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ABSTRACT 

ANALYSIS OF BIODYNAMIC RESPONSES ASSOCIATED WITH UPPER LIMB 
REACHING MOVEMENTS UNDER WHOLE-BODY VIBRATION: SUPPORT FOR AN 

ACTIVE BIODYNAMIC MODEL 
 

by 
 

Heon-Jeong Kim 
 

Co-Chairs: Bernard J. Martin and Brent Gillespie 

  

 

Vehicle vibration is a well-recognized environmental stressor inducing 

discomfort, health risks, and performance degradation of the operator on board. 

More specifically, vibration transmitted by heavy transportation, construction, or 

military vehicles to the whole body of a seated occupant interferes with manual 

activities, which in turn may significantly compromise performance. Numerous 

approaches have attempted to understand the effects of vibration on the seated 

human for developing biomechanical models or to identify human reaching 

behaviors for developing human movement models. However, all these studies were 

limited to biomechanical models of the torso excluding the upper limbs, or to reach 

models based only on static conditions with no consideration of the interaction 
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between environmental conditions of vibration and biodynamic characteristics of 

arm movements.  

The ultimate goal of this work is to provide a framework for an active 

biodynamic model of operators in vehicles based on empirical analyses of 

biodynamic responses of seated humans performing reaching movements under 

simplified whole-body vibration conditions. Hence, the present work investigates 

vibration transmission through multi-body segments as a function of vibration 

frequency and direction, identifies vibration-induced changes in reach kinematics of 

upper arm movements, analyzes the mechanisms of vibration transmission through 

a multi-body system as a function of posture and movement coordination, and 

proposes the integration of these empirical results for developing a biodynamic 

model. Five major results characterize our findings: a) vibration frequency is the 

dominant factor determining transmission characteristics through upper body 

segments, b) reach directions in three-dimensional space may be divided into three 

groups corresponding to transmission propagated through the upper limbs, c) 

visual compensation contributes to hand stabilization but does not modify 

significantly propagated transmission, d) elbow flexion contributes to the 

enhancement of hand stabilization by dissipating vibration energy, and e) 

biodynamic responses must be considered as three-dimensional tensors including 

the auto-axial and cross-axial transmissions. Furthermore, movement coordination 

and joint movement kinematics of reach movements are consistent between static 

and vibratory environments. The integration of these results may be used to 

support the structure of an active biodynamic model of the seated human. 
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CHAPTER 1 

Introduction 

Whole-body vibration (WBV) exposure is often cited as an environmental 

stressor causing discomfort, musculoskeletal disorders, motor performance 

degradations and physiological reactions. For the proper assessment of WBV effects 

on human performance or safety, a biomechanical model capable of simulating 

realistic human motor behaviors must be developed. 

The work aims at characterizing vibration transmission associated with 

upper limb reaching movements under specific WBV conditions in the frequency 

range corresponding to high sensitivity of human motor performances. Ultimately 

this analysis will provide the empirical basis for the development of an active 

biomechanical model that can predict and simulate realistically the behavior of body 

segments in reaching and pointing tasks performed in a vibratory environment. 

To achieve this aim, empirical studies were performed to analyze biodynamic 

responses through the human multi-body system during arm movements under 

selected sinusoidal WBV conditions. The results from this work are expected to 

enable us to anticipate performance degradation induced by WBV, thus contributing 

to the development of a model, the design of controls-and-displays interface and 

suspension system, and guidelines for movement strategies in this environment. 
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1.1 Problem Statement & Motivation 

Mechanical vibration generated by the operation of vehicles has been shown 

to be an environmental stressor that can contribute to discomfort and health 

problems, and can interfere with motor performance of the operator in any given 

workspace (Lewis and Griffin, 1976; Martin et al. 1980; Martin 1981; Gauthier et al. 

1981; Gauthier et al. 1983; Bovenzi and Zadini, 1992; Wilder and Pope, 1996; Pope 

et al, 1999; Palmer et al, 2000; EuFritz et al, 2005; Bovenzi, 2006; Burton et al, 2006; 

Okunribido et al, 2007; Seidel et al, 2008). More specifically, when vibration is 

applied to the whole body of the seated human, it can produce abdominal or back 

pains, musculoskeletal injuries, and body part resonances, and it can contribute as 

well to an increase in muscle tone and the degradation of motor performance 

(Griffin, 1990; Linder, 2004). Generally, exposure to high vibration frequencies leads 

to poor vision, numbness, or degradation of sensory motor functions, while 

exposure to low frequency vibration is associated with motion sickness or nausea.  

In vehicles, vibration transmitted from rough terrain to occupants interferes 

with manual activities including the operation of controls and other interfaces 

(Rider, 2003; Rider, 2004; Oullier et al. 2009). Especially in heavy construction and 

military vehicles driven off-road, unpredictable vibration exposure over severely 

rough terrain disturbs rapid and accurate accomplishment of tasks such as 

identification and manipulation of vehicle controls that are critical for the successful 

conduct of work tasks or missions. Furthermore, according to a report from the 

European Agency for Safety and Health at Work (EASHW), lateral and longitudinal 

movements of the cab and operator could so significantly degrade manual 

performance that they might be a factor resulting in rollover accidents. These types 

of accidents are responsible for nearly 20% of all deaths associated with 

construction vehicles (EASHW, 2006). 
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Also, the advancement of technology in communication, navigation, and 

control systems has contributed to an increase in complexity and high density of 

controls and displays in vehicles.  As a consequence, control interfaces may be 

downsized and placed further away from the operator seat, which in turn 

contributes to increased difficulty in reach performance, as formulated by Fitts’ law 

(Fitts, 1954; Fitts and Peterson 1964). 

Optimal design of controls and displays is of significant interest for 

occupational health and safety, as a driver’s operation associated with secondary 

tasks is one of the most common causes of inattention-induced crashes (Wang et al, 

1996). It is estimated that 55% of inattention crashes resulted from interaction with 

objects, a passenger, and/or instrumentation in a vehicle (Wierwille and Tijerina, 

1996). 

In addition, to improve workplace and product design with concurrent 

consideration of various parameters, digital human models (DHM) capable of 

simulating WBV effects on the seated human have been proposed (Amirouche, 

1987a; Amirouche, 1987b; Li et al, 1995; Fritz, 1997; Fritz, 1998; Fritz, 2000). These 

models may be used to evaluate and improve designs in a virtual computer-aided 

engineering (CAE) environment. Human motion simulation technology can not only 

reduce design time and cost, but also allow an increase in the number of design 

parameters or options, thus enhancing the quality of design optimization (Chaffin, 

2002). These earlier studies about human response to environmental vibration have 

been limited to static seated postures without any dynamic movements (see Griffin 

1990 for review). However, since most activities in seated task include dynamic 

reach movements, a biomechanical model considering multi-body dynamics is 

necessary for the realistic simulation of human behaviors, the proper evaluation of 

human performances, and the better design of control interfaces placed in vibratory 

operation environments. 
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As stated above, vibration constitutes an environmental stressor, which 

interferes with human activities, thus leading to the degradation of performance, the 

increase of health risks, and even death of vehicle occupants in accidents caused by 

operation failure. For improving safety and performances under WBV exposure, it is 

of significant importance to enhance precision, accuracy, reliability, and robustness 

in vehicle operation, which can be achieved by optimizing the design of vehicle 

suspensions and controls-and-displays to minimize the influence of vibration-

induced perturbations. Therefore, this work was proposed to identify biodynamic 

characteristics of the human body and WBV transmission through multi-body 

segments. The results may consequently provide the framework for an active DHM 

as well as assistance for appropriate design of vehicle control interface and the 

revision of safety guidelines. 

1.2 Objectives & Hypotheses 

The long term goal of this work is to support for the development of an active 

biodynamic model capable of representing seated human behaviors in vibratory 

environments. In order to obtain realistic simulations of human responses under 

WBV exposure, empirical studies are necessary to characterize biodynamic 

responses associated with movements performed in vibratory environmental 

conditions. 

Thus, the main objective of this work is to investigate biodynamic responses 

through multi-body segments in individuals performing reaching and pointing tasks 

under specific WBV conditions as functions of vibration characteristics and 

movement directions. This main objective is based primarily on the hypotheses that 

WBV response of the end-effector may be derived from vibration-induced responses 

of body segments along the transmission path and that segmental responses are 

functions of vibration characteristics and upper body posture. 
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1.2.1 Experimental Approach 

Simplification of WBV conditions in this work are necessary to focus on the 

empirical analyses of vibration transmission through the complex and non-

stationary system constituted by the human body during movements, provide 

insights on vibration-induced perturbation of reach kinematics of the upper limbs, 

and understand harmonic distortion phenomena in human responses to WBV due to 

the nonlinearity of the system 

As time variations of the mechanical properties of the system are expected, 

the associated non-stationary and non-linear features in regard to the low frequency 

range of vehicle vibration require a discrete approach to vibration stimulation.  

Indeed, human movements are relatively slow and their duration is either 

equivalent or slightly longer than the cycle of frequencies in the 2-10 Hz range.  

Furthermore, movement directions are associated with significant differences in 

posture, which also affect significantly the mechanical properties of the system. 

Hence, this first approach of the effects of vibration on discrete movements was 

based on selected sinusoidal vibration frequencies. The frequencies were chosen to 

reflect the component of vehicle vibration spectra and the range of frequencies 

corresponding to the high sensitivity of the seated human. The vertical direction of 

the vibratory stimuli was selected to reflect a major characteristic of vehicle 

vibration. 

This discrete approach with sinusoidal inputs also allows us to determine 

more specifically the superposition of vibration-induced oscillation on movement 

kinematics and then to analyze the organization/reorganization of movements 

under vibration exposure. This approach also facilitates the analysis of vibration 

transmission along cross axes induced by the forcing stimulation along the vertical 

axis. The cross axis transmission is expected to reflect the interaction between the 
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vibration direction and the relative orientation of joint axes associated with 

different postures or changes with movement.  

Furthermore, this approach may also enable the identification of mechanical 

properties, such as resonance of the system through a phase analysis.  

1.2.2 Specific Aims & Hypotheses 

To achieve our main objective, six specific aims and their corresponding 

hypotheses were defined as follows 

Aim 1: to estimate vibration transmission through upper body segments in 

different pointing postures under selected vibratory environments, and to 

determine the feasibility of the main idea and hypothesis of this work. 

Hypothesis 1: WBV characteristics can be derived from multi-body segment 

vibration characteristics. That is, the vibration response of the end-effector such as 

the fingertip can be predicted by synthesizing vibration characteristics of body 

segments along the transmission path. 

Aim 2: to identify qualitative characteristics of upper limb joint kinematics in 

reaching activities common to vehicle operations, to investigate vibration-induced 

changes in reach kinematics and upper body coordination, to differentiate kinematic 

features in static and vibratory environments, and to understand associated motor 

control issues. 

Hypothesis 2: The core paths of upper body joints are not significantly 

different in static and dynamic environmental conditions. They may differ only by 

the superimposed perturbation generated by the transmission of vibration. 

Aim 3: to analyze variation of WBV transmission through upper body 

segments along reach movement trajectories. Perturbations of upper body joints are 

quantified for postures corresponding to intermediate stops along the fingertip 

trajectories to a predetermined final target location. 
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Hypothesis 3: Vibration transmission through body segments is a function of 

reach direction and instantaneous postures along the reach trajectory, which may 

be associated with changes in biomechanical properties of body segments. 

Aim 4: to investigate the efficiency of visual compensation on the adjustment 

of vibration-induced reaching and pointing errors under WBV exposure. 

Hypothesis 4: Reach performance in a vibratory environment may be 

compensated by visual control. However, specific task and vibration conditions 

determined by frequency and direction may not allow visual feedback to 

compensate effectively performance degradation. 

Aim 5: to investigate the contribution of elbow extension/flexion constraints 

to WBV transmission at the end of a reach. 

Hypothesis 5: The elbow joint contributes significantly to reach dynamic 

characteristics of the upper body. Hence, changes in degree of elbow flexion may 

significantly influence WBV-induced pointing errors at the fingertip while 

performing arm reaching movements, 

Aim 6: to analyze the characteristics of vibration transmission through upper 

body segments in reaching movements of various directions under vertical WBV. 

Hypothesis 6:

1.3 Potential Impacts  

 Understanding the characteristics of WBV transmission along 

the transmission path of the upper limbs may provide information supporting the 

development of a biodynamic model of the seated human. 

This study provides new findings concerning reaching movement 

characteristics in dynamic environments and vibration transmission through a 

multi-body system of the human body under WBV exposure. Vibration transmission 

through upper body segments is described as a function of vibration variables, 

spatial target locations, postures, and movements. 
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Based on these findings, this empirical study may support a promising 

framework for the elaboration of an active biodynamic model of the seated human, 

the simulation of manual performance, and biomechanical behaviors of the upper 

body under WBV exposure. The simulations will allow the proper ergonomic 

analysis of interactive tasks to be performed in a moving vehicle, which may 

significantly contribute to curtailment of costs associated with design, engineering, 

and manufacturing, as well as to reduction of the time spent in product development. 

In addition, the findings of this work may be applicable to the improvement 

of the design of control interfaces to be used in vibratory environment and the 

design of vehicle suspensions. 

Movement and posture strategies in reaching and pointing tasks may be 

suggested to reduce WBV interference with motor activities. Furthermore, this work 

may be expanded to evaluate the severity of vibration exposure and the associated 

health risks. 

1.4 Thesis Organization 

This dissertation is organized following the flow of complementary studies 

designed to investigate vibration transmission through body segments and to 

identify kinematics of reach movements under WBV exposure, as illustrated in 

Figure 1.1. 

The first two chapters include the introduction and the literature review. The 

following three chapters present the three steps necessary to build the empirical 

database supporting the development of the model. Chapter 6 integrates empirical 

results obtained from biodynamic analysis to support for the framework of a model 

development. Chapter 7 summarizes the findings and achievements and discusses 

the limitations and possible future research opportunities. 
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Chapter 1 presents an overview of the research topic, including the problem 

definition, the motivation, the objectives and hypotheses, the potential impacts, and 

the research approach and procedure. 

Chapter 2 summarizes the background literature classified into four 

subsections pertaining to human response to whole-body vibration, reach 

movements in the static environment, reach performance in dynamic environments, 

and recent biomechanical models of the seated human under vibration exposure. 

Chapter 3 presents the estimation of vibration transmission through upper 

body segments under exposure to simplified WBV conditions. The corresponding 

study was designed to evaluate the core ideas and hypotheses of the proposed 

research. WBV responses and transmission through multi-body segments are 

estimated as a function of vibration frequency and direction. 

Chapter 4 describes the kinematic analysis of upper body joints in reach 

movements under static and dynamic environments. Movement patterns observed 

in static and dynamic environments are compared. 

Chapter 5 concerns the investigation of three-dimensional WBV transmission 

through multi-body segments along the upper body path as function of 

environmental conditions, reaching postures associated with the locations of targets 

to be reached, and movement constraints in a reaching and pointing task.  

Specifically, this chapter analyzes the effects of reaching postures and movements 

on WBV transmission through upper body path and the influence of visual feedback 

on reach performance under selected WBV conditions. The results constitute the 

empirical database supporting the model to be developed. 

Chapter 6 illustrates an empirical support for an active biodynamic model 

based on statistical and empirical analyses of biodynamic responses through upper 

limb during reaching movements under selected WBV conditions. 
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Chapter 7 states conclusions and proposes directions for future work on the 

basis of the limitations and contributions of this work. 

Appendix A presents the database concerning WBV transmissions obtained 

in the context of our experiments and an example reference about the percentage 

distribution of total body weight. 

 

 

Figure 1.1: Research approach and procedure:  
Four complementary studies are used to characterize human biodynamic 
response to whole-body vibration. The last stage of the diagram corresponds 
to the future outcome of the results.
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CHAPTER 2 

Background Literature 

2.1 Introduction 

A number of approaches have attempted to identify how vibration affects 

humans in the workplace. These studies have emphasized the necessity of 

biomechanical models for the proper assessment of health risk and motor 

performance of the seated human under whole-body vibration exposure. However, 

the majority of the studies on human vibration responses focused on the torso and 

spinal system in static postures. The studies on reach performance under vibration 

examined the end point response of a fingertip without considering multi-body 

dynamics, and reach kinematic models developed in earlier studies cannot be 

modified to represent reach movements in vibratory environments. 

2.2 Human Response to Vibration 

Numerous studies have quantified human response to whole-body vibration 

in terms of apparent mass, driving point mechanical impedance, transfer function, 

transmissibility, absorbed power, etc., in order to evaluate whole-body vibration 

effects on the human health and performance (Lee and Pradko, 1968; Gurdjian et al, 

1970; Martin et al, 1980; Roll et al, 1980a; Gauthier et al, 1981; Gauthier et al, 1983; 

Ribot et al, 1986; Boileau and Scory, 1990; Fritz, 1997; Fritz, 1998; Fritz, 2000; Hinz 

et al, 2001; Ljungberg et al, 2004; Fritz et al, 2005; Mansfield, 2005; Gillespie and 
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Sövényi, 2006; Rahmatalla et al, 2006; Abercromby et al, 2007; Rahmatalla et al, 

2007; Sövényi and Gillespie, 2007; Seidel et al, 2008; Oullier et al, 2009). Some 

studies have investigated vibration effects on sensory motor performance. Martin et 

al (1980) estimated the extent of alterations in postural and movement control 

during exposure to WBV and immediately after exposure and showed a shift in 

mean resting posture and an increase in sway amplitude despite no participants’ 

awareness of alterations. Gauthier et al (1981) evaluated the performance of 

sensory motor system performance under WBV by quantifying the increase in 

tracking position errors and torque reproduction variations. Ribot et al (1986) also 

assessed the performance of a compensatory targeting task conducted under both 

natural and vibration conditions. Oullier et al (2009) investigated postural post-

effects induced by WBV. The latter study reported that the perturbation on the 

postural system remained even after prolonged exposure to WBV, and that postural 

instability induced by WBV could decrease by the special motor treatment after 

exposure, so-called ‘sensorimotor recalibration’. Gillespie and Sövényi (2006 and 

2007) estimated the tracking performance of vehicle operators using a force-

reflecting joystick on a single-axis motion platform. These authors proposed a 

model-based cancellation controller to reduce biodynamic feedthrough and 

reported that the tracking performance was improved using this controller by forty-

five percentages reduction in the RMS tracking error and that spectral energy  of 

joystick movements significantly decreased in the 1-7 Hz frequency range. Hence 

this study demonstrated that the effects of  WBV on a manual performance could be 

partially compensated by an adaptive control. 

Some research has investigated vibration response through the torso and 

spinal system with specific interest in low back pain injuries of vehicle operators. 

Fritz (1997, 1998, 2000) computed the forces transmitted in the lumbar spine using 

the transfer functions and suggested that the spinal forces could be the crucial 
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component in the pathogenesis of the vibration-induced injury of the lumbar spine. 

Seidel et al (2008) evaluated intraspinal forces and health risks caused by WBV and 

predicted intraspinal compressive and vibration-induced shear forces at the seat, 

backrest, feet, and hands. 

Other studies have investigated multi-stressor effects on human performance. 

Ljungberg et al (2004) examined the effects of noise and vibration, individually and 

combined, on cognitive performance and subjective experience. According to their 

investigation, compared to individual effects, combination of two stressors did not 

alter significantly reaction times, but extremely influence subjective ratings. 

Many studies have reported that the response of the seated human could be 

affected by vibration variables such as vibration frequency, magnitude, direction 

axis, exposure duration, and system dynamics (Fairley and Griffin, 1989; McLeod 

and Griffin, 1989; Fairley and Griffin, 1990; Griffin, 1990; Kitazaki and Griffin, 1998; 

Mansfield and Griffin, 1998; Mansfield, 2005; Mansfield et al, 2006; Kim et al, 2007). 

Fairley and Griffin (1989) found that the body resonance frequency decreased as 

the vibration magnitude increased, and Griffin (1998) also found that the frequency 

at which the peak of absorbed power occurred decreased as the vibration 

magnitude increased. Fairley and Griffin (1990) also observed by measuring the 

apparent mass in the fore-and-aft and lateral direction that there exist two modes of 

in-phase motion at 0.7Hz and out-of-phase motion between the torso and the 

shoulder at 1.5-3Hz. Matsumoto and Griffin (2002) investigated the effects of the 

phase between two frequency components on the vibration dose value (VDV), and 

found that there was no significant effect except when the ratio of the two 

frequencies was three, i.e. 3Hz and 9Hz. Matsumoto and Griffin (2005) also studied 

the relationship between subjective responses and dynamic responses, and found a 

high correlation between the relative discomfort rate and the normalized 

mechanical impedance in the 3.15 - 8.0Hz frequency range. 
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More recent studies have focused on the effects of multi-axis vibration 

exposure on the apparent mass or mechanical impedance of the seated human 

(Holmlund and Lundström, 2001; Hinz et al, 2006; Mansfield and Maeda, 2006; 

Mansfield et al, 2006; Matsumoto et al, 2006; Mansfield and Maeda, 2007). They 

showed that vibration applied to the human body in one direction also caused 

motion and dynamic forces in other directions. Mansfield et al (2006) investigated 

the apparent mass and cross-axis transfer functions as functions of vibration 

magnitude, vibration spectrum, and posture. According to their evaluation, as 

vibration magnitude increased, the frequency of the primary peak in the apparent 

mass decreased for a relaxed posture while the magnitude in cross-axis transfer 

functions decreased for a tense posture. Matsumoto et al (2006) investigated the 

effects of the phase between the vertical and fore-and-aft sinusoidal vibration on 

discomfort, reporting that both discomfort and biodynamic responses were 

significantly influenced by the relative phase but could not be predicted simply by 

the superposition of individual responses to each single-axis perturbation. 

Mansfield and Maeda (2006, 2007) compared the apparent mass and cross-axis 

apparent masses of the seated human under single-axis and dual-axis vibration 

conditions. These authors reported that apparent masses were almost identical for 

the single-axis and dual-axis vibrations; however, the peaks of responses occurred 

at a lower frequency for the dual-axis than for the single-axis vibration. 

In contrast to studies concerning the influence of vibration variables, other 

studies have investigated the biodynamic responses of the seated individuals as a 

function of the seat, sitting posture, hand position and back support conditions 

(Fairley and Griffin, 1989; Kitazaki and Griffin, 1998; Matsumoto and Griffin, 2002; 

Paddan and Griffin, 2002; Rakheja et al, 2002; Wang et al, 2004; Huang and Griffin, 

2006). Fairley and Griffin (1989) found that the resonance frequency of the body 

increased with a backrest or in the erect posture. Matsumoto and Griffin (2002) 
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investigated the effect of muscle tension on the non-linearity in apparent mass, and 

found that muscle tension in the abdomen or buttocks did not affect significantly 

their nonlinear characteristics. Rakheja et al (2002) showed that hand position and 

body mass had a significant influence on the apparent mass of the seated body 

under vibration exposure whereas the influence of foot position was relatively 

negligible. Wang et al (2004) found that seat height affected the peak magnitude, 

and that the combined effects of hand position and back support conditions strongly 

influenced the primary resonant frequency and bandwidth of the biodynamic 

responses while the hand position influenced the apparent mass only with an 

inclined backrest. Huang and Griffin (2006) reported that voluntary periodic 

muscular activity of the upper body influenced biodynamic responses to vibration 

since voluntary muscular activity might alter the equivalent stiffness of a body 

segment. 

As presented above, the influences of various factors on the responses of the 

seated human in static postures have been investigated to evaluate whole-body 

vibration effects on humans. However, WBV transmission through the multi-body 

system of the upper limbs when performing dynamic arm movements has not been 

investigated. 

2.3 Human Movements & Reach Kinematics in a Static Environment 

Reach movements are the primary activity of operators in any workplace, 

and therefore the simulation of human reach motions is an essential component for 

proactive ergonomic analysis and biomechanical models (Chaffin et al. 1999; Wang, 

1999; Zhang and Chaffin, 2000; Chaffin, 2002; Chaffin, 2005; Park et al, 2005). To 

predict human reach movements and postures for the design and evaluation of 

ergonomic workspaces, seated reach movements have been studied from various 

perspectives. 
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Mathematical models were developed using optimization technique or 

statistics methodologies (Flash and Hogan, 1985; Haken et al, 1985; Schöner et al, 

1986; Faraway, 2000; Faraway and Hu, 2001; Faraway, 2003). Flash and Hogan 

(1985) developed a reach model including an objective function for the square of 

the magnitude of ‘jerk (rate of change of acceleration)’ of the hand over the entire 

movement, in order to reduce the dimensionality problem in describing movement 

kinematics. Schöner et al (1986) proposed a time-dependent stochastic differential 

equation determined by stationary points for the transition region of hand 

movement. Faraway (2000, 2001 and 2003) described a functional regression 

model with endpoint constraints and the use of Bezier curves for predicting time-

varying angles as well as trajectories as a function of the target to be reached and 

the anthropometry of the individual. 

