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ABSTRACT

Although backward error recovery with recovery biocks(RB's) has received con-
slderable attention from many researchers, no attempt has been made to structure
Its implementation alternatives and then to evaluate/analyze their effectiveness. In
this report we conslder three different methods of implementing RB's. These are the
asynchronous, synchronous, and the pseudo recovery point implementations.

Asynchronous RB's are based on the concept of maximum autonomy in each of
concurrent processes. Consequently, establishment of RB's in a process is made
independently of others and unbounded rollback becomes a serious problem.

In order to completely avoid unbounded rollback, it is necessary to synchronize
the establishment of recovery blocks in all cooperating processes. Process auton-
omy is sacrificed and processes are forced to wait for the commitment to establish~
Ing a recovery line, leading to inefficiency in time utilization.

As a compromise between asynchronous and synchronous RB's, we propose to
insert pseudo recovery points so that unbounded rollback may be avoided while main-
taining process autonomy.

We have developed probabllistic models for analyzing these three methods
under standard assumptions in computer performance analysis, i.e. exponential dis-
tributions for related random varlables. With these models we have estimated (i) the
interval between two successive recovery lines for asynchronous RB's, (ii) mean loss
in computation power for the synchronized method, and (iii) additional overhead and
rollback distance in case PRP's are used.
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ABSTRACT

Although backward error recovery with recovery blocks(RB's) has received con-
siderable attention from many researchers, no attempt has been made to structure
its implementation alternatives and then to evaluate/analyze their effectiveness. In
this report we consider three different methods of implementing RB's. These are the
asynchronous, synchronous, and the pseudo recovery point implementations.

Asynchronous RB's are based on the concept of maximum autonomy in each of
concurrent processes. Consequently, establishment of RB's in a process is made
independently of others and unbounded rollback becomes a serious problem.

In order to completely avoid unbounded rollback, it is necessary to synchronize
the establishment of recovery blocks in all cooperating processes. Process auton-
omy Is sacrificed and processes are forced to wait for the commitment to establish-
ing a recovery line, leading to inefficiency in time utilization.

As a compromise between asynchronous and synchronous RB's, we propose to
Insert pseudo recovery points so that unbounded roliback may be avoided while main-
taining process autonomy.

We have developed probabllistic models for analyzing these three methods
under standard assumptions in computer performance analysis, l.e. exponential dis-
tributions for related random variables. With these models we have estimated (i) the
interval between two successive recovery lines for asynchronous RB's, (ii) mean loss
in computation power for the synchronized method, and (lii) additional overhead and
roliback distance in case PRP's are used.
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No. NAG 1-296. Any oplnions, tindings, and conclusions or recommendations in this publication are those
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1. INTRODUCTION

Recent advances In VLS1 and communication network technologies have made
distributed processing feasible. While distributed processing can theoretically be
exploited to provide computation speedup, cost-effectiveness and tolerance of
component failure, several problems remain to be solved before its full potential can
be realized in practice. In this report, we consider one such problem: that of imple-

menting backward error recovery for concurrent processes with recovery blocks.

The best known technique of backward error recovery, the recovery block
(RB), was proposed by Horning [1] and Randell [2]. It is a sequential program struc-
ture that consists of an acceptance test, a recovery point(RP), and alternative
algorithms for a given process. A process saves its state at its recovery point and
then enters a recovery region. At the end of a recovery block, the acceptance test
is executed to check correctness of the computation results. In case an error is
detected during the normal execution or the computation results fail to pass the
acceptance test, the process rolls back to an old state saved at the previous RP

and executes one of the other alternatives.

