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Abstract 

 
Biaryls are important targets for numerous applications in organic synthesis. As a 

result, the development of metal-mediated aryl cross-coupling has been extensively 

studied. The disadvantage of this approach is the requirement for each coupling partner to 

be prefunctionalized. To address this challenge, our studies focused on the development 

of direct, site selective C–H arylation. 

We developed a PdII-catalyzed, ligand-directed C–H arylation reaction, that 

employs [Ar–IIII–Ar]+ reagents as terminal oxidants. High site-selectivity was achieved 

by employing substrates containing either oxygen or nitrogen-directing groups for 

functionalization of a specific C–H bond. This approach led to the installation of both 

electron rich and electron poor aryl groups. Additionally, excellent functional group 

tolerance was observed. Finally, investigations found that the generation of [Ar–IIII–Ar]+ 

in situ were feasible for subsequent C–H functionalization. 

Mechanistic investigations of directed C–H arylation elucidated the catalytic 

cycle. This represents the first thorough investigation of a ligand-directed, palladium-

catalyzed C–H arylation. These studies implicated a high-oxidation state dimeric 

palladium species as a catalytic intermediate. Furthermore, oxidation was found to be 

rate-limiting, unlike most C–H functionalization reactions. 

We also extended this methodology to the C–H arylation of substrates lacking a 

directing group. We demonstrated that palladium catalysts and [Ar–IIII–Ar]+ oxidants 

afford site selective C2 arylation of indoles at room temperature, with excellent 

functional group tolerance. The installation of both electron rich and electron poor 

indoles, with electronically diverse of aryl groups was achieved. The viability of in situ 

oxidant generation, followed by indole arylation also was shown. Preliminary 

mechanistic investigations of indole arylation implicated the formation of an active 

catalyst prior to arylation. 



 xix 

This dissertation describes the development of site selective C–H arylation 

reactions using palladium catalysis. These transformations are general with respect to aryl 

group and substrate, and are complimentary to Pd0/II catalytic cycles. The functional 

group tolerance, broad substrate scope, and variety of installed aryl groups, make this 

methodology attractive for biaryl synthesis. 



 1 

 
 
 
 

Chapter 1 
 
 

Introduction 
 
 

Biarayls are prevalent structures in many different natural products, 

pharmaceuticals, agrochemicals, and conjugated materials. This has led to significant 

interest in the development of new reactions to efficiently construct Ar–Ar bonds. The 

most extensively developed methodologies are palladium-catalyzed cross-coupling 

reactions, which include: Stille, Suzuki–Miyaura, Sonogashira, Hiyama, and Negishi 

couplings.1-9 These methods generally involve a Pd0/II catalytic cycle and result in the 

coupling of an aryl halide 1 with an organometallic component 2 (X = Sn, B, Si, etc, 

Scheme 1.1). Such approaches suffer from two significant disadvantages. First, the 

requirement that each coupling partner be prefunctionalized prior to coupling can be 

problematic because sensitive functional groups must be maintained through several 

synthetic steps in lengthy synthesis. Second, the byproducts of these reactions are 

undesirable inorganic salts that must be removed and can be problematic for large-scale 

reactions. 

 

Scheme 1.1: Palladium Catalyzed Cross Coupling Chemistry. 

X [M]+
[Pd0]

(X = OTf, Cl, Br, I) ([M] = Sn, B, Si)
(1) (2) (3)

 
 

A potential alternative to traditional metal-catalyzed cross-coupling chemistry, 

would be the employment of metal mediated C–H activation chemistry to ultimately 

afford functionalization. This approach addresses some of the challenges associated with 
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traditional cross coupling reactions (Scheme 1.2).10-24 First, this methodology would 

eliminate the metal salts resultant from the transmetallating reagent 2. Second, 

prefunctionalization of each of the coupling partners would no longer be required. 

However, the challenge of attaining site selective C–H activation in the presence of 

ubiquitous C–H bonds within a molecule arises when employing this approach. 

 

Scheme 1.2: C–H Activation Approach to Biaryl Formation. 

X H+
[Pd0]

(X = OTf, Cl, Br, I)  
 

At the outset of our efforts, two basic approaches that employed Pd0/II catalytic 

cycles had been utilized to achieve site selective C–H arylations. The first approach was 

demonstrated by Miura in his pioneering work on palladium-catalyzed C–H arylation. 

Substrates containing coordinating ligands (such as phenol 4) would direct the palladium 

toward a proximal C–H bond (5) for C–H activation to ultimately afford a C–H arylation 

product (Scheme 1.3). This was demonstrated utilizing phenols (6), amides, and aromatic 

ketones as directing groups to provide the C–H arylation products in good yields.25-33 

Second, an intramolecular C–H activation was demonstrated by Fagnou, where the site 

selective C–H arylation product 7 was attained due to the proximity of the oxidative 

addition product 8 to a specific C–H bond to afford product 9 (Scheme 1.4).34 

 

Scheme 1.3: Miura’s Directed Phenylation of Phenols.25 

+
OH

OMe
I

OH

OMe

(4) (6, 88%)

5 mol % Pd(OAc)2
1.2 equiv CsCO3
molecular sieves

DMF

H

OMe

(5)

H
O[PdII]
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Scheme 1.4: Fagnou’s Intramolecular Direct Arylation.35 

(7) (9, 93%)

1 mol % Pd(OAc)2
2 mol % Ligand 10
2.0 equiv K2CO3

O

Br

OMeO
DMF O

[PdII]HH

(8)

Ph2P
NMe2

(Ligand 10)  
 

Importantly, a number of other transition metals are viable catalysts for directed 

C–H arylation reactions, including Ru, Rh, Ir, and Pt.19,22 However palladium offers 

several advantages over these metals making it more attractive for further development.22 

First, palladacycles have been demonstrated to be compatible with oxidants. Second, 

palladacyclic intermediates can be selectively functionalized. Each of these points can be 

problematic with the previously mentioned metals due to stability or the unreactive nature 

of the respective metallacycles. Thirdly, a broad range of directing groups are known to 

facilitate cyclopalladation, including amides, pyridines, pyrazoles, isoxazolines and 

oximes. Finally, palladium is known to undergo cyclometallation with both sp2 and sp3 

C–H bonds, providing the opportunity to afford several combinations of C–C bond 

formations. 

The previously reported metal-mediated C–H functionalization methodologies 

demonstrated the viability of a C–H arylation transformation. However, to be more 

broadly applicable several additional challenges needed to be addressed. First, an 

increased scope of directing groups viable for C–H activation is necessary. Second, a 

more expansive functional group tolerance would make this methodology more appealing 

for general use. Specifically, it would be desirable if a transformation could be developed 

that was tolerant of aryl halides, which are often reactive with the low valent metals used 

for C–H arylation. Additionally, enolizable ketones can be problematic due to the often-

necessary requirement for strong bases. Thus the development of a C–H arylation 

methodology to address these challenges would be of great interest. 

 Previously, our laboratory had used a palladium-catalyzed, ligand-directed 

approach to afford C–H acetoxylation products.36-40 This was accomplished utilizing 

substrates such as 11 with Pd(OAc)2 and the hypervalent iodide regent PhIIII(OAc)2 as the 

terminal oxidant to afford product 12 (Scheme 1.5). This transformation was 
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demonstrated to be general with respect to directing groups and functional group 

compatibility (Scheme 1.5). 

 

Scheme 1.5: Ligand Directed C–H Acetoxylation.36-40 

(12)

cat. [PdII]
PhIIII(OAc)2

(11)

AcOH
-H+,-Ph–I

N N

OAc

AcO

 

N
N

AcO

H

NPh
OAc

(54%) (47%)

NO

AcO

(74%)

N
Br

AcO

(83%)  
 

The mechanism for C–H acetoxylation is believed to proceed through (Scheme 

1.6, Path A): (i) coordination of palladium followed by C–H activation, (ii) two electron 

oxidation of the PdII intermediate 13 to the key PdIV intermediate 14, and (iii) C–O bond 

forming reductive elimination to provide the product 15 and regenerate PdII. The 

approach we took to achieve C–H arylation stems from insight gained from the proposed 

mechanism of C–H acetoxylation. It was reasoned that an analogous mechanistic 

manifold could be employed to achieve C–H arylation by considering alternative IIII 

reagents (16), that could oxidize the PdII intermediate 13 and give access to an Ar–PdIV 

species 17 (Scheme 1.6, Path B). Subsequent C–C bond forming reductive elimination 

from 17 would provide the desired C–H arylation product. 

 

Scheme 1.6: Mechanistic Pathways for C–H activation/Functionalization. 

N
C H - H+

(i) Cyclometalation

N
C

PdIV

(ii) Oxidative
Addition

OAc

N
C

PdIIPdII

N
C

PdIV
Ar

PhIIII(OAc)2

(X)(Y)IIIIAr

(iii) Reductive
Elimination

N
C OAc

N
C Ar

(13)

Path A

Path B

(15)

(18)
- PdII

- PdII

(16) (17)

(14)
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Extensive research has been conducted on IIII reagents to allow us to identify the 

appropriate oxidant (16).41-43 Literature reports have provided examples that support the 

oxidation of PdII to Ar–PdIV employing oxidants (X)(Y)IIIIAr to generate intermediates 

related to 17.44-54 Specifically, Canty has demonstrated the oxidation of the 

cyclometallated complex 19 to the observable Ar–PdIV adduct 20 using the hypervalent 

iodine oxidant [Ph–IIII–Ph]OTf (Scheme 1.7).44,45 This provides key precedent for the 

viability of the proposed oxidation step to yield intermediate 17 within the catalytic cycle 

(Scheme 1.6, Path B).  

 

Scheme 1.7: Stoichiometric oxidation of a palladacycle by [Ph–IIII–Ph]OTf.44 

PdII
[Ph-IIII-Ph]OTf

PdIV
Ph

OTf

Observed by NMR at -50 oC

N
N

N
N

(19) (20)

 
 

 Employing a reaction that proceeds through a PdII/IV mechanistic pathway offers 

several advantages over traditional cross coupling and C–H arylation reactions (which 

involve a Pd0/II mechanism). First, high oxidation state palladium species are known to be 

stable to ambient air and moisture, making this transformation amenable to bench top 

chemistry and avoiding the requirement for dry solvents and specialized glassware.44-49,51-

54 Second, the unreactive nature of high oxidation palladium with aryl halides highlights 

the complementarity of the proposed methodology to traditional Pd0/II methodology. 36-40 

Our efforts toward the development of a PdII/IV C–H arylation transformation 

employing [Ar–IIII–Ar]+ oxidants is outlined in Chapter 2 (Scheme 1.8).38,55 This 

reaction was explored with a variety of directing groups for the site selective installation 

of phenyl groups. Additionally, the implementation of IIII reagents to afford C–H 

arylation with diverse aryl groups will be discussed. This transformation demonstrates a 

broad functional group tolerance, including orthogonal reactivity to Pd0/II cross coupling 

chemistry. Finally, initial results exploring the in situ formation of the IIII reagents to 

increase the practical utility of this methodology is described. 
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Scheme 1.8:  Palladium Catalyzed C–H Arylation Reactions. 

L
[Ar–IIII–Ar]BF4

cat. [PdII]

H

L

Ar  
 

 As described above this reaction is proposed to proceed through a high oxidation 

palladium intermediate. This led us to complete the detailed mechanistic studies 

discussed in Chapter 3.55 Experiments included the determination of kinetic order in each 

reaction component, kinetic isotope effect studies, and Hammett studies. These 

investigations allowed for elucidation of the rate law, determination that oxidation is the 

rate-limiting step of the catalytic cycle, and identification of the resting state of the 

catalyst and oxidant. Through these studies, evidence was provided to support a unique 

high oxidation palladium dimer as a key intermediate in the catalytic cycle (Figure 1.1). 

Preliminary investigations regarding the generality of this mechanism amongst several 

directing groups will also be discussed. 

 

Figure 1.1:  High Oxidation Palladium Dimer Intermediate. 

X

PdIV

PdII

O

O

O

O

Ph
N

N

X

PdIII

PdIII

O

O

O

O

Ph
N

N

OR

 
 

 Our next goal was to expand this unique palladium-catalyzed C–H arylation 

methodology to substrates that do not contain directing groups. Numerous examples of 

direct C–H arylation employing PdII/0 catalytic cycles have been developed for a variety 

of different nitrogen, oxygen and sulfur containing heterocycles.10-24 For example Fagnou 

has demonstrated the C–H arylation of thiazole to selectively yield product 21 (Scheme 

1.9). Similarly, Gevorgyan has reported the site-selective, direct arylation of indolizine to 

afford 22 (Scheme 1.10) 56 
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Scheme 1.9:  PdII/0 Arylation of Thiazole.56 

10 mol % Pd(OH)2/C
I

140 oC
DMA, KOAc (21, 82%)N

S
H N

S

 
 

Scheme 1.10:  PdII/0 Arylation of Indolizine.57 

5 mol % PdCl2(PPh3)2
I

KOAc, H2O, NMP
100 ºC

(22, 71%)N
H

N

 
 

A particularly interesting report by Sames describes the site selective C2 arylation 

of indoles, such as 23 (Scheme 1.11). 58-60 This methodology proved to be general with 

respect to a variety of indole substrates and for a range of aryl iodides. However, this 

reaction suffered from several drawbacks: (1) forcing reaction conditions (>125 ºC) were 

required for effective C–H arylation, (2) additives were necessary to arylate free N–H 

indoles, and (3) the reactions were not compatible with aryl halides due to the 

intermediacy of low valent palladium species.  

 

Scheme 1.11: Sames’ Precedent for Pd-Catalyzed Direct Arylation of Indole.58-60 

NN
0.5 mol % Pd(OAc)2I

125 oC, 24 hours

2 mol % PPh3

DMA, CsOAcH (23, 88%)

 
 

 At the onset of our investigations into direct C–H arylation chemistry, we 

reasoned a PdII/IV reaction pathway could address the challenges associates with Sames’ 

methodology based on the analysis of his mechanistic proposal. His PdII/0 mechanism is 

believed to proceed through (Scheme 1.12): (i) oxidative addition of Pd0 to Ar–I to yield 

intermediate 24, (ii) C–H palladation to provide intermediate 25, and (iii) C–C bond 

forming reductive elimination to release the C2 arylation product 26 and regenerate Pd0. 
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Scheme 1.12: Proposed Mechanism of Sames’ Pd-Catalyzed Indole Arylation. 58-60 

Pd0
I PdII

L
I
L

H
N

H H
N

(i) Oxidative Addition (ii) Palladation (iii) Reductive Elimination

- Pd0PdII
L L

N
H- H-I

(24) (25) (26)  
 

Alternatively, a mechanism involving a PdII/IV catalytic cycle (Scheme 1.13) 

employing IIII oxidants would proceed through: (i) C–H palladation to afford intermediate 

27, (ii) oxidation of PdII by [Ar–IIII–Ar]+ to generate Ar–PdIV intermediate 28, and (iii) 

C–C bond forming reductive elimination to provide product 26. It was reasoned that 

indole palladation with a more electrophilic PdII catalyst, along with the employment of a 

stronger IIII oxidant, would address the challenges with Pd0/II chemistry by allowing 

milder reaction conditions and increased functional group tolerance. 

 

Scheme 1.13: Proposed Mechanism of Pd-Catalyzed Arylation with [Ph–IIII–Ph]BF4. 

N
H

PdIIN
H

[Ph-IIII-Ph] BF4PdII

- H+

H
N

PdIVN
H

H
- PdII- Ph-I

(i) Oxidative Addition(ii) Palladation (iii) Reductive Elimination

(27) (28) (26)  
 

The application of the PdII/IV C–H arylation chemistry using a variety of substrates 

will be discussed in Chapter 4.61 Initial investigations focused on the room temperature 

phenylation of indoles at the C2 position with high site selectivity (Scheme 1.14). In 

addition, modification of the IIII oxidant allowed for the installation of diverse aryl 

groups. As previously demonstrated, reactivity complimentary to Pd0/II catalytic cycles 

was observed. In addition to indoles, this methodology was also extended to several other 

heterocycles, and initial investigations for the C–H arylation of simple unactivated arenes 

are also detailed. Preliminary investigations exploring the generation of the IIII reagent in 

situ are also discussed. 
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Scheme 1.14:  Site Selective Arylation of Indoles. 

H
N

H
N

H

[Ar–IIII–Ar]BF4
cat. [PdII]

 
 

 Initial studies to understand the mechanism of this transformation are outlined in 

Chapter 5. The strategy employed to study this reaction is discussed and involves 

labeling the substrate and oxidant with fluorine for monitoring by 19F NMR spectroscopy. 

Kinetic studies implicate an induction period, often associated with the formation of an 

active catatlyst prior to the reaction that affords the desired product (Scheme 1.15). With 

the method developed, the kinetic order of several reaction components, with two 

catalysts are discussed. 

 

Scheme 1.15:  Induction Period Suggests the Formation of an ‘Active Intermediate’. 

N N
H "Active

Catalyst"

[Ar–IIII–Ar]BF4
cat. [PdII]

 
 

In conclusion, this dissertation describes efforts toward the development and 

mechanistic investigations of both ligand directed C–H arylation and direct C–H 

arylation. Each of these methodologies are general with respect to substrate scope and the 

installation of diverse sets of aryl groups. A broad range of functional group 

compatibility has been observed, including complementary reactivity to Pd0/II chemistry. 

Thorough mechanistic studies have been completed for directed C–H arylation and have 

provided evidence for a unique high oxidation-state palladium intermediate. Additionally, 

preliminary experiments have been initiated to probe the detailed mechanism of the direct 

C–H arylation. These efforts have provided synthetically useful C–H arylation reactions, 

which are primed for further development due to the mechanistic understanding achieved. 

 



 10 

 

1.1 References 
 

1. Stille, J. K. Angew. Chem., Int. Ed. 1986, 25, 508-524. 

2. Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. (N. Y.) 1997, 50, 1-652. 

3. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483. 

4. Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168. 

5. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009-3066. 

6. Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633-9695. 

7. Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835-846. 

8. Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131-209. 

9. Negishi, E.-I.; Anastasia, L. Chem. Rev. 2003, 103, 1979-2017. 

10. Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006, 1253-1264. 

11. Daugulis, O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q.-N.; Lazareva, A. Synlett 

2006, 3382-3388. 

12. Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041-4047. 

13. Godula, K.; Sames, D. Science 2006, 312, 67-72. 

14. Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174-238. 

15. Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 

107, 5318-5365. 

16. Ackermann, L. Synlett 2007, 507-526. 

17. Campeau, L.-C.; Fagnou, K. Chem. Soc. Rev. 2007, 36, 1058-1068. 

18. Catellani, M.; Motti, E.; Della Ca, N. Acc. Chem. Res. 2008, 41, 1512-1522. 

19. Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013-3039. 

20. Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949-957. 

21. McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447-2464. 

22. Lyons, T. W.; Sanford, M. S. Chem. Rev. in press. 

23. Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074-1086. 

24. Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 

5094-5115. 

25. Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl. 

1997, 36, 1740-1742. 



 11 

26. Kametani, Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett. 2000, 41, 

2655-2658. 

27. Kawamura, Y.; Satoh, T.; Miura, M.; Nomura, M. Chem. Lett. 1999, 961-962. 

28. Satoh, T.; Inoh, J.-i.; Kawamura, Y.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. 

Chem. Soc. Jpn. 1998, 71, 2239-2246. 

29. Terao, Y.; Kametani, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. 

Tetrahedron 2001, 57, 5967-5974. 

30. Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 

2004, 126, 8658-8659. 

31. Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 

123, 10407-10408. 

32. Terao, Y.; Wakui, H.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. 

Chem. 2003, 68, 5236-5243. 

33. Hennings, D. D.; Iwasa, S.; Rawal, V. H. J. Org. Chem. 1997, 62, 2-3. 

34. Campeau, L.-C.; Thansandote, P.; Fagnou, K. Org. Lett. 2005, 7, 1857-1860. 

35. Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020-

18021. 

36. Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300-2301. 

37. Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542-

9543. 

38. Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 

127, 7330-7331. 

39. Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141-1144. 

40. Kalberer, E. W.; Whitfield, S. R.; Sanford, M. S. J. Mol. Catal. A: Chem. 2006, 

251, 108-113. 

41. Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299-5358. 

42. Deprez, N. R.; Sanford, M. S. Inorg. Chem. 2007, 46, 1924-1935. 

43. Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523-2584. 

44. Canty, A. J.; Patel, J.; Rodemann, T.; Ryan, J. H.; Skelton, B. W.; White, A. H. 

Organometallics 2004, 23, 3466-3473. 



 12 

45. Bayler, A.; Canty, A. J.; Ryan, J. H.; Skelton, B. W.; White, A. H. Inorg. Chem. 

Commun. 2000, 3, 575-578. 

46. Canty, A. J.; Rodemann, T. Inorg. Chem. Commun. 2003, 6, 1382-1384. 

47. Canty, A. J.; Rodemann, T.; Skelton, B. W.; White, A. H. Inorg. Chem. Commun. 

2005, 8, 55-57. 

48. Canty, A. J.; Rodemann, T.; Skelton, B. W.; White, A. H. Organometallics 2006, 

25, 3996-4001. 

49. Chaudhuri, P. D.; Guo, R.; Malinakova, H. C. J. Organomet. Chem. 2008, 693, 

567-573. 

50. Canty, A. J.; Gardiner, M. G.; Jones, R. C.; Rodemann, T.; Sharma, M. J. Am. 

Chem. Soc. 2009, 131, 7236-7237. 

51. Lagunas, M.-C.; Gossage, R. A.; Spek, A. L.; van Koten, G. Organometallics 

1998, 17, 731-741. 

52. Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790-

12791. 

53. Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142-15143. 

54. Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 

10974-10983. 

55. Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234-11241. 

56. Parisien, M.; Valette, D.; Fagnou, K. J. Org. Chem. 2005, 70, 7578-7584. 

57. Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. 

Lett. 2004, 6, 1159-1162. 

58. Lane, B. S.; Sames, D. Org. Lett. 2004, 6, 2897-2900. 

59. Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050-8057. 

60. Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 1379-1382. 

61. Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 

128, 4972-4973. 

 
 



 13 

 
 
 
 

Chapter 2 
 
 

Scope and Development of Palladium-Catalyzed C–H 
Arylation 

 
 

2.1 Background and Significance 
 Previously in our laboratory, PdII catalysts were utilized to perform C–H 

activations in the presence of PhIIII(OAc)2 as a terminal oxidant providing a new C–O 

bonds.1-5 Site selectivity was achieved using substrates containing functionality (1) that 

acts as a ligand for PdII and directs it toward a specific C–H bond for acetoxylation (2, 

Scheme 2.1). This transformation proved to be general with respect to directing groups as 

well as tolerant of a wide range of functional groups. We envisaged that C–H 

activation/C–C bond formation could be achieved in a manner analogous to this C–O 

bond formation by using (Ar)(Arʹ′)IIII(X) as oxidants. 

 

Scheme 2.1: Ligand Directed C–H Activation/C–O Bond Formation.1-5 

N
C H

N
C OAc
(2)

cat. [PdII]
PhIIII(OAc)2

(1)
AcOH

-H+,-Ph–I  
 

The mechanism for C–H activation/C–O bond formation (Scheme 2.2, Path A) is 

believed to proceed through: (i) coordination of palladium to the directing group followed 

by C–H activation, (ii) subsequent two electron oxidation of palladacycle 3 to the key 

PdIV intermediate 4, and (iii) C–O bond forming reductive elimination to provide the 

product 2 while regenerating the PdII catalyst. It was reasoned that an analogous 

mechanistic manifold could be employed to achieve C–H arylation by considering 

alternative IIII reagents (5), that could oxidize palladacycle 3 to an Ar–PdIV species 6 
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(Scheme 2.2, Path B). Subsequent C–C bond forming reductive elimination of 6 would 

provide the desired product 7. 

 

Scheme 2.2: Mechanistic Pathways for C–H Activation/Functionalization. 
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Canty has demonstrated that Ph–PdIV complexes analogous to 6 are accessible via 

the oxidation of PdII precursors with IIII reagents. For example, cyclometallated palladium 

complexes such as 8 were stoichiometrically oxidized with [Ph–IIII–Ph]OTf to the 

corresponding Ph–PdIV intermediate 9 at –50 ºC as characterized by low temperature 1H 

NMR spectroscopy (Scheme 2.3). 6,7 Warming this complex to room temperature led to 

C–C bond-forming reductive elimination, providing the transient alkyl–PdII species 10 

which quickly decomposed to various isolable products resuling from protonolysis, β-

hydride elimination, and Wacker oxidation. In addition to utilizing [Ph–IIII–Ph]+ as a 

stoichiometric oxidant, literature examples have demonstrated that [Ph–IIII–R]+, where R 

is vinyl or alkynyl, can also stoichiometrically oxidize PdII to PdIV. Each of these cases 

led to R–PdIV with selective transfer of only the alkenyl or alkynyl group in preference to 

the phenyl group.8-12 Finally, several other examples have demonstrated the use of IIII 

reagents to oxidize PdII to R–PdIV species where R is a heteroatom.13-16 Together, these 

examples provide considerable precedent for the viability of the proposed oxidation step 

of the catalytic cycle (Path B). 
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Scheme 2.3: Stoichiometric Oxidation of a Palladacycle by [Ph–IIII–Ph]OTf.6 

Ph
70%

Ph
22%

Ph

O

7%

Oxidation by Pd

PdII [Ph-IIII-Ph]OTf
PdIV

Ph
OTf

Observed by NMR at -50 oC

N
N

N
N

PdII
Ph N

N
Ph

(8) (9)

!

(10)

 
 

 The precedent provided by both the catalytic C–H activation/C–O bond forming 

methodology and stoichiometric oxidations of PdII with IIII reagents allowed us to 

envision the following catalytic cycle for C–H activation/C–C bond forming reactions 

(Scheme 2.4). The catalytic cycle employing 11 would begin by coordination of the 

pyridine and activation of the proximal C–H bond to give 12 (step ii), followed by 

oxidative addition of the [Ph–IIII–Ph]+ to the cyclometallated PdII to give a Ph–PdIV 

intermediate (13, step ii), and final C–C bond forming reductive elimination would 

provide the desired product 14 and release PdII (step iii). 

 
Scheme 2.4: Proposed Catalytic Cycle for C–H Arylation. 

N
PdII

N

H

– PhI

(i) Cyclometalation

(iii) Reductive
Elimination X

Ph I

YY PdII

N
PdIV

N (ii) Oxidative 
Addition

(12)

(13)

(11)

(14)

 
 
 

 This transformation, which is proposed to proceed through a PdII/IV manifold, was 

expected to offer several advantages over existing C–H arylation methods proceeding 

through Pd0/II
 catalytic cycles. Typically reactions involving Pd0 intermediates are 
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sensitive to ambient air and moisture, often necessitating the use of special glassware and 

dry solvents. These precautions should be unnecessary in the proposed methodology, 

since high oxidation state Pd species are known to be stable to ambient air and moisture.6-

11,13-16 Furthermore, reaction pathways employing high oxidation state palladium should 

also be tolerant of sensitive functionalities such as aryl halides. These types of 

compounds are often reactive with Pd0 or strong bases required in transformations 

proceeding through a Pd0/II pathway. Finally, the inertness of high oxidation palladium 

toward aryl halides also should result in complementary substrate scope of the proposed 

methodology versus traditional Pd0/II chemistry.  

 
 
2.2 Phenylation Development 
 Initial efforts to develop palladium catalyzed C–H arylation methodology focused 

on the substrate 3-methyl-2-phenylpyridine (11) using Pd(OAc)2 as the catalyst and the 

hypervalent iodine reagent [Ph–IIII–Ph]BF4. This particular substrate was chosen for 

initial studies based on previous results suggesting that pyridine directing groups were 

particularly effective for palladium-catalyzed C–H functionlizations, and that a methyl 

group at the 3-position would prevent overfunctionalization.1,2,17,18 We were pleased to 

find that this reaction afforded the desired C–H phenylation product selectively in a 

variety of organic solvents (AcOH, CH2Cl2, toluene, benzene). Further screening 

identified the optimal conditions as 1.1 equiv of [Ph–IIII–Ph]BF4 and 5 mol % of 

Pd(OAc)2 at 100 °C in AcOH, which afforded 14 in an 88% isolated yield (Scheme 2.5). 

Importantly, this reaction proceeds in the presence of ambient moisture and atmosphere 

and does not require added base or ligands. 

 

Scheme 2.5: C–H Phenylation of 3-Methyl-2-Phenylpyridine. 

N 5 mol % Pd(OAc)2
AcOH, 100 ºC

N

Ph

1.1 equiv. [Ph–I–Ph]BF4

(14, 88%)
H

(11)  
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 We next sought to explore the generality of this transformation with respect to 

directing groups (Table 2.1). This reaction provided phenylation products under the 

optimized conditions for 11 (5 mol % Pd(OAc)2, 1.1 equiv [Ph–IIII–Ph]BF4, AcOH, 100 

ºC) for several different pyridine (15, 16, 17) and quinoline (18, 19, 20) substrates in 

good to excellent yields. The scope was also extended to substrates containing the 

oxygen-directing groups of pyrrolidinones (21, 22, 23), oxazolidinones (24) and amides 

(25, 26), which afforded the desired products in good yields. Optimal conditions for these 

substrates were slightly modified and utilized 5 mol % of Pd(OAc)2, 1.5–2.5 equiv of 

[Ph–IIII–Ph]BF4 in toluene with 1.5 equiv of NaHCO3 at 100 ºC. In general, the 

functionalization of substrates containing oxygen-directing groups proved to be less 

efficient and required higher oxidant loadings. It is important to note that although 

optimized conditions utilized added base, this was not always required to achieve high 

conversions.  

These reactions were also tolerant of a variety of functionalities including 

enolizable ketones (15), aldehydes (17), ethers (22) and amides (26). Notably, aryl 

bromides (23) also remained unaffected under the reaction conditions, highlighting the 

complementarity of this methodology to traditional Pd0/II cross coupling chemistry, while 

also providing evidence that a Pd0/II mechanism is unlikely. Finally, successful 

phenylation of benzylic sp3 C–H bond was also achieved (18, 19). Importantly, this 

functionalization occurred only when the benzylic C–H bond was proximal to an 

appropriate directing group. 
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Table 2.1: Substrate Scope of C–H Phenylation Reactions. 

N
C H

N
C Ph

5 mol % Pd(OAc)2
[Ph–IIII–Ph]BF4

AcOH, 100 ºC  

(83%)e
 24

N

N

Ph

(72%)c
18

(75%)e

21

N

Ph

(74%)
16

(91%)
15

(78%)
23

N

Ph

(51%)b

17

(84%)e

22

Product Yielda Product YieldaEntry

1

2

Entry

7

8

9

3

4

10

O

CHO

Ph

N
(60%)d

19
5

Ph Ph

(58%)b

20
6

N

Ph

N

O

Ph

N

O

Ph

OMe

N

O

Ph

Br

O N

O

Ph

N

O
Ph

(49%)b
25

11

(67%)
26

12

Product YieldaEntry

Cl

H
N

O

Ph

a Conditions: 1 equiv of substrate, 1.1–2.5 equiv of [Ph2I]BF4, 5 mol % of Pd(OAc)2 in AcOH,
AcOH/Ac2O, benzene, or toluene, 100 ºC, 8-24 h. b The balance of material was starting material (entry 
11) or a mixture of starting material and diarylated product (entries 3 and 6). c Conditions: 2 equiv of 8-
methylquinoline, 1 equiv of [Ph2I]BF4. d Approximately 16% of the product in entry 5 was formed in the
absence of Pd(OAc)2. e 1.2–2 equiv of NaHCO3 were added.  

 

A potential challenge that can be imagined is the addition of multiple phenyl 

groups when multiple ortho C–H sites are present. However this can be overcome with 

appropriate choice of oxidant equivalents and substrate. Subjection of substrates with 

nitrogen directing groups that contain equivalent ortho C–H bonds to 1.1 equiv of [Ph–

IIII–Ph]BF4 afforded mono phenylation in useful yields (17, 20), with the remaining 

material being diphenylated product and unreacted starting material. For example the 

reaction to provide 20, also resulted in diphenylation and starting material in a ratio of 

71:19:20 respectively, as determined by gas chromatography (Scheme 2.6). 

Diphenylation with oxygen-containing directing groups proved to be less problematic 

despite the fact that larger equivalents of oxidant (>1.5 equiv) were used. For example, 

the phenylation product 21 was obtained in high yield and none of the corresponding 

diphenylation product was isolated. High selectivity for mono-phenylation was also 
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observed on arenes ortho to a directing group in substrates containing an additional meta 

substituent, such as 3-methyl-2-arylpyridine, or when a meta substituent was present on 

the arene undergoing functionalization (15, 16).  

 

Scheme 2.6: Observed Selectivity of Phenylation for 2-Phenylquinoline. 

N5 mol % Pd(OAc)2
AcOH, 100 ºC

1.1 equiv. [Ph–I–Ph]BF4

Ph

Ph

N

Ph

N

71                  :                  19                  :                  10
GC ratios

N

 
 

Phenylation of substrates containing meta substituents on the arene undergoing 

functionalization affords exclusively the less hindered regioisomer, with no 

difunctionalization observed. This suggests that steric control dominates the selectivity 

for this transformation.17 In addition, the reactions proceed in good yield and selectivity 

with both electron withdrawing and donating functionality at the meta position. This also 

demonstrates that activated arenes are not required for this reaction to proceed efficiently. 

Additionally, high selectivity for the less hindered regioisomer is observed even with 

substrates containing functional groups with the potential for duel chelation (15, 22, 23), 

directing to the more hindered site if operative.  

Attempts to implement this chemistry with several other substrates were not all as 

successful. For example oxime ethers 27 and 28 did not provide detectable C–H arylation 

products using [Ph–IIII–Ph]BF4 (1.2–2.0 equiv) and Pd(OAc)2 (5 mol %) at 100 ºC in a 

solvent screen (AcOH, benzene, CHCl3, CH3CN). This is notable given that C–H 

acetoxylation generally proceeds in high yield with oxime ether directing groups. 

Interestingly, imine 32 did appear to provide phenylated products upon subjection to [Ph–

IIII–Ph]BF4 (1.2 equiv) and Pd(OAc)2 in AcOH at 100 ºC for 12 h (Scheme 2.7). Masses 

corresponding to 33, 34, and 35 were observable in trace amounts based on analysis by 

GCMS. However, a screen of solvents failed to increase the amount of products 

observed, and determination of a yield was difficult due to the decomposition of the 

starting material and product to other species that could not all be identified. 
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Figure 2.1: Problematic Substrates for C–H Arylation. 

N
MeO N

OMe

OMe

NH2

O N
N

H
H

H

H
H H
H

(27) (28) (29) (30) (31)  
Scheme 2.7: Trace Products Observed from C–H Arylation of 32. 

