THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

A UNIFIED METHOD FOR EVALUATING
REAL-TIME COMPUTER CONTROLLERS:
A CASE STUDY

K.G. Shin, C.M. Krishna
and
Y.H. Lee

CRL-TR-23-83

JUNE 1983

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

IThis research has been supported in part by NASA Grant No. NAG 1-296. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of the authors and do not necessarily reflect
the views of the funding agency.

A UNIFIED METHOD FOR EVALUATING REAL-TIMVE
COMPUTER CONTROLLERS: A CASE STUDY'

K.G. Shin, Senior Member, IEEE, C. M. Krishna, Student Member, IEEE,
and Y.H. Lee, Student Member, |EEE

Computing Research Laboratory
Department of Electrical and Computer Engineering
The University of Michigan
Ann Arbor, Michigan 48109

ABSTRACT

A real-time control system consists of a synergistic pair, that is, a controlied
process and a controller computer. We have defined new performance measures
for real-time controller computers on the basis of the nature of this synergistic pair.

In this report we present a case study of a typical critical controlled process in
the context of new performance measures that express the performance of both
controlled processes and real-time controllers (taken as a unit) on the basis of a sin-
gle varlable: controller response time. Controller response time is a function of
current system state, system failure rate, electrical and/or magnetic interference,
etc., and is therefore a random variable. Control overhead is expressed as a mono-
tonically non-decreasing function of the response time and the system suffers
catastrophic fallure, or dynamic failure, if the response time for a control task
exceeds the corresponding system hard deadline, if any. A rigorous probabilistic
approach is used to estimate the performance measures.

The controlled process chosen for study is an aircraft in the final stages of des-
cent, just prior to landing. Control constraints are particularly severe during this
period, and great care must be taken in the design of controliers that handie this pro-
cess. First, the performance measures for the controller are presented. Secondly,
control algorithms for solving the landing problem are discussed and finally the impact
of our performance measures on the problem is analyzed, showing that the perfor-
mance measures and the associated estimation method have great potential use for
designing and/or evaluating real-time controllers and controlled processes. Also, one

application for the design of controller computers, presented in detail, is checkpoint-
ing for enhanced reliability.

Index Term- Controlled process(es), controller computers, hard deadlines, response
time, performance measures, allowed state space, aircraft landing, checkpointing.

1This work has been supported ln part by NASA Grant No. NAG 1-296. Any oplnlons, findings, and con-
cluslions or recommendations expressed In thls report are those of the authors and do not necessarlly re-
flect the views of the funding agency.

1. INTRODUCTION

Any real-time system can be regarded as a composite of controlled subsystems
(henceforth called controlled processes) and controller subsystem(s). Tradition-
ally, the performance of real-time control computers has been analyzed separately
from that of the corresponding controlled processes. For example, the response delay
caused by the controller is neither studied rigorously nor reflected carefully into the
design of control algorithms for the controlled processes. The design of the con-
troller is frequently based on ad hoc requirements imposed by control designers.
While this ylelds acceptable results in the control of non-critical processes, such an
approach needs to be improved in the design of controllers for critical processes e.g.
aircraft. What is called for is a procedure for specifying and evaluating controller
performance, enabling systematic application and providing objective results that
lend themselves to formal validation. The use of computers as real-time controllers is
becoming increasingly attractive due to continuing advances in the development of
inexpensive, powerful microprocessors and memories. However, performance meas-
ures presently used to characterize real-time computer systems are adapted ver-
sions of those employed for more conventional computers. There is a considerable
mismatch between the requirements of real-time applications and what is provided by

these measures.

To solve this problem, several contortions of the conventional measures have
been proposed. Generally, these involve representing real-time computer performance
as a vector pcRP, made up of such traditional indices as (conventional) reliability,
throughput, survivability, availability, etc. However, it is impossible to compare two
performance vectors (and therefore the corresponding computer systems) without an
associated metric. One straightforward approach is to use a linear metric(i.e. inner
product) to map the vector into a scalar that is then claimed to represent the perfor-
mance of the system. For example, the mapping can be carried out by assigning

weights to the various components of the performance vector and adding them to

2

produce the scalar. That Is, If the weight vector Is w’ = (w,, ... ,wy), then the

mapping Is £ :R™ >R with f (p)=w'p.

This process of ascribing weights is largely subjective and is therefore inaccu-
rate to begin with. Even If the weight ascription were completely objective, serious
practical difficulties would remain. For example, since the components of the perfor-
mance vector are mutually dependent (sometimes in a very complex manner), the
weights (that are supposed to define the sensitivity of the scalar to the respective

vector components) must be modified by (often very complex) correction factors to

account for this coupling.2 Furthermore, relating the resulting scalar to "real-world"

performance parameters (such as operating cost, etc.) is difficult.

The performance measures we introduced in [1] are designed to get around
these difficulties by expressing the performance objectively in terms of the
response time of the computer-controller. From the point of view of the controlled
process, the computer controlling it is a black box whose behavior is exemplified by
its response time and rellability. It is well known that controller delay has a detrimen-
tal effaect on process behavior, our measures take the form of a quantification of this.
The performance measures are considered in Section 2 in some detail prior to the

presentation of an idealized case-study of their application.

The case-study is that of a real-time computer in charge of an aircraft in its
final phase of flight, just prior to touchdown. There are stringent control constraints
that must be met. These consist of limits on the speed of touchdown (both horizontal
and vertical), the angle of attack, a, and the pitch angle, ¥. For a definition of these
angles, see Figure 1. These constraints are variously intended to safeguard against
running out of runway, undercarriage collapse, stalling, and landing either on the air-
craft nose or tall. Insofar as this is a control problem with severe constraints, the

2 This Is because the welghts are supposed to represent the total derivatives of the mapped scalar to
thelr respective components. However, slnce the components of P are not orthogonal, this Is not true for
the unmoditied weights: they represent the partlal derivatives which are not equal In this case to the
respective total derivatives.

problem is typical of many other critical applications, such as the control of nuclear
reactors, the generation and distribution of electrical power, life-support systems,
etc. Since our objective here is to illustrate the use of our performance measures and

not to solve a control problem, the aircraft system is somewhat idealized in this

report.

Figure 2 shows the block diagram of a typical control system. The inputs to the
controller are from sensors that provide data about the controlled process, and from
the environment. This is typically fed to the computer-controller at regular intervals.

Data rates are usually low: generally fewer than 20 words a second for each sensor.

Central to the operation of the system is the trigger generator. In most systems,
this is physically part of the controller itself, but we separate them here for purposes
of clarity. It is the function of the trigger generator to initiate execution of a con-

troller job (defined later). Triggers can be classed into three categories.

(1) Time-generated trigger: These are generated at regular intervals, and lead to
the corresponding controller job being initiated at regular intervals. In control

theoretic terms, these are open-loop triggers.

(2) State-generated trigger: These are closed-loop triggers, generated whenever
the system is in a particular set of states. For practicality, it might be neces-
sary to space these triggers by more than a specified minimum duration. If time
Is to be regarded as an implicit state variable, the time-generated trigger is a
speclal case of the state-generated trigger. One can also have combinations of

the two.

(38) Operator-generated Ltrigger: The operator can generally over-ride the

automatic systems, generating and cancelling triggers at will.

The output of the controller is fed to the actuators and/or the display panel(s).