Unfortunately, however, for cooperating concurrent processes the rollback of a
process may cause other processes to roll back(this phenomenon is called rollbac_k
propagation ) because of process interactions and imperfect checking of global
correctness. Moreover, rollback may propagate to further RP's since recovery points
of Individual processes may not provide a globally consistent state for all processes
involved. This rollback propagation continues until it reaches a recovery line at
which a globally consistent state does exist. In the worst case, an avalanche of
rollback propagation (called the domino effect) can push the processes back to
thelr beginnings, thus resulting in loss of the entire computation done prior to the

error occurrence.
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A detailed description of the domino effect can be found in [3]. For conveni-
ence let us consider Figure 1 to visualize roliback propagation. Process P, begins
to roll back because of unsuccessful acceptance test AT). This rollback pro-
pagates to the other two processes P, and P3. Eventually, the whole system has
to restart from recovery line RL, and the computation done between RL, and AT}
has to be discarded. The interval between the restart point and the time point at
which an error'ls detected or the acceptance test fails, called the rollback dis-

tance, can be used to represent the computation loss in rollback recovery.

The domino effect Is the major obstacle in implementing the recovery block
scheme for concurrent processes. The designer Is able to predict neither the time of
the occurrence of process interactions nor that of the appearance of recovery lines.
Nonetheless, it is not desirable to randomly place recovery points and acceptance
tests without considering process characteristics. Otherwise, it is possible to have
a disaster such as unbounded rollback propagations, a large rollback distance, and a
great number of largely useless recovery points occupying large amounts of memory
space, etc. Furthermore, decision on rollback‘ propagation and determination of
recovery lines will become more complex though they can be made in a centralized

[4,6] or decentralized manner [8,7,8].

Several refinements have been proposed to overcome the drawbacks in this
recovéry block scheme. One approach is to put concurrent processes into a con-
trolled scope, either to synchronize the occurrence of acceptance tests or to direct
process interactions. For the former, Randell [2] has suggested the conversation
scheme which requests every cooperating concurrent process to Ieaye its accep-
tance test at the same moment (called test line). He has also proposed a language
structure in an abstract form for the conversation scheme. Other mechanizations of
the conversation scheme on the basis of the same concept but with more flexibility
have been devised by Kim [9]. Synchronized rollback recovery schemes for tran-

sactions using a two-phase commitment protocol or transaction ordering are also

3
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studled in [10,11,12]. Russell has proposed that information be retained for
directed interactions from producers to consumers so that rollback propagation can
be blocked [13,14]. Ancther approach is to save additional states based on the
occurrence of interactions; for example, the branch recovery point [16] and the

system defined checkpoint (SDCP) [16].

In this report we propose to employ pseudo recovery points? (PRP's) to
alleviate the rollback propagation problem by allowing a process to restart at a PRP
In case the process is forced to roll back by others as a result of rollback propaga-
tion. Therefore, we can classify these refinements into two categories, synchron-
1zed recovery blocks and pseudo recovery points, providing a contrast with the

third category called asynchronous recovery blocks,

To implement the rollback recovery schemes, we have to consider various
trade-offs between these three categories and the characteristics of concurrent
processes. A satisfactory compromise should include an acceptable delay in process
completion due to roilbacks, the preservation of autonomy for each process, and
programmer transparency. Therefore, optimal solutions may be a combination of
thessa three categories. A quantitative analysis is necessary to justify the solutions.
For example, it is necessary to determine the mean amount of computation undone in
case processes roll back, the optimal interval between two successive synchroni-
zations, the mean size of memory space required to save states, etc. However,

because the program behavior is unknown and execution proceeds stochastically,

accurate modelling is difficuit.

In this report, employing standard assumptions in computer performance
analysis, we have developed a model to quantitatively describe the characteristics
of rollback recovery schemes as well as their effectiveness. In the following sec-

2 e call it a pseudo recovery polnt(PRP) since there I's no acceptance test before the saving of pro-

cess state at a PRP. The states recorded at PRP's may have been contaminated and thus can not be used to
recover afalled process.
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tlon, several assumptions are discussed and then a model for asynchronous
recovery blocks is introduced. Using this model, we employ simulation to present the
probabllity distrlbution of the interval between two successive recovery lines and
the mean number of states recorded during that interval. In Sections 3 and 4, the
synchronization method and the implantation of pseudo recovery points are

evaluated respectively. The report concludes with Section 6.