N O

H2N

N
5 mol % Pd(OAc)2

AcOH, 100 ºC

1.2 equiv. [Ph–I–Ph]BF4

(32) (33) (34) (35)  
 

Like imine 32, several other substrates showed limited success. Amide 29 reacted 

to form the desired C–H phenylation product in 36% yield when subjected to [Ph–IIII–

Ph]BF4 (1.2. equiv) and Pd(OAc)2 (5 mol %) in AcOH at 100 ºC based on analysis by 

GCMS. However, further screening of this reaction in the solvents listed above failed to 

provide better results. Likewise, subjection of benzylamine 30 to two equiv of oxidant 

provided products with masses corresponding to the mono and diarylated products by 

GCMS in 11% yield based on uncalibrated GC peak areas. Solvent optimization also did 

not lead to improvement in yield. Finally, a solvent screen for the substrate 31 provided 

trace amounts of phenylation products with the correct mass by GCMS using the same 

conditions as 30. Notably, none of these substrates were extensively examined, and 

further optimizations may lead to improved results. 

 

2.3 Arylation Development 
To expand the utility of this chemistry, focus shifted to achieving selective 

installation of a variety of aryl groups. This is crucial for a broader applicability of this 

methodology, especially in the context of late stage diversification of molecules for 

structure activity relationship studies. For this purpose we sought conditions that would 

allow installation of both electronically and sterically diverse aryl groups. The challenge 

associated with varying these electronic and steric factors of the IIII reagent is identifying 
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how these factors impact the transfer of the aryl group from the IIII reagent, and 

ultimately the functionalization.  

To explore these questions, a wide range of [Arʹ′–IIII–Ar]BF4 reagents were 

required to allow for a systematic study. The majority of these IIII reagents were easily 

synthesized from ArIIII(OAc)2 (36) and the appropriate Arʹ′B(OH)2 (7) in the presence of 

BF3•Et2O, followed by quenching with a saturated aqueous solution of NaBF4 (Table 

2.2).19 Advantageously, these reagents can be purified through simple recrystallization. 

Further, ArIIII(OAc)2 (36) reagents that are not commercially available are easily obtained 

through oxidation of the corresponding Ar–I with NaBO3•H2O in AcOH.20 However, this 

route was not high yielding when Ar1 or Ar2 was electron rich, so an alternative synthesis 

was utilized in these cases. The first step of this alternative approach employed iodosyl 

arene (54) generated by the reaction of ArIIII(OAc)2 (36) with NaOH (Table 2.3).21 This 

was then followed by an electrophilic aromatic substitution of the iodosyl arene with 

anisole under acidic conditions to provide the desired IIII reagent.22,23  
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Table 2.2: Synthesis of Electron Neutral and Poor Arene Oxidants. 

Ar2
B
OHHO

Ar1
IIII

OAcAcO 1) CH2Cl2, BF3•OEt2
2) saturated aq. NaBF4 Ar1 IIII Ar2

BF4

(36) (37)  

Mes

Mes

Mes

Mes

p-CF3C6H4

p-ClC6H4

p-CH3C6H4

m-(COMe)C6H4

Mes p-FC6H4

Ar2 =Ar1 =
68% (38)

53% (40)

85% (41)

nd (42)

58% (39)

Mes

Mes

p-ClC6H4

p-CH3C6H4

m-(CHO)C6H4

Ph

p-ClC6H4

p-CH3C6H4

Mes p-(COMe)C6H4

72% (43)

81% (45)

93% (46)

63% (47)

25% (44)

m-CF3C6H4

p-BrC6H4

1-naphthyl

o-CH3C6H4

m-CF3C6H4

p-BrC6H4

1-naphthyl

o-CH3C6H4

p-FC6H4 p-FC6H4

50% (48)

78% (50)

70% (51)

82% (52)

82% (49)

Yield

Ph Ph 78% (53)
Mes = 2,4,6-trimethylphenyl  

 

Table 2.3: Synthesis of [Ph–IIII–(p-MeOC6H4)]BF4. 

Ar1
IIII

OAcAcO aq. NaOH

Ar1
IIII

O

2) saturated aq. NaBF4
Ar1 IIII

BF4

OMe
1) PhOMe, Strong Acid

(54)(36)  

                                                                             

Mes
p-MeOC6H4

Ar1 =

68% (55)

58% (56)

Yield

 
Subsequent to our investigations Olofsson described an alternative, one-pot 

synthesis of diaryliodonium salts.24 This report is potentially very useful because it 

employs essentially the same procedure for both electron rich and poor oxidants. We 

found it to be useful for the synthesis of several of the oxidants. In particular we 

employed it for the synthesis of [(p-CF3C6H4)2IIII]BF4, which proved to be challenging 

with the above described methods. This was accomplished by combining p-CF3C6H4–I 
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with BF3•OEt2
 with m-CPBA, followed by addition of p-CF3C6H4-B(OH)2 to provide the 

desired oxidant 57 in 42% yield. The oxidants in the remainder of this dissertation were 

synthesized using the methods described above. 

 

Scheme 2.8: Synthesis of [(p-CF3C6H4)2IIII]BF4. 

I
2) IIII

BF4

CF3

1) m-CPBA, CH2Cl2
BF3•OEt2

(57)

F3C

(HO)2B CF3

F3C

 
 

Investigations were initiated by my colleague Dr. Dipannita Kalyani using 3-

methyl-2-phenylpyridine (11) as the model substrate and the optimal conditions 

determined for the oxidant [Ph–IIII–Ph]BF4. To install different aryl groups, the 

alternative oxidants [Ph–IIII–Ar]BF4 were employed. In these cases Ar was substituted at 

the para position with CF3, F, Cl, Me, and OMe. These reactions were analyzed by gas 

chromatography, which revealed that in all cases the reactions yielded mixtures of 

products resulting from phenyl addition and substituted aryl group addition (Scheme 

2.9). Analysis of a calibrated product distribution indicated the preferential transfer of the 

more electron poor aryl group from the IIII reagent. For example, when the oxidant [Ph–

IIII–p-MeOC6H4]BF4, (62) was employed, preferential transfer of the more electron poor 

phenyl group was observed over p-MeOC6H4 (1 : 0.33). In contrast, utilizing the oxidant 

containing Ar = p-CF3C6H4 (58) resulted in the preferential transfer of p-CF3C6H4 (2.6 : 

1). Although this reversal in selectivity is interesting, neither of these mixtures of 

products is synthetically useful, and these experiments demonstrate that electronically 

differentiating the aryl groups will be problematic. The mechanistic implications of these 

selectivities will be further discussed (Chapter 3). 
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Scheme 2.9: Mixtures of Products Obtained Using [Ph–IIII–Ar]BF4 Oxidants.  

N

5 mol % Pd(OAc)2
AcOH, 100 ºC N

1.2 equiv. [Ph–I–(p-R-C6H4]BF4

N

p-CF3
 (58)

p-Cl (60)

p-CH3
 (61)

p-OMe (62)

1:2.6

1:0.83

1:0.71

1:0.31

p-F (59) 1:1.1

Ph:Ar RatioR =

R

 
 

The second approach taken was to sterically differentiate the aryl groups on the 

IIII oxidant to promote preferential transfer of the smaller aryl group. To accomplish this, 

we designed a set of oxidants of the general formula [Mes–IIII–Ar]BF4 (Mes, mesityl = 

2,4,6-trimethylbenzene), in which the smaller aryl group would be expected to 

preferentially transfer rather than the bulky Mes. Gratifyingly, the reaction of 11 with 

[Mes–I–(p-MeOC6H4)]BF4 (55) under optimized conditions provided exclusive 

installation of p-MeOC6H4 (62) as the only detectable product (Scheme 2.10). This is in 

direct contrast to [Ph–I–(p-MeOC6H4)]BF4 where only a minor amount of p-MeOC6H4 

was transferred (Scheme 2.9). 

 

Scheme 2.10: Selective Arylation with [Mes–IIII–(p-MeOC6H4)]BF4. 

MeO

N

5 mol % Pd(OAc)2

AcOH, 100 ºC

N

(62, 81%)

IIIIMeO

BF4

(11) (55)  
 

This strategy was expanded to achieve selective transfer of a variety of both 

electron rich and electron poor aryl groups as the only detectable products (Table 2.4). 

Aryl groups containing functional groups such as enolizable ketones (68, 70), aldehydes 

(69), ethers (67), and benzylic hydrogens (63–71) were successfully installed. A potential 

challenge that can be envisioned for this strategy is the transfer of sterically bulky Ar. 

However, gratifyingly, selective installation of the sterically bulky o-tolyl (71) was 

achieved preferentially over the even bulkier mesityl. A further expansion of the utility of 

this transformation was achieved by the installation of an aryl halide (64, 65). This 
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functional group can serve as a handle for further manipulations of the product, and again 

demonstrates the complementarity of this methodology to traditional Pd0/II cross coupling 

chemistry. Finally, the observed regioselectivity and issues related to multiple arylations 

were analogous to those described in the context of phenylation. 

 

Table 2.4: Scope of Arylation with [Mes–IIII–Ar]BF4 Oxidants. 

N

Product Yielda Product YieldaEntry

1

Entry

2

Product YieldaEntry

N

F

N

F3C

(88%)
64

(87%)
63

N (84%)
66

(81%)b
67

N

Cl

(83%)
653

4

5

N (72%)
71

N

O

(81%)
708

9(81%)
686

(88%)
697

O

N

O

N

MeO

a 1 equiv of substrate, 1.1–1.3 equiv of [Mes–IIII–Ar]BF4, 5 mol % of Pd(OAc)2, AcOH (0.1 M), 100 ºC, b 

Reaction carried out at 120 ºC.  
 

 Interestingly, this strategy was found to be less effective for the arylation of 3-

methyl-2-(o-methoxyphenyl)pyridine (72) with [Mes–IIII–(p-MeOC6H4)]BF4 (55), which 

lead to a mixture of both the p-MeOC6H4 (74) and mesityl (73) products (isolated in a 6:1 

ratio, Scheme 2.11 ,Table 2.5). To further explore the diminished selectivity associated 

with this substrate, a variety of the other [Mes–IIII–Ar]BF4 oxidants were employed 

(Scheme 2.11). In these cases the ratio of the desired aryl addition to mesityl addition 

increased as the oxidant became more electron deficient (Table 2.5). With the exception 

of [Mes–IIII–(p-MeOC6H4)]BF4 (55), the asymmetric IIII
 oxidants maintained high 

selectivity (greater than 12:1) for the Ar group transfer. This result is interesting as it 
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pertains to developing this reaction further for the functionalization of electron rich 

arenes. 

 

Scheme 2.11: Selectivity of Arylation of 72 with [Mes–IIII–(p-MeOPh)]BF4.  

R

N
5 mol % Pd(OAc)2

AcOH, 100 ºC

N N

OMe
OMe OMe

(73)IIIIR

BF4

(72)

 
 

Table 2.5: Arylation of 72 with [Mes–IIII–Ar]BF4 Oxidants. 

Product Yield (Ar:Mes)aEntry

2

3

4

5

N (87%)
75

(58:1)

N

F3C

(83%)
76

(108:1)

OMe

OMe

O

Product Yield (Ar:Mes)aEntry Product Yield (Ar:Mes)aEntry

N

Cl

(85%)
77
(29:1)

OMe

N (85%)
78

(12:1)

F

OMe

N (71%)
79

(20:1)

OMe

6

MeO

N
OMe

1
(56%)b

74
(6:1)

a
 Conditions: 1 equiv of substrate, 1.1 equiv of [Mes–IIII–Ar]BF4, 5 mol % of Pd(OAc)2, AcOH (0.1 M) 100 ºC, b Reaction carried 

out at 120 ºC.  
 

We also wanted to investigate the installation of heteroaryl groups. To accomplish 

this, the oxidant [Mes–IIII–(2-thiophene)]OTs (80) was synthesized according to a 

literature procedure, followed by an anion metathesis to give the BF4
– salt.25 The anion 

exchange resulted in 80% conversion to the BF4 salt, with 20% of the –OTs anion 

remaining based on 1H NMR spectroscopy. The C–H arylation was then carried out under 

similar conditions by combining [Mes–IIII–(2-thiophene)]BF4 (81) (1.5 equiv) with 11 (1 

equiv) using 5 mol % of Pd(tfa)2 as the catalyst in AcOH at 120 ºC (Scheme 2.12). This 

led to a 53% GC yield of product 82, thereby demonstrating the viability of incorporating 
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heteroarenes. Interestingly, both Mes-OAc (m/z = 178) and Mes-OTs (m/z = 290) were 

observed as byproducts.  

 

Scheme 2.12: Pd-Catalyzed Reaction of 11 with [Mes–I–(2-thiophene)]BF4 (81).  

N
5 mol % Pd(OAc)2

N

(82, 55%)

IIII

BF4
S

120 ºC, AcOH
S

(11) (81)  
 

In addition to pyridine directing groups, it is desirable to expand the utility of this 

reaction to the installation of diverse Ar substituents with substrates containing oxygen-

directing groups. Initial investigations focused on N-phenylpyrrolidinone (83) under the 

optimal conditions demonstrated for phenylation of substrates containing oxygen 

directing groups, but utilizing [Mes–IIII–(p-XPh)]BF4 as the oxidant. These attempts led 

to incomplete conversion of starting material to product based on GC (Scheme 2.13). 

 

Scheme 2.13: Product Yields with 83 and [Mes–I–(p-XC6H4)]BF4 oxidants.  

5 mol % Pd(OAc)2
1.5 equiv NaHCO3

toluene, 100 ºC
IR

BF4

OMe

CO2Me

27%

54%

13%

58%

% Yield*R =

F

H

2 equiv

N OR

(83)

N O Conditions: 1 equiv of substrate, 2 
equiv of [Mes–IIII–Ar]BF4, 5 mol %
of Pd(OAc)2, 1.5 equiv NaHCO3,
toluene (0.1 M), 100 ºC *Yield
based on uncorrected areas of
starting material and products  

 

Upon screening other oxidant variations, it was found that 2.0 equiv of the 

symmetrical oxidant [Ar–IIII–Ar]BF4 provided higher yields. Optimal conditions were 

determined to be 5 mol % of Pd(OAc)2, 2.0 equiv of the symmetric oxidants [Ar–I–

Ar]BF4 and 1.5 equiv of NaHCO3 in toluene or chloroform at 100 °C. As with the 

pyridine directing groups, both electron rich (85, 89) and electron poor aryl groups (86–

88) could be successfully installed. Furthermore, tolerance toward aryl halides (86), 
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benzylic C–H bonds (85, 89), and ethers (84, 86, 87) was demonstrated (Table 2.6). 

Selective monoarylation was observed in substrates where multiple functionalizations are 

possible, as was observed in phenylation (vide supra). 

 

Table 2.6: Arylation of Pyrrolidinone Substrates with [Ar–IIII–Ar]BF4.  

Product YieldEntry

1

2

3 5

N O

(85%)
85

OMe

N O

(73%)
84

OMe

N O

(66%)
86

OMe

Cl

N O

OMe

F3C (87%)
87 N O

(85%)
89

N O

F3C (80%)
88

4 6

Product YieldEntry Product YieldEntry

Conditions: 1 equiv of substrate, 2 equiv of [Ar–IIII–Ar]BF4, 5 mol % of Pd(OAc)2, 1.5 equiv NaHCO3, toluene (0.1 M), 100 ºC  
 

2.4 Alternative IIII Reagents 
 In addition to employing [Ar–IIII–Ar]+ for the oxidation of PdII complexes, several 

literature reports have examined the viability of both [Ph–IIII–vinyl]+ and [Ph–IIII–

alkynyl]+ reagents as oxidants. For example, Malinakova achieved the oxidation of PdII 

complex 90 to PdIV complex 92 by utilizing vinyl IIII reagent 91. This complex 

subsequently underwent C–C bond forming reductive elimination to afford product 93.11 

 

Scheme 2.14: Stoichiometric Oxidation using a Vinyl–IIII Oxidant. 

PdII
O

N
N CO2Me CD2Cl2, 0 ºC

PdIV
O

N
N CO2Me

C6H15

(90) (92) (93)

L2PdII CO2Me

C6H15

BF4
- PhI

IIII

Ph

C6H15

BF4

(91)

 
 
 This report provided precedent for the expansion of our methodology to C–H 

activation/alkenylation. Our brief studies in this area focused on oxidant 94, which was 
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synthesized according to literature procedures (Figure 2.2).19 However, a screen of the 

reaction between 2-phenylpyridine, 1.2 equiv of oxidant 94, and 5 mol % of Pd(OAc)2 at 

100 ºC in numerous solvents (AcOH, CH3CN, trifluorotoluene, MeOH, dichloroethane, 

chlorobenzene, dioxane, trifluoroethanol, benzene and CHCl3 at 0.1 M) resulted in no 

reaction based on GC. A temperature study was also undertaken at 60, 80, 100, and 120 

ºC but provided the same result. The lack of reactivity is likely due to the decomposition 

of the oxidant 94 under these reaction conditions.26 The vinyliodonium reagent may have 

undergone hydrolysis with solvent or adventitious water, as has been observed with 

similar reagents. 

 
Figure 2.2: Alternative IIII Oxidants Attempted for C–H Arylation.  

IIII

BF4
IIII

O

O
(94) (95)  

 

 Additionally, IIII reagent 95 containing a dione was also employed as an 

alternative oxidant for C–H activation/C–C bond formation.27 This substrate was 

screened with 2-phenylpyridine, 1.1 equiv of oxidant 95 and 5 mol % of Pd(OAc)2 at 100 

ºC using the same solvents. These reactions also failed to provide any product as 

determined by GC. This oxidant may not be reactive because of increased stabilization of 

the positive charge on IIII due of its ylide nature. This would result in 95 being less 

electrophilic than the [Ar–IIII–Ar]BF4 oxidants and therefore less reactive. 

 
2.5 In situ Oxidant Generation 
 A potential limiting factor for the above-described methodology is the lack of 

commercially available oxidants. [Ph–IIII–Ph]+ salts are available from several 

commercial sources, but IIII reagents with diverse aryl substituents are not. While these 

oxidants are operationally simple to isolate from readily available starting materials, they 

are limited in their versatility due to the necessity to synthesize them. This becomes 

limiting especially in the context of screening a large number of Ar groups. Thus, an 

important advance to this methodology would be the generation of the IIII oxidant bearing 
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diverse aryl substitution in situ from readily available starting materials in an 

operationally simple manner, circumventing the need to isolate the synthesized oxidant. 

 To accomplish this, we chose to employ ArIIII(OAc)2 (36) with coupling partners 

that are known to generate [Ar–IIII–Ar]+ salts including boranes and silanes. The ultimate 

goal would be the sequential, one pot reaction outlined in Scheme 2.15. This would first 

include addition of ArIIII(OAc)2 (36) and the X-Ar partner 96 to generate the oxidant, 

followed by addition of the substrate and the catalyst to perform the C–H 

activation/arylation. 

 

Scheme 2.15: General Scheme in situ Oxidant Generation. 
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N
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Boronic Acids 

 It has previously been demonstrated that a Lewis acid (BF3) will promote the 

coupling of ArIIII(OAc)2
 with ArB(OH)2 (vida supra).19 Since Pd(OAc)2 is Lewis acidic, 

we reasoned that it could act in a dual role, first to aid in the generation of the oxidant and 

then to catalyze C–H functionalization. We combined 1 equiv of PhIIII(OAc)2 (97) with 1 

equiv of PhB(OH)2 (98) in AcOH and 5 mol % of Pd(OAc)2. This solution was stirred at 

room temperature for 15 min, then 0.33 equiv of 3-methyl-2-phenylpyridine (11) was 

added and the reaction was heated to 100 ºC for 15 h. This resulted in a 55% isolated 

yield of the phenylated product 14 (Scheme 2.16). The reaction appeared to go to 

completion based on crude GC (96% yield), and the low yield was likely due to the loss 

of material upon isolation. 
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Scheme 2.16: Phenylation of 3-Methyl-2-Phenylpyridine by in situ Oxidant Generation.  
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 We next sought to extend this system to heteroarylation. This was first explored 

by using MesIIII(OAc)2 (99) with 2-thiophene boronic acid (100), which would generate 

[Mes–IIII–(2-thiophene)]OAc upon coupling. Initial screening began with solvent studies 

under conditions similar to the phenylation example (5 mol % of Pd(OAc)2, 2 equiv of 

MesIIII(OAc)2 (99) and 2 equiv of 2-thiophene boronic acid at 100 ºC (Scheme 2.17). 

Gratifyingly, these reaction conditions gave the desired product (101) as analyzed by 

GCMS, albeit in low yield (39% based on the uncorrected GC peak areas). 

 

Scheme 2.17: Heteroarylation of 3-Methyl-2-Phenylpyridine by in situ Oxidant 
Generation. 
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+
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 We next performed a series of optimization experiments to investigate this 

reaction further. A study of solvent effects indicated that only reactions completed in 

acidic solvents afforded the desired product 101, with AcOH providing the best yield 

(Scheme 2.18). The yields are reported as uncorrected ratios based on the areas of the 

product and starting material peaks as determined by GC. Investigation of the effect of 

temperature revealed that higher temperatures provided better yield (56%) with 120 ºC 

being optimal (Scheme 2.18). Finally, different catalysts were examined, which revealed 

that Pd(tfa)2 provided a similar yield (55%) as that observed with Pd(OAc)2 (56%) 

(Scheme 2.18). This reaction was then repeated on a larger scale and resulted in the 
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desired product 101 in a 23% isolated yield. Interestingly, Mes-OAc (102) appears to be a 

significant byproduct in all of the above reaction mixtures, as determined by GC/MS (m/z 

= 178).  

 

Scheme 2.18: Optimizations for in situ C–H Activation/Heteroarylation. 
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Based on the incomplete conversion of starting material to product as well as the 

observed byproduct, we hypothesized that decomposition of the oxidant to Mes-OAc is 

competitive with the desired C–H activation/heteroarylation. We next examined if the 

limitations were a result of incomplete oxidant formation, or of a decomposition process 

competes with C–H activation/heteroarylation. To accomplish this, two comparisons 

were made with the independently isolated [Mes–IIII–(2-thiophene)]BF4 (81). First, it was 

earlier demonstrated that the reaction of 81 with 3-methyl-2-phenylpyridine (11) resulted 

in a 55% yield based upon GC with the observation of the Mes-OAc and Mes-OTs 

byproducts (Scheme 2.12). This yield is identical to what was observed when the oxidant 

was generated in situ (55%), and has similar byproducts. Second, 2-thiophene boronic 

acid was combined with MesIIII(OAc)2 in CD3CO2D (Scheme 2.19). After 10 minutes, 

analysis by 1H NMR showed that resonances associated with starting material had moved 

to approximately the same chemical shifts of [Mes–IIII–(2-thiophene)]BF4 (81). This 

suggested that the oxidant was cleanly being formed, and also that it did not require 
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Pd(OAc)2 for its formation. It appears based on these experiments that the challenge is 

associated with the C–H activation/heteroarylation reaction, and not the oxidant 

formation. 

 

Scheme 2.19: Generation of [Mes–IIII–(2-thiophene)]+ in situ. 

B
IIIIAcO OAc

HO OH

+S

CD3CO2D
IIII

S

10 min

(100) (101)  
 

Efforts next turned to examining 3-thiophene boronic acid, to investigate if the 

challenges encountered with 2-thiophene boronic acid were general. This was completed 

by combining 2 equiv MesIIII(OAc)2 (99) with 2 equiv of 3-thiophene boronic acid (103) 

in AcOH and then adding 5 mol % of Pd(tfa)2. This solution was stirred at room 

temperature for 15 min, then 1 equiv of 3-methyl-2-phenylpyridine was added, and the 

reaction was heated to 120 ºC for 15 h. In contrast to the previous results, the desired 

product 104 was isolated in 60% yield (87% yield by GC, Scheme 2.20). However, it is 

important to note however, that the same MesOAc (102) byproduct described above was 

present. 

 

Scheme 2.20: in situ C–H Arylation with 3-Thiopheneboronic Acid. 
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In addition to thiophenes, attempts were also made to generate oxidants in situ 

with furyl boronic acids. Unfortunately the use of 2-furyl boronic acid and 3-furyl 

boronic acid led to low yields of the desired products based upon GC. Even after 

optimizing the reaction temperature, only 16% (105, Scheme 2.21) and 12% (106, 
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Scheme 2.22) yields were obtained at 100 ºC and 80 ºC, respectively. Once again Mes-

OAc was observed as a byproduct. An 1H NMR experiment analogous to that with 2-

thiophene boronic acid was completed for 2-furyl boronic acid. 2-Furyl boronic acid and 

MesIIII(OAc)2 were combined in CD3CO2D, and after 15 min all of the resonances had 

shifted upfield. This suggested that the oxidant was successfully being formed as in the 

previous example, and that Pd(OAc)2 was not necessary. It also once again suggested that 

the challenges lie with the C–H activation/heteroarylation, not the in situ oxidant 

generation.  

 

Scheme 2.21: in situ C–H Arylation with 2-Furylboronic Acid. 
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Scheme 2.22: in situ C–H Arylation with 3-Furylboronic Acid. 
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Since Mes-OAc (102) was observed repeatedly, we next set out to establish a 

method to decrease formation of this byproduct. Our method for generating [Mes–IIII–(2-

thiophene)]+ in situ leads to an OAc– counterion that is provided by the initial IIII reagent 

(99). It was reasoned that utilizing a less nucleophilic/donating counterion could have 

two beneficial effects. First, it should render the IIII reagent more electrophilic, making it 

a stronger oxidant and possibly increasing the amount of desired product. Second, this 

should eliminate any direct nucleophilic attack of the AcO– on the electrophilic IIII 

reagent to generate Mes-OAc. One to install the desired counterion was to exchange the 

anion in situ during the generation of the oxidant to afford 107 (Scheme 2.23). This was 
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first attempted by adding Li+, Na+, and K+ salts that have non-coordinating counterions 

BF4
–, SO3CF3

–, and PF6
–, and halide salts. Additionally, strong acids such as CH3SO3H, 

H2SO4, CF3CO2 and HBF4 were added to the reaction mixture. However, under the 

conditions described above, none of the additives resulted in increased yields. A second 

approach for achieving a more non-coordinating counterion was to begin with 

MesIIII(O2CAr)2, (Ar = Ph, p-CF3C6H4, and p-NO2C6H4), where the counterion ArCO2
– 

for [Mes–IIII–(2-thiophene)]+ (108) would originate from the IIII starting material 

(Scheme 2.24). It was found that while benzoate and p-trifluoromethylbenzoate analogs 

could only be generated in low yields (27% and 25% respectively), p-nitrobenzoate 

provided the desired product in an improved 70% yield by GC. Nevertheless, this 

reaction could not be driven to completion, so we chose to peruse other methods of 

forming oxidants in situ. 

 

Scheme 2.23: Control of Oxidant Counterion by the Addition of Additives. 
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Scheme 2.24: Control of Oxidant Counterion by Variation of IIII Ligands. 
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We expected that a more electron rich arene for ArIIII(OAc)2 would provide a less 

electrophilic [Mes–IIII–(2-thiophene)]+ oxidant, and was expected to result in a decrease 

in the direct reduction to ArOAc. As shown in Scheme 2.25 the reaction of ArIIII(OAc)2 

(Ar = 2,5-dimethyl-3-methoxyphenyl, 109) with 2-thiophene boronic acid and 3-methyl-
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2-phenylpyridine under the conditions described above provided the desired product 101 

in 85% yield. The challenge to expanding upon this approach is the difficulty associated 

with oxidizing electron rich aryl iodides to the corresponding diacetates using common 

methods. For example, 109 was isolated in only a 1% yield using NaBO3•4H2O as an 

oxidant, while oxidation with AcOOH was completely unsuccessful.20,28 Additionally, 

2,4,6-trimethoxy-1-iodobenzene diacetate could not be tested catalytically because we 

were unable to oxidize the corresponding aryl iodide using NaBO3•4H2O, NaIO4, or 

Na2S2O8.20,29,30 Due to these challenges, no attempts were made to preparatively isolate 

products from these reactions. 

 

Scheme 2.25: Variation of ArIIII(OAc)2 for in situ Oxidant Generation 
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Silane Reagents 

 Arylsilane reagents have also been viable coupling partners for ArIIII(OAc)2 to 

give [Ar’–IIII–Ar]+ reagents. Fujiwara has previously demonstrated that 1,2-

trimethylsilylbenzene can be coupled with PhIIII(OAc)2 to generate the diaryl iodonium 

salt 110 (Scheme 2.26).31 Prior to attempting sequential oxidant formation and C–H 

arylation, we first confirmed that the coupling of PhIIII(OAc)2 and PhSiMe3 could be used 

to afford 111 in good yields (88%) under the reported conditions (Scheme 2.27).  

 

Scheme 2.26: Coupling Aryltrimethylsilanes with PhIIII(OAc)2.31 
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Scheme 2.27: Coupling of PhSiMe3 with PhIIII(OAc)2. 
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The one pot oxidant generation/arylation reaction was next explored. This was 

attempted by combining PhSiMe3, PhIIII(OAc)2 and TfOH in CH2Cl2 at 0 ºC for 2h, then 

allowing the solution to return to room temperature. Next, 5 mol % Pd(tfa)2 and 0.25 

equiv of 11 were added and the reaction was heated to 120 ºC for 15 h (Scheme 2.28). 

Initial attempts resulted in no product by GC analysis leading us to probe alternative 

reaction conditions. We began by studying the effect of added bases under otherwise 

analogous conditions. Bases that were examined included NaHCO3, K2CO3, NaOAc, 

pyridine, and KOH. With the addition of 3 equiv of NaHCO3 it was found that this 

reaction provided the desired product 14 with an average yield of 80% by gas 

chromatography, while the other bases resulted in no product or low yield (<20%). Next, 

a solvent screen was undertaken with 2 equiv of PhSiMe3 and PhIIII(OAc)2 relative to 

substrate. High yields (>70%) could be achieved in a variety of solvents including 

CH2Cl2, CHCl3, dichloroethane, trifluorotoluene, benzene, and chlorobenzene, with the 

best being CHCl3 (94% yield). However, unfortunately, when this reaction was scaled 

from 0.06 to 0.4 mmol of substrate, the reaction only proceeded in 33% yield. Low yields 

on the larger scale may be due to challenges of maintaining a constant 0 ºC temperature 

during the exothermic oxidant generation, resulting in an incomplete oxidant formation 

and low yields. Further optimization and careful control of conditions will be necessary 

for this method to prove valuable. 

 

Scheme 2.28: In situ Oxidant Generation with PhSiMe3 and PhIIII(OAc)2. 
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 In summary, attempts to generate the requisite [Ar–IIII–Ar]BF4 in situ followed by 

PdII catalyzed C–H arylation has proven to be challenging for both boronic acid and 

silane starting materials. While these methods have successfully been employed to 

provide the desired products, the results were found to be inconsistent for each case. Even 

successful cases did not meet the initial aims of utilizing readily available starting 

materials and being operationally simple. Due to these deficiencies, other projects were 

pursued. 

 
 
2.6 Subsequent Examples of C–H Arylation Methodology 
 Following our publication of this methodology, numerous literature reports have 

appeared exploring palladium-catalyzed C–H arylation, and several of these are 

particularly notable.32 These examples of C–H arylation fall into 4 general categories: (1) 

further utilization of [Ar–IIII–Ar]+ reagents, (2) employment of Ag+ salts with Ar–I 

oxidants, (3) the development of PdII/0 catalyzed methodologies that introduce the arene 

via a transmetallating reagent, and (4) oxidative coupling. 

 In the first general category, there are two important examples further exploring 

the utility of [Ar–IIII–Ar]+ oxidants for C–H arylation. First, Daugulis demonstrated an 

analogous palladium-catalyzed C–H phenylation using [Ph–IIII–Ph]PF6 oxidants with 

substrates containing pivalate directing groups.33 Second, the Gaunt group demonstrated 

copper-catalyzed meta C–H arylation with [Ph–IIII–Ph]OTf reagents (Scheme 2.29).34,35 

This latter reaction was proposed to proceed through intermediate 113 to provide the 

product 114. This is notable because it provides the meta arylation which is 

complimentary to the ortho arylation developed in our laboratory. 

 

Scheme 2.29: Meta C–H Arylation Using a Copper Catalyst.34  
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 The second general category of reactions developed for C–H arylation utilizes 

Ar–I with a stoichiometric silver additive. Daugulis initially demonstrated that combining 

substrates containing a pivalate directing group such as 115 with an Ar–I (116) and 

AgOAc afforded the C–H arylation product 117 (Scheme 2.30).33 This was then extended 

to a variety of additional directing groups by his lab and others.36-43 The mechanism of 

this arylation is proposed to involve an Ar–PdIV intermediate, however experiments to 

elucidate the details have not been reported. 

 

Scheme 2.30: C–H Arylation Employing Ar–I and Stoichiometric AgOAc.33 
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 The third general category employs a transmetallating reagent to provide the aryl 

group for functionalization. This is in contrast to Miura’s pioneering work that introduced 

the arene from the oxidant (e.g. an aryl halide). The general mechanism of previous 

methodology developed by Miura is shown in Scheme 2.31 and is believed to proceed 

through: (i) oxidative addition of an Ar–I to Pd0 to give 118, followed by (ii) 

cyclometallation at Ar–PdII to afford 119, and final (iii) C–C bond forming reductive 

elimination to afford the product 120. 44-52 

 

Scheme 2.31: General Mechanism of Miura’s C–H Arylation.44-52 
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 In contrast, the recently developed chemistry employing boron and silane 

transmetallating reagents is believed to proceed through the general mechanism shown in 

Scheme 2.32.43,53-57 This involves: (i) cyclometallation of PdII, (ii) transmetalation of the 

Ar group from Ar–[M] (121) to palladium to afford a cyclometallated Ar–[PdII] (122), 

(iii) C–C bond forming reductive elimination to release the product (123), and (iv) 

oxidation of palladium to PdII by oxidants such as benzoquinone, silver, and copper. 

Importantly in this mechanism, the order of the cyclometallation and transmetalation 

steps can be reversed. 

 

Scheme 2.32: General Mechanism of C–H Arylation using a Transmetallating Reagent. 

 

L

H L

Ar

L

[PdII]
Ar

(i) Cyclometallation (ii) Transmetallation (iii) Reductive Elimination

- Pd0[PdII]
L

[PdII]

Ar–[M]
(X)

(iv) Oxidation

+ Oxidant
(121) (122) (123)

 
 

Finally, our lab and others have demonstrated an oxidative coupling approach to 

biaryl formation. 58-64 This method results in the direct coupling of two unfunctionalized 

C–H bonds (Scheme 2.33). An example of this from our lab employed substrate 124 

containing a nitrogen directing group along with the simple arene 125, Pd(OAc)2, 

AgOAc, and benzoquinone 126 to provide the oxidative coupling product 127.58,59 This 

example is proposed to proceed through a Pd0/II catalytic cycle, and the mechanistic 

details of this transformation have been investigated.60 

 

Scheme 2.33: C–H Arylation through Oxidative Coupling.59  
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2.7 Conclusions 
 We have developed a ligand-directed, PdII catalyzed C–H activation/C–C bond 

forming reaction which employs [Ar–IIII–Ar]BF4 reagents as the terminal oxidant. We 

propose that these reactions proceed through a PdII/IV mechanism analogous to the C–H 

acetoxylations previously studied in our group. The utility of this reaction has been 

established by exploring both nitrogen and oxygen based directing groups for the site 

selective installation of different aryl substituents. Additionally, we have demonstrated 

installation of a diverse set of arenes with a broad functional group tolerance, which 

includes complementary reactivity to arylations via Pd0/II catalytic cycles. Efforts were 

then directed toward the development of an in situ oxidant generation from more readily 

available materials, which would eliminate the need for isolation of the oxidant. Although 

this succeeded conceptually, the conditions and materials required, as well as issues with 

reproducibility, limited its practical utility.  

