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ABSTRACT

THREE ESSAYS ON RESOURCE ALLOCATION: LOAD BALANCING ON
HIGHLY VARIABLE SERVICE TIME NETWORKS, MANAGING DEFAULT
RISK VIA SUBSIDIES AND SUPPLIER DIVERSIFICATION, AND OPTIMAL

HOTEL ROOM ASSIGNMENT

by

Luz Adriana E. Caudillo Fuentes

Co-Chairs: Volodymyr Babich and Mark Van Oyen

The first essay considers a service center with two stations in accordance with inde-

pendent Poisson processes. Service times at either station follow the same general

distribution, are independent of each other and are independent of the arrival process.

The system is charged station-dependent holding costs at each station per customer

per unit time. At any point in time, a decision-maker may decide to move, at a cost,

some number of jobs from one queue to the other. We study the problem with the

purpose of providing insights into this decision-making scenario. We do so, in the

important case that the service time distribution is highly variable or simply has a

heavy tail. We propose that the savvy use of Markov decision processes can lead

to easily implementable heuristics when features of the service time distribution can

be captured by introducing multiple customer classes. The second essay studies the

problem solved by a manufacturer who faces supplier disruptions. In order to un-

derstand the interactions between three strategies (subsidizing the supplier, supplier

diversification, and the creation of back-up inventory), the problem is analyzed using

xiii



a simple model with inventory storage costs and shortage penalties. The model allows

us to derive conditions when these strategies are appropriate, either in isolation or in

combination. A sensitivity analysis shows that the optimal decisions may not change

monotonically when the parameters change. The third essay studies a hotel room

assignment problem. The assignment is generally performed by the front desk staff

on the arrival day using a lexicographic approach, but this may create empty room-

nights between bookings that are hard to fill. This problem shares some features with

the job shop problem and with the classroom assignment problem, both of which have

been studied in the literature, but the problem itself has not been widely studied.

We suggest a heuristic method to solve it, which can be run in a short time with the

nightly batch operations that hotels routinely perform. The algorithm considerably

improves the results from the lexicographic approach.
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CHAPTER I

Introduction

The following three essays, among other techniques, apply Operations Research

and to problems that arise in different industries. The nature of the three particular

problems we present is complex. They cannot be solved by the simple, straightforward

application of existing techniques; therefore, each constitutes an interesting research

question. The first essay deals with work-load balancing for a system of queues. The

second one analyzes the optimality of subsidies, backup inventory, diversification, and

the combination of these strategies to deal with supplier disruption. The third one

solves a hotel room assignment problem.

The first essay considers a service center with two stations in accordance with

independent Poisson processes. Service times at either station follow the same general

distribution, are independent of each other and are independent of the arrival process.

The system is charged station-dependent holding costs at each station per customer

per unit time. At any point in time, a decision-maker may decide to move, at a

cost, some number of jobs in one queue to the other. The goals of this paper are

twofold. We study the problem with the purpose of providing insights into this

decision-making scenario. We do so, in the important case that the service time

distribution is highly variable or simply has a heavy tail. Second, we propose that

the savvy use of Markov decision processes can lead to easily implementable heuristics
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when features of the service time distribution can be captured by introducing multiple

customer classes. These heuristic policies render better results than the application

of common heuristics such as “no idling” or “join the shortest queue.”

The second essay studies the problem solved by a manufacturer that faces supplier

disruptions. Different strategies to manage the risk are available to the manufacturer,

and in order to understand the interactions between some of them (subsidizing the

supplier, supplier diversification, and the creation of backup inventory), I analyze

a model with costs coming from two sources: the costs of storing inventory when

it exceeds demand, and the penalties incurred when not enough inventory exists to

satisfy demand. The model is simple, yet it allows us to derive conditions when these

strategies are appropriate, either in isolation or in combination. Using this model, I

obtain some interesting insights. Under some circumstances, it may not be optimal to

use a supplier exclusively, unless providing some minimum amount of subsidy. If no

subsidy is provided, then it is better to diversify. Introducing time creates additional

opportunities to hedge the risk: besides subsidizing the supplier so that she becomes

more reliable in the future, the manufacturer also has the choice of having back-

up inventory. In some cases, the three strategies can be used to manage the risk.

However, changes in market conditions that affect, for example, future demand do

not have an obvious pattern of change in the order size. I present a sensitivity analysis

that can assist in these decisions.

The third essay studies a hotel room assignment problem. This problem, generally

solved by the front desk staff on arrival day using a lexicographic approach, may create

empty room-nights between bookings, which are usually hard to fill. While the day-

of-arrival assignment practice has helped to implement overbooking, which is one of

the most commonly used revenue management techniques, we studied the problem in

order to find a better way to solve it. We suggest a heuristic method to solve it, and

the testing we performed indicates that the room number assignment can be greatly

2



improved by switching from the lexicographic approach to the algorithm we suggest.

Our algorithm can be run in a short time with the nightly batch operations that hotels

routinely perform. It is encouraging to obtain these results for a problem that has

not received much attention. As we will see, this problem shares some features with

the job shop and the classroom assignment problems which are NP-complete. These

problems have been studied in the literature. However, their solution methods do

not translate transparently to hotel settings, given the unique nature of this problem.

Our algorithm provides the front desk staff with a tool that results in better solutions

than commercial hotel operations software, which allows clerks to assign each room

without any optimality check.

Before proceeding to the body of the different research topics, I would like to clarify

that the use of the personal pronouns “he” or “she” in this work is not intended to

be discriminatory.
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CHAPTER II

A Simple Heuristic for Load Balancing in Parallel

Processing Networks with Heavy-Tail Distributed

Service Times

2.1 Introduction

Suppose that customers arrive to a service center (call center, web server, etc.)

with two stations with independent Poisson arrival processes. Service times at either

station follow the same general distribution, are independent of each other and are

independent of the arrival process. The system is charged station dependent holding

costs at each station per customer per unit time. At any point in time, a decision-

maker may decide to move (or pass) some number of jobs in one queue to the other.

It should be clear that the decision-maker’s choice of the number of customers to

move should depend on the number of customers at each station, the cost to move

customers, the time elapsed since the service times of customers currently being pro-

cessed by the server began and perhaps the number of future customers (s)he expects

to arrive in the coming moments. With the exception of the elapsed service time

information the control decisions seem ripe for an analysis via Markov decision pro-

cesses (MDPs). Unfortunately, the continuous nature of the elapsed time variables

makes the analysis more difficult. It is desirable to have a discrete state space to

4



facilitate analysis and computation.

The goals of this paper are twofold. First, we are interested in providing insights

into the above decision-making scenario. We do so, in the important case that the

service time distribution is highly variable or simply has a heavy (non-exponential)

tail. Second, we propose that the savvy use of Markov decision processes can lead to

easily implementable heuristics when features of the service time distribution can be

captured by introducing multiple customer classes.

The limitations of MDPs are well-known. As long as the state and action space

descriptions (called the graph of the MDP) are multi-dimensional or consist of a

large number of elements, solving the dynamic program quickly becomes intractable.

In order to alleviate this problem there have been significant lines of research that

study the structure of optimal policies in such areas as control of queues, manufac-

turing, transportation, inventory control and revenue management. For example, in

the aforementioned model suppose the service time distribution is exponential. The

state space is then two-dimensional. If the optimal policy can be described by a

monotone switching curve the search for the optimal policy is reduced to finding the

curve, rather than enumerating the state and action pairs throughout the decision

space. Unfortunately, even in simple cases finding a structured optimal policy when

the service time is generally distributed may be intractable. Consider an admission

controlled M/G/1 queue that is used to model routing in a simple manufacturing

system. If the service time distribution is exponential (so the system is an M/M/1),

it is well-known that the optimal control policy is of control limit form. If the service

times are generally distributed, then when a new customer arrives, the decision-maker

must once again consider the time since the last service completion; the state space is

uncountable. In this case, even reasonably sized discretizations of the time dimension

lead to an intractable problem.

In reality, when the service time distribution is general, past experience gives

5



the decision-maker significant information about its form. In this paper we present

a heuristic that uses a multi-class queueing network with exponentially distributed

service times as a proxy for a problem with general service time distributions. In

essence, for the original model with general distributions, services are classified into

types as a way to record partial historical information that is useful for making control

decisions. The proxy network problem has a tractable MDP solution with a control

structure that is relevant, in a heuristic sense, to the intractable control problem faced

in the original model. We focus our attention on the important case that the general

distribution has a “heavy tail” (does not decay exponentially) or is highly variable.

Intuitively, we are interested in systems where long service times provide significant

useful information about the remaining service time distribution. We discuss our

heuristic in the context of the new load-balancing model described above. Although

it has its roots in service centers, it is also applicable to supply chain management

and to transhipment models in transportation networks.

We should point out that the goal is to introduce a method for approximating the

load balancing decisions made in a parallel processing network, not to approximate

the service time distributions themselves. With an eye towards tractability and so-

lutions that are easy to describe and implement, we restrict attention in the proxy

model to a hyper-exponential (mixture of exponentials) service distribution with two

classes. We find that the optimal control policies for the two-class proxy model, when

translated in a smart way (as discussed in Section 2.5), indeed lead to policies that

perform well in the original system. Alternatively, we conjecture that one could ap-

proximate service times with an Erlang distribution with k phases, and provide a

similar analysis using a Markov decision process formulation. The difficulty would

then be in translating that process into an implementable control policy. Moreover,

the decision problem would be intractable for k of moderate size. The optimal con-

trol for the proxy model we propose is quite simple. More sophisticated MDP models

6



would quickly lose this feature.

This paper makes several contributions. Of course, we describe a method for de-

termining good control policies for the otherwise intractable load balancing problem.

The employed proxy model, which is also new, most likely has applications outside of

this context, and we find it interesting in its own right. For the proxy model, we show

that the optimal control structure is characterized by a series of “do-not-move/move-

up-to levels” and that these levels are monotone. Not only do these structural results

provide insight, but they also aid in computation. In particular, since the state space

of the proxy model has infinite dimension, computation is facilitated by truncation of

the queue lengths. Truncation often leads to policies that are not monotone near the

boundaries. However, we “smooth” the policies in accordance with the theoretical re-

sults, and we find that these smoothed policies perform better. Finally, performance

was measured via simulation. We display the results of the numerical study, which

show that our policies perform well as compared to some alternative heuristics.

The remainder of the paper is organized as follows. In Section 2.2 we discuss

related literature. Section 2.3 contains some preliminary results, a further description

of the original and proxy models and the optimality criteria. We present a Markov

decision formulation of the proxy model and show several monotonicity results in

Section 2.4. The description of our heuristic for controlling the original load balancing

problem, including the relationship to the proxy model, is given in Section 2.5. Section

2.5 also contains an implementation of the heuristic and the numerical comparison to

several alternative heuristics. The paper is concluded in Section 2.6.

2.2 Literature review

The theory (and drawbacks) of MDPs is well-documented. We refer the interested

reader to the now classic text of Puterman (1994). The literature on the control of

parallel processing networks is also abundant so we do not provide a complete review

7



here. Instead the reader is pointed to the work of Shirazi et al. (1995) and Wang

and Morris (1985) and the references therein. We focus on those papers with direct

relevance to the current work. For a basic introduction to heavy-tailed distributions

and their properties, see Sigman (1999). A discussion of several alternative definitions

can be found in Heyde and S.G. (2004).

Paxson and Floyd (1995) have found that for most of the traffic in the world

wide web session and connection arrivals are modeled well using Poisson processes,

but packet interarrivals are better described with heavy tailed distributions. This

is further confirmed by Crovella et al. (1998b). In particular, the hyper-exponential

distribution has proved to be useful to approximate heavy-tailed distributions. Xu

et al. (2003) use such approximations to formulate generalized Petri nets in order to

study the properties of distributed manufacturing systems. The hyper-exponential is

one of the motivating factors of our two class Markov decision process formulation.

Harchol-Balter and Downey (1997) compare the reassignment of processes to a

different server at the time of birth vs. reassignment once the process has already

started (preemptive migration) in order to balance CPU load in a network of stations.

They obtain a preemptive reassignment strategy that is more effective than remote

execution even when the memory transfer cost is high. Yum and Hua-chun (1984)

develop an adaptive rule for balancing the load on a parallel queueing system, where

some customers are required to wait for a particular server or set of servers. Their

rule is a combination of a majority-vote rule (where votes are issued by switchers or

routers) and a join the biased queue rule as presented by Yum and Schwartz (1981).

Yum and Schwartz use this term to denote a rule similar to join the shortest queue,

but a bias term is added to the queue lengths. This rule is robust to changes in

the buffer sizes and input rates, and performs well according to the criteria of lower

delay and lower blocking probability. Shimkin and Shwartz (1989) study a system of

queues that share an arrival process. Arriving customers are subject to admission and
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routing control. The purpose is to maximize income when there are holding costs and

rewards for accepting customers. The arrival and service process parameters depend

on the current state of the system. The authors prove the existence of a monotone

optimal control policy.

Other research on systems with heavy-tail distributed service times includes Crov-

ella et al. (1998a) who develop a policy that purposely operates the server hosts at

different loads, and directs smaller tasks to the lighter-loaded hosts. Riska et al.

(2000) present an inexpensive technique for modeling load balancing policies on a

cluster of servers conditioned on the fact that the service times of arriving tasks are

drawn from heavy-tailed distributions. Their results provide exact information re-

garding the distribution of task sizes that compose the queue on each server. Beard

and Frost (2001) study a prioritization mechanism to alleviate overloads that result

in blocking the access to service to all customers. Of course none of these studies

include a Markov decision process formulation of an exponential model applied to the

general model with heavy tailed distributed service times.

Our model is closely related to that in Down and Lewis (2006). Their work refers

to a system of parallel queues, where the balancing decisions are taken at the times of

arrivals or departures. They seek the optimal design and control policy for the system.

There is also a close relation to the work of Lewis (2001) where an M/M/1 queue is

controlled by two “gatekeepers” that make the decisions of acceptance or rejection of

a customer at two moments: the arrival and the moment prior to service. Another

study related to the control of queueing systems with exponentially distributed service

times can also be found in He and Neuts (2002), who study policies that move a fixed

amount of customers to control a system of two M/M/1 queues. Transfer of customers

occurs when the difference of the queues reaches a critical level.
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2.3 Preliminaries and Model Descriptions

In this section we discuss the formal definition of a parallel processing network

with service times that follow a heavy-tailed distribution and the proxy model with

exponential service times. Consider 2 parallel queues. Customers arrive to queue

k according to independent Poisson processes of rate λk for k = 1, 2. The service

processes of each queue are independent of each other and of both arrival streams.

The nth customer that is served by server k requires Sk
n time units of service where

{Sk
n, n ≥ 1, k = 1, 2} are assumed to be i.i.d. and independent of the station to which

the customer arrives. In the general model that motivates this study, the service times

are assumed to follow a general distribution with finite mean. However, we are most

interested in those service distributions that see a large proportion of short service

times, but also see some very large service times; those that are highly variable. One

such class of distributions is that with “heavy,” non-exponential tails. We present

the definition given by Sigman (1999).

Definition 2.3.1. A distribution function F , for random variable S, is said to be

heavy-tailed if F (s) := 1− F (s) = P(S > s) > 0, s ≥ 0, and

lim
s→∞

P(S > s+ δ|S > s) = lim
s→∞

F (s+ δ)

F (s)
= 1, δ ≥ 0. (2.3.1)

Intuitively, if S follows a heavy-tailed distribution, then if S ever exceeds a large

value T1, the probability that it will exceed any higher level approaches 1 for T2 > T1

gets large. Thus, while most times are short, a decision-maker that finds a customer

whose service time is unusually long would not want to leave customers in queue

behind it.

As an approximation to this model we consider a proxy model, where each arriving

customer is of one of two classes. A customer’s classification is not revealed until

immediately prior to beginning service. Customers are of class j, j = 1, 2, with
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probability pj and a class j customer requires an exponentially distributed amount

of service with mean 1/µj. We assume that Class 1 are those with unusually long

(“heavy”) service times, while Class 2 corresponds to those with shorter (“standard”)

service times seen in the general model; that is, 1/µ1 ≫ 1/µ2. We will explain exactly

how they are related to the general model when the heuristic is described more fully

in Section 2.5.

In either model, let Π be the set of all non-anticipating policies. A policy π ∈ Π

prescribes how many customers to move from one queue to another, given the number

of customers in each queue (the queue length processes), perhaps the amount of time

each customer has been in service, and any other information that is required to

make the (policy dependent) process Markovian. For example, in the proxy system

the current “state” of the system includes the queue length processes and the classes

of the customers currently in service at each queue.

There is a fixed cost for moving each customer of m units per customer. That is,

if θ customers are moved, a cost of mθ is incurred. Customers currently in service (in

either queue) cannot be moved; the control policy is assumed to be non-preemptive.

The system also continuously incurs holding cost hkqk per unit time that queue k

contains qk customers, including the one in service for k = 1, 2. Without loss of

generality we assume that h1 ≥ h2. We seek to find a strategy for load balancing

under the infinite horizon expected discounted cost or the long-run average expected

cost optimality criteria. Note here that the term “load balancing” is used somewhat

loosely since the holding costs may cause the optimal policy to leave the distribution of

the workload for each queue unbalanced. In some sense, perhaps “load distribution”

would be more descriptive. However, having made this clarification, we will continue

to refer to the control as balancing without further comment since it is common

terminology.

For a fixed policy π, denote the set of decision epochs by D ≡ {dn, n ≥ 0} and
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the state at the nth decision epoch by Xn. For example, if π depends only on the

queue lengths, then D is the set of arrival times and service time completions. We

assume that the time between decision epochs is bounded away from zero so that only

a finite number of decisions can be made in a finite amount of time. That is, if the

time between the nth and (n + 1)st decision epoch has distribution Gn+1 then there

exists δ > 0 and ϵ > 0 such that 1 − Gn+1(δ) ≥ ϵ (cf. p. 532 of Puterman (1994)).

Let Qπ(t) = {Qπ
1 (t), Q

π
2 (t)} be the queue length process, and let θn represent the

balancing decision taken at decision epoch n, under π. Define the total discounted

expected cost up until time t as

vπβ,t(x) = Eπ
x

(N(t)∑
n=0

e−βdnc(Xn, θn)
)
+

t∫
0

e−βu Eπ
x[h1Q

π
1 (u) + h2Q

π
2 (u)]du,

where θn is the action taken at decision epoch n, c(·, ·) is the lump sum cost associated

with moving customers from one queue to the other, N(t) is the number of decision

epochs in the first t time units, and the expectation of the system under policy π is

conditioned on the initial state x. The criteria we are interested in are

vπβ(x) = lim
t→∞

vπβ,t(x), φπ(x) = lim sup
t→∞

vπ0,t(x)

t
,

where vπβ(x) represents the infinite horizon β−discounted expected cost under π (the

interchange of limit and expectation is justified by the monotone convergence theo-

rem) and φπ(x) is called the long-run average expected cost starting in state x under

policy π. The objective then is to find a policy π∗ under each criterion such that

γπ
∗
(x) ≤ γπ(x) for all states x and all policies π ∈ Π for γ = vβ, φ. In the next

section we provide results that simplify this search considerably for the proxy model.

We view these results as interesting in their own right, but they are particularly useful

in the implementation of our heuristic in the general model.
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2.4 Optimal Control for the Proxy Model

For the proxy model all inter-arrival and service times are exponentially dis-

tributed, and the state may be described by a vector (I, y, i, j), where I repre-

sents the total number of customers in the system and y is the number of cus-

tomers in queue 2 (including any customer in service). When i (j) ∈ {1, 2} it

represents the class of customer currently at server 1 (2); i (j) = 0 means that

queue 1 (2) is empty. If x = (I, y, i, j), then the possible actions set is Ax =

{−(y−1)+,−(y−2), . . . , I−y−2, (I−y−1)+}. That is, for θ ∈ Ax, θ = 0 means that

nothing will be moved while θ > 0 means θ customers are moved from queue 1 to queue

2 and θ < 0 means that |θ| are moved from queue 2 to queue 1. A customer that is cur-

rently in service cannot be moved. Let W := {(I, y, i, j) | I−1 ≥ y ≥ 1, i, j ∈ {1, 2}}

represent the set of states such that both servers have at least one customer to serve.

Similarly, define I1 := {(I, y, 0, j) | I = y ≥ 1} and I2 := {(I, y, i, 0) | I ≥ 1, y = 0},

where Ik represents the set of states where there are no customers to serve in queue

k = 1, 2 while the other queue is non-empty (the I stands for “idle”). The state space

X can now be written

X := W ∪ I1 ∪ I2 ∪ {(0, 0, 0, 0)}.

We apply uniformization as described in Lippman (1975), with uniformization

constant Ψ = λ1 + λ2 + 2max{µ1, µ2}. Without loss of generality assume Ψ =

1. This allows us to consider the discrete-time equivalent to the continuous proxy

model already described. That is to say that the stationary optimal policies in the

discrete-time case are the same as that in the continuous-time case. The infinite

horizon discounted cost and the long-run average costs also coincide, but only up to

a multiplicative constant. The cost function for each period includes holding and
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switching costs and is given by:

C((I, y, i, j), θ) = |θ| m+ (I − y − θ)h1 + (y + θ)h2,

where (I, y, i, j) and θ denote the current state and action, respectively. Let the total

expected cost of a load balancing policy π over the first t (discrete) decision epochs

be defined

vπα,t(x) := Eπ
x

t−1∑
n=0

αtC(Xn, θn),

where Xn and θn represent the state and balancing decision at decision epoch n.

Furthermore, define vα,t(x) = infπ∈Π v
π
α,t(x), where Π is the set of all non-anticipating

policies; vα,t(x) is the optimal cost-to-go for a t-horizon problem starting in state

x, under discount factor α. In the case when t = ∞, we write vα instead of vα,∞.

This defines the infinite horizon expected discounted cost criterion. As we are also

interested in the average case, the average cost of a fixed policy in the discrete time

model equals

lim sup
n→∞

1

n
vπ1,n(x) = lim sup

n→∞

1

n
Eπ

x

n∑
t=1

C(Xt, θt).

In the remainder of the section, we present several structural results for the finite

horizon case. We then give a stability result and show that the structural results

continue to hold in the infinite horizon discounted cost and average cost cases. The

first result states that the basic features of an optimal policy in Down and Lewis

(2006) carry over to the current model.

Proposition II.1. Under the finite or infinite horizon discounted expected cost or

the long-run average expected cost criterion, there exists an optimal policy that does

not move customers from queue 2 to queue 1 (since h1 ≥ h2), except possibly to avoid

idling.
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Proof. The proof follows precisely in the same manner as that in Theorem 4.1 of

Down and Lewis (2006) and is omitted for brevity.

Suppose b = y + θ for θ ∈ A(I,y,i,j) (i.e., the number of customers in the low cost

queue after performing the control action). Let µ0 = 0. Define wα,t(I, y, i, j, b) as the

cost-to-go, starting in state (I, y, i, j), for moving up to amount b in period t, followed

by optimal control in the remaining periods:

wα,t(I, y, i, j, b) =



m|b− y|+ h1(I − b) + h2b

+Uα,t−1(I, b, i, j), for 1 ≤ y ≤ I − 1,

m|b− y|+ h1(I − b) + h2b

+p1Uα,t−1(I, b, 1, j) + p2Uα,t−1(I, b, 2, j) for y = I, i = 0, b < I,

h2I + Uα,t−1(I, b, 0, j) for y = b = I, i = 0,

m|b− y|+ h1(I − b) + h2b

+p1Uα,t−1(I, b, i, 1) + p2Uα,t−1(I, b, i, 2) for y = 0, j = 0, b > 1,

h1I + Uα,t−1(I, b, i, 0) for y = b = 0, j = 0,

where for (I, b, i, j) ∈ W

Uα,t(I, b, i, j) = α[p1µivα,t(I − 1, b, 1, j) + p2µivα,t(I − 1, b, 2, j)

+ p1µjvα,t(I − 1, b− 1, i, 1) + p2µjvα,t(I − 1, b− 1, i, 2)

+ λ1vα,t(I + 1, b, i, j) + λ2vα,t(I + 1, b+ 1, i, j)

+ (1− λ1 − λ2 − µi − µj)vα,t(I, b, i, j)],
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for (I, b, 0, j) ∈ I1 (b = I in this case)

Uα,t(I, I, 0, j) = α[p1µjvα,t(I − 1, I − 1, 0, 1) + p2µjvα,t(I − 1, I − 1, 0, 2)

+ λ1(p1vα,t(I + 1, I, 1, j) + p2vα,t(I + 1, I, 2, j))

+ λ2vα,t(I + 1, I + 1, 0, j) + (1− λ1 − λ2 − µj)vα,t(I, I, i, j)],

for (I, b, i, 0) ∈ I2 (b = 0 in this case)

Uα,t(I, 0, i, j) = α[p1µivα,t(I − 1, 0, 1, 0) + p2µivα,t(I − 1, 0, 2, 0)

+ λ1vα,t(I + 1, 0, i, 0) + λ2(p1vα,t(I + 1, 1, i, 1)

+ p2vα,t(I + 1, 1, i, 2)) + (1− λ1 − λ2 − µi)vα,t(I, 0, i, 0)],

and for I = b = 0

Uα,t(0, 0, 0, 0) = α[λ1(p1vα,t(1, 0, 1, 0) + p2vα,t(1, 0, 2, 0)) + λ2(p1vα,t(1, 1, 0, 1)

+ p2vα,t(1, 1, 0, 2)) + (1− λ1 − λ2)vα,t(0, 0, 0, 0)].

LetAW := {1, 2, . . . , I−1}. Similarly defineAI1 := {1, 2, . . . I}, AI2 := {0, 1, . . . I−

1} and A(0,0,i,j) := {0}. It is well-known that for (I, y, i, j) ∈ W , vα,t (note vα,0 = 0)

satisfies the following finite horizon optimality equations (FHOE)

vα,t(I, y, i, j) = min
b∈AK

{wα,t(I, y, i, j, b)}, (2.4.1)

where K = W , I1, I2, or (0, 0, 0, 0) depending on (I, y, i, j).

The next result states that there exists an optimal policy such that for each state

there is a “do-not-move/ move-up-to” amount L. This means that if y < L we

move enough customers to have L customers in queue 2, and if y ≥ L, we move no

customers.
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Proposition II.2. Suppose the current types at servers 1 and 2 are i and j, respec-

tively. Then,

1. there exists a level Lt
I,i,j < I such that for each t ≥ 1, I ≥ 2 and (I, y, i, j) ∈

W ∪ I2, the optimal policy is to bring the number of customers in queue 2 up

to Lt
I,i,j if y < Lt

I,i,j and to move no customers if y ≥ Lt
I,i,j, and

2. vα,t(I, y, i, j)− vα,t(I, y+1, i, j) is non-decreasing in y (i.e., vα,t is convex in y)

for all i, j, t ≥ 0, I ≥ 3, and y ≤ I − 3.

