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ABSTRACT 

 
 

Agent-Based Computational Architectures for  
Distributed Data Processing in Wireless Sensor Networks 

 
 

by 
 
 

Andrew T. Zimmerman 
 

 

 

Chair: Jerome P. Lynch 

 

 As the structural health monitoring (SHM) community continues to develop 

algorithms for monitoring performance and detecting degradation in engineered systems, 

the importance of pervasive sensing and autonomous data processing methodologies will 

increase. Fortunately, the emergence of wireless sensor technologies at the forefront of 

SHM research has provided a platform on which problems related to both sensor density 

and processing autonomy can be addressed. By utilizing wireless communication links 

instead of expensive data cables, wireless monitoring systems can be deployed with much 

greater sensor density and at significantly lower costs than traditional SHM systems. 

Perhaps more importantly, because wireless sensing units typically integrate a traditional 

sensor with a low-power microprocessor, analog-to-digital converter, and wireless 



 xvii

transceiver, wireless sensing networks (WSNs) have shown great promise in their ability 

to process sensor data in-network (i.e., without the need for a centralized data center). 

Over the past decade, the wireless SHM community has shown that it is possible 

to minimize problems associated with power efficiency, data loss, and finite 

communication range by processing data before transmitting it to a central repository. 

Recently, in an effort to further improve the efficiency and capability of in-network 

computation, researchers have started to move away from centralized processing 

frameworks (where no data is shared between wireless nodes) towards more hierarchical 

data processing architectures. However, work to date in this area has yet to fully leverage 

the computational advantages provided in large networks of wireless sensors. 

In this dissertation, several distinct agent-based architectures are developed for 

distributed data processing in WSNs. Each of these agent-based architectures leverages 

the ad-hoc communication and pervasive nature inherent to wireless sensing technology, 

and can be viewed as a parallel computing system with an unknown and possibly 

changing number of processing nodes. As such, sophisticated data analysis can be 

performed while maintaining a scalable environment that is not only resistant to sensor 

failure, but that also becomes increasingly efficient at higher nodal densities. These 

agent-based architectures represent a significant step towards the creation of a fully 

autonomous WSN for application to SHM. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  The Need for Structural Health Monitoring 

Complex structural systems such as buildings, bridges, pipelines, aircraft, and 

ships, among many others, all play a vital role in maintaining the commercial, social, and 

recreational interests of modern society. While these systems are designed to provide 

many years of safe functionality under normal operating conditions, it is often desirable 

or even necessary to evaluate system performance either in the wake of time-based 

deterioration such as that caused by cracking (Zagrai and Giurgiutiu 2001), fatigue (Wu 

and Huang 1993), and corrosion (Simmers Jr., et al. 2006), or after extreme loading 

scenarios such as earthquakes (Hou, et al. 2006), tsunamis (Schmitz, et al. 2007), and 

terrorist attacks (Kevin 2004). Traditionally, this type of structural performance 

evaluation has been performed by trained professional engineers using either visual 

inspection methods (Estes and Frangopol 2003) or, in some cases, more sophisticated 

non-destructive techniques (Washer 1998). However, in light of recent catastrophic 

structural failures, such as the September 11, 2001 collapse of the World Trade Center 

towers in New York City (NIST 2005), the May 23, 2004 roof collapse at the Charles de 

Gaulle international airport in Paris (Reina 2004a, 2004b), and the August 1, 2007 I-35W 
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bridge collapse in Minneapolis, Minnesota (FEMA 2007), it has become clear that more 

sophisticated means of structural inspection may be necessary to help prevent future loss 

of life and/or property due to structural degradation or in the aftermath of a catastrophic 

damage event. 

To this end, structural health monitoring (SHM) systems, which combine 

networks of sensors with automated system identification and damage detection 

techniques, have garnered much attention in both the academic and commercial sectors 

(Farrar and Worden 2007). Representing a long-term method of continuous system 

evaluation that can be applied to critical infrastructure systems in a variety of fields, 

SHM systems are important because they reduce the routine maintenance and inspection 

costs associated with critical infrastructure. In addition, they can increase the safety of a 

structure by alerting engineers to potential structural problems well before catastrophic 

failure occurs. 

 

1.2  Current State-of-Practice in Structural Health Monitoring 

 Since the initial development of critical infrastructure systems (such as temples, 

roads, aqueducts, canals, etc.), mankind has relied almost exclusively on either visual 

cues (such as cracking, leaking, or decreased performance) or the use of simple tool-

based diagnostics (hammer tapping, load testing, etc.) in order to determine the state of 

health of a given system or structure. Despite the many advances in sensor technologies, 

data collection capabilities, and computer-based data processing tools, most of today’s 

physical infrastructure (bridges, pipelines, automobiles, airplanes, etc.) are still subjected 

to some form of visual inspection. For example, in the United States, the Federal 
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Highway Administration requires highway bridges to be inspected visually once every 24 

months (FHWA 2004). The National Bridge Inspection Program (NBIP) was mandated 

by congressional legislation after the catastrophic Silver Bridge collapse in 1967 

(Lichtenstein 1993). Similar visual inspections are also the most common mandatory 

inspection technique used in the naval (Ludwig and Conrardy 2007) and aerospace 

(Samsonov 1995) communities. 

 In order to supplement traditional visual inspection methodologies, many non-

destructive testing (NDT) methods have been developed over the past three decades 

(Malhotra and Carino 2004). These techniques are all designed to add some degree of 

quantitative data to the damage detection process without harming the inspected 

structure. For example, a large suite of non-destructive techniques including proof 

loading, coring, vibration and impact testing, ultrasonics, conductivity mapping, and 

radar methods have all been used to supplement visual inspections of concrete and 

masonry-based civil structures (McCann and Forde 2001). Similarly, in the aerospace 

industry, NDT methods like ultrasonics, radiography, thermography, and acoustic 

emissions have all been used to assist in the inspection of aluminum and composite 

aircraft structures (Mahoon 1988). 

 By leveraging recent advances in sensing capabilities and computing power, the 

pace of SHM research has quickened significantly over the past decade in an attempt to 

supplement or replace visual and technician-based (manual) NDT inspection methods. 

Specifically, considerable effort has been placed on developing automated damage 

detection algorithms using a variety of techniques including vibration-based methods 

(Doebling, et al. 1998) and guided-waves (Raghavan and Cesnik 2007). To date, 
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however, the only truly significant commercial application to which automated SHM 

techniques have proved completely successful is the condition monitoring (CM) of 

rotating machinery (Randall 2004a, 2004b). In this field, changes in both vibration 

signature and lubricant content can be directly correlated to certain kinds of damage in an 

operating machine, and it has been shown that these changes can be detected and 

analyzed without human interaction. 

 However, even without the development of successful automated damage 

detection methodologies, most industries today have still embraced (to some degree) the 

installation of networks of sensing transducers on their structural systems in order to 

assist the diagnostic capabilities of human inspectors. For example, networks of sensors 

have already been installed in many large civil structures around the world (Hipley 2000; 

Wu 2003; Ko and Ni 2005). Similarly, modern aircraft (Staszewski, et al. 2004) and 

naval vessels (Slaughter, et al. 1997) are currently outfitted with hundreds of sensors 

which are used to assist inspectors in assessing the health and remaining lifespan of the 

structural systems they are monitoring. 

 

1.2.1  Limitations of Current SHM Systems 

 While commercial applications of SHM technologies are becoming more 

prevalent, the current state-of-practice in structural inspection (with or without SHM 

assistance) is woefully inadequate at detecting the onset of structural failure before it 

becomes catastrophic. A poignant example of this truth is the aforementioned I-35W 

bridge collapse (FEMA 2007). Despite numerous visual and NDT inspections in the 

years prior to the collapse, each of which detected serious problems, the bridge was 
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deemed to have met minimum tolerable limits and was left in place without major repair 

(Dedman 2007). Clearly, in this case more sophisticated SHM methods may have aided 

the inspectors and possibly prevented disaster. 

Unfortunately, there are many factors preventing the widespread adoption and use 

of SHM technology in today’s structural systems. As mentioned before, the lack of 

effective autonomous damage detection methods have been a detriment to the value of 

SHM systems; since no one method or algorithm has been shown to detect damage in a 

variety of large structural applications, the field has been unable to produce any solution 

that functions as reliably as CM systems do for rotating machinery. But perhaps the most 

important hindrance to modern SHM is actually the high cost associated with the 

installation and maintenance of large numbers of sensing transducers distributed 

throughout a large structural system. 

In a typical civil SHM application, for example, a variety of point sensors (such as 

accelerometers, temperature sensors, strain gages, linear voltage displacement 

transducers, among others) are deployed throughout the monitored structure and are 

connected to a central data repository using long runs of coaxial cable. These coaxial 

cables are utilized to provide power to each individual sensing transducer and to carry 

sensor data back from each transducer to the central repository for storage and analysis. 

In large buildings, it has been found that tethered monitoring systems can incur cabling 

costs on the order of several thousand dollars per sensing channel (Celebi 2002). Since 

many damage detection methods desire high sensing density (i.e., sensing transducers 

placed at as many discrete locations as possible throughout a structure), the cost 

associated with deploying a high resolution SHM system in a complex engineered system 
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grows steeply with the size of the associated sensing network. The Tsing-Ma Suspension 

Bridge in Hong Kong, for example, is currently monitored with over 350 tethered sensors 

that were installed at a cost of over $8 million (Farrar 2001). 

 

1.3  Current State-of-the-Art in Structural Health Monitoring 

 In an attempt to address some of the limitations inherent to current in-practice 

SHM systems, the research community has been actively working on a variety of new 

sensing and damage detection technologies. At the forefront of this research includes 

work with guided waves for damage detection, sensor minimization for decreased sensor 

costs, and wireless sensor networks for a reduction in installation and maintenance costs. 

While the specific approaches may differ, each of these areas of research aims to make 

structural monitoring implementations more effective by providing greater amounts of 

data, either through the use of spatial sensing technologies or by lowering the costs 

associated with dense arrays of sensing transducers. 

 

1.3.1  Guided Waves for Distributed Damage Detection 

 As SHM researchers have gone about trying to determine the best methods of 

damage prognosis in civil, mechanical, and aerospace structures, guided wave testing has 

emerged as a technique that can provide an estimate of the location, severity, and type of 

damage using a relatively low number of sensing transducers (Raghavan and Cesnik 

2007). Guided wave testing builds on the strengths of acoustic emission (AE) 

methodologies, which use stress waves generated by the mechanical deformation of a 

monitored material to detect the presence and severity of damage locations (Holford 
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2009).  AE techniques have shown a great deal of success in the SHM community, but 

suffer from the need for large numbers of sensors to be deployed on a monitored 

structure. Also, interpretation of data and the establishment of trigger thresholds adds 

some degree of subjectivity to the AE method. However, the guided wave approach relies 

on a controlled acoustic or ultrasonic stress wave input to the structure (initiated through 

a sensor-actuator pair). In thin metallic plate structures, these intentional stress waves 

have the ability to travel long distances. This large interrogation range offers spatial 

damage detection capabilities within a rather large area surrounding the actuator-sensor. 

As such, guided waves promise the same spatial benefits of AE without the need for large 

numbers of installed sensors. In addition, a controlled input ensures repeatability of the 

method. However, while the number of sensors in a guided wave system may be few 

relative to a traditional network of distributed point sensors, guided wave technology 

comes at a price: guided waves require a significant amount of energy to generate, and 

must be sampled at high rates (up to 25MHz). As a result, the per-sensor costs and data 

acquisition requirements hamper the market adoption of guided wave technologies. 

 

1.3.2  Sensor Minimization for Cost-Effective SHM 

 One technological advancement that has made a direct impact on health 

monitoring over the past ten years is the development of microelectromechanical systems 

(MEMS) (Mohamed and Peter 2004). Referring to a set of miniaturized sensing 

transducers and actuators, MEMS technology brings about three main advantages to the 

SHM community: lowered cost, increased power efficiency, and an enhanced application 

range. MEMS sensors and actuators can be manufactured in bulk using an integrated 
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circuit-based manufacturing process, with hundreds of sensors on a given semi-

conducting wafer (Gardner 1994). This approach to manufacturing is vital to keeping 

sensor costs low compared to macro-scale manufactured counterparts. This 

miniaturization also decreases the amount of electricity required to power a given 

transducer, lowering both the manufacturing and usage costs associated with sensors 

commonly used for health monitoring (such as accelerometers). Additionally, because of 

its small and lightweight form factor, MEMS technology can be more easily applied to 

lightweight structures (where sensor weight may have a significant impact on system 

performance), embedded within a structural material (like concrete), or deployed in dense 

numbers for monitoring large civil structures. 

 

1.3.3  Wireless Sensors for Cost-Effective SHM 

As previously mentioned, networks of tethered sensors have already been 

installed on a small number of operational civil structures around the world, but the high 

costs associated with tethered monitoring systems have prevented their widespread 

adoption. As such, the SHM community has begun to investigate the use of wireless 

communication as a means of increasing the affordability of large-scale sensor 

installations. The idea of integrating traditional sensing components with a wireless radio 

for the purpose of structural monitoring was first proposed over a decade ago (Straser, et 

al. 1998). Typically, by integrating a low-power microprocessor, an analog-to-digital 

converter, and a wireless transceiver, wireless sensor platforms can serve as data 

acquisition nodes capable of collecting, storing, processing, and transmitting data from 

traditional sensing transducers to a distant data repository. By eliminating the need for the 
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extensive lengths of cable required to link sensors to a central data repository, wireless 

sensing technologies can be deployed at both reduced costs and with higher nodal 

densities than traditional tethered monitoring systems. For a point of comparison, a 

wireless sensing system can be deployed at a cost of a few hundred dollars per sensing 

channel (Lynch and Loh 2006), whereas tethered monitoring systems have been known 

to incur costs on the order of several thousand dollars per sensing channel (Celebi 2002). 

As a result, a wide variety of commercial and academic wireless sensor prototypes have 

been developed and validated in the past ten years. 

 

1.3.4  Problems with Data Glut in State-of-the-Art SHM  Systems 

 Each of the state-of-the-art technologies addressed above works in some way to 

overcome the data limitations imposed by current in-practice SHM systems (i.e., either 

by using a single sensor to directly quantify a spatially distributed indication of damage 

or by enabling the distribution a greater number of sensors to provide damage-relevant 

data). Unfortunately, these technologies by their very nature create an additional 

problem: data glut. Data glut from a dense sensor installation is essentially the inverse of 

the problem the dense sensing system was designed to solve (Bryson 1995). By creating 

an environment where hundreds, or even thousands, of channels of sensor data are being 

streamed to central data repository, the shear amount of data being collected and stored in 

these state-of-the-art SHM systems is simply too great for modern data storage and data 

processing techniques to efficiently handle. 
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1.4  Distributed Data Processing in Wireless SHM Systems 

As the amount of data being collected by SHM systems continues to grow, and as 

data processing capabilities and techniques continue to rapidly improve across 

disciplines, the modern engineering community will inevitably become increasingly 

reliant on sensor data to provide an accurate assessment of system behavior and 

performance. For example, experimentally sensed data is vital to properly validating and 

calibrating analytical models, as well as detecting degradation and failure in engineered 

systems including rotating machinery (Loutas, et al. 2008), civil structures (Ni, et al. 

2008), hydrological systems (Parjajka and Bloschl 2008), and aerospace vehicles 

(Staszewski, et al. 2009), among others. Traditional methods of data collection in all of 

these application spaces involve the use of tethered data acquisition systems. But, as 

discussed above, tethered monitoring systems are not feasible in large engineered systems 

because of the high cost of installing and maintaining large numbers of coaxial data 

cables. As such, networks of wireless sensors are emerging as an effective new interface 

between sensor and data repository (see Section 1.3.3). 

In addition to the cost savings generated by the elimination of unnecessary data 

transfer and power cables, wireless sensing networks (WSNs) have also shown great 

promise because of their ability to process sensor data locally at each wireless node. In 

fact, the ability of wireless sensors to autonomously collect and analyze data locally has 

led to these devices being recently labeled as “smart” sensors (Spencer, et al. 2004). 

Local data processing is especially advantageous when confronted with the huge amounts 

of data commonly associated with dense networks of sensors. As such, many different 

architectures have been developed for embedded data processing using wireless sensors. 
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Early on, researchers focused primarily on centralized implementations of engineering 

algorithms that required no communication between sensors (Figure 1.1). For example, 

wireless data processing architectures were developed for embedding algorithms such as 

such as Fast Fourier Transforms (FFTs) (Lynch 2002), autoregressive model fitting 

(Lynch, et al. 2004), and wavelet transforms (Hashimoto, et al. 2005) within the 

computational core of a network of wireless sensors. 

These algorithms were designed to perform independently at the sensor, without 

direct sharing of data between nodes. As a result, spatial information can only be 

obtained at a central data repository where data processed by the wireless nodes is 

centrally aggregated. For example, an instrumentation of a 14-node wireless monitoring 

system installed on a concrete box girder bridge illustrated embedded mode shape 

 
 

Figure 1.1:  Centralized architecture for in-network data processing in a wireless sensor network. 
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estimation by peak picking (Lynch, et al. 2006). In this study, each sensor locally 

calculated the frequency response function (FRF) of the instrumented system using an 

embedded FFT. Using this FRF, embedded peak picking logic is used to identify the 

primary modal frequencies. Only after this frequency information is calculated do the 

wireless sensors communicate the imaginary component of the Fourier spectrum at modal 

peaks to a central data repository where global mode shapes can be assembled. 

A critical benefit gained by processing raw sensor data locally and transmitting 

only processed results is that the size of data to be communicated decreases drastically. 

Hence, these embedded data processing methods can be relatively power efficient when 

compared to the transfer of large tracts of time history data to a central location (Lynch, 

et al. 2004). However, in this type of sensor-centric approach, there is little to no sharing 

of sensor data between nodes, preventing these architectures from autonomously 

determining system-wide properties (such as vibrational mode shapes). 

Since wireless devices can be deployed in ad-hoc networks featuring peer-to-peer 

communication, many analytical routines can be easily decentralized and distributed 

across a large number of wireless nodes with individual processing capabilities. By 

employing distributed or parallel processing techniques, an ad-hoc wireless sensing 

network can obtain spatial information without the need for a central repository. As a 

result, researchers have begun to look at various techniques for distributed data 

processing on wireless sensing networks. For example, Chintalapudi, et al. (2006) present 

a tiered system where data processing tasks can be performed on a distributed network 

using powerful gateway nodes (Figure 1.2). This method involves a top-down approach 

that allows for a flexible and highly abstracted user interface, but in which the 
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computational capabilities of the prolific lower nodes are largely ignored. Other methods 

involving hierarchical sensing networks, such as data aggregation and fusion techniques 

(Gao 2005; Nagayama, et al. 2006; Akkaya, et al. 2008), and query processing 

(Rosemark and Lee 2005) have also been presented in the literature. These promising 

techniques can help improve network scalability by limiting data size and mitigating data 

loss problems through averaging, but they rely on a tradeoff between data size and 

accuracy. While wireless sensing technology has seen significant growth in recent years, 

additional work is still needed to modify existing analysis methods for distributed in-

network execution within a network of wireless sensors. 

 

 
 

Figure 1.2:  Hierarchical architecture for in-network data processing in a wireless sensor network. 
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1.5  Agent-Based Data Processing in Wireless SHM Systems 

 As sensing transducers and wireless sensing hardware continue to improve in 

capability while reducing in price, it has become reasonable to envision a future in which 

hundreds (or thousands) of sensing transducers can be affordably deployed on large civil 

structures. As mentioned above, such an explosion in sensor density may be necessary for 

most damage detection techniques to prove themselves viable for application to civil 

infrastructure. However, higher sensor density must be joined with an improvement in 

data collection, processing, and communication technologies in order to offset new 

problems associated with data glut. Based on the aforementioned benefits of in-network 

processing using networks of wireless sensors, it can be seen that advances in this 

promising area of research may prove to be incredibly beneficial to the entire SHM field. 

 In this dissertation, a focus is placed on the development of agent-based methods 

for processing sensor data in wireless structural health monitoring systems. An agent-

based system can be defined as any system in which multiple intelligent agents (in this 

case, wireless sensor nodes) interact directly with each other and with the environment 

(in this case, any sensors and actuators associated with the SHM system) (Russell and 

Norvig 2003). In a multi-agent system, the idea is that a collection of agents, each of 

which has an incomplete view of its environment and acts according to its own 

knowledge and set of rules, can be more effective at solving a given problem than a 

single agent with a complete view of the world. Multi-agent systems (MAS) have been 

successfully applied to a large number of real world problems, including structural 

monitoring (Ruiz-Sandoval 2004), resource allocation (Anussornnitisarn, et al. 2005), 

online trading (O'Malley 2001), environmental monitoring (Athanasiadis and Mitkas 
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2004), disaster response (Boloni, et al. 2006), and personnel distribution (McCauley and 

Franklin 2002). 

 When applied to the processing of sensor data within a network of wireless 

devices, an agent-based environment allows us to distribute computational tasks across a 

large number of sensing nodes in a parallel fashion. As such, problems associated with 

power efficiency, data loss, and finite communication ranges can be minimized while 

providing a powerful framework for the autonomous, in-network processing of sensor 

data. An agent-based architecture (as seen in Figure 1.3) provides several advantages 

over the centralized or hierarchical data processing architectures presented in Section 1.4. 

Because each node in an agent-based network is free to communicate amongst its 

neighbors, this type of agent-based architecture retains the ability to infer spatial 

 
 

Figure 1.3:  Agent-based architecture for in-network data processing in a wireless sensor network. 
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information from the sensing network (as in the case of a hierarchical system). However, 

because each node in an agent-based wireless network has the opportunity to play an 

equal part in any computational task, an agent-based framework plays directly to the 

strength of a WSN: its prolific low-powered nodes.  

 

1.6  Wireless Hardware Platforms for Agent-Based Data Processing 

While there are a large number of wireless sensor prototypes that are capable of 

being leveraged for agent-based data processing (Lynch and Loh 2006), the work 

presented in this dissertation has been developed for and validated on two particular 

wireless sensor prototypes designed specifically for structural health monitoring: the 

WiMMS wireless sensor (Wang, et al. 2005) and the Narada wireless sensor (Swartz, et 

al. 2005). 

 

1.6.1  WiMMS Wireless Sensing Prototype 

The WiMMS wireless sensing prototype, proposed by Wang, et al. (2005) and 

shown in Figure 1.4, utilizes a Texas Instruments ADS8341 ADC for 16-bit data 

collection on four simultaneous sensor channels and a Maxstream 9XCite wireless 

modem for communication up to 300m on the 900MHz radio band. The computational 

core of this sensor centers around the low-power, Atmel ATmega128 8-bit 

microcontroller for local data processing, and employs an external Samsung 

KM681000CLG-7 CMOS SRAM for an additional 128kB of SRAM for computation and 

data storage. This extended memory space allows the unit to store over 60,000 data points 

at any one time. Powered by 5 AA batteries, these units can continuously collect data for 
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up to 30 hours. Instrumentation studies of the unit on various long-span bridges have 

validated the accuracy of the system (Hou and Lynch 2006; Lu, et al. 2006; Wang, et al. 

2006), including tight time synchronization (i.e., a synchronization error of less than 5ms 

between nodes) (Lynch, et al. 2006). A rich library of data interrogation algorithms have 

also been included in the operating system (Lynch 2007). 

 

 1.6.2  Narada Wireless Sensing Prototype 

The Narada wireless sensing unit, developed at the University of Michigan 

(Swartz, et al. 2005), can be seen in Figure 1.5. This wireless device, like the WiMMS 

wireless sensor, is powered by an Atmel ATmega128 microprocessor with 128kB of 

external SRAM and utilizes the four channel, 16-bit ADS8341 ADC for data acquisition. 

However, the Narada’s wireless communication interface consists of the Chipcon 

CC2420 IEEE 802.15.4-compliant transceiver, which makes it an extremely versatile unit 

         

(a)                                                                             (b) 
 

Figure 1.4: WiMMS wireless sensing prototype (a) fully assembled and (b) with individual 
components highlighted. 
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for developing large, scalable wireless sensing networks. Another distinguishing feature 

of the Narada wireless sensor is its actuation capabilities, made possible through the use 

of a two channel, 12-bit Texas Instruments DAC7612 digital-to-analog converter (DAC). 

This prototype is powered by a constant DC supply voltage of between 7 and 9 volts (the 

equivalent of five or six AA batteries, respectively), and has an operational life 

expectancy of approximately 48 hours with 6 AA batteries, given constant 

communication and data analysis demands. Duty cycle usage strategies can be employed 

to extend the life expectancy of the unit to one or more years, depending on how often the 

unit is out of a deep sleep state. 

 

1.6.3  Computational Characteristics of the Atmel ATmega128 

From a computing perspective, both the WiMMS and Narada wireless sensors are 

reliant almost exclusively on the capabilities of their ATmega128 microcontrollers. This 

fixed-point microprocessor is designed for low-power applications (it draws only 17.5mA 

at 5V when active), and has rather modest computational abilities relative to the 

          

(a)                                                                                         (b) 
 

Figure 1.5:  Narada wireless sensing prototype (a) network and (b) schematic. 
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processing power of many higher powered microprocessors. Floating point arithmetic is 

possible on the ATmega128 through support provided by the compilation environment. 

On both the WiMMS and Narada platforms, the ATmega128 is coupled with an 8MHz 

external clock source, and almost all available instructions execute within a single clock 

cycle. For comparison purposes, it is useful to note that a 4096-point complex valued 

FFT can complete on either of these platforms in approximately 20 seconds. 