Kinematic features of arm movements and upper-body reach postures have 

been extensively analyzed in static environments (Prablanc et al, 1979; Morraso, 

1981; Jeannerod, 1981; Soechting and Lacquaniti, 1981; Jeannerod, 1984; Atkeson 

and Hollerbach, 1985; Prablanc et al, 1986; Jeannerod, 1986; Jeannerod, 1988; 

Jeannerod and Marteniuk, 1992; Wang, 1991; Soechting et al, 1995; Desmurget et al, 

1995; Haggard et al., 1995; Jeannerod et al, 1995; Jung et al, 1995; Zhang and 

Chaffin, 1996; Desmurget and Prablanc, 1997; Gielen et al, 1997; Gottlieb et al, 1997; 

Jeannerod et al, 1998; Wang, 1999; Zhang and Chaffin, 2000; Barreca and Guenther, 

2001; Faraway, 2003; Admirral et al, 2004; Kim, et al; 2004). Soechting and 

Lacquaniti (1981) identified invariant features in pointing movements.  The 

invariant characteristics are that the trajectory is independent of movement speed, 

that the ratio of the peak velocities at the elbow and the shoulder is equal to the 

ratio of the angular excursion at the two joints, that the two angular velocities reach 

a peak at the same time, and that their slopes are independent of target location. 

Many reach studies have pointed out invariance in reach kinematics such as the 
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hand or wrist path and its bell-shaped tangential velocity profile (Morraso, 1981; 

Haggard et al., 1995). Through investigation of unrestrained human arm 

trajectories, Atkeson and Hollerbach (1985) also found that either curved or 

straight movements showed invariance in the tangential velocity profile when 

normalized for speed and distance. Some studies argued that hand movements are 

characterized by two phases consisting of feed-forward for hand transition and 

feedback for accurate landing of the hand (Soechting and Lacquaniti, 1981; Wang, 

1991). Soechting et al (1995) examined Donders’ law for arm movements and found 

dependency of arm posture at a given hand location upon the starting location of the 

movement. Gielen et al (1997) investigated pointing movements with the fully 

extended arm reducing rotational degrees of freedom in the shoulder and elbow 

during pointing movements to targets in various directions and at various distances. 

Barreca and Guenther (2001) suggested that consistent posture-dependent 

curvature of the spatial paths in the kinematic transformation might result in a 

systematic curvature of movements initially planned as straight-line trajectories 

toward the target. Admirral et al (2004) investigated kinematics and dynamics of 

human arm movements, and their finding that arm postures for a particular target 

depended on previous arm postures contradicted Donders’ law. They suggest that 

both kinematics and dynamics affect postures depending on instruction and task 

complexity. 

The temporal coordination of the upper body during multi-joint arm 

movements has also been investigated (Wadman et al, 1980; Atkeson and 

Hollerbach, 1985; Kaminski and Gentile, 1986, Karst and Hasan, 1991; Kaminski et 

al., 1995; Gottlieb et al, 1997; Wang, 1999a; Lim et al, 2004; Park et al, 2005). Many 

studies on movement coordination have found that shoulder and elbow joint reach 

movements in the horizontal plane differ in movement timing (Atkeson and 

Hollerbach, 1985; Kaminski and Gentile, 1986, Kaminski et al., 1995; Wang, 1999a). 
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In addition, EMG data showed that the shoulder movement is usually activated 

earlier than the elbow movement and that muscle activation time varies with 

movement direction (Wadman et al, 1980; Karst and Hasan, 1991). Gottlieb et al 

(1997) found that for most directions of reaching movements in the saggital plane, 

the dynamic components of the muscle torques at the elbow and shoulder were 

related linearly to each other and that both were biphasic, almost synchronous, and 

symmetrical pulses. Lim et al (2004) investigated the effects of target location on 

temporal coordination of the upper body in three-dimensional reaching movements 

over an extensive range of motion. They found that movements of the upper body 

were differently initiated and completed and that movement coordination strongly 

depended on the geometry and representation of the target. Park et al (2005) 

suggested a joint contribution vector for representing arm movements using 

individual joint contributions to the achievement of the task. 

Many investigations have attempted to build a movement prediction model 

to represent postures and joint kinematics for seated reach in static environments. 

(Hoff and Arbib, 1993; Rosenbaum et al, 1995; Jung et al, 1994; Jung et al, 1995; 

Jung et al, 1996; Zhang and Chaffin, 1996; Wang, 1998; Zhang et al, 1998; Chaffin et 

al, 1999; Wang, 1999; Zhang and Chaffin, 2000; Park et al, 2002; Jax et al, 2003; 

Kang et al, 2005; Park et al, 2006; Park et al, 2008). Hoff and Arbib (1993) 

developed a model describing the kinematics of hand movements in reaching and 

grasping tasks. Rosenbaum et al (1995) proposed a theory that movement 

coordination patterns in reaching movements were selected from stored postures. 

Jung et al (1994, 1995, and 1996) developed an optimization model showing that 

reach posture prediction was more accurate when using a psychophysical cost 

function of joint discomfort than when using a biomechanical cost function of joint 

torque. Wang (1998 and 1999) proposed a behavior-based inverse kinematic 

algorithm capable of handling the non-linearity of joint limits in a straightforward 
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way. Zhang and Chaffin (1996) examined two generic task factors such as hand 

movement direction and completion time in reaching movements, and suggested 

that hand movement direction was a significant factor determining instantaneous 

posture while movement completion time did not show any distinctive effects. 

Zhang et al (1998) proposed an optimization-based differential inverse kinematics 

approach for efficiently solving the kinematic redundancy in the velocity domain, 

and assigned weighting parameters to individual segments for quantifying their 

relative contributions to a change in the instantaneous posture. Based on these 

investigations, Zhang and Chaffin (2000) developed a three-dimensional dynamic 

posture prediction model with seven degrees-of-freedom of a four-segment linkage 

system representing the torso, clavicle, and right upper extremity and simulating in-

vehicle seated reaching movements.  

Chaffin et al (1999) examined two approaches for developing human reach 

models: one was an optimization based inverse kinematics to minimize the 

weighted sum of the instantaneous velocities of body segments, and the other was a 

new functional regression technique to fit polynomial equations to the angular 

displacements of body segments. They then proposed a combination of both 

approaches for representing actual movements performed in a variety of 

circumstances. Based on a review of motor control principles, Jax et al (2003) 

proposed that postures should be internally specified before motion activation, that 

tasks should be defined with flexible hierarchical constraints, and that movements 

could be shaped based on task demands. Kang et al (2005) presented an algorithm 

to predict the joint angles of a four degrees of freedom arm model based on the 

wrist location along the trajectory of reaching movements. Park et al (2002) 

proposed a memory-based model for realistic simulation of human motions using a 

motion modification algorithm, and later extended the 2-dimensional, 5 degree-of-
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freedom, saggital-plane human model to simulate human obstruction avoidance 

during target reaching in a task space partitioned into small cells (2006, 2008). 

From the musculoskeletal, biomechanical, and neurophysiological aspect, 

numerous studies have investigated multi-joint posture and movement control with 

focus on arm stiffness and equilibrium-point trajectory during multi-joint 

movements (Abend et al, 1982; Hogan, 1985; Flash and Mussa-Ivaldi, 1990; Gomi 

and Kawato, 1996; Gomi and Kawato, 1997; Gomi and Osu, 1998; Osu and Gomi, 

1999; Burdet et al, 2000; Franklin et al, 2003; zehr et al, 2003; Darainy et al, 2006; 

Darainy et al, 2007; Kistemaker et al, 2007). Abend et al (1982) investigated the CNS 

control of multi-joint movements in terms of trajectory formation. Gomi et al (1996, 

1997, 1998, 1999) estimated joint stiffness from EMG levels and investigated the 

relationship between effective muscle stiffness and joint stiffness. 

As this review indicates, innumerable studies have identified kinematic 

features or motor aspects and/or proposed human reach models, providing some 

basic principles of reach movements. However, the majority of reach studies have 

been limited to the analysis within a two-dimensional space, and most 

investigations of three-dimensional reaches have been limited to small ranges of 

motion (Soechting et al, 1995; Wang, 1999a; Zhang and Chaffin, 2000). Furthermore, 

none of the analyses and models of reach kinematics can be extended to represent 

reach movements under whole-body vibration exposure. 

2.4 Reach Kinematics or Performance in Dynamic Environments 

To understand human movements in vehicle vibration environments, reach 

kinematics and/or performance in ride motion were investigated in terms of upper 

body coordination (Park et al, 2004; Yoon, 2004; Lee, 2006). Some have 

characterized upper body coordination under vibration exposure, in terms of the 

joints angle-angle relationships and body segment movement timings (Yoon, 2004; 
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Lee, 2006: not published). Others have identified reach strategies by quantifying the 

contribution of each joint to the displacement of the end-effector using new 

indicators such as the joint change vector and joint contribution vector (Yoon, 2004; 

Park et al, 2004). All these studies showed that movement sequences and joint 

angles were affected by vibration variables, but they did not provide the 

mathematical foundation that could be implemented in a biodynamic reach model. 

In addition, some studies evaluated reach performance, focusing on the 

trade-offs between accuracy and speed under vibration exposure (Rider et al, 2003; 

Rider et al, 2004). Rider et al (2003) found that vibration exposure led to an 

increase in the duration of the adjustment phase near the destination and fingertip 

excursions during that phase and that the fingertip deviation from a static trajectory 

varied with reach direction and vibration frequency. The overhead upward reach 

showed larger fingertip excursion and higher reach difficulty than other directional 

reaches. For the assessment of the deviation of the fingertip, Rider et al (2004) also 

developed a ‘trajectory index’ that was calculated from two metrics: one was the 

largest deviation from the Frechet distance and the other was the integral of 

infinitesimal deviation of fingertip trajectory from a straight line. Their results 

showed that the peak deviation of the fingertip trajectory increased as the reach 

distance increased. In addition, they suggested an ‘effective target size’ determined 

on the basis of 95% confidence ellipses of finger accuracy. However, all these 

studies focused solely on fingertip oscillation without considering biodynamic 

characteristics of vibration transmissibility through multi-body dynamics and 

influence of posture change on reach performance. 

2.5 Biomechanical Model of the Seated Human under Whole-Body Vibration 

To evaluate and predict the effect of the whole-body vibration for improving 

comfort, safety, and manual performance, a number of investigations aimed at the 
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development of biomechanical models to represent the human response to 

vibration environment inputs (Amirouche, 1987a; Amirouche, 1987b; Fritz, 1991; Li 

et al, 1995; Fritz, 1997; Kitazaki and Griffin, 1997; Fritz, 1997; Fritz, 1998; Wei and 

Griffin, 1998; Fritz, 2000; Harrison et al, 2000; Hinz et al, 2001; Holmlund and 

Lundstrom, 2001; Griffin, 2001; Matsumoto and Griffin, 2001; Seidel and Griffin, 

2001; Seidel et al, 2001; Paddan and Griffin, 2002; Rosen and Arcan, 2003; Yu and 

Luo, 2004; Kim et al, 2005; Yoshimura et al, 2005; Liang and Chiang, 2006; 

Mansfield et al, 2006; Rider et al, 2006; Mansfield et al, 2007; Okunribido et al, 2007; 

Oullier et al, 2009). Wei and Griffin (1998) compared biomechanical models of 

single- and multi-degree-of-freedom under vertical vibration, and suggested that a 

two-degree-of-freedom model provided a better fit than a one-degree-of-freedom 

model for the phase of the apparent mass at frequencies greater than 5Hz and the 

modulus of the apparent mass at frequencies around 8Hz. Li et al (1995) used a 

standard linear solid model for qualitatively simulating the influence of disc level 

and degradation of the disc durability for prolonged loading and low-frequency 

vibration; however, their model underestimated the stress relaxation, dynamic 

modulus, and hysteresis of thoracic and lumbar discs subjected to low-frequency 

vibration. Fritz (1998) developed a biomechanical model consisting of sixteen rigid 

bodies and visco-elastic joint elements and fifty-six force elements for the human 

trunk, neck, head, and arms. The model was validated by comparing the forces with 

the compressive strength of the spine, but the relationship between the spine forces 

and damage/pain is not clearly defined. Yoshimura et al (2005) evaluated the 

vibration effects on the spinal column of the seated human body through multi-body 

dynamics model with ten degrees of freedom for cervical, thoracic, and lumbar 

vertebrae. The model succeeded in estimating the relative displacements between 

vertebrae. However, an expansion of the degrees of freedom of the multi-body 

model is necessary to improve the model accuracy. 
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Other studies considered biomechanical models consisting of multiple 

lumped mass-spring-damper subsystems, for evaluating the vibration 

transmissibility from the seat to the head, by means of an optimization algorithm 

(Amirouche, 1987; Matsumoto and Griffin, 2001; Rosen and Arcan, 2003; Kim et al, 

2005; Yoshimura et al 2005; Liang and Chiang, 2006; Stein et al, 2007). Amirouche 

(1987) investigated the dynamic response of the human body by modeling 

connective tissues, muscles, ligaments, and disks vertebra with linear and nonlinear 

springs and damping forces. Rosen and Arcan (2003) developed a multi degrees-of-

freedom lumped parameter model simulating dynamics of human responses that 

varied with posture, backrest, muscle tension, vibration direction, and cushioning 

interface. Yu and Luo (2004) investigated response and stability of a human body to 

the periodic impact input by linearly modeling vehicle and passenger system with a 

lumped mass and a massless bar, assuming that vehicle motion is quite small 

compared to the passenger’s motion due to large mass and moment of inertia of the 

vehicle system. Kim et al (2005) examined models consisting of several lumped 

masses connected by linear translational and rotational springs and dampers, and 

proposed two four-body-segment models. The finite element method was also used 

to develop a two-dimensional model of human biomechanical responses to vertical 

WBV (Kitazaki and Griffin, 1997). They modeled the spine, viscera, head, pelvis, and 

buttocks using beam, spring, and mass elements, and suggested that posture change 

from erect to slouched might decrease the axial stiffness and increase shear 

deformation of tissue below the pelvis.  

For the validation of models, Griffin (2001) proposed the checklists 

corresponding to model categories such as ‘mechanistic’, ‘quantitative’, and ‘effects’ 

models. Liang et al (2005) simulated transmissibility through the seated human 

using the BIODYN-II model, the biodynamic part of the AVB-DYN software package 

that is an integrated software package combining anthropometric, vehicle dynamics, 
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biodynamic, and system analysis tools. Their simulation suggested that the force 

between hip and seat, the torque at the waist, the torque at the shoulder, and the 

force at the hand/grip interface were major factors in driving posture affecting the 

biodynamic response; however, their model failed in predicting empirical results. 

Rider et al (2006) proposed a trajectory planning and feedback controller in the 

model, on the basis of hypothesis that movement alterations and adjustments were 

predictable by visual and/or proprioceptive information. However, the model did 

not integrate joint stiffness parameters. 

As reviewed above, numerous approaches have attempted to develop 

biomechanical or biodynamic models representing WBV responses through the 

seated human body. However, most of the developed models have been limited to 

the upper torso or spinal system of the human in static sitting postures or to the end 

effector motion without considering transmission through multi-joints. None of 

these models has addressed the vibration transmission issue through a multi-

segmental human body performing dynamic activities. Because of these limitations, 

I initiated empirical studies to analyze vibration transmission through multi-body 

system performing upper limb reaching movements under exposure to selected 

WBV conditions corresponding to specific frequency sinusoidal excitations. 
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CHAPTER 3 

Vibration Transmission of Upper Body Segments  

under Sinusoidal Whole-Body Vibration Exposure 

Vehicle vibration is transmitted to the whole body of the seated driver and 

operators, thus causing discomfort and interfering with the driver’s movements in 

this dynamic environment. Several studies have examined the effects of vibration on 

human performance such as the speed and accuracy of the seated reach, or have 

investigated biodynamic responses of the upper torso in static postures. The 

present study investigates vibration transmission through multi-body segments 

along the upper body path by analyzing displacements of upper body joints in the 

frequency domain. This study shows that transmission through upper body 

segments is affected by vibration frequency, direction, and location of the target to 

be reached. 

 

3.1 Introduction 

Vibration perturbation is one environmental stressor causing discomfort and 

degradation of human activities. In a vehicle, the vibratory environment may affect 

the motion of an operator through whole body transmission and disturb the manual 

ability of vehicle operator, thus limiting the performance of the entire system. 
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Whole-body vibration response of the seated human has been investigated as 

a function of vibration frequency, magnitude, direction axis, and exposure duration 

(Fairley and Griffin, 1989; McLeod and Griffin, 1989; Fairley and Griffin, 1990; 

Griffin, 1990; Griffin and Hayward, 1994; Kitazaki and Griffin, 1998; Mansfield and 

Griffin, 1998; Mansfield, 2005; Mansfield et al, 2006; Kim et al, 2007). These studies 

reported that manual tasks were the most sensitively affected by vertical vibration 

in the 3 to 8 Hz frequency range. Similarly, tasks performed under horizontal 

vibration were most disruptive at frequencies below about 3 Hz, and the 

degradation effect decreased as the vibration frequency increased up to 12 Hz. For 

both vertical and horizontal vibration, vibration transmission to the shoulders and 

head was maximal in the frequency range corresponding to the highest discomfort 

sensitivity. These studies also indicated that whole-body vibration response 

increased with vibration magnitude. Although these investigations described some 

vibration characteristics of the human body, they were limited to the vibration 

response through the torso or spinal system of the upper body in static postures or 

to the description of the hand behavior without consideration of active movements. 

Vibration-induced alterations in reach kinematics and performance have 

been investigated in terms of the fingertip trajectory and excursion (Rider et al 2003 

and 2004). These studies evaluated the level of task difficulty using the concept of 

effective target size and confidence ellipses of finger excursions and indicated that 

the highest level of task difficulty corresponded to the principal resonant frequency 

of the trunk between 4 and 6 Hz under vertical vibration exposure. In addition, the 

role of visual feedback in hand movement guidance was also investigated by means 

of movement time and peak tangential velocity (Rider et al, 2006). According to 

their study, movement time is longer in the vision condition than in the occluded 

vision condition, as visual feedback provides additional information capable of 

increasing the accuracy of task but requiring additional time for corrective sub-
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movements. Peak tangential velocities of the fingertip movements were higher in 

the occluded vision condition, corresponding to shorter movement times. These 

studies provided an ergonomic evaluation of vibration-induced reach performance; 

however, the contribution of each body segment perturbation to fingertip deviation 

was neither identified nor included in a model for systematic assessment of 

vibration effects. 

Biomechanical modeling of the human body has been attempted by 

investigating the biodynamic characteristics of human body transmission 

(Amirouche, 1987; Fairley and Griffin 1990; Wei and Griffin, 1998; Matsumoto and 

Griffin, 2001; Paddan and Griffin, 2002; Rosen and Arcan, 2003; Yoshimura et al, 

2005; Liang and Chiang, 2006). Some studies tried to develop a biomechanical 

model of the upper torso using a finite element method. Other models consisted of 

multiple lumped mass-spring-damper systems in different static postures; however, 

no attempt in human vibration analysis or biomechanical modeling has been made 

to describe changes in the WBV response through the upper limbs during dynamic 

activities requiring changes in posture as a function of time and space thus changes 

in biodynamic properties of the human body during reach movements. 

In order to provide a framework supporting an active biodynamic model, this 

work aims at analyzing biodynamic responses of seated human operators under 

exposure to simplified WBV conditions. As the first step of this research, this 

chapter estimates the vibration transmission through the right shoulder, elbow, and 

fingertip in pointing postures at the end of a reach along the selected directions 

under exposure to vertical and horizontal sinusoidal vibration conditions. 
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3.2 Methods 

 

3.2.1 Biodynamic Reach Experiment I 

Thirteen right-handed young adults participated in the experiment 

voluntarily. All participants were in good health and had no known musculoskeletal 

or neurological disorders, chronic back pain, nor acute back pain. The average 

values (±SD) of age and anthropometry dimensions (stature, torso length, right 

upper arm and forearm lengths, and hand length) are listed in Table 3.1. 
 

Subjects 

Table 3.1: Anthropometry Data 

 Age 
(years) 

Statue 
(cm) 

Torso 
length 
(cm) 

Upper arm 
length 
(cm) 

Forearm 
length 
(cm) 

Hand (wrist-
fingertip) 

length 
(cm) 

Mean 32±6.5 177.6±5.4 46.9±1.6 34.5±1.0 28.6±1.8 17.2±1.8 

 

The experiment was conducted on the Ride Motion Simulator (RMS) of the 

U.S Army at TACOM (Figure 3.1).  The RMS is controlled by six linear hydraulic 

actuators that can generate the six degrees-of-freedom of vehicle vibration (Figure 

3.2). Six cameras of a VICONTM motion capture system were rigidly fixed on the RMS 

cab to record the relative displacements of upper body segments of individuals 

performing reach movements. 

Experimental Setup 
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Figure 3.1: Experimental Setup and RMS cab: 
 
 

         

Figure 3.2:  Ride Motion Simulator (RMS): compressed (left) and extended 
(right) configurations 
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Reach trials were performed under seven simplified vibration conditions 

generated by the RMS. The reference condition was a static condition in which no 

vibration was applied. Six vibration conditions were generated by the combination 

of three discrete sinusoidal vibration frequencies (2, 4, or 6 Hz) and two vibration 

directions (vertical or fore-and-aft), as summarized in Table 3.2. These sinusoidal 

vibration conditions were selected to estimate vibration transmission for the 

simplified excitation conditions corresponding to specific vibration frequencies in 

which reaching performance is highly sensitive (Figure 3.3; Rider et al, 2003) and 

the frequency range of major vehicle vibrations (Lee and Pradko, 1968; McLeod and 

Griffin, 1989; Fairley and Griffin, 1990; Griffin, 1990). The peak acceleration 

magnitudes for the vertical and fore-and-aft vibration directions were 0.5G and 0.4G 

respectively, and the constant magnitude was applied for all frequencies vibration 

to avoid the effects of interaction between vibration frequency and magnitude 

(McLeod and Griffin, 1989). 

 

Vibration Condition 

Table 3.2: Vibration input conditions 

Direction Vibration Frequency, Magnitude 

No Vibration - 

Vertical Vibration 
(up-and-down) 2Hz, 0.5G 4Hz, 0.5G 6Hz, 0.5G 

Horizontal Vibration 
(fore-and-aft) 2Hz, 0.3G 4Hz, 0.3G 6Hz, 0.3G 
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Figure 3.3:  Reach difficulty rating by ride-motion frequency and target 
location (Rider et al, 2003) 

 

The participants were required to perform reaches from an initial location to 

eight targets distributed in the right hemisphere of the operator seat (Figure 3.3). 

These eight targets represent the overall reach space for in-vehicle operation: 

upward [TG1], forward & upward [TG2], forward [TG3], forward & lateral [TG4], 

diagonal & upward [TG5], lateral & upward [TG6], lateral near [TG7], and lateral far 

[TG8]. The locations of the targets were designed with respect to the coordinate 

system whose origin was located at the right top of a steering handle (Table 3.2). All 

participants were required to reach every target in a random order. Each target was 

reached twice. 

Target Location & Reach Task 
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Minor constraints were applied for data collection and safety. A lap seat belt 

must be fastened tightly enough to prevent relative slip between the seat and the 

hip. The location of foot placement was not specified but both feet must rest on the 

cab floor during the experiment. Participants were requested to hold a steering 

handle with both hands and to fixate their gaze on a front monitor, which 

corresponded to the initial posture prior to any reaching movement. While reaching 

the target with the right hand, the left hand must remain on the steering handle to 

avoid large variation in posture and boundary condition of the body system 

between reach trials. 

Participants were requested to perform all reaches at the self-determined 

speed. When reaching the target, participants were required to point to the center of 

the target for three seconds without contact. This constraint was imposed to 

estimate the real amount of vibration response transmitted through the arm. In 

addition, to eliminate vision-induced movement adjustments, participants were 

allowed to look at a target at the beginning of each reach trial, but they must 

redirect their gaze to the saggital plane immediately after reaching a target. 

For the safety purposes, a lightweight helmet was used by all participants 

and the task was performed with the seat belt fastened. Emergency safety buttons 

that were placed in several locations around the RMS for easy accesses allowed the 

participant or the experimenters to stop the motion of the RMS at any time. To 

monitor symptoms of simulation sickness, participants were asked to answer orally 

a short survey before and after each session on the RMS. 
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Figure 3.4:  RMS cab and target locations: 
The targets selected for this analysis are identified by the circled numbers. 
 