Proof. By induction on t. Recall that vα,0(·) = 0. So that Statement 2 holds

trivially for t = 0. Consider t = 1 and assume I ≥ 2. We have

wα,1(I, y, i, j, b) = m|b− y|+ h1(I − b) + h2b. (2.4.2)

Since (I, y, i, j) ∈ W ∪ I2 queue 1 is non-empty. Recall from Proposition II.1 that it

is not optimal to move customers from queue 2 (the low-cost queue) to queue 1 (the

high-cost queue) unless possibly if queue 1 is empty. That is, it suffices to consider

b ≥ y. When we restrict attention to the set {y, y + 1, ..., I − 1}, wα,1 is a linear

function of b (since on this set |b − y| = b − y). Depending on the direction of the

inequality m − h1 + h2 ≥ (≤) 0 the optimal action is either not to move customers

or to move all of the customers to the low cost queue (except for the one currently

receiving service at queue 1). That is to say either letting L1
I,i,j = 0 or I−1 is optimal.

This proves the first statement for t = 1.

Assume Statement 2 holds for t− 1. To prove Statement 1 at time t recall

wα,t(I, y, i, j, b) = m|b− y|+ h1(I − b) + h2b+ Uα,t−1(I, b, i, j).

From Statement 2 at epoch t − 1, and from the definition of Uα,t, Uα,t−1(I, b, i, j)

is a convex combination of convex functions. Thus, wα,t(I, y, i, j, b) is convex in b.
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Let Lt
I,i,j be the minimal (smallest) element of the set argminb∈AW

{wα,t(I, 1, i, j, b)}.

Note that by convexity Lt
I,i,j is also in the argminb∈{y,y+1,...,I−1}{wα,t(I, y, i, j, b)} for

all 1 ≤ y ≤ Lt
I,i,j. The convexity of wα,t together with Proposition II.1 yield that it

is not optimal to move customers for y > Lt
I,i,j. This proves Statement 1.

To complete the proof it remains to show that the preceding arguments imply

that Statement 2 holds for time t and all (i, j). There are several cases to consider.

Suppose for now that (I, y, i, j) ∈ W .

Case 1: Lt
I,i,j ≤ y. In this case, it is optimal not to move in the three states (I, y, i, j),

(I, y + 1, i, j), (I, y + 2, i, j). Thus,

vα,t(I, y, i, j)− 2vα,t(I, y + 1, i, j) + vα,t(I, y + 2, i, j)

= Uα,t−1(I, y, i, j)− 2Uα,t−1(I, y + 1, i, j) + Uα,t−1(I, y + 2, i, j) ≥ 0,

where the inequality follows from the inductive hypothesis that the second statement

holds at t− 1.

Case 2: y ≤ Lt
I,i,j−2. The optimal action in the three states (I, y, i, j), (I, y+1, i, j),

(I, y+2, i, j) is to allocate I−Lt
I,i,j customers in queue 1 and Lt

I,i,j in queue 2. Thus,

vα,t(I, y, i, j)− vα,t(I, y + 1, i, j) = vα,t(I, y + 1, i, j)− vα,t(I, y + 2, i, j) = m.

Case 3: y = Lt
I,i,j − 1. First note wα,t(I, y+1, i, j, y+2) ≥ vα,t(I, y+1, i, j); moving

one customer is a (potentially) suboptimal action for state (I, y + 1, i, j)). Thus,

vα,t(I, y, i, j)− vα,t(I, y + 1, i, j)− [vα,t(I, y + 1, i, j)− vα,t(I, y + 2, i, j)]

≥ vα,t(I, y, i, j)− wα,t(I, y + 1, i, j, y + 1)− wα,t(I, y + 1, i, j, y + 2) + vα,t(I, y + 2, i, j)
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Note that the last expression is equal to m + Uα,t−1(I, y + 1, i, j) − Uα,t−1(I, y +

1, i, j)−m− Uα,t−1(I, y + 2, i, j) + Uα,t−1(I, y + 2, i, j) = 0 as desired.

Suppose (I, y, i, j) ∈ I2.

Let Lt
I,i,0 be the minimal element of the set argminb∈AI2

{wα,t(I, 0, i, j, b)}. Thus,

vα,t(I, 0, i, j) = wt(I, 0, i, j, L
t
I,i,0). Assuming, Lt

I,i,2 ≥ 2

vα,t(I, 0, i, j)− vα,t(I, 1, i, j)− [vα,t(I, 1, i, j)− vα,t(I, 2, i, j)]

≥ wα,t(I, 0, i, j, L
t
I,i,0)− wα,t(I, 1, i, j, L

t
I,i,0)− [wα,t(I, 0, i, j, L

t
I,i,2)− wα,t(I, 2, i, j, L

t
I,i,2)]

= m−m = 0.

Similarly for Lt
I,i,2 < 2. Since for all (I, y, i, j) ∈ I1 ∪ {(0, 0, 0, 0)}, y = I there is no

convexity requirement on I1 ∪ {(0, 0, 0, 0)}.

We remark that the previous result states the existence of an optimal “move-up-to”

level for each (I, i, j). We next characterize these levels as monotone, non-decreasing

in I. This result not only lends insight into the structure of the optimal policy, but it

is also convenient both for implementation and to simplify its computation. Moreover,

it is used to implement the load balancing heuristic presented in Section 2.5. Before

proving the result, it is useful to recall the definition of submodularity:

Definition 2.4.1. A function g(j, k) is said to be submodular if and only if the

difference g(j, k) − g(j, k + 1) is non-decreasing in j; that is, g(j, k) − g(j, k + 1) ≤

g(j + 1, k)− g(j + 1, k + 1).

Proposition II.3. Let I ≥ 3, y ∈ {0, ..., I − 1}. Suppose the current types at servers

1 and 2 are i and j respectively. The following hold:

1. For t ≥ 1 there exists optimal move-up-to levels Lt
I+1,i,j and Lt

I,i,j such that

Lt
I+1,i,j ≥ Lt

I,i,j.

2. vα,t(I, y, i, j)− vα,t(I, y + 1, i, j) is non-decreasing in I (i.e., vα,t is submodular

in (I, y)) for all t ≥ 0 and 1 ≤ y ≤ I − 3.
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Proof. By induction on t. For t = 0 Statement 2 holds trivially since vα,0 = 0.

At t = 1 we have w1(I, y, i, j, b) = m|b − y| + h1(I − b) + h2b. As in the proof

of Proposition II.2 it is optimal either (a) not to move any customers, or (b) to

move all the customers to the low cost queue (except for the one currently receiving

service at queue 1). That is to say the optimal move up to level is L1
I,i,j = y or I − 1

depending on the direction of the inequality m−h1+h2 ≥ (≤) 0. Similarly, for state

(I + 1, y, i, j), the optimal move up to level is L1
I+1,i,j = y or I (depending on the

same inequality. Thus, L1
I+1,i,j ≥ L1

I,i,j as desired.

Assume now that Statement 1 holds for t and Statement 2 for t− 1. There are 4

cases to consider to prove Statement 2 holds at time t. In each of the first three cases

we take advantage of the fact that wα,t ≥ vα,t.

Case 1: y + 1 < Lt
I,i,j and y < Lt

I+1,i,j. Then,

wα,t(I, y, i, j, L
t
I,i,j)− vα,t(I, y + 1, i, j)− vα,t(I + 1, y, i, j)

+ wα,t(I + 1, y + 1, i, j, Lt
I+1,i,j) = m−m = 0.

Case 2: y + 1 ≥ Lt
I,i,j but y < Lt

I+1,i,j. Then,

wα,t(I, y, i, j, y + 1)− vα,t(I, y + 1, i, j)− vα,t(I + 1, y, i, j)

+ wα,t(I + 1, y + 1, i, j, Lt
I+1,i,j) = m−m = 0.

Case 3: y + 1 ≥ Lt
I,i,j and y ≥ Lt

I+1,i,j. In this case we have

wα,t(I, y, i, j, y)− vα,t(I, y + 1, i, j)− vα,t(I + 1, y, i, j) + wα,t(I + 1, y + 1, i, j, y + 1)

= h1 − h2 − (h1 − h2) + Uα,t−1(I, y, i, j)− Uα,t−1(I, y + 1, i, j)− Uα,t−1(I + 1, y, i, j)

+ Uα,t−1(I + 1, y + 1, i, j).

Each of preceding 3 cases imply submodularity for vα,t since wα,t ≥ vα,t with the last
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one also using the inductive hypothesis (Uα,t−1 is a linear combination of vα,t−1).

Case 4: y + 1 < Lt
I,i,j and y ≥ Lt

I+1,y,i,j. Note that since y + 1 < Lt
I,i,j we have

y < Lt
I,i,j ≤ Lt

I+1,i,j ≤ y, where the second inequality follows from the inductive

assumption. Since Case 4 leads to a contradiction it cannot occur.

It remains to show that Lt+1
I+1,i,j ≥ Lt+1

I,i,j. First note that if Lt+1
I,i,j = 1 the result

holds trivially. Assume that Lt+1
I,i,j ≥ 2. Note that the submodularity of vα,t implies

submodularity of Uα,t(·, y, ·, ·) for y ≥ 2. Suppose the result does not hold so that

Lt+1
I+1,i,j < Lt+1

I,i,j. Fix L
t+1
I+1,i,j < y ≤ Lt+1

I,i,j so that the optimal action in (I +1, y, i, j) is

to do nothing, while the optimal action in state (I, y, i, j) is to move the number of

customers in queue 2 to Lt+1
I,i,j. By using Lt+1

I,i,j in state (I + 1, y, i, j), the optimality

equations imply

vα,t+1(I + 1, y, i, j) = h1(I + 1− y) + h2(y) + Uα,t(I + 1, y, i, j)

< m(Lt+1
I,i,j − y) + h1(I + 1− Lt+1

I,i,j)

+ h2(L
t+1
I,i,j) + Uα,t(I + 1, Lt+1

I,i,j, i, j).

A little algebra yields

m(Lt
I,i,j − y) + h1(y − Lt+1

I,i,j)− h2(L
t
I,i,j − y)

> Uα,t(I + 1, y, i, j)− Uα,t(I + 1, Lt
I,i,j, i, j). (2.4.3)

Similarly (by considering the action “do nothing” in state (I, y, i, j))

m(Lt
I,i,j − y) + h1(y − Lt+1

I,i,j)− h2(L
t
I,i,j − y)

< Uα,t(I, y, i, j)− Uα,t(I, L
t
I,i,j, i, j). (2.4.4)
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Combining (2.4.3) and (2.4.4) yields

Uα,t(I, y, i, j)− Uα,t(I, L
t
I,i,j, i, j)− [Uα,t(I + 1, y, i, j)− Uα,t(I + 1, Lt

I,i,j, i, j)] > 0,

which contradicts submodularity and the result is proven.

2.4.1 The Infinite Horizon Discounted Cost and Average Cost Cases

In this section we note that the results from the previous section extend to the

infinite horizon models. While the infinite horizon discounted cost case follows almost

immediately, the average cost case is slightly more subtle and requires a stability

result.

Proposition II.4. For the proxy model, under any stationary, non-idling policy the

system is stable if and only if

(λ1 + λ2)

(
p1
µ1

+
p2
µ2

)
< 2. (2.4.5)

That is, there exists a stationary distribution.

Proof. To prove sufficiency we fix an arbitrary, stationary, non-idling policy π,

find a Lyapunov function and apply Foster’s criterion cf. (Kulkarni , 1999, Theorem

3.7). This guarantees that all recurrent states are positive recurrent. To this end,

consider the Markov chain induced by π. Denote this chain, with state space X, by

{Xn, n ≥ 0}. Note that since π is non-idling, (0, 0, 0, 0) is accessible from every state

in X; any recurrent states must communicate with the distinguished state (0, 0, 0, 0).

Denote the chain restricted to only those states that communicate with (0, 0, 0, 0)

by {Zn, n ≥ 0} and its state space by X0. Let G = {(I, y, i, j) ∈ X|I ≤ 1}. Let
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µ =
(

p1
µ1

+ p2
µ2

)−1

and define

L(I, y, i, j) = I/µ+ 1/µi + 1/µj, (I, y, i, j) ∈ X.

For any action chosen and for (I, y, i, j) /∈ G

E [L(Zn+1)− L(Zn)|Zn = (I, y, i, j)] = (λ1 + λ2 − µi − µj)/µ

+µi(p1/µ1 + p2/µ2 − 1/µi)

+µj(p1/µ1 + p2/µ2 − 1/µj)

= (λ1 + λ2)/µ− 2. (2.4.6)

Since G is a finite subset of the irreducible set X0, we may now apply (Kulkarni ,

1999, Theorem 3.7) to {Zn} to get that all states in X0 are positive recurrent when

the right-hand side of (2.4.6) is strictly negative: when (2.4.5) holds. Furthermore,

since (2.4.6) also applies for states outside of X0, applying Proposition C.1.5 of Sennott

(1999) to {Xn} yields that the expected time to reach X0 is finite. It follows that a

stationary distribution exists cf. (Sennott , 1999, p. 294).

To show necessity of the inequality, we note that (Meyn and Tweedie, 1993, The-

orem 11.5.1) implies that when (λ1 + λ2)/µ ≥ 2 the expected time to reach G from

outside of G is infinite, and thus a stationary distribution cannot exist.

Let Uα and wα be the obvious infinite horizon analogues to Uα,t and wα,t, respec-

tively. The following are called the discounted cost optimality equations (DCOE):

vα(I, y, i, j) = min
b∈AK

{wα(I, y, i, j, b)}, (2.4.7)

where K = W , I1, I2, or (0, 0, 0, 0) depending on (I, y, i, j). It is well-known that vα

satisfies the DCOE and a policy made up of actions that achieve the minimum on

23



the right hand side of (2.4.7) is discounted cost optimal. Similarly, if we replace vα

in the definition of the DCOE by some function on X, say ψ, and define U and w as

the obvious average cost analogues to Uα and wα, then the following are called the

average cost optimality equations (ACOE):

g + ψ(I, y, i, j) = min
b∈AK

{w(I, y, i, j, b)}, (2.4.8)

where K = W , I1, I2, or (0, 0, 0, 0) depending on (I, y, i, j).

Proposition II.5. For the proxy model, the following hold:

1. For the discounted cost model

(a) The quantity vα,t is non-decreasing in t and limt→∞ vα,t = vα.

(b) Any limit point of an optimal t−horizon policy is infinite horizon dis-

counted cost optimal.

(c) In particular, the results of Propositions II.2 and II.3 hold in the infinite

horizon discounted cost case.

2. For the average cost model, suppose (λ1 + λ2)
(

p1
µ1

+ p2
µ2

)
< 2.

(a) The policy that moves customers only to avoid idling has finite average

cost.

(b) The optimal average cost may be computed as g = limα↑1 vα(x) for any

x ∈ X.

(c) Any limit point of a α−discounted cost optimal policy is average cost opti-

mal.

(d) There exists a limit function, say ψ of ψα(x) = vα(x) − vα(0, 0, 0, 0) for

x ∈ X such that (g, ψ) satisfy the ACOE.
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(e) In particular, the results of Propositions II.2 and II.3 hold in the average

cost case.

Proof. Since the state space is countable, the cost function is non-negative, and the

action set in each state finite, the first two results in the discounted cost case follow

from Proposition 4.3.1 of Sennott (1999). Taking limits in the value functions and

along a subsequence in the policies yields the last discounted cost result.

In the average cost case condition P1’ in Down and Lewis (2006) holds for the

non-idling policy described (see Example 3.3 in Down and Lewis (2006)). Applying

Theorem 3.6 therein yields the first result in the average cost case. Corollary 7.5.10

and Theorems 7.2.3 and 7.5.6 of Sennott (1999) (collectively) yield Statements 2 (b),

(c), and (d). Taking limits in the value functions and along a subsequence in the

policies yields the last average cost result.

2.5 The Load Balancing Heuristic and Numerics

In this section we present the load balancing (LB) heuristic for control of the

original system with heavy-tailed distributed service times. The LB heuristic requires

a mapping from (partial) state information of the original system to the state of the

proxy model.

Modeling this problem, it is tempting to consider the possibility of using a a

partially observable Markov decision process (POMDP). For example, at any point

of time t at which a customers service is not yet completed, the state space of the

POMDP could include the number of customers in each queue, and the probabilities

p(t) and q(t) that the service distribution for queues 1 and 2 are type 1. However, the

continuous nature of p and q can create, once again, the potential for intractability.

Instead of the POMDP, we chose to create the proxy model using a “trigger,” as we

will define it below.
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For the original system the information of interest is the vector

(I(t), y(t), η1(t), η2(t)), where I(t) represents the total number of customers in the

system at time t, y(t) is the number of customers in the low cost queue (queue 2),

and ηk(t) denotes the time elapsed since the customer at station k began service.

The classification of the customers as “standard” or “heavy” in service depends on a

“trigger” denoted τ . The trigger indicates when the service time ηk(t) for the original

system is deemed long enough to treat the customer at station k as a heavy type

customer. We suggest a method of determining τ below. Define

zk(η) =


1 if η > τ ,

2 if η ≤ τ .

The original system is observed continuously and controlled at times of arrivals, times

of departures, and whenever a customer in service reaches τ units of time at the sta-

tion. At such times, when the original system vector is

(I(t), y(t), η1(t), η2(t)), the LB heuristic uses the optimal action for the proxy model

with state (I(t), y(t), z1(η1(t)), z2(η2(t))), i.e., it uses the move-up-to policy with level

L(I(t),z1(η1(t)),z2(η2(t))).

The parameters for the proxy model should be chosen to resemble those of the

original system. The arrival rates equal those of the original system. If a service

time for the original system, S, with distribution F (·), has mean E[S] = 1/µ, then

we suggest setting the average service time of the proxy model, unconditional on the

customer type (class), also equal to 1/µ. That is, p1/µ1 + p2/µ2 = 1/µ. Note that

stability, condition (2.4.5), is guaranteed if (λ1 + λ2)/µ < 2. We will consider one, of

perhaps many, ways to determine p1 and p2. Let p2 = F (τ) and p1 = 1−F (τ), where

τ is predetermined. Under these settings, the service times conditioned on customer

type are set to have the same means: 1/µ2 =
∫ τ

0
sdF (s)/p2 and 1/µ1 =

∫∞
τ
sdF (s)/p1.

To determine τ , we suggest a quantile-based method. For a given probability a, define
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ϕa as the the ath quantile: P(S ≤ ϕa) = a. Define z as the probability that ϕa is

reached given that the trigger τ has been reached: z = P(S > ϕa|S > τ). Given

a and z, exogenously, τ can then be calculated from F (·). For the numerical study

presented in Section 2.5.1, a = 0.8 and z = 0.75. Once τ is calculated, all of the

parameters of the proxy model can be determined from the relationships above.

There is one last consideration to make regarding the implementation of the LB

heuristic. The state space for the proxy model is (countably) infinite. Instead of

solving this problem, the optimal policy is approximated using a truncated state

space. That is, the policy is calculated for a system in which each queue has a

maximum capacity of B customers. (For the numerical study it was assumed that

arrivals to a full queue were lost, at no cost.) The truncated problem can be solved by

well known algorithms, including policy iteration and value iteration; cf. Puterman

(1994).

One question remains: How can we apply a truncated policy to the original, non-

truncated system? For example, suppose that the capacity B = 35 but the original

system reaches (I(t), y(t), z1(η1(t)), z2(η2(t))) = (41, 3, i, j). When B = 35, there are

no proxy calculations for queue lengths (q1, q2) = (38, 3). One possibility is to simply

use the actions associated with (q1, q2) = (min{I(t)− y(t), B},min{y(t), B}); for the

example, (q1, q2) = (35, 3). A downside of this approach is that truncation may re-

sult in a non-monotone policy. In short, the computed move-up-to levels increase in I

except near the capacity limits, where the levels may suddenly drop off. As an alterna-

tive, we suggest a “smoothing” of move-up-to levels, in accordance with Propositions

II.2 and II.3. Denote the optimal number of customers to move in state (I, y, i, j),

for the truncated proxy model, as θ∗(I, y, i, j); let θ∗(I, y, i, j) = 0 for (I − y) > B

or y > B. Define b+(I, y, i, j) = y + θ∗(I, y, i, j), if θ∗(I, y, i, j) > 0; b+(I, y, i, j) = 0,

otherwise. We first approximate move-up-to levels L̃(I,i,j) = maxy b
+(I, y, i, j). These

levels are not monotone in I; they decrease and are zero for I > 2B. So, in a
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second step we smooth the move-up-to levels to guarantee that they are mono-

tone and positive for a large total number of customers. For (I, i, j) we choose

L̂(I,i,j) = max{ℓ:0≤ℓ≤I} L̃(ℓ,i,j). Then, in the original system we implement a move-

up-to policy with level L̂(I(t),z1(η1(t)),z2(η2(t))). This smoothing approach was compared

to the above no-smoothing approach (that ignores move-up-to levels explicitly) in the

numerical study, and the smoothing approach performed better.

2.5.1 Numerical Study

We tested the LB heuristic against four heuristics: do nothing (DN), no idling

(NI), join the shortest queue (JSQ), and modified join the shortest queue (ModJSQ).

The DN policy never moves customers. The NI policy moves exactly 1 customer, if

available, from one queue to the other if and only if the other server is idle. The JSQ

policy only moves customers at times of arrival, by moving an arriving customer to

the other queue if the other queue is shorter. The ModJSQ policy moves new arrivals

to the other queue if the other queue is accruing total holding costs at a lower rate.

That is, a customer arriving to queue 1 (2) is moved to queue 2 (1) if h1q1 > h2q2

(h1q1 < h2q2).

In our experiment the service time S is distributed according to a bounded and

shifted Pareto distribution. A standard (not bounded or shifted) Pareto distribution is

a heavy-tailed, power-law distribution with two parameters, α and κ. It has support

[κ,∞), and has infinite variance for α ≤ 2. A bounded (but not shifted) Pareto

distribution is similar to a standard Pareto distribution except that it has support

[κ, κ2); bounded above by κ2. A bounded and shifted Pareto is a translation of the

bounded Pareto to the origin. Its probability density function is

f(s) =


α κα

1−(κ/κ2)α
(s+ κ)(−α−1) if 0 ≤ s ≤ κ2 − κ, 0 < κ ≤ κ2,

0 otherwise.
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Its mean is E[S] = κ−α
2 (κακ2α−κ κα

2 α)
((κ/κ2)

α−1)(α−1)
−K and its variance is

Var[S] =

κ−2α
2

(
− ((κ/κ2)

α−1)(κ2κα
2−κακ2

2)ακα
2

α−2
− (κακ2α−κ κα

2 α)
2

(α−1)2

)
((κ/κ2)

α − 1)
2 .

The design of experiment is as follows: We fix κ = 0.1 and vary the utilization

ρ := 1/µ = E[S] and Var[S], which in turn determine α and κ2. We also fix λ1 = λ2 =

1, in which case the stability condition (2.4.5) becomes ρ < 1. We considered all com-

binations of ρ ∈ {0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99} and Var[S] ∈ {1, 3, 6, 9, 12}. As

noted above, for LB a = 0.8 and z = 0.75, which, together with the distribution func-

tion, determine τ , p1, and p2. For the costs, h2 is fixed at 1 and h1 ∈ {1.25, 1.5, 2} and

m ∈ {0.75, 1.5, 2.5}. In total, the factorial consists of 360 combinations of parameter

settings.

The policies were evaluated under the average cost criterion. For each policy and

parameter setting, a simulation was developed consisting of 60 (consecutive) runs,

plus an additional run at the the beginning as a warm-up period. Each run had a

length of 100,000 time units. The optimal policy for the proxy model was determined

using a truncated state space with capacity B = 35 customers per queue. Unless

stated otherwise, LB refers to the smoothing approach.

Of the 360 cases, LB policy performs best in 298 (82.8%), the NI policy performs

best in 29 (8.1%), the JSQ policy performs best in 12 (3.3%), and the ModJSQ

policy performs best in 21 (5.8%). The DN policy has the highest costs in every

case. In terms of costs, on average over the 360 cases, LB improves upon DN by

58.9%, NI improves upon DN by 55.8%, ModJSQ improves up DN by 53.1%, and

JSQ improves upon DN by 51.9%. The standard deviations (s.d.) of these percent

improvements upon DN are 6.4%, 6.1%, 6.3%, and 5.8% for LB, NI, ModJSQ, and

JSQ, respectively. This implies that the use of a control policy to balance the load of

the system is worthwhile.

29



The average reduction in total costs for LB over the alternative policies are 7.0%

(s.d. 6.4%) for NI, 14.5% (s.d. 9.1%) for JSQ, and 12.3% (s.d. 9.3%) for ModJSQ.

In the cases for which LB is the best policy, LB averages 7.4% (s.d. 5.3%) lower costs

than the best alternative. On the other hand, when LB is not the best policy, it has

6.1% (s.d. 9.1%) higher costs than the best. An important observation to make is the

fact that in most of the cases that LB is outperformed the utilization is high. When

ρ = .99 is omitted LB is the best policy in 89.5% of the cases, and when both ρ = .95

and ρ = .95 are omitted, LB is the best policy in 93.7% of the cases. As it turns

out, these high utilization are subject to appreciable simulation error. We calculated

95% confidence intervals for the time average costs of a simulation run (assuming

runs are independent) and found that we cannot be confident that the LB policy is

actually outperformed in any of the cases with ρ ≥ 0.95. Generally speaking, it can

be problematic to simulate queues with truncated Pareto service time distributions;

see Gross et al. (2000). Therefore, we compared simulated costs for the DN policy

against the exact costs calculated using the Pollaczek-Khintchine formula. While the

average absolute percent deviation between the simulated and exact DN costs is only

0.8% for ρ ≤ .9, it is 12.0% for ρ = .99 and 2.2% for ρ = .95. In light of this, from

here on we restrict attention to ρ ≤ .9.

Averaged over the remaining 270 cases, LB reduces costs by 7.6% (s.d. 5.7%)

over NI, 18.0% (s.d. 6.5%) over JSQ, and 15.4% (s.d. 5.5%) over ModJSQ. Table

2.1 displays the percent differences in costs for ρ = .85, .9; LB is not outperformed

in any of these cases. The best alternative to LB is NI, and in fact NI is the only

policy to outperform LB in the 270 cases – in 17 cases (6.3%); see Table 2.2. LB

tends to be outperformed at the lower utilizations, when moving costs are higher,

and the difference in holding cost rates between the queues is lower. As indicated in

Table 2.1, for Var(S) = 1 the performances of LB and NI are closest when h1 = 1.25

and m = 2.5; though the trend does not hold for all variances. Compared to NI, LB
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has lower costs by an average of 8.6% (s.d. 5.3%) when ρ = .85 and by 7.3% (s.d.

4.9%) when ρ = .9. For all 270 cases, where LB outperforms NI it does so by an

average of 8.2% (s.d. 5.4%). On the other hand, when NI is better LB has only 0.8%

(s.d. 0.6%) higher costs. This is true in general; the average difference in total costs

between LB and the best policy is very small compared to the difference between the

best policy and the other heuristics; see Table 2.3. In terms of moving costs, LB has

higher moving costs than NI in 255 (94.4%) of the cases. The moving costs for LB

are 56.1% (s.d. 47.4%) higher than those of NI. In the 15 cases where LB has lower

moving costs, they are 2.6% (s.d. 2.5%) lower. The LB policy is more aggressive in

moving customers.