2, EVALUATION OF ASYNCHRONOUS RECOVERY BLOCKS

Let us consider the history diagram in Figure 1 to illustrate the activities of
cooperating concurrent processes P;, i=1,2,...n. Process P, establishes its jth
recaovery point RP} without synchronizing with other processes. Interprocess com-
munications are rer;resented by arrowed horizontal lines. Let set Ac{l,..n}, le. a
subset of concurrent processes. Then one may find a combination of RP} for all i €A,
which forms a recovery line for set A, denoted as RL;1 for the rth recovery line. For
simplicity superscripts in representing recovery lines will be omitted in the sequel as
long as that does not result in ambiguity. The interval between two successive
recovery lines KL, and KL, in process P; is a random variable and denoted by Xt
Since a recovery line provides globally consistent states to all members of process
set A, it is reasonable to assume that Xﬁ is stochastically identical for all i €A.
Thus, X, is used to represent the interval between the rth and (r +1)th recovery

2.,1. Modeling Assumptions

We make the following assumptions in our subsequent analyses.

1. Autonomous Processes: Cooperative autonomy is regarded as the most impor-
tant
requirement " in distributed processing. Each process should be executed

according to its own program and environment, aimost as if there were no
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processes to interfere with. Thus, a process is executing independently of
others as long as there is no conflict with others in accessing shared
vresources. Since synchronization is not enforced in this category of recovery
blocks (i.e. asynchronous recovery blocks), processes will transmit messages or

establish their recovery points independently of other processes.

2. Perfect Acceptance Test: Acceptance tests should detect all errors within the

local process during the execution of recovery blocks and thus ensure the
corractness of local execution. It is in general difficult to guarantee the com-
plete correctness, but at least the computation results that have passed the
acceptance test should be "acceptable"[3]. The local acceptance test may or
may not detect external errors or erroneous messages because the local pro-

cess is not aware of the global system and other processes.

3. Probability Distribution of mteractions: Usually, process behavior is modeled

as an ordered sequence which in turn is specified by the program and depen-
dent on the execution condition. Even if the processing sequence is given, the
Interval between two successive interactions Is variable due to conditi_onal
branches. Locking and waiting at shared resources make it even more uncer-
tain. Nontheless, for both tractability and simplicity we have adopted here con-
gtant referaence rates in the multiprocessor and exponentially distributed inter-
vals between two successive message transmissions in the computer network.
The Interval for two successive interactions between P; and P; is thus
assumed to be exponentlally distributed with mean 1/A;; and A\;=A; for all

1,j=1,2,...n and i #j.

Consistent Communications: Let two messages m, and m, be sent from P;
to P;. Consistent communications should satisfy : (i) every message sent from

P; to P; will be received eventually by P;, and (ii) mgand m, are received by
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P; In the same order as that they are sent. Notice that in some packet-
switched computer networks, messages are allowed to be received by the des-
tinatlon out of order. However, the order can be kept easily, for example, by

time-stamping messages at the time of transmission.

6. Distribution of Kecovery Points: Because of process independence and the
uncertainty of execution conditions, the appearances of recovery points are
random and difficult to model. To avoid complexity, establishment of recovery
points In a process is assumed to be an independent Poisson process with

parameter yu; for process F;.

2.2, A Model for Asynchronous Recovery Blocks

Since Individual recovery points by themselves may not be sufficlent in roll- _
back recovery due to the possibility of unbounded rollback propagations, we con-
sider In this report only the formation of recovery lines for asynchronous recovery
blocks instead of separate individual recovery points. The requirements of a
recovery line for processes F;, for i=1,2,...n, can be stated as follows:

1. Each recovery line has to include one recovery point RP}

for every process F;.

2. Let the moment of establishment of the jth recovery point
In process P; be t[RF}] and let t}* be the moment of the gth Interaction
from P, to P,. For every pair (RP}, RP}.) in a recovery line,
there does not exist an integer k such that t{*c[t[RP}], t[RP}]]
if t[RP}] < t[RPJ] (otherwise, t¥c[t[RP}], t[RP}]]). Thisimplies
that no communication from P; to P; (and vice versa) can be

sandwiched between ¢ [RP}] and t[RF}].