From a memory perspective, the ATmega128 contains 128kB of in-system 

reprogrammable flash, 4kB of EEPROM and 4kB of internal SRAM. The WiMMS and 

Narada platforms both supplement this storage space with 128kB of external SRAM, 

which is enough to store over 32,000 floating point values. 

 

1.7  Research Objectives and Dissertation Outline 

In this dissertation, several novel agent-based computational architectures for 

distributed in-network data processing are presented and evaluated in the context of SHM 

(Figure 1.6). These architectures will allow dense wireless SHM systems to collect, store, 

and autonomously process large amounts of sensor data, eliminating common problems 

associated with sensor distribution, power consumption, and data glut and providing a 

powerful framework for performing complex data analyses in-network. Each successive 

architecture developed herein moves farther away from the current reliance on a 

centralized architecture for in-network computing and towards an agent-based paradigm 

where network computing demands can be handled autonomously (and optimally) 

without the need for human interaction.  
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In Chapter 2: Automated Modal Parameter Estimation by Parallel Processing 

within a WSN, a set of distributed computing techniques are developed for automated in-

network estimation of modal parameters (modal frequencies using peak picking, damping 

ratios using the random decrement method, and mode shapes using the frequency domain 

decomposition algorithm) given a set of wirelessly collected sensor data. These 

distributed techniques are evaluated by deploying a network of wireless sensors on both 

 
 

Figure 1.6:  A schematic representing major topics covered in this dissertation. 
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the main balcony of a large theatre located in Detroit, Michigan and on a pedestrian 

bridge located in Ann Arbor, Michigan. In each case, the network of sensors is shown to 

be capable of automatically and accurately estimating modal properties of a real world 

structure. 

In Chapter 3: A Parallel Simulated Annealing Architecture for Model Updating 

within a Wireless Sensor Network, a distributed architecture is developed for the in-

network updating of structural models using a parallel simulated annealing stochastic 

optimization technique. This distributed method could potentially be used to validate 

design assumption, test analytical models, or even to detect the onset of structural 

damage or degradation. It is validated on a wireless sensor network by successfully 

updating a 6-DOF dynamic structural model with unknown mass, stiffness, and damping 

properties. 

In Chapter 4: Market-Based Resource Allocation for Distributed Data Processing 

in Wireless Sensor Networks, the distributed in-network data processing paradigm 

developed in Chapter 3 is expanded through the application of market-based techniques. 

Using the n-Queens problem as a basis for validation, it is shown that the use of market 

principles to assign computational resources to multiple, simultaneously processed 

computational tasks allows for computational optimization in the wake of competing 

objectives such as power consumption, memory usage, and time to completion.  

In Chapter 5: Market-Based Frequency Domain Decomposition for Automated 

Mode Shape Estimation in Wireless Sensor Networks, the market-based architecture of 

Chapter 4 is applied to the distributed modal identification techniques of Chapter 2 in 

order to improve the accuracy of the distributed frequency domain decomposition mode 
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shape estimates. Lastly, in Chapter 6: Conclusions, a summary of the previous four 

chapters, as well as an outline for potential future work in the area of distributed in-

network data processing using agent-based methods is presented. 
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CHAPTER 2 

 

AUTOMATED MODAL PARAMETER ESTIMATION BY 

PARALLEL PROCESSING WITHIN A WSN 

 

2.1.  Introduction 

One area in which agent-based computing techniques can be applied to SHM is 

through the development of in-network system identification methods than can enable a 

WSN to autonomously determine the modal properties of a monitored structure. 

Traditional centralized modal estimation methods are inadequate when applied to the 

wireless environment, as they require large amounts of data to be transmitted to a 

centralized location. As such, problems associated with wireless bandwidth arise, 

restraining network scalability and limiting the spatial diversity and resolution of the 

resulting modal estimates. In this chapter, which is modified from Zimmerman et al. 

(2008a), a significant first step is made toward the complete automation and 

decentralization of SHM techniques within agent-based networks of wireless sensors. 

Specifically, a suite of parallel methods for in-network modal parameter estimation is 

developed. While these methods are not completely agent-based (i.e., they rely on a fixed 

and preassigned topology), they move away from existing centralized and hierarchical 

processing techniques by truly parallelizing computation over an entire WSN, increasing 
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network scalability and robustness while improving the capability of a wireless network 

to determine spatial information about the dynamic response of a monitored structure. 

The idea of identifying system parameters from dynamic response data originated 

two decades ago within the mechanical and aerospace engineering communities (Ewins 

1986; Ljung 1987; Juang 1994). The subsequent development of a set of system 

identification techniques was fueled largely by the need for analytical tools that could be 

used to build effective models of dynamic physical systems from observed system data. 

For obvious reasons, the ability to experimentally extract system parameters from sensor 

data offers enormous benefits across all engineering disciplines. In civil engineering, the 

ability to ascertain modal information (modal frequencies, mode shapes, and damping 

ratios) from sensor data has paved the way for the assessment of structural performance 

and the calibration of analytical design models (Alampalli 2000). In some instances, 

modal parameters can even be used to detect and locate structural damage in the wake of 

natural events like earthquakes (Doebling, et al. 1998).  

In the aerospace and mechanical engineering communities, modal parameter 

identification techniques are typically carried out using both input and output 

measurement data, which can be related through frequency response functions (FRFs) in 

the frequency domain. However, it is often difficult to excite a large civil structure in a 

controlled manner with measurable input excitation forces. Thus, modal parameter 

estimation techniques using output-only dynamic data have become quite popular within 

the civil engineering field (Cunha and Caetano 2006). Many of these approaches assume 

the input driving the system dynamics is broad-band white. In order to extract meaningful 

system properties from a large civil structure, a large amount of data must be available 
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from a dense array of sensors. Fortunately, recent advances in low-cost wireless sensing 

technologies have made the dense instrumentation of large civil structures possible. As a 

result, it is important for researchers to translate traditional system identification 

techniques to a distributed setting for use in wireless sensing networks. 

In this chapter, three output-only modal identification techniques are adopted and 

modified for use within a distributed wireless sensing network: the peak picking (PP) 

method, the random decrement (RD) method, and the frequency domain decomposition 

(FDD) method. This work sets itself apart from current work in distributed data 

processing using wireless sensors by leveraging the parallel data processing environment 

available within large sensing networks. Parallel and distributed computing minimizes 

the need for inter-process wireless communication which is more power consuming than 

local processing. This parallel approach, while still addressing problems associated with 

power consumption and bandwidth, allows a WSN to employ typical offline modal 

analysis techniques to autonomously extract spatial modal information from a large 

network of sensors without the need for a central data repository. In order to validate the 

performance of these embedded algorithms, two field validation studies are performed. In 

the first, the cantilevered balcony of a historic theater in metropolitan Detroit is 

instrumented with a dense network of wireless sensing prototypes. Over the span of 

several vibration tests, acceleration response data from the balcony is collected by the 

wireless network. Using the stored data, each of the distributed modal identification 

techniques is executed to estimate the modal properties of the system. In the second field 

test, a pedestrian bridge in Ann Arbor, Michigan is instrumented with a network of 

wireless sensing prototypes, and the distributed computing techniques are again used to 
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estimate modal properties in-network. In both field tests, results from the embedded 

algorithms are compared with modal analysis techniques run off-line using the time 

history data collected by the WSN. 

 

2.2  Distributed Output-Only Modal Identification in a WSN 

In general, it is very difficult to excite a large civil structure in a controlled 

manner. As a result, several output-only modal estimation methods have been adopted for 

common use in structural system identification. In this section, three of these methods are 

modified for a distributed setting and implemented on a network of wireless sensing 

prototypes. The first method is the peak picking (PP) method (Ewins 1986; Allemang 

1999). This frequency domain method is commonly used in civil engineering because of 

its simplicity. The second method is the frequency domain decomposition (FDD) 

technique (Brincker, et al. 2001b), which is similar to peak picking but is much more 

robust when dealing with closely spaced modes. The third method is the random 

decrement (RD) method (Cole 1968; Ibrahim 1977). In a multiple degree of freedom 

system, this technique is dependent upon previous knowledge of the system’s modal 

frequencies (which can be provided by the PP algorithm), but it offers a superior way of 

determining accurate estimates for modal damping values. In this section, the theory 

behind each of these methods and their distributed implementation within a wireless 

sensing network is described in detail. 
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2.2.1  The Peak Picking Method 

The peak picking (PP) method is the simplest known technique for estimating the 

modal properties of a structure from system output data. This method, like many other 

output-only techniques, assumes that the immeasurable excitation input can be 

characterized as zero-mean Gaussian white noise. In civil engineering applications, this 

type of excitation is generally achieved using either impulse or broad-band ambient 

vibration loading conditions. PP analysis is based on the fact that the frequency response 

function (FRF) of a given system will experience extreme values around that system’s 

modal frequencies (Ewins 1986). Assuming a white noise excitation, the FRF of a 

structure at sensor location k, Hk(jω), can be considered equivalent to the Fourier 

spectrum of the response data collected at that sensor. This spectrum can be formulated 

by converting measured accelerations to the frequency domain using a fast Fourier 

transform (FFT). 

If a structure is lightly damped with well separated modes, operational mode 

shapes can also be determined with the PP method using the system’s FRFs (Allemang 

1999). The imaginary component of an FRF at modal frequency ωi, at sensor locations 1 

through n, can be assembled to yield the ith mode shape, φi, as follows: φi = 

{imag[H1(jωi)] · · · imag[Hn(jωi)]}T. From the perspective of a wireless sensing network, 

this method is relatively easy to implement in a decentralized fashion. In this 

implementation, the user first specifies the maximum number of peaks, p, that should be 

identified. Then, a consistent set of acceleration time history data is collected at each 

sensing node and converted to an FRF using an embedded version of the Cooley-Tukey 

FFT algorithm. Each node picks the p largest peaks from its frequency response function 
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by scanning for frequencies at which the value of the FRF is significantly and 

consistently higher than the value of the FRF at surrounding frequencies. If less than p 

peaks are found, zeros will be returned in place of the missing peaks. This algorithm 

assumes that there are no closely spaced modes and thus can only detect peaks separated 

by at least 10 points in the frequency spectrum. Because some sensing nodes may not be 

capable of detecting peaks at all modal frequencies due to positioning or poor data, it is 

necessary to transmit peak information to a central node that can view the individual PP 

results for the network as a whole. It should be noted that every wireless sensor 

communicates its identified peaks (p of them) to the central node; hence, the amount of 

data to be transmitted is fixed. By tabulating the periodicity at which a given frequency 

has been “picked” by nodes on a network, this central node can infer a subset of p (or 

fewer) reasonable modal frequencies from the original PP data. Once the central node has 

determined a global set of peak frequencies, it can then share its findings (namely modal 

frequencies) with the rest of the network, and the imaginary components of the FRFs at 

the picked frequencies can be broadcast from each sensor to the rest of the network, one 

sensor at a time. This sharing of data provides all wireless sensor nodes with operational 

deflection shapes (ODS), which are correlated to system modes. If the system input is 

Gaussian white noise, then the ODSs are equivalent to true mode shapes. If necessary, 

other local data (such as time histories or frequency spectra) can be subsequently 

communicated by each wireless sensor to a central server in the network. A graphical 

representation of the implementation of the PP method on a distributed network of 

wireless sensors can be seen in Figure 2.1. 
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By limiting the amount of communication between individual sensing units, this 

approach drastically limits the amount of bandwidth needed for wireless data 

transmission. For example, if in a centralized sensing network 20 wireless sensors are 

used to send data to a central server for modal estimation, then 4096 data points are 

transmitted resulting in 163,840 bytes being transmitted (each point is a two-byte (16-bit) 

integer sampled by the ADC). If the central server communicates modal information to 

each node in a peer-to-peer configuration, an additional 7,040 bytes are transmitted 

 
 

Figure 2.1: Implementation of the peak picking method on a network of wireless sensors. 
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(bringing the total number of bytes to 170,880). However, should the central server be 

able to broadcast to the entire network, then only an additional 352 bytes need to be 

transmitted (bringing the total number of bytes to 164,192). 

In a similar scenario using the parallel in-network approach to PP outlined above, 

the same results can be obtained by transmitting a total of only 2,128 bytes of data. In this 

method, if 19 nodes each send four peak frequencies to a central node, then 340 bytes are 

communicated. Then, by peer-to-peer communication, the central node would send the 

final modal frequencies back to the original 19 nodes (requiring an additional 340 bytes). 

Once each node knows what the network has decided the modal frequencies are, each 

node in the peer-to-peer network can then communicate the imaginary components of 

their frequency response function allowing each node to assemble the four mode shapes 

of the structure. This requires 1,520 bytes to be communicated in the wireless sensor 

network. If ideal broadcasting is possible, this approach can be further reduced to require 

only 640 bytes of communication. A summary of this detailed breakdown can be found in 

Table 2.1. This method is also advantageous because it is relatively simple to implement 

on a sensing network, and it utilizes engineering algorithms that can be processed 

quickly. However, there are several drawbacks to distributed PP analysis. Primarily, peak 

picking is always a subjective practice, and it is therefore difficult to implement perfectly 

in software. Additionally, peak picking does not properly handle closely spaced modes, 

for which other methods may be more appropriate. 
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2.2.2  The Frequency Domain Decomposition Method 

The frequency domain decomposition (FDD) technique, developed by Brincker, 

et al. (2001b) maintains most of the advantages of other classical frequency domain 

methods, such as peak picking. However, the FDD technique approximately decomposes 

the spectral density matrix into a set of single degree of freedom (SDOF) systems using 

singular value decomposition (SVD), allowing close modes to be identified with 

Table 2.1:  Summary of wireless data transmission needed in a network with twenty nodes where 
4096 data points are used to calculate modal information for four modes. 

 
Method Transmission Payload Type Bytes Results Assumption 

      
4096 shorts x 

20 nodes 
Time history data to server from each node 163,840 {a}  

4 floats x 
20 nodes 

4 damping ratios from server to each node 320 {ξi}  

80 floats x 
20 nodes 

4 mode shapes from server to each node 6,400 {φi}  

Centralized 
Server 

4 floats x 
20 nodes 

4 frequencies from server to each node 320 {f}  

  TOTAL: 170,880   
      

4 floats x 
19 nodes 

4 frequency peaks to central node 304 {f}  

4 floats x 
19 nodes 

4 modal frequencies back each node 304 {f}  
Decentralized 
Peak Picking 

(PP) 4 floats 
x 20 nodes 
x 19 nodes 

Imaginary components with each node (20) 
sending to every other node (19) 

1,520 {φi}  

  TOTAL: 2,128   
      

8 floats 
x 19 nodes 

Spectral value at each mode from one node to 
a neighboring node 

608 A(�) 

8 floats 
x 18 nodes 

2 node mode shape to central node 576 {φi} 

Decentralized 
Frequency 

Domain 
Decomposition 

(FDD) 
80 float 

x 19 nodes 
4 stitched mode shapes back to each node 6,080 {φi} 

{f} 
previously 

known 

  TOTAL: 7,264   
      

4 floats 
x 19 nodes 

4 identified frequencies to central node 304 {f} 

4 floats 
x 19 nodes 

4 identified damping ratios to central node 304 {ξi} 

4 floats 
x 19 nodes 

4 modal frequencies back each node 304 {f} 

Decentralized 
Random 

Decrement (RD) 

4 floats 
x 19 nodes 

4 modal damping ratios back each node 304 {ξi} 

{f} 
previously 

known 

  TOTAL: 1,216   
      

NOTE: short = 2 bytes; float = 4 bytes 
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relatively high accuracy. In this method, the relationship between measured responses 

y(t) and unknown inputs x(t) can be expressed as: 

 

 Gyy(jω) = H*(jω) Gxx(jω) H(jω)T (2.1) 

 

where Gyy(jω) is the (m × m) power spectral density (PSD) matrix of the responses, 

Gxx(jω) is the (1 × 1) PSD matrix of the input, H*(jω) is the complex conjugate of the (m 

× 1) FRF matrix, H(jω)T is the transpose of the (m × 1) FRF matrix, and m is the number 

of output degrees of freedom. 

In the FDD method, the first step is to obtain an estimate of the output PSD 

matrix, Ĝyy(jω) for each discrete frequency ω = ωi. This can be done by creating an array 

of FRFs using FFT information from each degree of freedom in a system: 

 

 Ĝyy(jωi) = {Fy(jωi)}{Fy
*(jωi)}T (2.2) 

 

where {Fy(jωi)} is an array of FFT values for each degree of freedom at a given 

frequency ωi and {Fy
*(jωi)}T is the complex conjugate transpose (Hermitian matrix) of 

that array (Allemang 1999). 

The second step in the FDD process is to extract singular values and singular 

vectors from the PSD of the response by taking the singular value decomposition (SVD) 

of the matrix Ĝyy(jω): 

 

 Ĝyy(jωi) = Ui Si Ui H (2.3) 
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where the matrix Ui = [ui1, ui2, … , uim] is a unitary matrix holding singular vectors uij, Si 

is a diagonal matrix holding the scalar singular values sij, and Ui
H is the Hermitian matrix 

of Ui. Near a peak in the PSD function corresponding to a given mode in the spectrum, 

this mode or a possible close mode will be dominating. Thus, the first singular vector, ui1, 

can be an estimate of the mode shape φi: 1
ˆ

ii u=φ . An extension of the FDD method that 

allows for the detection of additional modal information (i.e., modal frequencies and 

damping ratios) is often called enhanced frequency domain decomposition (EFDD), and 

was originally proposed by Brincker, et al. (2001a). However, in this chapter the FDD 

method will only be used to determine system mode shapes. 

Unfortunately, because of the need to store and manipulate the output power 

spectral density matrix for each degree of freedom in a system, the implementation of a 

centralized FDD method requires a significant amount of memory relative to the PP 

method. On a wireless sensing network where there are heavy constraints on the amount 

of available storage at each sensing node, an alternate decentralized method is proposed 

and implemented. The key feature of this approach is that mode shapes are determined by 

creating a collection of overlapping two-node modes and stitching them together after 

computation is complete. 

First, the wireless sensing network collects a synchronized set of time history 

acceleration data. This data is then transformed to the frequency domain via an embedded 

FFT algorithm, and the aforementioned embedded PP technique is employed to identify 

modal frequencies at each node on the network. Peak picking results are then transmitted 

wirelessly to a central node, where a final set of modal frequencies are decided upon and 

shared among the nodes in the network. At this point, every unit in the network transmits 
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its complex FFT results corresponding to the picked modal frequencies to the next unit in 

a pre-determined chain (except the last unit in the chain, which has no successor). Using 

this shared data, all but one of the sensing nodes (the first in the chain) is able to 

construct a two degree of freedom output PSD matrix at each modal frequency using the 

two sets of FFT results. After each wireless sensor performs an SVD on the PSD matrix, 

two-node mode shapes are extracted from the resulting singular vectors at the frequencies 

previously determined by PP. Finally, all two-node mode shapes are transmitted back to a 

central node, where they are recombined to form full system mode shapes; global mode 

shapes are then shared with the entire network. A graphical representation of this 

decentralized FDD method embedded within a network of wireless sensors can be seen in 

Figure 2.2. It is also possible to extract damping information from the SVD results for 

each two-node mode shape by performing an embedded inverse FFT (IFFT) on its SDOF 

PSD function and calculating its logarithmic decrement. In this study, however, all FDD 

damping estimates are performed offline. If desired, a user can also request complete 

recorded time histories, FFT information, and complete SVD results from each unit. 

This approach requires slightly more wireless communication than the PP 

method. Assuming modal frequencies have been previously identified, the decentralized 

FDD method requires a total of 7,264 bytes to be communicated in a 20 node network, as 

summarized in Table 2.1. In the current implementation, data is communicated by peer-

to-peer communication links. However, the number of bytes to be communicated could 

be reduced to 1,504 if the central node is able to broadcast the global modes to all of the 

network nodes as opposed to one at a time as is currently implemented. As seen in Table 

2.1, these numbers are significantly less than the 170,880 bytes of data required in the 
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centralized setting. As such, while the distributed FDD analysis technique presented 

above requires significantly more computation than does peak picking, it is effective in 

limiting the amount of data transmission necessary to ascertain modal frequencies and 

mode shapes. In addition, the implemented FDD method provides more reliable and 

robust mode shape estimates compared to PP, especially in the case of closely spaced 

modes. Lastly, because all FFT and SVD computation is performed simultaneously in a 

parallel fashion, significant time savings can be realized from the parallel 

 
 

Figure 2.2:  Implementation of the frequency domain decomposition method on a network of wireless 
sensors, assuming previous knowledge of modal frequencies. 
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implementation. As a result, this method can be made scalable to an almost infinite 

number of nodes. 

 

2.2.3  The Random Decrement Method 

The random decrement (RD) technique is based upon the concept of the “random 

decrement signature,” proposed initially by Cole (1968), and explored in greater detail by 

Ibrahim (1977) and Asmussen (1997). This concept essentially states that the response of 

a single degree of freedom structure due to a random input is composed of a deterministic 

impulse part and a random part with an assumed zero mean. Thus, by averaging enough 

samples of the same random response, the random part will average out, leaving only the 

deterministic part of the signal. In order to avoid averaging out the deterministic part of 

the signal, random decrement analysis consists of averaging N windows of length τ. Each 

of these windows must always start with one of the following: 

 

a) A constant level, which yields the free decay step response. 

b) Positive slope and zero level, which yields the free decay positive impulse 

response. 

c) Negative slope and zero level, which yields the free decay negative impulse 

response. 

 

Thus, if y(t) is the random response, the free decay impulse response, x(t), can be 

written as: 
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with the condition t = tn when y(t) is equal to ys (a constant level), or when y(t) is equal to 

0 and dy/dt is non-zero. 

The response resulting from the application of the random decrement signature 

technique is equivalent to the free decay response of the structure. From this free 

response function, modal frequencies can be extracted by examining zero crossings; 

modal damping can also be estimated using the logarithmic decrement of the decay 

function. In a multiple degree of freedom structure, the random decrement response for 

each mode can be calculated by taking the time history response of the structure to the 

frequency domain, and filtering out all frequencies that do not correspond to a given 

mode. In essence, the spectrum surrounding a mode is kept Fj ∈ [ωi-Δω, ωi+Δω] where 

ωi is the ith modal frequency and Δω defines the region of F retained. 

In this study, a distributed RD algorithm is designed and embedded within the 

computational core of a network of wireless sensors so that the network can 

autonomously estimate modal frequencies and damping ratios. For this algorithm, a set of 

consistent time history acceleration data is first collected at each sensing node. Each node 

in the network then transfers this data to the frequency domain using an embedded FFT. 

Employing a frequency window provided by the user (or calculated from prior peak 

picking information), frequencies irrelevant to a given mode are filtered out, and the 

signal is taken back to the time domain using an embedded inverse FFT (IFFT). This 

window is specific to one modal frequency, and thus the RD process must be repeated for 

each mode. At this point, a summation trigger ys (which is also designated by the user) is 
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used within each sensing node to create a number of samples for random decrement 

averaging. These samples are converted into a SDOF free decay impulse response 

function by applying the concepts in Equation 2.4. Zero crossing and logarithmic 

decrement techniques are employed to automatically extract modal frequency and 

damping information from the impulse response. These parameters, calculated 

independently in each node in the network, can then be sent wirelessly to a central node 

where a system-wide modal frequency and damping ratio can be determined using 

statistical measures and broadcast to the network. A graphical representation of the 

distributed RD algorithm can be found in Figure 2.3. Note that it is also possible to 

extract mode shapes using embedded RD analysis by choosing a common lead node with 

which to trigger the RD averaging (Ibrahim 1977). However, in this study, the RD 

method is only used to calculate modal frequencies and damping ratios. 

Much like the embedded PP method, this decentralized RD technique greatly 

limits the amount of data needed to be transmitted wirelessly. In a network with twenty 

nodes, where 4096 points of data from each sensor are being used to calculate modal 

information for four distinct modes, the decentralized RD method presented above 

requires only 1,216 bytes of data to be transmitted wirelessly. However, it does rely on 

previous knowledge of approximate modal frequencies. Thus, as seen in Table 2.1, this 

method, when used in conjunction with the decentralized PP algorithm found in Section 

2.2.1, can provide accurate estimates of modal frequencies and damping ratios by 

transmitting a total of only 3,344 bytes of data. In a wireless network allowing for ideal 

broadcasting, this number can be reduced to a mere 1,040 bytes. This is a significant 

improvement over the requirements of the centralized setting. The decentralized RD 
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method is also rather simple to implement on a wireless sensing network and utilizes 

engineering algorithms that can be processed quickly. This method provides accurate 

estimates of modal damping ratios by taking advantage of the great degree of redundancy 

available within a sensing network. However, in a multiple degree of freedom system, 

prior knowledge of the frequency characteristics of the system (possibly obtained from an 

embedded PP analysis) is required in order to properly window the Fourier spectrum. 

This method is also not suited to determining modal properties involving closely spaced 

modes. 

 

 
 

Figure 2.3: Implementation of the random decrement method on a network of wireless sensors, 
assuming previous knowledge of modal frequencies. 
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2.3  Theater Balcony Testbed 

A historic theater, located in metropolitan Detroit, Michigan, is selected as an 

appropriate structure to validate the embedded algorithms proposed for use within a 

wireless sensing network. This theater is one of the largest in the United States, and is 

part of a large complex which includes several theater service areas and an attached 

office building. The auditorium itself has two balconies: a main balcony located at the 

fifth floor level of the building, and a loge balcony located at the third floor level. The 

main balcony, shown in Figure 2.4a, is chosen for instrumentation purposes. This balcony 

is approximately 50m (150ft) wide, and is structurally supported only at the rear and 

 

Figure 2.4:  Wirelessly instrumented theater balcony: (a) theatre, (b) main balcony, (c) a typical 
wireless sensor layout, and (d) location of wireless and tethered accelerometers (not drawn to scale). 
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sides of the auditorium. As a result of its long unsupported span, the theater’s balcony is 

known to suffer from humanly perceptible vibrations (Setareh 1990). 