We also ran simulations for the no-smoothing approach to the LB heuristic. On

average, the smoothing approach outperformed the no-smoothing approach by 1.7%

(s.d. 2.2%). To further test the effects of truncation, we ran simulations for the

smoothing approach with queue capacity B = 20 and ρ = .85, .9. As compared to the

smoothing approach when B = 35, the costs increased by 1.02% (s.d. 3.78%). (For

ρ = .85, .9, the costs of the no-smoothing approach for B = 35 over the smoothing ap-

proach for B = 35 are higher by 0.7% (s.d. 1.2%).) So, truncation in the proxy model

has an effect on the performance of the LB heuristic, and the smoothing approach

does a better job than the no-smoothing approach at mitigating the effect.

In summary, LB (with smoothing) performs well. As indicated by the poor perfor-

mance of DN, moving customers can greatly decrease holding costs. The simulation

outputs for ρ ≥ .95 are noisy and inconclusive; otherwise, LB outperforms ModJSQ

and JSQ. The best alternative to LB is NI. The performances of LB and NI are closest

when moving costs are high and the difference in holding cost rates is low. The NI pol-

icy can outperform LB when utilization is low, but LB is not outperformed by much

and there are larger gains in the other cases. Finally, we should note that in choosing

the parameters for the proxy model we only considered a = 0.8 and z = 0.75. There
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is room for improvement by optimizing these settings. We leave such an exercise for

future research.

Table 2.1: The percent decrease in total long-run average costs for LB compared to
NI, JSQ, and ModJSQ.

NI JSQ
ρ h1 m Var[S] Var[S]

1 3 6 9 12 1 3 6 9 12
0.75 4.52 4.46 4.73 7.84 4.17 11.56 11.13 11.13 12.16 9.46

1.25 1.5 3.56 3.86 2.39 5.76 2.95 12.07 12.82 7.56 9.02 9.57
2.5 0.90 1.64 2.85 2.41 2.86 10.98 10.51 10.47 7.06 9.63
0.75 10.45 10.96 8.90 8.02 6.64 17.19 16.71 14.60 12.56 11.75

0.85 1.5 1.5 7.78 10.20 7.38 8.17 4.61 17.28 16.63 14.08 14.03 10.22
2.5 4.56 6.75 4.94 5.75 5.82 15.77 14.38 12.47 12.00 11.41
0.75 21.05 20.31 15.85 14.50 13.94 27.59 24.88 20.11 19.93 18.87

2 1.5 16.83 16.70 15.58 15.52 14.29 23.48 23.56 21.76 19.10 19.68
2.5 13.59 16.20 11.76 11.09 10.65 23.36 22.57 18.30 17.28 15.36
0.75 4.96 4.66 3.55 1.77 3.10 10.63 9.01 9.47 6.57 6.45

1.25 1.5 2.88 2.59 4.80 0.42 0.36 11.02 8.22 6.80 5.96 5.80
2.5 2.24 2.64 2.25 1.18 1.41 10.80 9.77 7.13 6.41 5.60

0.9 0.75 10.99 9.68 7.62 5.66 7.18 15.96 14.29 9.80 9.94 10.85
1.5 1.5 9.18 8.10 6.98 2.80 4.95 15.78 12.56 11.56 8.13 8.61

2.5 7.32 6.73 5.45 2.72 4.48 15.61 12.42 12.14 8.88 8.75
0.75 20.93 15.98 13.21 8.92 9.88 25.69 20.07 17.09 13.01 14.80

2 1.5 17.92 15.28 12.63 10.33 8.87 23.75 20.15 18.06 14.39 12.01
2.5 15.65 13.17 11.26 6.58 7.49 22.26 18.37 13.78 11.96 12.25

ModJSQ
ρ h1 m Var[S]

1 3 6 9 12
0.75 13.44 11.36 10.78 10.55 5.85

1.25 1.5 11.65 12.67 8.58 8.94 7.41
2.5 13.79 11.00 12.60 6.86 8.14
0.75 15.88 14.38 11.72 9.14 7.56

0.85 1.5 1.5 14.63 14.01 11.23 11.32 8.99
2.5 15.33 15.11 9.77 10.40 7.47
0.75 21.89 18.97 15.73 10.77 7.11

2 1.5 19.00 17.40 14.11 10.93 10.29
2.5 16.89 16.94 11.76 10.03 7.40
0.75 11.33 8.49 7.41 4.95 7.42

1.25 1.5 12.32 10.95 6.18 4.50 2.66
2.5 12.61 8.50 9.67 7.40 5.49

0.9 0.75 16.76 13.23 9.35 6.49 7.12
1.5 1.5 14.75 12.68 7.98 8.39 8.12

2.5 15.55 11.73 7.42 7.61 9.12
0.75 19.86 14.75 8.35 4.22 0.99

2 1.5 18.71 14.28 9.93 6.29 2.40
2.5 16.49 11.04 7.33 1.86 1.60

Table 2.2: The number of times each policy is optimal (among this group of heuris-
tics).

# of times optimal/total
ρ LB NI JSQ ModJSQ

0.5 – 0.6 79/90 11/90 0/90 0/90
0.7 – 0.8 84/90 6/90 0/90 0/90
0.85 – 0.9 90/90 0/90 0/90 0/90

0.95 29/45 7/45 3/45 6/45
0.99 16/45 5/45 9/45 15/45
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Table 2.3: The average percent above optimal costs (among this group of heuristics).
ρ LB NI JSQ ModJSQ
0.5 0.1% 5.9% 30.5% 26.4%
0.6 0.1% 10.0% 29.9% 25.6%
0.7 0.1% 9.3% 24.2% 20.1%
0.8 0.0% 9.0% 19.9% 15.9%
0.85 0.0% 10.0% 18.3% 13.8%
0.9 0.0% 8.1% 14.4% 10.4%

2.6 Conclusion

In conclusion, we have introduced a new method for load balancing in the case

for highly variable service distributions. The method introduced is robust to changes

in the parameter settings even in the case where it is not adjusted to optimize the

implementation. The most reasonable alternative to our heuristic appears to be a non-

idling heuristic. In this case, the question is simply, is the consistency and savings

worth the difficulty of implementing our heuristic. In many cases we believe more

than 8.5% savings is worth the time to implement our heuristic.

At the same time, we have shown that the use of Markov decision processes can

mitigate the challenges of a general service time distribution. We believe that the

ideas described here can lead to insights for other queueing models. The example of

admission controlled M/G/1 has already been alluded. Exactly the same intuition

holds for service rate control in a G/M/1. Of course, these are just the building

blocks for more sophisticated models. We note that an extension of the current work

is to consider a larger network of queues, and we conjecture that the two pairing

heuristics described in Down and Lewis (2006)) would be useful. We leave this for

future research.
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CHAPTER III

Managing supplier default risk via subsidies and

supplier diversification

3.1 Introduction

Every firm experiences supplier default risk to different degrees, the severity of

it measured by the magnitude of the default probabilities and/or of the possible

losses. Different firms adopt different alternatives to manage this risk. As Siggelkow

(2001) points out, some firms, for example Liz Claiborne, revert to supply chain

strategies where they rely on multiple suppliers to deliver the parts (diversification of

supplier default risk), while others, for example Ford—see Babich (2008)—, strive to

establish a close relationship with one “dedicated” supplier and take steps to ensure

the well-being of such a supplier. Measures to increase the probability of the supplier’s

survival include financial subsidies, guaranteed order quantities, sharing of managerial

expertise, etc. The “dedicated supplier” strategy (also called single-sourcing) and the

“supplier diversification” strategy (called multi-sourcing) are employed by firms for

multiple reasons related to quality control, product design costs, etc. Among all of

those reasons, we focus on how the supplier default risk affects the choice between

these two strategies.

Furthermore, whether the firm chooses to have an exclusive supplier or to have a
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diversified pool of suppliers, in order to have a better control of the available supplies

in the future, they may choose to have “backup inventory.” We would like to analyze

when the firm uses backup inventory, and if it would use more than one supplier to

create the backup inventory or a single source to create it.

Both strategies (supplier diversification and backup inventory) are considered op-

erational mitigation strategies. To increase the probability of successful delivery,

manufacturers can also give financial subsidies to their supplier, such as the well-

known case of Ford Motor Co., which agreed to pay between $1.6 billion and $1.8

billion to help with the restructuring of Visteon, as documented by White (2005).

This ability to provide a subsidy to the suppliers can affect the decision to multi- or

single-source, as well as the amount of backup inventory to create. It is not obvious

which of these strategies is optimal for the manufacturer. This is one of the questions

we are trying to analyze.

This problem is one of the multiple considerations to make when choosing a firm-

sourcing/risk mitigation strategy. The body of research relating to the risk man-

agement problem is extensive. The following are some references that touch on the

subject. Tomlin and Wang (2005) study the convenience of using dedicated vs. flex-

ible resources when using an exclusive supplier vs. diversifying the suppliers. Babich

(2006) uses game theory to analyze the value of the manufacturer’s option to defer

ordering and the supplier’s option to defer pricing decisions when the suppliers have

different lead times. Tomlin (2009) argues that the assumption that a firm knows

exactly probability distribution for a supplier’s yield (reliability) is not appropriate,

so he studies the supplier diversification strategies and backup inventory strategies

when the yield distribution is not known, but updated over time using a Bayesian

model. Yu et al. (2009) suggest a method to decide on single or dual sourcing based

on the disruption probability, where one of the suppliers is reliable, but more ex-

pensive, and the alternative supplier has a better price, but is less reliable. Schmitt
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and Snyder (2009) analyze a manufacturer that simultaneously experiences uncer-

tainty in the supply from both random yield and multiperiod disruptions and warn

that multiperiod disruptions cannot be optimized separately without incurring large

errors.

A number of papers on risk mitigation appeared after September 11, 2001, an

event that highlighted how global risks such as terrorism are important challenges

to supply chains. These papers include the works from Jüttner et al. (2003), Sheffi

(2001), Rice and Caniato (2003a), Rice and Caniato (2003b), among others.

In this work, we will consider settings where the manufacturer is a significant

portion of the supplier’s market, so that the manufacturer has influence on the sup-

plier and can effectively increase the expected delivery probability. At the same

time, we will consider settings in which the suppliers are in perfect competition, and

therefore all of them sell the supplies they produce at the same price by supply and

demand forces . Therefore, when the manufacturer is considering which supplier to

select, his decision is based on the costs of subsidizing and on the expected costs of

penalty/holding according to the corresponding delivery probability distribution (in

other words, the price of the supplies is not a factor in the supplier selection). Un-

der these assumptions, we can think of a large manufacturing firm with one or more

dedicated suppliers.

We do not assume that the manufacturer is the only customer of the supplier,

however. Therefore, the amount of inventory of the supplier is not directly linked to

her probability of default.

Babich (2008) finds that the optimal subsidy and optimal ordering amount are

independent of each other when the uncertainty on the supplier output comes from

random capacity. We focus on the case when the uncertainty comes from random

yield. Even in the simplest case (Bernoulli-distributed proportion, i.e., receive all or

nothing) we find that with random yield, the subsidy and ordering amount are not
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independent of each other.

Our work is related to the work by Wang et al. (2009). We focus on the case

of random yield, and we assume that the manufacturer will be in production while

the subsidies are granted, even if the effects will be delayed for the next period.

The formulation by Wang covers both random yield and random capacity, but for

one production season with two distinct stages: On the first one, the manufacturer

decides on the amount of effort (subsidy, in our context), and in the second, she

decides on the amounts to order. Besides other insights, they find that a mixed

strategy can be useful when the suppliers are very unreliable.

Yano and Lee (1995) present a survey on the optimal order size in the presence

of random yield, so we refer the reader to it for references on the subject. We do

make a note of the model by Wang and Gerchak (1996), which is interesting because

it incorporates both random yield and random capacity in their analysis. They do

not analyze subsidies.

3.2 The model

We will now present the assumptions of our model. In each subsection, we will

list the assumptions that were specific for that portion of the analysis.

We start by listing the assumptions that are common to all the versions of our

model.

The manufacturer decides on the supply order quantity ztk from supplier k. It is

assumed that the manufacturer has a reasonable control of the use of the subsidies

the supplier will be given. Although the subsidy is quantified in monetary amounts

in the formulation, it can be the cost of any action taken by the manufacturer to

improve the successful delivery probabilities. An example of this is providing coffee

producers with a premium for their coffee if they meet quality and environmental

standards. More generally, the subsidy can be the cost of creating “networks and
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value-adding partnerships”, as Bakos and Brynjolfsson (1993) points out.

From this amount, the manufacturer will receive a random amount βt
kz

t
k, where

βt
k is a random variable. We will assume that the density function of βt

k is a Bernoulli

distribution (which means that no partial amount of supplies will be delivered; only

the full amount or nothing). The manufacturing company knows the no-default prob-

ability λtk when the manufacturer does not subsidize supplier k at all on period t. This

probability actually reflects how likely a successful delivery is today when no funding

is obtained from the manufacturer. Note that the probabilities for success λtk may

change for each supplier and for each period. For instance, it may be more likely for

a strike to happen depending on circumstances such as preexisting union agreements,

etc.

From now on, we will hold the assumption that the delivered amount is Bernoulli-

distributed, except where we specifically relax this assumption. We will also assume

that the suppliers are different only in the probability of delivery, but the quality, the

cost and price of the supplies are the same for both. These assumptions are valid, for

example, when the suppliers are in different geographic locations within a country,

but using similar technologies.

The demand is realized at the beginning of each period. If the demand is not met,

the manufacturer pays p per unit of shortage (penalty). On the other hand, if there

are leftovers in inventory after demand has been satisfied, the manufacturer will pay

h per unit (holding cost). Besides the unmet demand penalty, assume that no cost is

incurred by the manufacturer for supplies that are not delivered. We do not assume

that the manufacturer has an insurance or that she receives compensation from the

supplier if the supplies are not delivered. In either of these cases, the problem would

have to be modelled using a penalty function that would depend on the shortage

amount (delivered amount - current inventory). The results of this analysis would

remain valid as long as this penalty function was convex in the shortage amount.
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Without loss of generality, we do not consider separately the unit cost of supplies

and consider only h and p (we have the same cost structure as the work from Ciarallo

et al. (1994)). This formulation incorporates the ordering cost c through a standard

algebraic transformation, assuming that the inventory can be salvaged at the end of

the planning horizon at cost. In this case, without loss of generality, we can define

h = h′ + c and p = p′ − c and solve the problem using these redefined variables.

3.2.1 Diversification and subsidy model, immediate subsidy effects, known

“debt” amount

As mentioned, we will present the simplifying assumptions of this section, some of

which we will relax later. First, we assume that subsidies granted by the manufacturer

to the supplier have an immediate effect, meaning that today’s subsidy increases the

probability of successful delivery of the supplies for today. We assume that the amount

needed to guarantee that a default does not happen is known and deterministic.

At the beginning of period t, the manufacturer records its inventory level xt and

observes the amount of subsidy that guarantees that supplier k does not default at

the end of the current period, period t. This amount will be denoted as F t
k > 0 and

is measured in monetary units.

This amount may be, for instance, the amount that would help to reach a settle-

ment in negotiations with a union. We will call this amount F with the generic name

of “debt.” Let ωt
k be the amount of subsidy given by the manufacturer to supplier k

(ωt
k ≤ F t

k). We assume that it costs α to fund either supplier with one monetary unit.

In our analysis, if the cost to fund the supplier was an increasing, strictly convex

function of the amount of subsidy, the objective function would still be convex, a

minimum could be found, and therefore a similar analysis could be carried out. For

simplicity, we will consider the funding costs to be linear.

The probability of delivery in period t depends on the amount of subsidy granted.
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The more subsidy to the supplier, the more likely it is that the manufacturer will

receive the delivery. For simplicity, we will assume that this probability is πt
k =

ωt
k

F t
k
(1 − λtk) + λtk. Note that πt

k, the after-subsidy probability of default, depends on

λtk, and on the amount of subsidy the manufacturer pays ωt
k. Note that if ωt

k = 0,

i.e., no subsidy is granted, the probability of successful delivery remains as λtk. On

the other hand, if full subsidy is granted, the probability of successful delivery is 1.

For the time being, let us assume that the demand, Dt, is deterministic. This is

not too strong an assumption in the one-period context, because the manufacturer

has an idea of the demand for the current period. We will relax the deterministic

assumption in later versions of the model when the manufacturer considers the future.

The state of the system can be characterized by the inventory level in each period

xt. A Markov policy Π is a decision rule that assigns a pair (ztk, ω
t
k) to every possible

state xt. In our case, the decision will consist of the order amounts vector and of the

subsidies vector: (zt, ωt), where zt = (zt1, z
t
2), ω

t = (ωt
1, ω

t
2).

Let ρ be the discount rate for cash flows (i.e., the inverse of the interest rate).

Using all the previous notation, the optimization problem of the manufacturer is

the following:

min
Π
E[uΠ(1, x1)] (3.2.1)

where

uΠ(t, x) =
N∑
n=t

ρn−1

[
h

(
x+

∑
k

znkβ
n
k −Dn

)+

+ p

(
x+

∑
k

znkβ
n
k −Dn

)+

+ α
∑
k

ωn
k

]

− ρNuT
[
xN+1

]
,

(3.2.2)

xt+1 = xt +
∑
k

ztkβ
t
k −Dt. (3.2.3)
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Let us denote by U the value function of this finite horizon dynamic program.

The value function depends on time t and on the available inventory at time t, x.

The value function satisfies the following dynamic programming recursion:

U(t, xt) = min
Π
uΠ(t, xt)

= min
(ztk,ω

t
k)

{
E

[
h[xt +

∑
k

ztkβ
t
k −Dt]+ + p[Dt − xt −

∑
k

ztkβ
t
k]

+ + α
∑
k

ωt
k

]

+ ρEU(t+ 1, xt +
∑
k

ztkβ
t
k −Dt)

}
(3.2.4)

U(N + 1, x) = −uT (N, x)

where ztk ≥ 0; F t
k ≥ ωt

k ≥ 0 for all k = 1, ..., K. We will assume that uT (·) = 0;

that is, the salvage value is 0.

We will assume that both F t
k and λ

t
k are predetermined and known for period t. In

subsequent analysis, we will drop the assumption of a known amount F t
k to guarantee

delivery.

3.2.2 One period, two suppliers

In the model just described, the two-supplier one-period problem, i.e., we will

assume that K = 2 and T = 1. We will omit the superscript t = 1 on z, D, ωk.

Recall that Π denotes a policy. From the fact that βk has a Bernoulli distribution

with parameter π(ωk), the problem becomes:

min
Π
uΠ(1, x) = min

Π

{
h[x+ z1 + z2 −D]+ + p[D − x− z1 − z2]

+
}
π1(ω1)π2(ω2)

+
{
h[x+ z1 −D]+ + p[D − x− z1]

+
}
π1(ω1) [1− π2(ω2)]

+
{
h[x+ z2 −D]+ + p[D − x− z2]

+
}
[1− π1(ω1)]π2(ω2)

+
{
h[x−D]+ + p[D − x]+

}
[1− π(ω1)] [1− π2(ω2)] + α(ω1 + ω2)

(3.2.5)

41



where πk(ωk) =
ωk

Fk
(1 − λk) + λk. For simplicity, where there is no ambiguity, πk

will be used instead of πk(ωk).

For fixed ωt
k, this problem is piecewise-linear on (z1, z2). As a consequence, the

optimal values of (z1, z2) are on the corner points. Let us assume for now that D > x.

The four corner points that are candidates to be the optimal values are the following:

(a) (z1, z2) = (D − x, 0),

(b) (z1, z2) = (0, D − x),

(c) (z1, z2) = (D − x,D − x) and

(d) (z1, z2) = (0, 0).

Note that solution (d) is easily discarded because it is suboptimal. The comparison

of the objective function (3.2.5) evaluated both in (a) and (d) makes it clear that the

expected costs for solution (d) are higher.

Let Ωk ≡ {ωk ≥ λk}. Ωk is the space of the subsidies ωk for supplier k. The

manufacturer has to decide on a pair (ω1, ω2) ∈ Ω1 × Ω2.

First, we will show that under certain conditions, regardless of the amount of

subsidy granted, it is not optimal to order from both suppliers (which would imply

the creation of backup inventory).

Lemma III.1. For problem (3.2.5), the following holds:

• If p(1− λ1) < h(λ1), regardless of the amount of subsidy granted to supplier 1,

ordering from this supplier has a lower cost than ordering from both suppliers.

• If p(1− λ2) < h(λ2), regardless of the amount of subsidy granted to supplier 2,

ordering from this supplier has a lower cost than ordering from both suppliers.

Proof. The result is obtained by comparing values of the objective function (3.2.5)

at points (z1, z2) = (D − x, 0) (z1, z2) = (D − x,D − x).

In other words, it is possible that the initial parameters are such that it is never

optimal to diversify for the manufacturer. This case is simpler: there is no region
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where diversification is optimal, so that we only need to consider procuring from

supplier 1 or procuring from supplier 2; or, in other words, only points (a) and (b)

described above should be considered.

However, if two conditions hold (p(1− λ1) ≥ h(λ1) and p(1− λ2) ≥ h(λ2)), there

are combinations of subsidies for suppliers 1 and 2 that make it optimal to diversify

instead of procuring from an exclusive supplier. This means that in this case, point

(c) described above should be considered besides (a) and (b). We will study this

case first, because the exclusive supplier case (where either p(1 − λ1) < h(λ1) or

p(1− λ2) < h(λ2)) has a simpler structure and the proofs are very similar.

As we will see in the next subsection, the amount ω̃i ≡ Fi(p(1−λi)−λih)
(1−λi)(p+h)

defines a

threshold: supplier i has to have at least ω̃i to be reliable enough for the manufacturer.

Below this level, this supplier is not reliable enough, and the expected penalty costs

for the default are higher than the expected holding costs, and therefore it becomes

necessary to diversify. If we look at the numerator of ω̃i, we can see that if p(1−λi) ≤

h(λi), then ω̃i ≤ 0, so for any amount of subsidy ωi, it is optimal to have i as an

exclusive supplier.

3.2.2.1 The case with p(1−λ1) ≥ h(λ1) and p(1−λ2) ≥ h(λ2): Diversification

may or may not be optimal

In order to analyze this case, we will divide Ω1 × Ω2, the space of the subsidies,

into three regions A, B and C. Each region is a subset of (Ω1,Ω2), where each of

the possible corner points (z1, z2)—the order combinations (a), (b) or (c) described

above—has a lower cost. In other words, we will determine constraints on (ω1, ω2) to

define the region in which each possible pair (a), (b) or (c) is optimal. Each of these

regions is the intersection of semiplanes (which we will describe below), and therefore,

each of them is convex.

Then, within each region (A, B or C), by taking advantage of the simplifica-
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tion obtained by substituting the optimal ordering amounts (z1, z2) —(a), (b) or (c),

respectively— we will determine which pair of subsidy values (ω1, ω2) within each

region is the optimal one. The optimal subsidy amounts within each region are pos-

sible candidates to be the solution to problem (3.2.5). Finally, we will obtain the

conditions where each of these candidate points are the solution to the problem.

We will now address the first step. Before we define the three regions in Ω1 ×Ω2,

we will present a Lemma that will help us to obtain them. By substituting (a), (b) or

(c) in the objective function (3.2.5) and comparing them, we can determine conditions

where each of the combinations (a), (b) and (c) has a lower cost.

Lemma III.2. For problem (3.2.5) the following holds:

1. (z1, z2) = (D − x, 0) has a lower penalty cost than (z1, z2) = (D − x,D − x) if

and only if ω1 > ω̃1 ≡ F1(p(1−λ1)−λ1h)
(1−λ1)(p+h)

.

2. (z1, z2) = (0, D− x) has a lower cost than (z1, z2) = (D− x,D− x) if and only

if ω2 > ω̃2 ≡ F2(p(1−λ2)−λ2h)
(1−λ2)(p+h)

.

3. (z1, z2) = (D − x, 0) has a lower cost than (z1, z2) = (0, D − x) if and only if

ω2 ≤ F2(λ1−λ2)
(1−λ2)

+ F2(1−λ1)
F1(1−λ2)

ω1

Proof. The result is obtained by comparing values of the objective function (3.2.5)

at points (z1, z2) = (D − x, 0) (z1, z2) = (D − x,D − x).

Note the implications of this Lemma regarding subsidizing an exclusive supplier

(without loss of generality, let us consider supplier 1): We assumed that p(1− λ1) ≥

h(λ1). Therefore, ω̃1 is positive. Assume that ω1 < ω̃1. For example, assume that

ω1 = 0 (i.e., no subsidy is granted to supplier 1). This means that the order levels

(z1, z2) = (D − x, 0) have a greater penalty cost than the order levels (z1, z2) =

(D− x,D− x). In other words, if ω1 = 0 (or any subsidy level such that ω1 < ω̃1), it

is suboptimal to order from supplier 1 only.
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Now that we have found conditions to compare order alternatives with each other,

we can find the regions where each of the possible ordering strategies is optimal (i.e.,

when each (z1, z2) dominates the other two strategies):

(a) (z1, z2) = (D − x, 0) is optimal when ω1 > ω̃1 and ω2 ≤ F2(λ1−λ2)
(1−λ2)

+ F2(1−λ1)
F1(1−λ2)

ω1

(note that we decided to drop the boundary ω1 = ω̃1) from region A, which will

be included in region C defined below). This is region A depicted in Figure 3.1.

(b) (z1, z2) = (0, D − x) is optimal when ω2 > ω̃2 and ω2 ≥ F2(λ1−λ2)
(1−λ2)

+ F2(1−λ1)
F1(1−λ2)

ω1

(we dropped ω2 > ω̃2). This is region B depicted in Figure 3.1.

(c) (z1, z2) = (D − x,D − x) is optimal when ω1 ≤ ω̃1 and ω2 ≤ ω̃2. This is region

C depicted in Figure 3.1.

The feasible space is depicted in Figure 3.1.

Figure 3.1: Partition of the subsidy space (Ω1 × Ω2) when diversification may be
optimal. In region A, order from supplier 1. Region B, order from supplier
2. Region C, order from both.

In region A, arithmetic substitution of z1 = D − x and z2 = 0 into the objective

function (3.2.2) will render: u(zk, ωk) = p[D − x]+
[
1− ω1

F1
(1− λ1)− λ1

]
+ α

∑
ωk,

which is a piecewise-linear function on both ω1 and ω2. It will be useful to remember

later that the partial derivative with respect to ω2 is positive. Let us first consider

the closure of A, which we denote Clos(A) ≡ A
∪

{border points of A s.t. ω1 = ω̃1}.
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The set Clos(A) is a convex set, so we can guarantee the minimum is reached within

this set. By the definition of closure, we have that A is contained in Clos(A). We

will proceed as follows: first, we will find the argminu(ω1, ω2) over Clos(A); next,

we will show that this optimal pair of ω values is contained in A itself. By doing so,

we will have accomplished obtaining argminu(ω1, ω2) over region A.