 

2.8 General Procedures and Materials and Methods 
General Procedures: NMR spectra were obtained on a Varian Inova 500 (499.90 MHz 

for 1H; 125.70 MHz for 13C) or a Varian Inova 400 (399.96 MHz for 1H; 100.57 MHz for 
13C) spectrometer. 1H NMR chemical shifts are reported in parts per million (ppm) 

relative to TMS, with the residual solvent peak used as an internal reference. 

Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), 

doublet of triplets (dt), triplet (t), quartet (q), multiplet (m), and broad resonance (br). 

 

Materials and Methods: 8-methylquinoline, 2-phenylquinoline, N-phenylpyrrolidinone, 

N-phenyloxazolidinone, 1-(indolin-1-yl)ethanone, and N-(3-chlorophenyl)acetamide were 

obtained from commercial sources and used as received. Substrate 11 was prepared by 

Suzuki cross-coupling of phenyl boronic acid and 2- bromo-3-methylpyridine according 

to a literature procedure.65 Pyridine substrates in Table 2.1 (entries 1, 2, 3, and 6) and 

substrate 71 were prepared by Stille cross-coupling of 2-tributylpyridyltin with the 

corresponding aryl bromides.66 Amide substrates in Table 2.1 entries 8, 9, and 10 were 

prepared by palladium-catalyzed arylation of the corresponding lactam.67 Pd(OAc)2 was 
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obtained from Pressure Chemical and used as received and PhI(OAc)2 was obtained from 

Acros and used as received. Solvents were obtained from Fisher Chemical and used 

without further purification. Gas chromatography was carried out using a Shimadzu 17A 

using a Restek Rtx®-5 (Crossbond 5% diphenyl – 95% dimethyl polysiloxane; 15 m, 

0.25 mm ID, 0.25 mm ID, 0.25 µm df) column. Flash chromatography was performed on 

EM Science silica gel 60 (0.040–0.063 mm particle size, 230–400 mesh) and thin layer 

chromatography was performed on Merck TLC plates pre-coated with silica gel 60 F254. 

Control reactions (in the absence of Pd catalyst) were run for each substrate, and 

generally showed no reaction under our standard conditions. In general, crude reaction 

mixtures were filtered through glass wool or Celite to remove insoluble materials that 

form at the end of the reaction before workup. GC yields were calculated from the peak 

area of the product divided by the total peak area of starting material and products, unless 

otherwise noted. 

  

Experimental Procedures 

N

 
Product 14: 3-methyl-2-phenylpyridin (200 mg, 1.18 mmol, 1 equiv), [Ph2I]BF4 (500 

mg, 1.36 mmol, 1.15 equiv) and Pd(OAc)2 (13.2 mg, 0.059 mmol, 5 mol%) were 

combined in acetic acid (10 mL) in a 20 mL vial. The vial was sealed with a Teflon lined 

cap, and the reaction was stirred at 100 °C for 12 h. The reaction mixture was filtered 

through a plug of Celite and then concentrated under vacuum. The resulting crude oil was 

dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (2 x 30 mL) and brine 

(1 x 30 mL). The organic layer was dried over MgSO4, filtered, and concentrated to 

afford an orange oil, which was purified by chromatography on silica gel (Rf = 0.2 in 

95% CH2Cl2/5% ethyl acetate). The product was obtained as a viscous yellow oil (255 

mg, 88% yield); 1H NMR (d6-acetone): δ 8.47 (d, J = 4.8 Hz, 1H), 7.55-7.43 (multiple 

peaks, 3H), 7.40 (d, J = 7.5 Hz, 1H), 7.37-7.35 (m, 1H), 7.21-7.10 (multiple peaks, 6H), 

1.75 (s, 3H). 13C{1H} NMR (d6-acetone): δ 161.29, 148.19, 142.99, 142.40, 141.62, 
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139.03, 133.06, 131.80, 131.32, 130.92, 130.04, 129.58, 128.98, 128.48, 124.00, 19.95. 

Anal. Calcd for C18H15N: C, 88.13, H, 6.16, N, 5.71; Found: C, 88.15, H, 6.17, N, 5.43. 

IR (thin film) 1418 cm–1. 

 

N

Ph

O

 
Product 15: 1-(3-(3-methylpyridin-2-yl)phenyl)ethanone (150 mg, 0.76 mmol, 1 equiv), 

[Ph2I]BF4 (420 mg, 1.14 mmol, 1.5 equiv), and Pd(OAc)2 (8.5 mg, 0.038 mmol, 5 mol%) 

were combined in acetic acid (6 mL) in a 20 mL vial. The vial was sealed with a Teflon 

lined cap and the reaction was heated at 100 ºC for 2 days. The reaction mixture was 

filtered through a plug of Celite and then evaporated to dryness. The resulting oil was 

dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (2 x 30 mL) and brine 

(1 x 30 mL). The organic layer was dried over MgSO4, filtered, and concentrated to 

afford an orange oil, which was purified by chromatography on silica gel (Rf = 0.25 in 

88% CH2Cl2/12% ethyl acetate). The product was obtained as an orange/brown solid 

(189 mg, 91% yield); mp 77-78 ºC. 1H NMR (acetone-d6): δ 8.59-8.57 (m, 1H), 8.07 (dd, 

J = 8.0, 1.9 Hz, 1H), 8.24 (d, J = 1.8 Hz, 1H), 7.55 (d, J = 8.0, 1H), 7.50 (td, J = 7.7, 1.8 

Hz, 1H), 7.26-7.25 (m, 3H), 7.21-7.18 (m, 1H), 7.16-7.13 (m, 2H), 6.96-6.93 (m, 1H), 

2.63 (s, 3H). 13C{1H} NMR (CDCl3): δ197.80, 158.50, 149.81, 145.36, 140.37, 139.93, 

136.43, 135.63, 131.12, 129.64, 128.44, 128.18, 127.64, 125.49, 122.99, 26.96. HRMS-

electrospray (m/z): [M+ + H] calcd for C19H15NO, 274.1232; found, 274.1233. Anal. 

Calcd for C19H15NO: C, 83.94, H, 5.53, N, 5.12; Found: C, 83.56, H, 5.45, N, 5.04. IR 

(KBr) 1683, 1586 cm-1. 

 

The regioselectivity of this reaction could not be definitively determined from the 1H 

NMR spectrum of 15 due to overlapping aromatic resonances. As a result, a deuterated 

version of this product was prepared by reaction of 1-(3-(3-methylpyridin-2-

yl)phenyl)ethanone with [Mes–I–C6D5]BF4 under analogous conditions to those 

described above. The 1H NMR data for the deuterated product (15-d5) was as follows: 1H 
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NMR (d6-acetone): δ 8.69- 8.67 (m, 1H), 8.30 (d, J = 2.0 Hz, 1H), 8.17 (dd, J = 8.0, 2.0 

Hz, 1H), 7.68 (d, J = 8 Hz, 1H), 7.63 (dt, J = 7.5, 1.5 Hz, 1H), 7.34-7.32 (m, 1H), 7.15-

7.13 (m, 1H). 

 

N

Ph

 
Product 16: 3-methyl-2-m-tolylpyridine (150 mg, 0.89 mmol, 1 equiv), [Ph2I]BF4 (489 

mg, 1.33 mmol, 1.5 equiv), and Pd(OAc)2 (9.9 mg, 0.044 mmol, 5 mol%) were combined 

in acetic acid (4 mL) and acetic anhydride (4 mL) in a 20 mL vial. The vial was sealed 

with a Teflon lined cap and the reaction was heated at 100 ºC for 12 h. The reaction 

mixture was filtered through a plug of Celite and then evaporated to dryness. The 

resulting oil was dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (2 x 

30 mL) and brine (1 x 30 mL). The organic layer was dried over MgSO4, filtered, and 

concentrated to afford a yellow oil, which was purified by chromatography on silica gel 

(Rf = 0.24 in 97.5% CH2Cl2/2.5% ethyl acetate). The product was obtained as a brown 

solid (156 mg, 74% yield); mp 80-84 ºC . 1H NMR (C6D6): δ 8.58 (d, J = 4.8 Hz, 1H), 

7.79 (s, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.22-7.20 (m, 2H), 7.04-6.95 (multiple peaks, 4H), 

6.83- 6.79 (m, 2H), 6.77-6.75 (m, 1H), 2.17 (s, 3H). 13C{1H} NMR (CDCl3): δ 158.88, 

148.94, 140.85, 138.76, 137.36, 136.92, 134.68, 130.66, 130.03, 129.28, 128.86, 127.59, 

126.08, 125.04, 120.84, 20.66. HRMS-electrospray (m/z): [M+ + H] calcd for C18H15N, 

246.1283; found, 246.1290. IR (KBr) 1584 cm–1. 

 

N

Ph CHO

 
Product 17: 4-(pyridin-2-yl)benzaldehyde (200 mg, 1.09 mmol, 1 equiv), [Ph2I]BF4 (441 

mg, 1.20 mmol, 1.1 equiv), and Pd(OAc)2 (12.2 mg, 0.054 mmol, 5 mol%) were 

combined in AcOH (9 mL) in a 20 mL vial. The vial was sealed with a Teflon lined cap, 
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and the reaction was heated at 100 ºC overnight. GC analysis at the completion of the 

reaction showed 11% starting material, 67% mono-arylated product and 21% of the 

analogous diarylated product. The reaction mixture was filtered through a plug of Celite 

andevaporated to dryness. The resulting oil was dissolved in CH2Cl2 and extracted with 

saturated aqueous NaHCO3 (2 x 30 mL) and brine (1 x 30 mL). The organic extracts were 

dried over MgSO4 and concentrated under vacuum to afford a yellow oil, which was 

purified by chromatography on silica gel (Rf = 0.25 in 65% hexanes/35% ethyl acetate). 

The product was obtained as pale yellow solid (142 mg, 51% yield); mp 90-94 ºC. 1H 

NMR (C6D6): δ 9.71 (s, 1H), 8.51-8.49 (m, 1H), 7.87 (d, J = 9.7 Hz, 1H), 7.74 (d, J = 1.5 

Hz, 1H), 7.61 (dd, J = 7.9, 1.5, 1H), 7.04-7.01 (m, 2H), 6.99-6.96 (multiple peaks, 3H), 

6.74-6.66 (m, 2H), 6.52-6.28 (m, 1H). 13C{1H} NMR (CDCl3): δ 191.60, 157.49, 149.32, 

144.64, 141.15, 139.63, 135.77, 135.11, 131.60, 131.08, 129.17, 128.14, 127.97, 127.01, 

124.97, 121.78. HRMS-electrospray (m/z): [M+ – H] calcd for C18H13NO, 258.0919; 

found, 258.0922. IR (KBr): 1696, 1585 cm–1. 

 

N

Ph

 
Product 18: 8-methylquinoline (619 mg, 4.32 mmol, 2 equiv), [Ph2I]BF4 (794 mg, 2.16 

mol, 1 equiv) and Pd(OAc)2 (24 mg, 0.108 mmol, 5 mol%) were combined in a solution 

of benzene (9 mL) and acetic anhydride (9 mL) in a sealed container with a Teflon lined 

cap, and the reaction was stirred at 100 ºC for 12 h. The reaction mixture was filtered 

through a plug of glass wool, and the resulting solution was concentrated under vacuum 

to afford a yellow oil, which was purified by chromatography on silica gel (Rf = 0.22 in 

70% CH2Cl2/30% hexanes). The product was obtained as a brown-orange solid (337 mg, 

72% yield based on [Ph2I]BF4); mp: 52-53 ºC. 1H NMR (d6-acetone): δ 8.96 (dd, J = 4.2, 

1.8 Hz, 1H), 8.26 (dd, J = 8.3, 1.8 Hz, 1H), 7.78 (dd, J = 8.1, 1.4 Hz, 1H), 7.58-7.55 (m, 

1H), 7.50-7.45 (multiple peaks, 2H), 7.38-7.36 (m, 2H), 7.26- 7.22 (m, 2H), 7.17-7.12 

(m, 1H), 4.69 (s, 2H). 13C{1H} NMR (d6-acetone): δ 151.36, 148.41, 143.67, 142.07, 

137.91, 131.17, 130.88, 130.29, 129.96, 128.23, 128.12, 127.48, 122.97, 38.18. Anal. 
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Calcd for C16H13N: C, 87.64, H, 5.98, N, 6.39; Found: C, 87.63, H, 5.91, N, 6.35. IR 

(KBr) 1497, 1491 cm–1. 

 

N

Ph Ph

 
Product 19: 18 (182 mg, 0.83 mmol, 1 equiv), [Ph2I]BF4 (367 mg, 1.00 mmol, 1.2 

equiv), and Pd(OAc)2 (9.3 mg, 0.042 mmol, 5 mol%) were combined in acetic acid (3.5 

mL) and acetic anhydride (3.5 mL) in a 20 mL vial. The vial was sealed with a Teflon 

lined cap and the reaction was heated at 100 ºC for 12 h. The reaction mixture was 

filtered through a plug of Celite and then evaporated to dryness. The resulting oil was 

dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (2 x 30 mL) and brine 

(1 x 30 mL). The organic layer was dried over MgSO4, filtered, and concentrated to 

afford a pale yellow oil, which was purified by chromatography on silica gel (Rf = 0.22 in 

50% CH2Cl2/50% hexanes). The product was obtained as a white solid (147 mg, 60% 

yield); mp 135-137 ºC. 1H NMR (CDCl3): δ 8.97 (d, J = 3.9 Hz, 1H), 8.17 (d, J = 8.2 Hz, 

1H), 7.77 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.46 (d, J = 8.2 Hz, 1H), 7.41-7.35 

(multiple peaks, 6H) 7.32-7.27 (multiple peaks, 5H). 13C{1H} NMR (CDCl3): δ 149.33, 

145.98, 144.14, 142.37, 135.79, 130.01, 129.31, 128.01, 127.82, 126.20, 125.73, 125.67, 

120.68, 49.67. Anal. Calcd for C22H17N: C, 89.46, H, 5.80, N, 4.74; Found: C, 89.24, H, 

5.96, N, 4.63. IR (KBr) 1492 cm–1. Note: Product 19 is formed in 16% yield by GC in the 

absence of Pd catalyst. 

 

N

Ph

 
Product 20: 2-phenylquinoline (200 mg, 0.97 mmol, 1 equiv), [Ph2I]BF4 (428 mg, 1.16 

mmol, 1.2 equiv), and Pd(OAc)2 (10.9 mg, 0.054 mmol, 5 mol%) were combined in 

AcOH (8 mL) in a 20 mL vial. The vial was sealed with a Teflon lined cap, and the 
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reaction was heated at 100 ºC overnight. GC analysis at the completion of the reaction 

showed 19% starting material, 71% mono-arylated product (20) and 10% of the 

analogous diarylated product. The reaction mixture was filtered through a plug of Celite 

and then evaporated to dryness. The resulting oil was dissolved in CH2Cl2 and extracted 

with saturated aqueous NaHCO3 (2 x 30 mL) and brine (1 x 30 mL). The organic extracts 

were dried over MgSO4 and concentrated under vacuum to afford a yellow oil, which was 

purified by chromatography on silica gel (Rf = 0.22 in 94% hexanes/6% ethyl acetate). 

The product was obtained as a pale yellow solid (157 mg, 58% yield); mp 134-138 ºC. 1H 

NMR (C6D6): δ 8.38 (d, J = 8.4 Hz, 1H), 8.14 (dd, J = 7.60, 1.45, 1H), 7.39-7.34 (m, 2H), 

7.31-7.28 (m, 2H), 7.26-7.16 (multiple peaks, 6H), 6.95-6.90 (m, 2H), 6.88-6.86 (m, 1H). 
13C{1H} NMR (CDCl3): δ 159.60, 147.94, 140.86, 140.46, 139.45, 134.43, 130.62, 

130.21, 129.52, 129.26, 129.06, 128.62, 128.04, 127.88, 127.59, 127.18, 126.60, 126.27, 

123.13. HRMS-electrospray (m/z): [M+ – H] calcd for C21H15N, 280.1126; found, 

280.1127. IR (KBr) 1699, 1589 cm–1. 

 

N

O

Ph

 
Product 21: N-penylpyrrolidinone (152 mg, 0.94 mmol, 1 equiv), [Ph2I]BF4 (521 mg, 

1.41 mmol, 1.5 equiv), NaHCO3 (119 mg, 1.14 mmol, 1.5 equiv) and Pd(OAc)2 (11.9 mg, 

0.053 mmol, 5 mol%) were combined in toluene (8 mL) in a 20 mL vial fitted with a 

Teflon lined cap, and the reaction was stirred at 100 °C for 24 h. The reaction mixture 

was filtered through a plug of Celite and concentrated under vacuum to afford a yellow 

oil, which was purified by chromatography on silica gel (Rf = 0.1 in 50% ethyl 

acetate/50% hexanes). The product was obtained as an orange oil (170 mg, 75% yield). 
1H NMR (CDCl3): δ 7.44-7.35 (multiple peaks, 6H), 7.34-7.33 (m, 2H), 7.32 (t, J = 1.7 

Hz, 1H), 3.21 (t, J = 7.0 Hz, 2H), 2.43 (t, J = 8.1 Hz, 2H), 1.90-1.83 (m, 2H). 13C{1H} 

NMR (d6-acetone): δ 174.18, 140.09, 140.03, 137.60, 130.95, 129.13, 128.78, 128.59, 

128.44, 127.71, 127.59, 49.65, 31.06, 18.99. Anal. Calcd for C16H15NO: C, 80.98, H, 

6.37, N, 5.90; Found: C, 80.67, H, 6.46, N, 5.67. IR (thin film) 1715, 1377 cm–1. 
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Product 22: N-(m-methoxyphenyl)-pyrrolidinone (180 mg, 0.94 mmol, 1 equiv), 

[Ph2I]BF4 (692 mg, 1.88 mmol, 2 equiv), Pd(OAc)2 (10.5 mg, 0.047 mmol, 5 mol%) and 

NaHCO3 (158 mg, 1.88 mmol, 2 equiv) were combined in toluene (8 mL) in a 20 mL 

vial. The vial was sealed with a Teflon lined cap and the reaction was heated at 100 ºC 

for 12 h. The reaction mixture was evaporated to dryness, and the residue was redissolved 

in CH2Cl2 and filtered through a plug of Celite. The solution was concentrated to afford a 

yellow oil, which was purified by chromatography on silica gel (Rf = 0.25 in 70% ethyl 

acetate/30% hexanes). The product was obtained as a yellow solid (211 mg, 84% yield); 

mp 61-64 ºC. 1H NMR (C6D6): δ 7.41-7.39 (m, 2H), 7.18-7.16 (m, 1H), 7.14-7.05 

(multiple peaks, 4H), 6.73 (dd, J = 8.5, 2.6 Hz, 1H), 3.30 (s, 3H), 2.78 (t, J = 6.9 Hz, 2H), 

2.03 (t, J = 8.0 Hz, 2H), 1.19-1.12 (m, 2H). 13C{1H} NMR (CDCl3): δ 175.15, 159.10, 

138.41, 136.62, 131.46, 131.09, 127.92, 127.89, 126.74, 113.70, 112.89, 54.95, 49.66, 

30.74, 18.46. HRMS-electrospray (m/z): [M+ + Na] calcd for C17H17NO2, 290.1157; 

found, 290.1167. IR (KBr) 1687, 1609 cm–1. 

 

The regioselectivity of this reaction could not be definitively determined from the 1H 

NMR spectrum of 22 due to overlapping aromatic resonances. As a result, a deuterated 

version of this product was prepared by reaction of 22 with [Mes–I–C6D5]BF4 under 

analogous conditions to those described above. The 1H NMR data for the deuterated 

product (22-d5) was as follows: 1H NMR (d6-acetone): δ 7.31 (d, J = 8.5 Hz, 1H), 6.98 

(dd, J = 8.5, 2.6 Hz, 1H), 6.92 (d, J = 2.6 Hz, 1H), 3.84 (s, 3H), 3.26 (t, J = 6.9 Hz, 2H), 

2.26 (t, J = 8.0 Hz, 2H), 1.91-1.84 (m, 2H). 
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Product 23: N-(m-bromophenyl)-pyrrolidinone (180 mg, 0.75 mmol, 1 equiv), [Ph2I]BF4 

(689 mg, 1.87 mmol, 2.5 equiv), and Pd(OAc)2 (8.4 mg, 0.038 mmol, 5 mol%) were 

combined in toluene (6.25 mL) in a 20 mL vial. The vial was sealed with a Teflon lined 

cap and the reaction was heated at 100 ºC for 12 h. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in methylene chloride and extracted with saturated aqueous NaHCO3 (2 x 30 mL) and 

brine (1 x 30 mL). The organic layer was dried over MgSO4, filtered, and concentrated to 

afford an orange oil, which was purified by chromatography on silica gel (Rf = 0.23 in 

96% CH2Cl2/4% ethyl acetate). The product was obtained as an orange-brown solid (180 

mg, 78% yield); mp 116-118 ºC. 1H NMR (C6D6): δ 7.52 (s, 1H), 7.23 (d, J = 7.3 Hz, 

2H), 7.13-7.06 (multiple peaks, 4H), 6.79 (d, J = 8.1 Hz, 1H), 2.59 (t, J = 6.8 Hz, 2H), 

1.93 (t, J = 8.0 Hz, 2H), 1.13-1.06 (m, 2H). 13C{1H} NMR (CDCl3): δ 175.39, 138.49, 

137.84, 137.38, 131.89, 131.26, 130.90, 128.39, 127.93, 127.75, 121.44, 49.77, 30.85, 

18.79. Anal. Calcd for C16H14BrNO: C, 60.78, H, 4.46, N, 4.43; Found: C, 61.08, H, 4.66, 

N, 4.19. IR (KBr) 1697, 1413 cm–1. 

 

O N

O

Ph

 
Product 24: N-phenyloxizolidinone (150 mg, 0.92 mmol, 1 equiv), [Ph2I]BF4 (676 mg, 

1.84 mmol, 2 equiv), Pd(OAc)2 (10.2 mg, 0.046 mmol, 5 mol%) and NaHCO3 (155 mg, 

1.84 mmol, 2 equiv) were combined in benzene (8 mL) in a 20 mL vial. The vial was 

sealed with a Teflon lined cap and the reaction was heated at 100 ºC for 12 h. The 

reaction mixture was filtered through a plug of Celite and then evaporated to dryness. 

The resulting oil was dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 

(2 x 30 mL) and brine (1 x 30 mL). The organic layer was dried over MgSO4, filtered, 
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and concentrated to afford an orange oil, which was purified by chromatography on silica 

gel (Rf = 0.23 in 97.5% CH2Cl2/2.5% ethyl acetate). The product was obtained as a 

yellow solid (182 mg, 83% yield); mp 107-109 ºC. 1H NMR (C6D6): δ 7.38 (dd, J = 7.8, 

1.2 Hz, 1H), 7.32-7.30 (m, 2H), 7.14-7.12 (m, 1H), 7.10-7.06 (multiple peaks, 3H), 7.05-

6.99 (m, 2H) 3.24 (dd, J = 8.6, 7.2 Hz, 2H), 2.55 (dd, J = 8.5, 7.2 Hz, 2H). 13C{1H} NMR 

(CDCl3): δ 157.78, 139.62, 139.00, 135.08, 131.10, 128.89, 128.87, 128.58, 128.41, 

128.25, 127.99, 62.43, 47.13. Anal. Calcd for C15H13NO2: C, 75.30, H, 5.48, N, 5.85; 

Found: C, 75.50, H, 5.66, N, 5.68. IR (KBr) 1740, 1483 cm–1. 

 

N

O
Ph

 
Product 25: 1-acetyl-5-aminoindoline (150 mg, 0.93 mmol, 1 equiv), [Ph2I]BF4 (685 mg, 

1.86 mmol, 2 equiv), and Pd(OAc)2 (10.4 mg, 0.047 mmol, 5 mol%) were combined in 

AcOH (5 mL) and Ac2O (5 mL) in a 20 mL vial. The vial was sealed with a Teflon lined 

cap, and the reaction was heated at 100 ºC overnight. GC analysis at the completion of 

the reaction showed 29% starting material and 71% of the mono-arylated product (25). 

Notably, attempts to optimize the reaction conditions did not lead to further conversion 

with this substrate. The reaction mixture was evaporated to dryness, and the remaining 

solid residue was taken up in MeOH (20 mL) and filtered through a plug of Celite. The 

methanol was removed under vacuum and the solids were taken up in CH2Cl2 and 

extracted with saturated aqueous NaHCO3 (3 x 30 mL). The organic extracts were 

concentrated under vacuum to afford a red oil, which was purified by chromatography on 

silica gel (Rf = 0.2 in 70% hexanes/30% ethyl acetate). The product was obtained as pale 

yellow solid (108 mg, 49% yield); mp 117-119 ºC. 1H NMR (d6-acetone): δ 7.52-7.14 

(multiple peaks, 8H), 4.23 (t, J = 7.2 Hz, 2H), 3.02 (t, J = 7.2 Hz, 2H), 1.50 (br s, 3H). 
13C{1H} NMR (d6-acetone): δ 141.58, 129.77, 128.16, 127.78, 126.02, 124.67, 51.15, 

22.89. (The 13C NMR peaks of 25 are broad and several are missing, presumably as a 

result of fluxional motion of the amide.) Anal. Calcd for C16H15NO: C, 80.98, H, 6.37, N, 

5.90; Found: C, 80.89, H, 6.52, N, 5.58. IR (KBr) 1648 cm–1. 
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Product 26: N-(3-chlorophenyl)acetamide (250 mg, 1.47 mmol, 1 equiv), [Ph2I]BF4 

(1.08 g, 2.95 mmol, 2 equiv), and Pd(OAc)2 (16.5 mg, 0.074 mmol, 5 mol%) were 

combined in benzene (12 mL) in a 20 mL vial. The vial was sealed with a Teflon lined 

cap and the reaction was heated at 100 ºC for 12 h. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in CH2Cl2 and extracted with saturated aqueous NaHCO3 (2 x 30 mL) and brine (1 x 30 

mL). The organic layer was dried over MgSO4, filtered, and concentrated to afford an 

orange oil, which was purified by chromatography on silica gel (Rf = 0.28 in 55% diethyl 

ether/45% hexanes). The product was obtained as an orange-brown solid (240 mg, 67% 

yield); mp 125-126 ºC. 1H NMR (C6D6): δ 9.02 (s, 1H), 7.10-7.05 (multiple peaks, 3H), 

6.97-6.95 (m, 2H), 6.91 (dd, J = 8.2, 2.2 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H), 6.64 (s, 1H), 

1.25 (s, 3H). 13C{1H} NMR (CDCl3): δ 167.96, 136.65, 135.27, 133.40, 130.55, 130.19, 

128.82, 128.66, 127.88, 123.94, 121.24, 24.04. Anal. Calcd for C14H12ClNO: C, 68.44, H, 

4.92, N, 5.70; Found: C, 68.38, H, 4.99, N, 5.47. IR (KBr) 3224, 3026, 1648, 1532 cm–1. 

The regioselectivity of this reaction could not be definitively assigned from the 1H NMR 

spectrum of 26 due to overlapping aromatic resonances. As a result, a deuterated version 

of this product was prepared by reaction with [Mes–I–C6D5]BF4 under analogous 

conditions to those described above. The 1H NMR data for the deuterated product (26-d5) 

was as follows: 1H NMR (C6D6): δ 9.02 (br. s, 1H), 6.92 (dd, J = 8.2, 2.1 Hz, 1H), 6.75 

(d, J = 8.2 Hz, 1H), 6.64 (br. s, 1H), 1.25 (s, 3H). 

 

I
OAcAcO

Ar
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General Procedure for ArIIII(OAc)2 Synthesis: The published procedure for the 

synthesis of ArIIII(OAc)2 was followed.20 NaBO3•H2O (100 mmol, 10 equiv) was slowly 

added in portions over 20 min to a stirring solution of Ar–I (10 mmol, 1 equiv) in AcOH 

(90mL) at 45 ºC. The reactions were allowed to stir at 45 ºC for a minimum of 8 hr, at 

which point the solvent was reduced under vacuum to approximately 30 mL of AcOH. 

To this solution was added H2O (200 mL) resulting in a white solid to crash out. This 

solution was filtered, and the solid was further washed with H2O (350 mL), then hexanes 

(250 mL). The white solid was collected and dried under vacuum and taken directly on 

for coupling to make the [Ar–IIII–Ar]BF4 oxidants. 

 

General Procedure for [Ar–IIII–Ar]BF4 Synthesis: The published procedure for the 

synthesis of [Ar–IIII–Ar]BF4 was followed.19 To a solution of ArB(OH)2 (3.05 mmol, 

1.05 equiv) and BF3•OEt2 (3.35 mmol, 1.05 equiv) in CH2Cl2 (20 mL) at 0 ºC was added 

to a 0 ºC solution of ArIIII(OAc)2 (2.75 mmol, 1 equiv) in CH2Cl2 (20 mL) via cannula 

transfer. This solution was allowed to stir at 0 ºC for 2 hr, then a saturated aqueous 

solution of NaBF4 was added (150 mL) and allowed to stir as a biphasic solution for 30 

min at room temperature. The organic layer was separated and the aquous layer was 

washed with 3 x 40 mL of CH2Cl2, then the combined organic layers were dried with 

MgSO4 and the solvent was reduced to the minimal amount necessary to keep the product 

in solution. To this concentrated solution was added Et2O or hexanes and the desired 

[Ar–IIII–Ar]BF4 crashed out of solution. In some cases 1H NMR revealed remaining 

boronic acid. This can be removed by disolvin the product in CH2Cl2 then performing an 

extraction with aqueous solution of HBF4 (20%) to remove the boronic acid. 

 

IIII

BF4 CF3

 
Oxidant 38: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined MesIIII(OAc)2 (1.0 g, 2.75 mmol) and p-CF3C6H4B(OH)2 (0.579 g, 

3.05 mmol) and resulted in the desired oxidant as a white powder (900 mg, 68% yield) . 
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1H NMR (CDCl3): δ 7.84 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.14 (s, 2H), 2.63 

(s, 6H), 2.37 (s, 3H). 13C{1H} NMR (CDCl3): δ 144.01, 142.01 133.08 (q, 2JF = 29.7 Hz), 

132.93, 130.26, 128.34 (q, 3JF = 3.9 Hz), 123.46, 123.10 (q, 1JF = 270.9 Hz), 119.72, 

27.16, 21.08. 

 

IIII

BF4 F

 
Oxidant 39: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined MesIIII(OAc)2 (1.0 g, 2.75 mmol) and p-FC6H4B(OH)2 (0.639 g, 3.05 

mmol) and resulted in the desired oxidant as a white powder (686 mg, 58% yield) . 1H 

NMR (CDCl3): δ 7.76-7.70 (multiplet, 2H), 7.16-7.10 (multiple peaks, 4H), 2.63 (s, 6H), 

2.36 (s, 3H). 13C{1H} NMR (CD3OD): δ 166.32 (d, 1JF = 252 Hz), 146. 11, 138.25 (d, 3JF 

= 8.9 Hz), 131.51, 122.79, 120.76 (d, 2JF = 23.2), 107.86 (d, 2JF = 3.4), 27.12, 21.15. 

 

IIII

BF4 Cl

 
Oxidant 40:General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This reaction 

combined MesIIII(OAc)2 (1.5 g, 4.1 mmol) and p-ClC6H4B(OH)2 (0.719 g, 4.6 mmol) and 

resulted in the desired oxidant as a white powder (962 mg, 53% yield) . 1H NMR 

(CDCl3): δ 7.63 (d, J = 9.3 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H), 7.13 (s, 2H), 2.63 (s, 6H), 

2.37 (s, 3H). 

 

IIII

BF4
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Oxidant 41: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined MesIIII(OAc)2 (1.0 g, 2.75 mmol) and p-MeC6H4B(OH)2 (0.414g, 4.6 

mmol) and resulted in the desired oxidant as a white powder (983 mg, 85% yield) . 1H 

NMR (CDCl3): δ 7.79 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.12 (s, 2H), 2.63 (s, 

6H), 2.38 (s, 3H), 2.36 (s, 3H). 13C{1H} NMR (CDCl3): δ 144.75, 143.19, 142.7, 133.33, 

133.11, 130.53, 119.06, 106.85, 27.14, 21.25, 21.10. 

 

IIII

BF4

O

 
Oxidant 42: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined MesIIII(OAc)2 (1.0 g, 2.75 mmol) and m-(COMe)C6H4B(OH)2 (0.500 

g, 4.6 mmol) and resulted in the desired oxidant as a white powder (yield not 

determined). 1H NMR (CDCl3): δ 8.34 (s, 1H), 8.10 (d, J = 7.5 Hz, 1H), 7.83 (d, J = 9.0 

Hz, 1H), 7.55 (t, J = 8 Hz, 1H), 7.16 (s, 2H), 2.65 (s, 6H), 2.62 (s, 3H), 2.39 (s, 3H). 

13C{1H} NMR (CDCl3): δ 195.72, 145.11, 142.95, 140.38, 136.42, 132.86, 132.56, 

131.31, 130.65, 118.78, 111.05, 27.19, 26.61, 21.15.  

 

IIII

BF4

O

H

 
Oxidant 43: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined MesIIII(OAc)2 (1.0 g, 2.75 mmol) and m-(CHO)C6H4B(OH)2 (0.457 g, 

4.6 mmol) and resulted in the desired oxidant as a white powder (861 mg, 72% yield). 1H 

NMR (CDCl3): δ 9.94 (s, 1H), 8.13 (s, 1H), 8.06-8.00 (multiple peaks, 2H), 7.64 (t, J = 

10.0 Hz, 1H), 7.15 (s, 2H), 2.64 (s, 6H), 2.38 (s, 3H). 13C{1H} NMR (CDCl3): δ 189.46, 

145.29, 142.99, 139.41, 138.17, 133.55, 132.99, 132.48, 130.75, 118.79, 111.32, 27.23, 

21.18. 
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IIII

BF4
O

 
Oxidant 44: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined MesIIII(OAc)2 (2.0 g, 7.4 mmol) and p-(COMe)C6H4B(OH)2 (1.27 g, 

7.8 mmol) and resulted in the desired oxidant as a white powder (840 mg, 25% yield) . 1H 

NMR (CDCl3): δ 7.97 (d, J = 8.8 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.17 (s, 2H), 2.62 (s, 

6H), 2.60 (s, 3H), 2.40 (s, 3H). 13C{1H} NMR (d6-acetone): δ 197.23, 145.83, 143.77, 

140.77, 135.40, 132.46, 131.41, 121.36, 117.23, 27.19, 26.92, 21.07.  