Table 3.3: Task conditions (target locations) 
The origin of the coordinate system is at the right top of the steering handle. 

No. Target Direction Target Location (x, y, z) [mm] 

1 Upward TG 1 (143, -357, 678) 

2 Forward & Upward TG 2 (132, 133, 269) 

3 Forward TG 3 (206, 139, -171) 

4 Forward & Lateral TG 4 (426, 44, -66) 

5 Diagonal & Upward TG 5 (564, -274, 420) 

6 Lateral & Upward TG 6 (563, -293, 420) 

7 Lateral Near TG 7 (578, -271, -114) 

8 Lateral Far TG 8 (870, -295, -114) 
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For the recording of body segment movements, retro-reflective markers 

were placed on twenty-six body landmarks including four markers for head position 

and orientation, ten markers for torso movements, seven for the right arm and hand 

movements, and five for the left arm (Figure 3.5 and 3.6). Dynamic movements of 

the upper body were recorded by a VICONTM optical motion tracking system using 

six cameras, with a sampling rate of 100Hz. For anthropometric measures and 

subject calibration, a static T-pose and the range of motion were also recorded at 

the same rate for each participant (Figure 3.7). 

 
 

Motion Capture 

 

(a) frontview                                               (b) rearview 
Figure 3.5:  Retro-reflective markers placed on a subject. Twenty-six markers 
were placed on body landmarks 
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Figure 3.6: Retro-reflective marker set placed on body landmarks: 
R=right, L=left, FHD=front-head, BHD=back-head, CLAV=Clavicle, 
MIDSTRN=mid-sternum, STRN=sternum, SHO=shoulder, UPA=upper-arm, 
ELB=elbow, FRA=fore-arm, WR=wrist, NCK=knuckle, FIN=finger 

 

 

Figure 3.7:  T-pose for anthropometric and range of motion calibration 

 



 

 36 

3.2.2 Data Analysis 

3.2.2.1 Movement Phase Analysis 

A reach trial consists of four movement phases: [1] the initial resting posture 

while holding the steering handle at home position, [2] the aiming transition phase 

to reach a target, [3] the quasi-static posture while pointing to the target for three 

seconds, and [4] the returning phase of hand transition back to the initial position, 

as illustrated in Figure 3.8. This study analyzes specifically the perturbation of the 

upper body segments induced by the selected sinusoidal vibration conditions during 

the pointing phase. 

 

 

 

Figure 3.8: Movement phases in a reach trial: [1] resting phase, [2] aiming 
phase, [3] pointing phase, and [4] returning phase. The pointing phase [3] was 
used to compute the vibration transmissibility of body segments. 

 

Among all of reach trials, only movements to five target locations in four 

directions were selected for this study; TG1 = upward, TG2 = forward, TG5 = 
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diagonal, and TG7 & TG8 = lateral. This selection was based on data quality. The 

inclusion criteria for this analysis were: all link markers could be tracked without 

errors or interpolation of missing data was acceptable (less than six consecutive 

frames drop out and/or less than four drop out sequences in time data). The 

analysis matrix consisted of three vibration frequencies and five target locations for 

each vibration direction as displayed in Table 3.4. 

 
Table 3.4: Analysis Matrix associated with the selected levels of each variable.  

 
Upward Forward 

Diagonal 
& 

Upward 

Lateral 
Near 

Lateral 
Far 

TG 1 TG 2 TG 5 TG 7 TG 8 

Vertical 
Vibration 
 (up-and-

down) 

2 Hz      

4 Hz      

6 Hz      

Fore-Aft 
Vibration 

2 Hz      

4 Hz      

6 Hz      

 

3.2.2.2 Frequency Analysis 

The present analysis focused specifically on the motion of the torso, upper 

arm, lower arm-hand, which corresponded to the links delineated by three markers 

placed on the shoulder, the elbow and the right index finger along the transmission 

path. It was assumed that the hip translational and rotational movements relative to 

the seat were negligible. 

To estimate vibration transmission along the upper body path, the sinusoidal 

input and body segment displacement outputs in the time domain were transformed 

into the frequency domain by the Fast Fourier Transform (FFT), as shown in Figure 
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3.9. The FFT is an efficient algorithm to compute the Discrete Fourier Transform 

(DFT), as represented by (Eq. 3.1).  

 

X(k) = x( j)ωN
( j−1)(k−1)

j=1

N

∑
 ................………………. (Eq. 3.1) 

   where   ωN = e(−2π i )/ N
 

In Eq. 3.1, x = x(t) is a signal in the time domain and X = X(ω) is the signal 

transformed in the frequency domain. 

No windowing was applied to the FFT. The frequency bandwidth of interest 

was in the range of 0.2 – 15 Hz. For identifying the contribution of each body 

segment perturbation along the transmission path to the fingertip’s deviation from a 

target, the frequency responses of three body segments were analyzed and the 

vibration transmission through three segments were estimated by the ratio of peak 

magnitudes in an input and responses at the forcing frequency in the excitation 

direction (Figure 3.10 and Eq.3.2). This term of vibration transmission is an 

analytical index borrowed from linear system theory for empirical evaluation on a 

highly nonlinear human body system. 
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information on how vibration is transmitted through each segment independently, 

which may be useful for modeling vibration characteristics of each body segment in 

a multi-body structure. 
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3.3 Results 

3.3.1 Displacements of Upper Body Segments in Time and Frequency Domains 

Typical displacement samples of the right shoulder, the elbow, and the 

fingertip while pointing to target 7 (lateral near) are represented in Figure 3.11 and 

3.12 for vertical and horizontal WBV exposure, respectively. Vibration responses 

through the right arm conspicuously decrease at the fingertip specifically under the 

6Hz WBV exposure in both vertical and horizontal directions. 

To compare vibration characteristics of these three body segments as a 

function of vibration conditions, displacement responses are analyzed in the 

frequency domain. The frequency responses of body segments in the pointing 

posture are presented in Figure 3.13 for each vibration frequency in the vertical and 

horizontal WBV directions. For both vibration directions, vibration responses at the 

fingertip are the largest among the three joints under 2Hz perturbation while 

responses at the shoulder are the largest for 4Hz and 6Hz perturbations. When 

compared to the shoulder, perturbation at the fingertip decreases noticeably for 

both 6 Hz vibrations. For 4Hz and 6Hz exposures, responses at all three joints are 

larger for the vertical than for the horizontal vibration; however, this comparison 

with time responses is not conclusive in the present context, since the magnitude of 

stimulation was different for each direction. 
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3.3.2 Vibration Transmission through the Upper Limb 

3.3.2.1 Effects of Vibration Conditions 

Vibration transmission through the right arm under vertical and horizontal 

WBV exposures is illustrated in Figure. 3.14 and 3.15. Note that in this study, 

vibration transmission specifically means the ratio of peak magnitude in the 

response to peak magnitude in the input at the forcing frequency. 

Vertical Sinusoidal WBV Exposure  

Vibration transmission through upper body segments varies with the 

vibration frequency, as illustrated in Figure 3.14. According to statistical analysis 

using ANOVA, the influence of vibration frequency for the vertical vibration on the 

transmission through each body segment is significant for all body segments such as 

the shoulder (p ≈ 0 « 0.01), the elbow (p ≈ 0  « 0.01), and the finger (p ≈ 0 « 0.01),  

since p-values for all are extremely small,  as indicated in Table 3.5. 

Vibration transmission along the upper body path is amplified from the 

shoulder to the finger along the right arm for all reaches to the five targets - target 1 

(upward), 2 (forward & upward), 5 (diagonal & upward), 7 (lateral near), and 8 

(lateral far) under the 2Hz vibration condition, whereas it is attenuated for all 

reaches for the 6Hz frequency vibration. However, under the 4Hz vibration, 

vibration transmission through the upper body segments shows different 

characteristics depending on target location. In this vibration condition, 

transmission through the elbow is lower than through the shoulder and the finger 

for lateral reaches to target 7 (lateral near) and 8 (lateral far). However, 

transmission monotonously decreases along the arm path for other reaches to 

target 1 (upward), 2 (forward & upward), and 5 (diagonal & upward). In addition, 





 

 46 

Horizontal Sinusoidal WBV Exposure  

The ANOVA analysis explains that transmissions at all body segments are 

also influenced by vibration frequency for the horizontal perturbation the same as 

for the vertical vibration since p-values for the shoulder, elbow, and finger are 

almost 0, 0.0001, and 5.664e-009 respectively (p « 0.01 for all body segments), as 

shown in Table 3.6. Vibration transmission through upper body segments also 

varies with the frequency of the horizontal vibration, as shown in Figure 3.15. 

Transmission is amplified along the right arm for all reaches under the 2Hz 

vibration. Under 4 and 6Hz vibration, transmission decreases along the arm 

similarly as observed for the vertical vibration conditions except for reaches to 

target 2 (forward & upward) under 4Hz and to target 1 (upward) under 6Hz 

vibration. 

3.3.2.2 Effects of Target Location 

As presented in Figure 3.14 and 3.15, transmission through the upper body 

segments is as a function of perturbation characteristics such as vibration frequency 

and direction. In addition, transmission is also affected by target location. However, 

the individual effect of target location on transmission through body segments 

cannot be easily interpreted due to a complex interaction between perturbation 

characteristics and motion direction as shown in Figure 3.16, thus showing a 

complex interaction between perturbation characteristics and motion direction.  

Statistical analysis results from two-way ANOVA for vibration frequency and 

target location were illustrated in Table 3.5 and 3.6. For the vertical vibration, target 

location significantly influence transmission for the elbow and the finger (p = 

2.016e-004 < 0.01 and 2.4e-010 « 0.01, respectively), but it does not significantly 

affect transmission through the shoulder (p = 0.3713 > 0.01). However, in this 
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Table 3.5: Analysis of Variance for vertical WBV transmission (thru-) 

 
Transmission (rSHO) 

DoF F p 
Vibration frequency (VF) 2 337.34 < 0.01 
Target location (TG) 4 1.08 0.3713 
VF  ×  TG 8 3.28 < 0.01 

 
Transmission (rELB) 

DoF F P 
Vibration frequency (VF) 2 201.18 < 0.01 
Target location (TG) 4 7.76 < 0.01 
VF  ×  TG 8 9.31 < 0.01 

 
Transmission (rFIN) 

DoF F p 
Vibration frequency (VF) 2 316.88 < 0.01 
Target location (TG) 4 17.36 < 0.01 
VF  ×  TG 8 7.77 < 0.01 

 
Table 3.6: Analysis of Variance for horizontal WBV transmission (thru-) 

 
Transmission (rSHO) 

DoF F p 
Vibration frequency (VF) 2 17.25 < 0.01 
Target location (TG) 4 0.29 0.8865 
VF  ×  TG 8 1.06 0.4004 

 
Transmission (rELB) 

DoF F P 
Vibration frequency (VF) 2 9.77 < 0.01 
Target location (TG) 4 4.64 < 0.01 
VF  ×  TG 8 8.94 < 0.01 

 
Transmission (rFIN) 

DoF F p 
Vibration frequency (VF) 2 23.62 < 0.01 
Target location (TG) 4 7.51 < 0.01 
VF  ×  TG 8 5.19 < 0.01 



 

 49 

environmental condition, interaction between target location and vibration 

frequency influences transmission through all body segments significantly (p = 

0.0025, 0, and 7.072e-008 for the shoulder, elbow, and finger respectively). 

For the horizontal vibration, transmission of the elbow and the fingertip is 

significantly affected by target location (p = 0.0001 and 5.664e-009) and by strong 

interaction between target location and vibration frequency (p = 0 and 2.411e-005). 

However, transmission of the shoulder is not significantly affected by target location 

(p = 0.8865 > 0.01) or by interaction between vibration frequency and target 

location (p = 0.4004 > 0.01). Transmission of the shoulder is affected only by 

vibration frequency (p ≈ 0). 

3.3.3 Propagated Transmission through each body segment  

           (Inter-segment Transmission) 

According to two-way ANOVA about the propagated transmission through 

individual segments (Table 3.7 and 3.8), vibration frequency influences all the 

propagated transmission through the torso, the upper arm, and the forearm for both 

the vertical and horizontal perturbation. Target location does not influence vertical 

and horizontal propagated transmission of the torso (p = 0.3713 > 0.01 and 0.8865 

> 0.01) and horizontal propagated transmission through the upper arm (p = 0.4439). 

In addition, interaction between target location and vibration frequency does not 

affect the horizontal propagated transmission of the torso (p = 0.4004 > 0.01).  

The propagated transmission of each body segment that is computed from 

Eq. 3.3 is illustrated in Figure 3.17. Relative propagated transmission through 

individual segment showed that there is no significant amplification in vibration 

response through the upper-arm and the forearm for all vibration frequencies, 2, 4, 

and 6 Hz. However, through the upper torso, input vibration can increase up to 

three or four times at the shoulder under vertical 4 and 6Hz WBV exposures, and 
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Table 3.7: Analysis of Variance for vertical WBV transmission (inter-) 

 
Propagated Transmission (rSHO) 

DoF F p 
Vibration frequency (VF) 2 337.34 < 0.01 
Target location (TG) 4 1.08 0.3713 
VF  ×  TG 8 3.28 < 0.01 

 
Propagated Transmission (rELB) 

DoF F P 
Vibration frequency (VF) 2 68.16 < 0.01 
Target location (TG) 4 3.89 < 0.01 
VF  ×  TG 8 5.83 < 0.01 

 
Propagated Transmission (rFIN) 

DoF F P 
Vibration frequency (VF) 2 137.52 < 0.01 
Target location (TG) 4 8.78 < 0.01 
VF  ×  TG 8 10.17 < 0.01 

 
Table 3.8: Analysis of Variance for horizontal WBV transmission (inter-) 

 
Propagated Transmission (rSHO) 

DoF F p 
Vibration frequency (VF) 2 17.25 < 0.01 
Target location (TG) 4 0.29 0.8865 
VF  ×  TG 8 1.06 0.4004 

 
Propagated Transmission (rELB) 

DoF F p 
Vibration frequency (VF) 2 24.9 < 0.01 
Target location (TG) 4 0.94 0.4439 
VF  ×  TG 8 3.42 < 0.01 

 
Propagated Transmission (rFIN) 

DoF F p 
Vibration frequency (VF) 2 8.43 < 0.01 
Target location (TG) 4 6.89 < 0.01 
VF  ×  TG 8 4.15 < 0.01 
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3.4 Discussion 

This study investigates biomechanical responses at the right shoulder, elbow, 

and fingertip to whole-body vibration applied vertically or horizontally when 

human operators perform reach movements to five targets distributed in the 

operation space of a vehicle. The results show that peak transmission through upper 

body segments is a function of vibration characteristics, target location, and their 

interaction. That is to say, characteristics of whole-body vibration can be affected by 

environmental conditions and task variables. 

Among these variables, the vibration frequency is the dominant factor 

affecting WBV transmission. Results from statistical analysis with two-way ANOVA 

also show the dominance of vibration frequency on WBV responses, since p-values 

of vibration frequency influence are almost zero for all body segments. Regardless of 

the vibration direction, the trend of an increase or decrease in transmission through 

the upper limb from the shoulder to the finger is similar for all the 2 Hz, 4 Hz, and 6 

Hz vibration.  

Nevertheless, the vibration direction also affects transmission. For 4 and 6Hz 

vibrations, transmission through all body segments is larger for the vertical 

vibration than for the horizontal vibration. It is assumed that although the 

magnitude of the stimulation was lower for the horizontal than for the vertical 

direction, upper torso resonance occurring around 4 to 5 Hz for vertical vibrations 

while no body resonance is induced by the horizontal vibration (see Griffin, 1990 for 

review). For the 2Hz vibration, transmission through all body segments under 

horizontal exposure is higher than under vertical exposure. This phenomenon 

seems to reflect the motion of the inverse pendulum created by the anchoring of the 

torso on the seat and free to move above the hip under the horizontal vibration. 
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Target location also affects the vibration characteristics of body segments, 

especially for reaches to target 7 (lateral near) and 8 (lateral far) under the 4 Hz 

vertical vibration. In these situations, inter-segment transmission decreases from 

the shoulder to the elbow and increases from the elbow to the fingertip. This 

phenomenon may be caused by an increase of instability in seated balance with full 

extension of the elbow and abduction of the shoulder in the lateral direction.  

In addition, transmission is also affected by strong and complex interaction 

between vibration condition and target location. Thus, all factors must be 

considered simultaneously for the design of vehicle interfaces and other application 

of human vibration analysis. 

As stated above, transmission through the body multi-linkage system is 

function of vibration characteristics, task condition, and interaction between those. 

Reach movements to different target locations are associated with posture changes  

which in turn modify biomechanical properties such as inertia, stiffness, and 

damping of upper body segments, as would be predicted by the equilibrium point 

hypothesis (Feldman, 1986; Gomi and Kawato, 1997) stating that a posture can be 

viewed as the result of a mechanical equilibrium. 

Information about body segment transmission may be useful to identify 

biomechanical properties and resonance characteristics of each segment, and may 

be necessary for developing a biomechanical model of multi-degrees-of-freedom 

system. These results imply that reach performance and WBV characteristics can be 

expressed by synthesizing peak transmission of body segments along the path, 

which represent the core idea of this research.  
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3.5 Conclusions 

In this study, a reach trial was divided into four movement phases, and 

estimation of the peak value of vibration transmission through body segments was 

carried out for the pointing phase of a reach trial while the operator maintained the 

pointing posture for a target without contact between the finger and the target. A 

strong and complex interaction was found between vibration characteristics and 

target location. 
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CHAPTER 4 

Vibration-Induced Changes in Upper Limb Reach Kinematics 

Simulation of human reach movements is an essential component for 

proactive ergonomic analysis and computer-aided engineering of biomechanical 

models. Most studies on reach kinematics described human movements in a static 

environment, however the models derived from these studies cannot be applied to 

the analysis of human reach movements in vibratory environments such as in-

vehicle operations. Earlier studies on reach performance under vibration exposure 

focused mainly on fingertip end-point accuracy. This study analyzes three-

dimensional joint kinematics of the upper extremity in reach movements performed 

in static and specific vibratory conditions. Thirteen seated subjects performed reach 

movements to four target directions distributed in the right hemisphere. The results 

show differences and similarities in the characteristics of movement patterns of 

upper body segments for static and dynamic environments. Identification of 

movement patterns in terms of joint kinematics can be used to determine some 

biodynamic principles of upper body segment coordination in reach movements. 

 

4.1 Introduction 

Reaching to controls is the primary activity of operators in vehicles. To 

evaluate and predict human movements and postures in a workspace, reaching 
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movements have been studied from various perspectives with the goals of 

improving comfort, safety, and manual performance of operators.  

Mathematical models of reach movements have been developed using 

optimization (Flash and Hogan, 1985; Schöner et al, 1986) or statistical methods 

such as functional regression, Bezier Curve, etc (Faraway, 2000; Faraway and Hu, 

2001; Faraway, 2003). Their model reduced the dimensionality of the problem for 

describing movement kinematics, and succeeded in describing hand trajectory with 

endpoint constraints. However, all the developed models were limited to simulate 

only two-dimensional reach in static environments with no obstacle. 

Kinematic features of reach movements or postures have been extensively 

analyzed in the static environment (Soechting and Lacquaniti, 1981; Atkeson and 

Hollerbach, 1985; Prablanc et al, 1986; Jeannerod and Marteniuk, 1992; Haggard et 

al., 1995; Jung et al, 1995; Soechting et al, 1995; Gottlieb et al, 1997; Jeannerod et al, 

1998; Wang, 1999; Zhang and Chaffin, 2000; Barreca and Guenther, 2001; Faraway, 

2003; Admirral et al, 2004; Kim, et al; 2004; Lim et al, 2004; Park et al, 2005). These 

studies reported that the trajectory in space is independent of movement speed and 

that the tangential velocity profiles of the arm and hand are bell shaped profiles 

consisting of feed-forward control phase and feedback control phase for accurate 

landing. Gottlieb et al (1997) also found that for most movement directions, the 

dynamic components of the muscle torques at both the elbow and shoulder were 

related linearly to each other and both were biphasic, almost synchronous and 

symmetrical pulses. In addition, Soechting et al (1995) and Admirral et al (2004) 

found that arm posture at a given hand location was dependent on the starting 

location of the movement. Park et al (2005) suggested a quantitative index termed 

joint contribution vector to represent a motion in terms of individual joint 

contribution to the achievement of the task goal. All these studies suggested that 
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both kinematics and dynamics affected postures and their relative contribution 

depended on instruction and complexity of the task. 

Baaed on the analysis of reach kinematics, reach models have been 

developed to predict the trajectory of reaching and pointing movements (Hoff and 

Arbib, 1993; Rosenbaum et al, 1995; Jung et al, 1996; Chaffin et al, 1999; Wang, 

1999; Zhang and Chaffin, 2000; Park et al, 2002; Jax et al, 2003; Kang et al, 2005; 

Park et al, 2006; Park et al, 2008). Some models employed an optimization method 

based on inverse kinematic structure to minimize the weighted sum of body 

segment velocity (Jung et al, Wang, Zhang and Chaffin) while others used functional 

regression fitting polynomial equations to the joint angular kinematics (Kang et al). 

The optimization-based model developed by Jung et al (1996) indicated that reach 

posture prediction was more accurate when using a psychophysical cost function of 

joint discomfort than using a biomechanical cost function of joint torque. 

Rosenbaum et al (1995) and Jax et al (2003) suggested that postures stored in the 

motor memory were used to select reaching movements and that costs of possible 

postures and postural transitions were taken into account in the selection process. 

Based on this assumption, Park et al (2002) proposed a memory-based model for 

realistic simulation of human reach motions and extended the model to simulate 

reaching with obstacle avoidance in two-dimensional task spaces (2006, 2008). 

However, all these models based on reach kinematics in static conditions cannot be 

applicable to simulate reach movements in vehicle vibratory environments. 

Reach kinematics or performance during vibration exposure has been 

investigated in terms of upper body coordination or speed-accuracy tradeoff (Rider 

et al 2003; Park et al, 2004; Rider et al, 2004; Yoon, unpublished). Some studies 

(Park et al, 2004; Yoon, unpublished) proposed a joint contribution vector to 

characterize movement coordination and determine changes in coordination as a 

function of the environmental condition; however, this analytic index may not be 
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suitable for movement prediction. Other studies reported that ride motion produced 

an increase in the duration of the adjustment phase near the aimed target and an 

increase in fingertip excursions during that phase and that the fingertip deviation 

from a trajectory obtained from a static environment is a function of reach direction 

and vibration frequency (Rider et al, 2004). These authors also suggested an 

‘effective target size’ for the measure of the accuracy in fingertip reaching/pointing 

tasks. However, all these studies did not analyze the influence of vibration 

transmission through the multi-linkage system consisting of the body segments to 

predict segment movements and their contribution to the movement of the end 

effector. 

For further in-depth understanding of biodynamic responses associated with 

upper limb reaching movement under exposure to vibration, this study investigates 

the effects of vibration on reach kinematics and movements patterns of the upper 

extremity. In the previous chapter, vibration transmission through the upper body 

segments was estimated as a function of vibration frequency and direction for 

sinusoidal WBV conditions (Kim and Martin, 2007). In addition, since transmission 

was affected by target location and interaction between target location and 

vibration condition, it was anticipated that vibration transmission varies with 

postures associated with target locations. In order to examine the effects of posture 

or movement on biodynamic responses to WBV inputs, the kinematic characteristics 

of upper body segments during the aiming movement phase (transition phase) need 

to be investigated since upper body movement coordination contributes to posture 

definition. 

The specific aims of this study are to identify the characteristics of upper 

body movement patterns during the aiming movement phase using a joint kinematic 

analysis, and to investigate vibration-induced changes in joint kinematics of the arm. 



 

 59 

4.2 Method 

4.2.1 Experiment Data Selection for Kinematic Analysis 

A subset of the data that were collected in the experiment described in the 

previous chapter was selected for the analysis of reach kinematics. 

Thirteen right-handed young adults participated in the experiment. They 

were free from any known musculoskeletal disorders, neuromuscular disorders, 

chronic back pain, or acute back pain. Their anthropometric dimensions are listed in 

Table 3.1. 

Subjects 

The experiment was conducted on the RMS at the U.S Army RDECOM 

TARDEC to produce the dynamics of a military ground vehicle. A VICONTM motion 

capture system equipped with six cameras was used to record movements of the 

upper body segments. 

Experimental Setup 

Seven vibration conditions were generated by the RMS as illustrated in Table 

3.1. However, only the data collected in four environmental conditions including a 

static condition and the vertical 2, 4, and 6 Hz sinusoidal vibrations were analyzed 

in this study (Table 4.1). 