Let us find the argminuΠ over Clos(A). Recall that in region A, it is optimal

to order from supplier 1. On the border ω1 = ω̃1 ordering from supplier 1 costs the

same as diversifying. Notice that if we only order from supplier 1, it is not optimal

to subsidize supplier 2. Therefore, in order to minimize the objective function with

respect to (ω1, ω2) in A, we should set ω2 = 0 and consider the corner values of ω1.

Therefore, we have two possible solutions:

(a.1) (z1, z2, ω1, ω2) = (D − x, 0, ω̃1, 0) or

(a.2) (z1, z2, ω1, ω2) = (D − x, 0, F1, 0).

Similarly, in region B, from a similar argument, we get that the two possible

solutions are:

(b.1) (z1, z2, ω1, ω2) = (0, D − x, 0, ω̃2), or

(b.2) (z1, z2, ω1, ω2) = (0, D − x, 0, F2).

Finally, in region C, the objective function evaluated on (z1 = D− x, z2 = D− x)

is non-linear on ωk. Note that in this case, we have to pay holding costs for the

excess of demand (D−x), given that we order this amount from both suppliers. The

objective function in this case is:

h[D − x]+π1(ω1)π2(ω2) + p[D − x]+ [1− π1(ω1)] [1− π2(ω2)] + αω1 + αω2.

In order to minimize it with respect to (ω1, ω2) on Region C, we need to be

careful. In this case, it is possible to obtain a critical point by computing the partial

derivatives, but this critical point is a saddle point. We depict the contour plot of the
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objective function on region C in Figure 3.2 and label each constraint we just defined.

Figure 3.2: Saddle point in Region C. Optimality is at the border

As we can see, the solution for this case is located on the border1 of the region

defined by the following constraints: ω1 ≥ 0, ω2 ≥ 0, ω1 ≤ ω̃1, ω2 ≤ ω̃2. The border

is illustrated in Figure 3.2. Segment (i) corresponds to ω1 = 0 and 0 ≤ ω2 ≤ ω̃2.

Segment (ii), corresponds to ω2 = 0 and 0 ≤ ω1 ≤ ω̃1. Segment (iii), defined by the

two expressions: ω1 = ω̃1 and 0 ≤ ω2 ≤ ω̃2. Segment (iv) corresponds to ω2 = ω̃2 and

0 ≤ ω1 ≤ ω̃1. The corner points are the following:

(c.1) (z1, z2, ω1, ω2) = (D − x,D − x, ω̃1, 0), or

(c.2) (z1, z2, ω1, ω2) = (D − x,D − x, ω̃1, ω̃2).

(c.3) (z1, z2, ω1, ω2) = (D − x,D − x, 0, 0),

(c.4) (z1, z2, ω1, ω2) = (D − x,D − x, 0, ω̃2).

Let us analyze each of the four segments of the border of Region C individually.

1U is continuous on Region C, which is compact; therefore, it reaches its maximum and minimum
within this region. However, if the only critical point is a saddle point, the optimum must be reached
at the border.
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Consider segment (i), corresponding to expression ω1 = 0 and 0 ≤ ω2 ≤ ω̃2. From

substitution of z1 = D − x, z2 = D − x, ω1 = 0, we obtain

h[D − x]+ × π1(0)×
[
ω2

F2

(1− λ2) + λ2

]
+ p[D − x]+ × [1− π1(0)]×

[
1− ω2

F2

(1− λ2)− λ2

]
+ αω2,

which is a linear function of ω2, and hence the minimum is attained at one of the

corners:

(c.3) (z1, z2, ω1, ω2) = (D − x,D − x, 0, 0),

(c.4) (z1, z2, ω1, ω2) = (D − x,D − x, 0, ω̃2).

By comparing the objective function evaluated at each of these points, we obtain

that point (c.3) has a lower cost than (c.4) if and only if

h[D − x]+ × π1(0)× λ2 + p[D − x]+ × [1− π1(0)]× (1− λ2)

≤ h[D − x]+ × π1(0)× (∆ + λ2) + p[D − x]+ × [1− π1(0)]× (1−∆− λ2),

where ∆ ≡ p(1−λ2)−λ2h
p+h

.

Note that from the definition of ω̃2, point (c.4) yields the same objective value as

point (b.1).

Similarly, consider segment (ii), corresponding to ω2 = 0 and 0 ≤ ω1 ≤ ω̃1.

From substitution, we obtain a linear function on ω1, and hence the minimum is

attained on one of the corners: (c.3) (z1 = D − x, z2 = D − x, ω1 = 0, ω2 = 0), (c.1)

(z1 = D − x, z2 = D − x, ω1 = ω̃1, ω2 = 0).

Note that from the definition of ω̃1, point (c.1) yields the same objective value as

point (a.1).

Consider segment (iii), defined by the two expressions: ω1 = ω̃1 and 0 ≤ ω2 ≤ ω̃2.
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Substitution of z1 = D − x, z2 = D − x, ω1 = ω̃1 into the objective function yields

h[D − x]+ × π1(ω̃1)×
[
ω2

F2

(1− λ2) + λ2

]
+ p[D − x]+ × [1− π1(ω̃1)]×

[
1− ω2

F2

(1− λ2)− λ2

]
+ αω̃1 + αω2.

This is a linear function of ω2, so that the minimum value of the objective function

when constrained to this segment is obtained in one of the two corners:

(c.1) (z1, z2, ω1, ω2) = (D − x,D − x, ω̃1, 0), or

(c.2) (z1, z2, ω1, ω2) = (D − x,D − x, ω̃1, ω̃2).

In a similar way to what we found above, we find that (c.1) has a lower cost than

(c.2) if and only if

h[D − x]+ × π1(ω̃1)× λ2 + p[D − x]+ × [1− π1(ω̃1)]× (1− λ2)

≤ h[D − x]+ × π1(ω̃1)× (∆ + λ2) + p[D − x]+ × [1− π1(ω̃1)]× (1−∆− λ2, )

where ∆ ≡ p(1−λ2)−λ2h
p+h

and π1(ω̃1) =
(p(1−λ1)−λ1h)

(p+h)
+ λ1.

Note that the point (c.1) gives the same objective value as point (a.1) (i.e., u(z1 =

D − x, z2 = 0, ω1 = ω̃1, ω2 = 0) = u(z1 = D − x, z2 = D − x, ω1 = ω̃1, ω2 = 0)).

Similarly, consider segment (iv), corresponding to ω2 = ω̃2 and 0 ≤ ω1 ≤ ω̃1.

Substitution yields a linear function on ω1, and hence the minimum is attained on

one of the corners: (c.2) or (c.4).

We have now four points that could possibly achieve the optimum for case (c).

We will determine which of these four is the solution for this case.

From substitution we obtain that (c.1) is less costly than (c.2), i.e., that u(D −

x,D − x, ω̃1, 0) ≤ u(D − x,D − x, ω̃1, ω̃2)).

Similarly, (c.3) is less costly than (c.1) (i.e., u(D− x,D− x, 0, 0) ≤ u(D− x,D−

x, ω̃1, 0)).
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Also, (c.3) is less costly than point (c.4) too (i.e., u(D − x,D − x, 0, 0) ≤ u(D −

x,D − x, 0, ω̃2)).

Then, the optimal solution for the subregion defined by case (c), is

(c.3) (z1, z2, ω1, ω2) = (D − x,D − x, 0, 0). This is fairly intuitive, because this case

refers to the situation when the manufacturer orders from both suppliers, and this

double ordering mitigates the risk of one of them defaulting, which in this region has

a lower cost than subsidizing.

We go back now to analyze the entire feasible region (composed of the three cases

we have described: region A, region B and region C). Note that the point (c.3)

gives a lower value than the point (a.1) (given the fact that u(z1 = D − x, z2 =

D − x, ω1 = 0, ω2 = 0) ≤ u(z1 = D − x, z2 = D − x, ω1 = ω̃1, ω2 = 0) = u(z1 =

D − x, z2 = 0, ω1 = ω̃1, ω2 = 0)). As a consequence, we do not need to consider (a.1)

as a possible solution of problem (3.2.5).

From a similar argument, we no longer consider point (b.1) in the search of the

optimal subsidy.

From this discussion, the optimal is obtained by comparing the value function

given by the three points that were not eliminated by comparison:

(a.2) subsidize and order from supplier 1: (z1, z2, ω1, ω2) = (D − x, 0, F1, 0),

(b.2) subsidize and order from supplier 2: (z1, z2, ω1, ω2) = (0, D − x, 0, F2) and

(c.3) order from both suppliers, but subsidize none: (z1, z2, ω1, ω2) = (D − x,D −

x, 0, 0).

Observe that if subsidy Fi is given to supplier i, then this supplier becomes per-

fectly reliable, and as a consequence it is not optimal to both diversify and subsidize.

Therefore, we have proved the following proposition.
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Proposition III.3. Assume that p(1 − λ1) ≥ h(λ1) and p(1 − λ2) ≥ h(λ2). The

solution to problem (3.2.1) and the corresponding optimum value is given by the point

that achieves the lowest value function U defined in (3.2.5), from the following three:

a) z1 = D − x, z2 = 0, ω1 = F1, ω2 = 0; u(D − x, 0, F1, 0) = αF1,

b) z1 = 0, z2 = D − x, ω1 = 0, ω2 = F2; u(0, D − x, 0, F2) = αF2,

c) z1 = D − x, z2 = D − x, ω1 = 0, ω2 = 0;

u(D − x,D − x, 0, 0) = (λ2)(λ1)h[D − x]+ + (1− λ2)(1− λ1)p[D − x]+.

The cost of choosing supplier i as an exclusive supplier is the cost of providing full

subsidy. We could see this as the cost of assuring certainty in the delivery of goods.

The cost of diversification is the cost of excess inventory if no one defaults, plus

the penalty cost if both suppliers default. We could think of this as the cost of

the uncertainty regarding the delivery, given that the manufacturer does not provide

funding to any of the suppliers.

Thus, when the manufacturer chooses between diversification or subsidizing an

exclusive supplier, we are indeed making a selection between certainty versus un-

certainty. As a consequence, if we assume that each of the available suppliers can

satisfy our total demand, and if the manufacturer prefers to avoid uncertainty, she

has a greater incentive to grant subsidies to an exclusive supplier. As we will see,

this trade-off can be present under different assumptions, although in this setting the

trade-off is extreme in the sense that the manufacturer chooses between full diversi-

fication (backing up 100% of the order or subsidizing the full amount F ).

3.2.2.2 The case with p(1− λ1) < h(λ1) or p(1− λ2) < h(λ2): Diversification

is not optimal: An exclusive supplier must be chosen

We will proceed to analyze this case, where it is not optimal to diversify regardless

of the amount of subsidy. The analysis will follow steps very similar to the case with

both p(1−λ1) ≥ h(λ1) and p(1−λ2) ≥ h(λ2) as we described in the previous section,
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so the details of the analysis will be omitted.

In this case, since diversification is not optimal (as we proved in Lemma III.1),

there will be no region C; the space of the subsidies Ω1 × Ω2 will be divided only

in regions A and B, where it is optimal to order (z1, z2) = (D − x, 0) or (z1, z2) =

(0, D − x), respectively.

The following characterizes Regions A and B.

(a) (z1, z2) = (D − x, 0) is optimal when ω2 ≤ F2(λ1−λ2)
(1−λ2)

+ F2(1−λ1)
F1(1−λ2)

ω1. This charac-

terizes pairs (ω1, ω2) that belong to Region A.

(b) (z1, z2) = (0, D − x) is optimal when ω2 > ω̃2 and ω2 ≥ F2(λ1−λ2)
(1−λ2)

+ F2(1−λ1)
F1(1−λ2)

ω1.

This characterizes pairs (ω1, ω2) that belong to Region B.

The shape of regions A and B changes slightly depending on whether λ1 ≥ λ2 or

λ2 < λ1, so without loss of generality, we will focus on the case where λ1 ≥ λ2 and

then point out the minor changes that would be needed to complete a similar analysis

in the case where λ2 < λ1.

Without loss of generality, assume that λ1 ≥ λ2. Figure 3.3 shows the space

Ω1 × Ω2 and regions A and B for this case.

Figure 3.3: Partition of the subsidy space (Ω1×Ω2) when diversification is not optimal
and λ1 ≥ λ2. In region A, order from supplier 1. In Region B, order from
supplier 2.
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In the same way as in the previous section, it is trivial that the corner points

(D − x, 0, F1, F2) and (0, D − x, F1, F2) are suboptimal: Since we are ordering only

from one supplier, it is not necessary to subsidize both. In addition, the piecewise-

linear structure on (ω1, ω2) allows us to find the optimum within region A by focusing

on the corner points:

(a.1) (z1, z2, ω1, ω2) = (D − x, 0, F1, 0).

(a.2) (D − x, 0, 0, 0).

(a.3) (D − x, 0, 0, ω̂2), where ω̂2 = F2
λ1−λ2

1−λ2
.

Substitution in the objective function will show that point (a.2) has a lower cost

than point (a.3), given the fact that u(D − x, 0, 0, 0) ≤ u(D − x, 0, ω̂1, 0), with the

equality only holding when λ1 = λ2.

Let us discuss why this is the case. To do so, observe that the amount ω̂2 that we

subsidize to supplier 2 is the amount that makes the probability of default of both

suppliers equal to supplier 1, which is the most reliable one: point (a.3) is equivalent

to subsidizing supplier 2 that has a lower λ2; we force this supplier to be as reliable

as supplier 1 is before subsidies (i.e., to have a default probability equal to λ1).

However, point (a.2) implies the same reliability (the default probability is equal

to λ1), but without any extra spending on subsidies. Therefore, we can focus on

points (a.1) and (a.2) for the optimal.

Now, let us focus on region B. We discarded the point (0, D − x, F1, F2). The

other two corner points are (0, D−x, 0, F2) and (0, D−x, 0, ω̂1). A simple arithmetic

substitution will show that u(D − x, 0, ω̂1, 0) and u(D − x, 0, ω̂1, 0) have the same

value, so when we turn to the analysis of the entire region Ω1×Ω2, we do not need to

consider point (D − x, 0, ω̂1, 0). Therefore, the remaining points to consider are the

following:
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(a.1) (z1, z2, ω1, ω2) = (D − x, 0, F1, 0),

(a.2) (D − x, 0, 0, 0) and

(b.1) (0, D − x, 0, F2).

To find the optimum, we need to compare the objective function evaluated in each

of them.

In summary, we have proved the following:

Proposition III.4. Assume that p(1−λ1) < h(λ1) or p(1−λ2) < h(λ2). In addition,

without loss of generality, assume that λ2 ≤ λ1. The solution to problem (3.2.1) and

the corresponding optimum value is given by the point from the following three that

achieves the lowest value function U defined in (3.2.5):

a) z1 = D − x, z2 = 0, ω1 = F1, ω2 = 0; u(D − x, 0, F1, 0) = αF1,

b) z1 = 0, z2 = D − x, ω1 = 0, ω2 = F2; u(0, D − x, 0, F2) = αF2 or

c) z1 = D − x, z2 = 0, ω1 = 0, ω2 = 0; u(D − x, 0, 0, 0) = (h[x − D]+ + p[D −

x]+)(1− λ1)

We have a characterization of the solution of the problem when diversification

is not an option. With this, we can examine the solution, and we note that in

a similar way to the case we analyzed in section 3.2.2.1 (when diversification was

worth considering), the manufacturer is indeed choosing between certainty and un-

certainty: certainty in this case is obtained if the manufacturer provides full subsidy.

Uncertainty, however, is obtained if the manufacturer simply orders from an exclusive

supplier without ordering any backup inventory or providing any subsidy.

In this one-period model setting , with the current assumptions, when diver-

sification occurs, the backup inventory amount is very high: the manufacturer orders

twice the current period demand, even if there is no future demand. This does not

mean that diversification always requires large amounts of backup inventory. The
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large order size is the result of the assumptions that demand is deterministic, that the

probability distribution f of the percentage successfully delivered follows a Bernoulli

distribution (i.e., all or nothing), and that the probability of delivery is linear on the

subsidy.

These assumptions do not cover every situation, but they are reasonable when

the demand can be predetermined by contract and when there exists the possibility

of rejecting the entire lot. Although this last assumption occurs in situations such

as batch processing of chemicals, rather than focusing on defining the amount of

backup inventory in these simplified scenarios, we find it more pertinent to discuss

qualitatively when it is more profitable to diversify, when to subsidize and when to

create backup inventory to mitigate a firm’s risk.

To refine the scope of this work, the issue of backup inventory and its size under

different probability distributions will not be addressed here and will be left for future

research. Similarly, we will also defer the case when the probability for delivery that

is not linear on the subsidy. We do want to emphasize the fact diversification can

occur without having to order large amounts of backup inventory. In the one-period

model, when we relax the assumption that the delivery percentage follows a Bernoulli

distribution (for example, instead of all or nothing, we allow a positive probability

for the delivery of half of the ordered amount), diversification does not necessarily

imply having a large amount of backup inventory to satisfy the demand of the current

period. The amount of backup inventory depends on the percentage we expect to be

delivered and on the associated probability. Similarly, when we relax the assumption

of newsvendor penalty and holding costs (for example, if the penalty costs are a

strictly convex function of the shortage and the holding costs are a strictly convex

function of the excess inventory), diversification does not imply having a large amount

of backup inventory to satisfy the demand. Full backup inventory can be needed at

optimality when, besides yield uncertainty, there are supplier disruptions that can
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last for several periods, as Schmitt and Snyder (2008) show. They show that a high

ratio p/(p + h) requires full demand backup inventory. They also discuss examples

where low probability of recovery from disruptions make the optimal backup inventory

amount equal to 100% of the demand.

As we explained, we are interested in obtaining qualitative insights about the

incentives to subsidize vs. incentives to diversify between both suppliers and the

circumstances in which either or both strategies are combined with backup inventory

(the size of which we do not address at this time and leave for future research).

Therefore, we will focus our analysis on the simpler case where the delivery amount

follows a Bernoulli distribution and where costs are of the linear, newsvendor type.

Our intention is to understand the motivations for a manufacturer to choose either

strategy (diversification vs. subsidizing).

Until now, we have discussed that the probability distribution of the actual deliv-

ered amount for the current period is one of the factors for diversification, even if fu-

ture periods are not considered. Adding future periods and their inherent uncertainty

gives the manufacturer even more reasons to diversify. When there is uncertainty

in future demand, there are cases where it is optimal to diversify the order between

different suppliers, while at the same time it is better to order more than today’s

demand, in order to have backup inventory for the future. In order to analyze this

scenario, we drop the assumption of the model for a single period. We will study the

case with two periods.

3.2.3 Two periods, one supplier

So far, we have analyzed the case when the manufacturer considers only immedi-

ate costs and returns and assumes that the demand is deterministic. However, the

problem is not so simple in practice, given future costs and earnings. First, we ana-

lyze the consequences of considering the future when the manufacturer has only one

56



supplier.

Let us consider the two-period, one-supplier case (K = 1, T = 2) for problem

(3.2.1). It will be convenient to drop the subindex k that distinguishes each supplier.

For simplicity, we will assume that both λt and F t are constant over t. Without

loss of generality, we will assume that α = 1. To avoid trivial solutions, we will

assume that D2 +D1 ≥ x1 (meaning that we do not have inventory that exceeds the

demand for both periods). Recall that Π is a decision rule that assigns a pair (ztk, ω
t
k)

to every possible state (xt, Dt).

The time horizon for this problem is finite; thus, it can be solved by backward

induction. The optimization for the last period (period 2) is similar to the one-period

problem we studied in the previous section, but the model is simpler because it has

only one supplier. Therefore, the solution to the period 2 problem is the order/subsidy

strategy that has the least cost between the following two:

1) (z2 = D2 − x2, ω2 = F 2), or

2) (z2 = D2 − x2, ω2 = 0)

and the value function is U(2, x) = min{F 2, p[D2 − x2]+(1 − λ2)}, where each

element between the brackets is the cost of strategies 1) and 2), respectively.

If we substitute U(2, x) in the objective function (3.2.5), we obtain the following:

U(1, x) = min
Π

∑{
h[x+ z1 −D1]+ + p[D1 − x− z1]+

}
π1(ω1)

+
{
h[x−D1]+ + p[D1 − x]+

}
(1− π1(ω1)) + αω1

+min{F 2, p[D2 − (x+ z1 −D1)]+(1− λ2)}π1(ω1)

+ min{F 2, p[D2 − (x−D1)]+(1− λ2)}(1− π1(ω1)).

(3.2.6)

Note that this is a piecewise-linear function on z1, so we only need to consider the

corner points: z1 = D2 +D1 − x1, and z1 = D1 − x1.
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In order to obtain the solution to this problem, we will first present a result that

will help us.

Lemma III.5. If the manufacturer does not order anything, the optimal subsidy is

ω1 = 0. If the manufacturer orders a positive amount (either z1 = D1 − x1 or

D2 +D1 − x1, given that the problem is piecewise-linear on z1), the optimal subsidy

amount is as follows:

1. If p[D1 − x1]+(1− λ)/F 1 > 1 + h(D2)(1− λ)/F 1, then ω1 = F 1.

2. If p[D1 − x1]+(1− λ)/F 1 ≤ 1, then ω1 = 0.

3. If 1 < p[D1 − x1]+(1− λ)/F 1 ≤ 1 + h(D2)(1− λ)/F 1.

• For z1 = D2 +D1 − x1, then ω1 = 0

• For z1 = D1 − x1, then ω1 = F 1

Proof. Note that the problem is linear on ω1. The result is obtained by substituting

the order size z1 = 0, z1 = D1 − x1 or z1 = D2 +D1 − x1 in the objective function u

in the minimization problem 3.2.6, and by then computing the derivative ∂u/∂ω1. If

the derivative is positive, it is optimal to provide full subsidy. Otherwise, it is optimal

to not provide any subsidy at all.

Proposition III.6. The solution to problem (3.2.6) is the following:

1. z1 = D1 − x1 and ω1 = F 1 if

(a) p[D1 − x1]+(1− λ) > F 1 + hD2(1− λ) and

hD2 > min{F 2, pD2(1− λ)},

OR

(b) F 1 < p[D1 − x1]+(1− λ) < F 1 + hD2(1− λ) and

min{F 2, pD2(1− λ)} < hD2λ+ p[D1 − x1]+(1− λ).
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2. z1 = D1 − x1 and ω1 = 0 if

p[D1 − x1]+(1− λ) < F 1 and

min{F 2, pD2(1− λ)}λ+min{F 2, p[D2 +D1 − x1]+(1− λ)}(1− λ) < hD2λ.

3. z1 = D2 +D1 − x1 and ω1 = 0 if

(a) p[D1 − x1]+(1− λ) < F 1 and

hD2λ < min{F 2, pD2(1− λ)}λ+min{F 2, p[D2 +D1 − x1]+(1− λ)}(1− λ),

OR

(b) F 1 < p[D1 − x1]+(1− λ) < F 1 + hD2(1− λ) and

hD2λ+ p[D1 − x1]+(1− λ) < min{F 2, pD2(1− λ)}.

4. z1 = D2 +D1 − x1 and ω1 = F 1 if

p[D1 − x1]+(1− λ) > F 1 + hD2(1− λ) and

min{F 2, pD2(1− λ)} > hD2.

Proof. In the same fashion as the one-period two-supplier model, we start by taking

the first derivative of the objective function with respect to ω1. We obtain the solution

by arithmetic comparison, while keeping in mind that ∂B/∂ω1 is positive and by

paying attention to which of the terms in min{F 2, p[D2 − (x1 + z1 −D1)]+(1− λ2)}

actually achieves the minimum. As an example, we will derive the result for cases

1a) and 4) of the proposition. The remaining cases are derived in a similar manner.

From Lemma III.5, we have that if p[D1 − x1]+(1 − λ) > F 1 + hD2(1 − λ), the

optimal subsidy is ω1 = F1. In order to determine the optimal amount, we substitute

z1 = D1 − x1 and z1 = D2 +D1 − x1, and ω1 = F1 in the objective function (3.2.5),

from which we obtain the following:

If hD2 > min{F 2, pD2(1− λ)}, then it is optimal to order z1 = D1 − x1. Otherwise,

it is optimal to order z1 = D2+D1−x1. Putting these conditions together gives case

1a) and case 4) of the proposition. The remaining cases can be proved in a similar
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manner.

In order to get insights into the optimal strategy, we will now take a look at Figure

3.4, which is a graph of the penalty costs for both periods vs. the holding costs.

We will assume for this graph that the subsidies required in the second period

do not exceed the penalty of not meeting the demand for that period, i.e., F 2 <

p[D2]+(1−λ). In practical terms, this means that it is more expensive to quit by not

doing anything to satisfy the demand in the last period than to guarantee that the

demand will be covered by subsidizing.

Figure 3.4: Penalty vs. Holding costs—Each region defines the strategy(ies): Order-
ing for one or both periods and/or subsidizing. (Graphical representation
of Proposition III.6)

Consider the case when the holding costs are such as the cost marked with h∗ in

Figure 3.4. Suppose that the penalty cost is extremely low (Region 3a). In this case,

the manufacturer wants to have some diversification of the risk concerning the supplies

she needs for the next period: she can order them now, pay the holding cost, and if

the supplier defaults, she can have one more opportunity to order them again. As the
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penalty cost increases, the manufacturer transits into Region 3b, keeping the order

size and subsidy constant. If the penalty cost continues to rise, the manufacturer will

want to actually fund the supplier instead of risking to have to pay the penalty, and

she will want to order only for the current period, because she will want to save the

holding cost for ordering for the second period too (Region 1b). Finally, if the penalty

cost is very high (region 4), the manufacturer will opt for the most protection she can

get against the penalty: full funding in period 1, and ordering for both periods now

and saving the future funding costs.

As we can see, even if there is only one supplier, the time horizon gives the manu-

facturer some flexibility. Depending on the required subsidy amount, the holding costs

and the shortage penalties, the supplier has the option to subsidize, to have backup

inventory or to wait and see if subsidy will be required to satisfy the accumulated

demand in period 2.

Note, however, that this flexibility depends on the fact that the subsidy is as-

sumed to have an immediate effect on the current default probability. In practice,

unfortunately, it is not always the case that a subsidy can instantly eliminate the

reasons for potential default. In the following sections, we will analyze the case when

the subsidy does not produce an immediate effect and helps to avoid default with a

delay, i.e., in the second period. We will also relax the assumption of deterministic

demand in later sections.

3.3 Diversification and subsidy model, subsidy with delayed

effects, random assets

In the previous section, we assumed that the effects of subsidizing a supplier was

immediate, meaning that any subsidy granted in period t would change the default

probability for period t. However, in reality, it may take some time for the subsidy
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to change the default probability of a supplier. In order to consider the consequences

of a delay in the effects of the probability of a production default, we will change

some of the assumptions of the model. We will no longer consider the deterministic

amount of debt F (which represented the amount to guarantee that no default would

happen in future settings) in this and future sections.