 

2.3.1  Instrumentation and Excitation Strategy 

On February 2, 2007, the front section of the main balcony of the theater 

(specifically the first five rows within a 3m (15ft) band of the balcony edge) was 

instrumented using a network of WiMMS wireless sensors (described in detail in Section 

1.6.1). In this study, twenty-one wireless sensing units were installed in a seven-by-three 

grid, with seven units distributed evenly across the span of the balcony in each of rows 1, 

3, and 5. The location of these sensing units is shown in Figure 2.4c. Attached to each 

wireless sensing unit was either a PCB Piezotronics 3801D1FB3G or Crossbow 

CXL02LF1Z MEMS capacitive accelerometer; each was oriented to monitor the vertical 

acceleration of the balcony. The sensitivity of the PCB accelerometer is 0.7 V/g and its 

dynamic range is 3g, peak-to-peak. The sensitivity of the Crossbow accelerometer is 1.0 

V/g and its dynamic range is 2g, peak-to-peak. To improve the performance of the 

wireless monitoring system, a signal conditioning circuit proposed by Lynch, et al. 

(2006) was included with each sensor to both amplify and band-pass (0.02 – 25 Hz) 

acceleration response data before inputting to the wireless sensor’s ADC. This circuit 

essentially amplifies the accelerometer output so that the noise floor of the accelerometer 

controls the data quality as opposed to the quantization error of the ADC; this is 

especially useful for ambient structural accelerations. To verify the integrity of the 

wireless monitoring system, two additional tethered acceleration channels were 

monitored using a cable-based Freedom Data Acquisition System PC from Olson 
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Instruments, Inc.; this system comes equipped with its own data acquisition software. 

Internally, data acquisition is accomplished using a National Instruments 1.25 MS/s, 16 

channel 12-bit PCI Data Acquisition Card. Tethered Dytran accelerometers (models 

3165A and 3116A) were employed with the Freedom system. These accelerometers have 

sensitivities of 1.0 V/g with a dynamic range of ±5g. As seen in Figure 2.4c, the locations 

of the tethered sensors are collocated with wireless sensors 4 and 5; as a result, tethered 

sensors are denoted as “4T” and “5T”, respectively. 

Because all three output-only identification methods previously presented assume 

a broadband white input, an appropriate method of excitation had to be adopted for 

testing. For the purposes of this study, impulsive excitation was delivered using a simple 

heeldrop test. This type of loading is performed by one of the authors quickly raising and 

dropping both heels simultaneously. This approach to excitation is typically thought to 

mimic an impulse load. The location of this heeldrop loading was between sensor 2 and 3 

at the front of the balcony, as seen in Figure 2.4d. 

 

2.3.2  Experimental Results 

On the day of testing, a set of nine nearly identical tests (denoted as runs #1-9) 

were run using impulse loadings generated by a single person weighing 82kg (180lb) and 

performing a heeldrop. The objectives of these tests were to validate the accuracy of the 

wireless data acquisition system and to compare the ability of the proposed distributed 

modal identification methods to accurately determine the balcony’s modal parameters 

(modal frequencies, damping ratios, and mode shapes) using the embedded processing 

capabilities residing on the spatially distributed network of wireless sensor nodes. 
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2.3.2.1  Wireless System Performance 

The first testing objective was to validate the accuracy of the proposed wireless 

sensing network against a traditional, tethered monitoring system. During all nine tests, 

two channels of tethered acceleration data were collected in parallel with the wireless 

network. Both monitoring systems employed a sample rate of 50 Hz. If the response of 

the tethered system is compared alongside that of the wireless system, it can be seen that 

the recorded time history data is nearly identical, as seen in Figure 2.5. In this figure, the 

response from both monitoring systems is plotted between 68 and 75 seconds. Very little 

discrepancy is observed if the two acceleration time histories are subtracted from one 

another. Similar results were obtained in other locations and in all testing scenarios. 

 

2.3.2.2  Embedded Peak Picking Results 

The second testing objective was to validate each of the distributed data 

processing algorithms (PP, FDD, RD) proposed in this study. In order to validate the 

ability of the PP method to extract modal frequencies from an output-only system, it is 
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Figure 2.5: Comparison of tethered and wireless sensing systems. 
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necessary to first prove the effectiveness of each of the numerical tools used within this 

identification technique. The first of these tools is the embedded FFT. In all of the testing 

runs in which PP analysis was requested, each node of the wireless sensor network was 

required to calculate a 4096-point complex-valued Fourier spectrum from the time 

history data collected. A Fourier spectrum from one sensing location is shown in Figure 

2.6. For comparison, Fourier spectra calculated offline in MATLAB (MathWorks) using 

time history data from the tethered and wireless monitoring systems are also shown. It 

can be seen that the frequency characteristics extracted from the embedded algorithm are 

very similar to the results obtained using an offline analysis of either tethered or wireless 

time history data. 

The second numerical tool in question is the embedded PP algorithm itself. This 

algorithm is required in both the PP and the FDD output-only identification methods 

presented in this study. In all of the test cases in which one of these two methods was 

used, each wireless sensor in the network was asked to extract the three highest peaks 
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Figure 2.6:  Fourier spectra for the balcony response at sensor location 5: (top) embedded FFT executed 
by wireless sensor; (middle) calculated offline using the wireless data; (bottom) calculated offline using 

the tethered data. 
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from the Fourier spectrum created using the embedded FFT algorithm. Because peak-

picking is a somewhat subjective science, no one sensing unit can be solely relied upon to 

correctly identify three distinct modal frequencies. As such, PP results from each sensing 

node must be transmitted to a designated node or central server where an intelligent 

decision can be made about final modal frequencies. PP results from three different units 

can be seen in Figure 2.7, which also shows the ability of a central server to determine 

system-wide modal frequencies from a complete set of PP data (compiled from all 21 

nodes). It can be seen that by looking at the peak picking results as a whole, a reasonable 

global estimate of peak frequencies can be extracted from system-wide data. The central 

node was able to identify system-wide modal frequencies and extract mode shapes for the 

first (2.77Hz), second (4.14Hz), fourth (6.40Hz), and fifth (7.93Hz) modes. Note that the 
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Figure 2.7:   Embedded PP modal frequency results from: (a) sensor location 2, (b) sensor location 4, 
and (c) sensor location 20. (d) System-wide distribution of picked peaks tabulated at a central wireless 

sensor node. 
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third mode (5.11Hz) is absent, as the chosen excitation point did not provide adequate 

spectral content at this modal frequency for proper peak picking mode detection. Figure 

2.8 compares a set of mode shapes calculated using the embedded PP method with a set 

of mode shapes calculated offline using the centralized FDD technique. Numerical 

comparisons between modal frequencies and mode shapes calculated using the two 

methods are presented in Table 2.2. In this table, mode shapes determined with peak 

picking are compared with the offline FDD modes using the modal assurance criteria 

(MAC), as defined by Allemang and Brown (1982). Strong agreement is observed in the 

modal frequencies and mode shapes between those derived by the wireless sensor 

network and those found off-line using a centralized server running MATLAB. Modal 

frequencies are within 1% of one another while MAC values of 0.9 or greater are 

observed in most modes. 

 

2.3.2.3  Embedded Frequency Domain Decomposition Results 

The second embedded modal identification method presented in this paper is the 

FDD technique. This method was chosen for this study because of its advantages over 
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Figure 2.8: (a) Offline centralized FDD mode shape results and (b) embedded PP mode shape results 
based on in-network processing. 
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peak picking when estimating mode shapes from output response data. When 

implemented within a wireless sensing network, this method creates a large array of 

overlapping two-node mode shapes that can be easily assembled at a later time by a 

central processor (either a designated node or a server). This distributed technique 

provides a great degree of scalability by parallelizing a typically centralized algorithm to 

be executed by a community of wireless sensor nodes. As such, three distinct network 

topologies were designed and tested for the sharing of Fourier spectra and the creation of 

two-node mode shapes. As can be seen in Figure 2.9, data sharing in each of the three 

network topologies begins with the same root node (wireless sensor 1), but creates a very 

different set of two-node pairs. Each topology is meant to test different nodal overlaps so 

as to observe the sensitivity of the distributed FDD method to topology and to validate 

the scalability of this method. Because it has been shown that a very small 

synchronization error (with a maximum of 5ms) may occur between distantly spaced 

nodes, the assumption is that topologies with closely spaced two-node mode shapes 

should behave better than topologies with distantly spaced nodal connections. 

Additionally, it is assumed that increased symmetry within a topology will lead to 

a decrease in mode shape accuracy, depending on the nodal locations of the detected 

modes. Figure 2.10 displays the extracted mode shapes using these three distinct network 

Table 2.2: Summary of modal identification results from embedded peak picking method. 
 

Run # Mode 1 Mode 2 Mode 4 Mode 5 Mode 1 Mode 2 Mode 4 Mode 5

1 2.734 4.163 6.335 7.946 1.000 1.000 1.000 1.000
2 2.727 4.210 6.349 7.996 - 0.949 0.937 0.779
3 2.734 4.135 6.342 8.020 0.825 0.678 0.427 0.817
4 2.772 4.144 6.396 7.929 0.990 0.973 0.869 0.944

Natural Frequency (Hz) MAC

Method

Centralized FDD (off-line)

Peak Picking (embedded)
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topologies in addition to the mode shapes found using an offline centralized FDD 

method. Because of the loading location, the third mode (5.11Hz) was not captured in 

each of these cases. Table 2.3 provides a numerical comparison between mode shapes 

calculated using the embedded FDD method and those calculated offline (runs 5, 6, and 7 

correspond to topologies 1, 2, and 3, respectively). Again, these mode shapes are 

compared using the MAC, and MAC values of 0.9 or greater are typically obtained for 

the network determined modes. 

It can be seen from Figure 2.10 that the first topology provides excellent mode 

shape estimates for all four detected modes. However, the fourth mode in the second 

topology and the third mode in the third topology appear to be somewhat inconsistent 

 
 

Figure 2.9: Network topologies for two-node FDD data sharing (arrows and shading indicate 
transmission of Fourier spectra for 2-point mode determination): (a) topology 1, (b) topology 2, and (c) 

topology 3. 
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with the mode shapes calculated using a centralized FDD (MAC < 0.9). This is most 

likely due to the nodal locations of the third and fourth modes, as well as symmetry 

between two-node pairs in the second and third topologies. Because of the impact that 

topology can have on the accuracy of mode shapes extracted with this distributed FDD 

Table 2.3: Summary of modal identification results from embedded frequency domain decomposition 
method. 

 

Run # Mode 1 Mode 2 Mode 4 Mode 5

1 1.000 1.000 1.000 1.000
5 0.957 0.985 0.961 0.840
6 0.988 0.943 0.821 0.373
7 0.994 0.984 0.630 0.960

MAC

Method

Centralized FDD (off-line)

Decentralized FDD 
(embedded)
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Figure 2.10: (a) Offline centralized FDD mode shape results and embedded FDD mode shape results 
for (b) topology 1, (c) topology 2, and (d) topology 3. 
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technique, more work is required to fully understand the effects of topology choice on 

this method. 

 

2.3.2.4  Embedded Random Decrement Results 

The third distributed system identification technique implemented on the wireless 

sensor network in the study is the RD method. For each test in which the RD method was 

used, each sensor on the network collected a consistent set of time history data. Using the 

RD algorithm, this time history response was transformed at each node into a SDOF free 

decay response function using a user-defined trigger amplitude (which is defined as a 

certain percent of the standard deviation of the time history response) and frequency 

window (e.g.,  2.0 to 3.5 Hz for mode 1, etc.) meant to target a specific mode. Figure 2.11 

shows an output response time history alongside a random decrement free decay response 

for each of the first two modes, calculated by wireless sensors 4 and 6, respectively. It 

can be seen that by employing zero crossing and logarithmic decrement techniques on the 

resulting free decay response functions, estimates of modal frequencies and damping 
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ratios can be determined at each sensing location. The type of quality result seen in 

Figure 2.11 was repeated in each testing instance and at almost all sensing locations. 

Once collected at the individual sensor, modal frequency and damping data can be shared 

with a centralized node or server and a global set of modal frequencies and damping 

ratios can be determined by throwing out outliers and averaging the remaining results. 

After averaging, the distributed RD method produced system-wide modal frequencies of 

(2.74 Hz and 4.16 Hz) and damping ratios of (1.79% and 1.86%) for the first two modes. 

These results are compared with offline results obtained using a centralized EFDD 

method and are displayed in Table 2.4. 

 

2.4  Pedestrian Bridge Testbed 

In order to further validate the ability of a network of wireless sensing units to 

autonomously estimate modal properties in a full-scale structure, the Bandemer Park 

pedestrian bridge in Ann Arbor, MI is chosen as an ideal testbed. This bridge, shown in 

Figure 2.12, consists of a wooden deck supported by a simple steel truss, and is 

approximately 30m (100ft) long and 2m (8ft) wide. 

Table 2.4: Summary of modal identification results from embedded random decrement method. 
 

Run # Mode 1 Mode 2 Mode 1 Mode 2

1 2.734 4.163 2.321 1.610
8 2.740 - 1.792 -
9 - 4.159 - 1.864

Natural Frequency (Hz) Damping Ratio (%)

Method

Centralized FDD (off-line)
Random Decrement 

(embedded)  
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2.4.1  Instrumentation and Excitation Strategy 

On November 27, 2007, a network of sixteen Narada wireless sensing prototypes 

(described in detail in Section 1.6.2) were programmed with the distributed modal 

analysis algorithms described in Section 2.2 and deployed on the Bandemer Park 

pedestrian bridge. As displayed in Figure 2.13, wireless sensors were placed at consistent 

intervals along both sides of the deck and connected to either a PCB Piezotronics 

3801D1FB3G or Crossbow CXL02LF1Z MEMS capacitive accelerometer; both 

accelerometers were oriented to monitor the vertical acceleration of the bridge deck. As 

in the theatre balcony tests, the signal conditioning circuit proposed by Lynch, et al. 

(2006) was included with each sensor to both amplify and band-pass (0.02 – 25 Hz) 

acceleration response data before inputting to the wireless sensor’s ADC. 

    
 

Figure 2.12:  Bandemer Park pedestrian bridge. 
 

 
 

Figure 2.13:  Narada sensor layout for Bandemer Park pedestrian bridge field test. 
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2.4.2  Experimental Results 

On the day of testing, several vibration tests were run using impulse loadings 

generated by a single-person (weighing 82kg) performing a heeldrop. These heel drops, 

which are performed by quickly raising and dropping both heels simultaneously, were 

executed in various locations a short distance from the center of the bridge span, in an 

attempt to avoid exciting directly at a modal node. Because of the impulse nature of this 

type of loading, it can be assumed that each heel drop test applies a broadband input to 

the structure. An example set of acceleration time history plots collected by the wireless 

sensors for one of these heel drop tests can be found in Figure 2.14. 

 

 

 

     
 

Figure 2.14: Acceleration (g) vs. time (s) response of the Bandemer bridge, as collected by Narada 
sensors. 



 54

2.4.2.1  Embedded Peak Picking Results 

In all of the test cases where a fast Fourier transform (FFT) was requested, each 

wireless sensor in the network was also asked to extract up to ten peaks from its 

individual Fourier spectrum. Figures 2.15(a), 2.15(b), and 2.15(c) show the Fourier 

spectrum calculated online in three of the Narada wireless sensors, as well as the modal 

peaks that each individual sensor picked within its frequency response. Figure 2.15(d) 

shows a periodogram of the network-wide PP results. It can be seen from this figure that 

while each individual sensor may not have individually determined all pertinent modal 

frequencies, the network as a whole did a decent job of determining all five distinct 

modal frequencies (3.9, 6.8, 11.6, 16.9, 20.0 Hz). 

Although simplistic, the PP method is not only useful for identifying modal 

frequencies, but also for estimating mode shapes. The mode shapes calculated using the 

distributed PP method are compared with similar mode shapes calculated offline using a 

centralized FDD method on the wirelessly collected raw data. Both of these sets of mode 

shapes are plotted alongside one another in Figure 2.16, and are presented numerically in 

Table 2.5. All comparisons between mode shapes are formulated using the modal 

assurance criteria (MAC) as defined by Allemang and Brown (1982). The centralized 

 

Figure 2.15: (a,b,c) Example FFT and PP results, as collected by three Narada sensors and 
(d) network-wide distribution of picked peaks for one test, collected at a central node. 
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FDD results are used as a baseline. It can be seen that the PP method performs acceptably 

for the higher three modes, but does not produce very accurate results for lower 

frequency mode shapes. 

 

2.4.2.2  Embedded Frequency Domain Decomposition Results 

The FDD technique has several significant advantages over the PP method when 

estimating mode shapes from output-only response data; it not only provides more 

reliable and robust mode shape estimates, but it can be effectively used in systems with 

closely spaced modes. The mode shapes determined using the distributed FDD algorithm 

Table 2.5: Summary of modal identification results from autonomous embedded methods. 
 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

1.000 1.000 1.0001.000 1.000-- -- --

0.944 0.589

Centralized FDD         
(off-line) 3.91 6.79 11.57 16.94 20.04

0.141 0.969 0.886-- -- --

0.689 0.499

3.91 6.69 11.41 16.94 20.00

0.994 0.990 0.953
-- -- --

-- --

-- -- -- -- --

-- -- --
0.83%   

± 0.12%
1.38%   

± 0.70%
0.16%   

± 0.04%
11.48  
± 0.08

-- --
3.89   

± 0.00
6.72   

± 0.04

Natural Frequency (Hz) Damping Ratio MAC

Peak Picking            
(embedded)

Decentralized FDD 
(embedded)

Method

Random Decrement 
(embedded)

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 2.16: (a) Offline FDD modes, (b) embedded PP modes, and (c) embedded FDD modes. 
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embedded within the network of Narada wireless sensors can be seen in Figure 2.16, 

alongside those calculated offline using the centralized FDD method and those calculated 

in-network using the PP technique. Table 2.5 provides a numerical comparison between 

these three methods using MAC values. It can be seen that this technique performs much 

better that the PP method for the low frequency modes, but is not as accurate as the 

centralized FDD algorithm at estimating the higher frequency mode shapes. 

 

2.4.2.3  Embedded Random Decrement Results 

The last embedded analysis technique used in this study is the RD method. When 

running RD tests in the field, a consistent set of acceleration data is first collected at each 

node. Using different frequency windows provided by the user (each calculated using PP 

results), each mode can be singled out for RD analysis. For example, a window of 3.0-5.0 

Hz was used to isolate mode 1 (at 3.9 Hz). At this point, each node in the wireless 

sensing network performs RD calculations and returns the resulting random decrement 

response along with an estimated frequency and damping ratio. In this way, 16 

independent estimates of these two modal properties are created. A graphical example of 

several random decrement responses for different modes can be seen in Figure 2.17, and 

numerical estimates of modal frequencies and damping ratios found with this method can 

be found in Table 2.5. Note that because the fourth and fifth modes (17 and 20 Hz) are 

significantly high relative to the sampling rate (100 Hz), the random decrement response 

for these modes did not produce meaningful damping ratios or modal frequency 

estimates. 
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2.5  Chapter Summary 

Structural monitoring systems have become increasing popular for monitoring the 

response characteristics of large civil structures subjected to ambient and forced 

vibrations. By leveraging wireless communication technology, wireless monitoring 

systems can be installed at a fraction of the cost and in much higher sensor densities than 

traditional tethered sensing systems. In addition to these cost savings, however, wireless 

sensors have an enormous advantage over their tethered counterparts because of their 

local analog-to-digital conversion and data processing capabilities. By taking advantage 

of the embedded computing resources distributed across a large network of wireless 

sensors, decentralized wireless monitoring systems can perform as well as centralized 

tethered systems, with the added advantage of being able to process sensor data locally. 

Using the embedded output-only modal parameter estimation methods proposed 

in this chapter, a wireless monitoring system was shown to be capable of collecting and 

processing measured data at the individual sensor. The wireless network was able to 

(a) 
 

 

(b) 
 

Figure 2.17: Example random decrement frequency and damping ratio results for 
(a) mode 1 and (b) mode 2. 



 58

autonomously determine modal frequencies using a distributed peak picking (PP) 

algorithm, mode shapes using a distributed frequency domain decomposition (FDD) 

method, and modal damping ratios using a distributed random decrement (RD) technique. 

It can be seen that the embedded techniques yield modal parameters comparable to those 

obtained using traditional offline analyses. 

This chapter, modified from (Zimmerman, et al. 2008a), presents a successful 

implementation of distributed modal parameter estimation techniques within the 

computational core of a network of wireless sensing prototypes. By moving away from 

the traditional centralized approach to modal estimation, the work presented herein 

represents a first step towards an autonomous and decentralized environment for 

computing within a wireless structural monitoring system. By providing an architecture 

for parallel data processing in WSNs, system scalability and spatial resolution problems 

typically associated with centralized architectures can be greatly minimized. However, 

the architecture developed in this chapter does not represent a truly agent-based approach 

to data processing in WSNs, and as such retains some of the reliability issues associated 

with centralized architectures. In particular, the need for a defined network topology 

creates a limitation on the flexibility of the proposed solution in the wake of 

communication or sensor failure.  

That said, the work presented herein can be used to motivate additional, 

increasingly agent-based techniques for distributed data processing in WSNs. Building 

directly on the success of this implementation, Chapter 3 presents an ad-hoc, agent-based 

approach to model updating in WSNs, and Chapter 5 outlines an improved agent-based 

approach to mode shape estimation using the FDD technique. 
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CHAPTER 3 

 

A PARALLEL SIMULATED ANNEALING 

ARCHITECTURE FOR MODEL UPDATING WITHIN A 

WIRELESS SENSOR NETWORK 

 

3.1  Introduction 

In this chapter, which is modified from (Zimmerman and Lynch 2009), a novel 

data processing architecture that builds on the work in Chapter 2 is created for use within 

an agent-based WSN. By viewing a wireless network as a parallel computer with an 

unknown and possibly changing number of processing nodes, this architecture is capable 

of performing complicated types of data analysis while creating a scalable environment 

that is not only resistant to communication and sensor failure, but that also becomes 

increasingly efficient at higher nodal densities. As such, it moves us further away from 

the scalability issues, spatial disadvantages, and reliability problems associated with 

traditional centralized data processing architectures, and towards a truly autonomous and 

pervasive agent-based architecture for data processing in wireless monitoring systems. 

This novel architecture functions by allowing a network of sensors to autonomously 

detect and utilize the computing resources of any available wireless node on the fly. This 

“ad-hoc” capability allows for increases in the parallelism and efficiency of the 
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architecture in real-time, and can be used to reform or “self-heal” the network in the wake 

of any communication and/or sensor failures. By moving away from the rigid network 

topologies that constrain computation in Chapter 2, the work presented in this chapter 

begins to fully leverage the benefits of ad-hoc, agent-based computation in WSNs. 

In order to examine the data processing capabilities of this novel architecture from 

an SHM perspective, a parallelized version of the simulated annealing (SA) stochastic 

optimization method is designed for implementation within a distributed WSN. One of 

the reasons that the SA algorithm is chosen for parallelization is that it can be applied to 

many of the optimization problems that arise in almost all engineering disciplines. In this 

chapter, a wireless parallel SA (WPSA) method is developed for use within a WSN for 

the updating of structural models. This type of model updating can be used for many 

purposes in SHM, including analytical model validation, design iteration and 

improvement, and the detection of damage or degradation within a structure. In order to 

validate this WSN-based model updating approach, acceleration data collected from a 

three-story steel structure is used to update an analytical model of the structure using a 

network of wireless sensing prototypes. It can be seen that the WPSA algorithm, when 

applied in-network to a model updating application, can be used to accurately determine 

the mass, stiffness, and damping properties of a physical structure. It is also 

experimentally determined that the algorithm exhibits significant performance gains as 

the size of the wireless network is increased. 
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3.2  Background on Combinatorial Optimization by Simulated Annealing 

One of the most studied areas in computational engineering is that of 

combinatorial optimization (CO). This field involves developing efficient methods for 

finding the maximum or minimum value of any function with a large number of 

independent variables. CO problems are typically very difficult to solve computationally, 

as an exact solution often requires a number of computational steps that grows faster than 

any finite power of the size of the problem. As such, it is often desirable in engineering 

applications to quickly find good approximations to the optimal solution instead of 

expending the time and resources required to find an absolute global optimum. 

Unfortunately, even approximate solutions can sometimes be difficult to find, as most 

relevant search strategies involve iterative improvement, and as such, have a tendency to 

get stuck in local (not global) optima. However, in the 1980’s, several algorithms derived 

from physical and biological systems were developed for finding near-global optima in 

functions containing many local optima (Bounds 1987). One of these methods is the 

simulated annealing (SA) optimization technique, first presented by Kirkpatrick, et al. 

(1983). 

SA was developed out of the observation that a connection could be made 

between CO and the behavior of physical material systems in thermal equilibrium at a 

finite temperature. In material physics, experiments that determine the low-temperature 

state of a material are performed by first melting the substance, and then slowly lowering 

the substance’s temperature, eventually spending a long time at temperatures near 

freezing. This annealing procedure allows the substance to eventually obtain an optimal 

thermal energy state amongst an almost infinite number of possible atomistic 
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configurations. Assuming that a method exists for determining the energy of a physical 

system in a specific atomistic configuration, this physical annealing procedure can be 

viewed as a CO problem where the objective is to find the globally minimal energy state 

of the material’s atoms. 