Since the actuators are mechanical devices and the displays are meant as a human

interface, the data rates here are usually very low. Indeed, as we have pointed out
elsewhere [13], a computer control system exhibits a fundamental dichotomy, with
the /0 being carried out at rather low rates and the computations having to be car-

ried out at very high rates owing to real-time constraints on control.

The controller In our case-study Is a real-time computer. It executes pre-
defined control jobs. There is a certain number of control jobs in any control system

that are executed repeatedly.

A control system executes "missions.” These are periods of operation between
successlive periods of maintenance. In the case of aircraft, a mission is usually a sin-
gle flight. The operating interval can sometimes be divided down into consecutive
sections that can be distinguished from each other. These sections are called

phases. For example, Meyer et. al [6] define the following four distinct phases in the

mission lifetime of a civilian aircraft:

(a) Takeoff/cruise until VHF Omnirange (VOR)/Distance Measuring Equipment (DME)

out of range.
(b) Cruise until VOR/DME in range again.
(c) Cruise until landing is to be initiated.

(d) Landing.

The phase to be considered here is landing, it takes about 20 seconds. The

controller job that we shall treat is the control of the aircraft elevator deflection dur-

ing Ianding.3

The specific system employed is assumed to be organized as shown in Figure 3.

Sensors report on the four key parameters: altitude, descent rate, pitch angle, and

3 The output of the controller is assumed to be fed Into a peripheral processor that Is dedicated to
controlling the actuator -- In thls case the elevator.

pitch angle rate every 60 milli-seconds.®* We have a time-generated trigger, with a
time period of 60 milli-seconds. Every 60 milli-seconds, the controller computes the

optimal setting for the elevator, which is the only actuator used in the landing

phase.'5 The execution time for the computation is nominally 20 milli-seconds,
although this can vary In practice due to failures. Since the aircraft is a dynamic

system, the effects of controller delay are considerable -- as we shall see in this

report.

Since the process being controlled is critical (i.e. in which some failures can lead
to catastrophic consequences), variations of controller delay and other abnormal
behavior by the controller must be explicitly considered. For simplicity, we do not
allow job pipelining in the controller; in other words a controller job must be completed

or abandoned before its successor can be initiated. The following controller abnor-

malities can occur:
(i) The controller orders an incorrect output to the actuator.

(ii) The controller takes substantially more than 20 milli-seconds (the nominal exe-

cution time) but less than the inter-trigger interval of 60 milli-seconds to com-

plete executing.

(lii) The controller takes more than 60 milli-seconds to complete executing. In such
a case, the abnormal job is abandoned and the new one initiated. We say that

a control trigger is "missed” when this happens.

An analysis of controller performance during the landing phase must take each of the

above abnormalities into account.

4 The sensors and actuators are assumed to have thelr own dedicated processors for 1/0 purposes.
When we speak of ''controller delay,’' we also /Include the delay In these processors. Also, the perlod of 60
mlill-seconds Is arbitrary, and the cholce of this period does not alter the method developed here.

6 There are other actuators used aboard the alrcraft for purposes of stablillty, horl zontal speed control,
etc. We do not however consider them here, concentrating exclusively on the control of the elevator.

This report Is organized as follows. In Section 2 we present the performance
measures that will be used, and Section 3 contains a description of the controlled
system. In Section 4, we derive the measures associated with the controlled process
(the aircraft), and in Section 6§ we consider one example of their application for the

design of real-time controllers. The report concludes with Section 6.
2, PERFORMANCE MEASURES

2.1. Review of the Performance Measures

For completeness, we review briefly in this section the performance measures to

be used, which were introduced by us in[1].

The measures are all based on a single attribute: computer controller response

time distribution. A real-time computer controller in general exhibits stochastic

behavior.8 Real-time computer controllers repeatedly execute predefined control jobs

which are initiated either by environmental stimuli or internally.

Central to our performance measures are the concepts of dynamic failure and
allowed or admissible state-space. Every critical process must operate within a

state-space circumscribed by given constraints. This is the allowed state-space.

Leaving this state-space constitutes dynamic failure.” In the example we treat
here, the states are the altitude, the vertical speed, the pitch angle, and the pitch
angle rate. Each of these has a constraint. For example, the aircraft must not touch

down with too great a downward velocity or the undercarriage will collapse.

The performance of the controlled process naturally depends on the speed of
the controller. If the controller takes longer than a certain duration to formulate the
control, dynamic failure becomes possible. This duration is the hard deadline.

6 rhis Is partially because fallures are assumed to occur randomiy over the operating Interval. The
fallure law for the components of the computer is assumed to be known. Furthermore, execution of control
tasks /s stochastlc due to the blocking at shared resources, conditional branches In task code, etc.

7 Dynamic fallure Is so termed since It Is a fallure that can occur as a result of the controller not
responding fast enough to the environment. It expresses the fact that slowness of the controiier can be a
cause of catastrophic failure.

We define a cost function C,(¢) associated with controller response time £ for
controller job o. The cost function takes the following form:

gal€) if 0<é<Ty4,

1
Ca(f) = if S>Tda M

0 otherwise
where g ,(+) is a suitable continuous non-decreasing function of { and 74, is the hard

deadline associated with the job o. Clearly, since the environment influences the
quallty of system performance the cost function is implicitly a function of the system
state. Also, if 74, is a finite quantity in some region of the state-space, the job is
critical in that region. The determination of the hard deadline is treated in detail in

Sections 2.2 and 2.3.

For controller response times less than the hard deadline, the cost function in
(1) above is continuous, monotonically non-decreasing, and therefore always
bounded for finite response time. For consistency, it is assumed that the costs

accrue as the execution proceeds.

The functions (called the finite cost functions) g, can be obtained using the
performance indices of the controlled process. These performance Indices are well-
known to control theory and express the consumed energy, fuel, time, or some other
physical parameter associated with the trajectory of the system as it travels from its
initial to its final state. See, for example, [2,3], for details. The cost of running the

controlled process over, say, an interval of time [to,tf], is usually expressed by:

ty
0 = [E[f,(x(t)u(t).t)|y(r).tg=r=t]dt (2)
to

where E[+|s] represents conditional expectation, f, is the instantaneous index of
performance at time {, and x(t)<R", u(t)eRl and y(t)cR™ represent the state,
input, and measurement vectors respectively. A good representation for g,(£) is

given by:

Va(€)—Va(0) for O< ¢ < T4,
0 otherwise

g9a(¢) = (3)

where ¥,(7n) = expected contribution of u., to @ if response time of that particular
execution of job a=7, and u;, = control input subvector associated with job . Note
that the input vector u for job o consists of the control input subvector, u,,, as well

as the environment (random) input subvector, u,,.

A version Is an instance of the execution of a task. Versions are numbered in
sequence of Initiation: successive versions of task i being denoted by V;;, ..., V,,.

The response time associated with a version V,; is denoted by RESP (i;).

Let g,(t) represent the number of versions executed for task i over the interval

[0,t), and 7 the number of distinct tasks. Then define

S(t) = élmt)

wit) gi(t) if O<t<ty
- . 3 (t) = -
where P‘ jglh‘(RESP(zJ)) and h‘L() gi(tdi) if t>tdt

For an illustration, see Figure 4. Clearly, h; is the cost function (; "hard-limited" at

gi(tg). Ty Is essentlally the finite operating cost associated with task .