Vibration Condition 

Table 4.1: Vibration Input Conditions for Reach Kinematic Study 

Direction Vibration Frequency, Magnitude 

No Vibration - 
Vertical Vibration 2Hz, 0.5G 4Hz, 0.5G 6Hz, 0.5G 
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Four target locations were selected as representative directions: upward 

[TG1], forward [TG2], diagonal [TG5], and lateral [TG8] (Figure 4.1 and Table 4.2). 

The origin of the coordinate system for target positions was located at the right top 

of the steering handle, where the right hand rested in the initial posture. All four 

targets were reached twice in a random order. 

To maintain the initial posture constantly prior to any reach, all participants 

were requested to hold the steering wheel with both hands in a standardized 

location and to look at the center of a front monitor. During every reaching task, the 

left hand kept holding the handle for the constant boundary condition of human 

upper body system, the feet were resting on the cab floor, and the seat belt was 

fastened tightly enough to prevent a relative slip motion between the seat and the 

hip. Each reach task was performed at a self-determined speed. 

Reach Direction 

Twenty-six retro-reflective markers were placed on body landmarks (Figure 

4.3). Reach movements of the upper body segments were sampled at 100Hz by an 

optical motion track system (VICONTM). For anthropometric measures and subject 

model calibration, a T-pose and the range of motion were also captured at 100Hz for 

each subject. 

 

Motion Capture 
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Figure 4.1:  RMS cab and target directions: Four targets are distributed in the 
right hemisphere of the seated operator: Upward (TG1), Forward (TG2). 
Diagonal (TG5), and Lateral (TG 8). 

 

 

Table 4.2: Reach task (reach direction) 
The origin of the coordinate system is at the right top of a steering handle. 

No. Reach Direction Target Location (x, y, z) [mm] 

1 Upward TG 1 (143, -357, 678) 

2 Forward TG 2 (132, 133, 269) 

3 Diagonal TG 5 (564, -274, 420) 

4 Lateral TG 8 (870, -295, -114) 
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4.2.2 Movement Phase Analysis 

Figure 4.2 shows that reach movements to a target consist of four movement 

phases: (1) the initial phase corresponding to a resting posture at the home position, 

(2) the aiming transition phase showing the dynamic change in joint kinematics of 

upper extremity, (3) the pointing phase in which the participant is required to 

maintain the posture for a few seconds without contact with the target, and (4) the 

returning phase. This study analyzes the right arm-hand movements during the 

aiming phase, which was defined by the time interval starting with the head rotation 

to identify the location of a target and ending when the right hand arrives at the 

steady-state position near the target location. 

 

 

 

Figure 4.2: Movement phases in a reach trial: One reach consists of four 
movement phase: (1) resting phase, (2) aiming transition phase, (3) pointing 
phase, and (4) returning phase. 
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4.2.3 Joint Kinematic Analysis 

Seated reach movements can be described by movement coordination of the 

torso, right upper-arm, right lower-arm, and right hand. The present analysis 

focused specifically on the kinematics of upper body joints such as the right 

shoulder, elbow, and wrist joints (Figure 4.3). It was assumed that hip movements 

and the relative motion at the hip–seat interface were negligible. Variations of these 

joint angles in the time domain were analyzed to describe the movement patterns 

for each target directions. Since all subjects performed self-paced reaches, a 

normalized time was used for the kinematic analysis. Joint angular kinematics such 

as joint angle ( jθ ), angular velocity ( jθ ), and acceleration ( jθ ) were computed using 

a vector analysis with the definition of a body segment as a vector, based on the 

assumption that the upper limb is a rigid and linear linkage system (Eq. 4.1). 

Shoulder rotation about the vertical axis, elbow flexion/extension, and wrist 

flexion/extension were considered (Figure 4.3). 

 

 

Figure 4.3:  Joint angles of the upper body segments for kinematic analysis: 
Three joint angles were used in the analysis: right shoulder (θS), right elbow 
(θE), and right wrist (θW) angles.  
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4.3 Results 

4.3.1 Reach Trajectory and Kinematics in the Static Environment 

4.3.1.1 Joint Trajectory and Linear Velocity  

Typical examples of three-dimensional joint trajectories of the left shoulder, 

and the right shoulder, the right elbow, the right index finger-tip, and the head are 

illustrated in Figure 4.4, 4.5, 4.6 and 4.7, for upward, forward, diagonal, and lateral 

reaches, respectively. For each reach, the representation includes six instantaneous 

postures, which are sampled at one-sixth of normalized time.  

As shown in these figures, the hand movement is activated for the forward 

reach at the second frame, while the hand movements are not activated yet for the 

upward, diagonal, and lateral reaches. 

For every reach, a head rotation occurs prior to a hand movement in order to 

identify the location of a target before initiating the hand movement. The head 

orientation is then maintained in the direction of the target without seeing the arm 

or hand movement. As for movement time, the right hand almost arrives at 

θjoint 

BB  

CC  

AA  
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destination within the fifth frame, which suggested that the fine adjustment of the 

hand position takes one-sixth of the aiming transition time after the arm transition 

is usually achieved for four-sixth to five-sixth of normalized time for the aiming 
 
 

 

 
Figure 4.4: Three-dimensional joint trajectories of the upper right extremity 
and head motion for upward reach in a static environment. 
 
 

 

 
Figure 4.5: Three-dimensional joint trajectories of the upper right extremity 
and head motion for forward reach in a static environment. 
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movement phase. In addition, the fingertip trajectory shows relatively longer and 

straighter line from the home position than the elbow trajectory. 
 

 

 

  
Figure 4.6: Three-dimensional joint trajectories of the upper right extremity 
and head motion for diagonal reach in a static environment. 
 
 

  

 
Figure 4.7: Three-dimensional joint trajectories of the upper right extremity 
and head motion for lateral reach in a static environment. 
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4.3.2 Reach Trajectory and Kinematics under Vibration Condition 

This section illustrates the features of vibration-induced kinematics only for 

a diagonal reach movement, since reach kinematics are more influenced by 

vibration characteristics than by reach direction and vibration-induced reach 

kinematics are qualitatively similar for all directional reaches. 

4.3.2.1 Vibration-Induced Joint Trajectory and Linear Velocity  

Joint trajectories and linear kinematics of reach movements under vertical 

whole-body vibration are shown in Figure 4.14, 4.15, and 4.16. Both trajectories and 

linear/tangential velocities are affected by the vertical vibration inputs. However, 

these vibration influences are easier observed in the joint velocity profiles than in 

the joint trajectories. 

One-dimensional vertical vibration induced alterations of the joint 

kinematics in the other orthogonal directions (x- and y-axes) as well as in the same 

direction (z-axis), although the vertical vibration predominantly affects on the z-

components of joint kinematics for all vibration frequency inputs (Figure 4.14b, 

4.15b, and 4.16b). Especially under 4 and 6 Hz vibration exposure, periodic 

alterations that are induced by vibration are more prominent for the right shoulder 

joint than for the elbow and the finger. 
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(a) Joint trajectory 

 
 (b) Joint linear and tangential velocities 

Figure 4.14: Example of joint trajectory and linear/tangential velocity of the 
upper extremity for the diagonal reach under the 2 Hz whole-body vibration: 
lSHO (left shoulder joint), rSHO (right shoulder joint), rELB (right elbow joint), 
rWRT (right wrist joint), and rFIN (right index fingertip). 
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(a) Joint trajectory 

 

 
(b) Joint linear and tangential velocities 

 
Figure 4.15: Example of joint trajectory and linear/tangential velocity of the 
upper extremity for the diagonal reach under the 4 Hz whole-body vibration: 
lSHO (left shoulder joint), rSHO (right shoulder joint), rELB (right elbow joint), 
rWRT (right wrist joint), and rFIN (right index fingertip). 
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(a) Joint trajectory 

 

 
(b) Joint linear and tangential velocities 

 
Figure 4.16: Example of joint trajectory and linear/tangential velocity of the 
upper extremity for the diagonal reach under the 6 Hz whole-body vibration: 
lSHO (left shoulder joint), rSHO (right shoulder joint), rELB (right elbow joint), 
rWRT (right wrist joint), and rFIN (right index fingertip). 
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4.3.2.2 Vibration-Induced Alteration in Joint Angular Kinematics  

Vibration exposure alters angular kinematics of the arm joints as shown in 

Figure 4.17, 4.18, and 4.19. Figure 4.17 presents the angular kinematics of the right 

shoulder and elbow under 2Hz vertical whole-body vibration exposure, while 

Figure 4.18 and 4.19 illustrate the joint angular kinematics under the 4 Hz and 6 Hz 

vibration exposure respectively. Since inter-subject variation in angular kinematics 

is quite large for the wrist joint, this study focuses on angular kinematics of the 

shoulder and the elbow joints, which show consistent patterns for all directional 

reaches. 

Whole-body vibrations increase the difficulty in controlling upper body 

movement as indicated by the superimposed oscillation (see Figure 4.7, 4.8 and 

4.9). The joint angular kinematics of the right shoulder and elbow joints presents 

the vibration-induced periodic oscillations, which contribute to an increase in the 

peak values of joint angular kinematics (Table 4.3). 

To examine how movement patterns of joint angular kinematics are affected 

by vibration, all joint angular kinematics were filtered by a low pass filter with a 

cut-off frequency of 7Hz (see Figure 4.17, 4.18, and 4.19). Table 4.3 describes the 

maximum values in angular kinematics of upper body joints with variation of 

vibration condition. Filtered angular kinematics shows qualitatively quite similar 

movement patterns and maximum value of angular kinematics for the static and 

vibratory conditions. The filtered kinematics of the elbow joint shows the bi-phasic 

angular velocity profile. The peak velocity and acceleration are higher for the 

elbow than for the shoulder joint under all vibration frequency exposure as well as 

in a static condition (Table 4.3). 
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(a) Joint angle 

 

(b) Joint angular velocity 

 

(c) Joint angular acceleration 

Figure 4.17: Example of shoulder and elbow joint angular kinematics for the 
diagonal reach under the 2 Hz whole-body vibration. Subscript f indicates 
filtered data 
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(a) Joint angle 

 

(b) Joint angular velocity 

 

(c) Joint angular acceleration 

Figure 4.18: Example of shoulder and elbow joint angular kinematics for the 
diagonal reach under the 4 Hz whole-body vibration. Subscript f indicates 
filtered data 
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(a) Joint angle 

 

(b) Joint angular velocity 

 

(c) Joint angular acceleration 

Figure 4.19: Example of shoulder and elbow joint angular kinematics for the 
diagonal reach under the 6 Hz whole-body vibration. Subscript f indicates 
filtered data 
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Table 4.3: Joint angular kinematics peak values of upper body joints in static 
and vibratory environments: rSHO (right shoulder), rELB (right elbow), rWRT 
(right wrist): ANG (joint angle [deg]), ANG_VEL (joint angular velocity [deg/s]), 
and ANG_ACC (joint angular acceleration [deg/s2]). 

 rSHO rELB             rWRT 

No VIB. 
ANG 153.5 140.2 172.9 

ANG_VEL 123.6 153.4 41.1 
ANG_ACC 459.0 1420.9 406.7 

2 Hz 
pure 

ANG 151.8 125.5 176.9 
ANG_VEL 181.5 201.9 184.2 
ANG_ACC 1507.3 4248.3 4644.3 

4 Hz pure 
ANG 154.5 131.6 176.7 

ANG_VEL 141.7 253.9 164.0 
ANG_ACC 1983.7 4570.3 5389.4 

6 Hz 
pure 

ANG 156.1 133.0 178.7 
ANG_VEL 157.8 159.0 134.4 
ANG_ACC 1777.4 2366.7 3331.7 

2 Hz 
filtered 

ANG 151.3 124.3 172.9 
ANG_VEL 139.1 139.2 54.1 
ANG_ACC 550.5 1369.1 708.3 

4 Hz 
filtered 

ANG 151.7 126.1 172.1 
ANG_VEL 126.5 134.1 74.9 
ANG_ACC 531.0 1463.7 691.0 

6 Hz 
filtered 

ANG 155.6 133.0 177.9 
ANG_VEL 126.0 133.1 67.0 
ANG_ACC 513.6 1197.8 1013.3 
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4.4 Discussion 

Reach kinematics in the static environment suggests that angular kinematics of 

the right shoulder and elbow joint are qualitatively similar for all target directions 

although coordination characteristics of upper body segments vary as a function of 

target direction. When compared to other joints, the higher angular velocity and 

acceleration of the elbow indicate that this joint movement may contribute more 

significantly to the dynamic characteristics of upper body movements in reaching 

tasks. In addition, the “U-shaped” profile of the elbow joint angle indicates a flexion 

followed by an extension. In this two-phasic angular movement, elbow flexion may 

contribute to decrease the moment of inertia of the right arm, which reduces the 

arm resistance to rotation, thus making the arm transition shorter and more 

controllable. 

In addition, movement initiation differs between the joints and arm 

movements are not initiated before visual identification of the target location. After 

visual identification, arm transition to the region near the target is achieved and fine 

adjustment of the fingertip position at destination occurs with deceleration of arm 

movements. It explains the bell-shaped profile in the joint velocities during the 

aiming phase, thus corresponding to the differentiation of movement in the 

respective feed-forward and feedback control phases. 

Vibration induces significant alterations of joint trajectory and linear velocity 

predominantly along the vibration direction (z-axis). However, vibration in one 

direction generates body perturbation in other directions as well. This cross 

transmission may result from the nonlinearity in biomechanical properties of the 

upper body and from the difficulty in maintaining the balance while performing a 

reach task. This cross-effect may also be caused by the eccentricity of the mass 
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moment of inertia for multi-body segments, and the cross transmission may be 

more affected by biomechanical property variation associated with arm transition. 

Vibration may also influence all joint angular movements, and contribute to 

an increase in the peak velocity and acceleration for all joint movements. However, 

the consistency in the pattern of angular kinematics may not be altered by vibration, 

which suggests that movement coordination may not be fundamentally different in 

the static and vibratory conditions, despite the fact that the timing of joint 

movements and relative contribution of each joint may be altered during vibration 

(Yoon and Martin, unpublished data). 

 

4.5 Conclusions 

This study qualitatively characterized movement pattern and joint 

kinematics of reach movements in static and dynamic environments. The qualitative 

analysis reveals that movement trajectories in the vibratory environment may be 

described by their properties in a static environment to which an oscillation driven 

by the vibration input is superimposed. This qualitative analysis of reach 

trajectories serves as the basis of the next study, in which variation of vibration 

transmission along reach trajectory is investigated.  



 

 83 

CHAPTER 5 

Effects of Posture and Movement on Vibration Transmission through the 

Upper Limbs 

Vibration transmission to the human body is a function of both vehicle 

vibration characteristics and reach movement and posture. The majority of earlier 

studies investigating biomechanical responses to WBV have considered only a static 

posture excluding dynamic limb movements. A few recent studies have reported the 

effect of vehicle vibration on arm reaching movements by describing fingertip 

deviation from a desired trajectory. The present work investigates the variation of 

vibration transmission to upper extremities with changes in posture and movement 

along the intended reach trajectory under selected sinusoidal WBV conditions. 

Twenty-one subjects performed hand reach movements to a series of targets that 

consist of the final targets distributed in the right hemisphere and intermediate 

targets placed along the movement trajectories to the final target. Biodynamic 

responses of the upper body are analyzed as a function of posture, with-/without- 

visual control, and elbow flexion/extension. This study establishes the empirical 

database necessary to support a biodynamic model and may provide a promising 

groundwork for model development.  

5.1 Introduction

The main objectives of this work are to investigate the biodynamic 

characteristics of vibration transmission through the upper limbs while performing 
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a reaching task in selected vibration conditions for various posture/movement 

constraints and to provide an empirical support for the development of a 

biodynamic model. 

To achieve the objectives of this work, the first two studies (Chapter 3 - 4) 

investigated the characteristics of vibration transmission through upper body 

segments and reach kinematics of upper body joint under vibration exposure, as 

illustrated in Figure 1.1. It was first observed that vibration transmission through 

multi-body segments (the right shoulder, elbow and fingertip) vary as functions of 

vibration frequency and direction axis. This result was in agreement with earlier 

studies concerning the characteristics of transmissibility through the trunk of the 

seated human (Fairley and Griffin, 1989; McLeod and Griffin, 1989; Fairley and 

Griffin, 1990; Griffin, 1990; Kitazaki and Griffin, 1998; Mansfield and Griffin, 1998; 

Mansfield, 2005; Mansfield et al, 2006). The second study showed that vibration 

influences the trajectories of joint angular movements and their linear velocities; 

however, the pattern of joint angular kinematics remains consistent, as it is not 

qualitatively altered by vibration. On the basis of these analyses, an in-depth 

investigation of the vibration transmission through upper body segments as a 

function of reach posture and movements was pursued to determine more 

specifically biodynamic changes as a function of postural change associated with 

upper limb movements and of visual control for compensating WBV-induced 

pointing error at the fingertip. 

Several studies considering posture as an independent variable, have 

indicated that response of the seated human to vibration is as a function of fixed 

hand position and back support conditions (Fairley and Griffin, 1989; Kitazaki and 

Griffin, 1998; Matsumoto and Griffin, 2002; Paddan and Griffin, 2002; Rakheja et al, 

2002; Wang et al, 2004; Huang and Griffin, 2006; Mansfield et al, 2006). 
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Studies concerning the role of visual feedback in movement control have 

reported that upper limb movements were continuously controlled by visual 

feedback to smoothly modify the motor program by comparing the locations of the 

hand and the target (Prablanc et al, 1979a; Prablanc et al, 1979b; Prablanc et al, 

1986a; Péllisson et al, 1986b; Desmurget and Prablanc, 1997; Wallis et al, 2002; 

Hondzinski and Kwon, 2009). According to their results, gaze direction may be 

considered as an input signal for upper limb control, and the eye and hand 

movements are controlled in parallel rather than in series (Prablanc et al, 1979a; 

Hondzinski and Kwon, 2009). Interestingly, the durations of hand movements are 

not significantly different with or without visual information of the hand position 

(Prablanc et al, 1986a; Péllisson et al, 1986b). In addition, Desmurget and Prablanc 

(1997), suggested that despite joint redundancy in three-dimensional movements, 

the target posture was invariant when the movement context remained stable in a 

static environment. 

Therefore, this study analyzed variation in three-dimensional biodynamic 

responses through the upper limbs as a function of vibration frequency, reach 

direction, and posture/movement constraints. The specific objectives of this study 

are to investigate the effects of dynamic posture change along the reach direction, 

visually induced compensation, and elbow extension constraint at the end of a reach 

on vibration transmission through upper body segments. The design of this 

experiment and the analysis are based on the following hypotheses. 

 

 Changes in biomechanical properties of body segments associated with 

movement direction affect vibration transmission. 

 Performance degradation induced by vibration varies with target location 

corresponding to reach direction. 
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 Constraints on elbow flexion induce significant differences in vibration 

transmission to the end effector. 

 

The results provide empirical support for understanding vibration-induced 

biodynamic alterations, which may contribute to the development of a biodynamic 

model, to the enhancement of workplace design, to the better design of control 

interfaces used in vibratory environments, and to the determination of movement 

strategies to reduce WBV interference. 

 

5.2 Methods 

5.2.1 Biodynamic Reach Experiment II 

5.2.1.1 Subject 

Twenty-one right-handed young adults participated in the experiment 

voluntarily. All were in good health and had no known history of injuries such as 

musculoskeletal or neurological disorders, chronic back pain, or acute back pain. 

The average and standard deviation values (AVG ± SD) of age and anthropometric 

data including stature, weight, torso length, right upper arm and forearm lengths, 

and hand length are listed in Table 5.1. 

Table 5.1: Anthropometry Data 

 Age 
(years) 

Weight 
(kg) 

Statue 
(cm) 

Torso 
length 
(cm) 

Upper-
arm 

length 
(cm) 

Forearm 
length 
(cm) 

Hand 
(wrist-

fingertip) 
length 
(cm) 

AVG 
± SD 

29 
±5.1 

79.2 
±10.9 

177.9 
±8.0 

46.6 
±2.4 

34.1 
±1.9 

27.6 
±1.7 

17.6 
±1.3 
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5.2.1.2 Experimental Setup 

The experiment designed on the basis of the preceding analyses was 

conducted on the RMS at the U.S Army TARDEC (Figure 5.1). Six infrared cameras 

were positioned to capture the volume encompassing the right arm-hand reach 

space for in-vehicle operation. Two-way data acquisitions were used for recording 

the relative displacements of upper body segments of individuals performing reach 

movements and measuring the accelerations of vibration transmitted to the upper 

body through the seat. 

 

 

 

Figure 5.1: Reach Experiment on the Ride Motion Simulator 
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movements. For anthropometric measures and system calibration, a T-pose and the 

range of motion were recorded for each subject (Figure 5.4). The static reference 

posture, the range of motion and reach movements were sampled at 150Hz by the 

motion analysis system.  

 
Table 5.2: Marker Definition 

Body Segment # of Markers Marker Name 

Head (on a soft helmet) 4 RFHD, RBHD, LFHD, LBHD 

Centerline of a torso 4 C7, CLAV, MIDSTRN, STRN 

Hip 2 LASI, RASI 

Right Arm-hand 7 RSHO, RUPA, RELB, RFRA, RWRA, 
RWRB, RFIN 

Left Arm-hand 6 LSHO, LUPA, LELB, LFRA, LRWA, 
LRWB 

Total 23  
  

 

Figure 5.3: Marker definition on a human body: R=right, L=left, FHD=front-
head, BHD=back-head, CLAV=Clavicle, MIDSTRN=mid-sternum, 
STRN=sternum, SHO=shoulder, UPA=upper-arm, ELB=elbow, FRA=fore-arm, 
WR=wrist, FIN=finger 

 

 

MIDSTRN 

STRN 
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Figure 5.4: T-pose for anthropometric measure and calibration 
 

Vibration Acceleration Measurement 

To determine vibration transmission from the cab floor through the seat, 

four tri-axial accelerometers were used to record cab, seat, and hip joints vibration 

(Figure 5.5). Hence, 12-channel accelerometer signals were recorded by a VICON 

Workstation, which synchronized the analog signals with the motion capture data 

(Table 5.3 and Figure 5.2). 
 

          
               (a) for cab floor & seat                                        (b) for hip joints 

Figure 5.5: Tri-axial accelerometer attached to cab/seat/hip interface 
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Table 5.3: Tri-axial Accelerometers on a Cab and Seat 

Channel No. Analogue Signal Tri-axial Accelerometer 

1 Cab floor – X 
Tri-axial Accelerometer #1 2 Cab floor – Y 

3 Cab floor – Z 
4 Seat – X 

Tri-axial Accelerometer #2 5 Seat – Y 
6 Seat – Z 
7 Left Hip – X 

Tri-axial Accelerometer #3 8 Left Hip – Y 
9 Left Hip – Z 

10 Right Hip – X 
Tri-axial Accelerometer #4 11 Right Hip – Y 

12 Right Hip – Z 

5.2.1.4 Vibration Condition 

The RMS generated eleven vibration conditions selected to characterize 

vibration transmission through the upper limbs at discrete vibration conditions 

similar to vehicle vibrations (Table 5.4). In the reference condition, no vibration was 

applied. Nine one-dimensional vibration conditions were generated by the 

combination of three discrete sinusoidal vibration frequencies (2, 4, or 6 Hz) and 

three vibration directions (vertical, fore-and-aft, or lateral). The vibration 

frequencies were selected on the basis of the frequency range of high sensitivity of 

the human upper body and the spectra of vehicle vibrations as described in Chapter 

3 (Lee and Pradko, 1968; McLeod and Griffin, 1989; Fairley and Griffin, 1990; 

Griffin, 1990). The peak acceleration magnitudes were 0.3 G for the vertical and 

were 0.2 G for the fore-and-aft and the lateral vibration directions respectively. The 

same magnitude was used for all frequencies in the same direction to prevent the 

interaction between vibration frequency and magnitude, since variation of vibration 
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magnitude may reflect the nonlinear features in human responses to vibration 

(McLeod and Griffin, 1989). An additional dynamic condition corresponding to a 

three-dimensional random vibration input was used to simulate a HMMWV vehicle 

driven over rough terrain. The biodynamic analysis of this work was limited to 

investigate the effects of three vertical sinusoidal vibrations on transmission 

through the upper limbs and their influence on transmission along transverse axes. 

Hence, three-dimensional transmissions along the auto-axis and the cross-axes are 

analyzed. The vertical vibration conditions were selected as the dominant 

component that seated operators commonly are experienced in most vehicles. 