The basic idea underlying the model is to trace the occurrence of both

recovery points and interactions. Based on the assumptions in Section 2.1, random

7
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variable X, can be modeled by a continuous-time Markov process starting from a
recovery line (X/,) and ending at the next recovery line (KL,,,). For a set of

processes, (),-{F; |icA] where A={1,2,...,n}, two types of states are defined:

(a). End states S, and S, ,,: transitions start from S, where all
processes have formed the rth recovery line, and end at S,

upon establishment of the (r +1)th recovery line.

(b). Intermediate states S = (z,, z,, . .., Z,), where z,=0
If the previous action of P; was an interaction, and

z;=1 If it was establishment of a recovery point.

Occurrences of interactions and recovery points in a process make the system
go through these states. Note that both S, and S;,, are equivalent to state

(1,1,...,1). We can establish the following transition rules:

R1. The system goes to state (z,,...2;_;,1.%Z{4,, ... Zg)
from state (z,,..,x;_;,0,2;,,...,%, ) With rate u; upon establishment

of a recovery point in P;.

R2. The system leaves state (z,,..,.z; _1,1,Zi41....Zj -1, 1.Zj41,..Z, ) @nd
enters state (z,,..,2,-1,0.%;41,..%; -1,0,Z;4y,...%, ) with rate \y;

If there is an interaction between P; and P;.

R3. The system arrives at state (z,,..,2;-1,0,%41,...Z5 )
from state (z,,..,z;_;.1.%;4,....%, ) With transition

rate ) A\; where B;={j | z;=0, j#i and j€A]j.
j€B,

R4. The system can transfer directly from state 5. to state S, ,,

n
with transition rate Y’ ;.
k=1
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Under these transition rules a Markov model is developed for three processes
P,, Py and Pj; and presented in Fig. 2. The single-arrow lines are unidirectional
transitions. The double-arrow lines are bidirectional transitions in which left-hand
slde parameters represent leftward transition rates and right-hand side parameters

rightward transition rates. The number of states for a set of n processes is 2™ +1.

When u;=u;=u and \; =\ for all i, j € A, the model can be simplified since all
intermediate  states S=(z,z, ...,z,) containing exactly u« 1's in
(z,,z5 . ...2;) can be replaced by a single state 3,,. A simplified model is

obtained under the following transition rules and presented in Fig. 3.

R1'. Foru = 0,1,... n—1, the system will move to state §u+1
from state §, with transition rate (n —u )y

when a new recovery point is formed.

R2'. For all u > 2, the system is able to leave state S,

for state 5, _, with rate ﬂ"—%ﬂ)&

R3'. For all u > 1, there is a transition from state Su to

state 5, _; with rate u (n —u )\

R4'. The system can transfer directly from the entry state S,

to the terminal state S,,, with transition rate n u.

2.3. The Analysis of Asynchronous Recovery Blocks

With the model developed above, we can characterize the behavior of asyn-
chronous recovery blocks in terms of the degree of interprocess communications
and the distribution of recovery points. With the exponentially distributed interpro-
cess communications and recovery points, X, for all » becomes stochastically
identical. Let X denote a random variable representing the interval between two

successive recovery lines, I, the number of states saved in process P; during
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interval X. The probability distribution of X and the mean value of .; are derived

below.

A. The distribution of X

Let the state space ¥={0,1,2,...,m} where m =2" be the set of states of the
foregoing continuous-time Markov process with the following convention for

numbering states:

(a). S,--> state 0,

n .
(b). an intermediate state (x,z5 ..., x,) --> state (} z;2*"! +1), and
i=1
(c). Sp4q --> state m.

Then, the Chapman-Kolmogorov equation becomes

—&Zn(t) = mw(t)H

where H is the (m xm) transition matrix [h(u,v)] in which the (u,v) element is
the transition rate from state u to state v, and n(¢) Is a vector whose kth element
Is the probability that the system is in state k at time £. The initial condition is
w(0)=[1,0,0...,0]. The interval between two successive recovery lines, X, is equal
to the time needed for transition from state 0 to state m. Therefore, the density

function of X, namely f.(t), is given by

d

f,(t)‘—"&-t'ﬂ'm(t)

B. The mean value of /;

Since we are only concerned with the number of recovery points established
by process P, during interval X, a discrete Markov chain is used. To compute the
mean value of L,, a new Markov chain, denoted by Yy, is constructed based on the

previous model with the following two steps.