Remark: It might legitimately be argued that to associate a contribution to finite cost after the
hard deadline has been missed is inconsistent with the notion of hard deadlines being "absolute” in
the sense that missing a hard deadline, by definition, has catastrophic consequences (e.g., an air-
plane crash). By this argument, h; (f)=0 for all £ >{ 4. However, such an assignment would, while
pacifying the purists, lead to unpleasant anomalies, not the least of which is that a very poor sys-
temn which almost always misses deadlines would exhibit a smaller finite operating cost than a
counterpart that almost always fulfills them.

Also, assume that the computer system is modelled as a Markov process. This is

clearly possible. The number of states® depends on the extent to which the system
Is capable of graceful degradation. Let B be the set of states where the probability
of fallure is unity. These states represent the states when the extent of

87he word "state" used here has a different connotation from the “state" discussed In the precedlng
sect/ions. The |atter has a control-theoretic meaning. On the cther hand, the state of controlier computers
usually means the number of functioning processors, buses, memorles, jobs, etc. However, both forms of
usage conform to the essentlal concept of "state,”" as a codl/fication of relevant system condition. For this
reason, the same word has been used for the two different purposes, following the usual practice. Its In-
ter pretation should be made from the context.

hardware/software collapse is so great that there is a zero probability of successful
execution of any task in finite time. Let L(t) denote the probability distribution of the

operating interval duration between two successive service stages.

Our performance measures are then:®

Probability of Dynamic Failure, pg,,: This is the probability that over the operating
interval, at least one hard deadline is missed for whatever reason. This probability
incorporates within it the probability of static failure, which is the probability that
so massive a hardware failure has occurred that the system utilization is greater than
unity. Static failure probability has erroneously been treated in most of the literature
as expressing the tofal probability of failure. This is most decidedly not the case in

real-time systems.

Mean Modified Cost, ¥ = fEiS(t)l system mever enters state set BjdL(t)
0
It can be shown that, for physical systems, this integral always exist since the life-

time is always finite with probability 1.

The performance measures can be used to rank rival computer systems and to
help design improvements to existing systems in the context of the control applica-
tion. Typically, the probability of dynamic failure is used as a pass/fail test for can-
didate controliers. This test can be very severe: for example, 107% is the specifica-
tion for fallure probability adopted by NASA for computer controllers of the next
decade handling a 10~hour civilian flight. The mean cost is then employed to rank

controllers that have passed the dynamic failure criterion. For fuller details, see [1].

Note that all parameters assoclated with these performance measures can
either be definitively estimated or objectively measured. Also, the measures specifi-
cally incorporate the controlled process into a determination of the controller's

9 There are other performance measures developed in [1], but not considered here. For our purposes,
the measures |/sted here are sufficlent.

10

capabllities. This is, as far as we know, a novel approach which ensures that the per-
formance measures are not generally, but instead specifically, indicative of the con-

troller performance in a given application. For this reason, these measures are intrin-

sically more reliable than others in use.

2.2, Hard Deadlines

Roughly speaking, hard deadlines are deadlines that must be met if catastrophic
failure is to be avoided by a critical process. In other words, it is the deadline that, if
met by the controller in (correctly) formulating its response, ensures that the system
remains in its allowed state-space. Traditionally, it has been assumed by computer
engineers that the hard deadlines for each critical controller job are somehow
"given'. Unfortunately, this presupposes a precise definition of the hard deadline

and a means for obtalning it. Neither seems to exist in the literature.

At first glance, It might seem that the hard deadlines can be obtained relatively
easily from an analysis based on the state equations of the controlled process. This
is the case when individual controller actions are decoupled from each other and the
process is simple. For an example in which this is the case, see [1]. However, when
there is a considerable coupling between individual controller jobs, i.e., when two or
more controller jobs mutually affect each other, or when no closed-form solutions are
available for the process state equations, obtaining a hard deadline for each can be
difficult. For example, in the aircraft landing problem, the controller has over the
twenty seconds or so that it takes to complete the landing, to compute the elevator
deflection a number of times (in our example about 330 times). The constraints are
on the final values (except for the angle of attack), i.e., as long as the aircraft
touches down on the runway without over- or under-shqot, with an acceptable velo-
city and at a proper pitch angle, dynamic failure has not occurred. The problem here is
that it is not just a single controller action that determines whether catastrophic

faillure will occur or not; it is the cumulative effect of, in this case, 330 or so distinct

11

controller actions. How then Is one to allocate deadlines to the individual actions?

It is clear that we need a more carefully defined framework to handle these
problems in a feasible manner. For this it is convenient to represent the controlled
process by a state-space model. Let the state of the system at time £ be denoted
by x(t). State transitions are characterized by a mapping ¢ :TxTxXxU » Xwhere T C

R represents the time region, XCR® the state space, and UCR™ the input space; that

is,

x(t1) = ¢(t1, to, x(to), w) (4)

where ucU represents the controls (inputs) applied to the process in the interval
(to.t,). Let QcU be the admissible input space (i.e. the range of inputs that it is pos-
sible to apply), and X, CX the allowed state-space. Then, the hard deadline associ-
ated with controlier job o triggered at £, when the system is in state x(t,) is given

by

Taa(X(tg)) = 'gg sup {1]@(to+T, to, X(to), u) € X4} (5)

Thus, for every point in the state space, we have for each critical controller job a

corresponding hard deadline.'®

It should be noted that the calculation in (5) is performed over the entire admis-
sible state and input space and is thus difficult to achieve. One might wish to per-
form the cailculation over only a subset of the admissible input or state space. To
allow for this, the notion of conditional hard deadlines can be employed. Let us

assume that the sets wc() and 0CX, are specified, and also that x{t)<o.

10 Notice In this context that It Is not possible for the hard deadllne as defined above to be negative
unless this is the first Instance durlng the current mission that the controller job Is belng executed. This is
because If this were the case, fallure would already have occurred on the previous execution of the con-
troller job by definition. Also, the deadline on the first Instance of execution of the control function cannot
be neg ative, since that would mean that the controller-process system had been Improperly designed.

12

The conditional hard deadline’’ of job «, denoted by Tda|w,o IS defined as

Taalsa(X{ta)) = inf sup {7 |p(to+T, to, X(to), u) € o} (5a)

For the purposes of the case-study in this report, however, we shall restrict our-

selves to the unconditioned hard deadlines.

As it stands, the expression for the hard deadline (and for the conditional dead-
lines) is not easy to obtain for the entire state-space. In fact, it is almost impossible
to obtain in closed form in all but the simpler control systems. We shall later see how

to obtain a good approximate expression of 74,.

Also, if the environment is stochastic in character and not deterministic, the hard
deadline Is a random variable. Assuming that the environment is stochastically sta-

tionary leads to the existence of the distribution function of the hard deadline.

2.3. Allowed State-Space and Its Decomposition

As we said above, it is difficult to determine the hard deadline and the finite
cost function as a function of the state over the entire state space. To take our
present example of an aircraft, the solution of the state equations is not obtainable
in closed form when controller delay is considered. To obtain the functional depen-
dence of the hard deadlines or the finite cost function of each controller job on the
current state vector is therefore impossible to do analytically, and prohibitively

expensive to do numerically for a large number of sample states.

To get around this problem, we divide the allowed state-space down into sub-

spaces. Subspaces are aggregates of states in which the system exhibits roughly

the same behavior.'? In each subspace, each critical controller job has a unique hard

11 Yniike the unconditioned hard deadline, It Is possible for the conditional hard deadiine to be nega-
tlve since no specltic relationship Is required between the subsets (w and @.