As such, by borrowing ideas from the natural annealing process, a “simulated” 

version of the annealing method can be developed to quickly obtain good approximate 

solutions to CO problems where the objective is to find a globally minimal value of some 

optimization function. This is done by viewing the value of the function to be optimized 

as the physical system “energy”, introducing an “effective” annealing temperature which 

will simulate the material cooling process, and utilizing the Metropolis procedure 

(explained below) to avoid premature convergence on local optima, which is the key to 

the effectiveness of the generalized annealing process. 

In 1953, Metropolis, et al. created an algorithm that can probabilistically simulate 

a collection of atoms converging on thermal equilibrium at a set temperature. At each 

step in this algorithm, a randomly selected atom is displaced a small, random distance, 

and the resulting change in system energy (ΔE) is computed. If ΔE ≤ 0, this disturbance is 

accepted. Otherwise, if ΔE > 0, the new configuration will be accepted with the following 

probability: 

   

 Tk
E

Beaccept ⋅
Δ−

=)Pr(  
(3.1)

 

where T is the temperature of the system and kB is Boltzmann’s constant. If the new 

configuration is accepted, the next step of the search continues with that atom displaced. 
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Otherwise, if the new configuration is not accepted, the next step in the search continues 

using the original atomistic configuration. By repeating this procedure many times, 

Metropolis simulates the thermal motion of atoms subjected to a constant temperature, 

and mimics the probabilistic process by which nature avoids premature convergence on 

suboptimal configurations. 

As proposed by Kirkpatrick, et al. (1983), “simulated” annealing can be used in 

the context of CO by representing each possible configuration of optimization function 

parameters as a distinct state, s. The objective of the annealing process is to find a system 

state that minimizes the value of an optimization function, E(s). In order to help avoid 

convergence on a sub-optimal minimum, the Metropolis framework can be applied to the 

SA procedure by generating a new state, snew, by altering the value of one function 

parameter at random. The objective function value of this new state, E(snew), is then 

compared with the objective function value of the old state, E(sold), and the new state is 

probabilistically accepted or rejected based on the criterion presented in Equation 3.1. 

When SA is implemented within a computing machine, the probability of a new system 

state being accepted at a given temperature can be stated as follows: accept a new state, 

snew, if and only if: 

 

 ( ) ( ) ( )UTsEsE oldnew ln⋅+≤ (3.2)

 

where U is a uniformly distributed random variable between 0 and 1. The addition of the 

T·|ln(U)| term allows the system to periodically accept a sub-optimal state in hopes of 

avoiding premature convergence on a local optima. A standard SA cooling schedule 

begins the optimization process by assigning a high initial temperature T0 and then letting 
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the Metropolis algorithm run for N iterations. During each iteration, a new 

psuedorandomly generated state is created by modifying one of the optimization 

parameters, and the newly generated state is either rejected or accepted based on the 

Metropolis criterion (Equation 3.2). After N iterations, the temperature of the system is 

reduced by a factor of ρ, such that Tnew = ρ·Told, and N additional iterations will be run at 

the new, lower temperature (Tnew). This process continues until the temperature is 

sufficiently low that very few new states are accepted, meaning that a globally optimal 

state has likely been found and the system has, in essence, frozen. 

Since Kirkpatrick, et al. first published the SA methodology in 1983, countless 

variations on the original algorithm have been seen in the literature. For each specific 

optimization problem, it seems, a different variant on the traditional SA method provides 

the quickest convergence and the most accurate results. As such, it is important to note 

that the WPSA methodology proposed herein for use in wireless sensor networks can be 

effectively utilized in conjunction with almost any variant on the SA method. However, 

for the model updating problem studied in this chapter, a modification on the blended 

simulated annealing (BSA) algorithm proposed by Levin and Lieven (1998) is 

exclusively utilized. The BSA algorithm deviates from the standard SA methodology in 

the way in which it creates randomly generated states. In standard SA, new states are 

generated by randomly choosing one annealing parameter and assigning it a new value 

chosen uniformly from within the parameter’s valid range (Figure 3.1a). In the BSA 

algorithm, however, this standard type of state generation is alternated every other step 

with a “radius adjustment” approach, where all annealing parameters are changed by 

choosing a random point on a hypersphere that is a fixed radius away from the previous 
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annealing state (Figure 3.1b). This method requires two separate annealing temperatures, 

one for the standard SA adjustment and one for the radius adjustment. For this study, the 

BSA algorithm is modified slightly such that instead of choosing a point that lies on a 

fixed radius from a previous annealing state, all annealing parameters are randomly 

assigned new values that reside within a given radius from the individual parameter’s 

current assignment (Figure 3.1c). Then, the radius itself is treated as a variable in the SA 

process much like the annealing temperature. It starts with a high value near 1.0 (such 

that the entirety of each parameter’s valid range can be searched), and as time progresses, 

the searchable radius is reduced such that the SA search focuses increasingly on values 

that are close to the currently optimal state. This improves upon the BSA algorithm by 

eliminating the wasteful interrogation of search states far away from the currently 

optimal, especially later in the search as a final, optimal solution is converged upon. 

 

3.3  Wireless Parallel Simulated Annealing 

When considering performing CO tasks on a wireless sensor network, SA may at 

first appear to be an excellent candidate for a stochastic search procedure. Because a 

search using SA requires only a negligible two or possibly three states to be stored in 

memory at any one time, SA is extremely attractive in the wireless setting where memory 

 
 

Figure 3.1: Random state generation for a two-dimensional search problem using  
(a) standard SA, (b) BSA, and (c) WPSA. 
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capacity within most prototypes is limited. However, the computational costs of 

implementing SA, which may require a value of E to be determined at hundreds of 

thousands of randomly generated states in order to converge on an optimal solution, can 

be staggering. When implemented within a single wireless sensing device, where 

processing speed is usually only a fraction of that of an ordinary personal computer, this 

is a potentially debilitating problem. 

In order to mitigate the computational demands imposed by SA, many researchers 

have developed parallel SA techniques that, when run on a large number of processors, 

can successfully increase the speed with which a solution to a CO problem can be 

obtained (Greening 1990). However, most of these methods require communication 

between processors both before and after each random state is generated. In the wireless 

setting, where battery preservation is a high priority and communication bandwidth is 

limited, this type of constant communication negates the advantages of parallelism and 

represents a poor use of battery power. In this study, a parallel SA procedure is created 

that utilizes the computational resources distributed across large wireless sensing 

networks while minimizing the communication demands of the parallel algorithm. This is 

done by taking advantage of the fact that the SA process typically rejects more states than 

it accepts, especially as the annealing temperature is lowered and the algorithm converges 

on a solution. Specifically, the traditionally serial SA search problem (which is 

continuous across all temperature steps) can be broken into a set of smaller search trees, 

each of which corresponds to a given temperature step and begins with the globally 

optimal state assignment so far detected at the preceding temperature step. Each smaller 

search problem can then be assigned individually to any available sensor in the network, 
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and thus multiple temperature steps can be searched concurrently. This concept is 

displayed graphically in Figure 3.2. One of the great advantages of this methodology is 

that, given the ad-hoc communication capabilities of many wireless sensing devices, 

these individualized search trees can be distributed in real-time to any available processor 

within the sensing network. Because the ad-hoc assignment and reassignment of search 

problems can allow for individual nodes to drop from, or appear in the network mid-

search, this parallelized updating method is incredibly valuable in systems where sensor 

or communication reliability may be in question. 

 

3.3.1  Wireless Implementation of the WPSA Algorithm 

In the wireless parallel SA implementation used in this study (WPSA), a 

computational task requiring SA optimization is first assigned to any one available 

sensing unit, along with a user-defined initial temperature, T0. This first wireless sensor, 

n0, then beacons the network, searching for other sensors available for data processing. If 

 
 

Figure 3.2:  A simple serial SA search tree, shown up to the fourth temperature step and its  
corresponding WPSA search trees, assigned to wireless sensors. 
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a second sensing node, n1, is found, the first sensor, n0, will assign the SA search tree 

starting at the next temperature step, T1, to the second sensor, n1, passing along its current 

information regarding the most optimal system state yet visited. This process continues 

until no sensors remain available for data processing. 

If a given sensor, ni, detects an optimal solution, (i.e., no new states are accepted 

at the temperature step sensor ni is investigating), it will order the rest of the network to 

discontinue the SA search, and will alert the network end-user of the discovered results. 

However, if sensor ni finishes its part of the SA search without having converged on a 

solution (i.e., new states are still being accepted), it will alert its successor, ni+1, that no 

solution was found at temperature step Ti, and sensor ni will again make itself available to 

the network for computation on a lower temperature step. While WPSA functions 

autonomously without need for a centralized controller, the WSU assigned to the highest 

temperature step at any given time keeps track of search progress and alerts the user 

when the search has been completed. Because of the self-healing capabilities of many 

WSNs, this parallel algorithm will always adapt in order to utilize the maximum number 

of processing nodes available at any one time, even if some sensors drop in and out of the 

network during computation. 

As the WPSA search continues, information regarding newly found, increasingly 

optimal states is disseminated downwards through the network, such that all sensors are 

cognizant of any search progress that has been made at higher temperature steps. This 

allows all sensors to maximize the effectiveness of their search at a given temperature 

step, and maintains the continuity of the serial SA process. Specifically, when a sensor 

detects a state, s, with a lower optimization function value than that of any other known 



 69

state, it will immediately propagate this information downward to the sensor directly 

below it in the search tree (its child). If the propagated state information also represents 

the minimal value of the objective function that the child has found so far, the child will 

then restart its N search iterations from the newly found minimum state and inform the 

sensor directly below it of this newly discovered state. However, if a child receives a 

state, sp, from a parent, and the child has already randomly generated a state, sc, that 

yields a lower objective function value than sp, (E(sc) < E(sp)), that child will merely 

restart its SA iterations given its current search state, sc, without passing any information 

on to its successor. In this way, it is assured that each temperature step is thoroughly 

searched given the complete information obtained at the preceding temperature step. 

While this does result in an increase in the total number of SA iterations required to reach 

a solution over the serial SA procedure, the additional randomly generated states at many 

(if not all) temperature steps slightly increases the probability that a “better” solution will 

be found than otherwise possible. 

 

3.3.2  Illustrative Example of the WPSA Algorithm 

Figure 3.3 illustrates the distribution of one example parallelized simulated 

annealing task over a network of four wireless sensing units. This task has an initial 

global minimum objective function value of E = 10, and is assigned by the user to 

wireless sensing unit 1 (WSU 1). Simultaneous to this assignment, the user also alerts all 

other sensors that they should make themselves available for computation. After receipt 

of this task assignment, WSU 1 recognizes that WSU 2 is an available computational 

node, and orders this unit to perform N search iterations at the second temperature step, 
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starting with WSU 1’s current global state (with a global minimum of E = 10). In a 

similar way, WSU 2 assigns the third temperature step to WSU 3, and WSU 3 assigns the 

fourth temperature step to WSU 4. 

 
 

Figure 3.3: One wireless parallel simulated annealing task running on four wireless sensors.
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After searching approximately N/4 SA-generated search states, WSU 3 detects a 

state with an objective function value of 8. It immediately passes this state information 

along to its child, WSU 4. Because WSU 4 has a current global minimum value of E = 

10, WSU 4 restarts its search of N SA-generated states at the fourth temperature step with 

this updated information. WSU 4 has no children, so the propagation of this new state 

stops when it reaches WSU 4. 

Soon thereafter, WSU 1 detects a SA-generated state with an objective function 

value of E = 9. This is lower than its current minimum value of E = 10, so it informs its 

child, WSU 2 of the newly found state. WSU 2 recognizes E = 9 as a new global 

minimum, so it restarts its search at the second temperature step with this information and 

passes the updated values along to its child (WSU 3). WSU 3, however, has already 

detected a global minimum of E = 8, and thus it simply restarts its search of N SA-

generated states with its current state information (without needing to send any updated 

information to its child). 

When WSU 1 finishes its search of N SA-generated states, it alerts its child (WSU 

2) that it has not found a globally optimal solution, and it disengages from the search 

process. At this point, however, WSU 1 broadcasts its availability to the other nodes in 

the network. WSU 4, which is in need of a child node, assigns the SA task at the fifth 

temperature step to WSU 1, given its current state (with a global minimum value of E = 

8). 

This process continues for several more temperature steps until WSU 1 detects a 

globally optimal state (i.e., it finds a state with an objective function value of E = 0). At 
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this point, WSU 1 broadcasts its find to the network, thereby stopping all other 

computation, and it alerts the user that a globally optimal state has been found. 

 

3.4  Overview of Model Updating in Structural Health Monitoring 

In SHM, CO techniques have been successfully used for many purposes, 

including determining optimal sensor placement (Rao and Anandakumar 2007), 

establishing decision boundaries for damage identification (Park and Sohn 2006), and 

updating model parameters to fit experimental sensor data (Levin and Lieven 1998). In 

this study, SA is investigated as a possible optimization tool to be used for SHM 

applications involving the updating of dynamic structural models. These dynamic model 

updating methods function by iteratively adjusting structural parameters in an analytical 

(e.g., finite element) model such that the analytical system produces modal properties 

similar to those obtained experimentally in the physical structure (Mottershead and 

Friswell 1993). These results can then be used to track structural performance over time 

or to look for signs of long-term structural degradation (Doebling, et al. 1998). This 

approach has been used to effectively detect and locate damage in a variety of real 

structures (Teughels and DeRoeck 2004; Wu and Li 2006). 

The most common vibration-based model updating methodology centers around 

the minimization of an objective function, E, which mathematically expresses the 

numerical difference between modal properties (i.e., mode shapes, modal frequencies, 

and modal damping ratios) generated by a given analytical model and those obtained 

experimentally through vibration testing. For example: 
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(3.3)

 

where ωai and ωei are the ith analytical and experimental modal frequencies, respectively, 

and ζai and ζei are the ith analytical and experimental modal damping ratios, respectively. 

Also, MACi is the modal assurance criteria, which is a measure of correlation between 

two modes using the ith analytical and experimental mode shapes as input (Allemang and 

Brown 1982). Finally, α, β, and γ are weighting constants determined experimentally to 

properly account for differences in the magnitudes of the three modal parameters. It is 

assumed that there are q modes in the system. A optional function f(t) can also be added 

to the objective function in order to match experimental and analytical data characterized 

in the time domain. 

Once formulated, the objective function in Equation 3.3 can be optimized by 

altering the values of a set of structural “updating” parameters. In most cases, these 

parameters consist of unknown and/or possibly transient mass, stiffness, and damping 

properties of individual structural components. In theory, if this objective function can be 

minimized, then there is an accurate match between experimental results and analytical 

prediction. This means that a set of structural parameters representing the true physical 

state of the system can be optimally determined.  
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3.5  3-Story Steel Structure Testbed 

In order to validate the ability of a WSN to update an analytical model of a 

physical structure, a three-story steel structure located at the National Center for Research 

in Earthquake Engineering (NCREE) at National Taiwan University in Taipei, Taiwan is 

chosen as a testbed. This structure sits on a 5m x 5m tri-axial seismic shaking table. Each 

floor of this structure (seen in Figure 3.4a) is 3m (9.84ft) wide by 2m (6.56ft) deep and 

3m (9.84ft) tall. Seismic ground motion is applied parallel to the longer floor dimension. 

A mass of approximately 6000kg (13,228lb) is supported by each floor. Four 

H150x150x7x10 steel sections are employed as columns with the weak axis aligned with 

the direction of lateral motion. The orientation of the columns result in a theoretical 

stiffness of approximately 2000kN/m (11420lb/in) at each floor. Each floor is 

instrumented with a wireless sensor measuring acceleration using a Crossbow 

CX02LF1Z accelerometer oriented in the direction of lateral excitation. An 

accelerometer-wireless sensor pair (using the Narada wireless sensor described in 

                   
                                               (a)                                                             (b) 

 

Figure 3.4:  Three-story (a) structure and (b) model used in this study. 
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Section 1.6.2) is also placed at ground level to measure the ground acceleration driving 

the system. 

 

3.5.1  Analytical Model of the 3-Story Steel Structure 

Because of the computational constraints (processing speed and memory) 

imposed by the wireless sensing hardware used in this study, it is decided to utilize a 

damped frame model with lumped masses (Figure 3.4b) to analytically describe the 

dynamic response of the steel structure. This model is characterized by the following 

equation of motion: 

 

 ( )tug&&&&& M1KuuCuM −=++ (3.4)

 

where u∈ℜ9x1 is a vector of displacements (relative to the ground) and rotations for each 

of the 3 degrees of freedom, M∈ℜ9x9, C∈ℜ9x9, and K∈ℜ9x9 are the structure’s mass, 

damping, and stiffness matrices, respectively, 1∈ℜ9x1 is a unity vector, and üg(t) is the 

lateral ground acceleration. Since mass is not associated with the rotational degrees of 

freedom, static condensation is used to create reduced order MR∈ℜ3x3 and KR∈ℜ3x3 

matrices. A Rayleigh damping matrix, CR∈ℜ3x3, is constructed given the modal damping 

ratios in two lateral modes (Caughey and O’Kelley 1965). Given these matrices, the 

simplest way to obtain analytically derived modal properties is by using the state space 

formulation of the equation of motion. This formulation is as follows: 

 

 ( ) ( ) ( )tutt g&&& BzAz +=  (3.5)
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(3.6)

 

where z∈ℜ6x1 is the system state vector (zT={uT u& T}), y∈ℜ3x1 is the output vector 

corresponding to a measurement of acceleration relative to the base motion at each lateral 

degree of freedom, and üg(t) is the time-dependent ground acceleration input to the 

system. The state space matrices A, B, C, and D can be expressed as follows: 
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Modal frequencies (ωi), mode shapes (φi), and modal damping ratios (ζi) can be 

easily extracted from the state space formulation by finding the eigenvalues (λi) and 

eigenvectors (ψi) of the system matrix, A: 

 

 ωi = |λi|,   φi = ψi,   ζi = cos[tan-1(Im(λi)/Re(λi))] (3.8) 

 

where ωi is expressed in radians per second. 

 

3.5.2  Model Updating of the 3-Story Steel Structure 

In this study, three unknown mass (mi) values, six unknown stiffness (EIj) values 

corresponding to the columns and beams of each floor, and two unknown modal damping 

(ζk) ratios are treated as updating parameters (see Figure 3.4b). The WPSA algorithm is 
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used to stochastically search the range of each of these eleven model parameters for a 

system state (s = {m1 … m3, EI1 … EI6, ζ1 … ζ2}) which provides an optimal match 

between modal properties produced by experimental response data and those extracted 

from the analytical model, defined as a parameter assignment which minimizes the 

objective function presented in Equation 3.3. In this study, the optional function 

parameter f(t) is not used. Note that if these model parameters are updated repeatedly 

over time, significant changes could indicate structural degradation. 

The first step in the model updating procedure is to determine baseline 

experimental values for the modal properties (ωi, φi, ζi) used in the objective function. 

For this study, the objective function weighting parameter α is taken to be 0.6, β is taken 

to be 0.1, and γ is taken to be 0.005. By employing peak picking, frequency domain 

decomposition, and random decrement methods already embedded in the wireless sensors 

(Zimmerman, et al. 2008a), modal frequency (ωi), damping ratio (ζi), and mode shape 

(φi) values can be automatically extracted from acceleration data collected at each floor. 

Once experimental modal parameters have been determined, the user (or a predetermined 

“controller unit”) will commence the model updating procedure by selecting an available 

sensor at random and assigning to it the model updating problem, as well as a 

predetermined initial annealing temperature step, T0. This initial sensor then searches for 

additional available units and the WPSA process begins. When the WSN has converged 

on an optimal system state, results are communicated back to a centralized server for 

viewing by the user. 
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3.5.3  Model Updating Results 

When evaluating how well the proposed WPSA algorithm performs in a model 

updating application, it is first necessary to examine how successfully it can be used to 

produce model outputs that match experimental data in both the time and frequency 

domains. Since the objective function in Equation 3.3 focuses solely on matching 

frequency domain information, it is decided to utilize the optional term, f(t), in order to 

improve the quality of the time history match. This is accomplished by writing a 

Newmark numerical integration scheme and embedding it within each wireless sensor. 

Then, f(t) can be calculated by finding the average sum-squared difference between the 

analytically projected and experimentally sensed time histories. As seen numerically in 

Table 3.1 and graphically in Figure 3.5c, the WPSA algorithm is capable of producing a 

good match between analytical and experimental frequency domain properties in the 

three-story structure. Additionally, Figure 3.5a and Figure 3.5b show the similarity 

between experimental and analytical acceleration time history responses to the same 

random ground excitation. 

 

Figure 3.5: Comparison of experimental and updated analytical model response to seismic base motion in 
the (a),(b) time and (c) frequency domains. 
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To evaluate the feasibility of using WPSA to solve large model updating 

problems in wireless sensor networks, it is important to look at the scalability of the 

algorithm to large numbers of sensors. As such, Figure 3.6 displays the average speedup 

that is achieved by utilizing a given number of wireless sensors in a model update. 

Speedup is defined as the amount of time required to reach an optimal solution in the 

serial (one processor) case divided by the amount of time required to reach an optimal 

solution in the parallel (n processor) case. It can be seen that by increasing the size of a 

given wireless network from 1 to 60 units, a speedup of over 20 can be achieved. To put 

this in perspective, the amount of time required to completely update the three-story 

model presented in this study is decreased from 8.5 hours to 23 minutes. While this is 

significantly longer than the amount of time a PC would require to perform the same task, 

23 minutes of computation is reasonable in the context of many SHM applications, where 

Table 3.1:  Comparison of experimentally sensed and analytically derived modal properties for the three-
story test structure. 

 

m 1 m 2 m 3 k 1 k 2 k 3 k 4 k 5 k 6 φ 1 φ 2 φ 3 φ 1 φ 2 φ 3 φ 1 φ 2 φ 3

6000 6000 6000 2000 2000 2000 n/a n/a n/a 1.07 3.25 5.13 0.78 0.05 0.11

5937 6092 6337 1113 2194 1869 400 411 375 1.07 3.26 5.17 0.20 0.07 0.05

Modal Frequency (Hz) MAC Value Damping Ratio (%)Column Stiffness (kN/m)Floor Mass (kg)

0.99 0.98 0.99

Data Source

Experimental

Updated Model

Floor Stiffness (MN/m)

 

 
 

Figure 3.6:  Experimental speedup curve structural model using WPSA. 
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an update may only need to be run at most once a day in order to evaluate long-term 

performance. 

It is important to note that the WPSA algorithm can be utilized to update any 

analytical model that can be analyzed in a reasonable amount of time on a low-power 

microprocessor. For reference, in order to calculate the value of the objective function 

posed in Equation 3.3, the Atmel Atmega128 used in this study took 350ms plus 500ms 

for every 100 time history points projected using the Newmark numerical integration 

scheme. The algorithm consumed 35% of the 128kB of available internal flash ROM, 

57% of the 4kB of available internal SRAM, and 2.33% of the 128kB of external SRAM 

for each 100 time history points projected using Newmark numerical integration. As 

such, there is room available on the Atmega128 for more complex analytical models, but 

any future work in this area requiring sophisticated analytics (i.e., complex finite element 

models) may benefit from a wireless sensor with improved computational resources. 

 

3.6  Chapter Summary 

This chapter, which is modified from (Zimmerman and Lynch 2009), builds upon 

previous work in the parallel processing of data on wireless sensor networks by 

presenting a wireless parallel simulated annealing (WPSA) algorithm designed 

specifically to efficiently utilize the distributed resources available in large networks of 

wireless devices. This algorithm utilizes parallel computing concepts to gain efficiency as 

the number of sensors in a network grows, making it scalable to very large networks. 

Furthermore, it is robust to sensor or communication failure, and can be applied to many 

of the large number of combinatorial optimization problems seen across all engineering 
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disciplines. In this chapter, the proposed algorithm is embedded within a network of 

wireless sensing prototypes and utilized to update an analytical model of a three-story 

steel structure subjected to seismic base motion. It is shown experimentally that the 

WPSA algorithm is not only capable of accurately updating an analytical model, but that 

it can increase in computational efficiency as the size of the computing network grows. 

When combined with the automated modal estimation techniques outlined in 

Chapter 2, the WPSA algorithm presented in this chapter represents a powerful tool that 

can be used in many SHM applications, including the validation of structural design 

assumptions, the improvement of analytical models, and the detection of damage within 

structural systems. The WPSA algorithm also represents the first truly agent-based 

approach to distributed data processing in wireless sensor networks. Like the modal 

estimation techniques of Chapter 2, the WPSA approach overcomes the bandwidth and 

scalability issues of traditional centralized architectures by processing data in parallel. 

But the WPSA computing framework also leverages the ad-hoc communications 

capabilities of a WSN to create an agent-based architecture that can continue to 

effectively process sensor data even in the wake communication or sensor failure. With 

this agent-based architecture in place, the work in this chapter lays the groundwork for 

the market-based resource allocation techniques presented in Chapter 4 of this 

dissertation. 
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CHAPTER 4 

 

MARKET-BASED RESOURCE ALLOCATION FOR 

DISTRIBUTED DATA PROCESSING IN WIRELESS 

SENSOR NETWORKS 

 

4.1  Introduction 

Chapters 1 through 3 of this dissertation outline various application-specific 

architectures that the SHM community has been investigating for processing sensor data 

within networks of wireless sensors. Chapter 1 discusses centralized architectures for 

performing traditional engineering analyses like Fast Fourier Transforms (Lynch 2002), 

autoregressive model fitting (Lynch, et al. 2004), and wavelet transforms (Hashimoto, et 

al. 2005), as well as tiered network architectures (Chintalapudi, et al. 2006), data 

aggregation techniques (Gao 2005; Nagayama, et al. 2006; Akkaya, et al. 2008), and 

query processing (Rosemark and Lee 2005). Chapter 2 presents a set of explicitly parallel 

modal estimation methodologies are developed and validated for use within agent-based 

WSNs (Zimmerman, et al. 2008a). Chapter 3 develops a novel adaptation of the 

simulated annealing algorithm is created for updating structural models using ad-hoc 

networks of agent-based wireless sensors (Zimmerman and Lynch 2009). 
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Although the development of these parallel algorithms represents a significant 

step towards the automation of complex data processing tasks within agent-based WSNs, 

one of the key challenges yet to be overcome is that within the wireless environment 

many system resources (such as battery power, data storage capacity, MPU time, wireless 

bandwidth, etc.) required to perform complex computational tasks are available only in a 

limited manner. As such, especially in networks where multiple computational tasks may 

need to be executed simultaneously, it is important to devise an autonomous, optimal 

method of distributing and consuming these scarce system resources throughout the 

network. Due to the ad-hoc nature of many wireless networks, any method used for 

resource allocation must be able to achieve an optimal (or near-optimal) allocation even 

in the midst of changes in the network (for example, changes in node availability). 