Instead of focusing on the amount of debt, we will consider the supplier’s level

of assets ct > 0 at the end of the previous period (before any random effects from

the current period happen). Similar to the previous model, for the manufacturer an

attempt to increase the level of either supplier assets by a unit costs α. In this setting,

we will assume that each supplier’s assets are affected by a random shock εtk in each

period. The random shock distribution f t
k is stationary, i.e., f t

k = fk, which means

that the probability distribution does not change over time.

In this context, the manufacturer once again decides on the order quantity ztk,

depending on the current inventory xt, and will receive βt
kz

t
k. The percentage delivered

βt
k is Bernoulli-distributed with parameter πk(c

t
k) (probability of successful delivery,

i.e., πk(c
t
k) = P [βt

k = 1]). We assume that for all c, we have 0 < πk(c) < 1, and that πk

is strictly increasing and strictly concave (if we assume that π is twice differentiable,

these assumptions translate as π′
k(c) > 0 and π′′

k(c) < 0). The strictly increasing

assumption means that the higher the level of assets in period t − 1, the lower the

probability of the supplier’s default in period t.

To derive the closed-form solution of the problem, we will assume that πk is twice

differentiable. This closed-form solution will contain thresholds and critical points

that depend on the inverse and the derivatives of a function of πk. The closed-form

solution is useful, because it allows us to see how the thresholds move when different

parameters vary and therefore allow us to explore different scenarios. It is important

to note that although the arguments of π changed from the last section and that we

no longer give a specific functional form for it, π continues to refer to the probability
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of successful delivery.

The manufacturer also decides on the amount of subsidy to be given to each

supplier. Let us denote by θtk the intended level of assets that the manufacturer

desires supplier k to have in the next period; that is to say, the actual amount of

subsidy delivered by the manufacturer is (θtk − ctk). We will call θtk the subsidy-up-

to amount, which highlights the fact that θtk is similar in nature to the order-up-to

amount that is often used in inventory problems. We chose to use the subsidy-up-to

level to simplify the notation in the two-period problem, but we should note that it

is equivalent to finding the actual amount of subsidy (θtk − ctk).

The supplier assets ct+1
k at the beginning of the next period (period t+1) depend

not only on the subsidy received today, period t, but also on the random shock of

the period: ct+1
k = θtk + εtk. This means that the subsidy provided in period t will not

affect the probability of default in the current period, but it will affect the default

probability in the following period, t + 1. In the previous section, we solved the

problems in terms of ωk, the net subsidy given to the supplier. Here we solve the

problem in terms of θk, the subsidy-up-to amount (net subsidy= θtk−ctk). The change

in notation is necessary since we are no longer using the net subsidy ω as we did in

previous sections.

3.3.1 Deterministic demand, one supplier, two periods, newsvendor costs

For the time being, we assume that the demand, Dt, is deterministic and that it

is backlogged if necessary. Given the fact that there is only one supplier, we drop the

subindex k for the time being.

The manufacturer wishes to minimize the costs coming from procurement and

subsidies granted to the supplier.

The state of the system can be characterized by the inventory level in each period

and by the level of assets of the period, i.e., (xt, ct). A Markov policy Π is a decision
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rule that assigns a pair (ztk, θ
t
k) to every possible state (xt, ct).

The manufacturer’s problem can be stated as follows:

min
Π
E[vΠ(1, x1, c1)] (3.3.1)

where

vt,Π(t, xt, ct) =
N∑
n=t

ρn−1
[
h[xn + znβn −Dn]+ + p[Dn − xn − znβn]+ + α(θn − cn)

]
− ρNvT

[
xN+1, cN+1

]
, (3.3.2)

βt ∼ Bernoulli( πt(ct) ), εt ∼ f.

and the transition rules are:

ct+1 = θt + εt,

xt+1 = xt + ztβt −Dt. (3.3.3)

We will assume a salvage value of 0; that is, vT (·) = 0.

Denote by V the value function. The value function satisfies the following dynamic

programming recursion:

V (t, xt, ct) = min
(ztk,θ

t
k)
E

[
h[xt +

∑
k

ztkβ
t
k −Dt]+ + p[Dt − xt −

∑
k

ztkβ
t
k]

+ +
∑
k

α(θtk − ctk)

+ρEV (t+ 1, x+
∑
k

ztkβ
t
k −Dt, θt + εt).

]
(3.3.4)

V (N + 1, x, c) = 0
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Then,

V (t, x, c) = min
Π
v(t, x, c). (3.3.5)

Let us consider the solution to the two-period problem; i.e., we will assume that

N = 2.

Considering that βt has a Bernoulli distribution, and rewriting it in terms of

yt = xt + zt (order-up-to level before demand) and of ct+1 = θt + εt (next period’s

assets), the problem becomes:

V (t, xt, ct) = min
Π

{
h[yt −Dt]+ + p[Dt − yt]+

}
π(ct)

+
{
h[xt −Dt]+ + p[Dt − xt]+

}
(1− π(ct)) + α(θt − ct)

+ ρ EεtV (t+ 1, yt −Dt, ct+1)π(ct)

+ ρ EεtV (t+ 1, xt −Dt, ct+1)(1− π(ct)).

(3.3.6)

In a similar fashion to what we have done in previous sections, this problem can

be solved by backwards induction, so we first present the last period’s solution.

Proposition III.7. For period 2, the solution to the problem is to not subsidize and to

order up to D2. In other words, for period 2, the optimal solution is z2 = [D2−x2]+,

θ2 = c2. Therefore, the value function becomes

V (2, x2, c2) =
[
1− π(c2)

]
p[D2 − x2]+ + h[x2 −D2]+.
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Proof. First, we note that the objective function for the last period is

V (2, x2, c2) = min
(z2,θ2)∈A(t)

{
h[x2 + z2 −D2]+ + p[D2 − x2 − z2]+

}
π(c2)

+
{
h[x2 −D2]+ + p[D2 − x2]+

}
(1− π(c2)) + α(θ2 − c2) + 0

= min
(y2,θ2)∈A(t)

{
h[y2 −D2]+ + p[D2 − y2]+

}
π(c2)

+
{
h[x2 −D2]+ + p[D2 − x2]+

}
(1− π(c2)) + α(θ2 − c2).

(3.3.7)

As we can see, this equation is linear on θ2, and since α is positive, the optimal

action is to reduce θ2 as much as possible. Also, we can see that the optimal order-

up-to amount y is D2, given the piecewise-linear structure on y. This implies that

z2 = [D2 − x2]+. Substitution of z in V will result in the following:

• x2 ≤ D2 (and hence z2 = D2 − x2)

V (2, x2, c2) = (p[0]+ + h[0]+)π(c2) + (p[D2 − x2]+ + h[x2 −D2]+)(1− π(c2))

= p[D2 − x2]+
[
1− π(c2)

]
.

• x2 ≥ D2 (and hence z2 = 0)

V (2, x2, c2) = (p[0]+ + h[x2 −D2]+)π(c2) + (p[0]+ + h[x2 −D2]+)
[
1− π(c2)

]
= h[x2 −D2]+.

The term that multiplies h is the same in both cases. Also, the term that multiplies

p is positive only when x2 ≤ D2. As a consequence, we can write a simplified version

of V composing both cases: V (2, x2, c2) = [1− π(c2)] p[D
2 − x2]+ + h[x2 −D2]+.

Note the implications of this simplified expression V (2, x2, c2) = (1−π(c2))p[D2−

x2]+ + h[x2 −D2]+. V has a portion of holding costs and a portion of penalty costs.

Assume that h and p are of similar magnitude (meaning that the ratio h/p is not too
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small, like in the order of 1−π(c2)). Observe that the factor 1−π(c2) < 1, which is the

probability of default, is only multiplying p and not h. For a manufacturer to choose

a supplier, it is reasonable to assume that this probability of default is relatively low,

and it will be lower when subsidizing. The probability of default (which in practice is

not a large amount very often), 1− π(c2) < 1, is only multiplying p; we can see that

the total holding costs will be a large part of V , and the total penalty costs will be a

small part of V (2, x2, c2). As a consequence, when we substitute V (2, x2, c2) into the

two-period model, we observe that the holding costs have a much greater impact in

the cost-to-go, due to the fact that we will choose θ1 such that we make (1 − π(c2))

as low as possible, where c2 = θ1 + ε1.

Now that we have rewritten the value function for the last period, we can rewrite

the original two-period problem in a way that will allow us to analyze the optimal

decision for the first period. Substitution of the cost-to-go on period 2 yields:

V (1, x1, c1) = min
(z,θ)∈A(t)

vΠ(1, x1, c1)

= min
(z,θ)∈A(t)

({
h[y1 −D1]+ + p[D1 − y1]+

}
π(c1)

+
{
h[x1 −D1]+ + p[D1 − x1]+

} [
1− π(c1)

]
+ α(θ1 − c1) + ρ {Eε1

[
1− π(θ1 + ε1)

]
p[D2 +D1 − y1]+

+ h[y1 −D2 −D1]+}π(c1) + ρ {Eε1
[
1− π(θ1 + ε1)

]
p[D2 +D1 − x1]+

+h[x1 −D2 −D1]+}(1− π(c1)
)
.

From this expression, we note that if we fix the value of θ1, V is convex on y1.

Therefore, for each fixed value of θ1 and c2, there is an optimal policy for z1 of

order-up-to type.

Before proceeding with the analysis, we will define the notation and establish

some properties that will be useful later, as they will simplify our calculations. Define

function g as follows:

g(θ1) ≡ Eε1
[
1− π(θ1 + ε1)

]
.
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Function g is the probability of default when the level of assets is θ1 (recall that

the probability of default depends both on the subsidy and on the random shock that

affects the assets).

We will also establish the following lemma.

Lemma III.8. g is monotonically decreasing (and hence invertible) and convex. In

addition, if π is twice differentiable, g is twice differentiable too.

Proof. π(·) is increasing and concave. Therefore, 1−π(·) is decreasing and convex.

From the convexity of π, 1−π(λθ1a+λϵ
1+(1−λ)θ1b +(1−λ)ϵ1) ≤ λ[1−π(θ1a+ ϵ

1)]+

(1−λ)[1−π(θ1b + ϵ
1]. Taking expectation on both sides renders the convexity of g. A

similar argument holds for the monotonicity of g. The twice differentiable property

of g follows from the definition and the properties of the expected value operator if

π is twice differentiable.

In other words, the expected probability of default decreases with the amount of

subsidy granted, and it is convex on that same variable.

Now that we have defined function g and established some of its properties, we

return to the problem of finding the solution for the problem for period 1. Note the

piecewise-linear structure of the objective function (3.3.1) on y. As a consequence,

the order amount, z, should be a corner point. This means that the order amount

in the optimal solution is one of the following: (a) z1 = [D1 − x1]+ (order enough to

reach an inventory level of D1), (b) z1 = [D1 +D2 − x1]+ (order enough to reach an

inventory level of D1+D2), (c) z1 = 0 or (d) z1 = ∞. Note that we can immediately

discard option (d). The reason is that the positive holding costs would make the value

function go to infinity when z1 = ∞. Next, we show that, to achieve optimality, we

must at least order enough to cover the demand in the first period. Given the fact

that the problem is piecewise-linear on y1 (the order-up-to level), we only need to

focus on the corner points. In this case, it suffices to show that the corner point z = 0
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is suboptimal.

Proposition III.9. A policy that orders z1 = [D1−x1]+ performs better than a policy

that orders z1 = 0 for every initial inventory x1. In other words, the former has a

lower or equal cost.

Proof. We need to prove that ordering [D1−x1]+ outperforms ordering 0 for every

possible initial inventory x1. Note that for any fixed θ1, the policies give a different

value of the objective function v only when x1 < D1. Let Π be a policy such that

the order is z1Π = [D1 − x1]+ and the subsidy is θ1. Let Π′ be a policy such that the

order is z1Π′ = 0 and the subsidy is θ1 as well. Hence, the result will be proved if the

inequality vΠ(1, x1, c) ≤ vΠ
′
(1, x1, c) holds for x1 < D1. Substituting and using the

fact that D1 > x1:

vΠ(1, x1, c)− vΠ
′
(1, x1, c)

= ρ g(θ1)p(D2)π(c1)−
[
p(D1 − x1)π(c1)− ρ g(θ1)p(D2 +D1 − x1)π(c1)

]
.

Canceling terms and rearranging, we get that vΠ(1, x1, c)−vΠ′
(1, x1, c) ≤ 0 holds if 1+

ρ g(θ1) ≥ 0. It can easily be verified that this inequality holds for all θ by doing the

arithmetical computation for g and observing that we assumed 0 < π(·) < 1. Hence,

we have proved that the objective function achieves a lower value when ordering

z1 = [D1 − x1]+.

We have simplified the problem, where the two possible options are ordering either

(a) z1 = [D1−x1]+ or (b) z1 = [D1+D2−x1]+. Which of these two possible options

is less costly? The answer depends on the amount of subsidy θ1 that we need to grant

the supplier in each of those two cases. We will now state a theorem that determines

for which region of θ1 it is better to order up to D1 and vice versa. In order to do so,
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let us define

θ̂1 ≡ g−1

(
h

ρp

)
. (3.3.8)

Recall that g(θ1) = Eε1 [1 − π(θ1 + ε1)]. Note that g depends on the distribution of

ϵ1.

In the next proposition, we will show that θ̂1 defines a threshold that determines

how much we should order: for today only or for today and tomorrow. Besides, as

we will see later, θ̂1 determines a threshold that defines different cases (regions) for

the solution of the problem.

Proposition III.10. Assume we fix the subsidy-up-to value θ1.

a) If θ1 ≥ θ̂1, it is better to order z1 = [D1 − x1]+.

b) If θ1 ≤ θ̂1, it is better to order z1 = [D1 +D2 − x1]+.

Proof. In a similar fashion to what we did for the previous proposition, the result

is obtained from arithmetic substitution of the order amounts z1 = [D1 − x1]+ and

z1 = [D1+D2−x1]+ in the objective function in each of the regions [θ̂1,∞) (for part

a) and (−∞, θ̂1] (for part b). Then, we compare them.

Let us start with part a) of the result. In order to be able to easily compare the

objective function values for each of the policies, it is easier to analyze different cases

defined by the level of the initial inventory x1.

Let us prove part a) for the case when x1 < D1. Let us prove that z1 = [D1−x1]+

has a lower cost than z1 = [D1 + D2 − x1]+, i.e., that vΠ(1, x, c) < vΠ
′
(1, x, c),

where policy Π is such that the order is z1 = [D1 − x1]+, and policy Π′ is such that

z1 = [D1 +D2 − x1]+. After substitution, and using the fact that x1 < D1, we get

that

vΠ(1, x, c)− vΠ
′
(1, x, c) = ρ g(θ1)p(D2)π(c1)−

[
h(D2)π(c1)

]
.

Solving for θ, we find that to guarantee that vΠ(1, x, c)−vΠ′
(1, x, c) < 0, the following
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condition is both necessary and sufficient:

θ > θ̂1. (3.3.9)

Similarly, one can prove that the same condition guarantees vΠ(1, x, c)−vΠ′
(1, x, c),<

0, for the case D1 < x1 < D1+D2. This fact, together with the fact that the feasible

region is θt ∈ [ct,∞), concludes the proof for part a of the result.

Part b) is proven using an analogous two-part argument.

From what we have seen, the optimal order amount varies according to the level

of the subsidy: after a certain threshold θ̂1 = g−1
(

h
ρp

)
, the manufacturer will order

[D1 − x1]+. The intuition here is clear: once the manufacturer has given enough

subsidy to the supplier, there is enough confidence that the supply will be delivered

next period, and therefore it is not necessary to take the extra precaution of ordering

for the future today. In other words, θ̂1 is actually the threshold that defines a strong

supplier, in the sense that we can trust that the supplier will deliver the supplies, and

therefore, there is no need to add backup inventory for the future.

The previous proposition gives insights on the solution, and it will be helpful in

providing a complete solution to problem (3.3.1). We still need to find which level of

subsidy would be optimal in each region: θ ≤ θ̂1 or θ ≥ θ̂1.

In other words, to complete the solution of the optimization problem, we can

divide the feasible region in two disjointed portions (as defined by θ̂1) and solve the

following two subproblems:

Subproblem a): Determine the optimal θ1 within the region θ1 ≤ θ̂1, the region

where it is optimal to order z1 = [D1 +D2 − x1]+, and

Subproblem b): Determine the optimal amount θ1 within the region θ1 ≥ θ̂1, the

region where it is optimal to order z1 = [D1 − x1]+.

Each of these problems is solved by computing the first- and second-order condi-
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tions for the subsidy.

The following proposition deals with the local solution to the unconstrained version

of subproblem a). This solution to the unconstrained problem may not coincide with

the solution of the constrained version (the optimal may not be in the region θ1 ≤ θ̂1).

However, we will use this solution as a tool to deal with problem (3.3.1) by considering

the location of θ̂1 and its consequences.

Proposition III.11. Suppose that we order z1 = [D1 +D2 − x1]+. If D1 +D2 ≥ x1,

the optimal amount of subsidy in this case is

θ1,D1+D2 ≡ (g′)−1

[
−α

ρp(D2 +D1 − x1) [1− π(c1)]

]
. (3.3.10)

Otherwise, the optimal amount of subsidy is θ = 0.

Proof. First, we should note that when we order z1 = [D1+D2−x1]+, the objective

function 3.3.2 becomes

v(1, x1, c1) = h(D2) I[D1+D2>x1]π(c
1) + (p[D1 − x1]+

+h[x1 −D1]+I[D1<x1<D1+D2])(1− π(c1)) + α(θ1 − c1)

+ρh[x1 −D1 −D2]+ + ρ g(θ1)p[D1 +D2 − x1]+(1− π(c1)).

(3.3.11)

We will compute the first derivative and obtain the critical point. Later, we will prove

that V is convex on θ1, and therefore the critical point will attain the minimum. The

first derivative is as follows:

∂v

∂θ
= α+ ρ g′

(
θ1
)
p[D2 +D1 − x1]+(1− π(c1)).

If D2 +D1 > x1, we can solve for θ1 in the first-order condition equation ∂v/∂θ1 =

0. We obtain that the critical point is θ1,D1+D2 ≡ (g′)−1
[

−α
ρp[D2+D1−x1]+(1−π(c1))

]
. It
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remains to be shown that v is a convex function on θ1. This can be accomplished by

obtaining the second derivative with respect to θ1:

∂2v

∂θ2
= ρ g′′

(
θ1
)
p[D2 +D1 − x1]+(1− π(c1)).

From the previous proposition about g, we know that g′′ ≥ 0, which proves the first

part of the result.

To conclude the proof, observe that ifD2+D1 < x1, the derivative above simplifies

to

∂v/∂θ = α,

and therefore, given the fact that α > 0, the optimal amount of subsidy is 0.

We have a similar result, which solves the unconstrained version of subproblem b)

in a similar fashion to the proposition above, and hence we omit the details in the

proof. Once again, this is the unconstrained version of the subproblem, and therefore

the solution may not be in the feasible region θ ≥ θ̂1, but, eventually, we will use this

proposition and the location of θ̂1 to obtain the solution of problem (3.3.1).

Proposition III.12. Suppose that we order z1 = [D1 − x1]+. If D1 +D2 ≥ x1, the

optimal amount of subsidy is

θ1,D1 ≡ (g′)−1

[
−α

ρp(D2 + (1− π(c1))(D1 − x1))

]
. (3.3.12)

If D1 +D2 ≤ x1, the optimal amount of subsidy is θ = 0.

Proof. In a similar fashion to the previous result, substituting the ordered amount

z1 = [D1 − x1]+, and using the fact that [D1 +D2 − x1]+ = D2 I[x1<D1+D2] + (D1 −
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x1) I[x1<D1+D2], the objective function becomes:

v(1, x1, c1) = h(x1 −D1) + p[D1 − x1]+ (1− π(c1)) + α(θ1 − c1)

+ ρ g(θ1)p D2I[x1<D1+D2] + ρπ(c1) h[x1 −D1 −D2]+

+ ρ g(θ1) p (D1 − x1)(1− π(c1))I[x1<D1+D2]

+ ρ h[x1 −D1 −D2]+(1− π(c1)).

Solving for θ1 in the first-order condition ∂v/∂θ1 = 0, and verifying the second

derivative to check the convexity, proves the result when D1 +D2 ≥ x1.

The second part of the result, whenD1+D2 ≤ x1, follows trivially. This is because

the derivative above simplifies to ∂v/∂θ = α.

We have obtained the optimal solutions for both cases (when we order either

[D2 + D1 − x1]+ or [D1 − x1]+). An arithmetic calculation, and the fact that g

is decreasing, show that θ1,D1+D2 ≤ θ1,D1. The intuition behind this inequality is

straightforward: If we are not willing to provide much subsidy to decrease the default

probability for tomorrow, we should take provisions and build some inventory today

to compensate for the risk. Alternatively, we can think that when ordering for the

future today, we are not as concerned with the possibility of default. Therefore,

subsidizing today to guarantee delivery tomorrow is not as attractive.

Note as well that while there is an order relationship between θ1,D1+D2 and θ1,D1,

there is no obvious order relationship between these two quantities and θ̂1, the thresh-

old that defines whether it is better to order for the current period only, or for the

present and the future. We have now defined two regions for the subsidy and the or-

dering amount, so by comparing the optimal solutions for each region, we can obtain

the solution to (3.3.1). In other words, to obtain the optimal solution, we will need

to use the solutions to both subproblems a) and b). The solution to (3.3.1) actually

depends on the location of θ̂1. As we can see in Figures 3.5, 3.6 and 3.7, there are
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three general cases. In each of them, the objective function graphs of the two sub-

problems intersect at the point θ̂1. In each of them, θ1,D1+D2 is the argmin of the

subproblem from Proposition III.11, while θ1,D1+D2 is the argmin of the subproblem

from Proposition III.12.

Figure 3.5: Case 1: The threshold θ̂1 is to the left of the optimal subsidies for order
sizes [D1 − x]+ and [D1 +D2 − x]+

Figure 3.6: Case 2: The threshold θ̂1 is in the middle of the optimal subsidies for
order sizes [D1 − x]+ and [D1 +D2 − x]+

Note that given the fact that θ1,D1+D2 ≤ θ1,D1, the three cases we depict in Figures

3.5, 3.6, 3.7 are all the possible ones. We find the solution by analyzing each of them.

Case 1) refers to the case when the point at the borders A and B, θ̂1, is to the left

of θ1,D1+D2.

Case 2) refers to the case when the border point θ̂1 is between θ1,D1+D2 and θ1,D1.
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Figure 3.7: Case 3: The threshold θ̂1 is to the right of the optimal subsidies for order
sizes [D1 − x]+ and [D1 +D2 − x]+

Case 3) refers to the case when θ̂1 is to the right of θ1,D1. We will need to

compare the value functions of the two problems (III.12) and (III.11), and having

these characterizations will be necessary in order to do so.

Let us define a strategy as a combination of subsidy and level after supply delivery:

(y1, θ1).

These cases will be useful to characterize the solutions. We refer the reader to

Proposition A.1 in Appendix A for the statement and proof of the solution.

Let us discuss the intuition behind the solution to each of the cases.

Case 1): θ̂1 is bounded above by θ1,D1+D2. We know that θ̂1 = g−1( h
ρp
) and that

g−1 is decreasing. Therefore, for this case h, is large and ρp is small. In this case, we

order less and subsidize more, given the fact that the holding costs are higher.

Case 2): θ̂1 = g−1( h
ρp
) is between θ1,D1+D2 and θ1,D1+D2, which in practical terms

means that the ratio h
ρp

is neither too large nor too small. In this case we have to

compare both alternatives: ordering for both periods with a low subsidy and ordering

for period 1 only with a higher subsidy.

Case 3): θ̂1 is bounded below by θ1,D1. In this case, we know that h is small

and ρp is large. Therefore, there is more incentive to order more and subsidize less

(case 3a), or, if the current assets are high enough, we will not need more subsidy to
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guarantee future delivery, nor need to order for the future.

3.3.1.1 Sensitivity analysis

In this section, we analyze how changes in some parameter values affect the op-

timal solution to problem (3.3.1) and discuss the economic implications of these

changes.

To do the sensitivity analysis, we should study how θ1,D1+D2, θ1,D1 and θ̂1 are

affected when the exogenous variables change. For clarity, we reproduce expressions

(3.3.8), (3.3.10) and (3.3.12):

θ̂1 = g−1

[
h

ρp

]
.

θ1,D1+D2 ≡ (g′)−1

[
−α

ρp(D2 +D1 − x1)(1− π(c1))

]
.

θ1,D1 ≡ (g′)−1

[
−α

ρp(D2 + (1− π(c1))(D1 − x1))

]
.

Note that, given the fact that g is decreasing and convex, g′ is increasing. This

fact is useful in deriving all the results below.

Changes in demand for period 1

Assume that the demand in period 1 increases. As we mentioned before, the

amounts of subsidy θ1,D1+D2 and θ1,D1 may be at either side of θ̂1. From the expres-

sions above, we note that in this case θ1,D1+D2 and θ1,D1 increase, but θ̂1 does not

change, so θ1,D1+D2 and θ1,D1 may actually shift from being to the left of θ̂1 to the

right.

Assume for now that optimization problem l can be characterized at the beginning

by Case 3. Suppose that the demand increases. Given the fact that the order-up-to

amount depends on D1, at the beginning the order-up-to will increase. This is not

the end of the story, though. If the subsidies θ1,D1+D2 and θ1,D1 increase, it may (or

may not) happen that the problem can no longer be characterized by Case 3 and will
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be characterized by Case 2 instead. If the increase in demand is very large, it may

even be possible that the problem characterization changes from Case 3 to Case 1.

A change of this nature would imply that the optimum amount to order will change

too. Changing from Case 3 to Case 1, say, implies that the order-up-to amount will

jump down after initially increasing.

From this discussion, and from Proposition A.1, whenD1 increases, the solution to

problem (3.3.1) will always change by increasing the subsidy awarded to the supplier.

See Figure 3.8.

Figure 3.8: Sensitivity of the Subsidy θ1 vs. Demand D1

Note that the order-up-to amount y1 will not necessarily change monotonically; say

that the problem can be characterized by Case 3. We know that the manufacturer has

to order to cover the demand for period 1 (plus the demand in period 2). In order to

meet the new demand for period 1, the order-up-to amount must increase. However,

as we just discussed, the subsidy level also has to increase as a backup measure

(if the order made today is not delivered, the subsidy will increase the probability

of successful delivery tomorrow). If the increase in the subsidy is big enough, the

level of assets of the supplier may be large enough to become very dependable for

future deliveries (i.e., the chances of default tomorrow will be low). In that case,

the manufacturer no longer needs to order for both periods to assure that there will

be enough supplies to satisfy future demand. As a consequence, at some point the

characterization changes from Case 3 to Case 1, and the order-up-to size changes from

D1 + D2 to D1. Therefore, the changes in the order-up-to size are not monotonic.
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An illustration of the changes is in Figure 3.9.