12£yen If there do not exist clear boundaries for these subspaces, one can always force the admissi-

ble state space to be divided Into subspaces so that a sufficlent safety margin can be provided. This Is a
designer's cholce for approximation.

13

deadline.

Remarks: In some subspaces, a job described in general as "critical” might not be critical in the
wense that even if the execution delay associated with it is infinity, catastrophic failure does not
occur. That is, the associated hard deadline may be infinity for a particular subspace. What does
usually happen in these circumstances is that the system moves into a new subspace — or at the
least toward the subspace boundary — in which the dangers of catastrophic failure are greater. In
this subspace, the requirements on controller delay are more stringent, and there might well be a
hard deadline, representing a critical task. Thus a "critical” job need not be truly critical in every
subspace, it only has to map into a critical task — defined in the sequel —in at least one subspace.
Also, subspaces are job-related, i.e. the same allowed state space can divide into a different set of
subspaces for each control job.

For convenience, a controller '"task" is defined as follows.
Definition: A controller task, often abbreviated to "task', is defined as a controller

job operating within a designated subspace of the allowed state space.

Let S; for i=0,1,...,5s be disjoint subspaces of X; with X, = C) S; and let J denote a
controller job. Then, we need the projection:(J, X4) ~» ((T, ;;; (T, Sy),(Ts, Sg))
where T; is the controller task generated by executing J in 5;. With each controller
task, we may now define a hard deadline without the coupling problem mentioned
above. We denote It by tJ for critical task T; (for convenience, however, the super-
script J will be omitted in the sequel). We will see that a critical job can possibly
map Into a non-critical task for one or more allowed subspace; it only needs to map

into a critical task in at least one such subspace to be considered critical.

A. Allowed State~-Space

The admissible state-space is the set of states that the system must not leave
if catastrophic fallure is not to occur. Consider the two sets of states X} and X3

defined as follows.

(i) Xj is the set of states that the system must reside in if catastrophic failure is
not to occur immediately. For example, we may define in the aircraft landing
problem, a situation in which the aircraft flies upside down as unacceptable to
the passengers and as constituting fallure. Notice that terminal constraints are

not taken into consideration here unless the task in question is executed just

14

prior to mission termination.

(i) Xj is the set of acceptable states given the terminal constraints, i.e., it is the
set of states from which, given the constraints on the control, it becomes possi-

ble to satisfy the terminal constraints.

Note that leaving X} means that no matter how good our subsequent control, failure

has occurred.!'® On the other hand, changing the control available can affect the set

Xj. The admissible state space is then defined as X, = X} n X3.

Obtaining state-space X§ can be difficult in practice. The curse of dimensional-
ity ensures that even systems with four or five state variables make unacceptable
demands on computation resources for the accurate determination of the allowed
state-space. However, while it can be very difficult to obtain the entire allowed
state-space, it is somewhat easier to obtain a reasonably large subset, XjcX,. By
defining this subset as the actual allowed state-space, (i.e., by artificially restricting
the range of allowed states), we make a conservative estimate for the allowed
state-space. Note that by making a conservative approximation, we err on the side
of safety. Also, the information we need about X, may be determined to as much pre-

cision as we are willing to invest in computing resources.

In what follows, to avoid needless pedantry, we shall refer to the artificially res-

tricted allowed state-space, X}, simply as the "allowed state-space."

B. On Obtaining the Subspaces

While the methods used to isolate the subspaces for each particular contro!
application will probably be different, the basic approach is much the same in all
cases. Let N(x) represent a neighborhood of xcX,, CX(¢) and t4;(x) denote respec-

tively the cost function and the hard deadline associated with T; where £ represents

13 Strictly speaking, of course, there can be no subsequent contro| since by leaving Xj the system has
falled catastrophically before the next control could be Implemented.

156

the controller response time, and d: XxX +» R is a metric function. Then the sub-

spaces Sg, §,, . . . , 5 of X, can be obtained by the following steps.

S§1. Choose a set of ! points, p,€X,, i=1,2,... /.

§2. Construct a neighborhood around each of these points, N(p;) for p;, such that

(1) Al N(p,)'s are disjoint and X, |)N(p;).
i
(i) |tg(x) — tg(pi)| < K, for all xeN(p;) and for some K,>0.

Gil) d(CX(£), CH(8) < Kof ;(£) for all xeN(p;) and for some

monotonically non-decreasing positive function f,(¢) and K, > 0.

$3. if d(CX,) < Kaf'(¢) for i=1,2,....(1-1), some K > 0, and monotonically
non-decreasing positive function f'(¢) then merge N(p;) and N(p;,;) forming

subspaces S = (S, S, ..., 5;).

S4. if S satisfles all the requirements of the application jobs then successful

decomposition else choose a different set of points and go to S2.

The job of dividing X, into S= (S;, S;, ..., S;) is sometimes made easy by the
existence of natural cleavages in the state-space, when the latter is viewed as an
influence on system behavior. In most cases, however, such conveniences do not
exist, and artificial means must be found. The problem then becomes one of finding

discrete subdivisions of a continuum.

The method we employ is to quantize the state continuum in much the same way
as analog signals are quantized into digital ones. Intervals of hard deadlines and
expected operating cost (i.e. the mean of the cost function conditioned on the con-
troller delay time, and using the distribution of the latter) are defined. Then, points
are allocated to subspaces corresponding to these intervals. To take a concrete

example, consider a state-space XCR" that is to be subdivided on the basis of the

16

hard deadiines. The first step Is to define a quantization for the hard deadlines. Let
this be A. Then, define subspace S; as containing all states in which the hard dead-
line lies in the interval [(i —1)A, iA). Alternatively, one might define a sequence of
numbers A;, Ay, ... such that the subspaces were defined by intervals with the A's as
their end-points. This would correspond to quantizing with variable step sizes. The
subspace in which the job under conslderation maps Into a non-critical task is a spe-

clal case and is denoted by S,

Subspaces can also be defined based on a quantization of the expected
operating cost or on both the operating cost and the hard deadlines. We provide an

example of subdivision by hard deadlines in Section 4.

The size of each subspace will depend on the process state equations, the
environment, and how much computing effort it is judged to be worth spending on
obtaining the subspaces. Naturally, all other things being equal, the smaller a sub-

space the greater the accuracy of the inherent approximation.”

In the rest of the report, to illustrate the derivation of the performance meas-
ures, we carry out their evaluation when the controlled process is an aircraft in the
phase of landing. Also, an optimal checkpointing is considered for the design of a reli-

able controller.

3. The CONTROLLED PROCESS

The controlled process is an aircraft, in the phase of landing. The model and the

optimal control solution used are due to Ellert and Merriam [4].
The aircraft dynamics are characterized by the equations:
z,(t) = b2, () +bpza(t) +b 1525(t)+ m (L ,£) (6a)
za(t) = z,(t) (6b)

14 rhe error that ensues as a result of quantl zation of the state space can be estimated I n the same way
that quanti zation error Is estimated |n slgnal processing theory.

17

z3(t) = bypTo(t)+bgazs(t) (6c)

z,(t) = z4(t) (6d)
where z, Is the pitch angle, z, the pitch angle rate, x 3 the altitude rate, and z, the

altitude. m, denotes the elevator deflection, which is the sole control employed. The

constants b;; and c,, are given in Table 1. Recall that { denotes controller response

time.