In this chapter, a resource distribution framework based on free-market 

economics is developed and used to autonomously allocate system resources for the 

simultaneous processing of multiple computational tasks within a WSN. Free-market 

economies can be thought of as large collections of autonomous market agents 

(participants) such as producers (sellers) and consumers (buyers), where each agent is 

forced to compete against other agents in a competitive marketplace with scarce 

resources. In such a system, each market agent decides for itself which actions to take 

based on the utility that a particular action generates. Utility, in this case, is defined as the 

degree to which the benefits associated with a given action outweigh the opportunity cost 

of that action. As such, market-based techniques are a logical choice for applications 

within autonomous sensor networks, where each sensor can act as an independent agent. 

These methods provide increased efficiency, reliability, and flexibility relative to an a 
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priori resource assignment mechanism, where network resources are explicitly assigned 

to various computational objectives before computation begins. 

While the market-based concepts proposed herein can be merged with any 

number of parallel data processing frameworks performing a wide range of data analyses, 

it is decided to adopt the wireless parallel simulated annealing (WPSA) framework 

developed in Chapter 3 (Zimmerman and Lynch 2009) for solving combinatorial 

optimization problems as a validation testbed. In order to provide the system with 

multiple computational objectives, the classical n-Queens combinatorial optimization 

problem is chosen as a simple optimization task that can be easily scaled to varying 

complexities and solved using the WPSA framework. 

The rest of this chapter is organized as follows: Section 4.2 presents a brief 

overview of work related to market-based resource allocation in wireless sensor networks 

and Section 4.3 provides background on both the n-Queens validation testbed and the 

WPSA algorithm. Section 4.4 presents the proposed market-based resource allocation 

algorithm and Section 4.5 discusses the performance of the proposed algorithm when it is 

applied to the n-Queens/WPSA experimental testbed. Lastly, Section 4.6 summarizes and 

concludes the chapter. 

 

4.2  Background on Resource Allocation 

The problem of optimally allocating scare resources across a finite number of 

competing entities has been studied for a very long time and from a wide variety of 

viewpoints. Because of the direct correlation between resource allocation problems that 

occur in applied science and engineering and those that occur naturally in the social and 
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economic sciences, methodologies involving economic concepts (namely, price and 

utility) have permeated this field since its inception. 

Early on, it became obvious that while completely centralized approaches (where 

a central entity makes allocation decisions based on complete information) were capable 

of easily computing an optimal allocation of resources, a more decentralized approach 

would provide greater scalability as well as reliability in very large systems. This 

approach was first exemplified by the Arrow-Hurwicz algorithm (Arrow and Hurwicz 

1960), in which a central entity announces a price for a resource in question and the units 

of the system independently compute how much of the resource they need in order to 

maximize their net return. The computed requests for resources are then sent back to the 

central entity, and a new price is announced after calculating the difference between total 

demand and total supply. This process continues until a price is reached that creates a 

market equilibrium; resources are then distributed accordingly. However, while this price 

adjustment methodology ensures that an optimal allocation of resources is made, the 

communication overhead required to make a decision using this technique is 

prohibitively greater than in the centralized case. 

In order to overcome this disadvantage, researchers began to look at completely 

decentralized (center-free) allocation algorithms (Ho, et al. 1980). In the center-free 

methodology, resource demand information is shared amongst small groups of units, and 

the resources available within those groups are constantly shifted toward the units which 

place a greater value on the resources. As such, center-free algorithms yield a constantly 

improving resource distribution without the need for a coordinating center. 
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This type of decentralized thinking blossomed in the fields of operational control 

and mathematical economics, and similar microeconomic approaches were eventually 

applied explicitly to the allocation of resources in distributed computer systems. For 

example, the work done by Kurose and Simha (1989) focused on the development of 

decentralized algorithms to be applied to the classical resource allocation problem of file 

allocation. By drawing on the set of ideas, methods, and algorithms developed by Ho, et 

al. (1980), this work proved that simple and decentralized algorithms could provide rapid 

convergence on optimal solutions to file allocation problems. 

As time progressed, market and utility-based concepts filtered into many other 

application spaces within the field of computer science. For example, pricing concepts 

and utility functions were first applied to network design and performance evaluation 

over a decade ago from an Internet-based perspective (Cocchi, et al. 1993; Shenker 

1995). More recently, market-based approaches have become common for managing 

limited resources such as power and bandwidth within wireless networks. For example, 

distributed allocation algorithms designed for use within wireless ad hoc networks have 

been shown to near-optimally allocate resources by using pricing concepts and utility 

functions in conjunction with techniques developed from linear programming (Curescu 

and Nadjm-Tehrani 2005; Kao and Huang 2008).  

In the past decade, as wireless sensors have begun to emerge as an increasingly 

important new technology across engineering disciplines, the algorithms developed for 

resource allocation in distributed computer networks have been quickly transitioned for 

implementation in WSNs. For example, it has been shown that utility functions can assist 

large-scale sensing networks in achieving global objectives in a decentralized fashion 
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using only local information (Byers and Nasser 2000). In this approach, the resource 

constraints present in WSNs motivate the need for flexible objective functions which 

allow nodes to choose their role over time, with the goal of optimizing the total utility 

derived over the lifetime of a network instead of optimizing present resource allocations 

without regard to future costs. 

Other work in this area has focused on the use of utility-based resource allocation 

techniques to distribute network resources in the wake of multiple application-driven 

performance objectives. For example, Eswaran, et al. (2008) developed a receiver-

centric, price-based decentralized algorithm for resource sharing in mission-oriented 

WSNs. This algorithm is shown to ensure optimal and fair transmission rate allocation 

amongst a set of multiple data-related objectives (“missions”). Similarly, Jin, et al. (2007) 

employed utility-based concepts to develop an application-oriented flow control 

framework for heterogeneous WSNs. In this framework, wireless channel usage and 

sensor node energy are allocated efficiently such that total application performance is 

maximized. 

The work presented in this chapter builds upon the price and utility-based 

resource allocation methodologies mentioned above. However, it differs from previous 

work in WSN resource management in two distinct ways. First, in order to account for a 

greater emphasis on embedded data processing, this work broadens the previous utility 

function focus on optimal communication and data flow in order to include 

computational speed and efficiency. Second, the resource allocation algorithm developed 

in this chapter is implemented directly on a network of wireless sensor prototypes, 
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allowing the performance of the proposed algorithm to be evaluated directly on the 

sensing system it was designed for instead of in a simulated environment. 

 

4.3  Application Scenario 

The work presented in this chapter is motivated by the desire to perform advanced 

data processing tasks within networks of wireless sensors, optimally allocating scarce 

resources so as to optimize the speed and reliability with which a set of computational 

tasks can be completed within a WSN. While this market-based resource allocation 

framework can be easily applied to many application-specific data processing algorithms, 

a simple application scenario is adopted herein so that the elegance and performance of 

the market-based framework can be better explained and illustrated. In order to simulate a 

sensing environment where a WSN is asked to perform multiple data processing tasks 

concurrently, a benchmark problem is needed that can be used to easily represent a 

number of different computational tasks with varying resource demands. For this 

purpose, the n-Queens problem is chosen as it is a well-known benchmark for evaluating 

the performance (i.e., speed and efficiency) of combinatorial optimization or search 

algorithms. 

 

4.3.1  The n-Queens Problem 

The objective of the n-Queens problem is to place n chess queens on an n x n 

chessboard (where n ≥ 4) such that no queen can attack another queen following basic 

chess rules. In other words, no queen can be placed on the same row, column, or diagonal 
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as another queen. An example of an optimal solution to an n-Queens problem can be seen 

in Figure 4.1b, where one of the many solutions to the 8-Queens problem is presented. 

The n-Queens optimization problem proceeds by attempting to minimize an 

objective function, E, which sums the number of conflicts between queens in a given 

chess board configuration. In an analytical sense, if a queen is at a position indexed by (I, 

J), it is in direct conflict with any queen at position (i, j) if i = I (same column), or j = J 

(same row), or |i – I| = |j – J| (same diagonal). So, if we let qij represent each square on a 

chess board, and if we set qIJ equal to 1 if there is a queen at position (I, J) and 0 

otherwise, we can create an appropriate objective function, E, as follows: 
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with the first term summing row conflicts, the second term summing column conflicts, 

the third term summing upper diagonal conflicts, and the fourth term summing lower 

                       

    (a)                                                                         (b) 
 

Figure 4.1:  (a) Initial board configuration (sinitial) and (b) one optimal solution (sminimum) 
for the 8-Queens problem. 
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diagonal conflicts. Each combination of squares qij and qIJ returns 1 if there is a queen 

conflict and 0 if there is not, leading to a sum equal to the total number of conflicts. To 

eliminate duplicate conflicts, each square on the chess board is evaluated only once 

against all other squares. 

For the implementation of the n-Queens problem in this study, we choose to start 

with a board configuration such that a queen is placed on each diagonal square (i, j) 

where i = j, as seen in Figure 4.1a for the 8-Queen problem. Clearly, in this initial state, 

each queen is in conflict with all other queens. New search states can then be generated 

by swapping the queens laying on two randomly selected rows, while retaining each 

queen’s initial column. In this way, there is always one queen in each row and one queen 

in each column. This search state generation method allows for significantly faster 

convergence of the optimization problem, as the first two terms of the objective function 

(Equation 4.1) can be ignored. 

The n-Queens problem is an ideal testbed for the market-based resource 

assignment algorithm proposed in this study because it allows us to easily explore 

multiple computational tasks of varying complexity by simply increasing the n-Queens 

problem size (namely, by increasing n). Specifically, the WSN in this study will be asked 

to simultaneously solve four n-Queens tasks of varying complexity (25-Queens, 50-

Queens, 75-Queens, and 100-Queens). 

 

4.3.2  Wireless Parallel Simulated Annealing (WPSA) 

There are many existing methods capable of finding or approximating solutions to 

NP-hard combinatorial optimization problems like n-Queens (Rohl 1983; Sosic and Gu 
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1991; Homaifar, et al. 1992). Because an exact solution to these types of problems may 

require a number of computational steps that grows faster than any finite power of the 

size of the problem, it is often desirable to use methods that approximate an optimal 

solution instead of spending the time and computational resources required to find an 

absolute global optimum. In this study, the wireless parallel simulated annealing (WPSA) 

algorithm developed by Zimmerman and Lynch (2009) is adopted as a stochastic 

technique capable of generating approximate solutions to combinatorial optimization 

problems using the embedded computational resources residing within an ad-hoc WSN. 

WPSA is a parallel implementation of the traditional simulated annealing (SA) search 

algorithm, modified explicitly for use within WSNs where overall communication is to 

be minimized in order to preserve communication bandwidth and power. 

 

4.3.2.1  The Simulated Annealing Search Algorithm 

The SA methodology, originally proposed by Kirkpatrick, et al. (1983), is 

modeled after the annealing process of material physics, where a solid substance is 

melted at a high temperature and then slowly cooled, eventually obtaining an optimal 

thermal energy state amongst a near-infinite number of atomistic configurations. This 

annealing procedure can be viewed as a natural optimization problem where the objective 

is to find an atomistic configuration that represents the absolute minimal energy state 

possible for a given material. In a similar sense, “simulated” annealing solves 

optimization problems by representing each possible configuration of optimization 

parameters as a distinct “atomistic” state, s. The SA process attempts to find an 

assignment of values to these optimization parameters that minimizes an objective 
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function, E(s). The SA method is presented in much greater detail in Section 3.2 of this 

dissertation. In the case of the n-Queens optimization problem, each possible chessboard 

configuration is a distinct state, s, and is represented by a vector of size n containing the 

column in which a chess queen is present for each row 1 through n. The objective 

function, E(s), then represents the number of conflicts between queens in a given 

chessboard configuration, s. In this study, the E(s) is calculated using Equation 1. Here, 

E(s) takes on integer values with the minimum value of E(s) being 0 (representing no 

queen conflicts). 

As applied to the n-Queens problem, the SA approach begins by adopting an 

initial system state, sinitial, seen in Figure 4.1a for the 8-Queens problem. Then, a new 

board configuration, snew, is generated by swapping the queens laying on two randomly 

selected rows, while retaining each queen’s initial column. The objective function value 

(number of queen conflicts) of this new state, E(snew), is then compared with the objective 

function value of the old state, E(snew), and the new state is probabilistically accepted or 

rejected based on the Metropolis criterion (Metropolis, et al. 1953): accept a new state, 

snew, if and only if: 

 

 ( ) ( ) ( )UTsEsE oldnew ln⋅+≤  (4.2)

 

where U is a uniformly distributed random variable between 0 and 1, and T is the 

simulated annealing temperature of the system. The addition of the T·|ln(U)| term allows 

the system to periodically accept suboptimal states in hopes of avoiding premature 

convergence on a local minima. 
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The SA cooling schedule used in this study assigns a high initial temperature, T0, 

at the outset of the search, and then proceeds to evaluate a predefined number (NSA) of 

newly generated board configurations based on the criteria presented in Equation 4.2. 

After NSA states have been evaluated, the system temperature is lowered by a factor of ρ, 

such that Ti+1 = ρ·Ti, and an additional NSA states are generated at the new, lower 

temperature. This process continues until either a chessboard configuration is found with 

zero queen conflicts (smin) or NSA consecutive states have been generated which do not 

meet the criterion presented in Equation 4.2. A graphical illustration of the SA approach 

to the n-Queens problem can be seen in Figure 4.2. 

 

 
 

 
 

Figure 4.2:  Flowchart for a simulated annealing approach to the n-Queens problem. 
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4.3.2.2  Parallelized Simulated Annealing for use in WSNs 

Because of the large number of objective function evaluations required when 

using SA-based optimization, many parallel SA techniques have been developed that, 

when run on a large number of processors, can drastically increase the speed with which 

a solution to an optimization problem such as n-Queens can be reached (Greening 1990). 

Unfortunately, most of these parallel methods require a large amount of communication 

amongst processors (for example, communication before and after each state selection). 

As such, these approaches are impractical for use within dense networks of wireless 

sensors, where both communication bandwidth and portable power (namely, battery 

power) at each node are limited. However, the WPSA method for parallel SA 

optimization within WSNs (Zimmerman and Lynch 2009) was designed to account for 

this limitation on processor-to-processor communication. The WPSA algorithm functions 

 
 

Figure 4.3:  (a) Traditional serial SA search progression run on one wireless sensor 
vs. (b) Wireless parallel SA search progression run on four wireless sensors. 
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by decomposing the traditionally serial SA search process (which is continuous across all 

temperature steps) into a set of smaller searches, each of which corresponds to a given 

temperature step and begins with the best search state yet visited. This concept is shown 

in Figure 4.3. Because each smaller search problem can be completed by any available 

wireless sensor, this method allows multiple temperature steps to be searched 

concurrently, leading to a significant speedup in the overall optimization process. 

In the implementation of WPSA used in this study, a user-initiated n-Queens 

optimization task along with a user-defined initial temperature, T0, can be randomly 

assigned to any one sensing node available for computation. If additional sensing nodes 

are available in the network, this first sensor, n0, can then assign a WPSA search starting 

at the next temperature step, T1 = ρ·T0, to a second sensor, n1, along with information 

regarding the most optimal system state yet visited. This type of processor inheritance 

can continue until no more sensing nodes are available. 

As the WPSA search continues, information regarding newly found, increasingly 

optimal states is passed downwards through the network. In this way, all sensors are 

aware of search progress that has been made at higher temperature steps, maximizing the 

effectiveness of the WPSA search at a given temperature step and maintaining the 

continuity of the serial SA process. When a sensor detects a state, s, with a lower E(s) 

value than that of any other known state, it will immediately propagate this information 

downward to the sensor directly below it in the search tree (its child). If the propagated 

state, s, has a lower objective function value than the most optimal state the child has yet 

visited, sc, then the child will then restart its NSA search iterations from the newly found 

minimum state and inform the sensor directly below it of this newly discovered state. 
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However, if a child receives a state, sp, from a parent, and the child has already randomly 

generated a state, sc, that yields a lower objective function value than sp, that child will 

merely restart its NSA iterations given its current search state, sc, without passing any 

information on to its successor. In this way, it is assured that each temperature step is 

thoroughly searched given the complete information obtained at the preceding 

temperature step. 

If a given sensor, ni, detects an optimal solution, (i.e., an objective function value 

equal to zero), it will order the rest of the network to discontinue the WPSA search and 

will alert the network end-user of the discovered results. However, if sensor ni finishes its 

part of the WPSA search without having converged on a solution (i.e., new states are still 

being accepted), it will alert its successor, sensor ni+1, that no solution was found at 

temperature step Ti, and sensor ni will again make itself available to the network for 

WPSA search at a lower temperature step. If it has no successor, sensor ni will 

automatically begin computation at temperature step Ti+1. 

The WPSA implementation naturally parallelizes the SA search process without 

incurring hefty communication overhead. While it drastically reduces communication 

between nodes, this reduction comes at the cost of computation. In other words, the serial 

search displayed in Figure 4.3a will search over a deterministic number of states. If a 

total of Q temperature steps are searched, the number of examined states is Q · NSA. This 

does not change for some pure parallel implementations of SA. However, in the proposed 

WPSA, searches at a given annealing temperature can be restarted when a parent node 

locates a state corresponding to a new, lower E(s) value, meaning that the total number of 

states searched at a temperature step will be greater than or equal to NSA. Therefore, the 
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total number of states selected will likely be greater than Q · NSA. It should be noted, 

however, that performing more searches than Q · NSA will often result in the 

identification of a more optimal state. 

 

4.4  Market-Based Task Assignment 

With an application scenario in place, it is now possible to outline the 

decentralized market-based approach used in this study to optimally distribute scarce 

WSN resources across several competing computational objectives (namely, four n-

Queens problems). The ideas proposed herein are drawn from free-market economies, 

which are incredibly complex systems that are optimally controlled in a decentralized 

manner. In a free-market economy, scarce societal resources are distributed based on the 

local interactions of buyers and sellers who obey the laws of supply and demand. 

Recently, researchers have begun to utilize market-based concepts for the control or 

optimization of complex systems, most often in the realm of computer architecture where 

a market analogy is useful for modeling the allocation of system resources such as 

memory or network bandwidth (Clearwater 1996). Perhaps the greatest benefit of market-

based optimization is that it yields a Pareto-optimal solution. A Pareto-optimal market is 

one in which no market participant can reap the benefits of higher utility or profits 

without causing harm to other participants when a resource allocation is changed (Mas-

Colell, et al. 1995). 

Conceptually, it would be somewhat trivial to develop a simple auction-based 

system which could be used in a WSN to crudely assign scarce computational resources 

(such as CPU cycles or data storage) to various computational tasks while attempting to 
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optimize a single computational objective (such as minimizing time to task completion). 

However, it is significantly more valuable to consider a more robust market-based 

scheme that can optimally allocate resources in the midst of several additional competing 

and resource-related objectives, such as wireless bandwidth usage and battery 

consumption. In this study, we attempt to create this type of system through the use of 

buyer and seller utilities. By embedding within each market agent (i.e., wireless sensor) 

the desire to maximize an individual utility function, competing goals can be settled 

through market means (supply and demand functions, price, etc). The result is a Pareto-

optimal allocation of scare system resources.  

In this chapter, we are particularly interested in three distinct (but possibly 

competing) performance objectives: (O1) completing all required computational tasks as 

quickly as possible, (O2) minimizing power consumed by the sensor network, and (O3) 

functioning as robustly and as reliably as possible in the wake of limited communication 

bandwidth and uncertain sensor performance. In order to measure the ability of the 

market-based resource allocation framework to address these three objectives, four 

performance metrics are created and utilized: (M1) the time required to complete each 

task, (M2) the number of wireless transmissions required to complete each task (which 

would be directly correlated to overall energy usage by the wireless network), (M3) the 

number of sensor failures encountered during each task, and (M4) the number of 

communication failures encountered during each task. 
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4.4.1  Buyer/Seller Framework 

As seen in Figure 4.4, the sellers in this market-based allocation technique can be 

defined as the set of sensors in the wireless network not currently working on any 

computational task. These WSUs will be “selling” their computational abilities to a 

number of buyers, represented by the set of sensors most recently added to each existing 

computational task (in this study, each n-Queen search problem). In order to 

simultaneously address all three performance objectives (O1, O2, and O3) in a streamlined 

manner, buyers and sellers focus on different goals. In this market, sellers work to 

minimize network power consumption (O2). Because the wireless radio consumes 

significantly more power than any other WSU hardware component (Lynch, et al. 2004), 

sellers gain utility by minimizing the number of wireless communications required to 

complete each task. Buyers, on the other hand, work both to minimize the overall time 

spent computing (O1) and to maximize sensor and communication reliability (O3). Thus, 

buyers gain utility by minimizing CPU time required to complete each task and 

minimizing the risk of lost CPU time due to sensor or communication failure. 

 

 
 

Figure 4.4:  Buyer/seller distinction for market-based task assignment. 
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4.4.2  Formulation Buyer-Side Utility Functions for WPSA 

In light of this framework, it is now necessary to explicitly derive utility functions 

associated with both buyers and sellers engaged in solving multiple combinatorial 

optimization (CO) problems by WPSA. These utility functions will govern whether or 

not a buyer for a given CO problem will place a bid on the services of a seller and which 

buyer, if any, a seller will sell its computing services to. On the buyer side, a utility 

function, UB, can be intuitively thought of as the total amount of time a computational 

task saves by adding an additional processing node, and can therefore be defined as 

follows: 

 

 UB = tS - αB · tSF - βB · tCF (4.3) 

 

where tS, tSF, tCF, are time values and αB and βB are weighting factors, as defined in detail 

below. 

 

4.4.2.1  Formulation of tS 

For any computational task, the value of tS represents the expected decrease in 

computation time required to complete the task brought about by the addition of one 

processor to those processors currently working on the CO problem. While there is often 

no way to directly formulate an analytical expression for this value, a trend can be 

established by looking at the average amount of time it takes a task to complete from a 

given point in its computation while utilizing a given number of processors. In the case of 

a combinatorial optimization task like n-Queens being solved using the WPSA algorithm, 
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tS can be expressed as the difference between the average time, tavg(PSA, TSSA), required 

to complete a CO problem where PSA nodes are currently computing at temperature steps 

up to TSSA, and the average time, tavg(PSA+1, TSSA+1), required to complete the same task 

where PSA+1 nodes are computing at temperature steps up to TSSA+1: 

 

 tS = tavg(PSA, TSSA) - tavg(PSA+1, TSSA+1) (4.4) 

 

Using data gathered over a large number of experimental trials run on a given 

WSU platform, Figure 4.5a shows the amount of time, tavg(PSA, TSSA), required for a 

given number of processors to solve the 100-Queens problem when the first node in the 

WPSA chain is at a given temperature step and no processors are allowed to rejoin the 

task once they have completed their assigned search. This data can be used to empirically 

determine a relationship between the number of processors currently working on a 100-

Queen problem (PSA), the lowest SA temperature step being searched (TSSA), and the 

amount of time saved from the addition of a processor (tS), as seen in Figure 4.5b. It is 

found that the relationship between tS and TSSA is independent of PSA, and thus can be 

approximated by an easily computable algebraic function: 

                    
(a)                                                                                     (b) 

 
Figure 4.5:  For the 100-Queens problem, (a) experimentally collected time to completion data and 

(b) analytical fit for tS. 
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where the values for a, b, c, and d are specific to each task complexity, CSA, and are 

tabulated in Table 4.1. The quality of the analytical fit provided by this function for the 

100-Queens problem can also be seen in Figure 4.5b. Fits of similar quality can be found 

for all other problem complexities considered in this study (namely, 25-Queen, 50-

Queen, and 75-Queen). 

 

4.4.2.2  Formulation of tSF 

The failure of a WSU could occur during the execution of a computational task. 

For example, if a WSU fully depletes its battery, it will cease to operate. In the WPSA 

computational method, if a wireless sensor fails, the continuity of the WPSA search 

would be lost at and below the failed node. Therefore, the sensors below the failed node 

would be reassigned starting with an assignment at the failed node’s temperature step. 

Hence, the buyer must account for its exposure to the risks associated with a failed WSU. 

Clearly, as the number of nodes working on a given CO problem increase, the buyer’s 

exposure to the risk of a failed node increases. 

Table 4.1:  Coefficients for calculating tS. 
 

