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Abstract

Background We conducted a study of participants’ abilities to place
a laparoscopic port for in vivo biosensor use. Biosensors have physical
limitations that make port placement crucial to proper data collection. A
new port placement algorithm enabled evaluation of port locations, using
segmented patient data in a virtual environment.

Methods Port placement scoring algorithms were integrated into an image-
guided surgery system. Virtual test scenes were created to evaluate various
scenarios encountered during biosensor use. Participants were scored based
on their ability to choose a port location from which points of interest could
be scanned with a biosensor. Participants’ scores were also compared to those
of a port placement algorithm.

Results The port placement algorithm consistently outscored participants
by 10-25%. Participants were inconsistent from trial to trial and from
participant to participant.

Conclusion Port placement for biosensor procedures could be improved
through training or augmentation. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords port placement; sensor integration; image-guided surgery; Raman
spectroscopy; medical robotics; virtual reality

Introduction

Biosensors are becoming more prevalent and more diverse in their capabilities.
For example, some have the capability to diagnose disease in vivo and
are now being designed for use in minimally invasive procedures. These
biosensors are able to gather many types of data. For example, Raman
spectroscopic probes are biosensors capable of distinguishing cancerous tissue
from surrounding healthy tissue (1-4). This type of technology would allow
surgeons to better decide which tissue to remove during a resection procedure
(5-7).

Before a biosensor can be used in this fashion, a suitable port location must
be chosen on the patient’s skin. The port location is an opening through which
the biosensor is threaded into the body. Because the port location is fixed, it
affects where on the surface of the patient’s tissue the biosensor can gather
data. Many biosensors have physical constraints, such as a maximum angle
of incidence or distance from the target surface. Outside of optimal condi-
tions, the biosensor’s ability to gather data is compromised. Therefore, the port
location also determines the quality of data gathered from the patient’s tissue.
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In addition, many biosensors have a limited area
from which data can be collected. For example, Raman
spectroscopic probes typically gather data from an area
<150 um in diameter. This requires the sensor to be
placed at many target points, compounding the problem
of placement outside of optimal conditions. The port
location must allow the biosensor to reach all areas of
interest while preventing dangerous conditions, such as
collisions with vital organs.

The limited view provided to the surgeons during a
minimally invasive procedure, the complexity of tissue
surfaces, the presence of obstructions and the physical
limitations of biosensors make the task of port placement
non-trivial. Some techniques have been created to
automate this process (8—14). However, these techniques
focus on the ‘golden triangle’ arrangement, which utilizes
two ports for surgical manipulators and one port for a
camera. This arrangement is used for current surgical
procedures because it provides a comfortable working
environment for the surgeon, with one hand on each side
of the surgical site and a camera view in the centre. This
arrangement, however, marginalizes a biosensor’s ability
to gather data because it does not account for the physical
limitations in a biosensor’s design.

For this reason, we have developed an automated port
placement system that focuses on biosensors (15). The
system utilizes 3D representations of a patient’s anatomy
derived from medical imaging (such as CT or MRI)
and allows target areas to be selected by the surgeon.
Along with these representations, the system uses several
algorithms to test all potential port locations on the
patient’s skin. These algorithms ensure that the biosensor
is long enough to reach target locations while meeting the
positioning constraints of the biosensor. The algorithms
also prevent collisions with other bodily structures. The
system finds the best possible port location, which
maximizes the ability of the biosensor to capture data
from the specified target areas. In addition, the system has
methods for evaluating (based on geometric and sensor
constraints) the placement of a port chosen by a user.
The implementation details of the system are presented
in another paper (15).

In this paper, we investigate human performance in
the task of port placement across a variety of scenarios.
Using the automated port placement system’s evaluation
methods, we grade user-specified placement (15). Such an
evaluation has never been done before because biosensor
use has not been prevalent in surgery and no grading
system was available for this type of port placement
task. The information gathered from these tests will give
us insight into human performance in the task of port
placement for one class of biosensors (Raman). This
should help in the development of training options to
improve human performance. In addition, the results will
help improve future automated systems to better augment
human performance. We believe this will make the use of
biosensors more feasible in the operating room.