Table 5.4: RMS inputs 

No. Frequency Direction Magnitude 

1 No Vibration 

2 2 Hz Vertical 0.3 G 

3 2 Hz Fore-and-Aft 0.2 G 

4 2 Hz Lateral 0.2 G 

5 4 Hz Vertical 0.3 G 

6 4 Hz Fore-and-Aft 0.2 G 

7 4 Hz Lateral 0.2 G 

8 6 Hz Vertical 0.3 G 

9 6 Hz Fore-and-Aft 0.2 G 

10 6 Hz Lateral 0.2 G 

11 3D Random (HMMWV pitch) 

5.2.1.5 Target Directions and Intermediate Stops 

The dynamic task consisted in reaching to seven target directions distributed 

in the right hemisphere of a vehicle operator seat; upward [TG1], forward and 

upward [TG2], forward [TG3], diagonal [TG4], diagonal and upward [TG5], lateral 
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near [TG6], and lateral far [TG7] (Figure 5.6). These seven directions represent the 

reach space of the right arm-hand. Along each target direction, two intermediate 

stops were assigned on the basis of fingertip reach trajectories derived from the 

previous analysis of reach trajectory to the same target directions (Table 5.5). These 

intermediate stops were designed to investigate variation of vibration transmission 

as a function of posture changed along the reach trajectory. The locations of all 

targets and stops were determined with respect to the coordinated system centered 

at the right top of the steering handle (see Table 5.5). All participants were asked to 

reach the targets in a random order, and the intermediate stops along the 

movement trajectory were reached in the natural near to far order. 

 

 

Figure 5.6: Target Directions and Cartesian Coordinate 
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Table 5.5: Reach Target Directions and Locations 

No. Target Direction Sub-target  Location (x, y, z) [mm] 

1 Upward 

 

TG 1-1 
TG 1-2 
TG 1-3 
TG 1-4 

(0, 0, 0) 
(65, -45, 80) 

(139, -146, 413) 
(143, -357, 678)  

2 Forward & 
Upward 
 

 

TG 2-1 
TG 2-2 
TG 2-3 
TG 2-4 

(0, 0, 0) 
(65, -45, 80) 
(93, 8, 194) 

(132, 133, 269) 

3 Forward 

 

TG 3-1 
TG 3-2 
TG 3-3 
TG 3-4 

N/A 
N/A 
N/A 

(206, 139, -171) 

4 Diagonal 

 

TG 4-1 
TG 4-2 
TG 4-3 
TG 4-4 

(0, 0, 0) 
(65, -45, 80) 

(233, -26, 35) 
(426, 44, -66) 

5 Diagonal & 
Upward 
 

 

TG 5-1 
TG 5-2 
TG 5-3 
TG 5-4 

(0, 0, 0) 
(209, -7, 118) 

(298, -83, 242) 
(564, -274, 420) 

6 Lateral 
Near 
 

 

TG 6-1 
TG 6-2 
TG 6-3 
TG 6-4 

(0, 0, 0) 
(233, -26, 35) 
(468, -110, 3) 

(578, -271, -114) 

7 Lateral Far 
 

 

TG 7-1 
TG 7-2 
TG 7-3 
TG 7-4 

(0, 0, 0) 
(233, -26, 35) 

(544, -172, 17) 
 (870, -295, -114) 
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5.2.1.6 Movement Constraints in Reaching Task 

All participants performed the reaching task in three sessions following 

different movement constraints. All sessions included the eleven vibration 

conditions. Movement constraints were used to investigate the effects of posture 

change along the reach trajectory, to identify the effects of visual compensation, and 

to analyze the influence of elbow flexion on WBV transmissibility. All reaching tasks 

were performed at the self-determined speed, and were repeated in a random 

order. 

Session I: Intermediate Reach without Visual Compensation 

Session I concerned variation in transmissibility along reach trajectory when 

visual feedback is not allowed. Participants were required to point to a series of a 

target placed along the anticipated finger trajectory in six target directions: upward 

[TG1], forward and upward [TG2], diagonal [TG4], diagonal and upward [TG5], 

lateral near [TG6], and lateral far [TG7]. Forward reach [TG3] was excluded since 

the distance was too short to allocate additional intermediate stops. 

Each target direction includes two intermediate stops between the initial and 

final positions of the finger along the reach trajectory derived from the analysis 

presented in Chapter 4. At the intermediate stop, the participant was requested to 

maintain the corresponding posture for three seconds. While maintaining the 

pointing posture, the participant must return the gaze to the initial fixation 

direction, which prevented the use of visual feedback to control the hand position 

(Figure 5.7). Then, the subject resumed the movement to the next stop or the final 

target. 
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Figure 5.7: Session I - Pointing posture w/o visual compensation 

 

Session II: Intermediate Reach with Visual Compensation 

As in Session I, participants were required to point to a series of targets along 

the anticipated finger trajectory for each reach direction. However, in this Session, 

continuous visual feedback of the right hand while pointing at the target was 

allowed to compensate the pointing errors induced by vibration (Figure 5.8).  
 

    
Figure 5.8: Session II - Pointing posture w/ visual compensation 
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Session III: End Reach with Different Elbow Flexion 

The participant was assigned to reach and point only to the final target for six 

reach directions, without stopping at intermediate targets. These six directions 

excluded the lateral far target [TG7], but included the forward target [TG3] instead, 

since [TG7] can be reached only when the elbow is fully extended while [TG3] can 

be reached with elbow extended or flexed. For all reaches, two final pointing 

postures were used; 1) elbow fully extended [EE] and 2) elbow flexed [EF] (Figure 

5.9). Visual compensation by feedback control was not allowed while maintaining 

the final posture, as in Session I. 

 

    
(a) Elbow fully extended postures 

  

    
(b) Elbow flexed postures 

Figure 5.9: Session III – Pointing postures with different elbow flexion 
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5.3 Results 

5.3.1 Variation of WBV transmission along the Fingertip Trajectory 

From the reach movement data obtained from session I, variation of WBV 

transmission through upper body segments under the selected sinusoidal vibrations 

was quantified as a function of the reaching posture for six reach directions.  

5.3.1.1 Upper Body Displacement and Joint Angle 

Typical three-dimensional displacement samples of the upper limbs at three 

digitalized stops along the fingertip trajectory when reaching to the diagonal and 

upward target [TG5] under the 4 Hz vertical sinusoidal vibration are presented in 

Figure 5.10.  As the hand moves toward the final target, vertical perturbation of the 

elbow joint increases and the cross-axis perturbations of the finger remarkably 

increase. The finger movement indicates the presence of low frequency components 

as well.  

Joint angles of the right shoulder and elbow are illustrated in Figure 5.11, 

corresponding to intermediate postures and final pointing posture along the 

trajectory. As the hand is closer to the final destination, both joint angles increase 

however, perturbation of the shoulder angle decreases while the perturbation of the 

elbow increases. 
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Vibration transmission of the upper limbs is quantified by Eq. 5.1 and 5.2, for 

all directional reaches including intermediate stops under the vertical vibration 

exposure. To identify the significance of the effects of independent variables such as 

intermediate posture, target location, and vibration frequency, a three-way ANOVA 

was performed for all transmission information (x-, y-, and z-components and total 

transmission) obtained from session I (Table 5.6). Intermediate posture and target 

location as well as vibration frequency significantly affects the z-component of 

transmission and the total transmission to the shoulders and the finger. This 

influence is more pronounced for the cross-axis (x- and y- directions) than for the 

auto-axis to the elbow. 

For a more detail analysis of vibration transmission, the six reach directions 

were divided into three groups: horizontal reaches (diagonal [TG4] and lateral near 

[TG6]), upward reaches requiring shoulder flexion (upward [TG1], forward-upward 

[TG2], and diagonal-upward [TG5]), and far reach requiring torso leaning (lateral far 

[TG7]). These three groups show similarity of WBV transmission through the upper 

body segments (see appendix A). A 2-way ANOVA was conducted for three target 

directions – [TG4], [TG5], and [TG7] - representing each reach group respectively 

(Table 5.7, 5.8, and 5.9). 

Table 5.7 indicates that for diagonal reach [TG4], no significant change in 

transmission occurs through all body segments along the reach trajectory (All p >> 

0.1). For diagonal-upward reaches [TG5], only the z-component through the elbow 

and total transmission through the finger are significantly affected and increase by 

changes in posture while transmission through two shoulders are not significantly 

influenced (p >> 0.1 for the left shoulder and p > 0.05 for the right shoulder, Table 

5.8). For lateral far reach [TG7], both the z-component and the total transmission 

through the right shoulder and through the finger are significantly
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Table 5.6: 3-way ANOVA [Inter-Pose, Target location, and Vibration Freq.] 

 
Transmission (lSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.0282 0.6309 0 0 
Target-L 5 0.0001 0.2896 0.0026 0.0030 
Vib-Freq 2 0 0 0 0 
Pose × Target-L 10 0.0132 0.7740 0.1920 0.4589 
Pose × Vib-Freq 4 0.0019 0.0022 0 0.0001 
Target-L × Vib-Freq 10 0.0007 0.1257 0.0059 0.0058 

 
Transmission (rSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0 0.2299 0 0 
Target-L 5 0.0042 0.0238 0.0003 0.0003 
Vib-Freq 2 0 0 0 0 
Pose × Target-L 10 0.0943 0.1958 0.0413 0.0262 
Pose × Vib-Freq 4 0.0002 0.0082 0.0039 0.0030 
Target-L × Vib-Freq 10 0.0516 0.0218 0.0061 0.0085 

 
Transmission (rELB) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.0004 0 0.0098 0.5652 
Target-L 5 0.0009 0.0002 0.3357 0.1248 
Vib-Freq 2 0 0 0 0 
Pose × Target-L 10 0.0356 0.0122 0.5178 0.3613 
Pose × Vib-Freq 4 0.0094 0 0.1661 0.5568 
Target-L × Vib-Freq 10 0.0711 0.0704 0.0547 0.0908 

 
Transmission (rFIN) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.1465 0.0017 0.0028 0 
Target-L 5 0.6358 0.0021 0 0.0015 
Vib-Freq 2 0 0 0 0 
Pose × Target-L 10 0.1550 0.0266 0.0051 0.0063 
Pose × Vib-Freq 4 0.0166 0.1541 0.0610 0.0436 
Target-L × Vib-Freq 10 0.5642 0.0334 0.1036 0.5789 
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Table 5.7: 2-way ANOVA for diagonal reach [ TG4 ] 

 
Transmission (lSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.9506 0.6959 0.2277 0.4086 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0.9868 0.9325 0.5517 0.7121 

 
Transmission (rSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.6472 0.4782 0.9694 0.9867 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0.7325 0.0542 0.9116 0.9418 

 
Transmission (rELB) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.1178 0.0246 0.0682 0.6393 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0.5933 0.0971 0.2033 0.7785 

 
Transmission (rFIN) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.1582 0.0001 0.4839 0.5804 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0.2386 0.0896 0.2938 0.2881 

 

influenced and increase (p << 0.01 for the right shoulder and the finger, Table 5.9), 

however transmission through the left shoulder and the elbow are not significantly 

affected (p > 0.05 for the left shoulder and p > 0.1 for the elbow). 

As indicated above, WBV transmission changes along the reach trajectory are 

dependent on the direction of reach (final target location). That is, in the horizontal 

reaches, there is no significant change in variation of WBV transmission. 

Furthermore, all components of auto-axial, cross-axial, and total transmissions are 

strongly influenced by vibration frequency (p < 0.05). 
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Table 5.8: 2-way ANOVA for diagonal-upward reach [ TG5 ] 

 
Transmission (lSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.9418 0.1067 0.4606 0.7342 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0.9506 0.0942 0.3741 0.6824 

 
Transmission (rSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.0338 0.1284 0.2196 0.0739 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0.0121 0.1091 0.5687 0.2221 

 
Transmission (rELB) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.0006 0.0005 0.0114 0.6888 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0 0.0011 0.0431 0.1409 

 
Transmission (rFIN) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.0319 0 0.6416 0.0072 
Vib-Freq 2 0 0 0.0112 0.0163 
Pose × Vib-Freq 4 0.0727 0.0062 0.3137 0.4010 

 

Three-dimensional and total transmissions through the upper limbs are 

presented in Figure 5.13 – 5.21, for three representative reach directions 

respectively. The three components of transmission are demonstrated by bar plots, 

in which cross-axial transmissions are illustrated as thinner bar than auto-axial 

transmissibility is. Auto-transmission and total transmission are connected by a 

solid line and a dotted-line respectively. 

 



 

 106 

Table 5.9: 2-way ANOVA for lateral far reach [ TG7 ] 

 
Transmission (lSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.1831 0.4016 0.0469 0.0868 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0.3379 0.3260 0.1354 0.1346 

 
Transmission (rSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.2150 0.1185 0 0.0001 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0.0007 0.0542 0.0109 0.0133 

 
Transmission (rELB) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0 0 0.4117 0.2096 
Vib-Freq 2 0 0 0 0 
Pose × Vib-Freq 4 0 0 0.0965 0.0026 

 
Transmission (rFIN) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Pose (Intermediate) 2 0.0013 0 0.0106 0 
Vib-Freq 2 0 0 0.9178 0 
Pose × Vib-Freq 4 0.0026 0 0.6649 0.1910 

 

For diagonal reach [TG4], there is no significant change in vibration 

transmission, induced by posture changes along the reach trajectory (Figure 5.13, 

5.14, and 5.15). The transmission trend through the upper limbs is almost the same 

for the intermediate or final postures in each vibration condition. 

For diagonal-upward reach [TG5], under the 2Hz vertical vibration, 

perturbation of the elbow and finger increase monotonously as the hand is moving 

toward the target (Figure 5.16). Under the 4Hz vibration, as the arm is elevated to 

reach the final target, the auto-axis perturbation of the elbow significantly increases 

while the cross-axis perturbations decrease. However, the auto-axis perturbation of 
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the finger decreases and the cross-axis perturbations increase. The total 

transmission to the finger increases as the hand is moving in direction of the target, 

since the amount of increase in cross-transmission is bigger than the amount of 

decrease in auto-transmission. In addition, the total transmission is larger for the 

elbow than the shoulder. Thus, the trend of vertical (z-axis) transmission through 

the upper limbs changes with the hand movements, but the trend of total 

transmission is not significantly altered. Interestingly, under the 6Hz vibration 

exposure, the total transmission through the finger largely increases when the hand 

arrives near the final target. For the final posture, auto-transmission remains small; 

however cross-transmissions of the finger are relatively larger. 

For lateral-far reach [TG7], transmissibility through the upper limbs does not 

show significant change between intermediate postures. However, at the end of 

reach to the final target, the peak of vibration transmission of the finger increases 

remarkably. This characteristic is more pronounced for the 4Hz and 6Hz than for 

the 2Hz vibration exposure. Especially for the 6Hz vibration, cross-axis transmission 

of the fingertip is relatively high and the difference between auto-transmission and 

total transmission is the largest among all vibration and reach conditions.  
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Table 5.10: 3-way ANOVA for Vision, Target location, and Vibration Frequency 

 
Transmission (lSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Vision 1 0.0356 0.1936 0.0397 0.5175 
Target-L 5 0.0210 0.0641 0.0009 0.0055 
Vib-Freq 2 0 0 0 0 
Vision × Target-L 5 0.0500 0.0148 0.7925 0.2509 
Vision × Vib-Freq 2 0.4029 0.0581 0.4308 0.2167 
Target-L × Vib-Freq 10 0.1358 0.0322 0.0037 0.0101 

 
Transmission (rSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Vision 1 0.9389 0.1267 0.5286 0.2755 
Target-L 5 0 0.0001 0 0 
Vib-Freq 2 0 0 0 0 
Vision × Target-L 5 0.8022 0.8421 0.6457 0.5877 
Vision × Vib-Freq 2 0.0824 0.7329 0.3782 0.2947 
Target-L × Vib-Freq 10 0.0001 0.0012 0 0 

 
Transmission (rELB) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Vision 1 0.7607 0.9832 0.0007 0.0011 
Target-L 5 0 0 0 0 
Vib-Freq 2 0 0 0 0 
Vision × Target-L 5 0.1597 0.7170 0.2396 0.4117 
Vision × Vib-Freq 2 0.3622 0.3204 0.0060 0.0056 
Target-L × Vib-Freq 10 0 0 0 0 

 
Transmission (rFIN) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Vision 1 0.0599 0.0228 0.0096 0.0027 
Target-L 5 0.0241 0.0001 0 0.0002 
Vib-Freq 2 0 0 0 0 
Vision × Target-L 5 0.3038 0.1754 0.6322 0.7170 
Vision × Vib-Freq 2 0.6992 0.4488 0.0088 0.0666 
Target-L × Vib-Freq 10 0.0140 0.0039 0.0039 0.0615 
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5.3.3.2. Frequency Response and Vibration Transmission through Body 

Segments 

Figure 5.32 and 5.33 illustrates the frequency responses of upper body joints 

for the lateral reach [TG4] and diagonal-upward reach [TG5] under the 4 Hz vertical 

vibration. The remarkable distinctions between elbow extended and flexed postures 

are that all three-directional responses of the elbow are larger and that the y-

component of response at the finger is larger and z-component of response is 

smaller, for the flexed posture. 

The 3-way ANOVA including elbow flexion, target location, and vibration 

frequency as main effects (Table 5.11), indicates that transmission through all upper 

body segments is affected by elbow posture as well as target location and vibration 

frequency. Especially, transmission of the elbow joint is significantly affected by the 

interaction between elbow posture and vibration frequency. 

Three-dimensional transmission and total transmission through upper body 

segments when pointing to [TG4, diagonal reach] and [TG5, diagonal-upward] are 

illustrated in Figure 5.34 and 5.35. When the elbow is fully extended, the trend of 

transmission through the upper limbs is not altered by target location (see appendix 

A). Under the 2 Hz vibration, the magnitude of elbow extension does not affect 

transmission. Under the 4 Hz vibration, transmission through the elbow is larger 

with the elbow flexed than the elbow extended posture while transmission through 

the fingertip is smaller. Under the 6 Hz vibration, there is no significant difference in 

transmission through the shoulders and the elbow between two postures. 

Meanwhile, elbow flexed posture leads to a decrease in the z-component of 

transmission through the fingertip and an increase in cross-axis transmission 

through the fingertip; hence no significant difference in total transmission through 

the finger was observed. 
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Table 5.11: 3-way ANOVA for Elbow, Target location, and Vibration Frequency 

 
Transmission (lSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Elbow-F 1 0.0378 0.0002 0 0.0001 
Target-L 5 0.0151 0.0076 0.0095 0.0120 
Vib-Freq 2 0 0 0 0 
Elbow-F × Target-L 5 0.6689 0.1549 0.4304 0.8255 
Elbow-F × Vib-Freq 2 0.4084 0.0007 0.0053 0.0234 
Target-L × Vib-Freq 10 0.0587 0.0128 0.4503 0.5465 

 
Transmission (rSHO) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Elbow-F 1 0.5546 0.0003 0.0057 0.0243 
Target-L 5 0.0001 0.0032 0.0009 0.0005 
Vib-Freq 2 0 0 0 0 
Elbow-F × Target-L 5 0.0722 0.3814 0.1081 0.0811 
Elbow-F × Vib-Freq 2 0.1311 0.0015 0.0954 0.2442 
Target-L × Vib-Freq 10 0.0094 0.0764 0.0141 0.0134 

 
Transmission (rELB) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Elbow-F 1 0.0074 0.0024 0.0003 0 
Target-L 5 0.0016 0.0029 0.0052 0.0010 
Vib-Freq 2 0 0 0 0 
Elbow-F × Target-L 5 0.2694 0.3014 0.4974 0.5819 
Elbow-F × Vib-Freq 2 0.0097 0.0312 0.0001 0 
Target-L × Vib-Freq 10 0.0397 0.1353 0.0561 0.0395 

 
Transmission (rFIN) 

DoF p (TX) p (TY) p (TZ) p (TTOTAL) 
Elbow-F 1 0.6218 0.5277 0.0062 0.0013 
Target-L 5 0.0371 0 0.6577 0.0009 
Vib-Freq 2 0 0 0 0 
Elbow-F × Target-L 5 0.1959 0.0162 0.0457 0.0312 
Elbow-F × Vib-Freq 2 0.0435 0.6147 0.0307 0.0023 
Target-L × Vib-Freq 10 0.2084 0.0001 0.7657 0.0314 
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5.4 Discussion 

Vibration transmission through the upper body segment while performing a 

reach task is a function of posture and movement constraints as well as reach 

direction and vibration frequency. Vibration frequency is the dominant factor 

determining biodynamic responses and WBV transmission. 

Specifically, posture change along the reach trajectories may affect vibration 

transmission through upper body segments, depending on movement direction and 

target distance. When a horizontal reach is required within the arm length distance, 

transmission is not significantly altered during the hand transition. However, when 

an upward reach is required, vibration transmission through the elbow increases 

largely. Elevation of the arm may lead to increase of muscle tension in a upper-arm 

and the higher center of mass of the arms may be much more difficult in maintaining 

stability, despite the fact that the upper-arm moment is smaller in this posture than 

in the arm extended forward posture. This phenomenon may be associated with the 

difference between the muscles to be controlled. In addition, when far reach beyond 

the arm length is required, torso leaning is necessary to complete a reaching task, 

thus producing the remarkable increase in vibration transmission through the 

fingertip.  This instability may result from the large increase in the moment arm of 

the hand and the significant increase in torso instability associated with torso 

bending. 

When visual feedback of the target location and hand position is allowed, 

vision-guided compensation can reduce slightly the peak values of transmission 

through all body segments, and reduce the contribution of a low frequency 

component in body perturbation. This stabilization may result from an 

improvement of body segment coordination to counteract the vibration-induced 

perturbation. However, visual compensation is not an active solution for improving 
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the task performance in vibratory environments, since vision compensation does 

not affect the trend of transmission along the path. 

The posture fully extending the elbow influences WBV transmission for all 

reach directions, which suggests that stabilization of the arm is based primarily on 

elbow rather than shoulder muscle control. When the elbow is extended, the arm is 

likely to have to the same stiffness regardless of the azimuth or elevation; hence 

shoulder muscles may not be able to counteract the vibration-induced movement of 

the hand. The elbow constraint also interacts with vibration frequency. Under the 

4Hz vibration exposure rather than under the 2 Hz and 6 Hz, effects of elbow 

constraint on WBV transmission along the path are more pronounced. The elbow 

extended posture contributes to a decrease in transmission through the elbow joint 

and an increase in transmission through the fingertip for all movement directions, 

except for overhead direction [TG1]. On the contrary, when the arm is elevated for 

upward reaches, the elbow flexed posture allows a large amount of vibration to be 

dissipated through the elbow and reduces the perturbation of the finger in the 

vertical direction.  The elbow may play the role of a damping device that dissipates 

perturbation energy transmitted through the upper arm. However, since the hand is 

not anchored, cross-transmission increases along the transmission path from the 

shoulder to the fingertip, especially for the higher vibration frequency. 

The interesting feature of WBV transmission through multi-body segments is 

that although auto-axial transmission through the upper limbs is small, the total 

transmission may be large due to an increase in large cross-transmission through 

the body segments and the orientation of the “elbow shock absorber” system 

relative to the direction of vibration. The cross-effects are more pronounced under 4 

Hz and 6 Hz WBV than under 2 Hz vibration exposure. Therefore, for the proper 

assessment of the reach performance and the realistic prediction of WBV responses, 

cross-functional transmission must be also considered to provide a more complete 
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description of vertical vibration effects. Therefore, a biomechanical model must be 

developed on the basis of a multi-degrees-of-freedom system and not limited to the 

model simulating one directional motion. 

5.5 Conclusions 

These empirical analyses were performed to understand biodynamic 

characteristics of body segments during movements in vibratory environments. 

Vibration transmission through the upper limbs was determined as a function of 

vibration frequency, reaching movement direction and associated posture, postural 

variation along movement trajectory, visual compensation, and elbow 

extension/flexion. The present results constitute the empirical database that may be 

useful in the development of an active biodynamic model for the future work.  The 

results also suggest that a model simplification may be derived from similarities in 

the propagated transmission through the upper limbs for movement direction zones. 
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CHAPTER 6 

 Empirical Support for a Model Representing the Biodynamic Response to 

Whole-Body Vibration during Upper Limb Movements in the Seated Posture 

For the proper evaluation of WBV effects on reach performance and 

mechanical behavior of the seated operator in a dynamic environment, this work 

has investigated characteristics of WBV transmission as a function of vibration 

frequency, movement condition, and visual feedback. The integration of all results 

provide the groundwork for the development of a biomechanical model capable of 

simulating reach movements and performance of the upper limbs under WBV 

exposure. This model may also be used to evaluate the efficiency of suspension 

systems designed to reduce vibration transmission to vehicle operators. 