The phase of landing takes about 20 seconds. Initially, the aircraft is at an alti-
tude of 100 feet, travelling at a horizontal speed of 256 feet/sec. This latter velo-
city is assumed to be held constant over the entire landing interval. The rate of
ascent at the beginning of this phase is -20 feet/sec. The pitch angle is ideally to
be held constant at 2°. Also, the motion of the elevator is restricted by mechanical
stops. It is constrained to be between -36° and 156°. For linear operation, the eleva-
tor may not operate against the elevator stops for nonzero periods of time during this

phase. Saturation effects are not considered. Also not considered are wind gusts and

other random environmental effects.

The constraints are as foliows: The pitch angle must lie between 0° and 10° to
avoid landing on the nose-wheel or on the tall, and the angle of attack (see Figure 1)
must be held to less than 1B° to avoid stalling. The vertical speed with which the air-
craft touches down must be less than around 2 feet/sec so that the undercarriage

can withstand the force of landing.

The desired altitude trajectory is given by

100e~t/% 0<t<i5 (7)
ha(t) =1 09—¢ 15<t=<20

while the desired rate of ascent is

: —20e7t/% 0<t<15
ha(t) = { (®)

-1 15<t <20

The desired pitch angle is 2° and the desired pitch angle rate is 0° per sec.

18

The performance Index (for the aircraft) chosen by Ellert and Merriam and suit-
ably adapted here to take account of the nonzero controller response time ¢ is given

by

¢
s
0(¢) = [en(t.£)dt (8)
to
where t represents time, and [¢,, t,] is the interval under consideration, and where

em (£.6) = g (1) [ha(t) —24(£)]24 0, (£) g () =2 5(t) PP+ ot) Zoa () 24 (t) 2
+ ¢3(t) [z1g(t) -z, ()]2+ [m (£.6)]>

where the d-subscripts denote the desired (i.e. ideal) trajectory. To ensure that the

touch-down conditions are met, the weights ¢ must be impulse weighted. Thus we

define:
Pn(t) = pa(t) + @4, 6(20-t) | (10a)
5 (t) = ¢3(t) + ¢3,,6(20-t) (10b)
pa(t) = 502,:,(”5(20‘” (10c)
wa(t) = ¢a(t) (10d)

where the functions ¢ must be given suitable values, and § denotes the Dirac-delta
function. The values of the ¢ are given based on a study of the trajectory that

results. The chosen values are listed in Table 2.

The control law for the elevator deflection is given by:

m (€)= WP K, Ty[k1y(t —€)—k 1 (t —£)z,(t) K 12(t —€)z2(t —¢)
—k y5(t)z 3(t —€) —k 14(t —€)z4(t —£)]
where the aircraft parameters are given by: K; = —0.95 sec”!, T, = 2.5 sec,
s = 1 radian sec”! and the constants k are the feedback parameters derived (as
shown in [4]) by solving the Riccatian differential equations that result upon minimiz-

ing the process performance index. For these differential equations we refer the

reader to [4].

19

4, DERIVATION OF PERFORMANCE MEASURES

We consider here only one controller task: that of computing the elevator
deflection 80 as to follow the desired landing trajectory. The inputs for the controller

here are the sensed values of the four states.

We seek the following information. As the controller delay increases, how much
extra overhead is added to the performance index? Also, it is intuitively obvious that
too great a delay will lead to a violation of the terminal (landing) conditions, thus
resulting in a plane crash. This corresponds to dynamic failure, and we are naturally

interested in determining the range of controller delays that permit a safe landing.

Consider first a formal treatment of the problem. The control problem is of the

linear feedback form. The state equations can be expressed as:

x(t) = Ax(t) + Bu(t)
where the symbols have their traditional meanings. Define the feedback matrix by
Z(t). Then, clearly,

u(t) = E(t-¢)x(t -¢)
For a small controller delay (i.e., a small {), the above can be expanded in a Taylor
series and the terms of second order and higher discarded for a linear approximation.
By carrying out the obvious mathematical steps, we arrive at the equation:

x(t) = B(t,&)x(t) + B(¢)

as representing the behavior of the system (assuming the given initial conditions).

For further details, see Figure 5.

Glven a closed-form expression for the k,;(t) that appear in E(t,¢), we could
then proceed to study the characteristics of the system as a function of the matrix
E. However, in the absence of such closed formulations for the k;;, we must take

recourse to the less elegant medium of numerical solution.

The procedures we follow for obtaining the numerical solution are as follows.

First, the feedback values are computed by solving the feedback differential

20

equations that define the k;;. These are not affected by the magnitude of the con-
troller delay. Then, the state equations are solved as simultaneous differential equa-
tions. These are used to check that the terminal constraints have been satisfied, and
In the event that they are the performance functional is evaluated. This procedure
must be repeated for each new subspace. Since the environment is deterministic in
this case (no wind gusts or other random disturbances are permitted in the model(6)),

the hard deadline assoclated with each process subspace is a constant and not a

random varlable.

The trajectory followed by the aircraft when the delay is less than about 60
milli-seconds follows the optimal trajectory closely although the elevator deflections
required would be intuitively assumed to increase as the delay increases. Also, the
susceptibllity of the process to failure in the presence of incorrect or no input is

expected to rise with the introduction of random environmental effects.

The control that is required for various values of controller delay is shown in Fig-
ure 6. Due to the absence of any random effects, elevator deflections for all the
delays considered tend to the same value as the end of the landing phase (20
seconds) is approached, although much larger controls are needed initially. In the
presence of random effects, the divergence between controls needed in the low and
the high delay values of controller delay is even more marked. We present an exam-
ple of this in Figure 7. The random effect considered here is the elevator being stuck
at -35° for 60 milli-seconds 8 seconds into the landing phase due to a faulty con-
troller order. The controlled process is assumed In Figure 8 to be in the subspace in
which the landing job maps into a non-critical process (defined in the sequel as Sp).
The diagrams speak for themselves. We shall show later that this demand on control
is fully represented by the nature of the derived cost function. Also, above a cer-
tain threshold value for controller delay, we would expect the system to become
unstable. This is indeed the case in the present problem, although this point occurs

beyond a delay of 60 milli-seconds for all points in the allowed state space (obtained

21

in the next section), which cannot by definition occur here.

4.1, Allowed State Space

In this subsection, we derive the allowed state space of the aircraft system. To
do so, note that In Ellert and Merriam's model, X} does not exist. The reason is that
the state equations do not take into account the angle of attack. In the idealized
model we are considering, it Is implicitly assumed that the constraint on the angle of

attack is always honored, so that the only constraints to be considered are the ter-

minal constraints.

The terminal constraints have been given earlier but are repeated here for con-
venience. The touchdown speed must be less than 2 feet/sec in the vertical direc-
tion, and the pitch angle at touchdown must lie between 0° and 10°. To avoid
overshooting the runway, touchdown must occur at between 4864 and 6120 feet in
the horizontal direction from the moment the landing phase begins. The horizontal
velocity Is assumed to be kept constant throughout the landing phase at 256

feet/sec.16 Thus, touchdown should occur between 19 and 20 seconds after the

descent phase begins.16 The only control is the elevator deflection which must be

kept between —-35° and 15°.