25 50 75 100

a 0.0 1.0 8.0 20.0
b 12.3 35.9 73.5 126.9
c 13.0 23.0 27.0 29.5
d 8.3 19.7 39.5 63.4

Number of Queens (C SA )
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For any computational task, tSF represents the expected processing time lost due to 

sensor failure brought about by the addition of one processor. Unlike tS, this quantity can 

be derived analytically. Intuitively, if any sensor succumbs to either hardware or software 

failure while it is involved in a WPSA task, all work done by the failed node, as well as 

all nodes below it would be lost. As such, tSF can be expressed as the amount of time 

required for the newly added processor to complete its required NSA search iterations 

multiplied by the probability that either it or any one of the PSA processors above it in the 

search chain succumbs to sensor failure. Analytically, this value can be expressed as: 
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where t(NSA) is the average time required for one sensor to complete NSA search iterations 

and pSS is the probability that a given sensor completes its NSA search iterations without 

failing. This value is dependent on the wireless sensor platform being used, but is 

typically quite high (>0.95). 

The probability of a failed sensor should reflect the real-time state of the WSU. 

For example, if a battery source is getting low, the probability that the sensor node will 

complete its tasks reduces. Hence, pSS could vary during the execution of the 

computational task. In this study, pSS, is assumed fixed in order to simplify the analysis. 

As such, we can write: 
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4.4.2.3  Formulation of tCF 

For any computational task, tCF represents the expected processing time lost due 

to communication failure brought about by the addition of one processor. Like tSF, this 

quantity can also be derived analytically. If any sensor loses communication with its 

parent for a prolonged time while it is involved in a WPSA task (for example, if it 

becomes blocked by a physical impediment), any work done by the failed node and all 

nodes below it would be lost. As such, tCF can be expressed as the amount of time 

required for the newly added processor to complete NSA search iterations multiplied by 

the probability that either it or any one of the PSA-1 processors immediately above it in 

the search chain permanently loses parental communication. The probability of failure of 

any chain of parent-child communication links is dependent on the signal strength (RSSI) 

of each respective wireless communication link, c. Clearly, as the RSSI goes down, the 

probability of a prolonged loss of communications goes up. As such, an analytical value 

for tCF can be expressed as: 
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where t(NSA) is as before and pCS is the probability that a given communication link of 

perfect signal strength is not permanently destroyed during NSA search iterations. Again, 

this value is dependent on the wireless sensor platform being used and the environment in 

which it is deployed, but is usually also quite high (>0.9). 
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Having examined in more detail the derivation of tS, tSF, and tCF, it can now be 

seen from Equation 4.3 that αB and βB are weighting parameters that allow a WSN to 

prioritize between speedup (O1), communication reliability (O3), and sensor reliability 

(O3). This type of weighting creates an extremely adaptable computing environment that 

can change, in real-time, to shifting computing needs within a WSN. 

 

4.4.3  Formulation of Seller-Side Utility Functions for WPSA 

On the seller side of this market-based allocation procedure, a somewhat simpler 

utility function, US, can be developed in a similar fashion to UB. Intuitively, seller utility 

can be thought of as the total amount of additional power a computational task requires as 

a result of adding an additional processing node. Since the majority of power 

consumption in a wireless sensing device comes from the wireless radio (which, as stated 

before, consumes significantly more power than a microcontroller), the seller can 

maximize its utility by minimizing the amount of time the wireless network spends 

communicating.  As such, US can be defined as follows: 

 

 US = - bC (4.9) 

 

4.4.3.1  Formulation of bC 

For any CO problem, the value of bC represents the expected increase in 

communicated bytes required to complete the task brought about by the addition of one 

processor. Much like tS, there is often no way of directly formulating an analytical 

expression for this value. As such, a trend can be established for any computational task 
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by looking at the average number of bytes communicated when a task of complexity CSA 

converges on a solution from a given temperature step, TSSA, with a given number of 

processors, PSA. Using data collected over a large number of experimental trials, bC can 

be expressed as the difference between the average number of communicated bytes, 

bavg(PSA, TSSA), required to complete a search where PSA nodes are currently searching up 

to temperature step TSSA and the average number of communicated bytes, bavg(PSA+1, 

TSSA+1), required to complete a search where PSA+1 nodes are currently searching up to 

temperature step TSSA+1: 

 

 bC = bavg(PSA, TSSA) - bavg(PSA+1, TSSA+1) (4.10) 

 

Using experimentally gathered data, Figure 4.6a shows the amount of wireless 

communication (in bytes), bavg(PSA, TSSA), required for a given number of processors to 

solve the 100-Queens problem when the first node in the WPSA chain is at a given 

temperature step and no processors are allowed to rejoin the task once they have 

completed their assigned search. This data can be used to determine a relationship 

between the number of processors currently working on a 100-Queen problem (PSA), the 

                        
            (a)                                                                                           (b) 

 
Figure 4.6:  For the 100-Queens problem, (a) experimentally collected communication data and (b) 

analytical fit for bC. 
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lowest SA temperature step being searched (TSSA), and the increase in wirelessly 

communicated bytes associated with the addition of one processor (bC). It is found that 

the relationship between bC and TSSA, as seen in Figure 4.6b, is independent of PSA, and 

thus can be approximated by an easily computable algebraic function: 
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where values for m, n, r, and q are specific to each task complexity, CSA, and are 

tabulated in Table 4.2. The quality of the analytical fit provided by this function for the 

100-Queens problem can also be seen in Figure 4.6b. Fits of similar quality can be found 

for all other problem complexities. 

 

4.4.4  Wireless Task Assignment Algorithm 

Having developed utility functions associated with both buyers and sellers, it is 

now possible to create a methodology with which sensors in a WSN can buy and sell 

processing time in order to create an optimal distribution of resources while successfully 

Table 4.2:  Coefficients for calculating bC. 
 

25 50 75 100

m 1 5.00 10.20 15.30 22.25
n 1 0.40 0.50 0.55 0.50
r 1 13.00 24.40 28.00 30.25
m 2 0.00 -0.60 -2.00 -5.75
n 2 0.00 0.40 0.40 0.25
r 2 0.00 13.00 15.00 20.00
m 3 1.75 1.75 1.80 2.50
n 3 0.80 0.80 1.00 0.70
r 3 4.00 4.00 4.00 4.00
q 0.00 0.20 1.20 2.50

Number of Queens (C SA )
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completing multiple computational objectives (i.e., multiple n-Queen problems). By 

expanding on the fundamental principles of an auction, the following procedure is 

developed: 

 

1) All sensing units not currently computing will broadcast their availability to the 

network (as market sellers). 

2) The wireless sensors having most recently joined each existing computational task 

(market buyers) will calculate UB based on the computational task they are 

working on, and submit a bid of UB to each available market seller if UB > 0. 

3) Market sellers will calculate US based on each proposed computational job offer 

(bid) they receive, and will wait for a short period of time for other bids to be 

received. 

4) Once all bids have been received, market sellers will calculate their expected 

profit from each proposed job using a market power / speed exchange rate (γM) 

that represents the minimum number of seconds of computational speedup that 

must be gained in order to warrant an additional byte of communication: 

 

 profit = UB – γM · US (4.12) 

 

5) Market sellers will choose the bid that generates the greatest non-negative profit, 

and will join the corresponding computational task. 
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 Using this algorithm, computational assignments will be distributed throughout 

the network in such a way that the overall utility of the market is maximized. By default, 

this methodology works to maximize the speed with which a set of computational tasks 

can be completed. But because of the addition of the weighting parameters, αB, βB, and 

γM, the resulting framework is also capable of optimally adapting, in real-time, to shifting 

computing needs or resource limitations within a wireless network. For example, assume 

a computing task surfaces where quality communication channels are absolutely 

essential. Without any reprogramming of the sensing network, the network can reassign a 

larger βB value in order to reflect the added emphasis on avoiding communication failure. 

Similarly, αB can be used to emphasize sensor reliability and γM to stress power savings. 

 

4.5  n-Queens Testbed and Results 

In order to validate the market-based task assignment methodology proposed in 

this study, the four performance metrics (M1 through M4) outlined in Section 4.4 are 

evaluated using a network of wireless sensing prototypes. To this end, both the WPSA 

algorithm (Section 4.3.2.2) and the market-based task assignment algorithm (Section 

4.4.4) are embedded within a network of 20 Narada wireless sensors, seen in Figure 4.7. 

The Narada wireless platform is described in greater detail in Section 1.6.2. 

 

4.5.1  Performance Evaluation – Computational Speed 

The first performance metric evaluated, M1 (time to completion), involves the 

ability of the proposed market-based resource allocation method to improve the speed 

with which multiple computational objectives can be completed within a wireless 
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network. Specifically, we will show that for a given wireless network size (between 4 and 

20 nodes), the market-based allocation method can optimally assign available processors 

to four competing computational tasks. 

In order to evaluate this metric, four combinatorial optimization tasks of varying 

complexity (i.e., 25-Queens, 50-Queens, 75-Queens, and 100-Queens problems) are 

randomly assigned to four available Narada wireless sensors. Each of these four sensors 

then becomes the “master” node in the search chain associated with their given n-Queens 

task (performing a WPSA search at temperature T0). After these initial assignments have 

been made, a pool of additional processing nodes (containing between 0 and 16 Narada 

           
(a)                                                                                    (b) 

 

 
(c) 

 
Figure 4.7:  (a) Close-up of a Narada wireless sensing prototype, (b) a network of Narada wireless 

sensors, and (c) a schematic representation of Narada’s core components. 
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wireless sensors) is made readily available for computational use. At this point, the 

market-based bidding process begins with each of the four master nodes “bidding” on the 

computational services of the additional sensing nodes, and resource allocation proceeds 

as described in Section 4.4.4. If a “master” node finishes the WPSA search at its assigned 

temperature step without finding a global minimum, it will pass its “master” status on to 

its child, making itself once again available for computation on any of the four 

computational tasks. Similarly, if a global minimum is reached, all nodes will be released 

to join computation on any of the remaining tasks. Because we are strictly evaluating 

computational speedup, αB, βB, and γM are all set to zero in this test setup. As seen in 

Equation 4.3 and Equation 4.10, this allows us to negate the impact of wireless 

bandwidth (bC) and communication/sensor reliability (tCF and tSF) by isolating 

computational speed (tS) in the utility function calculations. 

In order to begin evaluating the speedup performance of the proposed market-

based task distribution methodology, it is first necessary to establish a benchmark against 

which to compare timing results. In order for the market-based method to be proven 

effective, it must be shown that a WSN utilizing the proposed method is capable of 

completing the four assigned tasks at least as quickly as if an optimal number of 

processors had been assigned a priori to each task at the outset of computation. In the a 

priori case, a static subset of processors remain with a given task throughout the entirety 

of its computation. Even a certain amount of degradation in computing speed with respect 

to this type of a priori optimization may serve to validate the market-based method, as 

the scalability and failure tolerance of real-time task assignment greatly outweighs any 

small time savings when dealing with full-scale deployments in harsh field settings; 
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specifically, a priori assignment of tasks can quickly become suboptimal in the wake of 

sensor failure. Note also that optimal a priori task distributions become exponentially 

more difficult to calculate as additional tasks or processors are added.  

Experimental data is gathered using Narada networks ranging in size from 4 to 20 

sensors. In each experimental instance, the WSN is asked to solve all four n-Queens 

problems. In total, each experimental instance is run three times. Figure 4.8 compares the 

experimental market-based performance against the performance of an a priori resource 

allocation scheme with respect to the total time required for each sensor network to 

complete all assigned tasks. It can be seen from this plot that the market-based task 

distribution method performs as well, if not better than an optimal a priori assignment of 

tasks. Note that there is inherent scatter in the market-based results, as the SA algorithm 

itself fluctuates somewhat in its speed to convergence. But on average, it can be seen that 

the proposed market-based method actually performs better than an a priori optimal 

distribution. 

 

 
 

Figure 4.8:  Time required to complete four distinct n-Queens problems using both market-based and 
optimal a priori resource assignment methods versus number of WSU nodes in sensing network. 
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4.5.2  Performance Evaluation – Wireless Bandwidth Usage 

Having confirmed the ability of the proposed resource allocation algorithm to 

optimize the speed with which multiple computational tasks can be completed within a 

WSN of a given size, it becomes necessary to evaluate the second of Section 4.4’s 

performance metrics, M2 (number of transmissions). This metric involves the ability of 

the proposed method to create a Pareto-optimal resource distribution which allows for a 

controlled balance between computational speed and wireless bandwidth usage. In order 

to evaluate this metric, the same four n-Queens problems are assigned to a network of 20 

Narada wireless sensors, with parameters αB and βB set to zero. As seen in Equation 4.3 

and Equation 4.10, these parameter settings allow us to isolate wireless bandwidth (bC) 

and computational speed (tS) while negating communication/sensor reliability (tCF and 

tSF) in the utility function calculations. As before, the WSN is asked to solve all four n-

Queens problems in a large number of experimental trials, each of which is conducted 

with a different value of γM (ranging from 0.00 to 0.07 and representing increasing 

emphasis on wireless bandwidth consumption). 

As seen in Figure 4.9, a distinct tradeoff can be observed between the amount of 

time required to complete all four tasks (Figure 4.9a) and the total amount of data 

transmitted during the completion of these tasks (Figure 4.9b) as the value of γM is 

increased. This is evidence that the market-based methodology proposed herein is 

sufficiently expressive that competing computational objectives such as computing speed 

and power consumption can be effectively prioritized through the market exchange rate 

γM. 
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4.5.3  Performance Evaluation – Sensor Reliability 

The third performance metric to be evaluated, M3 (number of sensor failures), 

involves the ability of the proposed market-based method to create a distribution of 

resources which allows for a Pareto-optimal balance between computational speed and 

risk of sensor failure. Because the risk of sensor failure in the WPSA algorithm is directly 

correlated to the size of the WPSA computational chains, this metric can be evaluated by 

viewing the tradeoff between time to completion and WPSA computational chain size. 

As such, the same four n-Queens problems are assigned to the network of 20 Narada 

wireless sensors, with parameters γM and βB set to zero. As seen in Equation 4.3 and 

Equation 4.10, these parameter settings allow us to isolate sensor reliability (tSF) and 

computational speed (tS) while negating communication reliability and wireless 

bandwidth (tCF and bC) in the utility function calculations. Then, in a large number of 

 
 

Figure 4.9:   (a) Time and (b) amount of wireless communication required to complete four 
computational tasks using market-based resource assignment vs. weighting parameter γM. 

 



 115

experimental trials, the WSN is asked to solve all four n-Queens problems with values of 

αB varying between 0 and 6, representing increasing emphasis on time lost due to sensor 

failure. 

As can be seen in Figure 4.10, a distinct tradeoff can be observed between the 

amount of time required to complete all four tasks (Figure 4.10a) and both the maximum 

length (Figure 4.10b) and the average length (Figure4.10c) of the WPSA computational 

chains formed to solve the n-Queens problems, as the value of αB is increased. The fact 

that the chain size decreases and the time to completion increases with higher values of 

αB is evidence that the market-based methodology is effectively and autonomously 

prioritizing between computing speed and risk of sensor failure. 

 
 

Figure 4.10:  (a) Time required, (b) maximum WPSA chain size reached, and average WPSA chain 
size required to complete four computational tasks on 20 WSUs using market-based resource 

assignment while varying weighting parameter αB. 
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4.5.4  Performance Evaluation – Communication Reliability 

The last performance metric to be evaluated, M4 (number of communication 

failures), involves the ability of the proposed market-based method to create a 

distribution of resources which allows for a Pareto-optimal balance between 

computational speed and risk of communication failure. As with metric M3, because the 

risk of communication failure in the WPSA algorithm is directly correlated to the size of 

the WPSA computational chains, this metric can be evaluated by viewing the tradeoff 

between time to completion and WPSA computational chain size. Again, the same four 

n-Queens problems are assigned to a network of 20 Narada wireless sensors, with 

parameters γM and αB set to zero. As seen in Equation 4.3 and Equation 4.10, these 

parameter settings allow us to isolate communication reliability (tCF) and computational 

speed (tS) while negating sensor reliability and wireless bandwidth (tSF and bC) in the 

utility function calculations. Then, a large number of experimental trials are executed 

with the WSN being asked to solve all four n-Queens problems with values of βB varying 

between 0 and 10, representing increasing emphasis on time lost due to communication 

failure. 

In the communication case, however, the risk of failure is also directly correlated 

with the signal strength of a given wireless connection (quantified by the RSSI value of 

the sensor-to-sensor link). As such, metric M4 can also be evaluated by looking at the 

tradeoff between the overall computational speed of the network and any bias that is 

placed on communication between pairs of wireless nodes with strong wireless 

connections. Therefore, a separate measure, or “utilization ratio,” is defined and 

calculated for each experimental trial. Intuitively, this ratio can be thought of as a 
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measure of the relationship between a wireless node’s signal strength and how often it is 

utilized in computation. In running this set of experimental trails, the radio on each 

Narada wireless sensor is programmed to output with a signal strength proportional to its 

unit number (between 1 and 99). This way, a measure of signal strength bias can be 

calculated for each experimental trial by plotting the amount of computation a given 

WSU performs (in percentage of time) versus the unit number of that WSU (i.e., its 

relative radio signal strength). Using this plot, a linear regression can be drawn through 

the resulting points, and the slope of this line can be used to quantify the “utilization 

ratio”, or the change in WSU utilization divided by the change in RSSI. An example of 

this concept is illustrated graphically in Figure 4.11. Note that in order to more clearly 

show the linear regression, 10 sensors are used with low unit numbers (between 1 and 

15), and 10 sensors are used with high unit numbers (between 60 and 100). 

As can be seen in Figure 4.12, a distinct tradeoff can be observed between the 

amount of time required to complete all four tasks (Figure 4.12a) and both the maximum 

length (Figure 4.12b) and the average length (Figure 4.12c) of the corresponding WPSA 

computational chains, as the value of βB is increased. Additionally, as βB is increased, it 

 

       (a)                                                           (b) 
 

Figure 4.11: Plots showing example utilization ratio calculation (via linear regression) 
for experimental cases where (a) βB = 2.0 and (b) βB = 8.0. 
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can also be seen through the utilization ratio that increased preference is placed on 

sensors with better, more reliable communications channels (Figure 4.12d). This is 

evidence that the market-based methodology is effectively and autonomously prioritizing 

between computing speed and risk of communication failure. 

 

 

Figure 4.12:  (a) Time required, (b) maximum WPSA chain size reached, average WPSA 
chain size required, and utilization ratio observed while completing four co mputational 

tasks on 20 WSUs using market-based resource assignment while varying weighting 
parameter βB. 
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4.6 Model Updating Testbed and Results 

In order to demonstrate the applicability of the market-based resource allocation 

methodology developed in this chapter to civil structures, an additional benchmark 

problem is chosen that can be easily scaled to represent a set of computational tasks, each 

of which places increasing demand on the computing resources of a WSN. This problem, 

which has far-reaching implications in SHM, is vibration-based finite element model 

updating (FEMU) (Doebling, et al. 1998). The idea behind FEMU is that by fitting the 

parameters of a structural model to match experimentally collected sensor data, one can 

calibrate analytical models, validate design assumptions, and even detect the onset of 

structural damage or degradation using model-based information as a guide. In this 

testbed, we consider three finite element (FE) models of a single cantilevered beam, 

using 5, 10, and 20 beam elements, respectively. In the absence of experimental data, a 

simple eigenvalue analysis is used to determine the modal frequencies, ωBi, and mode 

shapes, φBi, of the simple cantilever. Then, each of these three FE models is updated 

using FEMU and the stiffness value (EIx) of each beam element is found such that the 

modal properties of each model (ωMUi and φMUi) match the baseline properties (ωBi and 

φBi) as closely as possible. The objective function, E, used to assess the closeness of the 

model to the true system properties, is based on the modal frequencies, ωi, and the modal 

assurance criterion, MACi, of the first four modes (Allemang and Brown 1982). The 

FEMU process is illustrated in Figure 4.13. 

As was the case with the n-Queens testbed, the wireless parallel simulated annealing 

(WPSA) algorithm (Zimmerman and Lynch 2009) is adopted as a technique capable of 
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generating approximate solutions to FEMU problems using a WSN. As such, both buyer 

and seller utilities can be defined as before: 

 

 UB = tS - αB · tSF - βB · tCF (4.12) 

 US = - bC (4.13) 

 

where 
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Figure 4.13: Finite element model updating procedure. 
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Note that the equations modeling tS and bC have changed because we are dealing 

with a different application space (FEMU vs. n-Queens). As such, it is necessary to 

redefine the parameters for each of the above functions. Using a set of experiments 

similar to those used to create the parameters in Table 4.1 and Table 4.2, a new set of 

parameter values are calculated. These new parameters are tabulated in Table 4.3. 

 

4.6.1 Performance Evaluation – Computational Speed 

Having developed a set of utility functions applicable to the FEMU problem 

posed in this testbed, it is now possible to validate the market-based methodology 

proposed in this study. As such, both the WPSA algorithm and the market-based task 

assignment algorithm are embedded within a network of Narada wireless sensor 

prototypes. For the market-based method to be proven effective from a speed perspective, 

it must be shown that a WSN utilizing the proposed method is capable of completing the 

three assigned FEMU tasks (5, 10, and 20 elements) at least as quickly as if an optimal 

number of processors had been assigned a priori to each task at the outset of 

computation. As such, experimental data is gathered using Narada networks ranging in 

size from 5 to 20 sensors, with the weighting parameters αB, βB, and γB all being set to 

zero. Figure 4.14a shows the ability of the WPSA method to find approximate solutions 

to the 20 element FEMU problem, and Figure 4.14b compares experimental market-

Table 4.3: Coefficients for calculating tS and bC, tabulated for each finite element model updating 
problem considered (5 elements, 10 elements, and 20 elements). 

 
tS                                                                                    bC 

 

α β γ λ 1 λ 2
5 235 20 130 1 0.22
10 800 30 460 0.85 0.3
20 3200 25 1750 0.6 0.5

C
SA

 

α β γ λ 1 λ 2
5 5.5 6 3.9 1 0.6
10 4.6 16.5 2.9 0.75 0.35
20 7 28 4.2 0.15 0.6

C
SA
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based performance against the performance of an a priori resource allocation scheme 

with respect to the total time required for each method to complete all assigned tasks. It 

can be seen that the market-based task distribution method performs as well as an optimal 

a priori assignment of tasks. 

In addition to confirming the ability of the proposed resource allocation algorithm to 

optimize the speed with which multiple computational tasks can be completed within a 

WSN of a given size, it is also found that the method is capable of creating a balance 

between computational speed and other performance objectives by varying the market 

weighting parameters. For example, a distinct tradeoff can be observed between the 

amount of time required to complete all three tasks and the total amount of data 

transmitted during the completion of these tasks as the value of γB is increased. This is 

evidence that the market-based methodology proposed herein can effectively and 

autonomously prioritize between competing computational objectives such as computing 

speed and power consumption. Similar tradeoff relationships were found between speed 

and network reliability by varying the parameters αB and βB. 

       
 

(a) (b) 
 

Figure 4.14: (a) Averaged 20 element WPSA results and  
(b) time to completion for market-based method. 
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4.7  Chapter Summary 

This chapter outlines a market-based method of optimally allocating scarce 

system resources (such as battery power, data storage capacity, CPU time, wireless 

bandwidth, etc.) amongst a set of multiple computational objectives within a WSN. In 

this buyer/seller framework, available wireless sensors (sellers) are distributed amongst 

multiple computational tasks (buyers) through a utility-driven bidding process. Because 

buyers and sellers in this market gain utility in different ways (buyers by maximizing 

speed and reliability and sellers by minimizing power consumption), a Pareto-optimal 

allocation of scarce resources can be reached while completing a set of multiple 

computational objectives as quickly as possible. 

When evaluating the proposed resource allocation algorithm on a physical 

network of wireless sensor prototypes, it is found that this method allows a set of multiple 

computational tasks to be completed as quickly as if an optimal number of sensors were 

assigned a priori to each computational task at the outset of computation. This property is 

extremely advantageous, especially as the number of computational tasks and/or 

available processors increases. Additionally, through the use of three weighting 

parameters (αB, βB, and γM), this market-based method is shown to be capable of 

effectively and autonomously shifting network priority from one performance objective 

to another, thereby offering a flexible framework where scarce resources can be 

optimally consumed in the midst of competing resource-based objectives. 

When combined with the decentralized modal analysis techniques developed in 

Chapter 2 of this dissertation and the distributed model updating method created in 

Chapter 3, the market-based resource allocation technique presented in this chapter 
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represents the completion of a novel agent-based computational paradigm in which 

sensor data can be autonomously collected from a structure and processed in a multitude 

of ways without the need for a centralized processing center. In contrast to traditional 

centralized methods of data processing within WSNs, this agent-based approach is 

incredibly scalable, power efficient, and robust to communication or sensor failure. While 

the market-based resource allocation techniques presented herein close the loop on the 

development of a flexible architecture appropriate for many SHM applications, the ideas 

developed in this chapter can also be leveraged in order to improve upon the modal 

estimation techniques of Chapter 2. As such, a novel market-based frequency domain 

decomposition technique based on this work is presented in detail in Chapter 5. 
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CHAPTER 5 

 

MARKET-BASED FREQUENCY DOMAIN 

DECOMPOSITION FOR AUTOMATED MODE SHAPE 

ESTIMATION IN WIRELESS SENSOR NETWORKS 

 

5.1  Introduction 

 In this chapter, the market-based resource allocation techniques developed in 

Chapter 4 are applied to the distributed modal analysis methods developed in Chapter 2. 

Specifically, these market-based methods are used to overcome the topology-related 

restrictions of the decentralized FDD method (these restrictions are outlined in Section 

2.3.2.3), thereby creating a true agent-based architecture for automated modal estimation 

in wireless sensor networks. Simultaneously, the resulting method leads to improvements  

in the quality of the mode shapes estimated by the decentralized FDD technique. Quality 

mode shape estimates are important in many SHM applications, including computer-

aided design (Sinha and Friswell 2002), model-validation (Mottershead and Friswell 

1993), and damage detection (Doebling, et al. 1998; Ismail, et al. 2006; Fang and Perera 

2009). 