6.1 Introduction
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In order to effectively improve the designs of controls and workplaces for 

better performance of vehicle operators in vibratory environments, it is 

indispensible to understand the mechanism of upper body movements in the 

required task and the biodynamic responses of the upper body under WBV 

exposure. 

Numerous studies have extensively analyzed kinematic features of arm 

movements and upper-body reach postures in static environments (Prablanc et al, 

1979; Morraso, 1981; Soechting and Lacquaniti, 1981; Atkeson and Hollerbach, 

1985; Jeannerod and Marteniuk, 1992; Wang, 1991; Soechting et al, 1995; Haggard 

et al., 1995; Jung et al, 1995; Desmurget and Prablanc, 1997; Gielen et al, 1997; 

Gottlieb et al, 1997; Jeannerod et al, 1998; Wang, 1999; Zhang and Chaffin, 2000; 

Barreca and Guenther, 2001; Faraway, 2003; Kim, et al; 2004). They found invariant 

features in pointing and reaching movements concerning the hand trajectory and 

joint angular velocity profiles, In addition, several arm movement models based on 

an inverse kinematics approach or optimization methods have been derived from 

these studies (Rosenbaum et al, 1995; Jung et al, 1996; Zhang et al, 1998; Wang, 

1999; Park et al, 2002; Jax et al, 2003; Kang et al, 2005). However, all these 

investigations were limited to small ranges of motion in static conditions. Therefore, 

these models may not be extended to the reach movements performed in vibratory 

environments. 

To identify vibration responses of the human body, many studies have 

attempted to develop biomechanical models (Amirouche, 1987; Fritz, 1998; Wei and 

Griffin, 1998; Harrison et al, 2000; Hinz et al, 2001; Holmlund and Lundstrom, 2001; 

Griffin, 2001; Matsumoto and Griffin, 2001; Seidel and Griffin, 2001; Seidel et al, 

2001; Paddan and Griffin, 2002; Rosen and Arcan, 2003; Kim et al, 2005; Yoshimura 

et al, 2005; Liang and Chiang, 2006; Mansfield et al, 2006; Mansfield et al, 2007; 

Okunribido et al, 2007; Oullier et al, 2009). The majority of these studies have 
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considered a multi degree-of-freedom system consisting of multiple mass-spring-

damper system designed to estimate the effects of vibration on the spinal system of 

the seated human (Amirouche, 1987; Fritz, 1998; Wei and Griffin, 1998; Rosen and 

Arcan, 2003; Kim et al, 2005; Yoshimura et al, 2005; Stein et al, 2007). Limited to the 

upper torso in the static postures, their models did not include the arm movements. 

However, to represent and simulate the effects of vibration on manual performance, 

a model must consider vibration transmission through the arm-hand system in 

various configurations. 

To overcome this limitation, the present work was initiated to establish the 

groundwork for the development of a biomechanical model. This chapter describes 

how future research for a model development may be expanded based on the 

estimation of WBV transmission through multi-body segments as a function of 

upper body posture and vibration characteristics. 

6.2 Groundwork for a Biodynamic Response Model 

For the development of manageable biomechanical model, it is necessary to 

limit the degrees-of-freedom of the model and thus find possible simplifications by 

exploring experimental data. The biomechanical or physiological properties 

dominantly affecting reach kinematics or dynamic characteristics of the upper body 

segments need to be defined as well, since they influence muscle/joint stiffness and 

damping. 

The biomechanical response model derived from this work focuses on the 

responses at the right shoulder, the elbow, and fingertip along the transmission path 

to the hand in a reaching task (see Figure 6.1). A tensor of transmission including 

auto-axial and cross-axial transmission was considered to quantify WBV response 

(see Eq.5.1), since the vertical vibration input produces the relative motions of 
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upper body segments in the horizontal plane as well as the response in the vertical 

direction as reported in previous chapters. 

Figure 6.2 illustrate a simple example model based on five-lumped-mass 

system representing the multi-segmental upper body. This model must be extended 

to 3-dimensional representation with at least eleven degrees-of-freedom (1-cab, 3-

trunk, 3-upperarm, 3-forearm-hand, and 1-head) for realistic modeling and 

simulation of upper body movements under vibration exposure.  

 

 

Figure 6.1: Vibration input and human body segment responses through the 
biodynamic system 
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Figure 6.2: The simple biomechanical model to represent the upper body 
segments with equivalent parallel/series elements. The control of joints or 
segment stiffness is not represented. 
 

The mass of body segments can be estimated by the percentage distribution 

of total body weight according to different segmentation plans (Chaffin, 1999; Table 

B.1). Joint stiffness can be derived from hand stiffness (Flash and Mussa-Ivaldi, 

1990). Hand stiffness [ K ] can be estimated by the relationship between force [ F ] 

and displacement vectors [ dx 

F K dx= −

] (Eq.6.1). The shape and orientation of the hand 

stiffness ellipse are highly dependent on arm configuration Once the force and 

displacement vectors are measured for a given hand position, the matrix of hand 

stiffness can be obtained by a linear least squares regression algorithm.  

 
          ………………………………     (Eq. 6.1) 

 

The joint stiffness matrix [ R ] is relating joint torques [ T ] to joint angles 

[ dθ ] (Eq.6.2), RSS and REE are the net shoulder and elbow stiffness , and RSE and RES 

relate shoulder torque to elbow displacement, and RES relates elbow torque to 

shoulder displacement respectively (Eq.6.3). The joint stiffness matrix [ R ] can be 
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derived from hand stiffness matrix [ K ] and the jacobian matrix [ J ] relating hand 

velocity to joint angular velocity (Eq.6.4). 

 

T R dθ=            ………………………………     (Eq. 6.2) 

 

SS SE S T T

ES EE T E T

R R R R R
R

R R R R R
+   

= =   +  
           …………       (Eq. 6.3) 

 
TR J K J=         ………………………………     (Eq. 6.4) 

 

In addition, joint stiffness is dependent on muscle activity. For example, a 

relationship between the EMG signals from the biceps, long head of triceps, lateral 

head of triceps, anterior deltoid, lateral deltoid, posterior deltoid, and pertoralis 

muscles and joint stiffness has been proposed (Flash and Mussa-Ivaldi, 1990). 

Furthermore, these authors also indicated that joint stiffness and EMG amplitudes 

were functions of shoulder and elbow joint angles. 

As presented in Chapter 5, three groups of reach direction were identified 

based on WBV transmission characteristics through the upper body segments. TG4 

[diagonal reach], TG5 [diagonal-upward reach], and TG7 [lateral far reach] were 

selected as representative targets for each group. The shoulder and elbow angles 

while reaching the targets are listed in Table 6.2. Three-dimensional reach postures, 

joint trajectories in task space, frequency responses at selected landmarks, and peak 

transmission tensors are illustrated in Figure 6.3, 6.4 and 6.5 for the representative 

reaches respectively. WBV transmission through the right shoulder, elbow, and 

fingertip are listed in Table 6.2 – 6.9. These biomechanical responses associated 

with the estimation of the biomechanical properties of the multi-linkage system can 
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be used to develop a biomechanical model to simulate the seated reach movements 

under vibration exposure. 
 
 

Table 6.1: Shoulder and elbow joint angles during reaching three 
representative target locations, [TG4], [TG5], and [TG7] 

 

Joint 
Angle 

TG4 
(Diagonal) 

TG5 
(Diagonal-Upward) 

TG7 
(Lateral Far) 

SHO (°) ELB (°) SHO (°) ELB (°) SHO (°) ELB (°) 
Min 125.88 113.70 136.31 108.54 150.88 141.62 

Mean 128.49 118.98 139.87 116.15 153.54 149.15 
Max 131.75 122.64 143.54 122.96 156.75 154.48 
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Figure 6.3: Reach posture, joint trajectories in task space, frequency responses, 
and transmission through upper right joints under 4 Hz vertical vibration 
exposure [TG4] 
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Figure 6.4: Reach posture, joint trajectories in task space, frequency responses, 
and transmission through upper right joints under 4 Hz vertical vibration 
exposure [TG5] 



 

 136 

 

Figure 6.5: Reach posture, joint trajectories in task space, frequency responses, 
and transmission through upper right joints under 4 Hz vertical vibration 
exposure [TG7] 
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Table 6.2: Vibration transmission for each body segment (Mean ± SD) [Session 
I – under the 2Hz vertical vibration exposure] 
 

 No Visual Feedback 

2Hz Vertical Vibration Exposure 

Right Shoulder Right Elbow Right Fingertip 

SHOx SHOy SHOz SHOt ELBx ELBy ELBz ELBt FINx FINy FINz FINt 

TG1 
1-2 

0.16  0.20  1.41  1.44  0.09  0.25  1.55  1.58  0.14  0.34  1.93  1.97  
±0.03  ±0.13  ±0.07  ±0.07  ±0.03  ±0.10  ±0.19  ±0.19  ±0.05  ±0.14  ±0.38  ±0.39  

1-3 
0.17  0.16  1.36  1.38  0.17  0.17  1.63  1.65  0.14  0.34  1.74  1.79  
±0.04  ±0.13  ±0.03  ±0.05  ±0.05  ±0.07  ±0.31  ±0.31  ±0.07  ±0.17  ±0.34  ±0.35  

1-4 
0.18  0.12  1.37  1.38  0.24  0.20  1.60  1.63  0.16  0.34  1.64  1.70  
±0.01  ±0.08  ±0.04  ±0.03  ±0.06  ±0.05  ±0.17  ±0.17  ±0.04  ±0.22  ±0.17  ±0.16  

TG2 
2-2 

0.16  0.20  1.41  1.44  0.09  0.25  1.55  1.58  0.14  0.34  1.93  1.97  
±0.03  ±0.13  ±0.07  ±0.07  ±0.03  ±0.10  ±0.19  ±0.19  ±0.05  ±0.14  ±0.38  ±0.39  

2-3 
0.17  0.25  1.40  1.45  0.14  0.23  1.61  1.64  0.17  0.42  1.83  1.89  
±0.03  ±0.18  ±0.05  ±0.06  ±0.10  ±0.12  ±0.22  ±0.23  ±0.13  ±0.16  ±0.37  ±0.39  

2-4 
0.18  0.19  1.37  1.40  0.15  0.16  1.56  1.58  0.24  0.44  2.02  2.09  
±0.02  ±0.11  ±0.04  ±0.04  ±0.06  ±0.07  ±0.25  ±0.25  ±0.12  ±0.20  ±0.45  ±0.49  

TG4 
4-2 

0.16  0.20  1.41  1.44  0.09  0.25  1.55  1.58  0.14  0.34  1.93  1.97  
±0.03  ±0.13  ±0.07  ±0.07  ±0.03  ±0.10  ±0.19  ±0.19  ±0.05  ±0.14  ±0.38  ±0.39  

4-3 
0.16  0.19  1.40  1.43  0.16  0.25  1.49  1.52  0.24  0.27  1.77  1.81  
±0.02  ±0.12  ±0.06  ±0.07  ±0.07  ±0.09  ±0.21  ±0.20  ±0.13  ±0.10  ±0.54  ±0.55  

4-4 
0.16  0.23  1.37  1.41  0.15  0.24  1.56  1.59  0.27  0.24  2.45  2.49  
±0.04  ±0.14  ±0.05  ±0.07  ±0.08  ±0.12  ±0.29  ±0.28  ±0.17  ±0.09  ±0.82  ±0.80  

TG5 
5-2 

0.16  0.21  1.42  1.45  0.14  0.24  1.57  1.60  0.26  0.30  1.92  1.97  
±0.02  ±0.12  ±0.05  ±0.05  ±0.07  ±0.12  ±0.22  ±0.20  ±0.15  ±0.11  ±0.43  ±0.44  

5-3 
0.17  0.18  1.39  1.42  0.17  0.21  1.72  1.75  0.34  0.38  2.06  2.13  
±0.04  ±0.11  ±0.04  ±0.05  ±0.06  ±0.06  ±0.35  ±0.33  ±0.14  ±0.20  ±0.57  ±0.58  

5-4 
0.18  0.20  1.36  1.39  0.24  0.21  1.79  1.82  0.48  0.63  2.36  2.51  
±0.05  ±0.15  ±0.04  ±0.06  ±0.11  ±0.11  ±0.46  ±0.47  ±0.34  ±0.52  ±1.01  ±1.16  

TG6 
6-2 

0.16  0.19  1.40  1.43  0.16  0.25  1.49  1.52  0.24  0.27  1.77  1.81  
±0.02  ±0.12  ±0.06  ±0.07  ±0.07  ±0.09  ±0.21  ±0.20  ±0.13  ±0.10  ±0.54  ±0.55  

6-3 
0.17  0.20  1.40  1.43  0.20  0.14  1.62  1.65  0.22  0.27  2.39  2.41  
±0.03  ±0.09  ±0.03  ±0.05  ±0.08  ±0.05  ±0.25  ±0.25  ±0.06  ±0.07  ±0.70  ±0.70  

6-4 
0.19  0.19  1.38  1.41  0.24  0.14  1.64  1.67  0.18  0.29  2.63  2.66  
±0.05  ±0.12  ±0.05  ±0.07  ±0.15  ±0.06  ±0.34  ±0.35  ±0.06  ±0.10  ±0.95  ±0.95  

TG7 
7-2 

0.16  0.19  1.40  1.43  0.16  0.25  1.49  1.52  0.24  0.27  1.77  1.81  
±0.02  ±0.12  ±0.06  ±0.07  ±0.07  ±0.09  ±0.21  ±0.20  ±0.13  ±0.10  ±0.54  ±0.55  

7-3 
0.16  0.16  1.38  1.40  0.20  0.13  1.53  1.55  0.19  0.30  2.11  2.15  
±0.03  ±0.13  ±0.06  ±0.08  ±0.10  ±0.04  ±0.33  ±0.34  ±0.06  ±0.15  ±0.96  ±0.97  

7-4 
0.24  0.13  1.30  1.33  0.21  0.23  1.65  1.69  0.23  0.29  2.63  2.66  
±0.04  ±0.04  ±0.07  ±0.07  ±0.10  ±0.20  ±0.36  ±0.38  ±0.11  ±0.16  ±1.06  ±1.06  
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Table 6.3: Vibration transmission for each body segment (Mean ± SD) [Session 
I – under the 4Hz vertical vibration exposure] 

 
 No Visual Feedback 

4Hz Vertical Vibration Exposure 
Right Shoulder Right Elbow Right Fingertip 

SHOx SHOy SHOz SHOt ELBx ELBy ELBz ELBt FINx FINy FINz FINt 

TG1 
1-2 

0.77  0.53  4.81  4.92  1.43  1.96  3.82  4.58  0.97  1.42  4.15  4.54  
±0.39  ±0.26  ±0.64  ±0.69  ±0.51  ±0.55  ±0.33  ±0.41  ±0.34  ±0.65  ±0.66  ±0.75  

1-3 
0.50  0.36  3.83  3.88  0.43  0.31  4.53  4.57  0.97  0.76  3.54  3.85  
±0.13  ±0.13  ±0.34  ±0.35  ±0.27  ±0.13  ±0.30  ±0.30  ±0.37  ±0.69  ±0.64  ±0.51  

1-4 
0.25  0.36  3.74  3.77  1.06  0.74  4.80  4.99  1.66  1.35  4.00  4.65  
±0.13  ±0.21  ±0.31  ±0.31  ±0.37  ±0.36  ±0.29  ±0.39  ±0.70  ±0.69  ±0.50  ±0.42  

TG2 
2-2 

0.77  0.53  4.81  4.92  1.43  1.96  3.82  4.58  0.97  1.42  4.15  4.54  
±0.39  ±0.26  ±0.64  ±0.69  ±0.51  ±0.55  ±0.33  ±0.41  ±0.34  ±0.65  ±0.66  ±0.75  

2-3 
0.78  0.31  4.32  4.42  1.12  1.34  4.19  4.58  0.99  1.75  3.50  4.10  
±0.42  ±0.04  ±0.51  ±0.57  ±0.53  ±0.39  ±0.24  ±0.34  ±0.52  ±0.60  ±0.52  ±0.62  

2-4 
0.66  0.37  3.93  4.01  0.51  0.47  4.98  5.03  0.59  2.31  3.24  4.10  
±0.39  ±0.14  ±0.43  ±0.48  ±0.11  ±0.17  ±0.27  ±0.27  ±0.26  ±1.04  ±0.81  ±1.06  

TG4 
4-2 

0.77  0.53  4.81  4.92  1.43  1.96  3.82  4.58  0.97  1.42  4.15  4.54  
±0.39  ±0.26  ±0.64  ±0.69  ±0.51  ±0.55  ±0.33  ±0.41  ±0.34  ±0.65  ±0.66  ±0.75  

4-3 
0.74  0.44  4.94  5.03  1.89  1.63  4.13  4.85  1.53  0.82  4.06  4.44  
±0.31  ±0.27  ±0.58  ±0.62  ±0.51  ±0.39  ±0.28  ±0.46  ±0.54  ±0.25  ±0.58  ±0.69  

4-4 
0.83  0.40  4.92  5.01  1.56  1.35  4.25  4.75  0.99  0.88  4.01  4.27  
±0.31  ±0.21  ±0.52  ±0.55  ±0.48  ±0.32  ±0.24  ±0.41  ±0.56  ±0.34  ±0.56  ±0.61  

TG5 
5-2 

0.82  0.35  4.70  4.79  1.67  1.63  4.01  4.68  1.32  1.44  3.76  4.27  
±0.35  ±0.10  ±0.56  ±0.59  ±0.53  ±0.45  ±0.21  ±0.38  ±0.54  ±0.50  ±0.56  ±0.77  

5-3 
0.69  0.33  4.15  4.23  1.37  1.05  4.38  4.74  1.01  1.92  3.55  4.23  
±0.34  ±0.11  ±0.54  ±0.58  ±0.43  ±0.34  ±0.49  ±0.44  ±0.57  ±0.64  ±0.57  ±0.69  

5-4 
0.39  0.31  3.76  3.80  0.45  0.47  4.93  4.98  0.76  2.56  3.25  4.30  
±0.22  ±0.07  ±0.35  ±0.36  ±0.21  ±0.24  ±0.41  ±0.41  ±0.26  ±0.89  ±0.68  ±0.74  

TG6 
6-2 

0.74  0.44  4.94  5.03  1.89  1.63  4.13  4.85  1.53  0.82  4.06  4.44  
±0.31  ±0.27  ±0.58  ±0.62  ±0.51  ±0.39  ±0.28  ±0.46  ±0.54  ±0.25  ±0.58  ±0.69  

6-3 
0.56  0.43  4.77  4.83  1.81  1.12  4.08  4.62  0.90  0.57  3.98  4.15  
±0.24  ±0.25  ±0.42  ±0.45  ±0.52  ±0.18  ±0.23  ±0.38  ±0.29  ±0.35  ±0.47  ±0.51  

6-4 
0.49  0.53  4.98  5.05  1.90  0.72  4.55  5.00  0.80  0.83  4.88  5.03  
±0.21  ±0.36  ±0.42  ±0.45  ±0.27  ±0.38  ±0.43  ±0.51  ±0.22  ±0.40  ±0.59  ±0.59  

TG7 
7-2 

0.74  0.44  4.94  5.03  1.89  1.63  4.13  4.85  1.53  0.82  4.06  4.44  
±0.31  ±0.27  ±0.58  ±0.62  ±0.51  ±0.39  ±0.28  ±0.46  ±0.54  ±0.25  ±0.58  ±0.69  

7-3 
0.56  0.50  4.62  4.68  1.86  0.75  3.88  4.37  0.89  0.66  4.10  4.28  
±0.27  ±0.10  ±0.36  ±0.38  ±0.18  ±0.21  ±0.30  ±0.35  ±0.33  ±0.33  ±0.68  ±0.65  

7-4 
0.38  0.44  3.91  3.96  0.67  0.56  3.53  3.65  1.05  1.67  4.57  5.03  
±0.15  ±0.18  ±0.20  ±0.18  ±0.10  ±0.24  ±0.34  ±0.34  ±0.39  ±0.66  ±0.65  ±0.70  
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Table 6.4: Vibration transmission for each body segment (Mean ± SD) [Session 
I – under the 6Hz vertical vibration exposure] 

 
 No Visual Feedback 

6Hz Vertical Vibration Exposure 
Right Shoulder Right Elbow Right Fingertip 

SHOx SHOy SHOz SHOt ELBx ELBy ELBz ELBt FINx FINy FINz FINt 

TG1 
1-2 

0.98  0.38  3.76  3.91  1.24  1.31  2.89  3.43  1.07  1.64  1.82  2.71  
±0.29  ±0.12  ±0.39  ±0.42  ±0.32  ±0.34  ±0.27  ±0.38  ±0.44  ±0.53  ±0.32  ±0.60  

1-3 
0.89  0.61  3.46  3.63  0.48  0.59  2.56  2.71  0.84  0.97  1.87  2.29  
±0.27  ±0.21  ±0.49  ±0.54  ±0.40  ±0.24  ±0.25  ±0.30  ±0.26  ±0.25  ±0.17  ±0.17  

1-4 
0.49  0.31  3.30  3.36  0.49  0.65  2.84  2.99  1.47  1.29  2.20  3.01  
±0.18  ±0.10  ±0.43  ±0.43  ±0.37  ±0.21  ±0.26  ±0.25  ±0.41  ±0.47  ±0.28  ±0.30  

TG2 
2-2 

0.98  0.38  3.76  3.91  1.24  1.31  2.89  3.43  1.07  1.64  1.82  2.71  
±0.29  ±0.12  ±0.39  ±0.42  ±0.32  ±0.34  ±0.27  ±0.38  ±0.44  ±0.53  ±0.32  ±0.60  

2-3 
0.90  0.64  3.38  3.57  1.01  1.16  2.35  2.83  1.07  0.93  1.40  2.07  
±0.19  ±0.22  ±0.32  ±0.32  ±0.42  ±0.19  ±0.18  ±0.32  ±0.41  ±0.40  ±0.13  ±0.17  

2-4 
0.69  0.42  3.24  3.34  0.45  0.64  2.74  2.87  1.44  1.13  1.77  2.60  
±0.15  ±0.16  ±0.35  ±0.36  ±0.31  ±0.21  ±0.36  ±0.38  ±0.44  ±0.15  ±0.45  ±0.36  

TG4 
4-2 

0.98  0.38  3.76  3.91  1.24  1.31  2.89  3.43  1.07  1.64  1.82  2.71  
±0.29  ±0.12  ±0.39  ±0.42  ±0.32  ±0.34  ±0.27  ±0.38  ±0.44  ±0.53  ±0.32  ±0.60  

4-3 
0.82  0.55  3.64  3.78  1.39  1.18  2.92  3.46  1.19  0.93  1.97  2.61  
±0.22  ±0.15  ±0.36  ±0.37  ±0.39  ±0.24  ±0.27  ±0.35  ±0.66  ±0.43  ±0.42  ±0.38  

4-4 
0.81  0.70  3.61  3.78  1.33  1.18  3.01  3.52  1.36  0.91  1.91  2.66  
±0.18  ±0.27  ±0.28  ±0.25  ±0.39  ±0.19  ±0.24  ±0.32  ±0.69  ±0.33  ±0.44  ±0.16  

TG5 
5-2 

0.84  0.72  3.59  3.78  1.43  1.19  2.64  3.25  1.21  1.16  1.79  2.54  
±0.24  ±0.40  ±0.36  ±0.35  ±0.45  ±0.24  ±0.24  ±0.42  ±0.62  ±0.43  ±0.24  ±0.43  

5-3 
0.75  0.86  3.49  3.70  1.40  1.03  2.36  2.95  0.67  1.20  1.72  2.23  
±0.13  ±0.52  ±0.32  ±0.36  ±0.39  ±0.16  ±0.12  ±0.32  ±0.25  ±0.23  ±0.23  ±0.20  

5-4 
0.57  0.43  3.35  3.43  0.66  0.64  2.91  3.08  1.25  2.18  1.67  3.09  
±0.18  ±0.21  ±0.34  ±0.35  ±0.17  ±0.34  ±0.32  ±0.32  ±0.54  ±0.42  ±0.31  ±0.34  

TG6 
6-2 

0.82  0.55  3.64  3.78  1.39  1.18  2.92  3.46  1.19  0.93  1.97  2.61  
±0.22  ±0.15  ±0.36  ±0.37  ±0.39  ±0.24  ±0.27  ±0.35  ±0.66  ±0.43  ±0.42  ±0.38  

6-3 
0.76  0.88  3.66  3.86  1.40  0.72  3.24  3.63  1.18  0.98  2.37  2.90  
±0.18  ±0.40  ±0.23  ±0.28  ±0.31  ±0.19  ±0.28  ±0.17  ±0.44  ±0.39  ±0.70  ±0.66  