 

IIII

BF4

 
Oxidant 45: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined MesIIII(OAc)2 (5.78 g, 15.9 mmol) and PhB(OH)2 (2.03 g, 16.7 mmol) 

and resulted in the desired oxidant as a white powder (6.52 g, 81% yield) . 1H NMR 

(CDCl3): δ 7.68 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 8.0 Hz, 1H), 7.45 (t, J = 8.0, 2H), 7.15 (s, 

2H), 2.63 (s, 6H), 2.39 (s, 3H). 13C{1H} NMR (CD3OD): δ 146.02, 143.65, 135.38, 

133.45, 133.43, 131.47, 122.32, 114.56, 27.16, 21.15. 

 

IIII

BF4

Cl

Cl

 
Oxidant 46: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined p-ClC6H4IIII(OAc)2 (3.28 g, 9.2 mmol) and p-ClC6H4B(OH)2 (1.60 g, 

10.2 mmol) and resulted in the desired oxidant as a white powder (4.0 g, 93% yield) . 1H 



 56 

NMR (CDCl3): δ 7.96 (d, J = 8.5 Hz, 4H), 7.34 (d, J = 9.0 Hz, 4H). 13C NMR (CD3OD): 

δ 139.9, 136.9, 132.4, 109.6. 13C{1H} NMR (CD3OD): δ 139.90, 136.92, 132.94, 109.58. 

 

IIII

BF4

 
Oxidant 47: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined p-MeC6H4IIII(OAc)2 (2.96 g, 8.8 mmol) and p-MeC6H4B(OH)2 (1.23 

g, 9.7 mmol) and resulted in the desired oxidant as a white powder (2.2 g, 63% yield) . 1H 

NMR (CDCl3): δ 7.89 (d, J = 9.5 Hz, 4H), 7.24 (d, J = 9.5 Hz, 4H), 2.38 (s, 6H). 13C{1H} 

NMR (CD3OD): δ 143.89, 135.22, 133.22, 108.51, 21.38. 

 

IIII

BF4

F3C CF3

 
Oxidant 48: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined m-CF3C6H4IIII(OAc)2 (1.1 g, 2.9 mmol) and m-CF3C6H4B(OH)2 (0.61 

g, 3.23 mmol) and resulted in the desired oxidant as a white powder (0.73 g, 50% yield) . 

1H NMR (CD3OD): δ 8.72 (s, 2H), 8.54 (d, J = 8.0 Hz, 2H), 8.08, (d, J = 8.0 Hz, 2H), 

7.81 (t, J = 8.0 Hz, 2H). 

 

IIII

BF4

F

F

 
Oxidant 49: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined p-FC6H4IIII(OAc)2 (3.1 g, 9.1 mmol) and p-FC6H4B(OH)2 (1.42 g, 

10.1 mmol) and resulted in the desired oxidant as a white powder (3.0 g, 82% yield) . 1H 
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NMR (CD3OD): δ 8.20-8.10 (multiplet, 4H), 7.25-7.15 (multiplet, 4H). 13C{1H} NMR 

(CD3OD): δ 166.57 (d, 1JF = 252 Hz), 139.48 (d, 3JF = 8.9 Hz) 120.70 (d, 2JF = 23.2), 

110.36 (d, 2JF = 3.5). 

 

IIII

BF4

Br

Br

  
Oxidant 50: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined p-BrC6H4IIII(OAc)2 (3.70 g, 9.23 mmol) and p-BrC6H4B(OH)2 (2.06 g, 

1.03 mmol) and resulted in the desired oxidant as a white powder (3.80 g, 78% yield) . 1H 

NMR (CD3OD): δ 7.98 (d, J = 15.0 Hz, 4H), 7.62 (d, J = 15.0 Hz, 4H). 13C{1H} NMR 

(CD3OD): δ 138.28, 136.47, 128.91, 114.59. 

 

BF4
IIII

 
Oxidant 51: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined 1-naphthyl–IIII(OAc)2 (3.63 g, 9.7 mmol) and 1-naphthyl–B(OH)2 

(1.86 g, 10.8 mmol) and resulted in the desired oxidant as a white powder (3.18 g, 70% 

yield) . 1H NMR (CD3OD): δ 8.71 (d, J = 7.6 Hz, 2H), 8.37 (d, J = 7.6 Hz, 2H), 8.21 (d, J 

= 7.6 Hz, 2H), 8.00 (d, J = 8.0 Hz, 2H), 7.82 (t, J = 8.0 Hz, 2H), 7.71 (t, J = 8.0 Hz, 2H), 

7.55 (t, J = 7.6 Hz, 2H). 13C{1H} NMR (CD3OD): δ 138.85, 136.52, 135.35, 132.93, 

131.23, 130.95, 129.61, 129.39, 128.59, 118.85. 

 

IIII

BF4
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Oxidant 52: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined o-tolyl-IIII(OAc)2 (1.97 g, 5.86 mmol) and o-tolyl-B(OH)2 (0.884 g, 

6.50 mmol) and resulted in the desired oxidant as a white powder (1.96 g, 85% yield) . 1H 

NMR (CD3OD): δ 8.12 (d, J = 8.0 Hz, 2H), 7.51-7.46 (multiple peaks, 4H), 7.21 (t, J = 

8.0 Hz, 2H), 2.56 (s, 6H). 13C{1H} NMR (CD3OD): δ 142.63, 138.57, 134.55, 133.25, 

130.82, 120.02, 25.68. 

 

IIII

BF4

 
Oxidant 53: General Procedure for [Ar–IIII–Ar]BF4 Synthesis was followed. This 

reaction combined PhIIII(OAc)2 (11.9 g, 37 mmol) and PhB(OH)2 (5.0 g, 41 mmol) and 

resulted in the desired oxidant as a white powder (12.4 g, 82% yield) . 1H NMR (CDCl3): 

δ 8.02 (d, J = 8.0 Hz, 2H), 7.65 (t, J = 8.0 Hz, 2H), 7.49 (t, J = 8.0 Hz, 2H). 13C{1H} 

NMR (CD3OD): δ 136.61, 133.81, 133.32, 116.12.  

 

IIII

BF4 OMe

 
Oxidant 55: General procedure for ArIIII(OAc)2 synthesis was followed to synthesize 

MesIIII(OAc)2. This was then used to obtain MesIIII=O according to literature precedent.21 

This intermediate was then taken on to [Mes–IIII–(p-MeOC6H4)]BF4 using a modified 

literature procedure.22 This began by adding H2SO4 (0.12 mL) dropwise to a stirring 

solution of MesIIII=O (487 mg, 1.85 mmol, 1 equiv) in AcOH/Ac2O (12:1.2mL) and 

allowing to stir for 1 hr. Then H2O (100 mL) was added to the solution, and the organic 

products were extracted in CH2Cl2 3 x 20 mL. The combined organic extracts were then 

stirred as a biphasic mixture with 150 mL of aqueous saturated NaBF4. The organic layer 

was separated and the aquous layer was washed with 3 x 40 mL of CH2Cl2, then the 

combined organic layers were dried with MgSO4 and the solvent was reduced to the 
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minimal amount necessary to keep the product in solution. To this concentrated solution 

was added Et2O or hexanes and the desired [Ar–IIII–Ar]BF4 crashed out of solution. 

Multiple recrystallizations (≥3) from CH2Cl2 and Et2O were completed until the obtained 

product was an off white crystalline solid (0.638 g, 81% yield). 1H NMR (CDCl3): δ 7.64 

(dd, J = 7.5, 2.5 Hz, 2H), 7.05 (s, 2H), 6.90 (dd, J = 7.5, 2.0 Hz, 2H), 3.78 (s, 3H), 2.64 

(s, 6H), 2.32 (s, 3H). 13C{1H} NMR (CDCl3): δ 162.68, 144.59, 142.53, 135.62, 130.48, 

119.69, 118.27, 98.64, 55.73, 27.06, 21.06. 

 

IIII

BF4

MeO

OMe

 
Oxidant 56: General procedure for ArIIII(OAc)2 synthesis was followed to synthesize p- 

p-MeOC6H4IIII(OAc)2. This intermediate was then taken on to [(p-MeOC6H4)2–IIII]BF4 

using a modified literature procedure.23 This began by adding CF3COOH (0.4 mL) to a 

stirring solution of p-MeOC6H4IIII(OAc)2 (760 mg, 2.16 mmol) in CH2Cl2 at -30 ºC; 

reaction was and stirred for 20 min, then warmed to 0 ºC for 20 min, and then room 

temperature for 1 hr. The solution was then cooled back to -30 ºC and anisole (467 mg, 

4.32 mmol) was added dropwise, the solution was then warmed to 0 ºC for 30 min, then 

to room temperature for 30 min. The reaction volume was then increased by adding 

CH2Cl2 (100mL), then stirred as a biphasic mixture with 150 mL of aqueous saturated 

NaBF4. The organic layer was separated and the aquous layer was washed with 3 x 40 

mL of CH2Cl2, then the combined organic layers were dried with MgSO4 and the solvent 

was reduced to the minimal amount necessary to keep the product in solution. To this 

concentrated solution was added Et2O or hexanes and the desired [Ar–IIII–Ar]BF4 crashed 

out of solution. Multiple recrystallizations (≥3) were completed until the obtained product 

was an off white crystalline solid (1.9 g, 72% yield). 1H NMR (CD3OD): δ 7.95 (d, J = 

6.9 Hz, 4H), 6.96 (d, J = 6.9 Hz, 4H), 3.75 (s, 6H). 13C{1H} NMR (CD3OD): δ 164.53, 

138.27, 118.86, 105.28, 56.46. 
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IIII

BF4

F3C

CF3

 
Oxidant 57: The literature procedure described by Olofsson was employed.24 To a 

solution of m-CPBA (1.1 g, 4.5 mmol, 1.1 equiv) in CH2Cl2 (15 mL) at 0 ºC was added 

first p-CF3C6H4I (1.18 g, 4.05 mmol, 1.0 equiv), then BF3•OEt2 (1.3 mL) and allowed to 

stir for 30 min. Then p-CF3C6H4B(OH)2 was added and the reaction was stirred for an 

additional 15 min at rt. The solution was then run through a plug of silica with CH2Cl2 

(10mL) to remove the unreacted starting materials, then CH2Cl2/MeOH (20:1) to elute 

the product. The solution containing the product was concentrated (~5 mL) and the 

product was precipitated out by adding Et2O (~200 mL) affording the product as a white 

powder (0.853 g, 42% yield). 1H NMR (d6-DMSO): δ 8.50 (d, J = 8 Hz, 4H), 7.93 (d, J = 

8Hz, 4H). 13C NMR (d6-DMSO): δ 136.24, 132.01 (q, 2JCF3
 = 32.1 Hz), 128.52 (q, 3JCF3

 = 

3.9 Hz), 123.38 (q, 1JCF3
 = 271.3 Hz), 120.95. 

 

IIII

BF4 S

 
Oxidant 81: The IIII reagent [Mes–IIII–(2-thiophene)]OTs (80) was first synthesized 

according to a literature example.25 Thiophene (0.543 g, 6.46 mmol, 2 equiv) and 

MesIIII(OH)(OTs) (1.40 g, 3.23 mmol, 1 equiv) were refluxed in CHCl3 (15 mL) for 2 hr. 

The solution was cooled to room temperature, and Et2O was added to the solution until it 

became cloudy and was allowed to further stir for 25 min. Then Et2O (200 mL) was 

added and white precipitate was collected (1.27 g, 2.5 mmol). 1H NMR (CD3OD): δ 7.80-

7.70 (multiple peaks, 2H), 7.58 (d, J = 7.6 Hz, 2H), 7.13-7.10 (multiple peaks, 4H), 7.05 

(dd, J = 5.5, 3.5 Hz, 1H), 2.62 (s, 6H), 2.26 (s, 3H), 2.34 (s, 3H). To obtain the product 

with a BF4
- counterion the same procedure was followed, with a saturated solution of 

NaBF4 added after the reaction was cooled, then and stirred for 45 min. The organic layer 

was collected and the aqueous layer was washed with CHCl3 (3 x 45 mL). The organic 
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layer was dried with MgSO4 and the solvent was reduced so it was saturated (~10 mL) in 

product and Et2O (300 mL) was added and the product crashed out. The 1H NMR 

revealed that complete anion exchange was not achieved with ca. 20% OTs remaining. 
1H NMR (CDCl3): δ 7.80 (dd, J = 4.0, 1.0 Hz, 1H), 7.63 (dd, J = 5.0, 1.5 Hz, 1H), 7.27 

(d, J = 35Hz, 0.4H), 7.10 (dd, J = 5.0, 4.0 Hz, 1H), 7.06 (s, 2H), 6.98 (d, J = 13 Hz, 

0.4H). 3.73 (s, 6H), 2.32 (s, 3H), 2.30 (s, 0.6H). 

 

 

N

F3C

 
Product 63: 3-methyl-2-phenylpyridine (150 mg, 0.89 mmol, 1 equiv), [Mes–I–p-

CF3C6H5]BF4 (466 mg, 0.98 mmol, 1.1 equiv) and Pd(OAc)2 (10 mg, 0.044 mmol, 5 mol 

%) were combined in acetic acid (8 mL) in a 20 mL vial. The vial was sealed with a 

Teflon lined cap, and the reaction was stirred at 100 °C for 12 h. The reaction mixture 

was filtered through a plug of glass wool and concentrated under vacuum. The resulting 

oil was dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (1 x 30 mL). 

The organic layer was dried over MgSO4, filtered, and concentrated to afford an orange 

oil, which was purified by chromatography on silica gel (Rf = 0.25 in 75% hexanes/25% 

ethyl acetate). The product was obtained as a yellow oil (242 mg, 87% yield). 1H NMR 

(d6-acetone): δ 8.42 (d, J = 4.2 Hz, 1H), 7.57-7.53 (multiple peaks, 5H), 7.46-7.40 

(multiple peaks, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.18 (dd, J = 8.0 Hz, 7.6 Hz, 1H). 13C{1H} 

NMR (d6-acetone): δ 159.83, 147.84, 146.27, 140.87, 140.13, 138.42, 132.21, 131.06, 

130.76, 130.59, 129.34, 129.08 (d, 2JCF3 = 32 Hz), 128.99, 125.59 (q, 3JCF3 = 4 Hz), 

124.43 (q, 1JCF3 = 270 Hz), 123.39, 19.08. Anal. Calcd for C19H14F3N: C, 72.83, H, 4.50, 

N, 4.47; Found: C, 72.53, H, 4.60, N, 4.36. 
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N

F
 

Product 64: 3-methyl-2-phenylpyridine (153 mg, 0.91 mmol, 1 equiv), [Mes–I–p-

FC6H5]BF4 (446 mg, 1.04 mmol, 1.15 equiv) and Pd(OAc)2 (10.1 mg, 0.043 mmol, 5 

mol%) were combined in acetic acid (8 mL) in a 20 mL vial. The vial was sealed with a 

Teflon lined cap, and the reaction was stirred at 100 °C for 12 h. The reaction mixture 

was filtered through a plug of glass wool and concentrated under vacuum. The resulting 

oil was dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (1 x 30 mL). 

The organic layer was dried over MgSO4, filtered, and concentrated to afford an orange 

oil, which was purified by chromatography on silica gel (Rf = 0.3 in 75% hexanes/25% 

ethyl acetate). The product was obtained as a yellow solid (210 mg, 88% yield); mp 135-

137 ºC. 1H NMR (d6-acetone): δ 8.43 (d, J = 4.0 Hz, 1H), 7.57-7.32 (multiple peaks, 5H), 

7.22-7.12 (multiple peaks, 3H), 6.97-6.93 (m, 2H), 1.77 (s, 3H). 13C{1H} NMR (d6-

acetone): δ 162.60 (d, 1JCF = 243 Hz), 160.15, 147.34, 140.76, 140.35, 138.29 (d, 4JCF = 

3.0 Hz), 138.12, 131.99, 131.82 (d, 3JCF = 7.6 Hz), 130.79, 130.30, 129.07, 128.16, 

123.10, 115.35 (d, 2JCF = 21 Hz), 18.91. Anal. Calcd for C18H14FN: C, 82.11, H, 5.36, N, 

5.32; Found: C, 81.86, H, 5.52, N, 5.15. IR (KBr) 1482 cm–1. 

 

N

Cl

 
Product 65: 3-methyl-2-phenylpyridine (150 mg, 0.89 mmol, 1 equiv), [Mes–I–p-

ClC6H5]BF4 (453 mg, 1.02 mmol, 1.15 equiv) and Pd(OAc)2 (10 mg, 0.044 mmol, 5 

mol%) were combined in acetic acid (8 mL) in a 20 mL vial. The vial was sealed with a 

Teflon lined cap, and the reaction was stirred at 100 °C for 12 h. The reaction mixture 

was filtered through a plug of glass wool and concentrated under vacuum. The resulting 

oil was dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (1 x 30 mL). 

The organic layer was dried over MgSO4, filtered, and concentrated to afford an orange 
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oil, which was purified by chromatography on silica gel (Rf = 0.25 in 75% hexanes/25% 

ethyl acetate). The product was obtained as a yellow solid (205 mg, 83% yield); mp 106-

107 ºC. 1H NMR (d6-acetone): δ 8.42 (dd, J = 4.8, 1.2 Hz, 1H), 7.55-7.46 (multiple 

peaks, 3H), 7.43 (dt, J = 7.5, 0.8 Hz, 1H), 7.38-7.36 (m, 1H), 7.21-7.12 (multiple peaks, 

5H), 1.79 (s, 3H). 13C{1H} NMR (d6-acetone): δ 160.11, 147.48, 140.84, 140.82, 140.25, 

138.31, 133.25, 132.12, 131.71, 130.95, 130.39, 129.25, 128.81, 128.53, 123.27, 19.07. 

Anal. Calcd for C18H14ClN: C, 77.28, H, 5.04, N, 5.01; Found: C, 77.59, H, 4.91, N, 4.63. 

IR (KBr) 1477, 1449 cm–1. 

 

N

 
Product 66: 3-methyl-2-phenylpyridine (150 mg, 0.89 mmol, 1 equiv), [Mes–I–p-

CH3C6H5]BF4 (432 mg, 1.02 mmol, 1.15 equiv) and Pd(OAc)2 (10 mg, 0.044 mmol, 5 

mol%) were combined in acetic acid (8 mL) in a 20 mL vial. The vial was sealed with a 

Teflon lined cap, and the reaction was stirred at 100 °C for 12 h. The reaction mixture 

was filtered through a plug of glass wool and concentrated under vacuum. The resulting 

oil was dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (1 x 30 mL). 

The organic layer was dried over MgSO4, filtered, and concentrated to afford an orange 

oil, which was purified by chromatography on silica gel (Rf = 0.25 in 80% hexanes/20% 

ethyl acetate). The product was obtained as a yellow solid (193 mg, 84% yield); mp 59-

62 ºC. 1H NMR (d6-acetone): δ 8.45 (d, J = 4.4 Hz, 1H), 7.50-7.43 (multiple peaks, 3H), 

7.39-7.33 (multiple peaks, 2H), 7.15 (t, J = 7.6 Hz, 1H), 7.04-6.98 (multiple peaks, 4H), 

2.23 (s, 3H), 1.74 (s, 3H). 13C{1H} NMR (d6-acetone): δ 159.68, 146.39, 140.49, 139.81, 

138.29, 137.15, 136.14, 131.16, 129.95, 129.43, 128.98, 128.46, 128.13, 126.91, 122.12. 

Anal. Calcd for C19H17N: C, 87.99, H, 6.61, N, 5.40; Found: C, 87.73, H, 6.45, N, 5.11. 

IR (KBr) 1449 cm–1. 
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N

MeO

 
Product 67: 3-methyl-2-phenylpyridine (150 mg, 0.89 mmol, 1 equiv), [Mes–I–p-

MeOC6H5]BF4 (449 mg, 1.02 mmol, 1.1 equiv) and Pd(OAc)2 (10 mg, 0.044 mmol, 5 

mol%) were combined in acetic acid (8 mL) in a 20 mL vial. The vial was sealed with a 

Teflon lined cap, and the reaction was stirred at 120 °C for 12 h. The reaction mixture 

was filtered through a plug of glass wool and concentrated under vacuum. The resulting 

oil was dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (1 x 30 mL). 

The organic layer was dried over MgSO4, filtered, and concentrated to afford an orange 

oil, which was purified by chromatography on silica gel (Rf = 0.20 in 80% hexanes/20% 

ethyl acetate). The product was obtained as a clear oil (197 mg, 81% yield); 1H NMR (d6-

acetone): δ 8.42 (d, J = 4.4 Hz, 1H), 7.46-7.28 (multiple peaks, 5H), 7.14-7.11 (m, 1H), 

7.02 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 8.4 Hz, 2H), 3.68 (s, 3H), 1.70 (s, 3H). 13C{1H} 

NMR (d6-acetone): δ 159.73, 158.68, 146.42, 140.22, 139.73, 137.18, 133.40, 131.17, 

130.17, 129.94, 129.33, 128.13, 126.68, 122.12, 113.22, 54.49, 18.09. HRMS 

(electrospray) [M+] calcd for C19H17NO, 275.1310; found, 275.1303. IR (KBr) 1609, 

1516 cm–1. 

 

NO

 
Product 68: 3-methyl-2-phenylpyridine (169.2 mg, 1.0 mmol, 1.0 equiv), [Mes–I–(m-

MeC(O)C6H4)]BF4 (497.2 mg, 1.1 mmol, 1.1 equiv) and Pd(OAc)2 (11.2 mg, 0.05 mmol, 

0.05 equiv) were combined in AcOH (10 mL) in a 20 mL scintillation vial, and the vial 

was sealed with a Teflon-lined cap. The reaction was stirred at 100 ºC for 12 h, then 

cooled to room temperature. The reaction mixture was filtered through a plug of Celite 

and rinsed with CH2Cl2, and the solvent was then removed under vacuum. The residue 

was taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 mL). The 
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organic layer was then dried over MgSO4, filtered, and concentrated onto silica gel for 

purification by column chromatography. The product was obtained as a yellow solid (232 

mg, 81% yield, Rf = 0.15 in 70% hexanes/30% EtOAc, mp = 95-99 ºC). 1H NMR 

(CDCl3): δ 8.50 (d, J = 4.7 Hz, 1H), 7.77 (dt, J = 7.8, 1.6 Hz, 1H), 7.69 (t, J = 1.6 Hz, 

1H), 7.50-7.37 (multiple peaks, 5H), 7.33-7.25 (multiple peaks, 2H), 7.10 (dd, J = 7.6, 

4.8 Hz, 1H), 2.37 (s, 3H), 1.75 (s, 3H). 13C{1H} NMR (CDCl3): δ 197.58, 158.87, 146.33, 

141.00, 139.21, 139.13, 137.46, 136.22, 133.39, 131.33, 129.63, 129.47, 129.27, 128.32, 

128.03, 127.71, 126.00, 122.08, 26.27, 18.52. IR (NaCl): 1685 cm–1. HRMS electrospray 

(m/z): [M+H]+ calcd for C20H18NO, 288.1388; found, 288.1385. 

 

NO

 
Product 69: 3-methyl-2-phenylpyridine (169.2 mg, 1.0 mmol, 1.0 equiv), [Mes–I–(m-

CHOC6H4)]BF4 (481.8 mg, 1.1 mmol, 1.1 equiv) and Pd(OAc)2 (11.2 mg, 0.05 mmol, 

0.05 equiv) were combined in AcOH (10 mL) in a 20 mL scintillation vial, and the vial 

was sealed with a Teflon-lined cap. The reaction was stirred at 100 ºC for 12 h, then 

cooled to room temperature. The reaction mixture was filtered through a plug of Celite 

and rinsed with CH2Cl2, and the solvent was then removed under vacuum. The residue 

was taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 mL). The 

organic layer was then dried over MgSO4, filtered, and concentrated onto silica gel for 

purification by column chromatography. The product was obtained as a viscous pale 

yellow oil (240 mg, 88% yield, Rf = 0.32 in 65% hexanes/35% EtOAc). 1H NMR 

(CDCl3): δ 9.89 (s, 1H), 8.54 (d, J = 4.7 Hz, 1H), 7.78-7.70 (multiple peaks, 2H), 7.60-

7.30 (multiple peaks, 7H), 7.14 (dd, J = 7.8, 4.7 Hz, 1H), 1.83, (s, 3H). 13C{1H} NMR 

(CDCl3): δ 191.55, 158.37, 146.19, 141.57, 138.99, 138.72, 137.33, 135.78, 134.74, 

131.08, 130.40, 129.54, 129.16, 128.19, 128.09, 127.71, 127.14, 122.01, 18.43. IR 

(NaCl): 1699 cm–1. HRMS electrospray (m/z): [M+H]+ calcd for C19H16NO, 274.1232; 

found, 274.1225. 
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N

O
 

Product 70: 3-methyl-2-phenylpyridine (130.3 mg, 0.70 mmol, 1.0 equiv), [Mes–I–(p-

MeC(O)C6H4)]BF4 (348.0 mg, 0.77 mmol, 1.1 equiv) and Pd(OAc)2 (7.84 mg, 0.035 

mmol, 0.05 equiv) were combined in AcOH (7 mL) in a 20 mL scintillation vial, and the 

vial was sealed with a Teflon-lined cap. The reaction was stirred at 100 ºC for 12 h, then 

cooled to room temperature. The reaction mixture was filtered through a plug of Celite 

and rinsed with CH2Cl2, and the solvent was then removed under vacuum. The residue 

was taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 mL). The 

organic layer was then dried over MgSO4, filtered, and concentrated onto silica gel for 

purification by column chromatography. The product was obtained as a pale yellow 

crystalline solid (163 mg, 81% yield, Rf = 0.09 in 70% hexanes/30% EtOAc, mp = 98-

101 ºC). 1H NMR (CDCl3): δ 8.47 (d, J = 4.8 Hz, 1H), 7.77-7.73 (m, 2H), 7.52-7.38 

(multiple peaks, 4H), 7.33-7.29 (m, 1H), 7.23-7.18 (multiple peaks, 2H), 7.10 (dd, J = 

7.7, 4.8 Hz, 1H), 2.53 (s, 3H), 1.77 (s, 3H). 13C{1H} NMR (CDCl3): δ 197.80, 158.87, 

146.63, 146.00, 139.44, 139.42, 137.61, 135.15, 131.44, 129.98, 129.52, 129.33, 128.41, 

128.15, 127.85, 122.27, 26.51, 18.79. IR (NaCl): 1682 cm-1. HRMS electrospray (m/z): 

[M+H]+ calcd for C20H18NO, 288.1388; found, 288.1384. 

 

N

 
Product 71: 3-methyl-2-phenylpyridine (150 mg, 0.89 mmol, 1 equiv), [Mes–I–p-

CH3C6H5]BF4 (489 mg, 1.15 mmol, 1.3 equiv) and Pd(OAc)2 (10 mg, 0.044 mmol, 5 

mol%) were combined in acetic acid (8 mL) in a 20 mL vial. The vial was sealed with a 

Teflon lined cap, and the reaction was stirred at 100 °C for 12 h. The reaction mixture 

was filtered through a plug of glass wool and concentrated under vacuum. The resulting 

oil was dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (1 x 30 mL). 
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The organic layer was dried over MgSO4, filtered, and concentrated to afford an orange 

oil, which was purified by chromatography on silica gel (Rf = 0.25 in 80% hexanes/20% 

ethyl acetate). The product was obtained as a white solid (165 mg, 72% yield); mp 73-77 

ºC. 1H NMR (d6-acetone): δ 8.30 (d, J = 3.6 Hz, 1H), 7.48-7.44 (multiple peaks, 2H), 

7.39-7.36 (multiple peaks, 2H), 7.32-7.30 (m, 1H), 7.10-7.03 (multiple peaks, 3H), 6.96-

6.92 (multiple peaks, 2H), 2.16 (s, 3H), 1.95 (s, 3H). 13C{1H} NMR (d6-acetone): δ 

160.12, 147.01, 141.58 (br), 141.42, 137.95, 136.67 (br), 131.97, 131.13, 130.67, 130.63, 

128.35, 127.81, 125.53, 122.81, 20.74, 19.34. (Several of the 13C NMR peaks are broad 

and three are missing – this is believed to be the result of fluxional motion about the aryl-

aryl bonds.) Anal. Calcd for C19H17N: C, 87.99, H, 6.61, N, 5.40; Found: C, 88.09, H, 

6.51, N, 5.24. IR (KBr) 1418 cm–1. 

 

MeO

N
OMe

N
OMe

 
Products 74 and 73: 2-(3-methoxyphenyl)-3-methylpyridine (118.4 mg, 0.594 mmol, 

1.0 equiv), [Mes–I–(p-MeOC6H4)]BF4 (522.7 mg, 1.188 mmol, 2.0 equiv) and Pd(OAc)2 

(6.7 mg, 0.0297 mmol, 0.05 equiv) were combined in AcOH (6 mL) in a 20 mL 

scintillation vial, and the vial was sealed with a Teflon-lined cap. The reaction was stirred 

at 100 ºC for 12 h, then cooled to room temperature. The reaction mixture was filtered 

through a plug of Celite and rinsed with CH2Cl2, and the solvent was then removed under 

vacuum. The residue was taken up in CH2Cl2 and extracted with saturated aqueous 

NaHCO3 (3 × 30 mL). The organic layer was then dried over MgSO4, filtered, and 

concentrated onto silica gel for purification by column chromatography. The product of 

p-MeOC6H4 addition was obtained as a pale yellow solid (101 mg, 56% yield, Rf = 0.32 

in 70% hexanes/30% EtOAc, mp = 88-92 ºC) and the product of Mes addition was 

obtained as a white crystalline solid (17 mg, 9% yield, Rf = 0.50 in 70% hexanes/30% 

EtOAc, mp = 95-99 ºC). GC of the crude reaction mixture showed that the ratio of p-

MeOC6H4 : Mes transfer was 6 : 1 (uncorrected ratio based on the areas of the respective 

peaks). Mes Addition Product 73. 1H NMR (CDCl3): δ 8.30 (d, J = 4.7 Hz, 1H), 7.36-
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7.32 (m, 1H), 7.10 (m, 1H), 7.02-6.97 (multiple peaks, 2H), 6.93 (d, J = 2.7 Hz, 1H), 6.71 

(s, 2H), 3.87 (s, 3H), 2.20 (s, 3H), 2.08 (s, 3H), 2.00 (s, 6H). 13C{1H} NMR (CDCl3): δ 

158.61, 158.11, 146.04, 141.21, 137.50, 136.97, 136.71, 135.88, 132.26, 131.92, 131.07, 

127.59, 121.76, 114.98, 113.89, 55.31, 20.97, 20.93, 19.27. HRMS electrospray (m/z): 

[M+H]+ calcd for C22H24NO2, 318.1858; found, 318.1848. p-MeOC6H4 Addition 

Product 74. 1H NMR (CDCl3): δ 8.50 (d, J = 4.7 Hz, 1H), 7.35-7.27 (multiple peaks, 

2H), 7.10 (dd, J = 7.4, 4.7 Hz, 1H), 7.02-6.95 (multiple peaks, 3H), 6.91 (d, J = 2.7 Hz, 

1H), 6.70-6.65 (multiple peaks, 2H), 3.85 (s, 3H), 3.72 (s, 3H), 1.74 (s, 3H). 13C{1H} 

NMR (CDCl3): δ 159.46, 158.54, 158.04, 146.48, 140.26, 137.51, 133.23, 133.01, 

131.56, 130.66, 130.14, 122.09, 114.62, 114.71, 113.18, 55.34, 50.05, 16.71. HRMS 

electrospray (m/z): [M+H]+ calcd for C20H20NO2, 306.1494; 306.1496. 

 

N OMe

O

 
Product 75: 2-(3-methoxyphenyl)-3-methylpyridine (133.8 mg, 0.67 mmol, 1.0 equiv), 

[Mes–I–(p-C(O)MeC6H4)]BF4 (632.8 mg, 1.4 mmol, 2.0 equiv) and Pd(OAc)2 (7.8 mg, 

0.035 mmol, 0.05 equiv) were combined in AcOH (7 mL) in a 20 mL scintillation vial, 

and the vial was sealed with a Teflon-lined cap. The reaction was stirred at 100 ºC for 12 

h, then cooled to room temperature. The reaction mixture was filtered through a plug of 

Celite and rinsed with CH2Cl2, and the solvent was then removed under vacuum. The 

residue was taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 

mL). The organic layer was then dried over MgSO4, filtered, and concentrated onto silica 

gel for purification by column chromatography (193.0 mg, 91% yield, Rf = 0.2 in 70% 

hexanes/30% EtOAc). GC of the crude reaction mixture showed that the ratio of p-

MeOC6H4 : Mes transfer was 58 : 1 (uncorrected ratio based on the areas of the 

respective peaks). 1H NMR (CDCl3): δ8.49 (d, J = 4.0 Hz, 1H), 7.72 (dd, J = 6.6, 1.8 Hz, 

2H), 7.34 (d, J = 8.4, 1H), 7.30 (d, J = 6.8, 1H), 7.16-7.05 (multiple peaks, 3H), 7.03 (dd, 

J = 8.4, 2.8, 1H), 6.94 (d, J = 2.8, 1H), 3.85 (s, 3H), 2.51, (s, 3H), 1.75, (s, 3H). 13C{1H} 
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NMR (CDCl3): δ 197.78, 159.40, 158.73, 146.59, 145.75, 140.58, 137.69, 134.74, 

132.06, 131.43, 130.81, 129.16, 127.84, 122.34, 114.32, 114.67, 55.36, 26.47, 18.69.  