The set of allowad states is generally found by solving the differential equa-
tions for the system backwards from the point of landing. However, this can be com-
putationally expensive, so we follow a cheaper alternative. The initial conditions of
the process as it enters the landing stage are known. Also known is that the con-
troller Is triggered every 60 milli-seconds. It is assumed that the computations take a
minimum of 20 milli-seconds to complete. Using these data, it becomes possible to

determine that portion of the allowed state-space that the controlled process is ever

16 We do not consider here how that Is to be done; In practice this will constitute a second controller
Job. We do not treat this here.

16 rhis makes time an "Impliclt" state variable.

22

likely to enter to a good approximation. In Figure 8, we plot the range of allowed
state values that we obtain. As indeed it should be, the allowed state-space is a

function of time.

4.2, Designation of Subspaces

We subdivide the allowed state-space found above using the method described
in Section 2. The criterion used is the hard deadline, since the finite cost function
(derived in the next subsection) is found not to vary greatly within the whole of the
admissible state-space. The value of A chosen is 60 milli-seconds. In other words,

we wish to conslder only the case where a trigger is "missed."”

The allowed state-space in Figure 8 is subdivided into two subspaces, 5; and
S;. These correspond to the deadline intervals [60, 120) and [120, =). §; is the
non-critical region corresponding to the [120. =) interval. Here, even if the controller
exhibits any of the abnormalities considered in the Introduction, the airplane will not
crash. In other words, if the controllers orders an incorrect output, exhibits an abnor-
mal execution delay or simply provides no output at all before the following trigger,
the process will still survive at the end of the current inter-trigger interval if, at the

beginning of that interval, it was in 5.

On the other hand, if the process is in S; at the beginning of a inter-trigger
interval, it may safely endure a delay in controller response. However, if the controller
behaves abnormally in either providing no output at all for the current trigger cycle or

in ordering an incorrect output, there is a positive probability of a air crash.

Notice that we explicitly consider only missing a single trigger, not the case
when two or more triggers might be missed in sequence. This is because dynamic
failure is treated here as a function of the state at the moment of triggering. If two
successive triggers are missed, for example, we have to consider two distinct

states, namely the states the process is in at the moment of those respective

23

triggers. To speak of deadline intervals beyond 120 milli-seconds is therefore mean-
ingless in this case since the triggers occur once every 80 milli-seconds. This is why

the second deadline interval considered is [120, =), not [120,180).

The hard deadline may conservatively be assumed to be 60 milli-seconds in S;.

By definition it is Infinity in S,.

4.3. Finite Cost Functions

As indicated in the preceding section, the finite cost does not vary greatly

within the entire allowed state-space. It is therefore sufficient to find a single cost

function for S, or S,.

The determination of the cost function is carried out as a direct application of

Its definition. That is, the process differential equations are solved with varying

values of £, The value of { cannot be greater than the inter-trigger interval of 60

milli-seconds since, by assumption, no job pipelining is allowed and the controller ter-

minates any execution in progress upon receiving a trigger. The finite cost function
Is defined as'’

g (¢) = ¥(¢) — ¥(0) (12)

This function is found by computation to be approximately the same over the entire

allowed state-space as defined in Figure 8.

In Figure 9, the finite cost function is plotted. The costs are in arbitrary units.
Bear In mind that these measures are the result of an idealized model. We have, for
example, ignored the effects of wind gusts and other random effects of the environ-
ment. When these are taken into account, the demands on controller speed get even

greater, l.e. the costs increase.

17 Recall that \I'(£) represents the contribution to the performance functional by a version that takes f

unlts of time to compute. Since there /s only one controller job under conslderation, the subscript on ¥ has
been suppressed.

24

The reader should compare the nature of the cost function with the plots show-
Ing elevator deflection in Figure 8, and notice the correlation between the marginal
increase In cost with increased execution delay and the marginal increase in control

needed, also as a function of the execution delay.

5. APPLICATION EXAMPLE FOR CONTROLLER DESIGN: CHECKPOINTING

With stringent requirements on the reliability of any computer controlling a
highly critical system, it becomes necessary to obtain mechanisms to identify and
correct controller errors. Two characteristics must be exhibited by any such mechan-
ism: a high probability that errors once existing are caught In time, and a fast means

for recovering from the error. In this section, we deal with the latter.

One common recovery method is the use of the recowvery block or recovery
region which establishes checkpoints and saves the current job states during normal
execution. When an error is detected, the system rolls back to the state saved at
the previous checkpoint and the affected task-version is resumed. Clearly, check-
points can enhance the reliability of execution and reduce the recovery overhead.
They can also, however, lead to increased controller overhead since the insertion of
checkpoints increases controller delay. It is therefore important to carefully check
during design if any overall benefits accrue from the installation of checkpoints, and
not to include them anyway through an ad-hoc design procedure. Chackpoints should
be regarded as useful supplementary devices to enhance reliability in certain cases,
not as a panacea for reliability problems. It is the purpose of this section to demon-
strate the use of the performance measures described above in a study of the
effectiveness of checkpointing. Specifically, we shall in this section consider (a)
whether checkpointing is indicated in our aircraft landing problem, and (b) if so, what

the optimal number of checkpoints is.

25

Several methods for analyzing the rolilback recovery system have been proposed
[8 - 12]. They in general compute the optimum inter-checkpoint Interval for minimum
total execution time. In [12], a complete expression for the characteristic function
of total execution time is given which takes into account imperfections in the check-
points, the occurrence of error during recovery, and multi-step rollback. However,
when mean time between fallure (MTBF) is many orders of magnitude larger than both
the nominal task execution time (¢) and the duration of the phase (tp), the model for
solving the probability distribution of the task execution time and the probability of

dynamic fallure with checkpoints can be simplified.

Let MTBF=10%* hours. This is a reasonable assumption given contemporary pro-
cessors ([7], page 161). Then In the landing phase, the ratio of ¢ to MTBF is of the
order of 10710, It is therefore an acceptable approximation to assume in computing

the executlon time that no further errors occur during error-recovery.

Let the occurrence of error be a Poisson process: with rate A=1/ MTEBF'. Let
t,, tg. t,, denote the time needed to set up roliback, restart, and checkpoint. Also,
we assume that the saved state may be contaminated with probability p, which
means the system can be recovered using rollback with probability p, =1-p;, and has
to restart with probability p,. Thus, we have the total execution time of one version,

§es

§e = £+ ntyy + g (13)

where n is the number of checkpoints inserted and ¢, Is the time overhead used for

recovery. t.. Is a random variable which depends on the probability of failure, p,,

and p,.

0 if no error occurs 14)
troc =1 Ly +ipou if error occurs and the version is recovered by rollbacﬁ(
ty +tstare if error occurs and the version restarts

where t.,; and £y, are the computation undone because of rollback and restart,

26

respectively. Let t,,, be the interval between checkpoints and equal to ¢/ (n +1).
The density function of £y and ty,. are given by frou(t) = Ae ™ /(1 — e) for
t€[0,timy] BN fopart (£) = Ae M/ (1 — e) for £ €[0,¢], respectively.

Let the density of total execution time solved from above equation be f,(t).

Then the mean execution cost and the probability of dynamic failure are given by

COST = fl }ff(tm,-(t)dt (15)
J=10
q uw
Dayn = 1'0—ﬁ(1-0—{fe(t)dt -odt) (16)
=1 t‘

where g; is the number of versions executed for T; during a phase, h;; the cost func-
tion for executing the j-th version of Tj, t§; the deadline associated with the j-th
version of T;, and pj is the probability of static failure for the j-th version of T; dur-
ing ¢ which can be regarded as the probability of resource exhaustion, unsuccessful

recovery, successlve fallures during recovery, etc.