10
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(a). Convert the previous model to a discrete model:

(b).

The new chalin, Y;, has the same states as the previous Markov process.

n n n
Let G=) ) Ay + ) u be the normalization factor. The transition
=1 j=1jmi k=1

probability from state u« to state v In Y; is equal to: for

u,v =01,..m, pluw) = h(u ) if

U #£vV, and
G

pluw)=1- ¥ pluw)

n
v=l,

VRErU

Arrivals at a state S, = (z,,z,,...,%;,...,%,) where z;=1 can be grouped
grouped into two classes. One is formed as a result of the occurrences of
RP's in P; and the other is formed as a result of interprocess communica-
tions and establishments of RP's in processes other than F;. Accordingly,
the state S,=(z,.z;.....%;  Z,) With z;=1 can be split into two states
S,' and S,", representing the two classes, respectively. Both states
have the same departure processes as that of S,. However, all arrivals
at state S, due to the occurrence of recovery points in F; enter state
Sy' whereas a‘ll other transitions are made to S,,'. Hence the number of

RP's assoclated with state S, ' Is represented by that of arrivals at S,,".

Figure 4 shows the conversion and the split of state S, = (1,0,0) of the Mar-

kov chaln for the three concurrent processes in Figure 2. With the new discrete

model, Y, we can calculate the the mean number of visits to state S, ', denoted as

NSu'n and the mean value of L; using the following relationship:

E(l)= ¥ ENs,)

S, '€¥y,

where ¥y, is the state space of ¥;.

Suppose process F; detects an error or fails the acceptance test at one of

its recovery points RP!, where j=1,2,....L;. The rollback of P; may propagate to k

processes In the process set, ), = {P,| LcA] where A={12,...n]. Let D}‘ be the

11
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rollback distance associated with the k processes and EP} forj=1.2,..,L;. Then, X
reprasents the supremum of these random variables, i.e., DEt . In Figure 5, the mean
values of X are plotted as a function of n. It shows that X increases drastically
when there is an Increase in the number of processes involved in the rollback
recovery. The density function of X, f_(t), is plotted in Figure 6. For all the three
cases In Fig. 8, there is a sharp pulse near ¢ =0, which is due to direct transitions

between S, and S,,, and a longer transition time needed once the system enters

intermediate states.

Let p = (f‘_‘ i .)\ﬁ)/ ( i M) Which represents the relative ratio between
the density o;—:r:t:;o:zocess kc;c)lmmunications and recovery point establishments.
With a fixed value of p and varying values of u's and A's for three processes, we
have performed computer simulation and the results are tabulated in Table 1. The
minima of X and I; occur when the distribution of recovery points among these
processes is uniformly balanced (i.e., u;=u;=us). The distribution of interprocess
communications does play an important role in determining the probability of rollback

propagation but has little effect on X and ; once the set of processes involved in

roliback recovery is determined.

3. SYNCHRONIZED RECOVERY BLOCKS

The simplest way of avoiding unbounded rollback propagations is to synchron-
Ize the establishment of recovery points during process execution. In this method,
interactions are inhibited between any pair of processes during their establishment
of recovery points. There are three conceivable strategies in deciding when a syn-
chronization request is to be issued: (1) at a constant interval; (2) when the time
elapsed since the previous recovery line exceeds a specified value; or (3) when the
number of states saved after the previous recovery line is larger than a prespeci-
fied number. The implementation of the first strategy is simple since the synchroni-

zation request is issued without any knowledge of the state of execution.

12
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Nevertheless, this strategy may become very inefficient since it is possible to make
synchronization requests immediately after the formation of recovery lines. For the
second and third strategies, rollback distance and the number of saved states are
prevented from becoming too large. However, in this case each process must be

aware of the occurrence of a recovery line whenever it is established.