Figure 3.9: Sensitivity of Order-up-to Quantity y1 vs. Demand D1

The changes in the order-up-to amount are inherited by the actual order size,

|y1 − x1|, so the ordered amount is not monotonic. See Figure 3.10.

Figure 3.10: Sensitivity of Order Quantity y1 − x1 vs. Demand D1

The changes we discussed above were based on the possibility of changing from

Case 3 to Case 2. Similarly, it is possible that before the demand increase, the problem

could be characterized by Case 2, but after the change, the problem characterization

changes to Case 1, and the directions of the changes would be the same as discussed

above.

Note that it could never happen that as a result of a demand increase the problem

characterization changes from Case 2 to Case 3, or from Case 1 to Cases 2 or 3 (recall

the direction of the changes in θ1,D1+D2 and θ1,D1), so that the manufacturer will

never switch from ordering for period 1 to ordering for both periods as a result of an

increase in demand. The increase in the order size will be of the same magnitude of

the increase in the demand for period 1.
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Demand in period 2

Let us consider now what happens when the demand in period 2 increases. From

expressions (3.3.8), (3.3.10) and (3.3.12), we get that, in a similar way to what hap-

pened with increases in demand in the first period, θ1,D1+D2 and θ1,D1 increase, but

θ̂1 does not change, and therefore the direction of the changes in the subsidy will be

the same as discussed in the case of increases of demand for period 1. See Figure

3.11.

Figure 3.11: Sensitivity of Subsidy θ1 vs. Demand D2

Changes in the order-up-to amount have a different nature, though. In the case

of changes in demand in period 1, the order-up-to amount would always adjust to

reflect the increased demand in period 1. However, for changes in demand in period

2, the order-up-to amount will adjust only if the problem characterization is given

by Case 3 or in Case 2aii. If the problem is characterized by Case 1, the subsidy will

change, but the order-up-to will remain constant (in Case 1 the order size covers only

the first period). When increasing D2 enough, we reach a threshold to the right of the

graph (when the problem is finally characterized by Case 1) where the order-up-to is

constant. At this point, it becomes optimal to order only for period 1, rather than

for both. Note that the actual order size y1 −D1 inherits this pattern. The changes

are illustrated in Figures 3.12 and 3.13.

We should note that the order size is more sensitive to changes in demand today

than to changes in demand tomorrow, the reason being that ordering today is not

the only source for the supplies we need tomorrow.
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Figure 3.12: Sensitivity of Order-up-to Quantity y1 vs. Demand D2

Figure 3.13: Sensitivity of Order Quantity y1 − x1 vs. Demand D2

Changes in supplier assets

Let us analyze now what happens when the initial asset level of the supplier c1

increases. From expressions (3.3.8), (3.3.10) and (3.3.12), we see that θ1,D1+D2 and

θ1,D1 decrease, but θ̂1 is unchanged.

Before proceeding, note that Case 3 has two subcases, Subcase i and Subcase ii

A.1. Subcase i corresponds to lower levels of c1 (c1 ≤ θ̂1), and subcase ii corresponds to

higher levels (c1 > θ̂1). The shifts in θ1,D1+D2 and θ1,D1 imply that the characterization

may change, for example, from Case 1 to Case 3a and then to Case 3b. In that

situation, at the beginning, the manufacturer only orders supplies for the first period.

Note from (3.3.12) how the optimal subsidy is inversely proportional to the expected

supplies to be received; as a result, when c1 increases a little, the amount of subsidy

awarded will decrease. However, when the decrease is considerable and the supplier

becomes less reliable, it will be necessary to increase the order-up-to amount to cover

the future demand too. Given the fact that the order-up-to amount increased, the

actual ordered amount increases accordingly. If c1 continues growing after this, the
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optimal subsidy-up-to level θ1 will have to grow once the constraint θ1 ≥ c1 becomes

binding. Also, if c1 gets high enough, the supplier will be reliable enough even before

subsidies, so the order-up-to amount will decrease again to D1 − x1. The changes

in the optimal subsidy, in the order-up-to and in the actual ordered amount, are

illustrated in the graphs in Figures (3.14), (3.15) and (3.16).

Figure 3.14: Sensitivity of Subsidy θ1 vs. Assets c1

Figure 3.15: Sensitivity of Order-up-to Quantity y1 vs. Assets c1

Figure 3.16: Sensitivity of Order Quantity y1 − x1 vs. Assets c1

Changes in the cost of funding the supplier (α)

When the cost of funding the supplier α increases, θ1,D1+D2 and θ1,D1 decrease,

but θ̂1 is unchanged. In such a situation, for instance, we can switch from Case 1
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Figure 3.17: Sensitivity of Subsidy Quantity θ1 vs. Cost of Funding α

to Case 3a and then to Case 3b. In that situation, we switch from ordering-up-to

D1 only to ordering-up-to D1 +D2. At the same time, at the beginning, the subsidy

decreases slowly when α increases, and it jumps farther down when we change the

order-up-to amount. See Figures 3.17, 3.18 and 3.19.

Figure 3.18: Sensitivity of Order-up-to Quantity y1 vs. Cost of Funding α

Figure 3.19: Sensitivity of Order Quantity y1 − x1 vs. Cost of Funding α
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Changes in initial inventory

In this case, θ1,D1+D2 and θ1,D1 decrease, but θ̂1 does not change, so θ1,D1+D2 and

θ1,D1 may shift from being to the right of θ̂1 to the left.

Assume that before the demand increase, the parameters are such that the opti-

mization problem l can be characterized by Case 1. If θ1,D1+D2 and θ1,D1 increase,

it may happen that the problem can no longer be characterized by Case 1 and can

be characterized instead by Cases 2 or 3. The change of the case that characterizes

the problem implies that the optimum amount to order will change too. Changing

from Case 1 to Case 3, say, implies that the order-up-to amount will increase from

ordering for the current period to ordering for both periods. On the other hand, the

actual ordered amount depends both on the order-up-to level and on x1, and therefore

the ordered amount is not monotonic: it decreases as x1 increases. Then, when the

order-up-to level increases from D1 to D1 +D2, the actual ordered amount jumps up

too, and then it starts to decrease again. See Figures 3.20 and 3.21.

Figure 3.20: Sensitivity of Order-up-to Quantity y1 vs. Initial Inventory x1

Figure 3.21: Sensitivity of Order Quantity y1 − x1 vs. Initial Inventory x1

Finally, given the fact that both θ1,D1+D2 and θ1,D1 shift to the left, we can con-
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clude that when x1 increases, the solution to problem (3.3.1) will change by decreasing

the subsidy awarded to the supplier. See Figure 3.22.

Figure 3.22: Sensitivity of Subsidy θ1 vs. Initial Inventory x1

Intuitively, the order-up-to level will increase with the initial inventory: If the

inventory level is low to start with, it is necessary to order at least for period 1, as

it would be expensive to order from both. However, if the initial inventory is a little

higher, we can afford to order for both periods. In addition, if the initial inventory is

higher, the need for a subsidy to guarantee delivery is less.

Changes in the holding cost

If h increases, θ1,D1+D2 and θ1,D1 remain unchanged, while θ̂1 decreases. In this

case, the characterization of problem (3.3.1) can change from Case 3 to Case 2, from

Case 3 to Case 1 or from Case 2 to Case 1, but not the other way around. Therefore,

the optimum solution will change by increasing the subsidy awarded to the supplier

and possibly decreasing the order-up-to amount. The changes are illustrated in the

following graphs. See Figures 3.23, 3.24 and 3.25.

Figure 3.23: Sensitivity of Subsidy θ1 vs. Holding Cost h
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Figure 3.24: Sensitivity of Order-up-to Quantity y1 vs. Holding Cost h

Figure 3.25: Sensitivity of Order Quantity y1 − x1 vs. Holding Cost h

Intuitively, what happens is that the threshold θ̂1 is lower as a reaction to the

increase in the holding cost. Given the fact that it is more expensive to hold inventory,

lower levels of subsidy will allow the ordering of today’s demand only.

Changes in the discount rate or in the penalty

If either the rate of discount ρ or the penalty p decreases, θ1,D1+D2, θ1,D1 and θ̂1

increase. Note that in this case, θ̂1 increases as well, and as a result we cannot be sure

of how the characterization changes (and it is possible that, say, it changes from Case

2 to Case 1 or to Case 3). As we pointed out before, a change in the characterization

(Case 1, Case 2 or Case 3) of the problem implies changes in the optimum amount

to order. In the current situation, we do not know if Case 2 changes to 1 or to 3,

say, so we cannot conclude if the ordering amount will increase or decrease. We are

sure, however, that if the optimal ordering amount does not change, the subsidy will

increase (since θ1,D1+D2 and θ1,D1 increase when ρ increases). The reason that we

cannot determine the direction of the changes is that it depends on the current levels

of D1, D2, α, c1 and x1 and on the shape of the function π, which in turn determines
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the convexity of g.

3.3.2 Stochastic demand (period 2), one supplier

Let us analyze the case when the demand in period 2 is stochastic. We will first

derive results that come from the analysis of the algebraic formulation. We will see

that when we relax the assumption of the demand being deterministic, the algebraic

treatment we did on the deterministic case cannot be carried out in the same way,

given the fact that the objective function is no longer piecewise-linear on y1. We will

provide the system of equations that implicitly characterize the solution.

A quick reminder of the notation follows: xt is the level of inventory at the be-

ginning of period t. The manufacturer observes the supplier’s level of assets ct > 0

at the beginning of the current period. It costs α to raise one unit to subsidize a

supplier. The supplier’s assets are affected by a random shock εt with a probability

distribution f . The manufacturer orders zt and will receive βtzt at the end of the

period, where βt is a random variable with a Bernoulli distribution with parameter

π(ct). The supplier’s assets at the beginning of the next period are ct+1 = θt + εt.

The demand is realized at the beginning of each period. In period 1, the demand for

period 2 is unknown to the manufacturer. Before the beginning of period 1 of the

planning horizon, the demand levels for both periods are independently distributed.

Assume that the demand for period 2, D2 > 0, is realized at the beginning of

period 2, and therefore it is unknown at the beginning of period 1, when we model

it as a stochastic variable, distributed according to a probability mass function ϕ

(or probability density function, if it is a continuous random variable). Demand is

backlogged. The manufacturer pays p per unit of shortage and h per unit for storage

for unmet and excess demand, respectively.

The state of the system can be characterized by the inventory level in each period

and by the level of assets of the period, i.e., (xt, ct). A Markov policy Π is a decision
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rule that assigns a pair (ztk, θ
t
k) to every possible state (xt, ct).

The optimization problem with the stochastic demand is the following:

min
Π
E[vΠ(1, x1, c1)] (3.3.13)

where

v(t, xt, ct) =
2∑

t=1

ρt−1
[
h[xt + ztβt −Dt]+ + p[Dt − xt − ztβt]+ + α(θt − ct)

]
− ρ2vT

[
x3, c3

]
,

βt ∼ Bernoulli( πt(ct) ),

εt ∼ f,

Dt ∼ ϕ,

and the transition rules are:

ct+1 = θt + εt

xt+1 = xt + ztβt −Dt (3.3.14)

We will assume that v3(·) = 0

Denote by V the value function. The value function satisfies the following dynamic

programming recursion:

V (t, xt, ct) = min
(z,θ)∈A(t)

[
h[xt + zβt −Dt]+ + p[Dt − xt − zβt]+ + α(θ − ct)

]
+

ρTEβt,εt,Dt+1V (t+ 1, x+ zβt −Dt, ct+1)
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V (3, x, c) = −v3(x, c)

where optimization region A(t) is given by

z ≥ 0; (3.3.15a)

θ ≥ c (3.3.15b)

We will assume that v3(x, c) = 0, i.e., that the salvage value is 0. Considering that

βt has a Bernoulli distribution, and rewriting in terms of yt = xt + zt (order-up-to

level) and of ct+1 = θt+ εt (future capacity), the problem can be rewritten as follows:

V (t, xt, ct) = min
(y,θ)∈A(t)

[{
h[y −Dt]+ + p[Dt − y]+

}
π(ct)

+
{
h[xt −Dt]+ + p[Dt − xt]+

}
(1− π(ct)) + α(θ − ct)

+ ρ Eεt,DtV (t+ 1, y −Dt, ct+1)π(ct)

+ρ Eεt,DtV (t+ 1, xt −Dt, ct+1, Dt+1)(1− π(ct))
]

(3.3.16)

This expression looks very similar to the case with deterministic demand, and the

first question that comes into mind is how close this solution is to the deterministic

solution, and if there is a rule of thumb to guess about the solution to the stochastic

case based on the solution to the deterministic case of the following type: “the optimal

order-up-to will be higher/lower in the stochastic case than in the deterministic case.”

By solving several instances of the stochastic problem with the expected demand

for period 2 equal to the deterministic demand, we created a plot (see Figures 3.26

and 3.27) that permits the comparison of the optimal order-up-to for different vari-

ance levels with the optimal order-up-to in the deterministic case. Similarly, we can

compare the optimal subsidy in the stochastic case for different variance levels with
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the optimal subsidy in the deterministic case. What we found in the plots is that

the order-up-to level in the stochastic case can be higher or lower depending on the

variance. It is interesting that in some examples we looked at, the subsidy was higher

for the stochastic case.

Figure 3.26: Optimal order-up-to level, stochastic and deterministic cases

Figure 3.27: Optimal subsidy, stochastic and deterministic cases

In those examples, we also found that the larger the variance, the smaller the

optimal order. This seemingly counterintuitive fact can be explained by looking at

the optimal subsidy. If the parameters vary enough to make subsidizing cheaper, it

will be optimal to subsidize more and order less. The combination of parameters

determines when this is the case. We will perform a sensitivity analysis later that
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will help us to understand when these conclusions hold.

The solution of the manufacturer’s problem is harder to find when the demand

is stochastic, and there is no obvious way to derive the solution from the one we

found in the case with the deterministic demand. Fortunately, the structure of the

stochastic problem allows us to infer some properties of its solution.

Using the recursive expression (3.3.16), we will first calculate the value function

for the last period, which will be substituted later as the cost-to-go in the objective

function for period 1.

Proposition III.13. The optimal strategy for period 2, the last period in this context,

is the same one as in Proposition III.7: z2 = [D2−x2]+, θ2 = c2. The value function

is

V (2, x2, c2)

=
[
1− π(c2)

]
p[D2 + x2]+ + h[x2 −D2]+. (3.3.17)

Proof. Note that the problem for the last period is the same as the case we dealt

with before (deterministic demand). The reason is that v3(·) = 0. In addition, the

demand D2 is already known in period 2. Therefore, the optimal strategy suggested

by Proposition III.7 carries over with no modifications.

The expression above for the value function of period 2 does not have a stochastic

component in it because, in the second period, both the random shock ε1 and the

demand D2 are already known. Note that in period 1, this expression is stochastic.

Therefore, we have to substitute the expected value (III.13) in the value function for

period 1 (3.3.16). We now provide two different expressions for the expected value of

(III.13). Note that both contain only costs from default: if the supplier successfully
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delivers the amount ordered in the second period to cover for the demand of the same

period (which is known), there are no holding costs or penalties.

Eε1,D2V (2, x2, c2)

= Eε1
[
1− π(θ1 + ε1)

] ∞∫
0

p[D2 − x2]+ + h[x2 −D2]+d Φ(D2) (3.3.18)

= Eε1
[
1− π(θ1 + ε1)

] ∞∫
max{0,x2}

p(D2 − x2)d Φ(D2)

+

max{0,x2}∫
0

h(x2 −D2)d Φ(D2). (3.3.19)

Let us now substitute expressions (3.3.18) and (3.3.19) in the value function V for

period 1, expression (3.3.16). We get:

V (1, x1, c1) = min
(y,θ)∈A(t)

{
h[y −D1]+ + p[D1 − y]+

}
π(c1)

+
{
h[x1 −D1]+ + p[D1 − x1]+

}
(1− π(c1)) + α(θ − c1)

+ ρ {
∞∫
0

Eε1
[
1− π(θ + ε1)

]
p[D2 +D1 − y]+

+ h[y −D2 −D1]+d Φ(D2) }π(c1)

+ ρ {
∞∫
0

Eε1
[
1− π(θ + ε1)

]
p[D2 +D1 − x1]+

+ h[x1 −D2 −D1]+d Φ(D2) }(1− π(c1)) (3.3.20)
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and hence

V (1, x1, c1) = min
(y,θ)∈A(t)

{
h[y −D1]+ + p[D1 − y]+

}
π(c1)

+
{
h[x1 −D1]+ + p[D1 − x1]+

}
(1− π(c1)) + α(θ − c1)

+ ρ { Eε1
[
1− π(θ + ε1)

] ∞∫
max{0,y−D1}

p(D2 +D1 − y)d Φ(D2)

+

max{0,y−D1}∫
0

h(y −D2 −D1)d Φ(D2) } π(c1)

+ ρ { Eε1
[
1− π(θ + ε1)

] ∞∫
max{0,x1−D1}

p(D2 +D1 − x1)d Φ(D2)

+

max{0,x1−D1}∫
0

h(x1 −D2 −D1)d Φ(D2) } (1− π(c1)). (3.3.21)

Now that we have an explicit expression of the objective function, we will first

prove that it is never optimal to order less than we need to cover at least the demand

for the first period. Recall that the order-up-to level is defined as yt ≡ xt + zt.

Lemma III.14. Given any fixed level of subsidy θ, consider an order-up-to level y1

lower than the demand for period 1 (i.e., y1 < D1). The strategy (D1, θ) is less costly

than the strategy (y1, θ) (i.e., the strategy (y1, θ) is suboptimal).

Proof. Let Π be a policy such that the order and subsidy are (y1 − x1, θt) for some

y1 < D1 and let Π′ be a policy such that the order and subsidy are (D1 − x1, θt).

Arithmetical comparison of vΠ(1, x, c) < vΠ
′
(1, x, c) renders the result.

From the last proposition, we know that it is suboptimal to order so little that not

even the demand for period 1 is covered. If we assume that the demand for period

2 is bounded, the fact that ordering too much is suboptimal it is also very intuitive.

At the very extreme, we will order enough for both periods, but no more than that.

93



Lemma III.15. Assume that the demand D2 is bounded, i.e., that 0 ≤ D2 ≤ D2.

Given any fixed level of subsidy θ, it is suboptimal to order y1 > D1 +D2.

Proof. The proof is done in the same way as Lemma III.14.

So far, we have proved that it is not optimal to order less than D1 or to order

more than D1 +D2. Therefore, we know that optimality is achieved between D1 and

D1 +D2.

Let us assume now that π(c) = 1 for some c <∞.

From the extreme value theorem in calculus, there exists a pair (y, θ) that mini-

mizes expression (3.3.21). We cannot obtain a closed-form solution, since expression

(3.3.21) has cross terms, and therefore its critical points are saddle points. However,

we can draw some results about the optimal costs when the parameters change.

3.3.3 Sensitivity analysis

Looking at equation (3.3.20), we observe that the stochastic demand relaxation

preserves a similar structure of the objective function v for the deterministic demand

case. However, we no longer have a closed-form solution for the optimal actions.

While it is not possible to obtain the same type of results about the order size

and subsidy amount, we can still obtain some results regarding the direction of the

changes. For this purpose, we recall the envelope theorem, commonly used in Mi-

croeconomics. We present the theorem and refer the reader to Turkington (2007) for

more details.

Proposition III.16. The envelope theorem.— Consider an arbitrary maximiza-

tion (or minimization) problem where the objective function f(x, r) depends on some

parameters r:

f ∗(r) = max
x

f(x, r)
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The function f∗(r) is the problem’s optimal-value function: it gives the maximized

(or minimized) value of the objective function f(x, r) as a function of its parameters

r.

Let x∗(r) be the (arg max) value of x, expressed in terms of the parameters,

that solves the optimization problem, so that f∗(r) = f(x∗(r), r). The optimal-value

function f ∗(r) derivatives with respect to parameters (which described how f∗(r) will

change when the parameters r change) can be obtained as follows:

∂f∗(r)

∂ri
=
∂f(x, r)

∂ri

∣∣∣∣
x=x∗(r)

That is, the derivative of f∗(r) with respect to ri is given by the partial derivative

of f(x, r) with respect to ri, holding x fixed, and then evaluating at the optimal choice.

From this, we can obtain some results about the optimal cost. These results

concern the changes of the optimal cost when the parameters change. First, we

present the derivatives.

Lemma III.17. The following are the derivatives of the optimal value of the objective

function in 3.3.21 with respect to different parameters:

dv

dc1
=
{
h[y1∗ −D1]+ + p[D1 − y1∗]+

}
π′(c1)

+
{
h[x1 −D1]+ + p[D1 − x1]+

}
(−π′(c1))− α

+ ρ
∫∞
0
Eε1 [−π′(θ1∗ + ε1)]p[D1 +D2 − y1∗]+dΦ(D2) π(c1)

+ ρ
∫∞
0
Eε1 [1− π(θ1∗ + ε1)]p[D1 +D2 − y1∗]+ + h[y1∗ −D1 −D2]+dΦ(D2) π′(c1)

+ ρ
∫∞
0
Eε1 [−π′(θ1∗ + ε1)]p[D1 +D2 − x1]+dΦ(D2) (1− π(c1))

+ ρ
∫∞
0
Eε1 [1− π(θ1∗ + ε1)]p[D1 +D2 − x1]+ + h[x1 −D1 −D2]+dΦ(D2)(−π′(c1))

(3.3.22)

dv

dα
= θ1∗ − c1
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dv

dh
= [y1∗ −D1]+π(c1) + [y1∗ −D1]+(1− π(c1))

+ ρ
∫∞
0
[y1∗ −D1 −D2]+dΦ(D2) π(c1)

+ ρ
∫∞
0
[x1 −D1 −D2]+dΦ(D2)(1− π(c1))

(3.3.23)

dv

dp
= [y1∗ −D1]+π(c1) + [x1 −D1]+(1− π(c1))

+ ρ
∫∞
0
Eε1 [−π′(θ1∗ + ε1)] [D1 +D2 − y1∗]+dΦ(D2) π(c1)

+ ρ
∫∞
0
Eε1 [−π′(θ1∗ + ε1)] [D1 +D2 − x1]+dΦ(D2) (1− π(c1))

(3.3.24)

dv

dD1
=
{
−hI[y1∗−D1>0] + p[D1−y1∗>0]

}
π(c1)

+
{
−hI[x1−D1>0] + p[D1−x1>0]

}
(1− π(c1))

+ ρ
∫∞
0
Eε1 [−π′(θ1∗ + ε1)]pI[D1+D2−y1∗>0]+ − hI[y1∗−D1−D2>0]dΦ(D

2) π(c1)

+ ρ
∫∞
0
Eε1 [−π′(θ1∗ + ε1)]pI[D1+D2−x1>0]+ − hI[x1−D1−D2>0]dΦ(D

2) (1− π(c1))

(3.3.25)

dv

dx1
=
{
hI[y1∗−D1>0] − p[D1−y1∗>0]

}
π(c1)

+
{
hI[x1−D1>0] − p[D1−x1>0]

}
(1− π(c1))

+ ρ
∫∞
0
Eε1 [−π′(θ1∗ + ε1)](−p)I[D1+D2−y1∗>0]+ + hI[y1∗−D1−D2>0]dΦ(D

2) π(c1)

+ ρ
∫∞
0
Eε1 [−π′(θ1∗ + ε1)](−p)I[D1+D2−x1>0]+ + hI[x1−D1−D2>0]dΦ(D

2) (1− π(c1))

(3.3.26)

Proof. The results follow from Leibniz’s rule and from the envelope theorem.

From this result, even if we do not know how the actual order and subsidy change,

we do know the magnitude of the changes in the optimal cost, and for most cases,

even the direction of the changes. From the derivatives we computed above, we can
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see that whenever α, h or p increase, the optimal cost will increase too. On the other

hand, if c1, D1 and x1 change, it is not clear whether the optimal cost will increase or

decrease. The reason for this is that, depending on the parameters, when the initial

assets are higher, this may result in higher expected holding costs, since it is more

likely that the manufacturer will have to pay for inventory. Similarly, an increase in

demand (or decrease in initial inventory) may result in lower expected holding costs.

We have described some of the implications of changing a parameter. We saw

that there’s no definite implication of an increase in the demand for period 1.

Figure 3.28: Sensitivity of the Subsidy θ1 vs. Initial Inventory x1 for a Bernoulli-
distributed D2

Figure 3.29: Sensitivity of the Subsidy θ1 vs. initial inventory x1 for a discrete uni-
formly distributed D2

In order to check if similar conclusions follow from the sensitivity analysis for the

decision variables when the demand in the second period is stochastic, we worked

out some examples. One of them has a Bernoulli-distributed demand, and the other

has a uniformly distributed demand. The Bernoulli distribution can be thought of

as an extreme case of a bimodal distribution. In the examples, we found that the

conclusions from the sensitivity analysis we did in previous sections for the case of

97



deterministic demand in period 2 follow smoothly when the demand is stochastic and

follows a uniform distribution, but the analysis does not apply in a straightforward

manner to the Bernoulli-distributed demand case.

Since the conclusions for the sensitivity analysis of the case with Bernoulli-distributed

demand are different, we will take a moment to give several details in the analysis for

changes in the initial inventory for this case. We will also give the main conclusions

for changes in the demand in period 1.

• Initial inventory

Figure 3.30: Sensitivity of Order-up-to Quantity y vs. Initial Inventory x1 for a
Bernoulli-distributed D2

Figure 3.31: Sensitivity of the Order-up-to Quantity y vs. Initial Inventory x1 for a
discrete uniformly distributed D2

At the beginning, increasing the initial inventory x1 causes the order size to

decrease in the amount that the inventory increased, while the order-up-to level

stays constant. For example, if it was optimal to order only for period 1 (z1 =

D1 − x1), the order size would decrease.

Eventually, the order-up-to amount jumps up to cover some of the demand of
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D2. The order size jumps up with the order-up-to level. After this jump, we

see again that the order size decreases as x1 increases. When the demand has

a Bernoulli distribution, the order amount jumps up twice: the first time to

increase the order to cover the low amount of demand DL in period 2 (i.e.,

z1 = D1 +DL − x1), the second time to cover the high amount of demand DH

in period 2 (i.e., z1 = D1 +DH − x1).

Figure 3.32: Sensitivity of the Order z vs. Initial Inventory x1 for a Bernoulli-
distributed D2

Figure 3.33: Sensitivity of the Order z vs. Initial Inventory x1 for a discrete uniformly
distributed D2

The more initial inventory we have, the less we need to subsidize for the future,

given the fact that a higher x1 will give incentives to order today for the two

periods. The subsidy jumps down every time that the order-up-to jumps up,

unless the condition θ1 = c1 is holding. As we mentioned, when the stochastic

demand has a uniform distribution, the changes are similar to what we found in

the deterministic case. As a reference, we include both graphs in the diagrams.