Using the cost function and hard deadlines given in the above section, and
assuming that p,; is the probability of having an error during recovery, the improve-
ment in the probabllity of dynamic failure, pg,,, upon insertion of checkpoints are
shown In Table 3.'® The probability of dynamic failure does indeed decrease as more
checkpoints are inserted. Unfortunately, the mean execution cost increases in as
this is done. Through the cost functions it is possible to express the precise extent

of this cost increase, and decisions about tradeoffs can be made.

When the nominal execution time is 20 milli-seconds as assumed in the rest of
this report, all that checkpoints do is to increase the overhead, i.e. the mean finite
cost. No discernible drop exists in the probability of dynamic failure when check-
points are added. The marginal gain in reliability for any payment in finite operating
cost is therefore about zero. This was only to be expected since the nominal execu-
tion time is one-third that of the hard deadline and the probability of dynamic failure

18 Since the landing job Is noncrltical In SO, the issue of checkpolnting does not arlse there. All re-

a7

without checkpoints was vanishingly small.

However, as the nominal execution time increases (the hard deadtine being
assumed to be its S; value of 60 mili-seconds), the benefits of checkpointing
emerge. This is made clear through the fourth column in Table 3 where we present the
marginal tradeoff ratio between the benefits gained in the form of improved reliability
and the loss in the form of increased controller overhead. As is evident from this, for
20 milli-seconds nominal execution time, the optimal number of checkpoints is zero.
For 30 milli-seconds, there Is something to be gained in rellability by putting in one
checkpoint, for 40 milli-seconds, there Is a gain to be had on adding up to two check-
points although the marginal gain falls off sharply after the first. For a nominal execu-
tion time of 50 milli-seconds, the benefits continue rather steadily until four check-
points have been added. The fifth checkpoint provides some noticeable improvement
in reliability, although the marginal gain is distinctly smaller than for the first four. The
recommendations for design are now rather clear: use no checkpoints if the nominal
execution time is 20 milli-seconds, and use Table 3 to decide on the optimal number

of checkpoints for the other cases.

6. DISCUSSION

In this report, we have presented a case-study of the determination of perfor-

mance measures introduced in [1], and considered an important application in con-

troller design.

Central to our report is the idea that it is possible to objectively quantify the
performance of a controller. Owing to this objectivity, there are many possible exten-
sions to this work. One extension, presently under study, is the issue of distributed
control, and the cost of transmitting global status information to all the local controli-

ers. For guaranteed reliability, the local controllers require a complete knowledge of

marks In this section are therefore concerned with the characteristics of the process In Sl-

28

the global state of the system. This, however, has a cost in terms of the extra
response times exhibited by the overall controller. If the local controllers have less
than complete Information, their actions cannot be optimal and might even be
incorrect. However, the response time of the controller could be significantly reduced,
with errors occurring rarely enough to make that an improvement. Readers will recog-
nize this formulation as an example of the application of Markov decision theory with

costly information with the cost functions for the controller jobs now providing the

cost of status information.

Other applications include the quasi-optimal allocation and reallocation of control
Jobs to different processors in a multiprocessor controller, the dynamic control of
queues Iin controllers, and the objective ranking of rival computer systems as con-

trollers of any specific process.

ACKNOWLEDGMENT

The authors are indebted to Rick Butler and Milton Holt at NASA Langely

Research Center for their technical and financial assistance.

REFERENCES

[1] C. M. Krishna and K. G. Shin, "Performance Measures for Multiprocessor Con-
trollers,”” Performance '83: Ninth Intl Symp. Comp. Perf., Meas., and
Euval., pp. 229-260.

[2] D.E.Kirk, Optimal Control Theory, Prentice Hall, Englewood Cliffs, NJ, 1970.

[3] A. P. Sage, Optimum Systems Control, Prentice Hall, Englewood Cliffs, NJ,
1970.

[4] F. J. Ellert and C. W. Merriam, ""Synthesis of Feedback Controls Using Optimiza-

tion Theory -- An Example,” JEEE Trans. Auto. Control, Vol. AC-8, No. 4 April
1963, pp. 89-103.

29

[6]

[6]

[7]

(8]

[e]

[10]

[11]

[12]

[13]

L. T. Wu, "Models for Evaluating The Performability of Degradable Computing
Systems,” Computing Kesearch Laboratory Keport CRL-TR-7-82, The Univer-
sity of Michigan, Ann Arbor, June 1982.

J. F. Meyer, et. al, "Performability Evaluation of the SIFT Computer," [EEE
Trans. Comput., Vol. C-29, No. 6, pp. 501 - 609, June 1980.

J. H. Wensley, et. al, "Design Study of Software-implemented Fault-Tolerance
Computer,”" NASA Contractor Report 3011, 1982.

K. M. Chandy, J. C. Browne, C. W. Dissly and W. R. Uhrig, ""Analytic Models for
Rollback and Recovery Strategies in Data Base Systems,” JEEFE Trans. Softw.
Engg., Vol. SE-1, No. 1, March 19876, pp. 100-110.

K. M. Chandy and C. V. Ramamoorthy, "Rollback and Recovery Strategies for
Computer Programs,” [EEE Trans. Comput., Vol. C-21, No. 6, June 1972, pp.
546-666.

E. Gelembe and D. Derochette, ''Performance of Roliback Recovery Systems

under Intermittent Fallures,” Comm. of the ACH, Vol. 21, No. 6, June 1978, pp.
493-499.

J. W. Young, "A First Order Approximation to the Optimum Checkpoint Interval,"”
Comm. of the ACM, Vol. 17, No. 8, Sept. 1874, pp. 630-531.

Y.-H. Lee and K. G. Shin, "Design and Evaluation of a Fault-Tolerant Multiproces-
sor Using Hardware Recovery Blocks,” Computing Research Laboralory
Report CRL-TR-6-82, The University of Michigan, Ann Arbor, August 1982.

K. G. Shin and C. M. Krishna, "A Distributed Microprocessor System for Control-
ling and Managing Military Aircraft,"” Proc. Distributed Dala Acquisition, Com-
puting and Conlrol Symp., pp. 156-166, Miami, FL, December 1980.

30

(Ip] woxz) soTbue 3jeadiTe 3JO UOTITUTISQ °T SanbTJ

X

wo3sSAsS TOIJUOD dBWTII-Tesa 1eoTdi3 ¥ ‘gz oanbta

MO0

HOLVIHEJO | AVIdSIA
3
. AATIOULNOO
SHIVAILSH SIVIS
A A A A
ryY x|
HOIVEANID :
HHOORIL |- - = = = =—/— \n\
ade

SYOSNES

>} SYOLYNIOV

A'Al - s ool

SSJo0ud
AT TIOALNOD

LNIANOHIANA

OT3jeWSOYDS WS3SAS TOIJUOD 3JFJRIDATY. ° € 8anbrtg

 AVIdSIa | roma .
. . DNLISVOavoud =
c%w . DNILLVIIOS » STVIIHJRIAd
SOIAVNAQ NOISHIANOD V/d~ | : DNRALING » 0/1 AONY
SUOLVLOV SHOSSAO0Ud YATIOULNGD SNOISYIANOD G/V= | NOILVOINANAGD
Bl Avidasia SUO0SSAD0Ud 071 NNOUD
1IvaoHIV X HOLVNIOV ® “JOSNES ‘SUOSNAS

COST

A
execution
with £{#0
hy(&4)
I
Viz,
execution
with ¢€=0
) >
T time
trigger trigger trigger trigger

€;=RESP(i;) forj=1,23,4.