Copyright © 2010 John Wiley & Sons, Ltd.
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Methods

Participants

This study was approved by the Human Investigation
Committee at Wayne State University. Informed consent
was obtained from each participant. A sample of 20 partic-
ipants was chosen for testing, without exclusion criteria
corresponding to adult age, gender or expertise. Four-
teen participants were under the age of 30, four were
women and two were surgeons. No participant had any
previous training or experience with the tests being con-
ducted, so their backgrounds had minimal influence on
their performance.

Apparatus

Tests were performed on a laptop computer running 3D
Slicer (16). This software application is a medical imag-
ing package capable of displaying 3D representations of
data, such as CT or MRI scans of patients. 3D Slicer was
modified to incorporate the port placement algorithms
described in (15). In addition, functions were added to
collect data, such as the chosen port location during the
testing. 3D test scenes were created, which consisted of
individual 3D models representing different organs and
bodily structures. The user interface consisted of a com-
puter mouse that was used by the participants to choose
a location in 3D space on the presented 3D scene.

Experimental task

Fifty tests were designed to mimic the requirements of
biosensor port placement during surgery. They were
developed with a specific biosensor in mind, a Raman
spectrometer. This type of biosensor is capable of dis-
tinguishing between cancerous and non-cancerous tissue
in vivo (17-19). This sensor was chosen because it is com-
mercially available and is being used in ongoing research
(20-22).

Each test scene consisted of 3D models representing the
skin, target organs and the dimensions of a Raman probe
(as a size reference). Rather than using complete scans
of actual patients, the scenes were built from smaller sets
of simpler 3D models. We did not use actual patient data
because we did not want the subjects to be overly reliant
on their medical knowledge. Moreover, actual patient data
would be too geometrically complex and would not have
given us control over specific dimensions of task difficulty.

Red markers were placed on the target organs to indi-
cate points of interest that should be scanned with the
Raman spectrometer (Figure 1). Across all 50 test scenes,
there were a minimum of nine, a median of 54 and a
maximum of 826 target points to scan from the selected
port location.

The participants were instructed to pick a desired port
location on the skin, using the mouse pointer. They were
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Figure 1. Example test scene from section 1. The pink sphere is
the skin surface, and the enclosed blue model provides the target
surface. The red dots represent target points. The red cylinder is
a representation of the Raman probe, which provides a reference
for scale. The letters are used by 3D Slicer to provide information
about the current viewpoint (right, anterior, posterior, etc)

directed to choose a port location that would maximize the
number of target points reachable with a virtual Raman
probe. In addition, the participants were told about the
limiting factors used by the port placement system to
determine whether an individual target point is reach-
able. These factors are described below. The participants
used the mouse to rotate, zoom and pan the virtual scene
as desired, and they indicated their decision for the port
location by pressing a button on a keyboard.

There are three factors evaluated by the port placement
system to determine whether a target point is reachable.
First, the ability of the virtual probe to reach the target
point from the port location (via a straight line) is
calculated. In other words, it is determined whether
the probe has sufficient length. Second, a collision
detection algorithm is executed to verify the absence
of any obstructions between the target point and the
port location, using the dimensions of the Raman probe.
Finally, an algorithm calculates the angle of incidence
of the biosensor from the target surface (at the target
point) to determine whether the angle is within 45°
of perpendicular. This constraint was chosen to imitate
the characteristics of a real Raman probe, which can
experience compromised data acquisition beyond this
angle. If a target point passes all three tests, it is
considered reachable.

Test scenes were created without regard to the number
of target points that are actually reachable. Thus,
participants did not know whether it was possible to
reach every target point or only a subset of them. We
used our automated port placement system to find an
optimized port location for each test scene. As expected,
the port placement system did not always reach 100% of
the target points within the tolerance of the criteria for
an allowable scan. Therefore, the number of points the

Copyright © 2010 John Wiley & Sons, Ltd.
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port placement system reached was used to represent the
maximum number of points reachable in each test scene.