6-4 
0.72  1.13  3.75  4.02  0.96  0.48  3.81  3.98  1.30  1.52  2.82  3.52  
±0.13  ±0.54  ±0.20  ±0.27  ±0.32  ±0.30  ±0.11  ±0.16  ±0.42  ±0.41  ±0.65  ±0.58  

TG7 
7-2 

0.82  0.55  3.64  3.78  1.39  1.18  2.92  3.46  1.19  0.93  1.97  2.61  
±0.22  ±0.15  ±0.36  ±0.37  ±0.39  ±0.24  ±0.27  ±0.35  ±0.66  ±0.43  ±0.42  ±0.38  

7-3 
0.75  0.92  3.55  3.77  1.40  0.52  3.14  3.50  1.08  1.03  2.16  2.65  

±0. 17  ±0.47  ±0.21  ±0.30  ±0.23  ±0.19  ±0.16  ±0.12  ±0.32  ±0.22  ±0.41  ±0.40  

7-4 
0.60  0.70  3.20  3.36  0.76  0.67  2.82  3.01  1.73  2.43  2.44  3.93  
±0.18  ±0.38  ±0.22  ±0.18  ±0.16  ±0.13  ±0.58  ±0.51  ±0.36  ±0.51  ±0.78  ±0.68  
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Table 6.5 Vibration transmission for each body segment (Mean ± SD) [Session 
II – under the 2Hz vertical vibration exposure] 

 
 Visual Compensation 

2Hz Vertical Vibration Exposure 
Right Shoulder Right Elbow Right Fingertip 

SHOx SHOy SHOz SHOt ELBx ELBy ELBz ELBt FINx FINy FINz FINt 

TG1 
1-2 

0.15 0.12 1.41 1.43 0.09 0.27 1.47 1.5 0.15 0.23 1.76 1.78 
±0.04  ±0.04  ±0.08  ±0.08  ±0.02  ±0.09  ±0.15  ±0.15  ±0.05  ±0.07  ±0.32  ±0.32  

1-3 
0.16 0.13 1.37 1.39 0.15 0.14 1.63 1.64 0.17 0.25 1.68 1.72 
±0.05  ±0.05  ±0.05  ±0.05  ±0.05  ±0.07  ±0.30  ±0.30  ±0.05  ±0.20  ±0.37  ±0.40  

1-4 
0.18 0.14 1.34 1.36 0.3 0.29 1.58 1.64 0.21 0.44 1.67 1.76 
±0.03  ±0.02  ±0.03  ±0.03  ±0.07  ±0.07  ±0.07  ±0.06  ±0.07  ±0.29  ±0.11  ±0.17  

TG2 
2-2 

0.15 0.12 1.41 1.43 0.09 0.27 1.47 1.5 0.15 0.23 1.76 1.78 
±0.04  ±0.04  ±0.08  ±0.08  ±0.02  ±0.09  ±0.15  ±0.15  ±0.05  ±0.07  ±0.32  ±0.32  

2-3 
0.15 0.14 1.39 1.41 0.10 0.13 1.46 1.47 0.25 0.22 1.56 1.59 
±0.03  ±0.05  ±0.06  ±0.06  ±0.02  ±0.08  ±0.16  ±0.15  ±0.05  ±0.07  ±0.22  ±0.23  

2-4 
0.15 0.13 1.38 1.39 0.14 0.14 1.48 1.5 0.21 0.29 1.74 1.78 
±0.02  ±0.04  ±0.04  ±0.04  ±0.03  ±0.02  ±0.19  ±0.19  ±0.08  ±0.06  ±0.32  ±0.33  

TG4 
4-2 

0.15 0.12 1.41 1.43 0.09 0.27 1.47 1.5 0.15 0.23 1.76 1.78 
±0.04  ±0.04  ±0.08  ±0.08  ±0.02  ±0.09  ±0.15  ±0.15  ±0.05  ±0.07  ±0.32  ±0.32  

4-3 
0.16 0.12 1.39 1.40 0.11 0.21 1.43 1.45 0.24 0.18 1.65 1.68 
±0.03  ±0.06  ±0.07  ±0.08  ±0.04  ±0.07  ±0.10  ±0.11  ±0.08  ±0.05  ±0.28  ±0.28  

4-4 
0.14 0.12 1.40 1.41 0.09 0.18 1.47 1.49 0.22 0.20 1.79 1.82 
±0.03  ±0.05  ±0.07  ±0.07  ±0.04  ±0.05  ±0.10  ±0.10  ±0.08  ±0.08  ±0.35  ±0.34  

TG5 
5-2 

0.17 0.12 1.40 1.41 0.12 0.19 1.45 1.47 0.23 0.16 1.62 1.65 
±0.05  ±0.04  ±0.06  ±0.06  ±0.07  ±0.10  ±0.16  ±0.15  ±0.08  ±0.05  ±0.20  ±0.20  

5-3 
0.14 0.12 1.39 1.41 0.17 0.13 1.54 1.56 0.25 0.22 1.69 1.72 
±0.04  ±0.04  ±0.09  ±0.09  ±0.11  ±0.05  ±0.16  ±0.16  ±0.10  ±0.08  ±0.18  ±0.18  

5-4 
0.15 0.11 1.35 1.36 0.19 0.16 1.46 1.49 0.30 0.32 1.65 1.72 
±0.05  ±0.03  ±0.06  ±0.06  ±0.05  ±0.12  ±0.12  ±0.12  ±0.14  ±0.10  ±0.24  ±0.23  

TG6 
6-2 

0.16 0.12 1.39 1.40 0.11 0.21 1.43 1.45 0.24 0.18 1.65 1.68 
±0.03  ±0.06  ±0.07  ±0.08  ±0.04  ±0.07  ±0.10  ±0.11  ±0.08  ±0.05  ±0.28  ±0.28  

6-3 
0.17 0.10 1.36 1.38 0.15 0.19 1.33 1.36 0.17 0.19 1.64 1.66 
±0.02  ±0.02  ±0.05  ±0.05  ±0.08  ±0.02  ±0.09  ±0.09  ±0.05  ±0.06  ±0.13  ±0.13  

6-4 
0.14 0.10 1.35 1.36 0.21 0.20 1.32 1.35 0.18 0.22 1.68 1.71 
±0.05  ±0.02  ±0.06  ±0.06  ±0.08  ±0.04  ±0.05  ±0.05  ±0.05  ±0.07  ±0.21  ±0.20  

TG7 
7-2 

0.16 0.12 1.39 1.40 0.11 0.21 1.43 1.45 0.24 0.18 1.65 1.68 
±0.03  ±0.06  ±0.07  ±0.08  ±0.04  ±0.07  ±0.10  ±0.11  ±0.08  ±0.05  ±0.28  ±0.28  

7-3 
0.13 0.11 1.36 1.38 0.16 0.18 1.34 1.36 0.14 0.19 1.57 1.59 
±0.04  ±0.05  ±0.06  ±0.06  ±0.09  ±0.03  ±0.07  ±0.08  ±0.05  ±0.10  ±0.18  ±0.18  

7-4 
0.22 0.18 1.26 1.30 0.08 0.17 1.43 1.44 0.16 0.15 2.16 2.17 
±0.04  ±0.05  ±0.05  v0.05  ±0.01  ±0.05  ±0.09  ±0.08  ±0.03  ±0.04  ±0.17  ±0.16  
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Table 6.6 Vibration transmission for each body segment (Mean ± SD)  [Session 
II – under the 4Hz vertical vibration exposure] 

 
 

 

Visual Compensation 
4Hz Vertical Vibration Exposure 

Right Shoulder Right Elbow Right Fingertip 
SHOx SHOy SHOz SHOt ELBx ELBy ELBz ELBt FINx FINy FINz FINt 

TG1 
1-2 

0.77 0.48 4.81 4.90 1.32 1.91 3.86 4.53 1.02 1.34 3.77 4.17 
±0.29  ±0.26  ±0.64  ±0.68  ±0.26  ±0.47  ±0.29  ±0.38  ±0.53  ±0.32  ±0.61  ±0.62  

1-3 
0.48 0.37 3.84 3.90 0.54 0.35 4.09 4.14 0.79 0.97 3.38 3.66 
±0.21  ±0.11  ±0.42  ±0.43  ±0.21  ±0.07  ±0.37  ±0.34  ±0.32  ±0.48  ±0.55  ±0.50  

1-4 
0.24 0.30 3.72 3.75 1.13 0.73 4.35 4.56 1.22 1.61 3.89 4.51 
±0.14  ±0.19  ±0.40  ±0.38  ±0.26  ±0.18  ±0.37  ±0.38  ±0.39  ±1.02  ±0.38  ±0.52  

TG2 
2-2 

0.77 0.48 4.81 4.90 1.32 1.91 3.86 4.53 1.02 1.34 3.77 4.17 
±0.29  ±0.26  ±0.64  ±0.68  ±0.26  ±0.47  ±0.29  ±0.38  ±0.53  ±0.32  ±0.61  ±0.62  

2-3 
0.83 0.36 4.36 4.46 1.14 1.32 3.94 4.33 1.01 1.38 3.23 3.7 
±0.36  ±0.15  ±0.55  ±0.61  ±0.34  ±0.34  ±0.42  ±0.41  ±0.39  ±0.20  ±0.52  ±0.38  

2-4 
0.62 0.32 3.93 4.00 0.47 0.43 4.61 4.66 0.44 1.43 2.98 3.37 
±0.27  ±0.10  ±0.43  ±0.46  ±0.15  ±0.22  ±0.47  ±0.45  ±0.27  ±0.35  ±0.61  ±0.58  

TG4 
4-2 

0.77 0.48 4.81 4.90 1.32 1.91 3.86 4.53 1.02 1.34 3.77 4.17 
±0.29  ±0.26  ±0.64  ±0.68  ±0.26  ±0.47  ±0.29  ±0.38  ±0.53  ±0.32  ±0.61  ±0.62  

4-3 
0.68 0.40 5.01 5.08 1.69 1.77 4.09 4.78 1.35 0.83 3.77 4.12 
±0.28  ±0.20  ±0.53  ±0.56  ±0.37  ±0.29  ±0.41  ±0.47  ±0.62  ±0.08  ±0.59  ±0.70  

4-4 
0.75 0.35 4.97 5.04 1.58 1.45 4.20 4.73 0.89 0.86 3.84 4.07 
±0.32  ±0.12  ±0.53  ±0.56  ±0.36  ±0.30  ±0.32  ±0.44  ±0.52  ±0.34  ±0.40  ±0.49  

TG5 
5-2 

0.74 0.35 4.64 4.72 1.61 1.53 3.86 4.47 1.21 1.23 3.46 3.90 
±0.26  ±0.14  ±0.58  ±0.61  ±0.42  ±0.29  ±0.17  ±0.34  ±0.38  ±0.15  ±0.84  ±0.78  

5-3 
0.67 0.45 4.14 4.22 1.36 0.89 4.16 4.48 1.09 1.38 3.43 3.89 
±0.18  ±0.15  ±0.46  ±0.49  ±0.29  ±0.28  ±0.32  ±0.35  ±0.32  ±0.36  ±0.38  ±0.36  

5-4 
0.40 0.37 3.79 3.83 0.50 0.44 4.64 4.70 0.91 2.06 3.20 4.05 
±0.17  ±0.13  ±0.43  ±0.44  ±0.31  ±0.18  ±0.33  ±0.35  ±0.33  ±0.88  ±0.58  ±0.40  

TG6 
6-2 

0.68 0.40 5.01 5.08 1.69 1.77 4.09 4.78 1.35 0.83 3.77 4.12 
±0.28  ±0.20  ±0.53  ±0.56  ±0.37  ±0.29  ±0.41  ±0.47  ±0.62  ±0.08  ±0.59  ±0.70  

6-3 
0.59 0.50 4.88 4.95 1.99 1.18 4.14 4.75 0.98 0.64 4.01 4.19 
±0.25  ±0.30  ±0.41  ±0.45  ±0.37  ±0.17  ±0.23  ±0.34  ±0.38  ±0.22  ±0.34  ±.43  

6-4 
0.49 0.63 4.85 4.93 1.90 0.60 4.36 4.79 0.57 0.77 4.62 4.75 
±0.21  ±0.33  ±0.38  ±0.42  ±0.26  ±0.12  ±0.33  ±0.38  ±0.24  ±0.53  ±0.50  ±.48  

TG7 
7-2 

0.68 0.40 5.01 5.08 1.69 1.77 4.09 4.78 1.35 0.83 3.77 4.12 
±0.28  ±0.20  ±0.53  ±0.56  ±0.37  ±0.29  ±0.41  ±0.47  ±0.62  ±0.08  ±0.59  ±0.70  

7-3 
0.69 0.59 4.48 4.58 1.87 0.80 4.02 4.52 0.97 0.67 4.30 4.48 
±0.25  ±0.20  ±0.45  ±0.47  ±0.37  ±0.15  ±0.33  ±0.36  ±0.27  ±0.44  ±0.63  ±0.68  

7-4 
0.32 0.38 3.76 3.80 0.65 0.49 3.20 3.31 0.93 0.99 4.48 4.69 
±0.21  ±0.19  ±0.22  ±0.24  ±0.08  ±0.25  ±0.35  ±0.38  ±0.31  ±0.22  ±0.96  ±0.95  
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Table 6.7 Vibration transmission for each body segment (Mean ± SD) [Session 
II – under the 6Hz vertical vibration exposure] 

 
 Visual Compensation 

6Hz Vertical Vibration Exposure 

Right Shoulder Right Elbow Right Fingertip 

SHOx SHOy SHOz SHOt ELBx ELBy ELBz ELBt FINx FINy FINz FINt 

TG1 
1-2 

1.05 0.51 3.77 3.96 1.29 1.24 3.01 3.52 1.07 1.90 1.77 2.87 
±0.24  ±0.25  ±0.34  ±0.38  ±0.32  ±0.19  ±0.32  ±0.37  ±0.54  ±0.64  ±0.36  ±0.73  

1-3 
0.77 0.51 3.35 3.48 0.39 0.50 2.51 2.62 0.72 0.99 1.84 2.25 
±0.27  ±0.20  ±0.35  ±0.40  ±0.27  ±0.19  ±0.45  ±0.43  ±0.26  ±0.25  ±0.19  ±0.12  

1-4 
0.37 0.29 3.22 3.26 0.85 0.73 2.69 2.93 0.95 1.24 2.34 2.89 
±0.14  ±0.16  ±0.29  ±0.27  ±0.17  ±0.31  ±0.28  ±0.33  ±0.40  ±0.62  ±0.12  ±0.32  

TG2 
2-2 

1.05 0.51 3.77 3.96 1.29 1.24 3.01 3.52 1.07 1.90 1.77 2.87 
±0.24  ±0.25  ±0.34  ±0.38  ±0.32  ±0.19  ±0.32  ±0.37  ±0.54  ±0.64  ±0.36  ±0.73  

2-3 
1.02 0.45 3.40 3.60 1.12 1.18 2.45 2.95 0.93 1.02 1.46 2.12 
±0.21  ±0.26  ±0.32  ±0.32  ±0.35  ±0.15  ±0.27  ±0.39  ±0.50  ±0.44  ±0.21  ±0.14  

2-4 
0.78 0.42 3.28 3.41 0.41 0.62 2.67 2.79 1.11 1.07 1.55 2.23 
±0.15  ±0.22  ±0.31  ±0.31  ±0.20  ±0.18  ±0.48  ±0.44  ±0.33  ±0.17  ±0.28  ±0.21  

TG4 
4-2 

1.05 0.51 3.77 3.96 1.29 1.24 3.01 3.52 1.07 1.90 1.77 2.87 
±0.24  ±0.25  ±0.34  ±0.38  ±0.32  ±0.19  ±0.32  ±0.37  ±0.54  ±0.64  ±0.36  ±0.73  

4-3 
0.87 0.32 3.63 3.76 1.31 1.06 3.11 3.55 1.32 1.18 2.09 2.85 
±0.23  ±0.20  ±0.33  ±0.34  ±0.29  ±0.24  ±0.45  ±0.48  ±0.66  ±0.55  ±0.44  ±0.57  

4-4 
0.88 0.65 3.65 3.82 1.26 1.19 3.22 3.67 1.55 0.87 1.88 2.71 
±0.14  ±0.15  ±0.19  ±0.17  ±0.36  ±0.22  ±0.29  ±0.36  ±0.83  ±0.28  ±0.38  ±0.51  

TG5 
5-2 

0.91 0.60 3.53 3.71 1.37 1.15 2.67 3.23 1.10 1.24 1.66 2.47 
±0.24  ±0.25  ±0.35  ±0.35  ±0.34  ±0.23  ±0.33  ±0.42  ±0.63  ±0.52  ±0.28  ±0.39  

5-3 
0.88 0.96 3.46 3.71 1.35 1.05 2.42 2.98 0.79 1.40 1.63 2.35 
±0.19  ±0.38  ±0.29  ±0.33  ±0.41  ±0.20  ±0.22  ±0.36  ±0.39  ±0.29  ±0.22  ±0.13  

5-4 
0.62 0.52 3.3 3.41 0.55 0.67 2.87 3.01 1.57 2.42 1.60 3.39 
±0.15  ±0.27  ±0.24  ±0.23  ±0.14  ±0.23  ±0.52  ±0.50  ±0.87  ±0.81  ±0.16  ±0.90  

TG6 
6-2 

0.87 0.32 3.63 3.76 1.31 1.06 3.11 3.55 1.32 1.18 2.09 2.85 
±0.23  ±0.20  ±0.33  ±0.34  ±0.29  ±0.24  ±0.45  ±0.48  ±0.66  ±0.55  ±0.44  ±0.57  

6-3 
0.86 0.67 3.67 3.84 1.40 0.69 3.37 3.74 1.02 0.95 2.42 2.85 
±0.20  ±0.24  ±0.14  ±0.17  ±0.33  ±0.16  ±0.32  ±0.21  ±0.56  ±0.19  ±0.56  ±0.58  

6-4 
0.83 0.93 3.81 4.04 0.96 0.45 3.96 4.12 1.15 1.4 3.22 3.78 
±0.17  ±0.45  ±0.17  ±0.20  ±0.33  ±0.20  ±0.12  ±0.11  ±0.76  ±0.34  ±0.63  ±0.71  

TG7 
7-2 

0.87 0.32 3.63 3.76 1.31 1.06 3.11 3.55 1.32 1.18 2.09 2.85 
±0.23  ±0.20  ±0.33  ±0.34  ±0.29  ±0.24  ±0.45  ±0.48  ±0.66  ±0.55  ±0.44  ±0.57  

7-3 
0.93 1.00 3.64 3.91 1.59 0.50 3.21 3.63 0.98 0.97 2.54 2.91 
±0.20  ±0.43  ±0.12  ±0.24  ±0.23  ±0.20  ±0.19  ±0.15  ±0.40  ±0.22  ±0.60  ±0.67  

7-4 
0.70 0.58 3.3 3.45 0.89 0.81 2.86 3.14 1.58 1.60 2.72 3.60 
±0.15  ±0.41  ±0.19  ±0.19  ±0.33  ±0.17  ±0.50  ±0.35  ±0.33  ±0.45  ±0.69  ±0.49  
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Table 6.8 Vibration transmission for each body segment (Mean ± SD) [Session 
III – elbow fully extended posture] 

 

 

Elbow Fully Extended Posture 

2Hz Vertical Vibration Exposure 

Right Shoulder Right Elbow Right Fingertip 

SHOx SHOy SHOz SHOt ELBx ELBy ELBz ELBt FINx FINy FINz FINt 

TG1 
0.14 0.18 1.30 1.32 0.24 0.34 1.39 1.45 0.39 0.97 1.61 1.92 
±0.01 ±0.01 ±0.00 ±0.00 ±0.02 ±0.01 ±0.01 ±0.01 ±0.03 ±0.01 ±0.01 ±0.01 

TG2 
0.13 0.12 1.33 1.34 0.15 0.19 1.36 1.39 0.21 0.29 1.82 1.86 
±0.03  ±0.04  ±0.04  ±0.05  ±0.06  ±0.06  ±0.16  ±0.16  ±0.11  ±0.09  ±0.28  ±0.30  

TG3 
0.15 0.11 1.35 1.37 0.10 0.16 1.33 1.34 0.15 0.22 1.74 1.76 
±0.04  ±0.05  ±0.05  ±0.05  ±0.03  ±0.05  ±0.17  ±0.16  ±0.04  ±0.09  ±0.37  ±0.37  

TG4 
0.16 0.13 1.33 1.34 0.12 0.13 1.30 1.31 0.18 0.17 1.67 1.69 
±0.04  ±0.04  ±0.06  ±0.06  ±0.03  ±0.04  ±0.13  ±0.13  ±0.05  ±0.07  ±0.28  ±0.28  

TG5 
0.12 0.09 1.32 1.33 0.21 0.12 1.26 1.28 0.41 0.24 1.51 1.59 
±0.03  ±0.02  ±0.03  ±0.03  ±0.03  ±0.04  ±0.12  ±0.12  ±0.10  ±0.09  ±0.21  ±0.21  

TG6 
0.17 0.11 1.32 1.34 0.11 0.16 1.31 1.32 0.15 0.23 1.56 1.59 
±0.04  ±0.03  ±0.04  ±0.04  ±0.04  ±0.07  ±0.06  ±0.05  ±0.05  ±0.10  ±0.15  ±0.14  

 4Hz Vertical Vibration Exposure 

TG1 
0.33 0.24 4.28 4.30 0.49 0.27 4.61 4.65 0.63 5.38 3.57 6.49 
±0.08  ±0.03  ±0.00  ±0.01  ±0.31  ±0.04  ±0.22  ±0.25  ±0.11  ±0.00  ±0.31  ±0.18  

TG2 
0.42 0.84 3.71 3.88 0.28 0.63 3.17 3.27 0.76 1.41 4.80 5.12 
±0.19  ±0.53  ±0.56  ±0.45  ±0.17  ±0.38  ±0.20  ±0.20  ±0.48  ±0.45  ±0.67  ±0.58  

TG3 
0.84 0.62 4.53 4.69 0.58 0.92 3.35 3.54 1.43 1.45 3.89 4.43 
±0.45  ±0.45  ±0.72  ±0.74  ±0.17  ±0.31  ±0.25  ±0.24  ±0.47  ±0.32  ±0.41  ±0.38  

TG4 
0.74 0.70 4.23 4.39 0.67 0.80 3.17 3.34 1.41 0.67 4.35 4.76 
±0.39  ±0.47  ±0.60  ±0.60  ±0.15  ±0.21  ±0.15  ±0.15  ±0.99  ±0.14  ±0.87  ±0.67  

TG5 
0.39 0.94 3.65 3.87 0.38 0.43 3.15 3.21 1.33 2.45 4.43 5.30 
±0.10  ±0.69  ±0.47  ±0.34  ±0.19  ±0.10  ±0.17  ±0.19  ±0.46  ±0.72  ±0.76  ±0.77  

TG6 
0.37 0.84 4.2 4.33 1.20 0.50 3.44 3.68 1.82 0.68 3.63 4.18 
±0.12  ±0.57  ±0.32  ±0.34  ±0.21  ±0.21  ±0.34  ±0.39  ±0.88  ±0.33  ±0.95  ±1.13  

 6Hz Vertical Vibration Exposure 

TG1 
0.78 0.33 3.30 3.41 1.39 0.48 3.77 4.06 0.92 4.23 2.25 4.92 
±0.02  ±0.01  ±0.08  ±0.08  ±0.27  ±0.02  ±0.02  ±0.08  ±0.55  ±0.25  ±0.01  ±0.12  

TG2 
0.79 0.67 3.19 3.37 0.72 0.29 2.97 3.08 1.26 1.74 3.42 4.09 
±0.35  ±0.18  ±0.44  ±0.47  ±0.23  ±0.10  ±0.23  ±0.27  ±0.64  ±0.44  ±1.15  ±1.23  

TG3 
0.98 0.64 3.53 3.74 0.62 0.79 2.92 3.09 2.09 0.97 2.19 3.20 
±0.34  ±0.33  ±0.46  ±0.50  ±0.11  ±0.12  ±0.39  ±0.39  ±0.77  ±0.12  ±0.71  ±0.99  

TG4 
1.12 0.53 3.45 3.69 0.76 0.64 3.10 3.26 1.98 0.66 2.37 3.26 
±0.37  ±0.29  ±0.36  ±0.40  ±0.15  ±0.10  ±0.53  ±0.53  ±0.79  ±0.38  ±0.81  ±0.88  

TG5 
0.79 0.64 3.22 3.40 0.62 0.30 2.85 2.93 1.29 2.12 2.33 3.56 
±0.34  ±0.29  ±0.46  ±0.50  ±0.20  ±0.08  ±0.16  ±0.18  ±0.62  ±0.51  ±0.79  ±0.45  