 

N

F3C

OMe

 
Product 76: 2-(3-methoxyphenyl)-3-methylpyridine (75.8 mg, 0.38 mmol, 1.0 equiv), 

[Mes–I–(p-CF3C6H4)]BF4 (200.0 mg, 0.418 mmol, 1.1 equiv) and Pd(OAc)2 (4.3 mg, 

0.019 mmol, 0.05 equiv) were combined in AcOH (4 mL) in a 20 mL scintillation vial, 

and the vial was sealed with a Teflon-lined cap. The reaction was stirred at 100 ºC for 12 

h, then cooled to room temperature. The reaction mixture was filtered through a plug of 

Celite and rinsed with CH2Cl2, and the solvent was then removed under vacuum. The 

residue was taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 

mL). The organic layer was then dried over MgSO4, filtered, and concentrated onto silica 

gel for purification by column chromatography. The product was obtained as a pale 

yellow crystalline solid (106 mg, 81% yield, Rf = 0.2 in 70% hexanes/30% EtOAc, mp = 

89-93 ºC). GC of the crude reaction mixture showed that the ratio of p-CF3C6H4 : Mes 

transfer was 108 : 1 (uncorrected ratio based on the areas of the respective peaks). 1H 

NMR (CDCl3): δ 8.49 (d, J = 4.7 Hz, 1H), 7.41-7.30 (multiple peaks, 4H), 7.18 (d, J = 

8.6 Hz, 2H), 7.12 (dd, J = 7.8, 4.7 Hz, 1H), 7.04 (dd, J = 8.5, 2.3 Hz, 1H), 6.94 (d, J = 2.3 

Hz, 1H), 3.86 (s, 3H), 1.77, (s, 3H). 13C{1H} NMR (CDCl3): δ 159.41, 158.67, 146.62, 

144.43 (q, 4JCF3 = 1 Hz), 140.58, 137.75, 131.83, 131.41, 130.89, 129.29, 128.19 (q, 2JCF3 

= 32 Hz), 124.20 (q, 1JCF3 = 272 Hz), 124.64 (q, 3JCF3 = 4 Hz), 122.44, 114.77, 114.71, 

55.37, 18.67. HRMS electrospray (m/z): [M+H]+ calcd for C20H17F3NO, 344.1262; 

found, 344.1263. 

 

N

Cl

OMe
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Product 77: 2-(3-methoxyphenyl)-3-methylpyridine (81.5 mg, 0.41 mmol, 1.0 equiv), 

[Mes–I–(p-ClC6H4)]BF4 (200.0 mg, 0.45 mmol, 1.1 equiv) and Pd(OAc)2 (4.6 mg, 

0.0205 mmol, 0.05 equiv) were combined in AcOH (4 mL) in a 20 mL scintillation vial, 

and the vial was sealed with a Teflon-lined cap. The reaction was stirred at 100 ºC for 12 

h, then cooled to room temperature. The reaction mixture was filtered through a plug of 

Celite and rinsed with CH2Cl2, and the solvent was then removed under vacuum. The 

residue was taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 

mL). The organic layer was then dried over MgSO4, filtered, and concentrated onto silica 

gel for purification by column chromatography. The product was obtained as a pale 

yellow solid (100 mg, 79% yield, Rf = 0.24 in 70% hexanes/30% EtOAc, mp = 88.0-93 

ºC). GC of the crude reaction mixture showed that the ratio of p-ClC6H4 : Mes transfer 

was 29 : 1 (uncorrected ratio based on the areas of the respective peaks). 1H NMR 

(CDCl3): δ 8.49 (d, J = 4.6 Hz, 1H), 7.50-7.30 (multiple peaks, 2H), 7.14-7.07 (multiple 

peaks, 3H), 7.04-6.96 (multiple peaks, 3H), 6.92 (d, J = 8.5, 2.7 Hz, 1H), 3.85 (s, 3H), 

1.76, (s, 3H). 13C{1H} NMR (CDCl3): δ 159.06, 158.92, 146.57, 140.40, 139.22, 137.69, 

132.24, 132.05, 131.44, 130.71, 130.36, 127.91, 122.32, 114.69, 114.58, 55.37, 18.72. 

HRMS electrospray (m/z): [M+H]+ calcd for C19H17ClNO, 310.0999; found, 310.1009. 

 

N

F

OMe

 
Product 78: 2-(3-methoxyphenyl)-3-methylpyridine (118.4 mg, 0.594 mmol, 1.0 equiv), 

[Mes–I–(p-FC6H4)]BF4 (279.9 mg, 0.654 mmol, 1.1 equiv) and Pd(OAc)2 (6.7 mg, 

0.0297 mmol, 0.05 equiv) were combined in AcOH (6 mL) in a 20 mL scintillation vial, 

and the vial was sealed with a Teflon-lined cap. The reaction was stirred at 100 ºC for 12 

h, then cooled to room temperature. The reaction mixture was filtered through a plug of 

Celite and rinsed with CH2Cl2, and the solvent was then removed under vacuum. The 

residue was taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 

mL). The organic layer was then dried over MgSO4, filtered, and concentrated onto silica 

gel for purification by column chromatography. The product was obtained as a viscous 
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pale yellow oil (138 mg, 79% yield, Rf = 0.17 in 70% hexanes/30% EtOAc). GC of the 

crude reaction mixture showed that the ratio of p-FC6H4 : Mes transfer was 12 : 1 

(uncorrected ratio based on the areas of the respective peaks). 1H NMR (CDCl3): δ 8.49 

(d, J = 5.1 Hz, 1H), 7.38-7.28 (multiple peaks, 2H), 7.11 (dd, J = 7.8, 4.7 Hz, 1H), 7.06- 

6.98 (multiple peaks, 3H), 6.95 (d, J = 2.7 Hz, 1H), 6.86-6.78 (multiple peaks, 2H), 3.85 

(s, 3H), 1.76 (s, 3H). 13C{1H} NMR (CDCl3): δ 161.48 (d, 1JF = 246 Hz), 159.05, 158.90, 

146.50, 140.40, 137.59, 136.73 (d, 4JF = 3 Hz), 132.26, 131.44, 130.72, 130.61 (d, 3JF = 8 

Hz), 122.25, 114.59, 114.59 (d, 2JF = 21 Hz), 114.55, 55.30, 18.64. HRMS electrospray 

(m/z): [M+H]+ calcd for C19H17FNO, 294.1294; found, 294.1288. 

 

N OMe

 
Product 79: 2-(3-methoxyphenyl)-3-methylpyridine (118.4 mg, 0.594 mmol, 1.0 equiv), 

[Mes–I–(p-MeC6H4)]BF4 (279.9 mg, 0.654 mmol, 1.1 equiv) and Pd(OAc)2 (6.7 mg, 

0.0297 mmol, 0.05 equiv) were combined in AcOH (6 mL) in a 20 mL scintillation vial, 

and the vial was sealed with a Teflon-lined cap. The reaction was stirred at 100 ºC for 12 

h, then cooled to room temperature. The reaction mixture was filtered through a plug of 

Celite and rinsed with CH2Cl2, and the solvent was then removed under vacuum. The 

residue was taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 

mL). The organic layer was then dried over MgSO4, filtered, and concentrated onto silica 

gel for purification by column chromatography. The product was obtained as a viscous 

pale yellow oil (134 mg, 80% yield, Rf = 0.10 in 85% hexanes/15% EtOAc). GC of the 

crude reaction mixture showed that the ratio of p-MeC6H4 : Mes transfer was 20 : 1 

(uncorrected ratio based on the areas of the respective peaks). 1H NMR (CDCl3): δ 8.51 

(d, J = 4.7 Hz, 1H), 7.36 (d, J = 8.6 Hz, 1H), 7.29 (d, J = 7.4 Hz, 1H), 7.10 (dd, J = 7.6, 

4.8 Hz, 1H), 7.01 (dd, J = 8.6, 2.7 Hz, 1H), 6.99-6.91 (multiple peaks, 5H), 3.85 (s, 3H), 

2.25 (s, 3H), 1.75 (s, 3H). 13C{1H} NMR (CDCl3): δ 159.29, 158.51, 146.27, 140.16, 

137.66, 137.32, 135.54, 133.16, 131.38, 130.66, 128.79, 128.31, 121.94, 114.41, 114.35, 
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55.14, 20.82, 18.58. HRMS electrospray (m/z): [M+H]+ calcd for C20H20NO, 290.1545; 

found, 290.1548. 

 

N O

OMe

 
Product 84: N-(m-methoxyphenyl)pyrrolidinone (133.8 mg, 0.7 mmol, 1.0 equiv), 

[Ph2I]BF4 (367.9 mg, 1.4 mmol, 2.0 equiv), NaHCO3 (88.2 mg, 1.05 mmol, 1.5 equiv), 

and Pd(OAc)2 (7.8 mg, 0.035 mmol, 0.05 equiv) were combined in toluene (7 mL) in a 

20 mL scintillation vial, and the vial was sealed with a Teflon-lined cap. The reaction 

was stirred at 100 ºC for 17 h and then cooled to room temperature. The reaction mixture 

was filtered through a plug of Celite and rinsed with CH2Cl2, and concentrated onto silica 

gel for purification by column chromatography (136.9 mg, 73% yield, Rf = 0.1 in 50% 

hexanes/50% EtOAc). 1H NMR (CDCl3): δ 7.42-7.26 (multiple peaks, 7H), 6.93 (dd, J = 

8.4, 2.6, 1H), 6.86 (d, J = 2.4, 1H), 3.83 (s, 3H), 3.20 (t, J = 7.0 Hz, 2H), 2.42 (t, J = 8.2 

Hz, 2H), 1.86 (m, 2H). 13C{1H} NMR (CDCl3): δ 175.55, 159.53, 138.85, 137.04, 

131.92, 131.54, 128.34, 128.33, 127.14, 114.15, 113.27, 55.40, 50.05, 31.16, 18.91. 

 

N O

OMe

 
Product 85: N-(m-methoxyphenyl)pyrrolidinone (100 mg, 0.523 mmol, 1.0 equiv), [(p-

MeC6H4)2I]BF4 (414.2 mg, 1.05 mmol, 2.0 equiv), NaHCO3 (65.9 mg, 0.785 mmol, 1.5 

equiv), and Pd(OAc)2 (5.9 mg, 0.0262 mmol, 0.05 equiv) were combined in toluene (10 

mL) in a 20 mL scintillation vial, and the vial was sealed with a Teflon-lined cap. The 

reaction was stirred at 100 ºC for 17 h and then cooled to room temperature. The reaction 

mixture was filtered through a plug of Celite and rinsed with CH2Cl2, and concentrated 

onto silica gel for purification by column chromatography. The product was obtained as a 

yellow solid (122 mg, 83% yield, Rf = 0.17 in 50% hexanes/50% EtOAc, mp = 115-119 
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ºC). 1H NMR (d6-acetone): δ 7.29 (d, J = 8.6 Hz, 1H), 7.25-7.18 (multiple peaks, 4H), 

6.96 (dd, J = 8.2, 2.7 Hz, 1H), 6.90 (d, J = 2.7 Hz, 1H), 3.83 (s, 3H), 3.26 (t, J = 7.0 Hz, 

2H), 2.35 (s, 3H), 2.26 (t, J = 8.0 Hz, 2H), 1.89(m, 2H). 13C{1H} NMR (CDCl3): δ 

175.48, 159.28, 136.92, 136.72, 135.82, 131.77, 131.47, 128.98, 128.09, 114.07, 113.16, 

55.31, 49.92, 31.13, 21.05, 18.85. IR (NaCl): 1695 cm–1. HRMS electrospray (m/z): 

[M+H]+ calcd for C18H20NO2, 282.1494; found, 282.1484. 

 

N O

OMe

Cl

 
Product 86: N-(m-methoxyphenyl)pyrrolidinone (133.8 mg, 0.7 mmol, 1.0 equiv), [(p-

MeC6H4)2I]BF4 (554.4 mg, 1.4 mmol, 2.0 equiv), NaHCO3 (88.2 mg, 1.05 mmol, 1.5 

equiv), and Pd(OAc)2 (7.8 mg, 0.035 mmol, 0.05 equiv) were combined in toluene (7 

mL) in a 20 mL scintillation vial, and the vial was sealed with a Teflon-lined cap. The 

reaction was stirred at 100 ºC for 17 h and then cooled to room temperature. The reaction 

mixture was filtered through a plug of Celite and rinsed with CH2Cl2, and concentrated 

onto silica gel for purification by column chromatography (167.2 mg, 85% yield, Rf = 

0.17 in 50% hexanes/50% EtOAc). 1H NMR (CDCl3): δ 7.38-7.32 (multiple peaks, 2H), 

7.30-7.24 (multiple peaks, 3H) 6.93 (dd, J = 8.6, 2.6, 1H), 6.85 (d, J = 2.6, 1H), 3.83 (s, 

3H), 3.25 (t, J = 7.0 Hz, 2H), 2.43 (t, J = 8.0 Hz, 2H), 1.92 (m, 2H). 13C{1H} NMR 

(CDCl3): δ 175.56, 159.84, 137.37, 137.01, 133.21, 131.45, 130.79, 129.71, 128.55, 

114.23, 113.39, 55.46, 50.22, 31.13, 18.90. 

 

N O

OMe

F3C

 
Product 87: N-(m-methoxyphenyl)pyrrolidinone (94.8 mg, 0.496 mmol, 1.0 equiv), [(m-

CF3C6H4)2I]BF4 (500 mg, 0.99 mmol, 2.0 equiv), NaHCO3 (62.5 mg, 0.744 mmol, 1.5 

equiv), and Pd(OAc)2 (5.6 mg, 0.0250 mmol, 0.05 equiv) were combined in toluene (5 
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mL) in a 20 mL scintillation vial, and the vial was sealed with a Teflon-lined cap. The 

reaction was stirred at 100 ºC for 17 h and then cooled to room temperature. The reaction 

mixture was filtered through a plug of Celite and rinsed with CH2Cl2, and concentrated 

onto silica gel for purification by column chromatography. The product was obtained as a 

viscous yellow oil (139 mg, 84% yield, Rf = 0.15 in 50% hexanes/50% EtOAc). 1H NMR 

(d6-acetone): δ 7.62-7.45 (multiple peaks, 4H), 7.31, (d, J = 8.6 Hz, 1H), 6.95 (dd, J = 

5.9, 2.6 Hz, 1H), 6.86 (d, J = 2.6 Hz, 1H), 3.83 (s, 3H), 3.27 (t, J = 7.0 Hz, 2H), 2.40 (t, J 

= 8.0 Hz, 2H), 1.90 (m, 2H). 13C{1H} NMR (CDCl3): δ 175.35, 160.12, 139.71, 137.24, 

131.81 (q, 4JCF3 = 1 Hz), 131.42, 130.68 (q, 2JCF3 = 32 Hz), 130.45, 128.89, 125.0 (q, 
3JCF3 = 4 Hz), 128.04 (q, 1JCF3 = 272 Hz), 123.79 (q, 3JCF3 = 4 Hz), 114.26, 113.44, 55.43, 

50.23, 30.97, 18.83. IR (NaCl): 1696 cm–1. HRMS electrospray (m/z): [M+H]+ calcd for 

C18H17F3NO2, 336.1211; found, 335.1205. 

 

N O

F3C

 
Product 88: N-phenylpyrrolidinone (118.4 mg, 0.734 mmol, 1.0 equiv), [(m-

CF3C6H4)2I]BF4 (503.9 mg, 1.4 mmol, 2.0 equiv), NaHCO3 (88.2 mg, 1.05 mmol, 1.5 

equiv), and Pd(OAc)2 (7.8 mg, 0.035 mmol, 0.05 equiv) were combined in toluene (7 

mL) in a 20 mL scintillation vial, and the vial was sealed with a Teflon-lined cap. The 

reaction was stirred at 100 ºC for 17 h and then cooled to room temperature. The reaction 

mixture was filtered through a plug of Celite and rinsed with CH2Cl2, and concentrated 

onto silica gel for purification by column chromatography (171.2 mg, 73% yield, Rf = 0.2 

in 50% hexanes/50% EtOAc).1H NMR (CDCl3): δ 7.65-7.30 (multiple peaks, 8H), 3.29 

(t, J = 7.0 Hz, 2H), 2.41 (t, J = 8.2 Hz, 2H), 1.91 (m, 2H). 13C{1H} NMR (CDCl3): δ 

174.84, 141.38, 139.26, 138.21, 133.08 (q, 4JCF3 = 1 Hz), 131.22, 130.88 (q, 2JCF3 = 32 

Hz), 130.21, 129.86, 129.24, 128.69, 125.74 (q, 3JCF3 = 4 Hz), 125.27 (q, 1JCF3 = 272 Hz), 

124.80 (q, 3JCF3 = 4 Hz), 50.80, 31.32, 19.62. 
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N O

 
Product 89: N-phenylpyrrolidinone (118.4 mg, 0.734 mmol, 1.0 equiv), [(p-

MeC6H4)2I]BF4 (554.4 mg, 0.14 mmol, 2.0 equiv), NaHCO3 (88.2 mg, 1.05 mmol, 1.5 

equiv), and Pd(OAc)2 (7.8 mg, 0.0350 mmol, 0.05 equiv) were combined in toluene (7 

mL) in a 20 mL scintillation vial, and the vial was sealed with a Teflon-lined cap. The 

reaction was stirred at 100 ºC for 17 h and then cooled to room temperature. The reaction 

mixture was filtered through a plug of Celite and rinsed with CH2Cl2, and concentrated 

onto silica gel for purification by column chromatography. The product was obtained as a 

viscous yellow oil (149 mg, 81% yield, Rf = 0.16 in 50% hexanes/50% EtOAc). 1H NMR 

(d6-acetone): δ 7.42-7.21 (multiple peaks, 8H), 3.45, (t, J = 7.3 Hz, 2H), 2.37, (s, 3H), 

2.26 (t, J = 8.1 Hz, 2H), 2.85 (m, 2H). 13C{1H} NMR (d6-acetone): δ 175.96, 141.51, 

139.09, 138.82, 138.39, 132.28, 130.85, 130.58, 129.96, 129.74, 129.38, 51.48, 32.47, 

22.19, 20.65. IR (NaCl): 1697 cm–1. HRMS electrospray (m/z): [M+H]+ calcd for 

C17H18NO2, 252.1388; found, 252.1378. 

 

N

S

 
Product 101: Iodomesitylene diacetate (728.4 mg, 2.0 mmol, 2.0 equiv), and 2-thiophene 

boronic acid (256.0 mg, 2.0 mmol, 2.0 equiv) were combined in AcOH (10 mL) and 

stirred for 15 minutes in a 20 mL scintillation vial. Then 3-methyl-2-phenylpyridine 

(169.2 mg, 1.0 mmol, 1.0 eqiuv) and Pd(tfa)2 (16.6 mg, 0.05 mmol, 0.05 equiv) were 

added to the reaction mixture. The vial was then sealed with a Teflon-lined cap, and 

heated to 120 ºC for 12 h. The reaction mixture was filtered through a plug of Celite and 

rinsed with CH2Cl2, and the solvent was then removed under vacuum. The residue was 

taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 mL). The 

organic layer was then dried over MgSO4, filtered, and concentrated onto silica gel for 
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purification by column chromatography (67.9 mg, 23% yield, Rf = 0.10 in 90% 

hexanes/10% EtOAc). 1H NMR (CDCl3): δ 8.53 (d, J = 3.2, 1H), 7.61 (dd, J = 6.4, 1.0 

Hz, 1H), 7.47-7.37 (multiple peaks, 3H), 7.36-7.32 (multiplet, 1H), 7.19 (dd, J = 6.0, 4.0 

Hz, 1H), 7.14 (dd, J = 4.0, 0.8 Hz, 1H), 6.82 (dd, J = 4.0, 2.8 Hz, 1H), 6.59 (dd, J = 2.8, 

0.8 Hz, 1H) 1.88 (s, 3H).  

 

N

S

 
Product 104: Iodomesitylene diacetate (579.4 mg, 1.6 mmol, 2.0 equiv), and 3-thiophene 

boronic acid (204.8 mg, 1.6 mmol, 2.0 equiv) were combined in AcOH (8 mL) and 

stirred for 15 minutes in a 20 mL scintillation vial. Then 3-methyl-2-phenylpyridine 

(135.4 mg, 0.80 mmol, 1.0 eqiuv) and Pd(tfa)2 (13.3 mg, 0.04 mmol, 0.05 equiv) were 

added to the reaction mixture. The vial was then sealed with a Teflon-lined cap, and 

heated to 120 ºC for 12 h. The reaction mixture was filtered through a plug of Celite and 

rinsed with CH2Cl2, and the solvent was then removed under vacuum. The residue was 

taken up in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 mL). The 

organic layer was then dried over MgSO4, filtered, and concentrated onto silica gel for 

purification by column chromatography (120.9 mg, 60% yield, Rf = 0.14 in 90% 

hexanes/10% EtOAc). 1H NMR (CDCl3): δ 8.52 (d, J = 7, 1H), 7.55-7.50 (multiplet, 1H), 

7.48-7.34 (multiple peaks, 4H), 7.15 (dd, J = 9.5, 6.0Hz, 1H), 7.10 (dd, J = 6.8, 4.0Hz, 

1H), 6.85 (dd, J = 4.0, 1.5Hz, 1H) 6.77 (dd, J = 6.0, 1.5Hz, 1H), 1.79 (s, 3H).  
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Chapter 3 
 
 

Mechanistic Investigations of Ligand Directed C–H 
Activation/Arylation Reactions 

 
 

3.1 Background and Significance 
 

We next investigated the details of the mechanism of ligand directed C–H 

arylation. A comprehensive understanding of the mechanism would help address 

remaining challenges for this methodology. These include: (1) decreasing the catalyst 

loadings, (2) employing a broader set of effective directing groups, (3) generalizing the 

reaction conditions for all substrates, (4) expanding to other IIII reagents, and (5) 

understanding how to improve the in situ oxidant generation. These studies could also 

provide insights into a mechanistically unique C–H arylation reaction including a high 

oxidation state Ar–Pd intermediate, and this would be the first example of a detailed 

investigation of any C–H activation/arylation mechanism.  

To accomplish these goals, the proposed catalytic cycle outlined in the 

development of this transformation (Chapter 2) was investigated. This mechanism is 

proposed to proceed through: (i) coordination of PdII and directed C–H activation of a 

proximal C–H bond to give intermediate 1, (ii) oxidation with [Ph–IIII–Ph]+ to the key 

Ar–PdIV intermediate 2, and (iii) C–C bond forming reductive elimination affording the 

desired product and regenerating PdII (Scheme 3.1). Although each of these individual 

steps have precedent in stoichiometric reactions presented in the literature, it is important 

to provide evidence for each of them in the context of this catalytic cycle. To accomplish 

this several key items involving this reaction mechanism must be addressed including: (1) 

exploring other possible mechanistic pathways, (2) obtaining evidence for key 

intermediates, (3) examining specific details about the role of each reaction component in 
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the catalytic cycle, and (4) characterizing of the ligand environment around the 

palladium. 

 

Scheme 3.1: Initially Proposed Catalytic Cycle for C–H Arylation. 

N
PdII

N

H

– PhI

(i) Cyclometalation

(iii) Reductive
Elimination

X
Ph I
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N
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N
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Addition

(1)
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Initial experiments began with item (1), addressing the possibility of alternative 

mechanistic pathways that could be envisaged. These studies aimed to probe the 

possibilities of both Pd0/II
 reaction pathway, and reactions involving free radical 

intermediates. 

The next series of investigations focused on item (2), and they sought to provide 

evidence for, and gain information about, the key intermediates 1 and 2. Intermediates 

such as the cyclometallated complex 1 were studied to demonstrate their catalytic 

viability, stoichiometric reactivity, and their interaction with various reaction 

components.1 Analogue of the second key intermediate, Ar–PdIV intermediate 2, have 

been shown in previous model studies to be accessible by oxidation PdII with [Ar–IIII–

Ar]+ reagents. We sought to provide evidence for oxidation to this intermediate in the 

catalytic cycle by performing Hammett investigations.2-7 

Finally, the combination of several studies aim to address item (3), which is 

elucidation of the role of each reaction component in the catalytic cycle, and (4) 

understanding the ligand environment around the palladium center. First, the kinetic 

order in the substrate, oxidant, and catalyst were investigated. Second, we explored 

kinetic isotope experiments to examine the effects of isotopic labeling on the rate of the 
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reaction. Finally, the resting states of catalytic intermediates were identified to 

understand the important interactions occurring at both palladium and oxidant in the 

reaction. The combination of studies involving aim 3 and 4 allowed for the determination 

of a rate law and identification of the rate-limiting step of the catalytic cycle. These 

investigations provided insight into the ancillary ligands present on palladium throughout 

the catalytic cycle, which to this point have been depicted only as sticks (Scheme 3.1). 

Investigations of these key aspects of the reaction, amongst others, are discussed 

individually in detail below. The culmination of all of the above-described experiments 

can then be analyzed as a whole, to provide a detailed mechanistic picture of this 

transformation. These experiments establish oxidation as the rate-limiting step of the 

catalytic cycle, and additionally, provide evidence for the intermediacy of a dimeric high 

oxidation state palladium species. The implications of these mechanistic investigations 

will then be discussed. 

 

3.2 Preliminary Mechanistic Experiments 
 My colleague, Dr. Dipannita Kalyani, began efforts to examine the mechanism of 

this transformation by completing a series of mechanistic investigations outlined here. 

These experiments probed a number of potential reaction pathways that could lead to the 

observed products. Although a PdII/IV mechanism was proposed, it is equally important to 

explore the possibility of alternative mechanisms such as a Pd0/II catalytic cycle and free 

radical pathways. 

For all of the kinetic rate studies, choice of the model substrate is very important 

and the substrate 3-methyl-2-phenylpyridine (3) was chosen for two important reasons. 

First, the arylation of this substrate has been demonstrated to proceed efficiently with 

several IIII oxidants containing a range of diverse aryl groups. Second, excellent control 

of both mono-arylation and selective addition of the desired aryl groups from the IIII 

reagent has been achieved. Each of these is important for kinetic studies where low 

reaction efficiency and the formation of multiple products can complicate the analysis. 

Efforts began by conducting experiments to probe a possible Pd0/II mechanism. 

First, the oxidant [Ph–IIII–Ph]BF4 was replaced with Ph–I and Ph–OTf, electrophiles 

commonly used for Pd0/II chemistry (Scheme 3.2). In each case <1% of the desired 
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phenylation product was observed by gas chromatography. Next, the involvement of Pd0 

nanoparticles was explored by addition of >500 equiv of Hg, which is known to be a 

poison for heterogeneous catalysis (Scheme 3.3). Under the standard reaction conditions 

with the addition of Hg, complete conversion to product 4 was observed by gas 

chromatography.8,9 Finally, it has been observed that aryl halides, which are known to be 

reactive with low valent palladium, remain unaffected under the reaction conditions.10,11 

Each of these experiments suggest against a Pd0/II catalytic cycle in this system. 

 

Scheme 3.2: Replacement of [Ph–IIII–Ph]BF4 with Ph–I and Ph–OTf. 

(3) (4)

N N

Ph

5 mol % Pd(OAc)2

AcOH,100 ºC
X+

X = I or OTf
H

 
 

Scheme 3.3: Addition of Hg0 to the Standard C–H Arylation Reaction. 

N 5 mol % Pd(OAc)2
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Next, an alternative reaction pathway involving the intermediacy of free radicals 

could be envisaged.12 To probe for such intermediates, the free radical inhibitors MEHQ 

(O-methylhydroquinone) and galvinoxyl were included in the catalytic reaction mixture 

under otherwise standard conditions. The reaction proceeded unaffected by the additives, 

suggesting against a free radical chain process playing a role in the reaction.  

Finally, we investigated whether palladacycle 1 was a catalytic intermediate. This 

can be demonstrated if 1 will undergo a stoichiometric reaction with a diaryl iodonium 

oxidant to provide product 4, and also by demonstrating that 1 is a kinetically viable 

catalyst itself for this transformation. To accomplish this, the acetate bridged palladacycle 

5 was easily synthesized according to literature precedent.13 First, the stoichiometric 

reaction of palladacycle 5 with the oxidant [Ph–IIII–Ph]BF4, was successful and led to the 

desired product 4 in 90% yield (Scheme 3.4). Second, 5 was employed as a catalyst (2.5 
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mol %) in the reaction with 1 equiv of 3, and 1.1 equiv [Ph–IIII–Ph]BF4 in AcOH at 100 

ºC for 12 h (Scheme 3.6). This efficiently provided product 5 as determined by gas 

chromatography, and furthermore displayed a nearly identical reaction profile as 

compared with Pd(OAc)2 as the catalyst. Each of these experiments suggests the 

competency of palladacycle 5 as a catalytic intermediate. 

 

Scheme 3.4: Stoichiometric Reaction of 5 with [Ph2IIII]BF4. 
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Scheme 3.5: Replacement of Pd(OAc)2 with 5. 
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3.3 Kinetic Orders 
We next sought to establish the kinetic order in each component of the reaction to 

ascertain information about the rate-determining step, as well as probe the role of each 

reaction component. These studies focused specifically on the ligand-directed, palladium-

catalyzed C–H phenylation of the model substrate 3-methyl-2-phenylpyridine (3) 

utilizing the oxidant [Mes–IIII–Ph]BF4 (6). Initial experiments involved varying the 

concentration of 3 (18.8 to 190.6 mM) in the presence of [Mes–IIII–Ph]BF4 (6) (100 mM) 

and Pd(OAc)2 (2.5 mM) in AcOH at 80 °C. The reaction progress was monitored by gas 

chromatography and the method of initial rates was utilized to determine the reaction rate 

at each [3]. A plot of initial rate (Δ[4]/Δt) versus [3] was non-linear, and intriguingly the 

reaction demonstrated an inverse dependence on [3] (Figure 3.1). Next, initial rate 

(Δ[4]/Δt) was plotted versus [3]–1, [3]–2, and [3]–3. None of these afforded straight lines, 

suggesting that this data is not inverse 1st, 2nd, or 3rd order over this range. 
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Figure 3.1: Kinetic Order in Substrate at 80 ºC. 

N N

Ph

5 mM Pd(OAc)2
100 mM [Mes–IIII–Ph]BF4 (6)

AcOH, 80 ºC
(3, 37.6-381.2 mM) (4)  

 
 

Further examination of this data allows it to be broken into two regimes, Regime 

1 where [6] > [3], and Regime 2 where [6] < [3]. After careful analysis, it was determined 

that in Regime II a plot of initial rate (Δ[4]/Δt) versus [3]–3 afforded a straight line 

suggestive of an inverse third order dependence on [3] (Figure 3.2). Additional evidence 

for an inverse third order dependence was provided by performing a non-linear least 

squares fit to the equation f(x) = a[3]n where the order (n) in [3] was found to be 3.4 ± 0.5 

(a = 1.0 ± 0.5 x 10–7 M/min, Figure 3.3). Importantly, this result indicates that to obtain 

an integer kinetic order in substrate, the reaction must be conducted in the presence of 

excess 3 relative to IIII. 
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Figure 3.2: Plot of Initial Rate (Δ[4]/Δt) versus [3]–3 in Regime II. 

 
 

Figure 3.3: Data Fit of Initial Rate (Δ[4]/Δt) versus [4] in Regime II. 

 

 

At the temperature described (80 ºC), the reaction rates were exceedingly slow 

and a suitable yield (<3%) could not be obtained in a reasonable time frame leading to 

large errors in the rates. It was reasoned that more representative data could be achieved 

if the reactions were followed to higher yield (~10%). Thus for further confirmation, the 

experiments described above were repeated at 110 ºC. Additionally the determination of 

the reaction order focused on conditions employing excess substrate to obtain an integer 

order in 3. These experiments were accomplished by combining varying concentrations 
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of 3-methyl-2-phenylpyridine (3, 202 to 304 mM) with [Mes–IIII–Ph]BF4 (6, 100 mM) 

and Pd(OAc)2 (5 mM) in AcOH at 110 °C. These experiments again showed an inverse 

dependence on [3] (Figure 3.4). A plot of the initial rate (Δ[4]/Δt) versus [3]–3 showed a 

linear relationship, confirming an inverse third order dependence (Figure 3.5). This was 

further corroborated when this data was treated with a non-linear least squares fit to the 

equation f(x) = a[3]n and the order (n) was determined to be –3.1 ± 0.2 (a = 6.3 ± 1.5 × 

10–7, Figure 3.6). The data obtained suggests that three equiv of 3 must be lost to 

progress from the resting state to the transition state of the rate-limiting step of the 

catalytic cycle. 

 

Figure 3.4: Plot of Initial Rate (Δ[4]/Δt) versus [3]. 

N N

Ph

5 mM Pd(OAc)2
100 mM [Mes–I–Ph]BF4

 (6)
AcOH, 110 ºC

(3, 202-304 mM) (4)  
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Figure 3.5: Plot of Initial Rate (Δ[4]/Δt) versus [3]–3. 

 
 

Figure 3.6: Data Fit of Initial Rate (Δ[4]/Δt) versus [3]. 

 
 

Next the kinetic order in IIII reagent was determined by conducting experiments 

under similar conditions ([3] > IIII). This was carried out utilizing the above protocol by 

combining 3-methyl-2-phenylpyridine (3, 250 mM) with varying concentrations of [Mes–

IIII–Ph]BF4 (6, 75.2 to 175.2 mM) and Pd(OAc)2 (5 mM) in AcOH at 110 °C. A plot of 

initial rate (Δ[4]/Δt) versus [IIII] was linear, thereby demonstrating a first order 

dependence on [IIII] (Figure 3.7). This was further confirmed by performing a non-linear 

least squares fit of the data to the equation f(x) = a[IIII]n where the order (n) in IIII was 
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found to be 1.12 ± 0.08 (Figure 3.8). This result suggests that the oxidant is involved at 

the rate-determining step of the reaction.  

 

Figure 3.7: Initial Rate (Δ[4]/Δt) versus [IIII]. 

N N

Ph

5 mM Pd(OAc)2
75.2-175.2 mM [Mes–I–Ph]BF4 (6)

AcOH,110 ºC
(3, 250 mM) (4)  

 
 

Figure 3.8: Data Fit of Initial Rate (Δ[4]/Δt) versus [IIII]. 
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We next determined the order in [Pd] using the analogous method above, while 

again employing conditions of excess substrate. In these experiments 3-methyl-2-

phenylpyridine (3, 250 mM) was combined with [Mes–IIII–Ph]BF4 (6, 100 mM) and 

varying amounts of Pd(OAc)2 (3.8 to 10 mM) in AcOH at 110 °C. A plot of the initial 

rate (Δ[4]/Δt) versus [Pd] displayed a non–linear relationship (Figure 3.9). However a 

plot of the initial rate versus [Pd]2 afforded a straight line, suggesting a second order 

dependence on [Pd] (Figure 3.10). For further confirmation, the kinetic order (n) in [Pd] 

was determined to be 2.09 ± 0.08 (a = 6 ± 1 M/min) by performing a non-linear least 

squares fit to f(x) = a[Pd]n (Figure 3.11). A second order dependence on catalyst suggests 

that the ratio of stoichiometry of the resting state to the transition state of the catalytic 

cycle is 1:2, implicating a monomeric palladium resting state and a dimeric palladium 

transition state (vide infra). 

In summary of the kinetic order data obtained, it was found that this reaction must 

be carried out under conditions of excess substrate to obtain interger order values. Under 

these conditions, an inverse third order dependence was observed in substrate. Order 

studies in the oxidant revealed a first order dependence. Finally it was determined that 

this reaction has a second order dependence on catalyst. 

 

Figure 3.9: Plot of Initial Rate (Δ[4]/Δt) versus [Pd]. 