Trial-level procedure

Each participant had to go through all 50 test scenes. The
tests were presented in random order, with one test shown
at a time. Once a participant chose a port location, the next
test was presented immediately. No feedback was given
to the participant as to the quality of his performance.
This was done to minimize learning effects throughout
the study. The execution of one test by a participant was
considered to be one trial.

Experimental design

The 50 tests were divided into five sections, with 10
tests in each section. Each section was designed to test a
specific condition related to the task of port placement.
These specific conditions were decided upon during a
discussion with a surgeon. The surgeon was asked what
types of conditions would present difficulties when trying
to laparoscopically position a biosensor to scan target
tissues. The surgeon indicated four conditions in which
biosensor sampling would be impeded due to improper
port placement. Four sections of the study were derived
from these problem conditions. A fifth section with no
significant impediments was added as a control case.
These test sections are described in greater detail below.

The first section of 10 tests served as a baseline/control
condition; it was designed to be simple. In this type
of scenario, the skin surface and target surfaces were
smooth or flat, and the line from the ideal port location
to the target surface was roughly orthogonal to the target
surface. The number of target points was small and they
were clustered close together. Figure 1 shows an example
from this section.

The second section of tests focused on complex target
surfaces. In this type of scenario, the skin surface was
smooth, but the target surfaces were bumpy or contained
complex angles and grooves. The target points remained
relatively few in number and clustered close together.
Figure 2 shows an example from this section.

Figure 2. Close-up view of a section 2 test scene that
demonstrates a complex target surface

Int J Med Robotics Comput Assist Surg 2010; 6: 150-159.
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Figure 3. Close-up view of a section 3 test scene that
demonstrates large target surface area

Figure 4. Close-up view of a section 4 test scene that
demonstrates a complex skin surface

The third section of tests focused on the size of the
target surface. In this type of scenario, the skin surface
and target surfaces were smooth. The number of target
points was large and there were some cases in which
groups of target points were separated by distance from
each other. Figure 3 shows an example from this section.

The fourth section of tests focused on the complexity of
the skin surface. In this type of scenario, target surfaces
were smooth, but the skin surface was bumpy or contained
complex angles and grooves. The number of target
points was relatively small and they were clustered close
together. Figure 4 shows an example from this section.

The final section of tests focused on obstructions. In
this section, the skin surface and target surfaces were
smooth. The number of target points was small and
they were clustered close together. However, additional
surfaces were placed in positions that would obstruct the
placement of the port. Figure 5 shows an example from
this section.

Each participant was presented with each test once. The
trials were analysed independently, and the performances

Copyright © 2010 John Wiley & Sons, Ltd.
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Figure 5. Close-up view of a section 5 test scene that
demonstrates an obstruction

of different participants served as replicates of the
experiment for statistical analysis. The time for each test
was not considered. The only data collected during testing
were the Cartesian coordinates (x, y, 2) of the port location
chosen by the participant for each test.

Although there were no time constraints placed upon
the subjects during the testing, the tests were designed
to be completed in about 30-45 min. Since only a
mouse and keyboard had to be used during the tests, no
physical exertion was required. Since there were no time
constraints or performance requirements, little mental
stress was placed upon the participants. Consequently,
fatigue was not found to be an issue during the testing.

Post-processing was done using the port placement
system’s evaluation methods. Participants were given a
score for each test that was equal to the number of
target points reachable with the virtual Raman probe
from the participant’s chosen port location. An individual
target point was considered reachable if the three criteria
described in the ‘Experimental task’ section were met.

From the score (the number of reachable target
points) that each participant achieved for each test
scene, two percentages were calculated. The first was
the participant’s score divided by the maximum number
of reachable target points, or the percentage of maximum
(PoM). As stated before, the maximum number of
reachable target points was determined using the port
placement system. The second was the participant’s score
divided by the total number of target points present in the
scene, or the percentage of total (PoT).