 Recent advances in microprocessor and wireless communication hardware have 

paved the way for the development of automated modal estimation techniques 
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specifically for use within dense wireless SHM systems (Lynch 2007). While there has 

been a sizable amount of effort spent creating centralized algorithms for modal estimation 

within WSNs (Lynch, et al. 2004; Lynch, et al. 2006), recent work by Zimmerman, et al. 

(2008a) represents the first successful attempt to create a fully decentralized approach to 

in-network modal identification. In this work (presented in Chapter 2 of this dissertation), 

three traditionally serial modal estimation methods (peak-picking, random decrement, 

and frequency domain decomposition) are decentralized and embedded within a network 

of wireless sensing prototypes. It is shown experimentally that a wireless monitoring 

system is able to autonomously determine modal frequencies using a distributed peak 

picking (PP) algorithm, mode shapes using a distributed frequency domain 

decomposition (FDD) method, and modal damping ratios using a distributed random 

decrement (RD) technique. It is also seen that these embedded techniques yield modal 

parameters comparable to those obtained using traditional offline analyses. 

 However, while these methodologies have proven successful as applied to two 

separate structural systems (Zimmerman, et al. 2008a; Zimmerman, et al. 2008b), it is 

noted that the frequency domain decomposition method for mode shape estimation 

requires a linear network topology that may result in the accumulation of error within 

global mode shape estimates. Additionally, because the FDD topology in this approach 

must be set by the user upon deployment of the sensing system, this method is somewhat 

constrained in environments where sensor failure or communication loss is a possibility. 

In this chapter, the market-based resource allocation techniques previously employed for 

optimizing model updating calculations are leveraged in order to improve mode shape 

estimation within wireless sensor networks by increasing the robustness of the 
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decentralized FDD method while simultaneously helping balance the tradeoff between 

mode shape accuracy and computational resource consumption (i.e., storage capacity, 

CPU cycles, communication bandwidth, etc) in the wireless domain. 

 

5.2  Mode Shape Estimation using the Decentralized FDD Method 

The frequency domain decomposition (FDD) technique, which was developed by 

Brincker, et al. (2001b), improves upon other methods of mode shape estimation, such as 

peak-picking (Ewins 1986), by allowing closely spaced modes to be identified with great 

accuracy. This method works by approximately decomposing the spectral density matrix 

into a set of single degree of freedom (SDOF) systems. In order to accomplish this, an 

estimate of the output power spectral density (PSD) matrix, Ĝyy(jω), is first obtained for 

each discrete frequency ω = ωi by creating an array of frequency response functions 

(FRFs) using Fast Fourier Transform (FFT) information from each degree of freedom in 

a system. Then, by taking the singular value decomposition (SVD) of the matrix Ĝyy(jω), 

singular values and singular vectors can be extracted from the PSD. If an SVD is 

performed near a modal peak in the PSD function, the first singular vector, ui1, can be 

interpreted as an accurate estimate of the mode shape, φi. 

In its serial implementation, the centralized FDD (CFDD) method requires that a 

processing element have a significant amount of memory in order to store and manipulate 

the output PSD matrix for each degree of freedom in the system. If there are 100 sensing 

nodes in a network, for example, the CFDD method requires complex matrix operations 

(an SVD, in particular), to be performed on a 100x100 PSD matrix. Within a wireless 

sensing network, where memory availability is scarce and processing power is limited, an 
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alternative decentralized FDD (DCFDD) method can be used to create independent mode 

shapes between sensing node pairs; a central node can then be used to combine these 

two-node mode shapes into global properties after computation is complete (Zimmerman, 

et al. 2008a). In this decentralized approach, each wireless sensor first collects a 

consistent set of time history acceleration data that is converted to an FRF using an 

embedded FFT algorithm. Then, an in-network decentralized peak picking algorithm is 

employed to look for system-wide consensus in identified modal frequencies. Once the 

entire network is apprised of the global modal frequencies, each node can transmit its 

individual FFT results at each of these frequencies to the next unit in a pre-determined 

chain (except the last node in the chain, which has no successor). Using this data, each 

receiver node can construct a two-degree of freedom output PSD matrix for each picked 

frequency using the two sets of FFT results in its possession. Then, each receiver node 

performs a SVD on the resulting 2x2 PSD matrices, extracting a set of two-node mode 

shapes from the singular values corresponding to each modal frequency. Finally, all of 

these two-node mode shapes can be sent to a central node where they can be stitched 

together to form global mode shapes of the structural system. 

 

5.2.1  Limitations of the Decentralized FDD Method 

While networks of wireless sensors employing the DCFDD method have been 

shown to be capable of creating accurate mode shape estimates while monitoring both a 

theatre balcony (Zimmerman, et al. 2008a) and a steel pedestrian bridge (Zimmerman, et 

al. 2008b), there are two major drawbacks to this method as it applies to autonomous in-

network execution. The first disadvantage is that all global mode shapes that are 
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determined using the DCFDD method are merely linear combinations of two-node mode 

shapes calculated locally between each pair of wireless nodes. As such, the network 

topology (Figure 5.1 shows one possible topology for an 8 node wireless network 

monitoring a simple cantilevered beam) used to create the DCFDD computational chain 

can have a potentially large impact on the accuracy of the mode shape estimate. For 

example, let us assume that one accelerometer in a wireless network is deployed at a 

“node” of the second bending mode of interest, and that the wireless unit collecting data 

from this sensor is also somewhere in the middle of the computational chain (i.e., WSU 6 

in Figure 5.1). Because of its geographic location (on a modal node), this sensor will have 

a near-zero FRF value at the natural frequency of the third mode. As such, when global 

mode shapes are being assembled, this near-zero value will have the potential to 

propagate through the entire estimated shape, causing numerical instability between the 

partial mode shape generated by the sensing units above it in the computational chain 

(i.e., WSUs 1 to 5 in Figure 5.1) and the partial mode shape generated by those below 

(i.e., WSUs 7 and 8). It is important to note that this effect is largely dependent on the 

noise floor of the sensors being used. If there is no noise present in the system, the 

 
 

Figure 5.1: An example network topology for two-node FDD data sharing (arrows 
and shading indicate transmission of Fourier spectra for 2-point mode determination). 
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DCFDD mode shape estimates will match CFDD estimates exactly. However, as the 

amount of noise in the system increases, the negative impact of the decentralization will 

increase as well. This is due to the fact that in a centralized implementation, a least-

squares effect minimizes the error due to noise across the entire mode shape, whereas a 

decentralized implementation allows this noise error to accumulate through each 

combination of multiple 2-node mode shapes. 

The second major limitation of the DCFDD method is that a fixed topology must 

be decided upon before a sensing network can be deployed on a physical structure. As 

such, DCFDD cannot be applied to a given monitoring scenario without a priori 

knowledge of both the monitored structure and the monitoring system to be deployed. 

Additionally, this restriction means that the DCFDD method is not robust in situations 

where wireless nodes can either fail or temporarily lose communication. 

 

5.2.2  Possible Improvements to the Decentralized FDD Method 

One obvious way in which the aforementioned limitations of the DCFDD method 

could be mitigated is by decreasing the degree of computational decentralization inherent 

to the technique. In other words, instead of forming global mode shapes out of a sequence 

of two-node mode shapes, we can increase the size of the local mode shapes to three 

wireless nodes or higher. This type of change could be implemented within the WSN by 

requiring two or more (say, n-1) wireless nodes to transmit their FRF information to a 

single node, on which an nxn SVD would be performed (instead of the standard 2x2 SVD 

proposed in the original DCFDD method). These local n-node mode shapes could then be 

combined by forcing one or more WSUs in a local mode shape to be redundant to another 
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local mode shape. Note that if more than one wireless node overlaps between local mode 

shapes, some higher-level mode-stitching methodology (a least square approach, for 

example) must be utilized to average out any differences in the global mode shapes 

resulting from joining local shapes generated relative to each overlapping WSU. From 

the FDD perspective, this increased computational centrality could improve the quality of 

decentralized mode shape estimation by eliminating situations like the one described 

above, where a wireless sensor with near-zero frequency content at a mode of interest 

creates numerical instability during the mode stitching step. In the improved technique, 

this type of near-zero sensor data could be buffered between two other nodes in a 3x3 or 

greater SVD calculation. Then, modes could be stitched using the buffer nodes instead of 

the node with the non-zero value, leading to a decrease in estimation error. 

A similar strategy for improving the DCFDD method was recently proposed and 

implemented in simulation by Sim, et al. (2009). In this work, global mode shapes are 

created from a set of local mode shapes by leveraging topologies with increasingly large 

sets of overlapping nodes (Figure 5.2). By minimizing the error between stitched and 

reference global mode shapes, the authors of this study found that sufficiently large local 

groups and multiple overlapping nodes contribute to more reliable mode shape estimates 

 

Figure 5.2: (a) DCFDD topology from Zimmerman et al. (2008), with two-node 
mode shapes and (b,c) DCFDD topologies from Sim et al. (2009), with overlapping 

four and nine-node mode shapes, respectively. 
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than were possible with the two-node mode shapes utilized in the original DCFDD 

method (Figure 5.2a). However, this new approach still requires an a priori topology 

assignment, making it fragile in networks prone to communication or sensor failure. 

Also, this method requires either significantly more communication or significantly more 

computation than the original method, as a subset of wireless nodes will have to either 

transmit their data more than once or compute more than one SVD. 

It should be noted, however, that adopting any strategy that generates local modes 

of size 3 or more will require an immediate and obvious trade-off relative to the original 

DCFDD methodology: as the size, n, of the local mode shape estimates increase, the 

amount of time required to complete the necessary nxn SVD computations will grow 

exponentially. Figure 5.3 shows experimentally determined SVD computation times for a 

variety of SVD sizes, as run on an Atmel ATmega128 microprocessor (the same 

microcontroller used in the Narada wireless sensor node). This fixed point, 8-bit 

microprocessor, which in this case is running on an 8MHz externally generated clock 

signal, is widely used in the wireless sensing community and is fairly comparable from a 

computational standpoint to other low-power 8-bit microprocessors available for 

embedded computing. As can be seen in Figure 5.3, the gathered experimental time, t, 

can be easily modeled with the following second order regression: 

 

 ( ) ( ) ( ) nxnxnxt ⋅+⋅−⋅= −−− 32333 10109.151060.110087.2(sec)  (5.1) 

 

where n is the size of the SVD decomposition. 



 133

It is important to note from this figure that while the 17.5 seconds of computation 

required to complete a 20x20 SVD on the ATmega128 may not seem significant, in some 

FDD applications there may be hundreds or thousands of frequencies of interest, each one 

of which requires a separate SVD computation. In these cases, the time saved by further 

decentralizing the mode shape calculations could be drastic. 

It is also important to note that some wireless sensing platforms are designed with 

access to large amounts of external SRAM for computation. As such, the maximum 

possible SVD size for certain wireless platforms is far greater than the 20x20 SVD shown 

in Figure 5.3. The Narada wireless sensor (see Section 1.6.2), for example, has 128kB of 

supplementary SRAM, and is theoretically capable of computing SVDs up to 128x128 in 

size (each entry in this matrix is a complex single precision floating point value requiring 

8 bytes of storage). The Crossbow iMote2 has 256kB of SRAM, and can, in theory, 

compute an SVD up to 181x181 in size. In this study, however, we will consider a 

wireless framework utilizing an ATmega128 where no external storage is available, 

 
 

Figure 5.3: Time required for a single wireless sensor (using an 8-bit microcontroller) to 
complete an nxn SVD calculation, and the associated second order regression (Equation 5.1). 
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restricting the maximum SVD size to 20x20 (requiring 3,200 bytes of storage – or about 

80% of the total 4kB of available SRAM). 

 

5.3  Background on Market-Based Resource Allocation 

As outlined above, it is clear that improvements to the DCFDD method can be 

made by exploring the effects of fewer (and larger) local mode shape estimates. 

However, it has also been shown that there is a distinct tradeoff between improved mode 

shape estimates and the amount of scarce resources (specifically, computing time, storage 

space, etc.) required to calculate local mode shapes using increasingly large clusters of 

wireless sensing units. As such, the objective of the work in this chapter is to develop a 

robust methodology in which this tradeoff between mode shape accuracy and 

computational requirements can be optimally managed in an autonomous and ad-hoc 

manner.  

While there are several possible approaches to this optimization problem, it is 

decided to leverage the workings of another complex system that is optimally controlled 

in a decentralized manner: the free-market economy. This free-market approach was also 

utilized for resource allocation in Chapter 4. In a free market economy, scarce societal 

resources are distributed based on the local interactions of buyers and sellers who obey 

the laws of supply and demand. In the context of this chapter, wireless nodes can be 

modeled as buyers and sellers who are looking to trade an optimal amount of scarce 

system resources (in this case, storage space and processing time) in exchange for a 

measure of gained utility (in this case, improved mode shape estimates). Having 

described the DCFDD method and its potential limitations, it can now be seen that 
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market-based methods may be capable of helping manage the conflicts created between 

mode shape accuracy and the limited computational resources available within a WSN. 

Recently, researchers have begun to utilize market-based concepts for the control 

or optimization of complex systems, most often in the realm of computer architecture 

where a market analogy is useful for modeling computer systems such as memory usage 

or network traffic (Clearwater 1996). Perhaps the greatest benefit of market-based 

optimization is that it can often yield a Pareto optimal solution; a Pareto optimal market 

is one in which no market participant can reap the benefits of higher utility or profits 

without causing harm to other participants when a resource allocation is changed  (Mas-

Colell, et al. 1995). 

Recently, Zimmerman, et al. (2009) developed a WSN-oriented resource 

distribution framework based on free-market economics that can be used to 

autonomously allocate scarce system resources (such as battery power, data storage 

capacity, CPU time, wireless bandwidth, etc.) for the simultaneous processing of multiple 

computational tasks within a WSN. This architecture is explained in great detail in 

Chapter 4 of this dissertation, and is leveraged to improve the decentralized mode shape 

estimation method. 

 

5.3.1  Market-Based Resource Allocation in WSNs 

Conceptually, it would be somewhat trivial to develop a simple market-based 

system which could be used to crudely optimize a WSN-based resource allocation system 

based on only one goal, such as maximizing computational speed. However, it is 

significantly more valuable to consider a more robust market-based scheme that can 
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optimally allocate resources in the midst of several additional competing objectives, such 

as computational speed, wireless bandwidth usage and battery consumption. Zimmerman, 

et al. (2009) create this type of system through the use of buyer and seller “utilities”. By 

embedding within each market agent (i.e., wireless sensor) the desire to maximize an 

individual utility function, it has been shown that competing goals can be settled through 

market means (supply and demand equilibrium). The result also represents a Pareto 

optimal allocation of scare system resources. 

In previous studies, focus is placed on three distinct (but possibly competing) 

performance objectives: completing all required computational tasks as quickly as 

possible, minimizing power consumed by the sensor network, and functioning as robustly 

and as reliably as possible. In order to measure the ability of the market-based technique 

to address these three objectives, three performance metrics are created and utilized: the 

time required to complete a given task, the number of wireless transmissions required to 

complete a given task, and the number of sensor and communication failures encountered 

during a given task. 

In the market-based resource allocation method referenced above (Zimmerman, et 

al. 2009), market sellers are defined as the set of sensors in the wireless network not 

currently working on any computational task. These sensing units “sell” their 

computational abilities to a number of buyers, represented by the set of sensors most 

recently added to each existing computational task. In order to simultaneously address all 

three performance objectives in a streamlined manner, buyers and sellers focus on 

different goals. In this market, sellers work to minimize network power consumption and 

buyers work to minimize the overall time spent computing while simultaneously 



 137

maximizing network reliability. In order to quantify the degree to which a given resource 

allocation benefits the network as a whole, separate utility functions (UB and US) are 

assigned to buyers and sellers, respectively. 

Having developed utility functions associated with both buyers and sellers, a 

methodology is created with which wireless sensing units can buy and sell processing 

time. By expanding on the fundamental principles of an auction, the following procedure 

is developed: 

 

1. All sensing units not currently computing will broadcast their availability to the 

network (as market sellers). 

2. The wireless sensors having most recently joined each existing computational task 

(market buyers) will calculate UB based on the computational task they are 

working on, and place a bid of UB if UB > 0. 

3. Market sellers will calculate US based on each proposed computational job offer 

they receive. 

4. Once all bids have been received, market sellers will calculate their expected 

profit from each proposed job using a market power / speed exchange rate (γM) 

that represents the minimum number of seconds of computational speedup that 

must be gained in order to warrant an additional byte of communication: 

 profit = UB – γM · US (5.2) 

5. Market sellers will choose the bid that generates the greatest non-negative profit, 

and join the corresponding computational task. 
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It is shown that this market-based method of optimally allocating scarce system 

resources within a WSN allows a set of multiple computational tasks to be completed as 

quickly as if an optimal number of sensors were assigned a priori to each task at the 

outset of computation. Additionally, it is found that the utility functions developed in this 

market-based method allow the network to shift priority from one scarce resource to 

another and from one computational objective to another, providing a flexible framework 

where scarce resources can be optimally consumed in the midst of competing resource-

based objectives and constraints. Given the effectiveness of the proposed market-based 

methods, they will be explored to improve the accuracy and robustness of the DCFDD 

mode shape estimation method. 

 

5.4  Market-Based Frequency Domain Decomposition in WSNs 

In order to create an environment in which the WSN-based DCFDD method can 

improve its mode shape estimation capability while optimizing its required consumption 

of scarce resources, the market-based buyer-seller framework outlined in Section 5.3 is 

applied to the modal estimation problem. In this problem, we are interested in optimizing 

over four distinct (but possibly competing) performance objectives: (O1) estimating mode 

shapes as accurately as possible from dynamic sensor data; (O2) calculating mode shape 

estimates as quickly as possible; (O3) utilizing as little memory as possible; (O4) 

maintaining communications that are as reliable as possible. In order to measure the 

ability of the market-based DCFDD to address these objectives, four performance metrics 

are created and utilized: (M1) the accuracy of each estimated mode shape; (M2) the 

amount of time required to calculate each estimated mode shape; (M3) the amount of 
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storage per computing sensor required to calculate each estimated mode shape; (M4) the 

strength the communication links created between buyer and seller nodes. 

In contrast to the DCFDD method, which functions by creating a used-defined 

chain-like topology through which computational tasks (specifically, 2x2 SVD 

calculations) can be distributed amongst a network of wireless sensors (Figure 5.4a), the 

Market-Based Frequency Domain Decomposition (MBFDD) technique creates an ad-hoc 

tree-like topology through which a set of nxn SVD calculations can be similarly 

distributed (Figure 5.4b). This ad-hoc approach has numerous advantages over the chain-

like DCFDD topology formations presented by Zimmerman, et al. (2008a). First, by 

 
 

Figure 5.4: (a) Example DCFDD network topology and computational requirements 
vs. (b) Example MBFDD network topology and computational requirements. 
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expanding the potential size of each local mode shape (i.e., SVD dimension), problems 

associated with stitching together many two-node modes can be greatly mitigated and the 

accuracy of the global mode shape estimation will improve. Second, this type of optimal 

ad-hoc tree creation is dependent only on the ability to analytically model the monitored 

structure before sensors are deployed. As such, the MBFDD method can create an 

optimal tree for mode shape estimation even in the midst of unknown sensor placement, 

sensor failure, network communication loss, etc. 

 

5.4.1 Buyer/Seller Framework for MBFDD 

In the MBFDD method developed in this study, wireless sensors available for 

computation will either be required to transmit their frequency domain data (at estimated 

modal frequencies) to another wireless sensor (i.e., WSU 18 in Figure 5.4b), or receive 

frequency domain data (at estimated modal frequencies) from n-1 additional wireless 

sensors and compute an nxn SVD (i.e., WSU 1 in Figure 5.4b), or (c) transmit, receive, 

and compute (i.e., WSU 11 in Figure 5.4b). The purpose of the MBFDD technique, then, 

is to create an optimal topology for sending, receiving, and computing dynamic sensor 

data so as to optimize between objectives O1, O2, O3, and O4. 

In contrast to the market-based resource allocation methodology discussed in 

Section 5.3 (Zimmerman, et al. 2009), market sellers in the MBFDD method can be 

defined as the set of sensors in the wireless network not currently assigned to an action 

(i.e., send, receive-compute, or both). In a way, these WSUs will be “selling” their sensor 

data to one of a number of buyers. Buyers in this market are represented by the set of 

sensors currently assigned to either send data, receive-compute, or both. 
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In order to simultaneously address all four performance objectives (O1, O2, O3, 

and O4) in a streamlined manner, buyers and sellers focus on different goals. In this 

market, buyers work to maximize mode shape accuracy (O1), to minimize the overall 

time spent computing (O2), and to minimize the amount of required storage (O3). As 

such, buyers gain utility by creating a topology that minimizes the difference between the 

MBFDD and CFDD mode shape estimations, as calculated using the modal assurance 

criteria (MAC) (Allemang and Brown 1982), and by limiting the size of the local SVD 

clusters in the MBFDD computational tree, (since smaller SVD clusters require less 

computation and less storage capacity). Sellers, on the other hand, work to improve the 

reliability of the wireless connections in the MBFDD tree structure (O4). Thus, sellers 

gain utility by forming quality (i.e., reliable) communication links between nodes. 

 

5.4.2 Formulation of Buyer-Side Utility Functions for MBFDD 

In light of this framework, it is now necessary to explicitly derive utility functions 

associated with both buyers and sellers as they create a tree-like topology for MBFDD 

mode shape estimation. These utility functions will govern which computational SVD 

cluster an unassigned sensor will join, and will limit the size of these clusters in order to 

conserve processor time and memory consumption. On the buyer side, the utility, UB, 

gained by adding an additional wireless sensor to a given computational cluster 

represents a weighted combination of the expected improvement in MAC value, MB,  

increase in computational time, TB, and increase in storage capacity, SB, brought about by 

a move from SVD cluster size n-1 to SVD cluster size n. As such, UB can be defined as 

follows: 
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 (5.3) 

 

where αB, and βB are weighting parameters that allow for a shift of focus between mode 

shape accuracy, processing time, and storage capacity. 

In any FDD calculation, MB can be thought of as the expected improvement in 

MAC value brought about by a move from cluster size n-1 to cluster size n. While it is 

very difficult to directly formulate an analytical expression for this value, a trend can be 

established by looking at the average improvement (decrease) in MAC value over a large 

number of experimental trials where one WSU is moved from a 2-node cluster (we will 

call this Cluster A) into an existing n-1 node cluster (Cluster B), thus creating an n node 

cluster (Cluster C). Using a simple analytical model of a cantilevered beam to generated 

simulated experimental data, Figure 5.5 shows the experimentally generated average 

improvement in MAC value error gained by estimating a mode shape directly using an 

 
 

Figure 5.5: Percent improvement in MAC error brought about by increasing 
computational cluster size, for sensor data with varying noise levels. 
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nxn SVD (from Cluster C) rather than stitching together mode shapes estimated using 

both an (n-1)x(n-1) SVD (from Cluster B) and a 2x2 SVD (from Cluster A). Since the 

value of MB is an application-specific quantity (i.e., some structures and/or sensor 

configurations may show greater sensitivity to decentralized mode shape estimates), a 

simulated cantilever beam testbed (described in greater detail in Section 5.5) on which 20 

wireless sensors are deployed is leveraged to create this figure. Specifically, Figure 5.5 

utilizes data gathered over a large number of experimental trials run using computational 

characteristics measured from the Narada WSU platform (see Section 1.6.2) and 

simulated vibration data with noise levels varying between 0.1% RMS and 10% RMS. It 

is found that each of the curves in this figure (representing varying noise levels) can be 

modeled by an easily computable algebraic function, which represents the average 

improvement (decrease) in MAC value, MB: 

 

 ( ) n
B eAnAM ⋅−⋅= λλ,,  (5.4) 

 

where the values for A and λ are specific to each noise level, and are tabulated in Table 

5.1. These analytical regressions can also be seen in Figure 5.5. Note that the benefit of 

increasing cluster size is experimentally determined to be independent of the mode of 

interest. As such, Figure 5.5 is an average over the first four modes of the simulated 

cantilever beam used to develop the regressions for Equation 5.4. 

Just like MB represents the expected improvement in mode shape estimate, the 

value of TB represents the expected increase in processing time required to compute an 

nxn SVD instead of an (n-1)x(n-1) SVD. Much like MB, it is very difficult to directly 
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formulating an analytical expression for this value, but an empirical trend can be 

established by looking at the average amount of time required to complete an SVD of a 

given size on a given microprocessor. Figure 5.6 shows average experimental values 

collected using an ATmega128 processor running SVD calculations of various sizes, as 

well as a second order regression which can be used to easily model TB: 

 

 ( ) ( ) ( ) nxnxnTB ⋅−⋅= −− 323 1014.01014.6  (5.5) 

 

Table 5.1: A and λ regression parameters for MAC improvement at varying noise 
levels. 