See Figures 3.28, 3.29, 3.30, 3.31, 3.32 and 3.33.

• Demand in period 1
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Figure 3.34: Subsidy vs D1 for a Bernoulli distributed D2

Figure 3.35: Order-up-to vs D1 for a Bernoulli distributed D2

As we mentioned, when the demand distribution is uniformly-distributed, the

conclusions are similar to the deterministic case. For brevity, we refer the reader

to the figures in the deterministic demand section.

We will focus in the case when the demand is Bernoulli-distributed, given that

in that scenario the situation is a little different. In this case, it is possible

to have more than one non-monotonic jump. In the example we present, at

the beginning the order-up-to amount covers for the higher level of demand in

period 2. When D1 increases more, it is better to order only the minimum

amount for period 2. Finally, if D1 is very high, it is optimal to order only for

the first period.

As the demand in the current period increases, and as the order-up-to amount

decreases, it is necessary to provide the supplier with a greater amount of sub-

sidy to guarantee delivery in the future, and therefore the subsidy jumps up

when the order-up-to jumps down. The order level inherits the same structure

as the order-up-to level; and therefore we will just show the diagram for the
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Figure 3.36: Subsidy vs ED2 for a Bernoulli distributed D2

Figure 3.37: Order-up-to vs ED2 for a Bernoulli distributed D2

order-up-to.

See figures 3.34 and 3.35.

• Expected value of demand in period 2.

Conclusions very similar to the ones we described for demand in period 1 follow

for the demand in the second period. The order-up-to level will jump down

if E D2 grows considerably, as it will be better to not order for both periods,

but only for the first one. When this happens, the subsidy will jump up. The

order-up-to level will jump down more than once (and, the subsidy level will

jump up more than once unless the constraint θ1 = c1 has been reached). Note

that when once we reach the point when it is optimal to order only for period

1, the order-up-to level does not change any more, so the graph becomes flat to

the right. The order level inherits the same structure as the order-up-to level;

and therefore we will just show the diagram for the order-up-to.

See figures 3.36 and 3.37.
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3.4 Conclusions

We first studied the one-period model, where there was a finite amount that would

make the probability of successful delivery equal to 1 and where the subsidy would

have an immediate effect. In this case, we first determined conditions that defined

whether diversification was or was not an alternative to be considered when compared

to subsidizing a supplier.

In this context, the amount ω̃i ≡ Fi(p(1−λi)−λih)
(1−λi)(p+h)

defines a threshold that determines

if supplier i will be reliable enough for the manufacturer. Below this level, this

supplier is not reliable enough and the expected penalty costs for the default are higher

than the expected holding costs, and therefore it becomes necessary to diversify. If

p(1 − λi) < h(λi), then every level of subsidy satisfies w > w̃. This means that

supplier i is strong enough to have a reasonable probability of successful delivery, so

having this supplier exclusively has a lower cost than diversifying.

Therefore, the conditions p(1− λ1) < h(λ1) and p(1− λ2) < h(λ2) are needed to

determine whether diversification may or may not be optimal.

In the case when p(1− λ1) ≥ h(λ1) and p(1− λ2) ≥ h(λ2), by choosing if having

an exclusive supplier or diversifying, the manufacturer is choosing between certainty

and uncertainty: the cost of choosing supplier i as an exclusive supplier is the cost of

providing full subsidy. The cost of diversification is the cost of excess inventory if no

one defaults, plus the penalty cost if both suppliers default. As a consequence, if we

assume that each of the available suppliers can satisfy our total demand of supplies,

and if the manufacturer prefers to avoid uncertainty, she has a greater incentive to

grant subsidies to an exclusive supplier.

In the case when p(1 − λ1) < h(λ1) or p(1 − λ2) < h(λ2), the manufacturer

is choosing between certainty and uncertainty. Certainty in this case is obtained

if the manufacturer provides full subsidy. Uncertainty, however, is obtained if the

manufacturer simply orders from an exclusive supplier without ordering any backup
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inventory or providing any subsidy.

In this one-period setting, under some circumstances, such as when diversification

occurs, we find that under this model, the backup inventory amount is high: the

manufacturer orders twice the current period demand, even if there is no future

demand.

We later considered the case with two periods, while all the other assumptions

remained unchanged. We obtained the solution and analyzed it. We found that

depending on the initial parameters, the manufacturer’s optimal actions would reflect

the flexibility that the introduction of time as a dimension would add to his choice of

possible actions. In the example we examined, the penalty cost is initially extremely

low. In this situation, the manufacturer wants to have some diversification of the risk

concerning the supplies she needs for the next period: she can order them now, pay

the holding cost, and if the supplier defaults, she can have one more opportunity to

order them again. If the penalty cost increases a lot, the manufacturer will want to

actually fund the supplier instead of risking to have to pay the penalty, and she will

want to order only for the current period, given the fact that she will want to save the

holding cost for ordering for the second period too. Finally, if the penalty cost is very

high (region 4), the manufacturer will opt for the most protection she can get against

the penalty: full funding in period 1 and ordering for both periods now and saving

the future funding costs. In summary, the time horizon gives the manufacturer some

flexibility. Depending on the required subsidy amount, the holding costs, and the

shortage penalties, the supplier has the option to subsidize, to have backup inventory

or to wait and see if subsidy will be required to satisfy the accumulated demand in

period 2.

We then switched to study the case when we had a two-period setting, but the

subsidy would not be achieved in the same period in which it was granted. In addition,

we relaxed the assumption that a finite amount F existed that would guarantee that
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no default would happen. We assumed that the demand in the second period was

known and deterministic. In this setting, we found a threshold θ̂1 = g−1( h
ρp
). If the

subsidy is lower than this amount, it is optimal to order [D1 − x1]+. Intuitively, once

the manufacturer has given enough subsidy to the supplier, there is enough confidence

that the supply will be delivered next period, and therefore it is not necessary to take

the extra precaution of ordering for the future today. In other words, θ̂1 actually

is the threshold that defines a strong supplier, in the sense that we can trust that

the supplier will deliver the supplies, and therefore there is no need to add backup

inventory for the future.

This partition allowed us to solve the problem optimally, obtaining closed-form

solutions. With these closed-form solutions, we performed a sensitivity analysis.

We found that although changes in the optimal subsidy may be monotonic, this is

not necessarily the case for the order size. For example, for the case when the demand

for either period increases, the subsidy increases and the order size may increase for

a while, until the supplier becomes so reliable that it is no longer necessary to order

for both periods, and the order size jumps down. A second example is when the

current inventory amount increases. The subsidy amount decreases, but this forces

the order-up-to amount to go up, by ordering only from the current period to ordering

for both.

Relaxing the assumption of deterministic demand in the second period does not

prevent us from giving a set of equations that characterize the solution. However,

a closed-form solution can no longer be found so that a similar sensitivity analysis

be performed as in the deterministic demand case. There is no rule of thumb to

determine if the subsidy or the order will be greater or lower than their counterpart

in the deterministic case. In the stochastic case, the conclusions of the sensitivity

analysis for the deterministic demand may or may not hold. However, despite this

limitation, the envelope theorem enables us to determine in some cases the direction
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of the changes in the costs (the objective function), which is good news given the

limitations we face in this case. Using the envelope theorem, and computing the

corresponding derivatives, we obtain that whenever α, h or p increase, the optimal

cost will increase too.
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CHAPTER IV

Room Assignment Optimization

4.1 Introduction

The tourism industry is an important part of the economy in many countries

throughout the world. Vogel (2001) points out that three hundred million people work

in the tourism industry worldwide, and approximately 1.5 trillion US dollars of direct

and indirect revenue, out of a total world economic output of around 40 trillion US

dollars, is generated by this industry. Vogel also mentions that “in the United States,

tourism is estimated to account for approximately 5% of gross domestic product and

to be the third largest retail industry after automobile dealers and food stores.” The

statistics from Lum and Moyer (2001) at the Bureau of Economic Activity show that

almost 1% of gross domestic product from the United States is actually related to the

accommodation segment, which is one fifth of the tourism industry revenue.

Hotel operations are complex and encompass a great variety of tasks. We refer

the reader to Malhotra (1997) for a comprehensive description of all of them. We

now will discuss one of these tasks, which is the process of assigning a room to each

requested booking.

The room assignment task consists of finding an available room that matches the

fare type and attribute requests to as many existing bookings as possible. Attribute

requests can be varied; for example, the type of bedding, some specific view from the
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room, wheelchair accessibility, floor number, requests for connecting rooms for pairs

of bookings from customers traveling together, and so on. However, it is not always

possible to find a room for every booking, so we would like to assign rooms to as

many bookings as we can. For this purpose, we would like to assign rooms in a way

that creates as few “holes” as possible (a hole is a small block of empty room-nights

between two reservations).

In summary, the room assignment problem can be stated as follows:

Maximize the number of room-nights assigned to existing bookings, with the fol-

lowing constraints:

• the assigned room is of the right type,

• the assigned room is available for the entire length-of-stay and

• the assigned room has the requested attributes, which can include connecting

rooms.

With respect to the room assignment task, ConRunner, a Why and How-To ref-

erence for Convention organizers1 states that “Assigning particular rooms is a nice

touch, and it’s often the only way to guarantee things like requests for connecting

rooms. But it’s a lot of work. Some hotel reservation systems can assign room num-

bers to reservations as they come in from a list of rooms in each block.” It is true that

some hotel management tools do assign room numbers to bookings as these bookings

are being made. Many of these tools are designed primarily for accounting and au-

tomation of some hotel operations (such as daily reporting of checkouts). Some of

these applications assign rooms automatically when the booking is made. An example

of this is the hotel application from IT Edge Softwares2.

Other tools allow the front desk to assign rooms manually to bookings at any time

they decide (when the booking comes in, when the guest arrives, or at any time in

1ConRunner.net (2009)
2VCL Components (2009)
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between). Examples of this are Hotel and Property Management software from Busi-

ness Software Solutions (Business Software Solutions, Inc. (2009)), Ezee FrontDesk

Hotel software from Technosys3 and the software from Resort Data Processing Inc.4.

Some hotels obtain some or all of their bookings online via their own websites

(rather than from Internet travel agencies such as Expedia, Travelocity, or Orbitz).

Still others use software that automatically assigns rooms as bookings are made.

Examples of such software tools are the Hotel Booking software from Best Software

Inc.5 and the Hotel Reservation System by Soft Acid6.

Although it is true that some hotels assign a room number as soon as the booking

is made, many hotels assign room numbers at a later stage. Bitran and Gilbert

(1996) give an overview of the planning procedure of a hotel, which they divide into

several phases. The last phase is daily inventory planning, which, as they point out,

“involves the daily allocation of rooms to customers as they arrive at the hotel.”

A reason that many hotels assign rooms late in the booking cycle is that many of

them practice overbooking. Overbooking is one of the simplest revenue management

techniques and the first one that was thoroughly researched and implemented. We

refer the reader to the work from McGill and van Ryzin (1999) for more details.

It consists of taking reservations beyond the capacity for accommodation with the

purpose of “increasing capacity utilization in a reservation-based system where there

are significant cancellations” ((Talluri and van Ryzin, 2004, p.129)). Early room

assignment does not work well with this technique. Therefore, many hotels prefer to

assign rooms on the day of arrival or perhaps a few days in advance: for example,

they may assign room numbers in advance for arrivals happening today and in the

next n days (where n is, for example, 7 days). They would not assign rooms for all

the bookings they currently have for the coming months.

3eZee Technosys Pvt. Ltd. (2009)
4Resort Data Processing, Inc. (2009)
5Best Software, Inc. (2009)
6SoftAcid (2009)
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To illustrate this and why many hotels prefer to delay the room number assign-

ment, we present an example. Assume that we are assigning rooms for the period

of June 24 to June 30. Consider a fictitious facility where there are only two rooms

available, both of the same type. Assume that three bookings are made on May 15,

with check-in and check-out dates as follows:

Booking #: (Check-In /Check-Out)

Booking A: June 24th/25th.

Booking B: June 25th/30th.

Booking C: June 25th/26th.

The room number assignment is done as the bookings are received. Therefore,

on May 15, bookings A and B are assigned to room 1, and booking C is assigned to

room 2. Assume that on June 1 there is a new booking request. The booking request

is as follows:

Booking D: June 24th/26th.

Assume that the rate of cancellation is high enough for the management to prac-

tice overbooking without quality of service concerns. There is no room available for

booking D, but the booking is still accepted.

Assume that on June 5, booking B is canceled.

When the actual stay dates arrive, if there were no changes in the room number

assignment performed on May 15, there is no place for booking D according to the

schedule created on May 15, so the customer is sent to another hotel (the customer is

“walked”) and offered a free night at a later time to compensate for the inconvenience.

Let us now change the assumption regarding the timing of the room number

assignment. Assume that the room number assignment is done each day for the next
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seven days. After booking 2 is canceled on June 5, only bookings 1, 2 and 4 need a

room. On June 18, the room number assignment is performed for the next seven days,

so bookings 1, 2 and 4 are given a room number if possible. On June 18, because

of the cancellation, bookings 1 and 3 can be assigned to room 1, and booking 4 can

be assigned to room 2. In other words, all the bookings were successfully assigned a

room. As we can see, when overbooking occurs, it can be better to delay the room

number assignment.

In the example we described above with two rooms, four bookings and one cancel-

lation, the optimal room assignment is obvious and easy to find, since it is possible to

inspect the entire inventory to find a room with the requested length-of-stay by trying

all the possible combinations. However, this is not feasible when there are thousands

of bookings to assign to hundreds of rooms. It is even harder when customers have at-

tribute requests as described (bedding, view, floor, wheelchair-accessible, connecting

rooms, etc.), which must be considered in addition to the length-of-stay requirement.

The connecting rooms attribute presents an additional complication to the problem

when compared to other attribute requests. The reason is that a connecting rooms

request involves two separate bookings and two rooms, while other attributes involve

only one room.

To our knowledge, there is no literature related to tailoring scheduling heuristics

to the hotel industry, as we will see in the literature review in the next section. A

possible reason for the dearth of literature is that the task is usually performed by

front desk staff, who usually review the list of rooms available for each type and assign

each guest the first one they find that meets their requests. The front desk staff may

also have some program to assist with the task, such as the commercial software we

described above. Most of the programs described assign a room when a booking

is made, very likely using a version of the procedure we just described (assign the

booking to the first room in a list of rooms that matches availability and the requested
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length-of-stay, repeat the operation for the second booking and so on, until we reach

the end of the booking list). We will call this procedure the lexicographic algorithm.

As we showed in the example with four bookings, with this type of approach there is

a possibility of unintentionally blocking a booking.

Another possible reason for the lack of research on room assignment is that for

many places, hotel demand is highly seasonal. Spring, fall and winter are usually low

seasons, with only some holidays having high demand. At these times and places, it

is not difficult for many hotels to provide lodging to every visitor. However, in the

summer, some popular destinations have many visitors, and their hotels are close to

100% occupancy. For those months, having a good tool that allows efficient room

assignment is a good way to promote customer satisfaction. In addition, for destina-

tions like New York City, the average occupation for an entire year is usually 80% on

average, as we can see in NYC & Company, Inc. (2009). Efficient room assignment

is more important for hotels in such locales.

Besides the overbooking technique we already discussed, there are other revenue

management techniques that are commonly applied in the hotel industry. Generally

speaking, these strategies allow the consideration of future demand, including walk-

ins, in order to decide how much to charge for a room, and whether to accept an

incoming booking request. This is generally done with an allocated amount of inven-

tory to each type of customer, or with bid prices. These techniques have proven to

be valuable to increase profits. ((Cross , 1998, p. 3),); for example, reports that rev-

enue management helps Marriott Hotel to gain US$100 million in additional annual

revenue. For more details on these techniques, we refer the reader to the following rev-

enue management surveys: Weatherford and Bodily (1992) and Bitran and Caldentey

(2003), and the book from Talluri and van Ryzin (2004).

We would like to point out that for the revenue management techniques, the

modeling usually focuses on the expected number or percentage of bookings, on can-
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cellations and no-shows, and on expected values. In general, assigning room numbers

to bookings is not an explicit part of this type of model, as we can see from the

surveys listed above. The focus of these models is generally the amount of inventory

to allocate to each fare type on a specific night rather than on the assignment of a

specific room to each booking. Unfortunately, given the stochastic nature of arrivals,

cancellations and no-shows, it occasionally happens that more customers of a specific

type do show up (even when the total amount of bookings accepted does not exceed

total hotel capacity). It is in the best interest of the hotel to assign room numbers

so that the number of bookings without an assigned room is minimized, if not elim-

inated. In this way, hotels can provide better customer service. Some hotels give

customers in this situation an “upgrade,” which blocks a room that could otherwise

be sold. Some others may have to let the customer walk away and lose the customer’s

trust and goodwill. By efficiently assigning rooms, hotels can reduce the amount of

times they have to pay a penalty when they cannot match the specified room in a

booking request, be it in the form of an upgrade or in the form of goodwill loss.

Even if a hotel does not use revenue management techniques, an efficient allocation

of rooms allows more walk-ins to be accommodated. We will focus on the task of

maximizing the number of assigned room-nights to existing bookings that will arrive

in the next n days, where n is the number of days in advance when most cancellations

will have happened. We do not incorporate the modeling of walk-ins. Such modeling

is not needed to assign as many rooms as needed to existing bookings. We assume

that the decision to accept an incoming booking has already been made as part of

the revenue management policies of the hotel.

While the upgrading process (giving a better type of room to a customer) could

potentially be incorporated as part of the optimization problem, there are two reasons

why we choose to not to do so. We consider it to be appropriate for the front desk

staff to determine which customers to give an upgrade to rather than an automated
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algorithm because the front desk staff can perceive easily when there is dissatisfaction,

and, thus, the need to compensate in some way the customer for any inconvenience.

Secondly, not every hotel guarantees attributes when their customer requires a book-

ing, and of those who do, not each of them practices upgrading when the attribute

request cannot be honored. For this reason, our work will be focused on assigning

rooms, trying to satisfy the room type and attribute requests as possible, and will

not include upgrading. In practice, this should not be a major issue for the front desk

staff: if we assign the rooms as efficiently as possible to the bookings, there will only

be a few bookings that could not be assigned, and, therefore, there will not be many

bookings that will need an upgrade.

Our purpose in this paper is to develop a heuristic algorithm that is specific to

the lodging industry by taking advantage of the characteristics that are specific to

hotels. This can assist the front desk staff by automating the process in an efficient

way, i.e., increasing the number of bookings that are successfully assigned. By do-

ing so, customer satisfaction is increased, more walk-ins can be accommodated, and

therefore more income can be generated, decreasing the amount of penalties and loss

of goodwill.

This paper is organized as follows: In section 2, we present a literature review.

In section 3, we present the mathematical definition of the problem. In section 4, we

present the heuristic algorithm that we propose to solve this problem. In section 5,

we present the results of comparing this algorithm to a lexicographic method. Finally,

in section 6, we present our conclusions and suggest future research directions.

4.2 Literature Review

The assignment of rooms to bookings should take into account the room type,

desired attributes, connecting room requests, and current available time for each

room. Attributes of rooms may include view, floor, bedding, etc., while available
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times depend on when customers currently in house check out of the hotel or on

scheduled maintenance times. Connection requests are more complicated, since they

involve matching the attributes and type for two rooms instead of one.

The problem of assigning rooms to a set of reservations is an example of a con-

strained satisfaction problem. This can be understood as the problem of finding an

assignment of values to a set of variables such that a set of constraints is satisfied.

These problems are called the constraint satisfaction problem (CSP). For introduc-

tory material on CSP, see Chapter 5 in the work of Russell and Norvig (1995). For

a survey of algorithms for CSP, we refer the reader to Kumar (1992).

It is important to notice that in this context, it is assumed that the problem at

hand is to find a feasible assignment such that every reservation is honored. When

a feasible assignment for every reservation is not possible, the problem becomes one

of assigning a room to as many bookings as possible. In the context of general

scheduling, Schiex et al. (1995) suggest including some metrics of the seriousness of

a violation of a constraint in the problem formulation. They call this approach a

Valued Constraint Satisfaction problem.

This approach is generic and not tailored to the hotel industry. There are many

settings where examples of constraint satisfaction problems are present. Some exam-

ples are the problems known as the university lecture scheduling or the job shop in

manufacturing. They present some similarities to the room assignment problem.

A quick review of the work done for these problems shows that the solution is

usually found using heuristics. For the university lecture scheduling problem, see, for

instance Abramson (1991) and Elmohamed et al. (1998), for annealing algorithms to

solve this problem. See Luan and Yao (1996), Erben and Keppler (1996), and Ueda

et al. (2001) for genetic algorithms in this context. For a survey of techniques, see

the work from Burke et al. (1997) and Burke and Petrovic (2002).

In the case of the job shop scheduling problem, see for instance the work of

114



Coffman and Bruno (1976), Vaessens et al. (1996), Jain and Meeran (1999) (1999),

Blazewicz et al. (1996) and Sadeh and Fox (1996), Sanlaville and Schmidt (1998).

Davis (1985) and Bierwirth and Mattfeld (1999) discuss the application of genetic

algorithms to this problem. van Laarhoven et al. (1992) discuss the theory and

applications of the simulated annealing techniques to the same problem. Dell’Amico

and Trubian (1993) discuss how to apply tabu search in this context.

Many job shop problems are of the type known as variable interval scheduling or

variable job scheduling. This means that each job has a flexible start and end time,

or in other words, a flexible window of execution. A lot of the job shop literature

is on this type of model, which is NP-complete (Garey et al. (1976)). Other job

shop models, which are more relevant to the type of problem we are studying, belong

to the category known as fixed interval scheduling, fixed job scheduling, or k-track

assignment or simply interval scheduling, which has the characteristic that each job

must be performed starting at a specific time and ending at a specific time. The

room assignment problem is a fixed interval scheduling problem, given that every

booking must be assigned to a room for the entire length-of-stay, starting exactly on

the requested arrival date.

A survey for fixed intervals is provided by Kolen et al. (2007). As we will see, many

interval scheduling problems are computationally expensive, and the room assignment

problem is no exception. In order to understand the complexity in reference to the

work that has been done in this area, let us temporarily drop the connection requests

from the room assignment problem.

Kolen et al. provide a classification for interval scheduling problems. One of

the categories of interest to us is the Interval Scheduling with Machine Availabilities

(ISMA) problem. In this problem, several tasks have to be assigned to processors for

processing. The processors are identical, except for the availability times. Kolen et

al. point out that ISMA was proved to be NP-complete by Papadimitriou (1982).
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Notice that a simplified version of the room assignment problem (where there are no

room types) is an ISMA-type problem. In this version, rooms can be thought of as

processors, while the bookings are the jobs to be processed.

Kolen et al. also define the hierarchical interval scheduling (HIST) problem with

T types. In this setting, all processors are available for the same period of time, but

they differ because each job can be processed by some processors: Jobs and processors

have a hierarchical type (i.e., types are ordered). Jobs of type t can only be processed

by a processor of type t or lower. Kolen et al. prove that a HIST problem with T

types (where the number of types is T = 2 or greater) is NP-complete. A room

assignment problem with T room types without unavailable blocks in the middle of

the x day period, but with the possibility of upgrading a customer, can be considered

a HIST problem with T types.

It is important to clarify that in practice, upgrades do not exceed one category

(it is not in the best interest of the business to give the highest-category room to

customers who paid the lowest possible fare). Also, as we pointed out, it is appropriate

to let front desk staff or managers make the decision as to who gets upgraded, given

that they perceive better the need to do so when customer satisfaction is at stake.

Therefore, the HIST problem is not the best way to model the room assignment

problem in practice. Our purpose of reviewing it here is to make the reader aware of

the complexity of the room assignment problem.

We have seen that the room assignment problem falls into two of the categories

defined by Kolen et al. for the interval scheduling problems, and these categories are

problems that are NP-complete.

We found an algorithm in the literature (Brucker and Nordmann (1194)) that

attempts to solve problems in which each processor’s track (available window) can

process only a given set of jobs. They call this the generalized k-track problem. This

is similar to the room assignment problem, where only a given set of bookings can be
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scheduled for each room, depending on the room availability and attributes; however,

this algorithm is computationally expensive. Brucker and Nordmann do point out

that, in practice, this algorithm is not useful for k > 5. In the room assignment

context, this algorithm is O(nk), where n is the number of bookings and k is the

number of rooms. 7 For this reason, their algorithm is not even useful for very small

hotels, except for the rare ones that do have k = 5 rooms at most.

Recall that we dropped the assumption that the bookings contain connecting room

requests. As we have seen so far, the nature of this simpler version of the room assign-

ment problem is complex. Connection requests can be considered within the scope of

adjacent resource scheduling (ARS), which, as Duin and van Sluis (2006) point out,

has not been widely studied. The room assignment problem with connection requests

can be thought of as an ARS problem: In a connection request, two jobs (bookings)

should be processed by adjacent processors (connected rooms).

ARS is closely related to interval scheduling and to multiprocessor processing

(when a single job requires at least two processors). The difference between multipro-

cessor scheduling and ARS is that in multiprocessor scheduling, it is necessary that a

pre-specified number of processors performs a job, while in ARS, it is necessary that

such processors are selected from a collection of adjacent processors rather than from

the whole set.

Duin and van Sluis (2006) study the ARS problem when all processors are avail-

able for the same period of time (which is not true in the room assignment problem;

each room is available for a different period of time). They study different versions

of the problem, one of which they call rectangular ARS. In this version, the need for

resources remains constant during the entire interval in which the job is processed

7This is true assuming that each room is available for one continuous period of time rather than
having some blocked time (for maintenance, for example) in the middle of the n days creating two
separate blocks. If the current available time for a room is not continuous and is two separate blocks
instead, k is the number of available blocks. If all rooms are available for a continuous period of
time, the number of open slots matches the number of rooms.
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(this is the case for the room assignment problem: the same room is maintained

for the entire length-of-stay of a booking). They prove that the rectangular ARS is

NP-complete.

As a summary of what we have found in the literature, several traits of the room

assignment problem are present in related problems that are NP-complete:

• Each room is available for a different period of time.

• each booking can be assigned only to a subset of rooms, depending on its type

and attributes.

• The fact that some pairs of bookings request connecting rooms.

To our knowledge, a problem that exhibits the three mentioned features together

has not been studied so far.

As we mentioned in the introduction, we are interested in using the room inventory

in the most efficient way so that we honor as many requests as possible, and that we are

able to accommodate more future walk-in customers. Consistent with what happens

in the industry, we do assume that appropriate prices have been offered to each type

of customer who made a booking. In other words, we assume that traditional revenue

management pricing strategies have already been performed when we perform the

room assignment process.

4.3 Mathematic Formulation

We now present the mathematical formulation of the problem we are interested

in solving.

A booking i has the following characteristics: arrival date, length-of-stay, re-

quested room type, and requested attributes (if any).

118



A room j has the following characteristics: initially available time, type of room,

attributes of the room.