It was important to obtain a measure of the difficulty of
each of the five test sections. To calculate this, we obtained
the average of the PoMs for all participants in all tests of
each test section. PoM was used because it utilized the
port placement system’s score as the maximum number
of points. This normalized the results among scenes that
had different amounts of reachable target points.

Int J Med Robotics Comput Assist Surg 2010; 6: 150-159.
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Figure 7. Average percentage of maximum (PoM) points reached for each participant over all test scenes. The black vertical lines

represent the 95% confidence interval about each mean

Results

We used the average of the PoMs to compare the different
scenarios to each other, based on difficulty, in order to
provide an indication of the types of scenarios in which
human performance suffers. Figure 6 shows the averages
obtained and the 95% confidence interval for each test
section.

The participants’ average PoMs across all scenes were
in the range 57-78%. Confidence intervals of the
mean PoMs were calculated for all participants, and
inspection of the interval plots did not reveal any outlying
participants. Figure 7 shows the average PoM and 95%
confidence interval for each participant.

In addition, it was also important to investigate
performance on a scene-by-scene basis. This provided an
opportunity to find scenes in which the difference between

Copyright © 2010 John Wiley & Sons, Ltd.

the average participant performance and the computer
algorithm’s performance was greater than other scenes
in the same test section. These outlying scenes can help
us understand specific scenarios in which performance
is degraded. To calculate this, we obtained the average
of the PoTs for all participants for each scene. PoT was
used in this case to better compare the performances
of the port placement system and the participants. The
following graphs display the results of the calculations,
with one graph per test section. For clarity, the graphs’
contents are sorted by ascending computer algorithm
performance.

The baseline/control section represented the first type
of scene. As shown in Figure 8, average participant
performance was in the range 0-19% less than the
computer’s results. This was expected because these tests
were the easiest.
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Figure 9. Performance for the complex target surface section.
Squares represent the port placer system’s performance, while
diamonds represent the average participant performance. The
black vertical lines represent the 95% confidence interval about
each mean

The complex target surface section represented the
second type of scene. As shown in Figure 9, average par-
ticipant performance was in the range 6-25% less than
the port placement system’s results.

The expansive target surface section represented the
third type of scene. As shown in Figure 10, average par-
ticipant performance was in the range 6-35% less than
the computer’s results.

Copyright © 2010 John Wiley & Sons, Ltd.
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Figure 11. Performance for the complex skin surface section.
Squares represent the port placer system’s performance, while
diamonds represent the average participant performance. The
black vertical lines represent the 95% confidence interval about
each mean

The complex skin surface section represented the fourth
type of scene. As shown in Figure 11, average participant
performance was in the range 0-93% less than the port
placement system’s results.

The obstructions section represented the fifth type
of scene. As shown in Figure 12, average participant
performance was in the range 5-43% less than the
computer’s results.
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Discussion

The results demonstrate that human performance tends
to lag behind the port placement system’s performance by
10-25% (on average). However, there were many cases
where human performance was significantly lower than
the ideal performance of the port placement system. This
section aims to identify conditions that led to these drops
in performance.

Separating ridge

Scene 10 (from the complex target surface section)
demonstrated a target surface with target points on both
sides of a ridge. In this case, the participants’ tendency
was to assume that not all of the points could be reached.
Therefore, they chose to concentrate on obtaining a better
score on just one side of the ridge. The computer system
demonstrated that it is indeed possible to reach 100% of
the points in this test. Figure 13 shows an example of this
scenario.