N N

Ph

3.8-10 mM  Pd(OAc)2
100 mM [Mes–I–Ph]BF4

 (6)
AcOH, 110 ºC

(3, 250 mM) (4)  

 



 92 

 

Figure 3.10: Plot of Initial Rate (Δ[4]/Δt) versus [Pd]2. 

 
 
 

Figure 3.11: Data Fit of Initial Rate (Δ[4]/Δt) versus [Pd]. 

 
 

3.4 Catalyst Resting State 
Since our kinetic order studies implicated a monomeric catalyst resting state, we 

sought further evidence of the exact nature of the catalyst resting state. Previously, the 

dimeric palladacycle 5 was demonstrated to be a viable catalyst for the arylation 

reactions, and furthermore provided the phenylation product by the stoichiometric 

reaction with diaryliodonium reagents (Scheme 3.4 and 3.5). To investigate this further, 
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the potential catalytic intermediate 5 and substrate 3 were examined by 1H NMR 

spectroscopy under conditions mimicking the catalytic reaction conditions (20 equiv 3, 

110 ºC, CD3CO2D). This revealed a new resonance at ~6.2 ppm (Figure 3.12, Reaction 

2), which is diagnostic of a monomeric palladium species1, and does not appear in the 1H 

NMR spectra of 5 (Figure 3.12 Reaction 1). This observation is consistent with Ryabov’s 

investigation demonstrating the closely related complex 7 favors the monomeric species 

8 in the presence of excess 2-phenylpyridine under very similar conditions (Keq = 33 ± 2 

M–1, AcOH, 70 ºC, Scheme 3.6).1  

 

Figure 3.13: 1H NMR Experiments to Observe the Catalyst Resting State. 
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Scheme 3.6: Rybov’s Example of the Monomer Dimer Equilibrium.1 

(7)

(8)

N
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O
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To compare of this observed resonance with the kinetic order data obtained, 

spectroscopic evidence for any observable palladium species in the catalytic reaction 

species was next investigated. When the catalytic reaction of 3 (0.05 mmol) with [Mes–

IIII–Ph]BF4 (6, 0.025 mmol) and Pd(OAc)2 (0.0027 mmol) in CD3CO2D at 110 ºC was 

monitored by 1H NMR spectroscopy, an analogous diagnostic peak at 6.2 ppm was 

observed to persist at a constant concentration throughout the duration of the reaction. 

This is displayed in Figure 3.12, Reaction 3, which shows the reaction after 60 min (30 

% conversion). This suggests the presence of the monomeric palladium species 9 

throughout the reaction, implicating it as the catalyst resting state (Scheme 3.7). Finally, 

Figure 3.12, Reaction 4 shows the reaction mixture from Figure 3.12, Reaction 3 cooled 

to room temperature. In this spectrum, a pair of doublets is observed at 6.00 and 6.14 

ppm, which directly correlate with those of the addition of 3 to 5 in CD3CO2D at room 

temperature (Figure 3.12, Reaction 5). It is believed that these two peaks represent two 

isomers of the monomeric palladacycle. Notably, heating of both samples leads to 

coalescence of these peaks into a single broad resonance at 6.2 ppm. Based on these 

experiments we propose that the catalyst resting state is monomer 9 (Scheme 3.7) 

 

Scheme 3.7: Observation of the 9 Under the Reaction Conditions. 

N

5.4 mM Pd(OAc)2
50 mM [Mes–I–Ph]BF4 (6)

N

Ph
AcOH, 110 ºC

N
PdII

NAcO

Observed by 1H NMR 
spectroscopy throughout 

reaction

(9)

(3, 100 mM) (4)  
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3.5 Oxidant Resting State 
With an understanding of the catalyst resting state, interactions between the IIII 

reagent and other reaction components was next investigated. Previous literature reports 

have demonstrated that pyridine derivatives coordinate to cationic diaryliodonium IIII 

reagents.14-17 A notable example was reported by Ochiai, who demonstrated that pyridine 

coordinates to [Ph–IIII–Ph]BF4 (10).16 This interaction was examined by 1H NMR 

spectroscopy to determine that the coordination stoichiometry was 1:1, and that Keq 

favored the bound state (Keq = 20.2 M–1 at 24 ºC in CH2Cl2). Notably, the discrete bound 

and free states in this system cannot be observed due to fast exchange on the NMR time 

scale. Thus to examine this interaction, a Job plot and titration experiments were 

employed. These analyses are completed by following the change in chemical shift of H1 

of pyridine (Scheme 3.8). An upfield shift of this proton was observed in the presence of 

10. This effect was hypothesized to be the result of shielding effects due to ring currents 

associated with the phenyl groups of [Ph–IIII–Ph]BF4 (10). Additionally, this interaction 

was further confirmed by an X-Ray crystal structure of pyridine (11) bound to 10. 

 

Scheme 3.8: Equilibrium Between the IIII Reagent and Pyridine.16 

I

BF4

I NN

BF4Keq = 20.2 M-1

24 ºC, CH2Cl2
H1

H1

H1

H1

(10) (11)  
 

 We conducted an analogous set of studies to examine the interaction between 1 

and [Mes–I–Ph]BF4 (6) under our catalytic conditions. First, we used a Job plot to 

establish the stoichiometry of complexation. A series of solutions with a constant total 

concentration ([3] + [6] = 23.6 mM in CD3CO2D, Scheme 3.9), but varying mole 

fractions of the two components was examined by 1H NMR spectroscopy at 110 and 80 

ºC. At each temperature, the chemical shift of H1 and H4 of 3 moved downfield as the 

mole fraction of 6 increased. This is in contrast to Ochiai’s observation in which H1 

moved upfield. This is likely due to the increased role of the resonance structure with a 
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positive charge localized on the carbon bearing H1 in more polar AcOH relative to 

CH2Cl2. The change in chemical shift of H4 relative to free 3 (ΔδH (4)) was used to 

construct a Job plot (Figure 3.14 and 3.15). H4 was chosen over H1 due to the larger 

change relative to free 3, but similar effects were observed for each resonance. The plots 

at 110 ºC and 80 ºC each showed a maximum at χ  = 0.5, indicating that complexation 

between 3 and 6 occurs with a 1:1 stoichiometry at each temperature.18 This data 

implicates the formation of IIII adduct 12 under the catalytic reaction conditions. 

 

Scheme 3.9: Equilibrium Between [Mes–IIII–Ph]BF4 6 and 3.  

BF4

N
+ I N

H4 BF4

H4

AcOH
110 ºC

I

H1
H1

(6) (3) (12)  
 

Figure 3.14: Job Plot of Δδ•χ versus χ at 110 °C. 
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Figure 3.15: Job Plot of Δδ•χ versus χ at 80 °C. 

 
 

 With the stoichiometry of the complex determined, the equilibrium constant 

between bound and free substrate was next probed by examining the chemical shift of H4. 

These experiments measured the chemical shift in solutions containing constant [3] with 

an increasing concentration of [Mes–I–Ph]BF4 (6) in CD3CO2D at both 110 ºC and 80 ºC 

(Figure 3.16 and 3.17). This data was then analyzed using a non-linear least squares fit to 

a series of equations described by Funasak (eq. 3.1, 3.2, 3.3) for a 1:1 binding model, and 

the curves representing those fits are shown.19-21 The equilibrium constant was found to 

be 111 ± 18 M–1 at 110 ºC (δmax = 8.52 ± 0.03) and 154 ± 24 M–1 at 80 ºC (δmax = 8.51 ± 

0.02). This analysis clearly demonstrates that under conditions relevant to the catalytic 

cycle the bound complex 12 is favored. 
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Figure 3.16: δH(4)
 as a Function of [IIII] at 110 ºC. 

 
Figure 3.17: δH(4)

 as a Function of [IIII] at 80 ºC.  
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" =
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                                      (3.1) 
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[6] =
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2 + 4Keq[6]Total
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     (3.2) 
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! 

[3] =
Keq[3]Total "Keq[6]Total "1+ (Keq[6]Total "Keq[3]Total "1)

2 + 4Keq[3]Total
2Keq

     (3.3) 

 
 
3.6 Hammett Studies 

Next, investigations focused on the effect of oxidant electronics on the rate of the 

reaction. The first approach to probe these effects was to use competition studies between 

electronically diverse oxidants. The product distributions of these reactions were 

analyzed and correlated to the relative reaction rates of each oxidant. This method was 

employed because it enabled us to obtain information about the oxidation step, regardless 

of its position in the catalytic cycle (i.e. at or after the rate-limiting step). In these 

experiments 1 equiv of 3-methyl-2-phenylpyridine (3) was combined with 1 equiv [Mes–

IIII–Ph]BF4, 1 equiv of [Mes–IIII–Ar]BF4 and 5 mol % of Pd(OAc)2 in AcOH and the 

reaction was heated at 120 ºC for 12 h (Figure 3.18). The value for kAr/kPh was 

determined from the ratio of Ar to Ph products based on calibrated GC yields. A 

Hammett plot was constructed by plotting log(kAr/kPh) versus σ and provided a straight 

line with ρ = +1.1 ± 0.1, indicating that electron poor oxidants react at a faster rate. 

 

Figure 3.18: Competition Study with [Mes–IIII–Ph]BF4 and [Mes–IIII–Ar]BF4. 
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Next, the same experiments were completed with the symmetric oxidants [Ar–IIII–

Ar]BF4 and [Ph–IIII–Ph]BF4. In these experiments 1 equiv of 3-methyl-2-phenylpyridine 

was combined with 1 equiv [Ph–IIII–Ph]BF4, 1 equiv of [Ar–IIII–Ar]BF4 and 5 mol % of 

Pd(OAc)2 in AcOH the resulting mixture was then heated at 120 ºC for 12 h (Figure 

3.19). The analysis of the data was completed by the analogous method and the Hammett 

plot was constructed by plotting log(kAr/kPh) versus σ and provided a linear relationship 

with ρ = +1.62 ± 0.08, again indicating that electron poor oxidants react at a faster rate. 

 

Figure 3.19: Competition Study with [Ph–IIII–Ph]BF4 and [Ar–IIII–Ar]BF4. 
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To confirm the electronic trend obtained from the competition studies, a Hammett 

plot based upon initial rate data with a series of oxidants was also sought. These 

experiments were completed by combining 1 equiv of 3-methyl-2-phenylpyridine (3) 

with 2 equiv of [Mes–IIII–Ar]BF4 (6) and 5 mol % of Pd(OAc)2 in AcOH at 80 °C. The 

reactions were followed to 6–10% conversion as determined by GC by comparison to an 

internal standard. A Hammett plot was constructed based on this data with a variety of Ar 

groups, and it displayed a linear relationship between log(kAr/kPh) vs. σ, with a ρ value of 
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+1.7 ± 0.3 (Figure 3.20). This data agrees with each of the competition studies and 

suggest the C–H arylation is strongly accelerated by electron deficient oxidants. 

However, the ρ value determined using the method of initial rates is however different 

than the competition Hammett plot (ρ = +1.1 ± 0.1). This may be a result of the 

difference in conversions the reactions were followed to and may be resolved if the 

competition Hammett studies were stopped at lower conversion (~10%), Utilizing this 

method it was observed that oxidant electronics impacted the initial reaction rate, 

suggesting that the oxidation is involved in the rate-determining step of the reaction. 

 

Figure 3.20: Initial Rate Hammett Plot with [Mes–IIII–Ar]BF4 Oxidants. 
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 Hammett studies probing the effect of directing group electronics were also 

undertaken. These experiments also utilized the method of initial rates and were 

completed by combining 2 equiv of [Mes–IIII–Ph]BF4 and 5 mol % of Pd(OAc)2 in AcOH 

at 80 °C with 2-(o-tolyl)-4-(X)-pyridine (13) (X = OMe, Me, C(O)Me, CF3) (Figure 

3.21). The reactions were followed by gas chromatography by comparison to an internal 

standard to provide the initial reaction rate (based on the calibration for R = H). A 

Hammett plot was constructed based upon this data and displayed a linear relationship 
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between log(kAr/kPh) and σ resulting in a ρ value of –1.4 ± 0.2. This result suggests that 

electron-donating groups on the directing group accelerate the reaction rate (Figure 

3.21). 

 

Figure 3.21: Initial Rate Directing Group Hammett Study with [Mes–IIII–Ph]BF4.  
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3.7 Oxidant Counterion Effect 
 Next, we sought to explore the effect of the oxidant counterions on the rate of the 

reaction by varying the counterion coordinating ability. To accomplish this, several [Ph–

IIII–Ph]X reagents were synthesized with a variety of different counterions (Table 3.1). 

Installation of these counterions was accomplished by synthesizing [Ph–IIII–Ph]Cl (14) 

through the coupling of PhIIII(OAc)2 with PhB(OH)2 followed by quenching with a 

saturated solution of NaCl (Scheme 3.10).22,23 The product is sparingly soluble in CH2Cl2 

and H2O. To attain the desired counterion from this common intermediate, another anion 

exchange was completed by combining [Ph–IIII–Ph]Cl in a stirring solution of CH2Cl2 

and H2O with the appropriate NaX salt (20 equiv). The resulting products were all 

soluble in CH2Cl2. To confirm the validity of this method the 1H NMR spectra of the 
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isolated [Ph–IIII–Ph]OTf was compared to a sample synthesized through an independent 

method and found to be the same.24 

 

Scheme 3.10: Synthesis of [Ph–IIII–Ph]X Oxidants. 

B
OHHOIIII

OAcAcO
1) CH2Cl2, BF3•OEt2
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IIII

Cl
CH2Cl2, H2O
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Table 3.1: [Ph–IIII–Ph]X Oxidants. 

Counterion

68% (15)

79% (17)

63% (18)

43% (19)

75% (16)

58% (20)

93% (14)
Yield

C6H5CO2
-

C6F5CO2
-

Cl3CCO2
-

ClO4
-

-OTs
-OTf

Cl-

 
 

These studies again focused on examining the initial rates of ligand-directed 

palladium-catalyzed C–H phenylation. Experiments were completed by combining 1 

equiv of 3-methyl-2-phenylpyridine (3) with 2 equiv of [Ph–IIII–Ph]X and 5 mol % of 

Pd(OAc)2 in AcOH at 80 °C, and the reaction progress was monitored by GC (Scheme 

3.11). A series of counterions were examined, revealing a clear distinction between 

counterions characterized as less coordinating (BF4 and ClO4), versus those that are more 

coordinating (carboxylates). Reactions with oxidants containing carboxylate counterions 

displayed very similar rates, which was approximately four times slower than that of the 

most commonly used BF4
– counterion. The perchlorate anion (ClO4

–), which is also non-

coordinating, was only slightly slower than the BF4
– counterion. Studies with additional 

counterions were attempted, but the oxidants were either insoluble in AcOH at elevated 

temperature (Cl–), or presented reproducibility problems (–OTs, –OTf). Finally this 

investigation also provided insight into the difference in reactivity between the oxidants 

[Ph–IIII–Ph]BF4 and [Mes–IIII–Ph]BF4. It was determined that the relative reaction rate of 
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[Ph–IIII–Ph]BF4 is approximately four times faster than with [Mes–IIII–Ph]BF4 (39 ± 3 vs 

13 ± 1 M/min). This decrease in reactivity with the mesityl oxidant may be attributed to a 

combination of steric effects and the electron donating ability of the methyl groups. 

These results have demonstrated the important role that counterions play as well as the 

difference in reaction rates between the oxidants [Ph–IIII–Ph]BF4 and [Mes–IIII–Ph]BF4.  

 

Scheme 3.11: Study of Counterion Effects on the Reaction Rate. 
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3.8 Kinetic Isotope Effect Studies 
Finally, investigating the kinetic isotope effect was of interest for comparison to 

other C–H bond functionalization reactions. Initial experiments explored the 

intramolecular kinetic isotope effect using substrate 22. This was accomplished by 

product analysis of the reaction employing substrate 22 for phenylation using 1H NMR 

spectroscopy to compare H:D, ratios and it was determined that the kH/kD was 2.5 ± 0.2 

(Scheme 3.12). This is in agreement with other ligand-directed palladium-catalyzed C–H 

functionalization reactions, which have 1º intramolecular kinetic isotope effects ranging 

from 2.2–6.7.25-32 Next, the intermolecular kinetic isotope effect was determined by 

comparing initial reaction rates of 3-methyl-2-phenylpyridine (3) with 3-methyl-2-(d5)-

phenylpyridine (3-d5) (Scheme 3.13). Interestingly the kH/kD was determined to be 1 

(initial rate for 3 = 14 ± 1 × 10–5 M/min; initial rate for 3-d5 = 13 ± 1 × 10–5 M/min). This 

was further confirmed with substrate 23, where the kH/kD was also determined to be 1 

(initial rate for 23 = 27 ± 3 × 10–5 M/min; initial rate for 23-d = 24 ± 2 × 10–5 M/min, 

Scheme 3.14). A kinetic isotope effect of 1 suggests the C–H activation is occurring 

subsequent to the rate-determining step of the catalytic cycle. 
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Scheme 3.12: Intramolecular Kinetic Isotope Effect Study of 22. 
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Scheme 3.13: Intermolecular Kinetic Isotope Effect Study of 3. 
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Scheme 3.14: Intermolecular Kinetic Isotope Effect Study of 23. 
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3.9 Summary of the Mechanistic Data 
 The mechanistic data above allowed the proposal of a complete catalytic cycle for 

this reaction (Scheme 3.15). We propose that the resting state of the catalyst is the 

monomeric PdII species 9, while the resting state of the oxidant is the pyridine bound IIII 

reagent 12. Free oxidant 6 enters the catalytic cycle through loss of 1 equiv of 3, while Pd 
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enters the catalytic cycle with loss of 2 equiv 3 from 2 equiv of the cyclometallated PdII 

monomer 9 resulting in palladium dimer 5. The cyclometallated PdII dimer 5 undergoes 

rate-limiting oxidation with 6 resulting in the high oxidation palladium dimer 25. 

Subsequent C–C bond forming reductive elimination provides the desired product 4 upon 

ligand exchange for free substrate. Finally, ligand exchange of product for substrate of 

PdII followed by fast C–H activation returns the PdII to the resting state of the catalytic 

cycle. Based on this proposed catalytic cycle, the rate law eq. 3.4 can be derived, and 

application of the pre-equilibrium approximation for 6 and 5 provides the final rate 

expression eq. 3.5. 

 

Scheme 3.15: The Final Proposed Mechanism of C–H Activation/Arylation. 
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rate = k3[6][5]                                                 (3.4) 

 

! 

rate =
k1k2k3[12][9]

2

k"1k"2[3]
3                                             (3.5) 

  

This mechanistic proposal, including the catalyst and oxidant resting state, kinetic 

reaction orders, rate limiting step, and kinetic isotope effect all agree with the 
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mechanistic studies completed. First, under these reaction conditions the resting state of 

the catalyst has been determined to be the monomeric species 9 based on its observation 

during the catalytic reaction. The resting state of the oxidant has been determined to be 

the pyridine bound IIII species. This was accomplished through examination of the 

equilibrium between bound and free oxidant, which demonstrated that under the reaction 

conditions the bound species 12 is greatly favored. 

Additionally, the rate equation derived based upon the proposed mechanism 

predicts a first order dependence on [IIII], a second order dependence on [Pd], and an 

inverse third order dependence on [3] (eq. 3.5). Each of these agrees with the 

experimentally determined kinetic orders. More support for the proposed catalytic cycle 

is provided by the observation that the substrate order deviates from inverse third when 

[6] > [3] (Figure 3.1, Regime 1). This result becomes clear upon considering that under 

these conditions the resting state is no longer 9, but is instead be a mixture of 9 and 5, 

leading to a non-integer reaction order. Thus, it was important to determine all of the 

reaction orders under conditions where [3] > [Pd] + [6] to provide integer orders to allow 

for deconvolution of the mechanism (Figure 3.1, Regime 1). 

Next, rate-limiting oxidation is supported by several of the experiments 

performed. Hammett studies of oxidants (ρ = +1.7) demonstrated that electron poor 

oxidants provide faster reaction rates, consistent with oxidation of PdII being involved in 

the rate-limiting step of the catalytic cycle. Notably, this is similar to the ρ values 

observed in Pd0/II reactions with rate limiting oxidation to Ar–I.33 Directing group 

Hammett studies provided evidence of rate limiting oxidation with a ρ value determined 

to be –1.3. This result suggests that more electron donating groups para to the pyridine-

directing group lead to an increased reaction rate. This is expected, because electron-

donating groups provide a more electron rich cyclometallated PdII species that will 

undergo faster oxidation than its electron poor analogues. Further, the observation that 

equiv or electronics of the oxidant (Hammett Studies and oxidant order) effect the initial 

rate of the reaction implies that oxidation is at or before the rate-limiting step of the 

reaction.  

Finally, an experimentally determined intermolecular kinetic isotope effect of 1 

implies that C–H activation is after the rate-limiting step. This agrees with the proposed 
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mechanism, where the C–H activation lies after rate limiting oxidation and before the 

resting state of the reaction. Thus C–H activation should have no impact on the reaction 

rate. This is particularly interesting given that in most C–H activation/functionalization 

processes, C–H activation has been determined to be the rate determining step of the 

reaction. 25,30-32,34-37 

 

3.10 Mechanistic Implications 
 An interesting comparison can now be made between the mechanism of the 

methodology described and that of the palladium catalyzed C–H activation/acetoxylation 

utilizing PhIIII(OAc)2 as the terminal oxidant. In the aforementioned methodology it has 

been determined that C–H activation is the rate limiting step of the catalytic cycle under 

similar conditions (100 ºC, Pd(OAc)2). Evidence of this was provided by a zero order 

dependence on PhIIII(OAc)2, and the observation of a large primary kinetic isotope effect, 

each suggestive of rate limiting C–H activation.37,38 This is in contrast to the first order 

dependence on IIII and absence of kinetic isotope effect found for C–H 

activation/arylation. This highlights the difference in reactivity between the two IIII 

oxidants despite the similar reaction pathways. This also suggests that the [Ar–IIII–Ar]+ 

reacts with the palladium intermediate at a slower relative rate than PhIIII(OAc)2. This in 

particular has implications for extending the use of [Ar–IIII–Ar]BF4 to other systems that 

employ PhIIII(OAc)2 as the oxidant. Several recently developed transformations have 

relied on intercepting an alkyl–PdII intermediate via oxidation with PhIIII(OAc)2, which 

happens at a faster rate than β–hydride elimination.39-51 Implementation of the [Ar–IIII–

Ar]BF4 oxidants for these transformations may prove challenging and suffer from 

competing β–hydride elimination. 

While these differences in reactivity may limit extension of the [Ar–IIII–Ar]BF4 in 

other transformations, the slow relative rate of oxidation provides an opportunity to gain 

insight into this step of these catalytic reactions. Specifically, these studies have 

implicated a high oxidation, state bimetallic palladium species 25. This intermediate can 

be depicted as two limiting structures. The first, (25a) contains a PdIV tethered to a PdII 

by bridging acetates, and results from one palladium center being oxidized by two 

electrons. The second (25b) contains a PdIII–PdIII bond and results from the net oxidation 
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of each palladium center by 1 electron. The latter limiting structure is particularly 

intriguing due to the close proximity of the palladium centers of the dimer 5 based upon 

reported X-Ray crystallographic.52,53 The orientation of this complex based on these 

analysis is depicted in Figure 3.22. 

 

Figure 3.22: Structure of 5, and the Two Limiting Structures of 25. 
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Several rare examples of MIII–MIII have recently been reported involving both 

palladium and platinum, which is often used as a model for palladium. Our lab has 

described the oxidation of a monomeric platinum complex with PhIIII(OAc)2 to afford the 

dimeric complex 26 containing a PtIII–PtIII bond (Figure 3.23).54 Similarly, Cotton and 

Ritter have recently demonstrated the oxidation of acetate bridged palladium complexes 

by PhIIIICl2 resulting in the corresponding complexes 27 and 28 each containing PdIII–

PdIII bonds. 55-57 The latter of these examples was then implicated in a palladium 

catalyzed C–H activation/chlorination reaction. Ritter also isolated product 29 from 

oxidation of the dimeric palladium species with PhIIII(OAc)2 and proposed that it was a 

catalytic intermediate in C–H acetoxylation.58 A particularly pertinent example was 

recently reported by Canty (Figure 3.24). He demonstrated that the platinum complex 30 

was oxidized to the PtIII–PtIII dimer 31 upon subjection to the IIII oxidant 32, providing a 

C–PtIV similarly to what has been proposed in this methodology. 
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Figure 3.23: Examples of Palladium and Platinum MIII–MIII Bonds. 
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Figure 3.24: Oxidation of the Pt Complex X to the PtIII–PtIII Dimer 31. 
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Each of the above examples supports the possible intermediacy of complex 25b, 

but the exact nature of the bonding structure remains unknown. However, it is clear that 

the cyclometallated dimer 5 is necessary for the oxidation of PdII to occur. Several 

possible explanations can be proposed for this. First, the additional palladium center may 

be serving as an ancillary ligand to facilitate the oxidation. Second, steric factors 

associated with the monomer 9 may prevent oxidation by the IIII reagent. This is a distinct 

possibility given the observed impact oxidant sterics had on arylation selectivities, and 

the nearly four-fold difference in rate between [Ph–IIII–Ph]BF4 and [Mes–IIII–Ph]BF4. 

This may be the result of the acetate and substrate ligands on monomer 9 blocking the dz
2 

orbital of the palladium, where it is required to approach the IIII reagent as oxidation 

occurs. Although these details are yet to be understood, the results give insight toward the 

development to the next generation of catalysts that may help explain these observations. 
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3.11 Investigations Towards New Catalysts 
 Initial investigations toward the development of a second-generation catalyst 

focused on exploiting the dimeric palladium intermediate 5. To accomplish this we 

sought to shift the equilibrium between monomer 9 and dimer 5 toward 5. This would 

prevent the catalyst resting state from lying outside of the catalytic cycle. It was reasoned 

this could be accomplished by constraining the palladium centers together, which 

prevents substrate 3 from breaking up the dimer 5, and ultimately resulting in an 

increased the reaction rate. Thus, a palladium complex that remains tethered as a dimer is 

expected to display 1st order kinetics in [Pd].  

The approach taken toward this experiment was to employ the dicarboxylate 

ligand esp (α,α,α′,α′-tetramethyl-1,3-benzenedipropioate, 33) to maintain the dimeric Pd 

species.57 This complex was synthesized as reported for a similar complex, by combining 

complex 5 with commercially available espH2 (34). After stirring in CH2Cl2 for 30 min 

the solvent was removed to afford complex 35 (86%, Scheme 3.16). 

 

Scheme 3.16: Synthesis of the esp Tethered Complex 35. 
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 Complex 35 was then used as a catalyst in the identical order studies originally 

completed with Pd(OAc)2. In these experiments 3-methyl-2-phenylpyridine (3, 250 mM) 

was combined with [Mes–IIII–Ph]BF4 (6, 100 mM) and varying amounts of 35 (1.9 to 5.0 

mM) in AcOH at 110 °C. A plot of the initial rate (Δ[4]/Δt) versus [Pd] displayed a 

nearly identical relationship when both Pd(OAc)2 and complex 35 were used as the 

catalyst (Figure 3.25). To confirm a second order dependence on [Pd] using this complex 

as a catalyst, the initial rate (Δ[4]/Δt) versus [Pd]2 was plotted and revealed a linear 

relationship (Figure 3.26). A second order dependence was further confirmed by 
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performing an non-linear least squares fit to the data using the equation f(x) = a[Pd]n, 

where the order (n) in [Pd] was determined to be 1.9 ± 0.4 ((Figure 3.27).  

These results confirm that this approach did not achieve the initial goal and there 

are two possible explanations for this result. First, this may suggest the esp ligand is not 

preventing excess substrate from breaking the complex into a monomeric form. Second, 

the esp ligands could be exchanging for bridging acetates, which is a likely possibility 

given that the reaction is in AcOH. Based on these results, a more tightly coordinating 

ligand is required. 

 

Figure 3.25: Initial Rate (Δ[4]/Δt) versus [Pd] for Pd(OAc)2 and Complex 35. 
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Figure 3.26: Plot of initial rate (Δ[4]/Δt) versus [Pd]2 using complex 35 as the catalyst. 

 
 

Figure 3.27: Data Fit of Initial Rate (Δ[4]/Δt) versus [Pd] for Complex 35. 

 
 

3.12 Preliminary Investigations of the Generality of the Mechanism 
 It was next of interest to obtain preliminary information about the generality of 

the now established mechanism, with respect to substrate. This was examined by 

comparing competition Hammett studies between several substrates containing nitrogen 

as well as oxygen directing groups with the oxidants [Mes–IIII–Ar]BF4 and [Ar–IIII–

Ar]BF4. Importantly, direct comparison of several substrates necessitated that all of the 

experiments be completed under identical conditions.  
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 The substrates chosen for comparison were 3-methyl-2-phenylpyridine (3), 2-(o-

methoxyphenyl)-3-methyl-pyridine (36) with nitrogen directing groups and N-

phenylpyrrolidinone (37) and N-(m-methoxyphenyl)pyrrolidinone (38) containing 

oxygen-directing groups. The conditions chosen to complete these studies included 

CHCl3 as the solvent with added NaHCO3 because it proved to be most general amongst 

the substrates chosen. These Hammett studies were conducted as previously described by 

combining 3, 36, 37 or 38 with 1 equiv of [Mes–IIII–Ph]BF4 (6), 1 equiv of [Mes–IIII–

Ar]BF4, 1.5 equiv of NaHCO3 and 5 mol % of Pd(OAc)2 in CHCl3, then heated at 100 ºC 

for 12 h. The Hammett plots were then constructed by plotting log(kAr/kPh) versus σ 

(Figures 3.28–3.31). The value of kX/kH was determined from the ratio of Ar to Ph 

products based on their respective uncorrected peak areas as determined by GC. 

Importantly, in most of the reactions used to construct these Hammett plots across all 

substrates and oxidants, the starting material was not completely consumed. For each 

substrate the average conversion is noted in the respective tables. Thus although the data 

is interpreted it is important to consider that further mechanistic investigations would be 

necessary to confirm this data. 

The first important analysis made from these results is the comparison of the 

results with 3-methyl-2-phenylpyridine (3) in CHCl3, to the data previously obtained in 

AcOH to provide preliminary evidence that the mechanisms are similar in each solvent. 

The Hammett plot employing 3 in CHCl3 displayed ρ = +1.5 ± 0.2 (Figure 3.28), which 

is the same electronic trend and a similar magnitude of ρ as the results completed in 

AcOH where ρ = +1.1 ± 0.1 (Figure 3.18). Each of these values imply that C–H arylation 

is strongly facilitated by electron deficient oxidants in each solvent. This result provides 

evidence that the mechanism is generally the same as determined in AcOH. Specifically, 

this data suggests that the reaction proceeds through oxidation of PdII to an Ar–PdIV 

intermediate under both sets of conditions. Based on this analysis it was reasoned that 

valid comparisons could be made between substrates. 
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Figure 3.28: Competition Study of 3 with Mesityl Oxidants in CHCl3. 
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First the comparison was made to the substrate 2-(o-methoxyphenyl)-3-methyl-

pyridine (36). With this substrate, ρ = +1.3 ± 0.2 (Figure 3.29), implying that electron 

deficient oxidants facilitate the reaction, very similarly to 3. This result is not surprising 

given the similarities between the substrates. 

 

Figure 3.29: Competition Study of 36 with Mesityl Oxidants in CHCl3. 
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 Next, comparisons were made between substrates containing nitrogen directing 

groups and oxygen directing groups. Analysis of the Hammett plot constructed using 

substrate 37 (N-(m-methoxyphenyl)pyrrolidinone) demonstrated a linear relationship in a 

plot of log(kX/kH) versus σ where ρ was determined to be –0.4 ± 0.1 (Figure 3.30). 

Interestingly both the magnitude and sign of ρ have changed versus that with 3-methyl-2-

phenylpyridine. A negative ρ suggests that electron-donating groups facilitate this 

reaction, and the smaller magnitude suggests that the oxidant electronics do not as greatly 

affect the reaction rates. This result is intriguing because the observed electronic effects 

are the opposite of what is expected if the IIII reagent were oxidizing PdII to Ar–PdIV. This 

result may imply an alternative mechanistic possibility.59 This pathway would involve an 

aryl-transfer from the IIII reagent to a PdII species rather than oxidation to PdIV (Scheme 

3.18). This mechanistic pathway would proceed through (i) cyclometallation at PdII to 

give 39, (ii) aryl-transfer from [Mes–IIII–Ar]+ to the PdII species resulting in 40, and 

(X)(Y)IIII–Ar (41), (iii) C–C bond forming reductive elimination from PdII afford the 

product and generate Pd0, and (iv) oxidation of Pd0 back to PdII by (X)(Y)IIII–Ar. 

Importantly, further detailed mechanistic investigations will be necessary to provide more 

evidence for this mechanism.  
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Figure 3.30: Competition Study of 37 with Mesityl Oxidants in CHCl3. 
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Scheme 3.17: Alternative C–H Activation/Arylation Mechanism. 
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Finally, in light of the interesting result obtained with 37, the Hammett plot 

constructed using substrate 38 (N-phenylpyrrolidinone) was also examined for 

comparison. Unfortunately, this plot of log(kAr/kPh) versus σ demonstrated no linear 
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correlation, thus making it challenging to interpret this data and providing no further 

insight (Figure 3.31). 

 

Figure 3.31: Competition Study of 38 with Mesityl Oxidants in CHCl3. 
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Next, the analagous competition Hammett studies were completed employing the 

symmetric oxidants [Ar–IIII–Ar]BF4, thus allowing for direct comparison to the [Mes–IIII–

Ar]BF4 oxidants. These Hammett studies were completed as previously described by 

combining 3, 36, 37 or 38 with 1 equiv of [Ph–IIII–Ph]BF4, 1 equiv of [Ar–IIII–Ar]BF4, 1.5 

equiv of NaHCO3 and 5 mol % of Pd(OAc)2 in CHCl3, and then heating the reactions to 

100 ºC for 12 h. The value of kX/kH was determined from the ratio of Ar to Ph products 

based on their respective uncorrected peak areas determined by GC, and Hammett plots 

were constructed by plotting log(kX/kH) versus σ (Figures 3.32–3.35). 

The Hammett plot constructed for 3 revealed a linear relationship in a plot of 

log(kX/kH) versus σ resulting in ρ = +2.5 ± 0.5 (Figure 3.32). The positive slope is similar 

to that obtained with the [Mes–IIII–Ar]BF4 oxidants in both AcOH (ρ = +1.1 ± 0.1) and 
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CHCl3 (ρ = +1.5 ± 0.2). However, the magnitude of the ρ value is much larger for these 

oxidants. This may be due to the additive effects of varying the electronics on two aryl 

groups for the [Ar–IIII–Ar]BF4 oxidants, versus varying only one aryl group for the [Mes–

IIII–Ar]BF4 oxidants.  

