unknown JS No shared alleles

Chr12:86,966,921–87,060,124 CEP290 (NPHP6) JS, MKS, BBS, LCA, SL No shared alleles
Chr8:94,836,248–94,900,634 TMEM67 (MKS3) JS, MKS, BBS; COACH No shared alleles
Chr2:110,238,203–110,319,928 NPHP1 JS, NPH, SL, COMA Heterozygously shared alleles No deletion
Chr6:135,646,817–135,860,576 AHI1 JS Homozygously shared alleles No mutations
Chr3:95,181,672–95,256,813 ARL13B JS No shared alleles
Chr16:52,191,319–52,244,400 RPGRIP1L JS; MKS; COACH No shared alleles
Chr4:15,080,760–15,212,278 CC2D2A JS; MKS; COACH No shared alleles
Chr9:101,901,332–102,103,247 INVS NPH Homozygously shared alleles No mutations
Chr4: 5,750,000–5,900,000 EVC EVC No shared alleles
Chr3:161,427,936–161,650,320 IFT80 JATD No shared alleles
Chr11:102,485,370–102,855,801 DYNC2H1 JATD, SRP No shared alleles
Chr15: 28,947,842–29,258,267 MTMR10a 15q13 linked to JATD Homozygously shared alleles No mutations

MTMR15a 15q13 linked to JATD Homozygously shared alleles No mutations
TRPM1a 15q13 linked to JATD Homozygously shared alleles No mutations

JS, Joubert syndrome; MKS, Meckel syndrome; BBS, Bardet–Biedl syndrome; LCA, Leber congenital amaurosis; SL, Senior–Loken syndrome; COMA, Cogan-type congenital oculomotor apraxia; NPH,
nephronophthisis; EVC, Ellis Van Creveld syndrome; JATD, Jeune asphyxiating thoracic dystrophy; SRP, short rib polydactyly; COACH, cerebellar vermis hypoplasia, oligophrenia, ataxia, colobomas,
hepatic fibrosis syndrome; MORM, mental retardation, truncal obesity, retinal dystrophy, and micropenis.
Linkage information is also provided for EVC, the causative gene for Ellis Van Creveld syndrome, a disorder with some similar features to JATD, and INVS, a ciliary gene involved in nephronophthisis.
aThese candidate genes are within a region of 15q13, a JATD locus, that overlapped our linkage data and that published by Morgan et al. (2003).
bWithin the gene itself, there are only two SNPs represented, but analysis extending beyond the gene indicates heterozygous haplotypes not linked.
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Candidate Gene Sequencing
Candidate genes in homozygous regions (INVS, AHI1, and genes

within a portion of 15q13: TRPM1, MTMR10, and MTMR15)

were further analyzed by Sanger sequencing of coding exons, and

at least 20 bp of bordering intronic sequence, after standard PCR

amplification. Primers and conditions are available upon request.

Sequencher� software (Gene Codes, Ann Arbor, MI) was used to

identify variants in the sequence compared to human reference

sequence NCBI Build 36.1. Sequence variants were manually in-

spected to rule out sequencing artifacts, and then referenced to

dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP) to identify

known polymorphisms. Unidirectional sequencing was performed

initially, followed as needed by sequencing from the opposite

direction to clarify ambiguous traces. The NPHP1 region was

examined for heterozygosity to exclude deletion of the region that

accounts for the majority of NPHP1 mutations [Heninger et al.,

2001]. In Patient III, sequencing of the coding exons was under-

taken for RPGRIP1L, ARL13B, AHI1, TMEM67/MKS3, OFD1, and

CC2D2A; deletion analysis was performed for NPHP1.

RESULTS

Of a total of 14 loci examined for homozygosity shared between

the siblings (Patients I and II), 3 were identified (Table I). The

15q13 candidate region (ATD1) previously identified through

linkage study in several JATD families spanned �1.5 Mb

(between D15S165 and D15S1010; 28,947,842–30,777,610)

[Morgan et al., 2003]. The siblings in our study demonstrated

homozygosity across a �530 kb region (28,726,417–29,258,267)

that overlapped�310 kb with this previously reportedly region and

contained only 3 genes: MTMR10, MTMR15, and TRPM1. Se-

quencing of the coding regions of INVS, AHI1, MTMR10,

MTMR15, and TRPM1 in one sibling revealed no mutations.

Several SNPs catalogued by dbSNP were identified, all of which

were homozygous as expected. NPHP1 deletion analysis confirmed

two copies. Sequencing of RPGRIP1L, ARL13B, AHI1, TMEM67,

OFD1, CC2D2A in Patient III demonstrated no mutations. A

heterozygous nonsynonymous SNP (rs16892095) was found in

CC2D2A. Deletion analysis of NPHP1 was normal.