Multiple targets separated by distance

Scenes 24, 25 and 26 (from the expansive target surface
section) demonstrated multiple groups of target points
separated by distance. This case was an extension of
the previous case (separating ridge). As in the previous
section, the participants had a tendency to focus on
reaching one group of points with high accuracy, rather
than trying to reach both groups with less accuracy. As
before, the computer system showed that is preferable to

Copyright © 2010 John Wiley & Sons, Ltd.
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Skin
Surface

Figure 13. Example of the ‘separating ridge’ scenario. The green
circle represents the correct choice for port placement, while
the blue squares represent typical choices made by participants.
The red triangles represent the target points

Skin
Surface

Figure 14. Example of the ‘multiple targets separated by
distance’ scenario. The green circle represents the correct choice
for port placement, while the blue squares represent typical
choices made by participants. The red triangles represent the
target points

reach for both groups of points. Figure 14 provides an
example of this scenario.

Significant distance from target

Exceptionally low performance was observed for scenes
33, 35 and 38 (from the complex skin surface section).
Upon review, it was discovered that these trials contained
a second element of difficulty beyond the complex skin
surface. The potential port locations that the target surface
directly faced (the port locations that would otherwise
provide the highest score) were too far away from the
skin surface for the probe to reach. Some participants

Int J Med Robotics Comput Assist Surg 2010; 6: 150-159.
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chose these locations regardless, whereas others chose
port locations along the side. The extra variable of
distance (in addition to the angle of incidence at the
target surface) resulted in participants choosing widely
varying port locations. Figure 15 provides an example of
these results.

Indented ridge
Scenes 31 and 34 (from the complex skin surface section)

had target surfaces very near the skin surface, as well as
ridges in the skin surface near the optimal port location.

Target
Surface

Figure 15. Example of the ‘significant distance from target’
scenario. The green circle represents the correct choice for
port placement, while the blue squares represent typical choices
made by participants. The red triangles represent the target
points. The probe model was shown in all scenes to give
participants a representation of its length

P

|
')

Figure 16. Example of the ‘indented ridge’ scenario. The correct
choice for port placement (the green circle) is surrounded by the
choices of participants (blue circles). The red triangles represent
the target points

Copyright © 2010 John Wiley & Sons, Ltd.
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As shown in Figure 16, it appears that participants were
picking port locations along a ridge. This may have been
because the ridge was indented and picking points within
this indent would serve to minimize the distance to
the target surface. However, the distance to the target
surface was not an issue in these scenes (unlike the
scenes mentioned in the previous section). The challenge
of the complex skin surface may have led participants to
focus on what seemed to be a simple solution (minimizing
the distance), even though it did not provide an optimal
placement. Figure 16 shows the results of scene 34.

Obstructions

Highly inconsistent levels of performance were observed
for the obstructions section. Some scenes resulted in
relatively good performance, whereas others produced
very poor results. Looking closely at the geometric
distributions of chosen port locations, there is clearly
better performance for scenes in which the obstruction
was positioned in a manner that obviously limited the
choice to one area on the skin surface. The scenes with
worse performance had obstructions that made the choice
less obvious. In these cases, the placement of the port
varied significantly, leading to poor average performance.
Figure 17 shows both cases.

Conclusion

Proper port placement is critical to a biosensor’s ability
to gather high-quality data and to a surgeon’s ability
to perform a successful biopsy. Thus, it is important
to evaluate the ability of people to find optimal port
locations. An optimized port placement system was
developed to select the best port location, based on the
surgeon’s area of interest, the biosensor’s characteristics
and the patient’s anatomy. This system was used to
analyse the port selection performance of a group of
participants over a variety of test scenarios. The scenarios
were designed to investigate different challenges involved
in the selection of a port location.

A number of conclusions can be drawn from the
analysis of the participants’ performance. The first
is that the participants uniformly obtained scores
approximately 10-25% below the scores obtained by
the port placement system. This was expected, due to
the algorithm’s exhaustive search technique for obtaining
port locations. However, this indicates that human
performance could be improved, perhaps through better
training.