Upon the receipt of a synchronization request, every process has to prepare
for establishing a recovery line and also has to wait for the commitment (for estab-
lishing a recovery line) from other processes before it executes an acceptance
test. Thus, all cooperating processes perform their acceptance tests at the same
Instant upon receiving the commitments from all other processes. Let FPij—ready,
for j=1,2,....n, be the flags in process F; to indicate commitments from Pj. The

steps for synchronization in each process P; are described as follows:
1. execute "its own normal process" until "acceptance test";
2. set Py —ready := ON and then broadcast P; —ready;

3. while not (all P;;—ready = ON) do
recelve messages;
if a message is P;; —ready then set F,;—ready := ON

else record the message

4. do ""acceptance test" and record process states.

Establishment of recovery lines upon synchronization requests is shown in Fig-
ure 7. Synchronization causes the computation power to be diminished because
processes have to wait for the commitment (as in step 3). Let y; be the interval
between the recelving of a synchronization request and the moment that process F;
reaches Its next acceptance test (in step 1). Then, according to the assumptions

in Sectlon 2.1, y; is an exponentially distributed random variable with parameter y;.

13
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n
Let Z=max{y,. Ya. . . . .Yn]. The total loss in computation power is CL=),(Z—y;).
i=1

The mean loss becomes
—_ i n 1
CL =n [(1-Fy(t))dt - ) —
(o i=1 M

n -
where F (t) Is the distribution function of Z, and equals | [(1—e "“).

i=1

4, IMPLANTATION OF PSEUDO RECOVERY POINTS

In the construction of a recovery block, usually, an acceptance test is a
number of executable assessments provided by the programmer and then followed
by a state saving. Note that process states can also be recorded upon any other
requests_ if they are considered useful in the rollback recovery. A pseudo recovery
point (PRP) is defined as a recovery point that is established without a preceding
acceptance test and is proposed here as an alternative for avoiding the domino
effect in a set of cooperating concurrent processes. With a monitor as the interpro-
cess communication means, Kim [156] and Kant and Silberschatz [16] discussed
methods for implanting recovery points in a central manner. Similarly, we consider a
method for implanting PRP's in the set of cooperating concurrent processes in a

decentralized manner.

To make every recovery point RP} in process F; maximally useful for rollback
error recovery, there should be corresponding recovery points in the other
processes that have to roll back as a result of the rollback propagation from F;. If
such recovery points do not actually exist, a pseudo recovery point, PRP}‘”, has to
be Inserted in process P;. for a given RP} in process F;. Further, in order to avoid
the need of tracing recovery points at that particular moment, a PRP is established
in each of the other processes involved for RP}. An algorithm for implanting PRP's is

given below.
(1). When P, establishes a recovery point RP}, it broadcasts a PRP

14
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implantation request to other processes.

(2). If P, receives the implantation request, it records its state as PRP}"
upon the completion of the current instruction without an acceptance test.

Then P;. broadcasts the commitment C;.

(8). Every process executes its own normal task after it establishes
RP} or PRP}". However, the messages sent to a process by P; prior to C;

have to be retained in the state saved.

Assume that process F; detects an error before establishing RP}H and that
this error is iocal to P,. The recovery line (called a pseudo recovery line, PRL})
formed by RP} and all PRP}"s is able to recover these processes even if the error
has already propagated to other processes. However, when the error detected in F;
Is due to error propagation from another process, P, (and therefore not local to P;),
the contents of PRP}‘ may have already been contaminated if this error occurred
prior to establishing PR’P}‘. The restart from the pseudo recovery line formed by both
RP} and all PRP}""S may just reproduce the same error. Therefore, roliback propaga-
tion may continue until every process involved has rolled back to a pseudo recovery
line past at least one of its recovery points. Most of the processes Involved are
assured to reach the pseudo recovery line by rolling back past only one recovery
point. A few processes may have to roll back past more than one RP due to random
interprocesses interactions, and this can not be avoided unless a forced synchroni-
zation Is employed as discussed in Section 3. Consequently, the pseudo recovery
line allows the processes to have the shortest rollback distance for backward error
recovery without synchronization. Note that the pseudo recovery line is now
guaranteed to contain correct states of all concerned processes. An algorithm of

roliback recovery with these pseudo recovery points is given by:
(1). If an error is found in process P;, set p := i where p is a rollback pointer.