DISCUSSION

This clinical observation of JATD and JS co-occurrence expands the

recognized phenotypic spectrum in both disorders, and suggests

the involvement of a single causative ciliary gene required for

both skeletal and neurological development (see Table II for

comparisons). Cilia are specialized, membrane-bound, hair-like

structures that project from the cell surface. Each cilium is com-

posed of a microtubule cytoskeleton (the axoneme) surrounded by

a specialized membrane and anchored in the cell by the basal body.

IFT proteins including dynein and kinesin motor proteins are

required for the assembly and function of cilia [reviewed in Beisson

and Wright, 2003]. Primary cilia are present in most cell types,

including renal tubule epithelia, retinal photoreceptors, chondro-

cytes, fibroblasts, and neurons. Cilia perform numerous roles in

cellular functioning, such as detection of mechanical, chemical, and

light stimuli, as well as mediation of multiple signaling pathways

involved in development and differentiation. The ciliopathic phe-

notype in human disease consists of multiple typical features such

as: cystic renal and liver disease, retinal dystrophy, situs inversus,

polydactyly, brain anomalies of the posterior fossa, skeletal anom-

alies, and more. Microcystic renal disease, present in the siblings

reported here, is an overlapping feature of JATD, JS, and SRP.

Although retinal dystrophy, Dandy–Walker malformation, venti-

culomegaly, and arachnoid cysts have been described in JATD

previously [Wilson et al., 1987; Singh et al., 1988; Ardura Fern�andez

et al., 1990; Trabelsi et al., 1990; Silengo et al., 2000], classically this

syndrome has been considered a skeletal-visceral disorder. The

phenotypes of our four patients also overlap with the core features

of Meckel syndrome: brain malformation (usually occipital

encephalocele), renal cystic disease, congenital hepatic fibrosis/

ductal plate malformation, and postaxial polydactyly [Seller,

1981; Salonen, 1984]. Most of the genes implicated in Meckel

syndrome have also been confirmed to cause JS. In addition,

Franceschini et al. [2004] described sibling fetuses with a Meckel-

like phenotype and skeletal dysplasia: trident-shaped acetabular

roofs, decreased vertical height of the ilia, and short, curved long

bones, in addition to typical Meckel features of occipital encepha-

locele, bilateral polycystic kidneys, and hepatic cystic dysplasia.

Similarly, Tsai et al. [1992] reported a fetus with short rib polydac-

tyly, encephalocele, and situs inversus.

Loss of function for either of the genes responsible for JATD

(IFT80 or DYNC2H1) is associated with abnormal cilia [Beales

et al., 2007; Dagoneau et al., 2009; Merrill et al., 2009]. The restricted

and dysplastic growth of the long bones, pelvis, and thoracic cage

observed in these ciliary disorders could result from perturbed

hedgehog signaling during development. This pathway is at least

partially mediated through cilia [Eggenschwiler and Anderson,

2007]. In particular, Indian hedgehog requires functional IFT in

order to influence proliferation of the chondrocyte lineage in long

bone development [Haycraft et al., 2007]; Indian hedgehog mutant

mice demonstrate limb shortening as well as hypoplasia of the axial

skeleton [St. Jacques et al., 1999].

Even though the parents of the siblings had a low degree of

consanguinity (3rd cousins), more shared homozygosity than

anticipated was encountered, making a search for new candidate

genes impractical. Indeed, 3 of 14 examined loci (21%) demon-

strated homozygous inheritance common to both siblings and

required further molecular analysis. For comparison, runs of

homozygosity around 100 kb have been estimated to constitute

13% of individual European genomes [Frazer et al., 2007]. There

were 35 runs of homozygosity longer than 1 Mb shared between the

siblings (none longer than 3 Mb), a length that begins to suggest

recent ancestral sharing [McQuillan et al., 2008; Hildebrandt et al.,

2009]. Our studies do not completely rule out causation from the

linked candidate genes, as only the coding portions of the genes

were sequenced; mutations in the promotor, untranslated, or

intronic regions would have been missed.

Children with JATD should be evaluated for signs of cerebellar

dysfunction and visual impairment, with consideration for cranial

MRI; this co-occurrence may be more common than previously

recognized. Although the MRI findings in all four patients are in

keeping with JS, we believe in each case (and the siblings especially)
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that the vermis has a lace-like appearance more suggestive of

atrophy rather than hypoplasia. Furthermore, the superior cere-

bellar peduncles are thick, but less so than usual. Another unusual

MRI finding in these patients was atlas hypoplasia (Patients I and

II). Symptomatic atlantoaxial instability has been reported previ-

ously in a patient with JATD [T€uys€uz et al., 2009], which indicates

the importance of investigation for neurological symptoms or signs

in JATD patients. Our report also highlights the possible severity of

the renal dysplasia in JATD and JS, and demonstrates that renal

transplantation may be successfully performed after rigorous eval-

uation of pulmonary function.
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