From Figures 8—12, we see that the 95% confidence
interval of the percentage of target points reached in a
given scene was generally 10—20% about the mean. Thus,
the number of points reached in a scene was relatively
inconsistent. Because the number of reachable points is
directly related the quality of the chosen port location, we
can infer that the test participants picked port locations of

Int J Med Robotics Comput Assist Surg 2010; 6: 150-159.
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Obstructing
Surface

Obstructing
Surface

Figure 17. Examples of the ‘obstructions’ scenario. The top
diagram demonstrates a scenario in which the choice is obvious,
whereas the bottom demonstrates a scenario in which the choice
is ambiguous. The green circles represent the correct choices for
port placement, while the blue squares represent typical choices
made by participants. The red triangles represent the target
points

varied quality. Therefore, the second conclusion we can
make is that the quality of port locations chosen for a
given scene was inconsistent among participants.

In addition, Figure 7 shows that, for each participant,
the 95% confidence interval across all scenes was
generally 15%. Consequently, the third conclusion is that
the number of reachable points (and thus the port location
quality) a given participant achieved was inconsistent
from scene to scene.

Lastly, we can see that no one participant vastly
outperformed the other participants over the entire
experiment. This information allows us to conclude that
participants had similar performance on average over the
entire test space, despite the fact that port placement was
generally inconsistent from participant to participant for
any given test scene.

Copyright © 2010 John Wiley & Sons, Ltd.

B. W. King et al.

The results of this study suggest some ways to improve
human performance. It may be possible to use the port
placement system and the data gathered here to create
a training programme. Since feedback was not provided
to participants during the tests, a minimal amount of
learning was able to occur during the tests. By adding
modifications to collect and present different performance
metrics, it is envisioned that the system could be used
as a training tool. For example, by focusing on the
areas where performance was degraded and using the
computer system to indicate proper placement, it may
be possible to increase human performance. In addition,
further collection and analysis of data may indicate ways
to make the port selection process easier for people.

We identified a common source of error in the
Discussion section for tests involving a significant distance
from the target. Subjects erroneously chose port locations
that were too distant from the target for the probe to
reach the surface. A potential way to improve performance
would be to add a virtual tool or measurement device that
could be positioned at a chosen port location to evaluate
the ability of the probe to reach the target surface. The
effects of such a tool could be analysed as part of a future
study.

With enhancements and further testing of the port
placement system, varying levels of human augmentation
and even automation may be possible. Using preoperative
patient imaging, the system could be used to select
port locations with minimal human intervention. To
assist surgeons in physically creating a port in a
patient at the determined location, an augmented reality
interface with positioning cues could be implemented
(23). Furthermore, if the system were integrated with a
medical robot, the selected port location could be reached
automatically.

Surgeon feedback may suggest further improvements
that can be made to the port placement system. One
possible improvement would be allowing multiple port
locations to be determined. This would enable the system
to reach more target points (if the surgeon deemed mul-
tiple ports to be acceptable). In addition, it would enable
the system to be generalized for use in laparoscopic and
robotic cases (where multiple ports are required). Another
related potential improvement would be generalizing the
port placement algorithms to work with tools other than
biosensors. Together, these improvements could have
broader impacts in port placement during neurosurgery
and laparoscopic procedures.

For the next step in this work, we plan to implement
the training tool described above. We will then conduct
further subject testing to determine whether the system
provides any measurable benefit in human performance.
To make the port placement system more practical, we
plan to investigate the incorporation of real-time imaging
techniques (24,25). Real-time imaging could be used to
enable the system to handle tissue movements due to
respiration, insufflation, organ shift, etc. Since real-time
imaging is an active area of research, we will continue
to monitor the state of the art to look for feasible

Int J Med Robotics Comput Assist Surg 2010; 6: 150-159.
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implementations. Lastly, we plan to add support for other
types of biosensors to the system.

In summary, we have identified scenarios in which

human performance is degraded in the task of port
placement for biosensor use. Because of the importance
of a port’s placement to the operation of a biosensor,
this study suggests improving performance through the
use of automated port placement or focused training
programmes.
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