15
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(2). P, rolls back to its previous recovery point R/°P. All processes FP;
affected by the rollback of F;, roll back to their respective

pseudo recovery points PRPPY,

(8). For every affected processes F;', if the rollback has not passed its most

recent recovery polint, then set p := i' and go back to step 2.

In Figure 8, the establishment of PRP's in processes P,;, P, and Pjis illus-
trated. When Py fails its acceptance test ATS, all processes have to restart from

the pseudo recovery line formed by (RP}, PRP}?, PRP}3) if P, and P, are

affected by the rollback of Pg.

In the above algorithm, we can find that every process needs to preserve a
recovery point for restart in case it fails. Also (n —1) pseudo recovery points are
needed for a process to form a pseudo recovery line with other proces‘ses where n
iIs the total number of concurrent processes. |t is therefore required to save n
states for every RP, i.e. one RP and (n—1) PRP's, and all old RP's and PRP's except
those in the pseudo recovery lines § PRL} |i=1,.,n, and RP} is the most recent
RP In P;] can be purged when a new recovery point is established, thereby reducing
storage requirements for saving RP's and PRP's. Note that rollback distance is
bounded by the supremum of {y,.y, ..., Y.} where y; Is the interval between two
successive recovery points of process P;. The additional time overhead for every
recovery point is (n—1)t, where {, is the time needed to record the process state.
These overheads should be assessed agalnst the gain of process autonomy and

avoldance of unbounded rollback propagations.

&§. CONCLUSION

We have quantitatively evaluated three different recovery blocks employed in
backward error recovery for concurrent processing. The recovery block dealt with

In this report is defined in software and comprises an acceptance test and a state

16



Shin and Lee: Analysis of Recovery Blocks

saving. The environment of concurrent processing considered here is not restricted

to any particular method of interprocess communications or system structure.

We have estimated the overhead required to avoid the domino effect when
recovery or pseudo recovery points are employed. For both the synchronization
method and the Implantation of pseudo recovery points, the overheads are largely
related to the construction of synchronization, RP's and PRP's. They would become
an unacceptable burden when synchronizations and pseudo recovery points are con-
structed frequently but interprocess communications rarely occur. At the other
extreme, i.e. asynchronous recovery blocks, it may result in a longer rollback dis-

tance due to unlimited rollback propagations (in place of synchronization and PRP

Insertion overheads).

In this report, we have considered the distribution of the intervai between two
successive recovery lines instead of the actual roliback distance. The rollbavck dis-
tance after an error is detected is related to the probability of error occurrence,
error detection, and rollback propagation, etc. However, the interval X does

represent an upper bound for the real rollback distance.

To select a sultable strategy or a combination of these three methods, we have
to first examine the properties of concurrent processes such as the amount of
interprocess communications and the distribution of recovery points. Then, we weigh
the trade-off between the loss of computation power during normal operation and
the Increase In response time due to rollback recovery. For instance, the asynchro-
nous method or a longer synchronization period is not acceptable for time-critical
tasks In which a delay in system response beyond a certain value, the system dead-
line, leads to a catastrophic failure. The implantation of pseudo recovery points is
also Inefficient for concurrent processes when they establish recovery points
frequently(thus requiring many PRP's to be implanted) and rarely communicate with

each other. In general, if more knowledge of the execution state in concurrent

17
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processes can be obtained, a better strategy for implementing recovery blocks can

be derived.
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case 1 2 3

(101, Mg 143) (1.0,1.0,1.0) | (1.5,1.0,0.5) | (1.0,1.0,1.0) | (1.5
(M2 A2sN3) | (1.0,1.0,1.0) | (1.0,1.0,1.0) | (1.5,0.5,1.0) | (1.5
©E(X) | 2508 73357 | 2.600

E(L,) 2.500 4.847 2.453

E(Lg) 2.5600 3.231 2.453

E(Lg) 2.500 1.818 2.453
E(Li+Lo+La) 7.500 9.693 7.360

Table 1. Mean Values of X and L; for constant p