 

Figure 3.32: Competition Study of 3 with Symmetric Oxidants in CHCl3. 
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The Hammett plot constructed for 36 also shows a linear relationship between 

log(kX/kH) versus σ leading to ρ = +2.5 ± 0.5 (Figure 3.33). Again, the sign of the ρ 

agrees with the [Mes–IIII–Ar]BF4 results obtained with this substrate in CHCl3 (ρ = +1.3 

± 0.2). This once again shows an additive effect of electronic variation of both of the aryl 

groups on the oxidant. 
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Figure 3.33: Competition Study of 36 with Symmetric Oxidants in CHCl3. 
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 Finally, the competition Hammett studies using the pyrrolidinone substrates 37 

and 38 were analyzed (Figures 3.34 and 3.35 respectively). For each substrate a linear 

correlation was observed with the exception of the data point corresponding to p-

MeOC6H4. In the absence of this data point ρ values of –0.43 ± 0.2 and –0.08 ± 0.3 

would be obtained respectively. A potential explanation for this phenomenon is the 

difficulty associated with purifying the [(p-MeOC6H4)2–IIII]BF4 oxidant which led to 

inconsistent reactivities. However, this was not the case when considering either of the 

substrates 3 and 36 with the [Ar–IIII–Ar]BF4, in which case the data point for this oxidant 

correlated well. Thus, it is challenging to interpret this data to provide any further insight. 
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Figure 3.34: Competition Study of 37 with Symmetric Oxidants in CHCl3. 
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Figure 3.35: Competition Study of 38 with Symmetric Oxidants in CHCl3. 
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3.13 Conclusions 
 In summary we have reported the first thorough mechanistic investigation of a 

palladium catalyzed C–H activation/C–C bond formation. These studies implicate a 

mechanism proceeding through a high oxidation palladium dimer, while suggesting 

against alternative Pd0/II pathways and free radical intermediates. The role of each 

reaction component has been examined by the completion of kinetic order studies, kinetic 

isotope effect studies, and investigations of the resting state of the catalyst and oxidant. 

These studies allowed for the determination of the rate law, and establish oxidation as the 

rate-limiting step of this reaction. The combination of all of the experiments provided a 

detailed mechanistic picture of this transformation.  

 

3.14 General Procedures and Materials and Methods 
General Procedures: NMR spectra were obtained on a Varian Inova 500 (499.90 MHz 

for 1H; 125.70 MHz for 13C) or a Varian Inova 400 (399.96 MHz for 1H; 100.57 MHz for 
13C) spectrometer. 1H NMR chemical shifts are reported in parts per million (ppm) 

relative to TMS, with the residual solvent peak used as an internal reference. 

Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), 

doublet of triplets (dt), triplet (t), quartet (q), multiplet (m), and broad resonance (br). 

 

Materials and Methods: N-phenylpyrrolidinone, was obtained from commercial sources 

and used as received. Substrates 4-(R)-2-(o-tolyl)pyridine were prepared by Suzuki cross-

coupling of phenyl boronic acid and 2- bromo-3-methylpyridine according to a literature 
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procedure.60 N-(m-methoxyphenl)pyrrolidinone (37) was prepared by palladium-

catalyzed arylation of the corresponding lactam.61 Pd(OAc)2 was obtained from Pressure 

Chemical and used as received and PhI(OAc)2 was obtained from Acros and used as 

received. Solvents were obtained from Fisher Chemical and used without further 

purification. Gas chromatography was carried out using a Shimadzu 17A using a Restek 

Rtx®-5 (Crossbond 5% diphenyl – 95% dimethyl polysiloxane; 15 m, 0.25 mm ID, 0.25 

mm ID, 0.25 µm df) column. Flash chromatography was performed on EM Science silica 

gel 60 (0.040–0.063 mm particle size, 230–400 mesh) and thin layer chromatography was 

performed on Merck TLC plates pre-coated with silica gel 60 F254. The curve fittings 

were carried out using the program SigmaPlot for Window’s v. 10.0 (Systat Software, 

Inc, San Jose, CA). 

 

Experimental Procedures 
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Product 5: 3-methyl-2-phenylpyridine (385 mg, 2.34 mmol, 1.05 equiv) and Pd(OAc)2 

was combined in MeOH. A yellow precipitate began to form and after 12 h the solution 

was filtered and the solid was rinsed with Et2O.13 1H NMR (95% CDCl3/5% d5-pyridine): 

δ 8.55 (d, J = 5.4 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.07-7.00 

(multiple peaks, 2H), 6.85 (t, J = 7.4 Hz, 1H), 6.25 (d, J = 7.8 Hz, 1H), 2.70 (s, 3H), 1.92 

(s, 3H). 
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Product 35: Palladium complex 5 (479.6 mg, 718.5 mmol, 1.0 equiv) was combined 

with α,α,α′,α′-tetramethyl-1,3-benzenedipropionic acid (34) (200 mg, 718.5 mmol, 1 

equiv) in CH2Cl2 and stirred at room temperature. After 30 min the solvent was removed 

in vuccuo and the product was filtered followed by washing with Et2O. The product was 

obtained as an orange solid (512 mg, 86% yield) Major Regioisomer 1H NMR (CDCl3): 

δ 7.91 (d, J = 5.6 Hz, 2H), 7.47 (s, 1H), 7.38 (d, J = 7.6 Hz, 2H), 7.27 (d, J = 7.2 Hz, 2H), 

7.10 (t, J = 3.6 Hz) 6.99-6.92 (multiple peaks, 4H), 6.86-6.75(multiple peaks, 5H), 6.38 

(dd, J = 7.6, 5.6 Hz, 2H), 2.84-2.78 (multiple peaks, 8H), 2.45 (s, 6H), 1.34 (s, 6H), 1.27 

(s, 6H). Minor regioisomer is present in a 1:8 mixture as determined by 1H NMR. Not 

all resonances could be clearly observed due to overlap. 1H NMR (CDCl3): δ 8.01 (d, J = 

5 Hz, 2H), 7.23 (d, J = 8 Hz, 2H), 6.71 (t, J = 8 Hz, 2H), 6.63 (t, J = 8 Hz, 2H), 6.57 (t J 

= 6.8 Hz, 2H) HRMS electrospray (m/z): [M+Na]+ calcd for C40H40N2O4Pd2Na, 

847.0955; found, 847.0967. 
 
Reaction of 5 with Ph–I. Substrate 3 (15.0 mg, 0.09 mmol, 1 equiv), Ph–I (21.7 mg, 

0.11 mmol, 1.20 equiv), and Pd(OAc)2 (1.00 mg, 0.004 mmol, 5 mol%) were combined 

in AcOH (1.04 mL) in a 2 mL vial equipped with a small magnetic stir bar. The vial was 

sealed with a Teflon-lined cap and heated at 100 ºC for 12 h. The reaction was cooled to 

room temperature and analyzed by gas chromatography, which showed only starting 

material and Ph–I with <1% of product 4. 

 

Reaction of 5 with Ph–OTf. Substrate 3 (15.0 mg, 0.09 mmol, 1 equiv), Ph–OTf (24.1 

mg, 0.11 mmol, 1.20 equiv), and Pd(OAc)2 (1.00 mg, 0.0044 mmol, 5 mol%) were 

combined in AcOH (1.04 mL) in a 2 mL vial equipped with a small magnetic stir bar. 

The vial was sealed with a Teflon-lined cap and heated at 100 ºC for 12 h. The reaction 

was cooled to room temperature and analyzed by gas chromatography, which showed 

only starting material 3 and Ph–OTf with <1% of product 4. 

 

Reaction of 3 with [Ph2I]BF4 in the Presence of Hg. Substrate 3 (10.0 mg, 0.059 mmol, 

1 equiv), [Ph2I]BF4 (26.1 mg, 0.071 mmol, 1.20 equiv), and Pd(OAc)2 (0.700 mg, 0.0031 

mmol, 5 mol %) were combined in AcOH (0.50 mL) in a 2 mL vial equipped with a 
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small magnetic stir bar. Metallic Hg (>500 equiv) was added to the reaction mixture, and 

the vial was sealed with a Teflon-lined cap and heated at 100 ºC for 12 h. The reaction 

was cooled to room temperature and analyzed by gas chromatography, which revealed 

quantitative conversion to product 4. SAFETY NOTE: These reactions should be 

handled with extreme caution, as the reaction of excess [Ph2IIII]BF4 is known to 

generate highly toxic phenyl mercury compounds!  

 

Reaction of 3 with [Ph2I]BF4 in the Presence of MEHQ. Substrate 3 (10.0 mg, 0.059 

mmol, 1 equiv), [Ph2I]BF4 (26.1 mg, 0.071 mmol, 1.20 equiv), and Pd(OAc)2 (0.700 mg, 

0.0031 mmol, 5 mol%) were combined in AcOH (0.50 mL) in a 2 mL vial equipped with 

a small magnetic stir bar. MEHQ (1.83 mg, 0.015 mmol, 25 mol%) was added to the 

reaction mixture, and the vial was sealed with a Teflon-lined cap and heated at 100 ºC for 

12 h. The reaction was cooled to room temperature and analyzed by gas chromatography, 

which revealed quantitative conversion to product 4. 

 

Reaction of 3 with [Ph2I]BF4 in the Presence of Galvinoxyl. Substrate 3 (10.0mg, 

0.059 mmol, 1 equiv), [Ph2I]BF4 (26.1 mg, 0.071 mmol, 1.20 equiv), and Pd(OAc)2 

(0.700 mg, 0.0031 mmol, 5 mol%) were combined in AcOH (0.50 mL) in a 2 mL vial 

equipped with a small magnetic stir bar. Galvinoxyl (6.23 mg, 0.015 mmol, 25 mol%) 

was added to the reaction mixture, and the vial was sealed with a Teflon-lined cap and 

heated at 100 ºC for 12 h. The reaction was cooled to room temperature and analyzed by 

gas chromatography, which revealed quantitative conversion to product 4. 

 

Stoichiometric Reaction of 5 with [Ph2I]BF4. Complex 5 (15.0 mg, 0.02 mmol, 1 

equiv), [Ph2I]BF4 (61.1 mg, 0.17 mmol, 3.2 equiv per Pd), and 2-(o-tolyl)pyridine (19.0 

mg, 0.11 mmol, 2.5 equiv per Pd) were combined in AcOH (0.37 mL) in a 2 mL vial 

equipped with a small magnetic stir bar. The vial was sealed with a Teflon-lined cap and 

heated at 100 ºC for 12 h. The reaction was cooled to room temperature and analyzed by 

gas chromatography, which showed 90 % yield of 4 (determined relative to an internal 

standard). Significant quantities of phenylated 2-(o-tolyl)pyridine were also observed by 

GC (as expected since an excess of oxidant was utilized). Importantly, when [Ph2I]BF4 
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was replaced with Ph–I or Ph–OTf under otherwise identical conditions <1% of product 4 

was observed by GC. 

 

When the stoichiometric reaction between 5 and [Ph2I]BF4 reaction was conducted in the 

absence of added 2-(o-tolyl)pyridine (under the following conditions: complex 5 (1 

equiv, 0.02 mmol), [Ph2I]BF4 (1.2 equiv per Pd, 0.05 mmol), AcOH (0.37 mL), 12 h, 100 

ºC) product 4 was obtained in 20% yield (determined relative to an internal standard) as 

the major product detectable by GC analysis. 1H NMR spectroscopy and electrospray 

mass spectrometry revealed a complex mixture of additional high molecular weight 

organic products, and the MS data is consistent with the formation of a mixture of 

polyphenylated momomers and dimers of 3. While the origin of these products and the 

details of this reactivity remains under investigation, we hypothesize that added 2-(o-

tolyl)pyridine may act to trap reactive cationic palladium species (generated after initial 

C–C bond forming reductive elimination) that may be responsible for producing these 

polyphenylated products. Notably, under catalytic conditions, a large excess of substrate 

is present relative to catalyst, so such reactive species are expected to be trapped rapidly 

in a productive manner. 

 

General Procedure for Kinetic Experiments. Kinetics experiments were run in 2 dram 

vials sealed with Teflon-lined caps. Each data point within a kinetics run represents a 

reaction in an individual vial, with each vial containing a constant concentration of 

oxidant, catalyst, and substrate. Reactions were run to between 6-10% conversion, and 

the data ([product] versus time) was analyzed using the initial rates method. The reported 

value of initial rate is the average of the three kinetic experiments, and the reported error 

in the initial rate is the standard deviation of those three kinetic experiments. A 

representative example is shown in Figure 3.36. 

 

Procedure: For each experiment, the arylating reagent [Ar–IIII–Ar’]BF4 was weighed 

into a vial, then 0.5 mL of a standard solution of Pd(OAc)2 and phenanthrene (internal 

standard) (0.05 M) in AcOH was added. Finally, the substrate was added neat via a 10 or 

25 µL syringe. The reactions were heated to 80 ºC or 110 ºC for the appropriate amount 
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of time using an aluminum-heating block with stirring set at the highest rpm (IKA 

stirplate setting of 11). The reactions were quenched by freezing in a dry ice/acetone bath 

followed by addition of a saturated aqueous solution of K2CO3 (2 mL). The resulting 

mixture was warmed slowly to room temperature, then EtOAc (0.3 mL) was added, and 

the vial was shaken vigorously. The organic layer was collected, diluted with additional 

EtOAc (0.5 mL) and pyridine (0.1 mL), and the reaction was analyzed by gas 

chromatography. The yield of product for each time point was determined versus 

phenanthrene as the internal standard on the basis of the average of 3 successive GC 

analyses of the same sample. 

 

Figure 3.36: A Representative Kinetic Plot. 

N AcOH, 80 ºC
N

200 mM 
[Mes–I–(p-(COMe)C6H4)]BF4

O

5 mM Pd(OAc)2

100 mM  

 

Order in 3-methyl-2-phenylpyridine (3) under conditions where [3] < [6]. Under 

conditions where [3] < [6], the order in substrate deviated from inverse 3rd order. This is 

expected based on the overall mechanism, since, under these conditions, the resting state 

of the oxidant is no longer 9, but instead is a mixture of 9 and 5. 

 

Notably, these experiments were conducted at 80 ºC. The general procedure was used 

with [Mes–IIII–Ph]BF4 (41.0 mg, 0.1 mmol), 3-methyl-2- phenylpyridine (3.2-32.3 mg, 3-
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30.5 µL, 0.0188-0.1906 mmol), and 0.5 mL of a standard solution containing (per 

aliquot) Pd(OAc)2 (0.56 mg, 0.0025 mmol), and phenanthrene (internal standard) (4.46 

mg, 0.025 mmol). Reactions were conducted at 80 ºC, and each initial rate represents an 

average of three unique kinetic experiments. A plot of initial rate (Δ[4]/Δt) versus [3-

methyl-2-phenylpyridine] did not afford a straight line, nor did a plot of initial rate 

(Δ[4]/Δt) versus [3]–3, suggesting against inverse third order dependence on substrate 

over all concentrations. A plot of initial rate versus [3]–3 under conditions where [3] > [6] 

(Regime 2) did afford a straight line (R2 = 0.973), suggesting an inverse third order 

dependence on substrate in this Regime (Figure 3.1). This was confirmed by an non-

linear least squares fit of this data to the equation: f(x) = a[3]n (Figure 3.2, n = –3.4 ± 

0.4). However, rates were extremely slow in Regime 2 at 80 ºC, thus all of the proceeding 

kinetic studies were completed under conditions where [3] > [6] and at 110 ºC. 

 

Table 3.2: Initial Reaction Rates for Each [3] Conducted at 80 ºC. 

N N

Ph

5 mM Pd(OAc)2
100 mM [Mes–IIII–Ph]BF4

AcOH, 80 ºC
(3, 37.6-381.2 mM) (4)  

0.0376
Rate (M/min)[Substrate] (M)

0.0875
0.1

3 + 1 x 10-4

26 + 83 x 10-5

27 + 8 x 10-5

34 + 5 x 10-5

17 + 3 x 10-5

16 + 3 x 10-5

0.05
0.0625
0.075

0.125 7 + 3 x 10-5

0.15

0.312
0.355

51 + 7 x 10-6

227 + 5 x 10-7

111 + 22 x 10-7

30 + 4 x 10-6

42 + 9 x 10-7

34 + 15 x 10-7

0.175
0.2
0.25

0.381 33 + 4 x 10-7
 

 

Order in Substrate (3). The order in 3-methyl-2-phenylpyridine (3) was determined by 

studying the initial rate of reactions with different [3]. The general procedure was used 

with [Mes–IIII–Ph]BF4 (20.5 mg, 0.05 mmol), 3-methyl-2-phenylpyridine (17.1-25.7 mg, 
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16-24 µL, 0.101-0.152 mmol), and 0.5 mL of a standard solution containing (per aliquot) 

Pd(OAc)2 (0.56 mg, 0.0025 mmol) and phenanthrene (internal standard) (4.46 mg, 0.025 

mmol). Reactions were conducted at 110 ºC, and each initial rate represents an average of 

three unique kinetic experiments. A plot of initial rate (Δ[4]/Δt) versus [3-methyl-2- 

phenylpyridine] (Figure 3.4) did not afford a straight line, while a plot of initial rate 

(Δ[4]/Δt) versus [3-methyl-2-phenylpyridine]–3 (Figure 3.5) gave a straight line (R2 = 

0.9967), suggesting an inverse 3rd order dependence on substrate. This was confirmed by 

an non-linear least squares fit of the data to the equation: f(x) = a[1]n. As shown in Figure 

3.6, this afforded n = –3.1 ± 0.2 (a = 6.3 ± 1.5 × 10-7). 

 

Table 3.3: Initial Reaction Rates for Each [3] Conducted at 110 ºC. 

N N

Ph

5 mM Pd(OAc)2
100 mM [Mes–I–Ph]BF4

AcOH, 110 ºC
(3, 202-304 mM) (4)  

0.2024
Rate (M/min)[Substrate] (M)

9 + 1 x 10-5

36 + 3 x 10-6

22 + 3 x 10-5

46 + 5 x 10-60.25
0.272
0.304  

 

Order in IIII (6). The order in [Mes–IIII–Ph]BF4 was determined by studying the initial 

rate of reactions with different [oxidant]. The general procedurde was used with [Mes–

IIII–Ph]BF4 (15.4-35.9 mg, 0.0376-0.0876 mmol), 3-methyl-2-phenylpyridine (21.2 mg, 

20 µL, 0.125 mmol), and 0.5 mL of a standard solution containing (per aliquot) Pd(OAc)2 

(0.56 mg, 0.0025 mmol) and phenanthrene (internal standard) (4.46 mg, 0.025 mmol) in 

AcOH. Reactions were conducted at 110 ºC, and each reported initial rate represents an 

average of three unique kinetics experiments. A plot of initial rate (Δ[4]/Δt) versus [IIII] 

(Figure 3.7) gave a straight line (R2 = 0.9861), indicative of a 1st order dependence on 

[IIII]. This was confirmed by an non-linear least squares fit of the data to the equation: f(x) 

= a[IIII]n. As shown in Figure 3.8, this afforded n = 1.12 ± 0.08 (a = 6 ± 1 × 10-4). 
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Table 3.4: Initial Reaction Rates for Each [6] Conducted at 110 ºC. 

N N

Ph

5 mM Pd(OAc)2
75.2-175.2 mM [Mes–I–Ph]BF4 (6)

AcOH,110 ºC
(3, 250 mM) (4)  

0.075
Rate (M/min)[IIII] (M)

34 + 6 x 10-6

6.5 + 1 x 10-5

78 + 9 x 10-6

46 + 5 x 10-60.100
0.125
0.150

88 + 3 x 10-60.175  
 

Order in [Pd]. The order in Pd(OAc)2 was determined by studying the initial rate of 

reactions with different [Pd]. The general procedure was used with [Mes–IIII–Ph]BF4 

(20.5 mg, 0.05 mmol), 3-methyl-2-phenylpyridine (21.2 mg, 20 µL, 0.125 mmol), and 0.5 

mL of a standard solution containing (per aliquot) Pd(OAc)2 (0.425-1.125 mg, 0.00189-

0.005 mmol) and phenanthrene (internal standard) (4.46 mg, 0.025 mmol) in AcOH. 

Reactions were conducted at 110 ºC, and each initial rate represents an average of three 

unique kinetic experiments. A plot of initial rate (Δ[4]/Δt) versus [Pd] (Figure 3.9) did 

not afford a straight line, while a plot of initial rate (Δ[4]/Δt) versus [Pd]2 (Figure 3.10) 

gave a straight line (R2 = 0.9987), suggesting a 2nd order dependence on catalyst. This 

was confirmed by an non-linear least squares fit of the data to the equation: f(x) = a[Pd]n. 

As shown in Figure 3.11, this afforded n = 2.09 ± 0.08 (a = 3 ± 1 M/min). 

 

For 35 the same procedure as used above was employed, except the standard solutions of 

[Pd] contained (per aliquot) 35 (0.77-2.06 mg, 0.00189-0.005 mmol). A plot of initial rate 

(Δ[4]/Δt) versus [Pd] (Figure 3.26) did not afford a straight line, while a plot of initial 

rate (Δ[4]/Δt) versus [Pd]2 (Figure 3.27) gave a straight line (R2 = 0.954), suggesting a 

2nd order dependence on catalyst. This was confirmed by an non-linear least squares fit 

of the data to the equation: f(x) = a[Pd]n. As shown in Figure 3.28, this afforded n = 1.9 ± 

0.08 (a = 1 ± 3 M/min). 
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Table 3.5: Initial Reaction Rates for each [Pd] with Pd(OAc)2 and 35 at 100 ºC. 

N N

Ph

3.8-10 mM  [Pd]
100 mM [Mes–I–Ph]BF4

AcOH, 110 ºC
(3, 250 mM) (4)  

0.00376
Rate (M/min) with Pd(OAc)2[Pd] (M)

27 + 5 x 10-5

120 + 4 x 10-6

21 + 1 x 10-7

46 + 5 x 10-60.005
0.00752

0.01

Rate (M/min) with 35
16 + 2 x 10-5

16 + 2 x 10-7

22 + 5 x 10-7

54 + 8 x 10-6

 
 

Competition Hammett Plots in AcOH: [Mes–IIII–Ar]+ Oxidants: Substrate 3 (8.46mg, 

0.05 mmol, 1 equiv), [Mes–IIII–Ph]BF4 (20.5 mg, 0.05 mmol, 1.0 equiv), [Mes–IIII–

Ar]BF4 (0.05 mmol, 1.0 equiv), phenanthrene (4.46 mg, 0.025 mmol, 0.5 equiv) as an 

internal standard and Pd(OAc)2 (0.56 mg, 0.0025 mmol, 5 mol %) were combined in 

AcOH (0.10 mL) in a 4 mL vial equipped with a small magnetic stir bar. The vial was 

sealed with a Teflon-lined cap and heated at 100 ºC for 12 h. The reaction was cooled to 

room temperature and analyzed by gas chromatography to give a calibrated yield of each 

product. The value for kAr/kH was determined by % yield Ar devided by % yield Ph and 

plotted against σ. 

 

[Ar–IIII–Ar]+ Oxidants: The analogous procedure was followed with substrate 3 (8.46mg, 

0.05 mmol, 1 equiv), [Ph–IIII–Ph]BF4 (20.5 mg, 0.05 mmol, 1.0 equiv), [Ar–IIII–Ar]BF4 

(0.05 mmol, 1.0 equiv), phenanthrene (4.46 mg, 0.025 mmol, 0.5 equiv) as an internal 

standard and Pd(OAc)2 (0.56 mg, 0.0025 mmol, 5 mol%) were combined in AcOH (0.10 

mL) in a 4 mL vial equipped with a small magnetic stir bar. The vial was sealed with a 

Teflon-lined cap and heated at 100 ºC for 12 h. 

 

Competition Hammett Plots in CHCl3: [Mes–IIII–Ar]+ Oxidants: The respective 

substrate (0.05 mmol, 1 equiv), [Mes–IIII–Ph]BF4 (20.5 mg, 0.05 mmol, 1.0 equiv), 

[Mes–IIII–Ar]BF4 (0.05 mmol, 1.0 equiv), and Pd(OAc)2 (0.56 mg, 0.0025 mmol, 5 

mol%) were combined in AcOH (0.10 mL) in a 4 mL vial equipped with a small 
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magnetic stir bar. The vial was sealed with a Teflon-lined cap and heated at 120 ºC for 17 

h. The reaction was cooled to room temperature and analyzed by gas chromatography. 

The ratios of products and starting material uncorrected and based on the areas of the 

respective peaks. The value for kAr/kH was determined by Ar peak area divided by Ph 

peak area and plotted against σ. The average percent conversions are based upon the total 

area of the products and starting material divided by the products. 

 

[Ar–IIII–Ar]+ Oxidants: The respective substrate (0.05 mmol, 1 equiv), [Ph–IIII–Ph]BF4 

(20.5 mg, 0.05 mmol, 1.0 equiv), [Ar–IIII–Ar]BF4 (0.05 mmol, 1.0 equiv), and Pd(OAc)2 

(0.56 mg, 0.0025 mmol, 5 mol%) were combined in AcOH (0.10 mL) in a 4 mL vial. 

 

Oxidant Hammett Studies Determined by Initial Rate: Rate data for each oxidant 

[Mes–I–Ar]BF4 was obtained using the initial rates method. The general procedure was 

used with [Mes–I–Ar]BF4 (0.1 mmol), 3-methyl-2-phenylpyridine (8.46 mg, 8.0 mL, 

0.05 mmol), and 0.5 mL of a standard solution containing (per aliquot) Pd(OAc)2 (0.56 

mg, 0.0025 mmol) and phenanthrene (internal standard) (4.46 mg, 0.025 mmol) in 

AcOH. Reactions were conducted at 80 ºC, and each initial rate represents an average of 

three unique kinetics experiments. The initial rate for each oxidant is listed in Table 3.6 

and a Hammett plot of the data is shown in Figure 3.20. 

 

Table 3.6: Reaction Rate for Oxidants used in the Hammett Studies. 

R

N
5 mol % Pd(OAc)2

AcOH, 80 ºC

N

(3)

IIII

BF4

R

 
 

Rate (M/min)p-X-Ph

F
Me

13 + 1 x 10-5

54 + 3 x 10-5

14.3 + 0.5 x 10-5

73 + 5 x 10-5

5.1 + 3 x 10-5

4.6 + 6 x 10-5

CF3

C(O)Me
Cl

OMe 2.2 + 0.4 x 10-5

H
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Directing Group Hammett Studies Determined by Initial Rate: Rate data for each 

substrate was obtained using the initial rates method. The general procedure was used 

with [Mes–I–Pa]BF4 (41.0 mg, 0.1 mmol, 2 equiv), 2-(o-tolyl)-4-X-pyridine (0.05 mmol, 

1 equiv), and 0.5 mL of a standard solution containing (per aliquot) Pd(OAc)2 (0.56 mg, 

0.0025 mmol) and phenanthrene (internal standard) (4.46 mg, 0.025 mmol) in AcOH. 

Reactions were conducted at 80 ºC, and each initial rate represents an average of three 

unique kinetics experiments. Rates determined relative to the calibration for 3-methyl-2-

phenylpyridine, individual calibrations were not made for each substrate. The initial rate 

for each oxidant is listed in Table 3.7 and a Hammett plot of the data is shown in Figure 

3.21 

 

Table 3.7: Reaction Rate for Substrates Used in the Hammett Studies. 

R

N
5 mol % Pd(OAc)2

AcOH, 80 ºC

N
IIII

BF4

R
R

 
 

Rate (M/min)p-X-Ph

OMe

9.4 + 0.7 x 10-5

2.0 + 0.3 x 10-5

23 + 1 x 10-5

3.1 + 0.3 x 10-5

30 + 2 x 10-5

CF3

CO2Me
Me

H

 
 

Job Plots: A Job plot for the complexation of 3-methyl-2-phenylpyridine (3) with [Mes–

IIII–Ph]BF4 (6) was constructed using the method described by Newcomb and co-

workers.16,18 A series of 1H NMR spectra were collected with different relative ratios of 

3:6, while maintaining a constant total concentration ([3] + [6]) of 23.6 mM in 

CD3CO2D. At each ratio, the chemical shift (δ) of the proton para to the pyridine 

nitrogen, H(4), was determined, and Δδ values represent the difference between δH(4) in 

the presence of 6 versus in free 3. Samples were prepared from standard solutions of 
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[Mes–IIII–Ph]BF4 (0.0235 M in CD3CO2D) and 3-methyl-2-phenylpyridine (0.0473 M in 

CD3CO2D), and additional CD3CO2D was added such that each sample had a total 

volume of 0.4 mL. The samples were allowed to equilibrate in the NMR probe at 80 ºC or 

110 ºC for a minimum of 10 min with the VT air flow set to 15 L/min prior to data 

acquisition, and spectra were referenced to the residual solvent peak (δ = 2.03 ppm). Each 

data point is reported as the average of two experiments, and the error represents the 

standard deviation of the Δδ values (Table 3.8 and 3.9). At both temperatures, the 

maximum was observed when the mole fraction of 3-methyl-2-phenylpyridine was ca. 

0.5, indicative of 1: 1 binding (Figure 3.14 and 3.15). 

 

Table 3.8: 1H NMR chemical shift data for Job plot at 110 ºC. 

BF4

N
+ I N

H4 BF4

H4

AcOH
tempI

H1
H1

 
 

0.00821

0.00704

0.00610

0.00540

0.00469

0.00399

0.00329

0.00235

0.00117

0.00000

Trial 1
(! ppm)

Trial 2
(! ppm)

0.00118

0.00236

0.00331

0.00402

0.00473

0.00544

0.00615

0.00709

0.00827

0.00946

8.389

8.316

8.262

8.232

8.213

8.171

8.147

8.110

8.068

8.015

8.414

8.330

8.261

8.239

8.204

8.170

8.151

8.111

8.067

8.015

3-methyl-2-
phenylpyridine (mmol)

[(Mes-I-Ph)BF4]
(mmol)
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Table 3.9: 1H NMR chemical shift data for Job plot at 80 ºC. 

0.00821

0.00704

0.00610

0.00540

0.00469

0.00399

0.00329

0.00235

0.00117

0.00000

Trial 1
(! ppm)

Trial 2
(! ppm)

0.00118

0.00236

0.00331

0.00402

0.00473

0.00544

0.00615

0.00709

0.00827

0.00946

3-methyl-2-
phenylpyridine (mmol)

[(Mes-I-Ph)BF4]
(mmol)

8.452

8.386

8.335

8.315

8.289

8.256

8.235

8.199

8.158

8.108

8.452

8.384

8.344

8.314

8.289

8.261

8.237

8.202

8.157

8.105  
 

Equilibrium Constant for Binding between 3 and 6. The equilibrium constant was 

determined by collecting a series of 1H NMR spectra at constant [3] and increasing 

concentration of [Mes–IIII–Ph]BF4. At each ratio, the chemical shift (δ) of the proton para 

to the pyridine nitrogen (H4) was determined. The NMR samples for this experiment 

contained 3 (0.00632 M) along with varying amounts of [Mes–IIII–Ph]BF4 (0-0.0251 M) 

in CD3CO2D (0.5-1.8 mL). 10 The samples were allowed to equilibrate in the NMR 

probe at 80 ºC or 110 ºC for a minimum of 10 min with the VT airflow set to 15 L/min 

prior to data acquisition, and spectra were referenced to the residual solvent peak (δ = 

2.03 ppm). The chemical shift data (Table 3.10 and 3.11) was fit to the eq. 3.1, 3.2 and 

3.3 described by Funasak using the Sigma Plot program,16,19 and the curves representing 

those fits are shown in Figure 3.16 (110 ºC) and Figure 3.17 (80 ºC). At 110 ºC, Keq = 

111 ± 18 (δmax = 8.52 ± 0.03), while at 80 ºC, Keq = 154 ± 24 (δmax = 8.51 ± 0.02). These 

values were confirmed using the program described in the literature and provided by the 

author an available for download on his website.21 
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Table 3.10: 1H NMR Chemical Shift Data for Equilibrium Determination at 110 ºC. 

0.00000

0.00317

0.00581

0.00804

[(Mes-I-Ph)BF4]
(M)

0.00996

0.01307

0.01549

0.01742

0.02033

0.02323

Trial 1
(ppm)

Trial 2
(ppm)

Average
(ppm)

8.027

8.139

8.188

8.217

8.240

8.274

8.305

8.328

8.350

8.369

8.029

8.139

8.192

8.224

8.249

8.281

8.310

8.331

8.353

8.371

8.024

8.140

8.176

8.211

8.235

8.269

8.300

8.322

8.345

8.366

8.0263

8.1390

8.1850

8.2173

8.2412

8.2755

8.3055

8.3275

8.3492

8.3683

0.02516 8.380 8.383 8.376 8.3793

Trial 3
(ppm)

 
 

Table 3.11: 1H NMR Chemical Shift Data for Equilibrium Determination at 110 ºC. 

0.00000

0.00317

0.00581

0.00804

[(Mes-I-Ph)BF4]
(M)

0.00996

0.01307

0.01549

0.01742

0.02033

0.02323

Trial 1
(ppm)

Trial 2
(ppm)

Average
(ppm)

0.02516

8.111

8.217

8.260

8.289

8.310

8.340

8.362

8.377

8.397

8.414

8.113

8.218

8.263

8.292

8.311

8.340

8.359

8.378

8.398

8.412

8.1118

8.2175

8.2613

8.2903

8.3103

8.3401

8.3605

8.3775

8.3975

8.4128

8.420 8.425 8.4220
 

 

General Procedure for [Ph–IIII–Ph]X Synthesis: A modification of the published 

procedure for the synthesis of [Ar–IIII–Ar]BF4 was followed.22 To a solution of 

PhB(OH)2 (5.45g, 42.6 mmol, 1.05 equiv) and BF3•OEt2 (44.7 mmol, 1.05 equiv) in 

CH2Cl2 (200 mL) at 0 ºC was cannula transfered solution of PhIIII(OAc)2 (15 g, 42.6 



 137 

mmol, 1 equiv) in CH2Cl2 (202 mL) that had also been cooled to 0 ºC. This solution was 

allowed to stir at 0 ºC for 2 h, then a saturated aqueous solution of NaCl was added (300 

mL), and the mixture was allowed to stir as a biphasic solution for 30 min at room 

temperature. The product formed as a solid that is soluble in neither water nor CH2Cl2. 

Isolation consisted of filtering the biphasic mixture to collect the solid. The organic layer 

was then collected and the aqueous layer was washed with 3 x 40 mL of CH2Cl2 to 

remove any soluble products. The combined organic extracts were dried with MgSO4 and 

the solvent was reduced to the minimal amount necessary to keep the product in solution. 