TG6 
0.53 0.65 3.44 3.55 0.93 0.36 3.10 3.27 1.60 0.80 2.11 2.83 
±0.13  ±0.23  ±0.29  ±0.27  ±0.12  ±0.15  ±0.21  ±0.22  ±0.52  ±0.38  ±0.59  ±0.63  
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Table 6.9 Vibration transmission for each body segment (Mean ± SD) [Session 
III – elbow flexed posture] 
 

 

Elbow Flexed Posture 

2Hz Vertical Vibration Exposure 

Right Shoulder Right Elbow Right Fingertip 

SHOx SHOy SHOz SHOt ELBx ELBy ELBz ELBt FINx FINy FINz FINt 

TG1 
0.14 0.06 1.32 1.33 0.28 0.13 1.42 1.45 0.16 0.52 1.48 1.58 
±0.01  ±0.01  ±0.01  ±0.01  ±0.01  ±0.00  ±0.03  ±0.03  ±0.04  ±0.02  ±0.04  ±0.03  

TG2 
0.12 0.12 1.36 1.37 0.13 0.10 1.39 1.40 0.16 0.26 1.65 1.68 
±0.02  ±0.04  ±0.05  ±0.04  ±0.02  ±0.03  ±0.16  ±0.16  ±0.05  ±0.06  ±0.21  ±0.21  

TG3 
0.15 0.13 1.40 1.41 0.09 0.22 1.34 1.37 0.15 0.22 1.74 1.76 
±0.02  ±0.04  ±0.05  ±0.05  ±0.04  ±0.07  ±0.08  ±0.09  ±0.06  ±0.08  ±0.28  ±0.28  

TG4 
0.16 0.11 1.40 1.41 0.13 0.20 1.37 1.40 0.22 0.15 1.69 1.71 
±0.02  ±0.05  ±0.04  ±0.04  ±0.03  ±0.10  ±0.10  ±0.10  ±0.07  ±0.07  ±0.41  ±0.41  

TG5 
0.15 0.11 1.34 1.35 0.18 0.11 1.37 1.39 0.24 0.25 1.49 1.54 
±0.02  ±0.03  ±0.05  ±0.05  ±0.04  ±0.04  ±0.18  ±0.17  ±0.06  ±0.11  ±0.29  ±0.30  

TG6 
0.16 0.13 1.35 1.37 0.19 0.22 1.34 1.37 0.19 0.21 1.65 1.68 
±0.02  ±0.06  ±0.04  ±0.04  ±0.05  ±0.05  ±0.05  ±0.06  ±0.09  ±0.04  ±0.30  ±0.30  

 4Hz Vertical Vibration Exposure 

TG1 
0.14 0.09 3.99 3.99 1.78 1.02 5.47 5.85 0.84 4.03 3.47 5.41 
±0.02  ±0.02  ±0.01  ±0.02  ±0.08  ±0.07  ±0.25  ±0.19  ±0.42  ±0.50  ±0.09  ±0.37  

TG2 
0.53 0.34 3.85 3.91 0.45 0.38 5.02 5.06 0.70 1.78 1.97 2.80 
±0.16  ±0.15  ±0.27  ±0.28  ±0.25  ±0.10  ±0.42  ±0.42  ±0.32  ±0.15  ±0.47  ±0.24  

TG3 
1.01 0.29 5.09 5.2 0.94 1.54 4.41 4.77 1.41 1.33 2.97 3.60 
±0.25  ±0.12  ±0.35  ±0.38  ±0.20  ±0.21  ±0.25  ±0.30  ±0.61  ±0.35  ±0.66  ±0.73  

TG4 
0.78 0.32 4.92 4.99 1.48 1.48 4.10 4.62 0.97 0.94 3.34 3.67 
±0.22  ±0.14  ±0.35  ±0.37  ±0.34  ±0.17  ±0.15  ±0.24  ±0.49  ±0.41  ±1.00  ±0.94  

TG5 
0.37 0.36 3.78 3.82 0.49 0.26 4.47 4.51 0.70 2.24 2.58 3.65 
±0.21  ±0.13  ±0.31  ±0.32  ±0.23  ±0.08  ±0.47  ±0.48  ±0.28  ±0.99  ±0.52  ±0.46  

TG6 
0.57 0.46 5.10 5.16 1.85 0.74 4.55 4.98 0.60 0.88 4.05 4.21 
±0.17  ±0.11  ±0.30  ±0.31  ±0.25  ±0.29  ±0.26  ±0.28  ±0.35  ±0.39  ±0.72  ±0.74  

 6Hz Vertical Vibration Exposure 

TG1 
0.35 0.20 3.16 3.19 1.31 0.86 3.24 3.60 1.63 3.24 2.00 4.15 
±0.10  ±0.04  ±0.11  ±0.12  ±0.06  ±0.08  ±0.03  ±0.02  ±0.35  ±0.14  ±0.14  ±0.31  

TG2 
0.72 0.35 3.41 3.51 0.49 0.66 2.73 2.88 1.68 1.35 2.25 3.15 
±0.19  ±0.14  ±0.41  ±0.41  ±0.20  ±0.30  ±0.50  ±0.49  ±0.97  ±0.32  ±0.76  ±1.19  

TG3 
0.99 0.47 3.66 3.83 0.78 1.35 2.98 3.38 2.75 1.04 1.97 3.59 
±0.12  ±0.17  ±0.28  ±0.26  ±0.32  ±0.47  ±0.47  ±0.66  ±1.52  ±0.38  ±0.50  ±1.52  

TG4 
0.91 0.57 3.70 3.88 1.23 1.15 3.10 3.56 1.60 1.18 1.90 2.82 
±0.14  ±0.38  ±0.28  ±0.24  ±0.46  ±0.29  ±0.29  ±0.40  ±0.89  ±0.36  ±0.43  ±0.88  

TG5 
0.65 0.40 3.40 3.49 0.58 0.69 2.94 3.11 1.88 2.60 1.65 3.73 
±0.18  ±0.19  ±0.31  ±0.31  ±0.29  ±0.30  ±0.66  ±0.62  ±0.93  ±1.02  ±0.28  ±1.04  

TG6 
0.76 0.80 3.83 4.00 1.01 0.68 3.86 4.07 1.27 1.48 2.89 3.61 
±0.15  ±0.32  ±0.28  ±0.27  ±0.33  ±0.24  ±0.45  ±0.43  ±0.61  ±0.66  ±0.92  ±0.88  
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CHAPTER 7 

Conclusions

The development of an active biodynamic model must rely on the 

appropriate evaluation of WBV influence on human reach movements and 

performance. Hence, this work analyzed the influence of vibration characteristics, 

movement direction, and visual feedback on upper body segment transmission and 

joint movement trajectories while performing reaching movements. It was 

hypothesized that WBV responses may be derived from the vibration characteristics 

of body segments through the transmission path. These responses were used to 

propose the construct of a biomechanical model capable of predicting upper body 

movement behaviors under WBV exposure. 

From 9,702 reach movements recorded in a series of experiments, this work 

investigated the mechanisms of WBV transmission from the vehicle cab to the hand, 

determined the kinematics of upper body joints under WBV exposure, and 

quantified vibration transmission through the upper limbs as a function of vibration 

frequency and direction, movement direction, and posture or movement constraints. 

7.1 Summary of Findings 

[1] WBV responses through the body segments can be derived from vibration 

characteristics of multi-body segments along the transmission path. 
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WBV transmission through the multi-linkage system of the upper body in the 

seated condition is significantly affected by vibration frequency and direction. 

Specifically, for the 2Hz excitation, the vibration motion is amplified through the 

upper limb from the shoulder to the fingertip, regardless of vibration direction and 

task condition. However, for the 6Hz excitation, the vibration motion is attenuated 

along the path for both the vertical and fore-and-aft vibration directions. Under the 

4Hz excitation, transmission through the upper body segments is dependent on 

vibration direction and reaching direction. All participants stated that the 4Hz 

vertical vibration was the most uncomfortable environment and the most difficult 

condition in which to complete the reaching task. These perceptions are likely to 

result from torso resonance occurring around 4 to 5 Hz in the vertical vibration 

condition. Furthermore, for the 2Hz vibration, transmission through all body 

segments is higher under the fore-and-aft than under the vertical exposure, which 

may reflect the inverse pendulum motion of the upper body. These findings 

suggested that the vibration responses of the end-effector may be estimated and 

predicted by synthesizing the vibration characteristics of multi-body segments 

along the path. 

 

[2] Elbow joint movement strongly contributes to the dynamic characteristics 

of upper body movements in reaching tasks. 

 

The peaks of the angular velocity and acceleration are higher for the elbow 

joint than for the shoulder, regardless of the reach direction. In addition, the 

shoulder joint angular velocity profile is mono-phasic, while the elbow joint profile 

is multi-phasic. Interestingly, the elbow joint angles for all reaches show the “U-

shaped” profiles that indicates a flexion followed by an extension. The initial elbow 

flexion may be to facilitate the release of the steering handle or be part of the reach 
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movement preparation to facilitate a rectilinear/planar hand trajectory. 

Alternatively, this flexion may help improve the controllability of movements by 

reducing the moment of inertia of the moving arm. Although joint trajectory and 

kinematics vary with reach direction, all joint tangential velocities present “bell-

shaped” profiles corresponding to feed-forward and feedback control phases. 

 

[3] In reaching tasks, movement initiation times are different for the shoulder 

and elbow, and any upper limb movement is not initiated before visual 

identification of the target location. 

 

Head rotation always occurs first, and then the arm movement is initiated 

after target location is identified. In addition, body segment movements are not 

initiated simultaneously. Gaze remained on target during the whole movement, 

which suggests that vibration may disrupt the spatial representation of the target to 

be reached. Since proprioception is also disrupted by vibration-induced oscillations 

of the arm, guidance of the movement may be achieved by anchoring vision on the 

target while waiting for the hand to appear in the visual field of view. In addition, it 

may mean that the hand transition can be completed without visual information of 

the hand as long as visual information of the target location is allowed. 

 

[4] One-dimensional vibrations influence reach movements significantly along 

the vibration axis, however a significant cross-talk occurs in other 

directions. 

 

Under vertical vibration exposure, all three-dimensional joint trajectories 

and kinematics show periodic perturbations correlated with the vibration frequency. 

This cross-transmission may result from the eccentricity of the mass moment of 
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inertia for multi-body segment, the nonlinearity in biomechanical properties of the 

upper body segments as well as the non-alignment of the different joint axes with 

the direction of the vibration. Hence, the biomechanical properties of the multi-

linkage system are likely to be the primary source of cross-talk. This effect also 

increases as the difficulty in balance maintenance increases. 

 

[5] Vibration contributes to an increase in the peak velocity and acceleration 

for all joint movements. However, movement patterns of joint angular 

kinematics are not qualitatively altered. 

 

WBV induces a periodic perturbation in the angular kinematics of the 

shoulder and elbow joint, which contribute to an increase in the peak values of joint 

angular velocity and acceleration. However, the desired reach trajectories and 

movement coordination planning are similar for static and vibratory conditions, 

since the filtered angular kinematics and movement patterns in vibratory conditions 

are qualitatively quite identical to those in a static condition. Hence, it appears that 

mechanical oscillations are only superimposed to the movement trajectory. 

 

[6] Vibration transmission through the human body must be considered as a 

three-dimensional tensor including the auto-axis and cross-axis 

transmission. 

 

Generally, vibration is predominantly transmitted through the body along 

the axis of the forcing direction. However, when performing far reaches under 4 and 

6 Hz vibration conditions, the cross-axis transmission is not negligible. Estimation of 

the auto-axis transmission through body segment is essential to describe their 

vibration characteristics, while additional information of the cross-axis 
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transmission is also necessary to identify the degradation of the performance and to 

develop a multi-degrees-of-freedom model. It also implies that a biomechanical 

model must be capable of simulating multi-directional responses to WBV vibration. 

 

[6] WBV transmission through the upper body segments while performing a 

reach task is a function of vibration frequency and direction, reach 

direction and target distance, posture or movement constraints (visual 

compensation and elbow flexion), and interactions between those factors. 

 

Specific description for effects of each factor follows below. 

 

[7] Vibration frequency is the dominant factor affecting WBV propagated 

transmission through upper-body segments. 

 

Regardless of other factors, transmission through the upper body is 

predominantly affected by vibration frequency. It implies that WBV characteristics 

may be determined by the biomechanical properties of the human body and its 

mechanical configuration of the multi-linkage system. 

 

[8] Reach direction also affects WBV transmission through the upper limbs. 

However, reach directions can be classified into three groups. 

 

Posture varies with reach direction, which leads to changes in biomechanical 

properties such as muscle/joint stiffness and moment of inertia of each body 

segment, location of the mass center, and stability of the whole body. Reach 

directions can be divided into three groups corresponding to the propagated 

transmission. For horizontal reaches at arm length distance, transmission is not 
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significantly altered along reach direction. For upward reaches requiring arm 

elevation, auto-axis and total transmission to the elbow joint are the largest for the 4 

Hz exposure and elbow transmission is larger than shoulder and finger transmission. 

The cross-axis transmission to the fingertip is larger than the auto-axis transmission 

under 6 Hz vibration, which means that fingertip oscillation is a three-dimensional 

motion, resulting from the position of the arm. Lateral far reach beyond the arm 

length results in large transmission to the finger, especially for the 4Hz and 6Hz 

vibration, as might be expected from a distant arm center of gravity. These 

differences reflect the changes in biomechanical properties associated with the 

configuration of the linkage system. 

 

[9] Variation of WBV transmission during arm transition phase depends on 

reach direction as well as vibration frequency.  

 

For the horizontal reach, there is no significant change in WBV transmission 

during the transition phase, regardless of vibration frequency. However, for the 

upward reach, WBV transmission changes depend on vibration frequency. Under 

the 2Hz vertical vibration, there is no significant change in the transmission trend 

through the upper body. Under 4Hz, the perturbation of the elbow significantly 

increases as the arm move closer to the final target and the trend of transmission 

through the upper limbs changes. Interestingly, under the 6Hz vibration exposure, 

the total transmission through the finger increases significantly when the hand 

arrives near the final target. 

 

 [10] Visual compensation can contribute to hand stabilization. However, it 

 does not modify the trend of transmission through the arm and may not 

 be sufficient to improve performance under WBV exposure. 
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Hand oscillation around the target is smaller when continuous visual 

feedback of target location is allowed. However, contribution of visual compensation 

to reduction the degradation of performance varies with vibration frequency. With 

visual compensation, the total transmissions at the finger decreases by 20.6 %, for 

the 2 Hz, 7.2 % for the 4 Hz, and 1.3 % for the 6 Hz WBV exposure, respectively. 

Therefore, movement adjustment by visual feedback may not be an effective way to 

improve task performance in all vibration environments. 

 

[11] Elbow Flexion does contribute to the enhancement of hand stabilization 

for the upward reach requiring arm elevation.  

 

The elbow flexed posture produces larger transmission to the elbow and 

smaller transmission to the finger than the elbow extended posture, which suggests 

that elbow flexion prevents large vibration transmission to the finger by dissipating 

energy at the elbow joint. This effect is more pronounced for the 4 Hz than for the 2 

or 6 Hz WBV exposures. Especially when performing upward reach under the 4 Hz 

exposure, transmission to the elbow is larger than transmission to the shoulder and 

finger. Under the 4 Hz vibration, when compared to the extended posture, elbow 

flexion leads to 36.1 % increase in transmission through the elbow and 13.6 % 

decrease in transmission through the finger for the horizontal reach. For the 

upward reach, elbow flexion contributes to 40.4 % increase in elbow transmission 

and 31.0 % decrease in finger transmission. Under 2 Hz and 6 Hz WBV, the 

contribution of elbow flexion to the reduction of fingertip transmission is relatively 

smaller, nevertheless elbow flexion contributes to 10.2 % and 11.3 % decreases, 

respectively.  
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In conclusion, the characteristics of WBV transmission through multi-body 

segments along the upper body path provide valuable information that may be 

applied to the design of man-machine interfaces used in vibratory environments. 

These findings are also the basis of supporting the development of a biomechanical 

model representing and predicting human behavior under WBV. 

7.2 Limitations and Future Research Opportunities 

The biodynamic experiments and analyses in this work were performed with 

selected vibration conditions consisting of one-dimensional sinusoidal vibrations in 

order to explore the effects of the excitation frequency in the range of high 

sensitivity of human reach performance in vehicle operations. However, in order to 

provide a broader description of the frequency response of the human body, 

estimation of transfer functions would require exploring over a larger frequency 

range. It should be pointed out that simplifications in the design of experiment are 

necessary, since a change in biomechanical properties of body segments is expected 

to occur during movements. 

This research was also limited by a simplified definition of the shoulder joint. 

However, since the shoulder is a multi-joint system activated by a large number of  

muscles, movements of the shoulder are too complex to be defined easily. Usually, 

movements of the shoulder are described by scapular retraction/protraction, 

scapular elevation/depression, arm abduction/ adduction, arm flexion/extension, 

medial/lateral rotation, and arm circumduction. All these movements may not be 

captured by an optical motion analysis system. In addition, due to difficulty in 

tracking the hip markers during arm movements with the limited number of 

cameras, the torso movements were not identified from motion capture data. For a 

more accurate and realistic model development, it may be critical to define how 
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many degrees-of-freedom must be considered for describing the torso and shoulder 

movements (Figure 7.1). 

For the horizontal movements, three intermediate points associated with 

instantaneous postures may be sufficient to describe the variation of transmission 

along the movement trajectory. However, for the upward reaches, two additional 

intermediate postures may be necessary to obtain a complete description of 

transmission associated with changes in biomechanical properties of the upper limb 

along the movement trajectory. Indeed, upward reaches require a larger range of 

joint movements and more degrees of freedom for the shoulder than horizontal 

movements. 

Two elbow flexions used to identify how elbow flexion/extension affects 

WBV-induced pointing error at the fingertip revealed an elbow anti-resonance 

phenomenon. This result may be expanded to construct a parametric model of the 

elbow joint by estimating posture-variant biomechanical properties with a few 

more flexion levels along specific movement direction. 

 

 

 

Figure 7.1: The example reach model of the seated human with six degrees-of-
freedom 
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Estimation of the biomechanical properties is needed for the development of 

an active biomechanical model. As suggested in Chapter 6, the equilibrium point 

hypothesis and EMG measurement may be used for estimating the muscle and joint 

stiffness (Fledman, 1986; Flash and Mussa-Ivaldi, 1990; Gomi and Kawato, 1997). 

To model nonlinearities in the human system, the effects of the active voluntary and 

involuntary muscular control also need to be investigated to determine the 

contribution of their influence on stiffness estimations and the associated changes in 

responses to whole-body vibration. In addition, further investigation of the 

influence of vibration magnitude may also reveal more information about the 

nonlinear characteristics of the human body.  

 

 

Figure 7.2: Information flow and vibration influence on human activity 

Vibration transmission through body segments provides information about 

the amount of physical response of the body. However, vehicle vibration may 
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interfere with various functions in human body such as visual system, perception, 

and movement and posture control, as illustrated in Figure 7.2 (Martin et al, 1980a; 

Martin et al 1980b; Gauthier et al, 1981, Gauthier et al, 1984; Griffin, 1990). WBV 

exposure may also influence the central nervous system, but the effects on CNS have 

not been explicitly known. Therefore, for the realistic and synthetic evaluation of 

WBV effects on the human, overall human responses to vibration must be integrated 

with some weight factors. 

The results of this work provide quantitative information about how 

mechanical vibration is transmitted to the upper body of the seated human. This 

physical stress is known to cause to health risks and safety issues that are more 

critical in evaluating operation environment and workplace. Thus, a relationship 

between WBV transmission and health issues or performance must be further 

investigated to improve the current exposure guidelines (ISO standard 2631) based 

arbitrary on discomfort. It should be noted that during our experiments some 

participants felt drowsiness under repetitive exposure of 2, 4, and 6 Hz. 

Furthermore, the present investigation, limited to a low frequency range, needs to 

be expanded to include higher frequencies also presented in the spectrum of 

vibrations generated by vehicles. For the synthetic analysis of WBV effects on the 

health and safety of the workers, physiological and psychological effects induced by 

WBV need to be investigated as well as physical response.  

Discomfort induced by WBV is not easy and simple to evaluate, since it is a 

subjective perception based on the integration of sensory information partially 

distorted by the vibration-induced activation of the sensory mechano-receptors 

contributing to proprioception, exteroception, and exproprioception. Therefore, 

discomfort evaluation should be analyzed cautiously to avoid misinterpretation of 

the influence of vibration exposure. 
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This research did not explore effects of WBV on fatigue. However, muscle 

contractions required to counteract the mechanical perturbation or reflectively 

caused by vibration-induced muscle stretches and activation of mechanoreceptors 

may exacerbate fatigue, which in turn may modify vibration responses during 

exposure to WBV. Thus, effects resulting from long duration exposure, such as 

operating a vehicle for several hours, need to be investigated using 

electromyography (EMG) and other measures of muscle fatigue. 
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APPENDICES 

Appendix A. Transmission propagated through the upper limbs in three-

dimension

Vibration transmissions propagated through the upper limbs in three-

dimension analyzed in Chapter 5 are presented in this appendix A. The results 

correspond to the experimental session I, II, and III associated with different 

movement constraints, respectively. 
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Figure A.1: Transmission propagated through the upper limbs [ SS1 – 2 Hz 
Vertical WBV Exposure ] 
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Figure A.2: Transmission propagated through the upper limbs[ SS1 – 4 Hz 
Vertical WBV Exposure ] 
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Figure A.3: Transmission propagated through the upper limbs[ SS1 – 6 Hz 
Vertical WBV Exposure ] 
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Figure A.4 Transmission propagated through the upper limbs [ SS2 – 2 Hz 
Vertical WBV Exposure ] 
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Figure A.5: Transmission propagated through the upper limbs [ SS2 – 4 Hz 
Vertical WBV Exposure ] 
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Figure A.6: Transmission propagated through the upper limbs [ SS2 – 6 Hz 
Vertical WBV Exposure ] 
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Figure A.7: Transmission propagated through the upper limbs [ SS3 – 2 Hz 
Vertical WBV Exposure ] 
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Figure A.8 Transmission propagated through the upper limbs [ SS3 – 4 Hz 
Vertical WBV Exposure ] 
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Figure A.9: Transmission propagated through the upper limbs [ SS3 – 6 Hz 
Vertical WBV Exposure ]
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Appendix B. The Percentage Distribution of Total Body Weight 

 

Table B.1: The Percentage Distribution of Total Body Weight According to 
Different Segmentation Plans (Chaffin, 1999, from Webb Associates, 1978) 

 

Grouped Segments, % 
of Total Body Weight 

Individual Segments, % of 
Grouped-Segments Weight 

Head and neck = 8.4 % 
Head 73.8 % 
Neck 26.2 % 

Torso = 50.0 % 
Thorax 43.8 % 
Lumbar 29.4 % 
Pelvis 26.8 % 

Total arm = 5.1 % 
Upper arm 54.9 % 
Forearm 33.3 % 
Hand 11.8 % 

Total leg = 15.7 % 
Thigh 63.7 % 
Shank 27.4 % 
Foot 8.9% 
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Appendix C. The Effect of Total Body Weight on Fingertip Transmission 

 

Table C.1: 3-way ANOVA for Subject Weight, Target Location, and Vibration 
Frequency 

 
Transmission (rFIN) 

DoF F (TZ) p (TZ) F (TTOTAL) p (TTOTAL) 
Subject Weight 20 7.82 0.0005 13.93 0 
Target-L 5 8.19 0.0001 5.42 0.0011 
Vib-Freq 2 90.18 0 99.31 0 
S-Weight × Target-L 100 1.41 0.2041 0.84 0.6307 
S-Weight × Vib-Freq 40 5.6 0.0005 2.64 0.0352 
Target-L × Vib-Freq 10 1.64 0.143 0.98 0.481 

 

A 3-way ANOVA including subject weight, target location, and vibration 

frequency was performed to estimate the influence of body weight on finger tip 

transmission. This analysis indicates that subject weight significantly affects the z-

component and total WBV transmission of the finger (Table C.1). However, the 

relationship between body weight and transmission is not a monotonous function, 

which suggests the possible interaction of other body characteristics such as 

segment length, inertia and muscle tension. Hence body weight alone may not be a 

good indicator of vibration transmission in the context of dynamic activities. The 

difficulty in finding a correlation between weight and transmission may result from 

the complexity and/or the nonlinearity of the human body. Therefore, further in-

depth investigation is necessary for exploring the relationship between 

anthropometry and WBV transmissibility. 
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