We will call a room j compatible with booking i if the attributes of the room

match the following:

1. Room type

2. Requested attributes

3. Availability during length-of-stay.

Notice that rooms may be unavailable for specific nights before the assignment

process begins, because of maintenance, the common practice of group-blocking for

conventions, weddings, etc., or by guests who are already in house at the time we

are assigning rooms for incoming bookings, and whose room is blocked until their

departure.

We will define the notation that we will use in the problem.

Let us assume that the assignment will be done for the arrivals happening during

the next n days.

Let xij = 1 if i -th booking is assigned to the j -th room; xij = 0 otherwise.

ajk = 1 if room j is available at night k ; δik = 0 otherwise.

R: the set of all rooms.

Denote the set of compatible rooms with a booking i, as the set Ri ⊆ R. Notice

that the set of the rooms that are not compatible with booking i is R \ Ri.

Rc: the set of rooms that have a connecting room.

Define h: Rc -> Rc , h(x) ≡ y if and only if room x is connected with room y.

B: the set of all bookings starting during the next n days. This is the set of

bookings that we want to assign rather than waiting until the customer is on site.

We will call a booking i′ overlapping with booking i if there is a time conflict

between both bookings that would prevent them from being assigned to the same
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room.

B i ⊆ B : the set of overlapping bookings with booking i.

B c: the set of bookings that request a connecting room.

Define k : B c -> B c , k(x) ≡ y if and only if booking x has a request of a connecting

room for booking y. We will say that bookings x and y are connected.

s i: the length-of-stay of booking i.

nj: the number of nights available for room j.

We would like to maximize the number of bookings that get a room number as-

signed, subject to the constraint that the assignment is feasible. The mathematical

formulation for the Room Assignment Optimization problem (RAO) can be formu-

lated as:

max
∑

iϵB

∑
jϵRxij (4.3.1)

subject to:∑
jϵRxij ≤ 1 for all iϵB

The booking is assigned to one room at most.∑
jϵR\Ri

xij = 0 for all iϵB

The booking is not assigned to a room that is not compatible.∑n
i=1

∑
iϵBxij ≤ 1 for all jϵR

Each room-night is assigned to at most one booking.∑
iϵBsixij ≤ nj for all jϵR

room-nights assigned are less than the available room-nights for each room.

xij +
∑

i′ϵFi
xi′j ≤ 1 for all iϵB

Overlapping bookings are not assigned to the same room as booking i.

xij = xk(i),h(j) for all iϵBc, all jϵRc

A pair of connected bookings is assigned to a pair of connected rooms.

xij = 0, 1
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This problem has a very large size. Given the characteristics of the problem (NP-

complete), as one can expect, it is not possible to obtain in a short time an exact

solution of this Mixed Integer Problem, even for a small hotel with 150 rooms and a

small set of reservations (approximately 280). We made attempts to reduce the size of

the problem and to make more tractable the actual Integer Program for commercial

software (such as C++ or SAS O.R.). Even with the size reductions we attained, an

exact solution could not be found for a small test hotel (150 rooms). Therefore, the

best option we found was to create a heuristic method to obtain the solution. The

heuristic does not present problems in dealing with an actual size hotel. We describe

this methodology in the next section.

4.4 Heuristic method

In this section, we suggest an algorithm that creates a heuristic solution based on

sorted lists. In order to obtain a good heuristic solution, it is better to assign the most

scarce resources first. Which resource is more scarce depends on each specific hotel,

and the management can help define which resources should be assigned first. An

example of this is the view attribute. For hotels close to the seaside, this attribute may

be highly demanded. Another example is the connecting rooms requests. Connection

requests are more demanded in hotels oriented to families or small groups traveling

together. Handling the assignment of connection requests can be hard, given the

fact that the inventory of connecting rooms is limited. Therefore, when sorting the

attribute list, we would list connections first.

We created an algorithm to obtain a heuristic solution to this problem, respecting

attribute requests and avoiding overlappings.

We describe on a high level the algorithm before presenting the pseudocode.

The first part of the algorithm initializes all the variables and creates an ordered

list of feasible rooms for each booking, except for the connecting room request at-
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tribute, which we check in the main loop.

In the main loop, there is a variable κ. This variable is used to run a few iterations

of the actual routine that finds a room assignment schedule. Inspired by genetic

algorithms, the suggested algorithm runs a routine to propose an assignment of room

numbers to bookings and takes note of the bookings that did not get a room assigned;

then it starts over the routine to look for a different room assignment schedule starting

with the bookings, that did not get a room assigned in the previous iteration, and so

on, until κ iterations have been performed. Only the assignment that assigns the most

bookings is saved. This step is similar tomutation in genetic algorithms, which is used

in order to “prevent the algorithm to be trapped in a local minimum” (Sivanandam

and Deepa, 2007). However, our algorithm would not be classified as a typical genetic

algorithm, given that there is no selection or reproduction procedures.

The routine that proposes a possible room assignment schedule takes each booking

i and performs the following steps:

• Clear minR and smallest hole variables.

• Check if booking i has not been assigned. If it has, go to next booking. Other-

wise, do the following:

• Check each room j in the set Ri. If it is still available for booking i, go to next

steps. If not, skip this room and check the next one.

– Check if booking i has a connected booking. If it does, denote it i2 and do

the following:

∗ Check if room j has a connecting room. If it does not, skip room j and

examine the next room in the list. If it does, denote the connecting

room j2:

∗ Check if j2 is in the compatible set Ri2 and if it is still available for

booking i2 length-of-stay. If not, stop checking room j any further
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(and room j2) and check the next one.

– Check if room j creates a smaller hole than the smallest one so far. If it

does, save it in minR. If it creates no hole (no empty room-nights), do

not check any other rooms for booking i.

• If there were rooms available for i (minR not NULL), assign minR to booking

i and update room minR availability.

• If booking i has a connected booking i2, assign the room that connects to minR

to booking i2. Update the room availability.

We now present the pseudocode that performs the steps just outlined:

Sort:
B= b1, b2, . . . , bn Sorted set of bookings (sorted by type, connection request,

dayIn, Number of nights, other attributes)
R= r 1, r 2, . . . , rm Sorted set of rooms (sorted by type, connection request,

dayIn, empty nights, other attributes)
Initialize:

for all i in B
Set(bi->assigned)=0
Set(bi ->room)=NULL
Set(bi ->CurrentBestRoom)=NULL

for all j in R
Clear rj->bookings
rj ->AvailableOn=rj ->OriginalAvailableOn

for all i in B
Create ordered set Ri, where a room rj is in Ri

if and only if compatible with booking bi, i.e.:
rj->type = bi->type
&& bi->attr in rj->attr
&& bi-> dayIn > rj->availableOn
&& bi-> dayOut > rj->blockedFrom
Order by: type, connection request, dayIn,
number of nights, other attributes;
// (connecting room requests will be examined later)

maxNbBookingsAssigned=0;
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Main loop:
for (κ=0 to MaxIteration; κ++)

nbBookingsassigned = 0;

for all i in B
// if the booking has been assigned skip to the next booking.
if (bi ->assigned > 0) continue;
// initialize minimum hole length for this booking to large number
minH = 9999;
// initialize room that minimizes hole for this booking
minR = NULL;
for all j in set Ri

if bi->dayIn earlier than rj->availableOn,
then skip this room; // arrival when not available;

if (bi2 != NULL) // booking bi has a connected booking bi2

// room rj has no connecting room, skip to next room
if (rj2 == NULL) continue;
// if room connected to rj not available,
// then skip to next room
if (bi2->dayIn < rj2->availableOn) continue;

// find length of the hole created by bi in the room rj
diff:= bi->dayIn - rj->availableOn
// if smaller than minimum length hole so far:
if (diff <= minH)

// save the new minimum length hole
minH = diff;
// update room with minimum length hole
minR = rj;
// if booking in room does not create a hole,
// stop reviewing rooms
if (minH == 0) break;

// End for j
// if no room available for booking, nothing to do,
// skip to next booking
if (minR == NULL) continue;
// Otherwise, assign booking bi to room
// with minimum length hole (minR)
Add bi to minR->bookings;
// assign room with minimum length hole minR to booking bi
Set(bi->assignedRoom)=minR;
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// change room minR availability
Set(minR->availableOn)=bi->dayOut;
// flag booking bi as assigned
Set(bi->assigned)=1;
// counting number of assigned bookings
nbBookingsAssigned++;
// repeat steps above for connecting rooms if necessary
// if bi does not have a connected booking, no further action
if (bi2 == NULL) continue;
// Otherwise, determine the room that connects with minR
// repeat steps above for connected booking and connected room
minR2= minR->ConnectedRoom;
Add bi2 to minR2->bookings;
Set(bj2-> room)=minR2;
Set(minR2-> availableOn)=bi2->dayOut;
Set(bj2-> assigned)=1;
nbBookingsAssigned++;

// End for i
// ======================================
// If assignment obtained from Current Iteration κ is better,
// save it in“CurrentBestRoom”.
if (nbBookingsAssigned > maxNbBookingsAssigned)

maxNbBookingsAssigned = nbBookingsAssigned;
for all i in B
bi->CurrentBestRoom = bi->room
// End for i

// Unassigned bookings go first in the next iteration κ
Order bookings by: type, dayIn, assigned, connection request,

Number of nights, other attributes

// Clear data to run another iteration
for all i in B

Set(bi->assigned)=0
Set(bi ->room)=NULL

for all j in R
Clear rj->bookings

Set(rj->availableOn)=0;

// End for κ
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4.5 Computational Results

In order to test this algorithm, we used a production environment data set from

a hotel with 1477 rooms, and a set of bookings from the peak season (Easter 2009).

The total number of booking requests is 2815. The peak season was chosen because

this is when it is harder to give a room to each existing booking; it is easier to assign

a room to each booking. The results are summarized in the table.

Table 4.1: An Optimal Solution of Room Assignment to an Actual Hotel
Measurement Lexicographic RAO

Number of bookings successfully assigned 2518 2773
Percentage of bookings successfully assigned 89.4% 98.5%

Number of rooms used 1477 1418
Number of holes (intervals of empty nights) 212 69
Average number of empty nights per hole 2 1

From these results, we can observe that our heuristic makes a considerable dif-

ference in the number of bookings served when compared with the lexicographic

approach. We obtained results that made a difference of approximately 10% (250)

more assigned bookings using our heuristic. If we assume that the hotel room costs

around $60 per night, the difference between RAO and the lexicographic method is

about $15,300 in a 10-day period. Assuming that there is one full month of peak

season in the hotel, this is more than $45,900 for that month. These savings come

only from the difference in room-nights assigned.

Our heuristic also helps to greatly reduce the number of empty room-nights be-

tween bookings, which are room-nights that are less likely to be sold. Notice the

potential difference in income caused by those empty room-nights: With the lexico-

graphic approach, we obtain 212×2 = 424 empty room-nights between bookings. On

the other hand, with RAO, we have only 69 empty room-nights between bookings.

Assuming that all of these nights can be sold (which is a reasonable assumption dur-

ing peak time), if room cost is around $60 per night, using the lexicographic method,
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the inventory that is potentially blocked costs about $25,400. On the other hand,

with the Room Assignment algorithm, this amount is considerably lower: $4,100.

The difference is around $21,000. These amounts correspond to a period of 10 days.

For a peak-season month, this amount would be about $63,000.

The total income difference from both the total number of assigned rooms and the

additional income from selling nights that would be hole-nights with the lexicographic

method is about $100,000 per peak-season month.

Notice that these results are obtained without any computational time problems.

Our heuristic only takes a few minutes to run. It is, therefore, a tool that can be

used routinely. This tool is useful for any hotel, but it is even more attractive for

destinations where occupancy is generally high. New York City, for example, has

an average occupancy of 80% year round, according to the statistics provided by

NYCgo.com.

4.6 Concluding Remarks

As we saw in the introduction, this problem is NP-complete, and therefore finding

an exact solution is computationally expensive. Therefore, we recommended a heuris-

tic algorithm in order to obtain an approximate solution. In order to assign as many

rooms as possible, it is better to assign the most scarce resource first. Connecting

rooms are generally scarcer than others, and therefore our heuristic gives priority to

these requests.

In our tests, we successfully assigned 9% more bookings using our heuristic than

with the lexicographic method. We reduced the number of room-nights between

bookings by 18%. The planning horizon was for 10 days during the peak season. If

if it is possible to sell the room-nights that were part of a “hole” (which is usually

the case during peak season), the savings obtained are approximately $100,000 per

month. As a reference, if we assume a 95% occupancy (typical of peak time) for a
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1477-room hotel, the income for one day is around $79,750. This means that not

using any optimization method during peak season is similar to closing up the hotel

for one day.

This is an important difference, especially when occupancy levels are high, which

often happens in tourist locales or in towns and cities frequently visited by business

travelers.

Finally, we hope that this model motivates further research on the little studied

area of room allocation in the lodging industry. The ability to solve a problem of this

nature can help businesses in the lodging industry to improve their revenue, given the

increment in room utilization (and therefore a greater number of booking requests

honored), the decrease in the need for unpaid upgrading, and improved customer

satisfaction.

128



CHAPTER V

Conclusions

In the first essay, joint work with Mark Lewis and David Kaufman, we introduced

a new method for load balancing in the case for highly variable service distributions.

The method introduced is robust to changes in the parameter settings even in the

case where it is not adjusted to optimize the implementation. The most reasonable

alternative to our heuristic appears to be a non-idling heuristic. In this case, the

question is simply, is the consistency and savings worth the difficulty of implementing

our heuristic. In many cases we believe more than 8.5% savings is worth the time to

implement our heuristic.

At the same time, we showed that the use of Markov decision processes can mit-

igate the challenges of a general service time distribution. We believe that the ideas

described here can lead to insights for other queueing models. The example of admis-

sion controlled M/G/1 has already been alluded. Exactly the same intuition holds

for service rate control in a G/M/1. Of course, these are just the building blocks

for more sophisticated models. We note that an extension of the current work is to

consider a larger network of queues, and we conjecture that the two pairing heuristics

described in and Down and Lewis Down and Lewis (2006)) would be useful. We leave

this for future research.

In the second essay, we studied the problem solved by a manufacturer who faces
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supplier disruptions. In order to understand the interactions between three strategies

(subsidizing the supplier, supplier diversification, and the creation of back-up inven-

tory) we used a simple model with inventory storage costs and shortage penalties.

we studied first the one-period model, where there was a finite amount that would

make the probability of successful delivery equal to 1, and where the subsidy would

have an immediate effect. In this case, we first determined conditions which defined

whether diversification was or was not an alternative to be considered when compared

to subsidizing a supplier.

In this context, the amount ω̃i ≡ Fi(p(1−λi)−λih)
(1−λi)(p+h)

defines a threshold which deter-

mines if supplier i will be reliable enough for the manufacturer. Below this level,

this supplier is not reliable enough and the expected penalty costs for the default are

higher than the expected holding costs, and therefore it becomes necessary to diver-

sify. If p(1−λi) < h(λi) then every level of subsidy satisfies w > w̃. This means that

supplier i is strong enough to have a reasonable probability of successful delivery, so

having this supplier exclusively has a lower cost than diversifying.

Therefore, the conditions p(1− λ1) < h(λ1) and p(1− λ2) < h(λ2) are needed to

determine whether diversification may or may not be optimal.

In the case when p(1− λ1) ≥ h(λ1) and p(1− λ2) ≥ h(λ2), by choosing if having

an exclusive supplier or diversifying, the manufacturer is choosing between certainty

and uncertainty: the cost of choosing supplier i as an exclusive supplier is the cost of

providing full subsidy. The cost of diversification is the cost of excess inventory if no

one defaults, plus the penalty cost if both suppliers default. As a consequence, if we

assume that each of the available suppliers can satisfy our total demand of supplies,

and if the manufacturer prefers to avoid uncertainty, she has a greater incentive to

grant subsidies to an exclusive supplier.

In the case when p(1 − λ1) < h(λ1) or p(1 − λ2) < h(λ2), the manufacturer

is choosing between certainty and uncertanty. Certainty in this case is obtained

130



if the manufacturer provides full subsidy. Uncertainty, however, is obtained if the

manufacturer simply orders from an exclusive supplier without ordering any backup

inventory or providing any subsidy.

In this one-period setting, under some circunstances, such as when diversification

occurs, we find that under this model, the backup inventory amount is high: the

manufacturer orders twice the current period demand, even if there is no future

demand.

We later considered the case with two periods, while all the other assumptions

remained unchanged. We obtained the solution and analyzed it. Depending on the

initial parameters, the manufacturer’s optimal actions would reflect the flexibility that

the introduction of time as a dimension would add to his choice of possible actions.

In the example we examined, the penalty cost is initially extremely low. In this

situation, the manufacturer wants to have some diversification of the risk concerning

the supplies she needs for the next period: she can order them now, pay the holding

cost, and if the supplier defaults, she can have one more opportunity to order them

again. If the penalty cost increases a lot, the manufacturer will want to actually

fund the supplier instead of risking to have to pay the penalty, and she will want

to order only for the current period, given the fact that she will want to save the

holding cost for ordering for the second period too. Finally, if the penalty cost is very

high (region 4), the manufacturer will opt for the most protection she can get against

the penalty: full funding in period 1, and ordering for both periods now and saving

the future funding costs. In summary, the time horizon gives the manufacturer some

flexibility. Depending on the required subsidy amount, the holding costs, and the

shortage penalties, the supplier has the option to subsidize, to have backup inventory

or to wait and see if subsidy will be required to satisfy the accumulated demand on

period 2.

We then switched to study the case when we had a two-period setting, but the
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subsidy would not be achieved in the same period that it was granted. Additionally,

we relaxed the assumption that a finite amount F existed that would guarantee that

no default would happen. We assumed that the demand in the second period was

known and deterministic. In this setting, there is a threshold θ̂1 = g−1( h
ρp
). If the

subsidy is lower than this amount, it is optimal to order [D1 − x1]+. Intuitively, once

the manufacturer has given enough subsidy to the supplier, there is enough confidence

that the supply will be delivered next period, and therefore it is not necessary to take

the extra precaution of ordering for the future today. In other words, θ̂1 actually

is the threshold that defines a strong supplier, in the sense that we can trust that

the supplier will deliver the supplies, and therefore, there is no need to add backup

inventory for the future.

This partition allowed to solve the problem optimally, obtaining closed form so-

lutions. With these closed form solutions, we performed a sensitivity analysis.

We found that although changes in the optimal subsidy may be monotonic, this is

not necessarily the case for the order size. For example, for the case when the demand

for either period increases, the subsidy increases, and the order size may increase for

a while, until the supplier becomes so reliable that it is no longer necessary to order

for both periods, and the order size jumps down. A second example is when the

current inventory amount increases. The subsidy amount decreases, but this forces

the order-up-to amount to go up, by ordering only from the current period to ordering

for both.

Relaxing the assumption of deterministic demand in the second period does not

prevent us from giving a set of equations that characterize the solution. However,

a closed form solution can no longer be found so that a similar sensitivity analysis

be performed as in the deterministic demand case. There is no rule of thumb to

determine if the subsidy or the order will be greater or lower than their counterpart

in the deterministic case. In the stochastic case, the conclusions of the sensitivity
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analysis for the deterministic demand may or may not hold. However, despite this

limitation, the envelope theorem enables us to determine in some cases the direction

of the changes in the costs (the objective function), which is good news given the

limitations we face in this case. Using the envelope theorem, and computing the

corresponding derivatives, we obtain that whenever α, h or p increase, the optimal

cost will increase too.

In the third essay, which is joint work with Yihua Li, we studied a hotel room

assignment problem, which is generally performed by the front desk staff on the ar-

rival day using a lexicographic approach. We found features of the room assignment

problem that makes it NP complete, and therefore, finding an exact solution is com-

putationally expensive. Therefore, we recommended a heuristic algorithm in order

to obtain an approximate solution. In order to assign as many bookings as possible,

it is better to assign the most scarce resource first. Connecting rooms are generally

more scarce than other resources, and therefore our heuristic gives priority to these

requests.

In our tests, we successfully assigned 9% more bookings more using our heuristic

than with the lexicographic method. We reduced the number of room nights between

bookings by 18%. The planning horizon was for 10 days in peak season. If if it is

possible to sell the room-nights that were part of a “hole” (which is usually the case

during peak season), the savings obtained are of approximately $100,000 per month.

As a reference, if we assume a 95% occupancy (typical of peak time), for a 1477

room hotel, the income for one day is around $79,750. This means that not using

any optimization method during peak season is similar to closing up the hotel for one

day.

This is an important difference, especially when occupancy levels are high, which

often happens in tourist locales or in towns and cities frequently visited by business

travelers.
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The ability to solve a problem of this nature can help businesses in the lodg-

ing industry to improve their revenue, given the increment in room utilization (and

therefore a greater number of booking requests honored), the decrease in the need of

unpaid upgrading, and the increment in customer satisfaction.
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APPENDIX

Solution to problem 3.3.1

Proposition A.1. The optimal strategy to problem (3.3.1), and the corresponding

optimum value, is as follows:

1) If θ̂1 ≤ θ1,D1+D2 , then z1∗ = [D1 − x1]+, θ1∗ = max{θ1,D1, c1} and

v∗(1, x1, c1) =
[
p[D1 − x1]+ + h[x1 −D1]+

] [
1− π(c1)

]
+ α(θ1∗ − c1)

+ ρ
{
g(θ1∗)p(D2)π(c1) +

[
g(θ1∗)p[D2 +D1 − x1]+

+h[x1 −D1 −D2]+
] [
1− π(c1)

]}
.

Let Π1,θ1 be the policy associated with ordering z1 = D2 +D1 − x1 and a subsidy

of θ1,D1. Let Π2,max 2 be the policy associated with ordering z1 = D2 +D1 − x1 and a

subsidy of max{θ1,D1+D2, c1}.

2ai)

If θ1,D1+D2 ≤ θ̂1 ≤ θ1,D1, c1 ≤ θ̂1 and vΠ
1,θ1

(1, x1, c1) ≤ vΠ
2,max 2

(1, x1, c1), then
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z1∗ = [D1 − x1]+, θ1∗ = θ1,D1 and

v∗(1, x1, c1) =
[
p[D1 − x1]+ + h[x1 −D1]+

] [
1− π(c1)

]
+ α(θ1∗ − c1)

+ ρ
{
g(θ1∗)p(D2)π(c1) +

[
g(θ1∗)p[D2 +D1 − x1]+

+h[x1 −D1 −D2]+
] [
1− π(c1)

]}
.

2aii) If θ1,D1+D2 ≤ θ̂1 ≤ θ1,D1, c1 ≤ θ̂1 and vΠ
2,max 2

(1, x1, c1) ≤ vΠ
1,θ1

(1, x1, c1),

then z1∗ = [D2 +D1 − x1]+, θ1∗ = max{θ1,D1+D2, c1} and

v∗(1, x1, c1) =
[
h(D2)I[D2+D1>x1] + h(x1 −D1)+I[D2+D1<x1]

]
π(c1)

+
[
p[D1 − x1]+ + h[x1 −D1]+

] [
1− π(c1)

]
+ α(θ1∗ − c1)

+ ρ
{[
g(θ1∗)p[D2 +D1 − x1]+

+h[x1 −D1 −D2]+
] [

1− π(c1)
]}
.

2b) If θ1,D1+D2 ≤ θ̂1 ≤ θ1,D1, c1 > θ̂1, then z1∗ = [D1 − x1]+, θ1∗ = c1 and

v∗(1, x1, c1) =
[
p[D1 − x1]+ + h[x1 −D1]+

] [
1− π(c1)

]
+ ρ

{
g(θ1∗)p(D2)π(c1) +

[
g(θ1∗)p[D2 +D1 − x1]+

+h[x1 −D1 −D2]+
] [
1− π(c1)

]}
.

3a) If θ̂1 ≥ θ1,D1 and c1 ≤ θ̂1 then z1∗ = [D2+D1−x1]+, θ1∗ = max{θ1,D1+D2, c1},

and

v∗(1, x1, c1) =
(
h(D2)I[D2+D1>x1] + h(x1 −D1)+I[D2+D1<x1]

)
π(c1)

+
[
p[D1 − x1]+ + h[x1 −D1]+

] [
1− π(c1)

]
+ α(θ1∗ − c1)

+ ρ
{[
g(θ1∗)p[D2 +D1 − x1]+

+h[x1 −D1 −D2]+
] [

1− π(c1)
]}
.
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3b) If θ̂1 ≥ θ1,D1 and c1 > θ̂1 then z1∗ = [D1 − x1]+, θ1∗ = c1, and

v∗(1, x1, c1) =
[
p[D1 − x1]+ + h[x1 −D1]+

] [
1− π(c1)

]
+ ρ

{
g(θ1∗)p(D2)π(c1) +

[
g(θ1∗)p[D2 +D1 − x1]+

+h[x1 −D1 −D2]+
] [
1− π(c1)

]}
.

Proof. Recall subproblems a) and b), which we have solved in Propositions III.11

and III.12. These are unconstrained problems. However, as pointed out, when impos-

ing the constraint θ1 ≤ θ̂1 = g−1( h
ρp
) to subproblem a) and θ1 ≥ θ̂1 to subproblem b),

the solution to each of them may change (now the optimal subsidy for each problem

may be at θ̂1 = g−1( h
ρp
), the border point). We will call each of these feasible sets

“the feasible regions for subproblems a) and b),”respectively. Note, as well, that the

constraints for the subsidy level that define the feasible regions for each subproblem

are not the only constraints we are facing. From the formulation of problem (3.3.1)

we see that θ1 ≥ c1 is another feasibility constraint. Therefore, we need to take it

into consideration.

We divided the solution in three cases, the ones that we depicted in Figures 3.5,

3.6, 3.7.

Case 1) refers to the case when the point at the border s A and B, θ̂1, is to the

left of θ1,D1+D2. As illustrated in the diagram, the optimal solution for (subproblem

b) (z1 = [D1 − x1]+ and θ1∗ = max{θ1,D1, c1}) clearly outperforms the optimal for

subproblem a).

Case 2) refers to the case when the border point θ̂1 is between θ1,D1+D2 and θ1,D1.

Subcase 2a) refers to the case when both subregions intersect the feasible region

θ1 ≥ c1, and therefore, both minima must be compared (therefore, we have parts (i)

and (ii), depending which of the two minima outperforms the other). Subcase 2b)

refers to the case when c1 > θ̂1, where only the subregion for subproblem b) intersects
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the region θ1 ≥ c1. Therefore, we only need to consider the solution to subproblem

b).

Case 3) refers to the case when θ̂1 is to the right of θ1,D1. Before considering

the constraint θ1 ≥ c1, we see that the optimal solution for subproblem a) (z1 =

[D2+D1−x1]+ and θ1∗ = max{θ1,D1+D2, c1}) outperforms the optimal for subproblem

b). Subcases 3a) and 3b) are considered separately just to distinguish when the

optimal for unconstrained subproblem a) is actually attainable (subcase (a.1)) or not

(subcase (a.2)) given the original constraint θ1 ≥ c1. In this last case, the best we

can do is to not subsidize, given the fact that the initial level of assets c1 is above

θ1,D1+D2.
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