Noise Level A λ
0.0% 0.000E+00 0.000E+00
0.1% 1.334E-02 1.406E-01
0.5% 2.505E-02 1.311E-01
1.0% 2.463E-02 1.079E-01
5.0% 4.333E-02 1.087E-01

10.0% 4.972E-02 1.022E-01
20.0% 4.367E-02 7.244E-02

 
 

 
 

Figure 5.6: Extra time required for a single wireless sensor to complete an nxn SVD 
calculation instead of an (n-1)x(n-1) SVD, and the associated second order regression 

(Equation 5.5). 
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Correlated tightly to TB, the value of SB in any FDD calculation represents the 

increased number of bytes of storage required to compute an nxn SVD instead of an (n-

1)x(n-1) SVD. Unlike MB and TB, this value is deterministic, as any nxn SVD 

computation requires storage of an nxn matrix of complex single precision floating point 

values. Both the real and imaginary components of a complex single precision floating 

point value require 4 bytes of storage. As such, we can easily model SB as: 

 

 ( ) 28 nnSB ⋅=  (5.6) 

 

5.4.3 Formulation of Seller-Side Utility Functions for MBFDD 

On the seller side of this market-based allocation procedure, a somewhat simpler 

utility function, US, can be developed in a similar fashion to UB. Intuitively, seller utility 

can be thought of as the reliability of the wireless communication link required to 

transmit frequency domain data from seller to buyer. Since the majority of power 

consumption in a wireless sensing device comes from the wireless radio (which 

consumes significantly more power than a microcontroller), the seller-side utility is also 

tied to both minimization of wireless bandwidth as well as minimization of power 

expenditure (communication links with lower reliability will require increased amounts 

of retransmission).  As such, US can be defined as follows: 

 

 SSS CU ⋅= γ  (5.7) 
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where γS is a weighting parameter allowing the MBFDD algorithm to scale the influence 

of wireless communication, and CS represents the probability of failure of a given buyer-

seller communication link. 

Unlike MB and TB, it is possible to model CS using an analytical expression. This 

expression is dependent on two parameters which are correlated to the specific wireless 

platform used in the WSN: the radio signal strength indicator (RSSI), which conveys the 

strength of a given wireless connection, and the probability of a communication link with 

a perfect RSSI failing due to unforeseen circumstances, pCF. Within the MBFDD 

framework, the RSSI parameter can be gathered directly from the radio interface for a 

given buyer-seller connection, while pCF is a platform specific quantity that is usually 

quite high (it is taken as 0.9 in this study). As such, CS can be defined as follows: 

 

 ( ) ( )RSSI
CS

CSS e
p

RSSIpC
+⋅−+

−= 0.404.01
1,  (5.8) 

 

It is important to note that while this study focuses only on processing time, 

storage capacity, and communication reliability, other limited WSN resources (such as 

battery power, wireless bandwidth, etc), can be similarly included in the utility function 

US, and can be coupled with a new set of weighting parameters. As such, the proposed 

MBFDD algorithm can create computational trees for mode shape estimation while 

optimizing over any number of scarce network resources. 
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5.4.4 MBFDD Algorithm 

Having developed utility functions associated with both buyers and sellers, it is 

now possible to create a methodology with which sensors in a WSN can buy and sell 

processing time and storage space in order to create optimal mode shape estimates using 

the MBFDD method. By expanding on the fundamental principles of an auction, the 

following procedure for MBFDD is developed for implementation within a sensing 

network: 

 

1. The MBFDD algorithm is initialized by assigning the generic FDD task (at a 

subset of chosen frequencies) to one available wireless sensing unit (chosen at 

random). This WSU becomes the root of the MBFDD tree. An example MBFDD 

tree and its resulting buyer/seller delineation for a small WSN can be seen in 

Figure 5.7a. Note that in this figure, two nodes (WSU 5 and WSU 4) have already 

been assigned to the root (WSU 2). This allows all steps of the MBFDD algorithm 

to be expressed clearly in Figure 5.7. 

2. Each WSU already assigned to a position in the MBFDD tree (i.e., each buyer) 

broadcasts its current cluster size, n-1, to whichever sellers are within 

communication range. These buyer broadcasts occur one at a time, traversing the 

MBFDD tree in a depth-first fashion starting with the root. In this way, each seller 

has a chance to hear bids from each buyer within their communication range. 

Figure 5.7b demonstrates this process, with sequential broadcasts from WSU 2, 

WSU 5, and WSU 4. Note that no wireless node is capable of communication 

with all other nodes in the network. 
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3. Upon receiving a bid from a buyer, each seller will calculate the utility, US, that it 

would gain by accepting the buyer’s bid. It will then transmit this utility 

 
 

Figure 5.7: MBFDD algorithm: (a) Example MBFDD tree (mid-creation) and buyer/seller 
delineation. (b) Buyer broadcast of current SVD cluster size. (c) Seller utility determination. (d) 

Buyer utility determination. (e) Total market utility (profit). (f) Updated MBFDD tree and 
buyer/seller delineation. 
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information to the buyer, using a randomized backoff to avoid packet collision. 

Example seller utilities for each buyer-seller combination can be found in Figure 

5.7c. Note a correlation between US and communication distance. 

4. After a buyer node broadcasts a bid request (step 2), it will wait for a period of 

time to ensure that all utility values, US, have arrived from the sellers within its 

communication range. A buyer will then calculate the utility, UB, it will gain from 

adding an additional processor to its SVD cluster. Example buyer utilities for each 

buyer-seller combination can be found in Figure 5.7d. Note that buyer utilities are 

correlated to the size of the buyer’s SVD cluster. 

5. For each seller utility it receives, a buyer will then calculate the expected total 

market utility (or profit) gained from moving forward with that buyer-seller 

relationship: 

 

 profit = UB + US (5.9) 

 

Figure 5.7e shows the profit calculated from US and UB. Note that the highest 

utility is generated between WSU 5 and WSU 1. 

6. After all bids have been received, the buyer will determine the bid that generates 

the greatest profit, and will pass that bid information (including buyer 

identification number, seller identification number, and total profit) to the next 

buyer in the depth-first traversal of the MBFDD tree. If, however, the maximum 

profit generated by a given buyer is less than the maximum profit generated by a 

previous buyer, the given buyer will pass along the bid information relating to 
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maximum profit generation instead of its own. In this way, information regarding 

the buyer-seller combination that generates the greatest profit at a given time step 

will propagate through the MBFDD tree, eventually ending up back at the root 

node. 

7. After all buyers have completed the broadcast/bid process, the root node will 

command the buyer involved in the maximum bid (using the MBFDD tree 

structure for communication) to add the seller node associated with the maximum 

bid to its computational cluster. This step is visualized in Figure 5.7f, where the 

maximum utility pair of nodes (WSU 5 and WSU 1) are paired in the tree. 

8. Steps 2 through 7 are repeated until no unassigned (seller) nodes remain in the 

network. At this point, the topology is complete and FDD computation can begin. 

 

Using this algorithm, a MBFDD computational tree can be created such that the 

overall utility of the market is maximized. Because of the addition of the weighting 

parameters, αB, βB, and γM, the resulting framework is capable of optimally adapting, in 

real-time, to shifting computing needs or resource limitations within a wireless network. 

For example, assume that it is absolutely essential that a particular mode shape estimate 

be as accurate as possible. Without any reprogramming of the sensing network, the 

network can simply assign near-zero values to αB, βB, and γB in order to reflect the added 

emphasis on improving computational accuracy. Similarly, increasing values of αB can be 

used to emphasize computational speed, βB to stress storage restrictions, and γB to stress 

communication reliability. 
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5.5 Experimental MBFDD Testbed and Results 

In order to validate the market-based task assignment methodology proposed in 

this study, the four performance metrics (M1 through M4) outlined in Section 5.4 are 

evaluated using a simple cantilever beam testbed. This beam is 3m long, and has a 

circular cross-section with the properties outlined in Figure 5.8. It is monitored by twenty 

Narada wireless sensors (see Section 1.6.2), each monitoring vertical acceleration and 

positioned at equal spacing across the length of the beam. This beam can be excited with 

a broadband input by impulsing it at its tip, and it yields its first four vibrational modes at 

2.93Hz, 18.37Hz, 51.44Hz, and 100.81Hz, respectively. However, because it is necessary 

to examine the performance of the MBFDD over a statistically large number of runs and 

under a variety of different sensor noise conditions (0.0%, 0.1%, 0.5%, 1.0%, 5.0%, 

10.0%, and 20.0% RMS noise) it is decided to utilize a simulated environment to validate 

the abilities of the MBFDD method. 

 

5.5.1 Evaluation – Mode Shape Accuracy vs. Computation  Time 

In the first experimental instance performed in this study, the tuning parameter αB 

is examined for its ability to shift the priority of the MBFDD methodology from 

computational speed (at low values of αB) to mode shape accuracy (at high values of αB). 

In other words, the ability of the MBFDD method to optimize between objective O1 (high 

 
 

Figure 5.8: Simple cantilevered beam used for experimental validation of the 
MBFDD method. 
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mode shape accuracy) and objective O2 (low computation time) is validated. In order to 

achieve this goal, the network of 20 wireless sensors are repeatedly asked to estimate the 

first four vibrational modes using the MBFDD method with varying values of αB. For 

each of the 7 noise levels of interest (0.0%, 0.1%, 0.5%, 1.0%, 5.0%, 10.0%, and 20.0% 

RMS noise), 50 different values of αB (varying between 0 and 1000) are investigated 

using 100 different sets of sensor data. Figure 5.9 shows the results gathered from this 

large number of simulated experiments. 

While it is fairly easy to quantify the amount of computation required in a given 

MBFDD topology (simply determine how much time was spent processing), it is less 

 
 

Figure 5.9: Total computation time and average MAC error for the MBFDD method applied to the 
cantilever testbed for three different levels of noise and with increasing values of αB. 
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obvious how to quantify the quality of a mode shape estimate. In this study, MBFDD 

estimates are compared with CFDD estimates in the following way: for each set of sensor 

data, a set of mode shapes are estimated using both the MBFDD and CFDD methods. 

Then, each of these sets of mode shape estimates are compared to analytically derived 

mode shapes for the cantilever beam using the corresponding MAC value. By taking the 

difference between the average MBFDD MAC value and the average CFDD MAC value 

for a given mode shape and noise level, we can generate the aforementioned MAC error 

between the MBFDD estimates and the CFDD estimates. 

As can be seen in Figure 5.9, not only is the MBFDD method capable of creating 

a very accurate mode shape estimate, but it can effectively utilize the tuning parameter αB 

to discriminate between an emphasis on mode shape accuracy and an emphasis on 

computational speed. The exact relationship between mode shape accuracy and 

computational speed can be seen in the bottom plots in this figure, where the value of αB 

increases from the bottom left to the top right of the plot. 

 

5.5.2 Evaluation – Mode Shape Accuracy vs. Storage Requirement 

In the second experimental instance performed in this study, the tuning parameter 

βB is examined for its ability to shift the priority of the MBFDD methodology from low 

storage requirements (at low values of βB) to mode shape accuracy (at high values of βB). 

In other words, the ability of the MBFDD method to optimize between objective O1 (high 

mode shape accuracy) and objective O3 (low storage requirements) is validated. In order 

to achieve this goal, the network of 20 wireless sensors are repeatedly asked to estimate 

the first four vibrational modes using the MBFDD method with varying values of βB. For 
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each of the 7 noise levels of interest (0.0%, 0.1%, 0.5%, 1.0%, 5.0%, 10.0%, and 20.0% 

RMS noise), 50 different values of βB (varying between 0 and 1000) are investigated 

using 100 different sets of sensor data. Figure 5.10 shows the results gathered from this 

large number of simulated experiments. It can be seen from this figure that the MBFDD 

method is capable of creating very accurate mode shape estimates, and can effectively 

utilize the tuning parameter βB to discriminate between an emphasis on mode shape 

accuracy and an emphasis on required data storage. The exact relationship between mode 

shape accuracy and required data storage can be seen in the bottom plots in this figure, 

where the value of βB increases from the bottom left to the top right of the plot. 

 
 

Figure 5.10: Total storage requirement and average MAC error for the MBFDD method applied to the 
cantilever testbed for three different levels of noise and with increasing values of βB. 
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5.5.3 Evaluation – Mode Shape Accuracy vs. Communication Reliability 

In the third experimental instance performed in this study, the ability of tuning 

parameter γB to shift the priority of the MBFDD methodology from communication 

quality (at low values of γB) to mode shape accuracy (at high values of γB) is investigated. 

In other words, it is necessary to validate the ability of the MBFDD method to optimize 

between objective O1 (high mode shape accuracy) and objective O4 (low communication 

requirements). In order to achieve this goal, a network of 20 wireless sensors are 

repeatedly asked to estimate the first four vibrational modes using the MBFDD method 

with varying values of γB. For each of the 7 noise levels of interest (0.0%, 0.1%, 0.5%, 

1.0%, 5.0%, 10.0%, and 20.0% RMS noise), 50 different values of γB (varying between 

0.1 and 1000) are investigated using 100 different sets of sensor data. Figure 5.11 shows 

the results gathered from this large number of simulated experiments.  

In this investigation, the effect of communication quality on the MBFDD 

topology is investigated by looking at the average (geometric) distance between 

communication links in the MBFDD tree. Because RSSI is correlated to distance between 

transmitter and receiver (assuming line-of-sight), it follows that sensors that are farther 

from one another on the cantilever will have lower mutual RSSI values, indicated 

decreased communication reliability. It can be seen that this correlation holds in the 

experimental setting. Mode shape accuracy is determined exactly as described in Section 

5.4.1. 

As seen in Figure 5.11, the MBFDD method is capable of discriminating between 

an emphasis on mode shape accuracy and an emphasis on communication reliability by 

utilizing the tuning parameter γB. The exact relationship between mode shape accuracy 
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and communication reliability can be seen in the bottom plots in this figure, where the 

value of γB increases from the bottom left to the top right of the plot. It is interesting to 

note that at values of γB less than 1.0, we actually see a decrease in mode shape error. 

This is because at γB values less than 1.0, the MBFDD algorithm is approaching the 

DCFDD topology (i.e., the MBFDD tree is merely a sequential chain of sensors running 

the length of the cantilever). Because of the simplicity of this beam example, this 

sequential ordering actually happens to produce improved results at low noise levels for 

certain mode shapes. However, this phenomena would not extend to more complex 

examples. 

 
 

Figure 5.11: Average communication distance and average MAC error for the MBFDD method 
applied to the cantilever testbed for three different levels of noise and with increasing values of γB. 
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5.6 Chapter Summary 

In this chapter, the decentralized frequency domain decomposition (DCFDD) 

method for autonomous mode shape estimation presented in Chapter 2 is drastically 

improved in two distinct ways. First, by creating a tree-like topology in place of the 

chain-like topology presented in Chapter 2, the resulting mode shape estimates can be 

calculated by stitching together local mode shapes of varying size, instead of focusing 

solely on the two-node mode shapes of Chapter 2. In addition (and perhaps more 

importantly), the flexibility limitations of the original DCFDD algorithm (with respect to 

topology formation and distribution of scarce network resources) are greatly mitigated 

through the application of market-based resource allocation techniques. Specifically, the 

framework developed in Chapter 4 for market-based resource allocation in WSNs is 

leveraged in order to provide an agent-based architecture for autonomously estimating 

mode shapes using DCFDD. 

The resulting market-based frequency domain decomposition methodology 

(MBFDD) is successfully applied to mode shape estimation in a simple cantilever beam. 

It is shown that the MBFDD method is capable of autonomously forming a 

computational topology that allows a network of wireless sensors to not only improve on 

the mode shape estimates of the DCFDD technique, but to optimally distinguish between 

multiple resource constraints or objectives. Using the weighting parameters αB, βB, and 

γB, the MBFDD method is experimentally shown to be capable of managing changing 

emphasis between mode shape accuracy, computational speed, storage requirements, and 

wireless communication reliability. 
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CHAPTER 6 

 

CONCLUSIONS 

 

6.1  Summary of Results and Contributions 

 As sensing technologies and data processing techniques continue to improve in 

capability and decrease in price, the modern engineering community is becoming 

increasingly reliant on sensor data to provide an accurate assessment of structural system 

behavior and performance. Experimentally sensed data is vital to properly validating and 

calibrating analytical models, as well as detecting degradation and failure in engineered 

systems. Due to the high costs associated with the installation and maintenance of coaxial 

data cables in large engineered systems, wireless sensing technologies have recently been 

explored as a new interface between sensing transducer and data repository. By lowering 

installation and maintenance costs, wireless sensors have provided a cost-effective 

building block on which pervasive networks of sensing transducers can be deployed on 

large civil structures, such as bridges or buildings. 

In addition to the cost savings generated by the elimination of unnecessary cables, 

wireless sensing networks (WSNs) have also shown great promise because of their ability 

to process sensor data locally at each wireless node. Local data processing is especially 

advantageous when confronted with the huge amounts of data commonly associated with 



 159

dense networks of sensors (such as those envisioned to be created using low-cost wireless 

technology). As such, different architectures have been developed for embedded data 

processing using wireless sensors. Early work in this area focused primarily on serial 

implementations of engineering algorithms, which allow a WSN to process sensor data 

locally, thereby minimizing the amount of information needing to be transmitted to a 

central data repository. These centralized embedded data processing methods are 

relatively power efficient when compared to the transfer of raw time history data to a 

central location, but do not share sensor data between wireless nodes, preventing these 

architectures from autonomously determining system-wide properties. 

This dissertation focuses on the development of a set of distributed computing 

architectures for processing sensor data within a network of wireless sensors. By focusing 

on the ad-hoc capabilities of a WSN (characterized by autonomously created and self-

healing communication links between sensors), several novel agent-based computational 

architectures for distributed in-network data processing are presented and evaluated in the 

context of structural health monitoring (SHM). These architectures allow dense wireless 

monitoring systems to collect, store, and autonomously process large amounts of sensor 

data. Data processing in-network eliminates some common monitoring problems such as 

power consumption (for battery operated nodes), and data glut. Each successive 

architecture developed herein moves farther away from the current reliance on a 

centralized architecture for in-network computing and towards an agent-based paradigm 

where network computing demands can be handled autonomously (and Pareto-optimally) 

without the need for human interaction.  
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In Chapter 2, a set of distributed computing techniques are developed for 

automated in-network estimation of modal parameters (modal frequencies using the peak 

picking approach, damping ratios using the random decrement method, and mode shapes 

using the frequency domain decomposition algorithm) given a set of wirelessly collected 

sensor data. These decentralized algorithms, which treat each wireless sensor as an equal-

capability processor within a larger parallel computing system, represent the first fully 

parallel computing architectures applied to the wireless sensing paradigm. This set of 

distributed techniques is evaluated by deploying a network of wireless sensors on both 

the main balcony of a large theatre located in Detroit, Michigan and on a pedestrian 

bridge located in Ann Arbor, Michigan. In each case, the network of deployed sensors is 

shown to be capable of automatically and accurately estimating modal properties of a real 

world structure. While these distributed methodologies demonstrate the first fully parallel 

data processing architecture implemented within a WSN, and are shown to be capable of 

accurately estimating modal properties, they do not take full advantage of the distributed 

intelligence available within a network of wireless sensors. Specifically, because they 

rely on a predetermined network topology, these methods neglect the reliability-related 

advantages that come from autonomous network creation and self-healing, making them 

somewhat unreliable in the wake of sensor or communication failure. 

As such, Chapter 3 builds upon the advancements of Chapter 2 in order to create 

the first fully parallel, fully ad-hoc architecture for distributed data processing in a WSN 

that is also robust to sensor or communication failure. This architecture views a network 

of wireless sensors as a parallel computing system with an unknown and possibly 

changing number of processing nodes. As such, it is capable of processing sensor data in 
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parallel even in the midst of wireless nodes being added to or removed from the network. 

In this chapter, a specific distributed architecture is developed for the ad-hoc in-network 

updating of structural models using a wireless parallel simulated annealing (WPSA) 

stochastic optimization technique. This distributed method can be used to solve any of the 

combinatorial optimization problems that arise across engineering disciplines, and could 

potentially be used to detect the onset of structural damage or degradation. The WPSA 

technique is validated on a wireless sensor network by successfully updating a 6-DOF 

dynamic structural model with unknown mass, stiffness, and damping properties. 

The parallel algorithms for in-network data processing presented in Chapter 2 and 

Chapter 3 represent a significant step towards the automation of complex data processing 

tasks within agent-based WSNs. However, one of the key challenges associated with in-

network data processing still needing to be overcome is that within the wireless 

environment, many system resources (such as battery power, data storage capacity, MPU 

time, wireless bandwidth, etc.) required to perform complex computational tasks are 

available only in a limited manner. Especially in networks where multiple computational 

tasks may need to be executed simultaneously, it is important to devise an autonomous, 

optimal method of distributing and consuming these scarce system resources throughout 

the network. In Chapter 4, the ad-hoc distributed data processing architecture developed 

in Chapter 3 is expanded to include resource optimization capabilities through the 

application of market-based techniques. Specifically, utility functions are developed for 

wireless nodes designated as both “buyers” and “sellers”, allowing for an optimal utility-

based assignment of sensing nodes in a given wireless network to a set of multiple 

computational tasks so as to minimize the consumption of limited network resources such 
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as battery power, CPU time, and wireless bandwidth. Using the n-Queens problem as a 

basis for validation, it is shown that the use of market principles to assign computational 

resources to multiple, simultaneously processed computational tasks allows for 

computational optimization in the wake of competing objectives such as power 

consumption, memory usage, and time to completion. 

Lastly, in Chapter 5, the market-based resource allocation architecture developed 

in Chapter 4 is applied to the distributed modal identification techniques of Chapter 2. 

Specifically, a Market-Based Frequency Domain Decomposition (MBFDD) method is 

created in order allow for the autonomous formation of computational FDD topologies 

and to improve the accuracy of the distributed frequency domain decomposition mode 

shape estimates. This approach represents the first truly agent-based, truly ad-hoc 

approach to modal estimation using networks of wireless sensors. Using a simple 

cantilever beam as a testbed, the agent-based MBFDD technique is shown to be capable 

of autonomously forming computational topologies that optimize mode shape estimates 

(relative to a centralized FDD approach) while adaptively shifting, in real time, to 

changing computational objectives within the network (i.e., mode shape accuracy, 

computational time, memory requirements, communication reliability, etc.). 

 

6.2  Future Trends 

 The agent-based computational architectures presented in this dissertation 

represent a significant step towards the deployment of wireless monitoring systems that 

are capable of autonomously determining system properties and associating system 

properties with an analytical model. These capabilities can empower a sensor network to 
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validate structural design assumptions, calibrate analytical models, and possibly detect 

the onset of damage within a structural system. However, before truly autonomous 

wireless monitoring systems can be effectively deployed on a wide variety of structures, 

several additional advances must be made in the field of agent-based WSN computation.  

 From the system identification standpoint, it is widely agreed upon that no one 

method for modal estimation can be effectively applied in all cases. While the 

decentralized peak picking, random decrement, and frequency domain decomposition 

techniques developed in this dissertation have been shown to be effective at estimating 

modal frequencies, damping ratios, and mode shapes (respectively) in several different 

physical structures, each has its own limitations and cannot be applied in every 

application space and with every type of loading scenario. As such, it is important to 

build a toolbox of interchangeable algorithms that are truly parallel, and can be deployed 

in an agent-based architecture similar to the ones seen in Chapter 2 and Chapter 5. 

Methods such as the Eigensystem Realization Algorithm (ERA) (Juang and Pappa 1985) 

and the Natural Excitation Technique (NExT) (James, et al. 1992), for example, have 

both been applied to distributed wireless systems (Nagayama and Spencer Jr. 2007), but 

are not developed from a completely agent-based perspective. Once a complete toolbox 

of system identification tools is developed, an agent-based methodology must be created 

that can intelligently decipher modal estimates generated from multiple identification 

methods. The market-based architecture presented in Chapter 4 and Chapter 5 is one 

possible framework in which this problem may be addressed. 

From the model updating perspective, it is clear that high-fidelity finite element 

models are necessary in order to associate experimentally identified global properties 



 164

with extremely localized structural information. The distributed simulated annealing 

architecture developed in Chapter 3 was a first step towards implementing model 

updating techniques within an agent-based network of wireless sensors, but it can be 

clearly seen that the simplistic analytical representations that this method is capable of 

analyzing in-network must be supplemented with more sophisticated structural models. 

One way in which the method developed in Chapter 3 could be extended for online 

model validation or low-level damage detection is by introducing some sort of “change 

threshold”, or a measure of change in the properties of the simplistic analytical 

representation that may warrant additional investigation using a more sophisticated 

model. Because many wireless monitoring systems, when deployed in practice, are 

connected to the internet for data storage or data access purposes, an internet-based grid 

of high performance computers, running high fidelity finite element models, could be 

leveraged to investigate possible signs of damage as detected by the wireless network. 

Lastly, from the resource allocation standpoint, it is clear that the ability to 

autonomously optimize scarce network resources across multiple computational tasks 

(Chapter 4) or throughout one particular task (Chapter 5) is an incredibly valuable 

contribution to the field of distributed data processing in WSNs. However, one of the 

drawbacks of the agent-based methods presented in both Chapter 4 and Chapter 5 is that 

each of these methodologies is reliant on the wireless network having some level of a 

priori knowledge about the task (or tasks) that it will be charged with completing. In 

Chapter 4, each computational task that the market-based resource allocation algorithm is 

tasked with assigning processors to must first be analyzed in simulation with respect to its 

computational and communication requirements. In Chapter 5, the advantages of creating 
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various FDD cluster sizes are dependent somewhat on sensor placement and on an a 

priori analytical model of the monitored structure. In both of these cases, it would be nice 

if new computational tasks (or, for that matter, new structures) could be exposed to the 

wireless network without the need for any additional knowledge to be infused into the 

wireless system. One area of research that could be applied in order to achieve this type 

of objective is that of machine learning. By applying reinforcement learning techniques 

to repeating allocation tasks (i.e., computational task assignment and/or FDD topology 

creation), optimal allocation methodologies could be learned (and re-learned) over time 

as the resource allocation techniques are repeatedly applied. As such, new computational 

objectives or new monitored structures could be introduced to a given SHM system 

without the need for extensive a priori data processing or even reprogramming of the 

wireless sensing network. 
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