Figure 4. Illustration of Cost Functions.

1 Q12 @3
E(t.¢)=|0 bg bgs
0 o 1

where

ayy = [1=cfk g ()] (b =k (t)c i —c B Efpy(t)+2b yky (8)+hera(t)—c fik f (£)3]

aje = [1—c Rk (t)¢] ! [bro—chik a(t)—c 2y £8b ik y2(t)+ b gk 1y (E) +hege(t)—c fik §i (E)1]
a5 = [1-c Bk, (£)€]72 [byg—c fik a(t) +b gk (£)+kos(t) —c Fiky (£)k ya(t)]]

@1q = [1=c Bk (£) €] [=k1a(t)=b 11k 14(t)¢~k 2a(t)€+ Fik 1y (2 Ve 14(t)€]

When the execution delay is £, the approximate state equations are

c 8 [a(t)+E8pg(t)8 () +b 11k (E) +ko(t)~—c Bk (£)k 1 (2)}]
0

0
0

x(t) = E(t.£)x(t) +

Figure 5. The Approximate State Equations

-0.00

"

DEFLECTION (RADY

-0.42

-0.63

g

0.42

DEFLECTION (RAD)

-0.42 -0.21

-0.63

0.2}

-0.21

0.21

-0.00

4.00 8.00 12.00
TINE (SEC)

(a) §=0

16.00

20.00

0.00 4.00 6.00 12.00
TINE (SEC)

16.00

(c§ ¢ = 50 msec.

20,00

"DEFLECTION (RAD)

DEFLECTION (RRD)

-0.2t

0.42

0.21

~0.21 -0.00

-0.42

-0.63

16.00

o
P=
a
et §
8

8.00 12,00
TINE (SEC)

(b) ¢ = 40 msec.

0.42

0.21

-0.00

-0.42

-0.63

0.00 4.00 8.00 16.00

12.00
TINE (SEC)

(d) ¢ = 60 msec.

Figure 8. Elevator Deflection.

20.00

0.42
4

0.2
0.21

-0.00

-0.00

DEFLECTION (RAO)
DEFLECTION (RRD)

-0.21
-0.21

-0.42
-0.42

-0.63
-0.63

4.00 8.00

g

0.00 4.00 6,00 12,00 16.00 20.00) 12.00 16.00
TINE (SEC : TINE (SEC)

0.42

"0.42

0.2t
0.21

-0.00
-0.00

DEFLECTION LRAD)
DEFLECTION (RRD)

-0.21

-0.21

-0.42
-0.42

(@) ¢=0 (b) ¢ = 40 msec.

20.00

i

-0.63

-0.63

4.00 8.00 18,00 20.00 0.00 4.00 8.00

16.00

12.00 12.00
TINE (SEC) TINE (SEC) -

(c) ¢ =50 rns'ec. (d) ¢ = 60 msec.

Figure 7. Elevator Deflection with Abnormality.

20,00

4.00

(14 30nlIiW

o -
; m N 0 W
8 N
, N
.//
S AN
128 N y
w N \
5 N
13 N
o N
N
, -
~N
w // -
{3)
NN 7
- ”
N 3 \\\ A
wEE sz ez 008t o0El wd / AL 4
(14 30niIlB \ Ib!vl\\ \
~~ - | “\\\
- \ &7
N~ /
S~ S5 /
= T~a “O‘“‘ \\ T
‘Oﬂtﬂ\t\ -~ I/l -
“‘\‘\\\ I’/I-I.l\\\
S5
S
o Mno\
o O
=0
% 2 ‘.‘A
Ag "‘ \
* O
E SR \
SN \
"‘%’ ;
00°001 00°08 00°0S 00°0v 00°0c 00

16.00 20.00

12.00

TIME (SEC)

8.00

0,00

Figure 8(a). Allowed State Space: Altitude.

10.50
/7
/

. TIME (SEC)
’

9.50

Desired
Descent Rate

So
S,

ZZE
AN

S T

20.00

16.00

00°Se

(03s/13 31YY IN32S30

00702 00°S 00701

0,00

12.00

TIME (SEC)

8.00

4.00

Figure 8(b). Allowed State Space: Descent Rate.

0.03 0.05

0.02

PITCH ANGLE

Desired
Pitch Angle

4.00 8.00 2,00 16.00 20.00
TIME (SEC)

Figure 8(c). Allowed State Space: Pitch Angle.

PITCH ANGLE RATE

-0.06

-0.02 -0.00 0.02 0.04 0.06

-0.04

- - - -~ -

Desired Pitch Angle Rate,

—t
T

400 8.0 12.00 16.00 20.00
TIME (SEC)

Figure 8(d). Allowed State Space: Pitch Angle Rate.

4.00

3.20

COST 2 40

1.60

0.80

Q -

Sp.00 10.00 20,00 30.00 40.00 S0.00 60.00
DELRY (MSEC)

Figure 9. Landing Job Cost Function.

Feedback Term

Value
Ez

by, -0.600
by, -0.780
b s 0.003
bao 102.4
baa -0.4
C1 -2.374

Table 1. Feedback Values

Weighting Factor Value
ea(t) 99.0
P2, (t) 0.0

es(t) (0<t <15) 0.0

@a(t) (15<t=<20) 0.0001
§03'gl 1.000

P4 0.00005
Pat, 0.001

Table 2. Weighting Factors

n MEAN COST Payn Tradeaffx 107
0 0.12848 0.3086E-15 -
1 0.12909 0.3088E-15 0.0
2 0.12971 0.3086E-15 0.0
3 0.13033 0.3088E-15 0.0
4 0.13095 0.3086E-15 0.0
5 0.13157 0.3086E-15 0.0
(a). Nominal execution time 20 msec.
n MEAN COST Payn Tradeoffx 107
0 0.268158 0.37037E-07 -
1 0.26431 0.37037E-08 1R1.5
2 0.28709 0.37037E-08 0.0
3 0.26991 0.37037E-08 0.0
4 0.27272 0.37037E-08 0.0
5 0.27567 0.37037E-08 0.0
(b). Nominal execution time 30 msec.
n MEAN COST Pdyn Tradeoffx 107
0 0.55352 0.30555E-06 -
1 0.55472 0.43055E-07 2177.0
2 0.55586 0.30555E-07 109.8
3 0.565694 0.30555E-07 0.0
4 . 0.556795 0.30555E-07 0.0
5 0.55891 0.30555E-07 0.0

(¢). Nominal execution time 40 msec.

Table 3. Checkpoints

n MEAN COST Payn Tradeoffx 107
0 0.89694 0.46686E-06 I

1 0.90848 0.35686E-06 95.8

2 0.92025 0.26186E-06 80.6

3 0.93231 0.16668E-06 78.7

4 0.94466 0.71666E-07 76.9

5 0.95730 0.48686E-07 19.8

(d). Nominal execution time 50 msec.

P, =0.9, MTBF=10* hours, t,,=0.1 msec. t,=2.0 msec. t,=2.0 msec.

Tradeoff ratio for n checkpoints (n=1)

_ COSTwith n chechpoints - COST with n-1 checkpoints

Payn With n-1 checkpoints - pyyn with n checkpoints

Table 3. (Cont.) Checkpoints