To conduct the counterion exchange [Ph–IIII–Ph]Cl (2.0g, 6.32 mmol, 1 equiv) was added 

to a solution of 200 mL : 200 mL CH2Cl2 to H2O with NaX (126.4 mmol, 20 equiv). This 

solution was stirred for 45 min. The organic layer was separated, and the aqueous layer 

was washed 3x with additional CH2Cl2. The organic layers were dried with MgSO4, the 

solvent was reduced until the solution was saturated with [Ph–IIII–Ph]X, and the product 

was precipitated by addition of Et2O.  

IIII

Cl

 
Oxidant 14: General procedure for [Ph–IIII–Ph]Cl synthesis was followed. This reaction 

combined PhIIII(OAc)2 (15.0 g, 42.6 mmol) and PhB(OH)2 (5.45 g, 44.7 mmol) and 

resulted in the desired oxidant as a white powder (12.53 g, 93% yield) . 1H NMR (d6-

acetone): δ 8.22 (d, J = 6.4 Hz, 4H), 7.66 (t, J = 5.6 Hz, 2H), 7.53 (t, J = 6.4 Hz, 4H).  

 

IIII

PhCO2

 
Oxidant 15: General procedure for [Ph–IIII–Ph]Cl synthesis was followed. This reaction 

combined [Ph–IIII–Ph]Cl (0.74 g, 2.36 mmol) and C6H5CO2Na (6.83 g, 47.4 mmol) and 

resulted in the desired oxidant as a white powder (0.567 g, 60% yield). 1H NMR (CDCl3): 

δ 7.98-7.89 (multiple peaks, 6H), 7.50 (t, J = 7.2 Hz, 2H), 7.40-7.26 (multiple peaks, 7H).  
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IIII

C6F5CO2

 
Oxidant 16: General procedure for [Ph–IIII–Ph]Cl synthesis was followed. This reaction 

combined [Ph–IIII–Ph]Cl (0.94 g, 2.99 mmol) and C6F5CO2Na (14.0 g, 59.8 mmol) and 

resulted in the desired oxidant as a white powder (0.898 g, 75% yield) . 1H NMR (d6-

acetone): δ 8.22 (d, J = 6.4 Hz, 4H), 7.66 (t, J = 5.6 Hz, 2H), 7.53 (t, J = 6.4 Hz, 4H).  

 

IIII

Cl3CO2

 
Oxidant 17: General procedure for [Ph–IIII–Ph]Cl synthesis was followed. This reaction 

combined [Ph–IIII–Ph]Cl (1.0 g, 3.15 mmol) and Cl3CCO2Na (11.7 g, 63 mmol) and 

resulted in the desired oxidant as a white powder (1.10 g, 79% yield) . 1H NMR (CDCl3): 

δ 7.95 (d, J = 8.0 Hz, 4H), 7.57 (t, J = 7.6 Hz, 2H), 7.43 (t, J = 7.6 Hz, 4H). This oxidant 

appears to have decomposed turning black within a week of its synthesis.  

 

IIII

ClO4

 
Oxidant 18: General procedure for [Ph–IIII–Ph]Cl synthesis was followed. This reaction 

combined [Ph–IIII–Ph]Cl (1.0 g, 3.15 mmol) and NaClO4 (7.71 g, 63 mmol) and resulted 

in the desired oxidant as a white powder (1.20 g, 63% yield). 1H NMR (d6-acetone): δ 

8.37 (d, J = 6.0 Hz, 4H), 7.79 (t, J = 4.8 Hz, 2H), 7.64 (t, J = 7.2 Hz, 4H).  
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IIII

OTs

 
Oxidant 19: General procedure for [Ph–IIII–Ph]Cl synthesis was followed. This reaction 

combined [Ph–IIII–Ph]Cl (2.0 g, 6.3 mmol) and NaOTs (26.7 g, 126 mmol) and resulted 

in the desired oxidant as a white powder (1.23 mg, 43% yield). 1H NMR (CDCl3): δ 7.94 

(d, J = 8.0 Hz, 4H), 7.59-7.51 (multiple peaks, 4H), 7.38 (t, J = 7.5 Hz, 4H), 7.05 (d, J = 

8.0 Hz, 2H), 2.31 (s, 3H). 

 

IIII

OTf

 
Oxidant 20: General procedure for [Ph–IIII–Ph]Cl synthesis was followed. This reaction 

combined [Ph–IIII–Ph]Cl (2.0 g, 6.3 mmol) and NaOTf (26.7 g, 126 mmol) and resulted 

in the desired oxidant as a white powder (806 mg, 79% yield). 1H NMR (CDCl3): δ 7.97 

(d, J = 8.4 Hz, 4H), 7.64 (t, J = 7.2 Hz, 2H), 7.48 (t, J = 8.0 Hz, 4H). Employing the 

alternative literature synthesis: 1H NMR (CDCl3): δ 7.98 (d, J = 8.5 Hz, 4H), 7.64 (t, J = 

7.5 Hz, 2H), 7.49 (t, J = 8.0 Hz, 4H).24  

 

Counterion Effect Studies determined by Initial Rate: Rate data for each oxidant 

[Mes–I–Ph]X was obtained using the initial rates method. The general procedure was 

used with [Mes–I–Ar]X (0.1 mmol), 3-methyl-2-phenylpyridine (8.46 mg, 8.0 mL, 0.05 

mmol), and 0.5 mL of a standard solution containing (per aliquot) Pd(OAc)2 (0.56 mg, 

0.0025 mmol) and phenanthrene (internal standard) (4.46 mg, 0.025 mmol) in AcOH. 

Reactions were conducted at 80 ºC, and each initial rate represents an average of three 

unique kinetics experiments. The initial rate for each oxidant is listed in Scheme 3.11. 

 

Intramolecular Kinetic Isotope Effect. The intramolecular kinetic isotope effect was 

obtained using substrate 22, which was synthesized via a three step sequence involving: 
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(i) Suzuki-Miyaura coupling of 2-bromo-3-methylpyridine with C6D5B(OH)2,60 (ii) 

palladium-catalyzed ligand directed iodination62, and (iii) lithium/halogen exchange with 

n-BuLi, followed by a quench with deionized H2O. Substrate 22 (50 mg, 0.289 mmol), 

[Mes–IIII–Ph]BF4 (236.7 mg, 0.577 mmol) and Pd(OAc)2 (3.2 mg, 0.0143 mmol) were 

combined in acetic acid (3 mL) in a 20 mL vial. The vial was sealed with a Teflon lined 

cap, and the reaction was stirred at 80 °C for 18 h. The reaction mixture was filtered 

through a plug of Celite and then concentrated under vacuum. The resulting crude oil was 

dissolved in CH2Cl2 and extracted with saturated aqueous NaHCO3 (2 x 30 mL) and brine 

(1 x 30 mL). The organic layer was dried over MgSO4, filtered, and concentrated to 

afford an orange oil, which was purified by chromatography on silica gel (Rf = 0.2 in 

95% CH2Cl2/5% EtOAc). The product was obtained as a viscous yellow oil (60 mg, 83% 

yield). 1H NMR (d6-benzene): δ 8.49 (d, J = 4.7 Hz, 1H), 7.48 (s, 0.29 H), 7.23 (d, J = 7.8 

Hz, 2H), 7.00-6.87 (multiple peaks, 3H), 6.76 (d, J = 7.8 Hz, 2H), 6.63 (dd, J = 7.8, 4.7 

Hz, 1H), 1.61 (s, 3H). The isotope effect was determined by comparison of the 

integration of the singlet at 7.48 ppm relative to the doublet of doublets at 6.63 ppm. The 

average ratio (over 2 runs) was 0.29 ± 0.1 : 1, resulting in a kH/kD= 2.5 ± 0.2 (0.71/0.29). 

 

Intermolecular Kinetic Isotope Effect with 3. The intermolecular kinetic isotope effect 

was determined by studying the initial rate of reactions with 3-methyl-2-(d5-

phenyl)pyridine and 3-methyl-2-(H5-phenyl)pyridine (Scheme 3.12). The general 

procedure was used with [Mes–IIII–Ph]BF4 (41.0 mg, 0.1 mmol), 3-methyl-2-(d5-

phenyl)pyridine (8.71 mg, 8.0 µL, 0.05 mmol) or 3-methyl-2-(H5-phenyl)pyridine (8.46 

mg, 8.0 µL, 0.05 mmol), and 0.5 mL of a standard solution containing (per aliquot) 

Pd(OAc)2 (0.56 mg, 0.0025 mmol) and phenanthrene (internal standard) (4.46 mg, 0.025 

mmol) in AcOH. Reactions were conducted at 80 ºC, and each reported value of initial 

rate (Δ[4]/Δt) represents an average of three unique kinetics experiments. (Δ[4]/Δt) for 3 

was determined be 14 ± 1 × 10–5 M/min and (Δ[4-d5]/Δt) for 3 was determined be 13 ± 1 

× 10–5 M/min. 

 

Intermolecular Kinetic Isotope Effect with 23. 
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The intermolecular kinetic isotope effect was determined by studying the initial rate of 

reactions with 23 and 23-d (Scheme 3.14). The general procedure was used with [Mes–

IIII–Ph]BF4 (41.0 mg, 0.1 mmol), 23-d (9.21 mg, 8.9 µL, 0.05 mmol) or 23 (9.17 mg, 0.05 

mmol), and 0.5 mL of a standard solution containing (per aliquot) Pd(OAc)2 (0.56 mg, 

0.0025 mmol) and phenanthrene (internal standard) (4.46 mg, 0.025 mmol) in AcOH. 

Reactions were conducted at 80 ºC, and each reported value of initial rate (Δ[4]/Δt) 

represents an average of three unique kinetics experiments. (Δ[24]/Δt) for 23 was 

determined be 27 ± 3 × 10–5 M/min and (Δ[24]/Δt) for 23-d was determined be 24 ± 2 × 

10–5. 
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Chapter 4 
 
 

Development of Direct C–H Arylation Reactions of 
Heterocycles and Simple Arenes 

 
 

4.1 Background and Significance 
 

This chapter describes the development of palladium catalyzed C–H arylation 

methodology for the functionalization of substrates lacking a ligand directing group. To 

render this approach synthetically useful, it is necessary to attain site selective 

functionalization in complex organic molecules containing ubiquitous C–H bonds. Our 

initial approach to overcoming this challenge was to take advantage of C–H bonds that 

have inherently different reactivities within a molecule. Thus, the focus of this work was 

to examine the C–H functionalization of sp2 bonds of heterocycles and simple arenes. 

Indoles are a class of heterocycles that have different reactivity at specific sites on 

the indole ring. Due to the prevalence of the indole scaffold in many natural products, 

methods for functionalizing the 1, 2, and 3 positions selectively have been of interest.1 In 

particular, the reactivity of indole toward electrophilic aromatic substitution make it an 

attractive substrate for arylation in the presence of an electrophilic PdII catalyst.2 This 

concept was used by the Sames lab to develop methodology for the direct C–H arylation 

of indoles utilizing a palladium catalyst and aryl iodides (Scheme 4.1).3-5 This chemistry 

allowed the installation of a variety of functionalized aryl groups with high selectivity for 

the C2 position of indoles (1, 2) and a broad substrate scope. However, this methodology 

suffered from several key disadvantages. First, these reactions required elevated 

temperatures to efficiently provide the product (>120 ºC). Second, the C2 arylation of 

free N–H indoles required the addition of a strong base. Third, utilizing sterically 

hindered aryl iodides remains challenging due to competing arylation at the C3 position 
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of the indoles. Finally, functional group compatibility is a concern with indole containing 

aryl halides and/or acidic protons, which can be reactive with low valent Pd and base. 

 

Scheme 4.1: Sames’ Precedent for C–H Arylation of Indole.3-5 

NN
0.5 mol % Pd(OAc)2I

125 oC

2 mol % PPh3

DMA, CsOAcH

H
N

H
N

2.5 mol% Pd(OAc)2
I

H
10 mol% PPh3

MgO, dioxane, DMF
150 oC

(1, 88%)

(2, 84%)

 
  

Despite these disadvantages, the Sames reaction exploits the inherent nucleophilic 

reactivity of the nitrogen-containing ring of the indole and the electrophilic nature of PdII 

to afford selective arylation (Scheme 4.2). The proposed mechanism is believe to 

involve: (i) oxidative addition of Ar–I to Pd0 forming the Ar–PdII intermediate 3, (ii) 

electrophilic palladation of the indole resulting in the PdII species 4, (iii) C–C bond 

forming reductive elimination to provide the desired C2 arylation product and regenerate 

the Pd0 catalyst.  

 

Scheme 4.2: Proposed Mechanism of Sames’ Indole Arylation. 

Pd0
I PdII

L
I
L

H
N

H H
N

(i) Oxidative Addition (ii) Palladation (iii) Reductive Elimination

- Pd0PdII
L L

N
H- H-I

(3) (4) (2)  
  

Analysis of this mechanism led us to propose an alternative indole C–H arylation 

pathway taking advantage of strategies used for the directed C–H arylation methodology 

in Chapters 2 and 3. In contrast to Sames’ methodology, this reaction would employ [Ph–

IIII–Ph]+ oxidants rather than aryl iodides and proceed through a PdII/IV pathway (Scheme 

4.3). The proposed mechanism would involve: (i) initial palladation of the indole at PdII 

resulting in intermediate 5, (ii) oxidation of the electron rich σ-indole-PdII species 5 by 
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[Ph–IIII–Ph]BF4 to afford PdIV intermediate 6, and (iii) C–C bond forming reductive 

elimination to generate the C2 phenylated product 2 and release PdII. 

 

Scheme 4.3: Proposed Mechanism of Indole Arylation with [Ph–IIII–Ph]BF4. 

N
H

PdIIN
H

[Ph-IIII-Ph] BF4PdII

- H+

H
N

PdIVN
H

H
- PdII- Ph-I

(ii) Oxidative Addition(i) Palladation (iii) Reductive Elimination

(5) (6) (2)  
  

Several important distinctions can be made between the two mechanistic 

pathways that highlight the potential advantages of the proposed PdII/IV methodology. The 

first key difference is the ligand environment at the PdII species undergoing indole 

palladation. In the Sames methodology, palladation is rate determining and occurs at an 

electron rich PdII species containing a donating σ-Ar ligand. In contrast, the indole 

palladation for the proposed PdII/IV mechanism involves palladation at a more electron 

deficient PdII center, which should increase the relative rate of this step. This should 

allow for the proposed transformation to proceed under milder reaction conditions (<120 

ºC). Second, the new reaction would proceed via a PdII/IV catalytic cycle, which would 

address some of the challenges of the previously described methodology. For example, 

high oxidation state palladium species are known to be compatible with ambient moisture 

and atmosphere, eliminating the precautions necessary in Pd0/II chemistry (i.e. special 

glassware, purification of solvents).6-15 This pathway should also allow the tolerance of 

halogen functional groups as demonstrated in the chemistry of Chapters 2 and 3.16,17  

 

4.2 Our Development of Indole Phenylation  

 Investigations began with the substrate N-methylindole (7), which was chosen for 

two reasons. First, 7 circumvents the possibility of N-arylation, which may occur with a 

free N-H indole. Second, the methyl group is electron donating, which increases the 

nucleophilicity of the indole and should facilitate its reaction with the electrophilic PdII. 

Initial reactions were conducted under conditions similar to those developed for the 

directed chemistry, and included a Pd(OAc)2 catalyst and the [Ph–IIII–Ph]BF4
 oxidant. 
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Gratifyingly, the reaction of 1 equiv of 7 with 2 equiv of [Ph–IIII–Ph]BF4 (2 equiv) and 5 

mol % of Pd(OAc)2 provided exclusively the C2 phenylation product 1 in 49% yield 

based on GC by comparison to an internal standard (Scheme 4.4). Notably, this reaction 

took place at room temperature, a substantial improvement on literature examples that 

require much higher temperature (>120 ºC). This result supports the hypothesis that a 

PdII/IV mechanistic pathway should occur under more mild reaction conditions due to the 

increased rate of palladation. Completing this reaction on a larger scale (1.0 mmol) 

confirmed the results from the GC analysis and afforded the desired product in 55% 

isolated yield.  

 

Scheme 4.4: Pd(OAc)2–Catalyzed Phenylation of N-Methylindole. 

N N5 mol% Pd(OAc)2IH
25 ºC, 5 min

AcOH
(1, 49% GC Yield, 55% isolated)

BF4

(7)  
 

Several observations were made during these initial experiments that aided in 

further development of this methodology. First, the reaction proceeded to approximately 

50% yield, but the remainder of material could not be accounted for. Second, the reaction 

progressed to maximum conversion in ca. 5 min. It was reasoned that attenuating the 

reactivity of the palladium by changing the ancillary ligands might lead to higher yields 

and provide improved mass balance. Thus, a catalyst screen was conducted with 1 equiv 

of N-methyl indole (7), 2 equiv of [Ph–IIII–Ph]BF4 and 5 mol % of a variety of palladium 

catalysts (Table 4.1). This experiment revealed that the catalyst IMesPd(OAc)2•H2O (8) 

bearing the IMes (1,3-Bis(2,4,6-trimethylphenyl)imidazole) N-heterocyclic carbene 

(NHC) ligand provided the product in an improved yield (80%) relative to catalysts 

containing traditional halide and carboxylate ligands. The synthesis of this catalyst will 

be further discussed (vide infra). Empirically, a large difference in reaction rate was 

apparent between Pd(OAc)2 and the NHC complex 8. It was observed that the reaction 

with 7 required 18 h for complete conversion (80% yield), while the analogous reaction 

with Pd(OAc)2 went to complete conversion (49% yield) in approximately 5 min. The 
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increased yield is likely due to stabilization of the palladium by the NHC ligand, which 

limits decomposition of the catalyst. The NHC ligand is also electron donating, providing 

a more electron rich palladium center. This is expected to decrease the relative rate of 

electrophilic indole palladation relative to the use of more electron deficient Pd(OAc)2. 

 

Table 4.1: Catalyst Screening for Pd-Catalyzed Phenylation of Indole. 

N N5 mol% [Pd]IIIIH
25 ºC, 5 min

AcOH

BF4

20%

49%

58%

59%

59%

64%

66%

Catalyst GC Yield*

PdI2

Pd(OAc)2

Pd(tfa)2

PdCl2(BnCN)2

80%IMesPd(OAc)2•H2O

PdBr2

Na2PdCl4

PdCl2

N N

IMesPd(OAc)2•H2O (8)

PdII
O O

O O
O HH

Conditions: 1 equiv N-methylindole, 2 equiv
[Ph–IIII–Ph]BF4, 5 mol % [Pd], AcOH (0.1M) rt, 
*Based on comparison to an internal standard  

  

The reaction with catalyst 8 was examined on a larger scale to compare the 

isolated yield and the GC yield. This was completed by combining 1 equiv of N-

methylindole (7) with 3 equiv of [Ph–IIII–Ph]BF4 and 5 mol % catalyst 8 in AcOH at 

room temperature for 18 h. This afforded the desired product 1 in 86% isolated yield, 

confirming the results obtained by GC.  

 

4.3 Scope of Indole Phenylation 
 Efforts next turned to exploring the scope of this methodology by employing 

indoles that contain differing electronic properties and functional groups. A variety of 

indoles successfully yielded C2 arylation products with catalyst 8 (Table 4.2). This 

transformation proceeded efficiently with indoles containing both electron donating (9-

11) and electron withdrawing substituents (12–14) at the 5 position. The electron 
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deficient indole 14 required a slightly higher temperature (60 ºC) to attain acceptable 

yields. The even more electron deficient 5-nitro-N-methyl indole 13 suffered from the 

same challenges and required a higher catalyst loading (10 mol %) and more oxidant (6 

equiv), in addition to the higher temperature to achieve a more reasonable yield (78%). 

Due to challenges separating the product from small amounts of starting material, 

elevated temperature and catalyst loadings were also employed to access product 9. 

 

Table 4.2: Scope of Pd-Catalyzed Phenylation of Indoles. 

a Conditions: 1.0 equiv substrate, 2.0 equiv [Ph–IIII–Ph]BF4, 5 mol % 8 in AcOH (0.1M) for 18 hr, b 10 mol % catalyst used, c Reactions carried out 
at 60 ºC, d 6 equiv of [Ph–IIII–Ph]BF4 used

(89%)
 15

(66%)c

14

(58%)
10

(86%)b,c

9
(81%)
2

(40%)
11

Product Yielda Product YieldaEntry

1

2

Entry

7

9

3

10

(71%)
125

(70%)c,d

13
6

(29%)
1611

Product YieldaEntry

H
N

Br

H
N

O2N

N

N
O

H
N

NH
N

H
N

HO

MeO

H
N

AcO

N

N Ncat IMesPd(OAc)2•H2OIIIIH
25 ºC, 18 hr

AcOH

R2 R2
BF4

R1
R3

R1
R3

 
 

In addition to N-methyl indoles, free N-H indoles were selectively phenylated at 

the C2 position in good isolated yields without detectable N-arylation (2, 10–14). The 

phenylation product 11 was obtained in modest yield in the presence of an unprotected 

alcohol without O-arylation or alcohol oxidation. Phenylation of an indole containing an 

aryl-bromide was achieved in good yield (66%), without affecting the aryl-bromide 

functionality (14). Substitution of a CH3 group at the 3 position of indole with a methyl 

group did not adversely affect the reaction and resulted in the desired C2 arylation 

product in excellent yield (15, 89%). Finally, we probed how phenylation would be 

affected by blocking the C2 position of indole. With 2-methylindole, functionalization 
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occurred at the C3 position to give 16 in a 29% yield. The remaining material was an 

inseparable mixture of unreacted starting material and a high molecular weight 

byproduct. 

A number of substrates did not provide the desired C–H phenylation products 

(Figure 4.1). Substrates 17 and 18 did not react to afford observable phenylation 

products by GCMS under the conditions described above, or at elevated temperature (60 

ºC). This is likely due to the electron withdrawing ability of the CN and CHO, which is 

that are expected to deactivate the indole. Substrate 19 also did not provide phenylation 

products under the optimized conditions even at elevated temperatures (25–100 ºC). 

However the starting material was completely consumed, suggesting that decomposition 

of the indole is likely occurring under the reaction conditions. 

 

Figure 4.1: Indoles Unsuccessful for C–H Phenylation. 

H
N

CN

H
N H

N

O
H OH

O

(17) (18) (19)  
 

This strategy was also found to be applicable to the C–H arylation of pyrroles. 

The largest difference between pyrrole and indole is the possibility of diphenylation. 

Pyrrole and N-methyl-pyrrole were each successfully phenylated at the 2-position by 

combining 10 equiv of each substrate with 1 equiv of [Ph–IIII–Ph]BF4 and 5 mol % of the 

catalyst 8 to afford the desired products 20 and 21 in 69% and 52%, yields respectively. 

Selective mono-phenylation required the use of the oxidant as the limiting reagent. 

 

Scheme 4.5: Pd-Catalyzed Phenylation of Pyrroles. 

N IIIIH

R
BF4

10 equiv

5 mol % IMesPd(OAc)2•H2O
25 ºC, 18 hr

AcOH

N
R

R = H (20, 69% yield)
R = Me (21, 52 % yield)
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4.4 Scope of Indole Arylation 
 Expanding the general applicability of this transformation required conditions that 

allowed the installation of a diverse set of aryl groups. We have already demonstrated 

that a variety of [Ar–IIII–Ar]X species are synthetically accessible and versatile arylating 

reagents.17,18 Indole C–H arylations were first attempted using [Mes–IIII–Ar]BF4 oxidants 

that were effective for directed C–H arylation in Chapters 2 and 3. These arylations were 

conducted by combining 1 equiv of indole with 2 equiv [Mes–IIII–(p-FC6H4)]BF4 and 5 

mol % 8 in AcOH. This resulted in the C2 arylation product in only a 40% yield by GC 

based on uncorrected peak areas of starting materials and products (Scheme 4.6). 

However, employing the symmetric oxidant [(p-FC6H4)2IIII]BF4 under the same 

conditions and this led to a much-improved 95% yield based on uncorrected peak areas of 

starting materials and products. The addition of an uncalibrated internal standard 

indicated decreased mass balance using the [Mes–IIII–(p-FC6H4)]BF4 oxidant. This likely 

suggests the formation of products that cannot be observed by GC. 

 

Scheme 4.6: Comparison of IIII Oxidants for Pd-Catalyzed Indole Phenylation. 

H
N

H
N

2 equiv IIII Oxidant
5 mol % IMesPd(OAc)2•H2O

H
25 ºC, 18 hr

AcOH

[Mes–IIII–(p-FC6H4)]BF4  40% GC yield
[(p-FC6H4)2IIII]BF4  95% GC yieldF

 
 

 This protocol for the C–H arylation of indoles was next expanded to a variety of 

substituted IIII reagents (Table 4.3). This included the selective C2 installation of arenes 

containing both electron-withdrawing groups (22–25) and electron donating groups (26–

28). Installation of the aryl-bromide in product 25 required an elevated reaction 

temperature (60 ºC) due to the insolubility of the oxidant at room temperature in AcOH. 

Similarly the reaction of indole with the electron rich [(p-OMeC6H4)2IIII]BF4 reagent to 

afford product 27 also required more forcing conditions (80 ºC) due to the attenuated 

reactivity of this oxidant. In general these reactions showed similar functional group 

tolerance to the analogous phenylations. This included the selective C2 arylation of free 

N–H indoles without competing N-arylation. The installation of several aryl halides was 
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also demonstrated, and these groups were unaffected by the reaction conditions. Once 

again, this demonstrates the complementarity of this methodology to Pd0/II chemistry. 

 

Table 4.3: Scope of Pd–Catalyzed Indole Arylation. 

N N5 mol % IMesPd(OAc)2•H2OIIIIH
25 ºC, 18 hr

AcOH

R R1BF4

R2

R2 R2

(62%)c
28

(80%)
23

(75%)
22

(90%)
24

Product YieldaEntry

1

2

73

(66%)b
25

5

(80%)c
27

6

Product YieldaEntry

H
N

H
N

N

N

N

N

H
N

N
CF3

F

Cl

Br

OMe

(70%)
266

(62%)c
29

7

a Conditions: 1.0 equiv substrate, 2.0 equiv [Ph–IIII–Ph]BF4, 5 mol % 8 in AcOH (0.1M) for 18 hr, 
b Reaction carried out at 80 ºC, c Reactions carried out at 60 ºC  

 

 

 Installation of sterically hindered aryl groups also proceeded with high selectivity 

for the C2 position, which is in contrast to Sames’ Pd0/II catalyzed reactions. For example, 

installation of an o-tolyl group proved challenging in the Pd0/II chemistry and provided 

mixtures of the C2 and C3 functionalized products in a ratio of 3.2 : 1.0 (30 : 32, Scheme 

4.7).4 In contrast, the reaction of N-methylindole with [(o-tol)2IIII]BF4 afforded the 

arylated product in >20:1 selectivity (28). Similar selectivity was also demonstrated with 

the sterically hindered [(1-napthyl)2IIII]BF4 oxidant, providing 29 as the only detectable 

regioisomer. The nature of these differences in selectivity compared to the Pd0/II
 

chemistry will be further discussed in the context of mechanistic investigations. 
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Scheme 4.7: C2/C3 Selectivity for Installation of o-Tolyl Group Using Pd0/II Catalysis.4 

H
N

H
N

5 mol% Pd(OAc)2I

H
20 mol% PPh3

1.2 equiv MgO, 
dioxane/DMF (1:2)

150 ºC, 18 hr

H
N

(30) (31)

30:31 = 3.2:1.0  
 

4.5 In Situ Oxidant Generation for Pd-Catalyzed Indole Arylation 
 To increase the utility of this methodology, in situ formation of the arylating 

reagent prior to C–H functionalization is appealing. This concept was previously 

discussed in the context of the directed C–H arylation (Chapter 2). To accomplish this, a 

reaction sequence would require first coupling of a boronic acid (step (i), Scheme 4.8) 

and IIII reagent, followed by C–H arylation (step (i), Scheme 4.8). 

 

Scheme 4.8: Strategy for in situ Oxidant Generation/C–H Arylation. 

B(OH)2 IIIIAcO OAc

+ IIII

R R

R

R

(i) Oxidant Formation (ii) C–H Activation/Arylation

[PdII]
H
N

H

H
N

R

 
 

 These experiments were completed analogously to those previously described in 

the directed chemistry, with the exception of substrate and temperature. Thus, 2 equiv of 

ArIIII(OAc)2 and 2 equiv of ArB(OH)2 were combined with 5 mol % of Pd(OAc)2 in 

AcOH and allowed to stir at room temperature for 15 min. Next, N-methylindole (7) was 

added and the reaction continued for 17 h at room temperature. My colleague Dr. 

Dipannita Kalyani demonstrated that this method was effective for installing several aryl 

groups at the C2 position of indole, including Ph (1, 80%), p-ClC6H4 (24, 67%), and p-

MeC6H4 (26, 81%) (Scheme 4.9). 
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 Importantly, the yields were comparable to those obtained with the pre-isolated oxidants 

(86%, 90%, and 70% respectively). The use of MesIIII(OAc)2 also resulted in the C2 

arylation products in useful GC yields of 44%, 39%, and 62% respectively. 

 

Scheme 4.9: In situ Oxidant Generation/C–H Arylation with Substituted Arenes. 

B IIIIAcO OAcHO OH

+

1) 5 mol% Pd(OAc)2, 
AcOH, RT, 15 min N

N

2) 15 h, 0.5 equiv

R R

R
R = H (1, 80%)

R = Cl (24, 67%)
R = Me (26, 81%)

 
 

 We next sought to develop this strategy for the installation of a variety of 

heteroaryl groups at the C2 position of indoles. This was accomplished by employing 

several commercially available boronic acids with the protocol for in situ oxidant 

generation. This led to the formation of heteroarylated products as detected by GCMS 

(Scheme 4.10). Both thiophene (34) and furan (32, 35, 36, 37) analogs were successfully 

incorporated, but in modest yields based on uncorrected GC ratios. Notably 32 appears 

have gone to a higher conversion based on GC yield. However, since GC peak areas 

correlate with the number of carbons in a molecule, and a very a large arene has been 

added to the indole, this analysis becomes less representative of an actual yield for this 

product. 

 
Scheme 4.10: In situ Oxidant Employing Heteroarenes. 

Ar
B

IIIIAcO OAc

HO OH
+

1) 5 mol% Pd(OAc)2, 
AcOH, RT, 15 min N

Ar

N

2) 15 h, 0.5 equiv

Ar =
O

B(OH)2
N
Boc

B(OH)2

S O
B(OH)2

O
B(OH)2

O

B(OH)2

(32, 84%) (33, 0%) (34, 37%) (35, 0%) (36, 23%) (37, 32%)

B(OH)2

GC
Yield  
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 These poor yields were not surprising given that employing the isolated [Mes–IIII–

Ar]BF4 oxidants in indole arylation led to lower conversions relative to [Ar–IIII–Ar]BF4. 

However in this case, the symmetric oxidants are not as practical because they would 

require 1 equiv of sacrificial heteroaryl iodide (which are more valuable molecules). 

Thus, we next set out to identify an alternative ‘dummy’ IIII coupling partner that would 

offer increased reactivity versus the mesityl group. To probe this, the standard reaction 

conditions were used with ArIIII(OAc)2 (38) where Ar is Ph, 1-napthyl, p-MeOC6H4, and 

p-ClC6H4 (Table 4.4). As expected, when Ar was Ph or p-ClC6H4, products resulting 

from competitive addition of the desired 3-thiophene (39) and the Ar group (40) were 

observed. It was reasoned however, that 1-napthyl would allow for steric selectivity, 

while p-MeOC6H4 would allow for electronic control based on the observed selectivity in 

related reactions.17,18 However, unfortunately these latter two oxidants also gave a 

mixture of arene addition products. 

 

Table 4.4: Screen of IIII
 Regents for in situ Oxidant Generation Employing Heteroarenes. 

Ar
IIIIAcO OAc

+

1) 5 mol% Pd(OAc)2, 
AcOH, RT, 15 min N

N

2) 15 h, 0.5 equiv

S

B(OH)2

S

Ar = Thiophene 
GC Yield (X)*

Ph

1-napthyl

p-ClPh

p-OMePh

14%

32%

58%

9%

30%

40%

30%

25%

Arene 
GC Yield (X)*

N
Ar

(34) (38) (39) (40)

Conditions: 2 equiv 3-thiophene boronic acid, 2 equiv
ArIIII(OAc)2, 5 mol % Pd(OAc)2, were stirred at rt for 15 
min in AcOH (0.1M), then 1 equiv N-methylindole was
added and rematined at rt *Based on uncorrected GC
peak areas  

 
 Despite the limited success employing alternative ‘dummy’ ligands on the IIII 

reagent, we chose to further investigate (1-naphthyl)IIII(OAc)2 along with MesIIII(OAc)2 

at various temperatures (Table 4.5). When these reactions were completed with (1-
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naphthyl)IIII(OAc)2 no improvement in yield was attained; however an increased yield of 

C–H arylation with the naphthyl ‘dummy ligand’ was observed. An increase in 

temperature using MesIIII(OAc)2 resulted in higher yield based on GC, without the 

installation of mesityl. However, it is believed these yields are misrepresentative, due to 

decomposition of the starting material at this temperature to afford products that cannot 

be observed by GC. Nevertheless this reaction was completed on a larger scale, and 

resulted in the isolation of the desired product 39 in a 20% yield (Scheme 4.11). 

 

Table 4.5: Screen of Temperature for in situ Oxidant Employing Heteroarenes. 

Conditions: 2 equiv 3-thiophene boronic acid, 2 equiv ArIIII(OAc)2, 5 mol %
Pd(OAc)2, were stirred at rt for 15 min in AcOH (0.1M), then 1 equiv N-
methylindole was added at heated, *Based on uncorrected GC peak areas

Ar
IIIIAcO OAc

+

1) 5 mol% Pd(OAc)2, 
AcOH, RT, 15 min N

N

2) 15 h, 0.5 equiv
temp

S

B(OH)2

S

Thiophene
 GC Yield (X)*

1-napthyl

1-napthyl

1-napthyl

1-napthyl

34%

31%

50%

56%

20%

17%

26%

30%

Arene 
GC Yield (X)*

N
Ar

(35) (38) (39) (40)

Mes

Mes

Mes

Mes

0%

0%

0%

0%

22%

32%

48%

51%

Temperature

13 ºC

25 ºC

75 ºC

45 ºC

13 ºC

25 ºC

75 ºC

45 ºC

Mes 0%73%100 ºC

Ar

 
 

Scheme 4.11: In situ Arylation with 3-Thiophene Boronic Acid. 

IIIIAcO OAc
+

1) 5 mol% Pd(OAc)2, 
AcOH, RT, 15 min N

N

2) 15 h, 100 ºC,
0.5 equiv

S

B(OH)2

S

(39, 20%)
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 Investigations toward the development of an in situ oxidant generation followed 

by sequential C–H arylation have proved promising. This method has been established 

for the selective C2 arylation of indoles using substituted IIII reagents and their 

complementary boronic acid. Expansion to the installation of heteroarenes has led to 

encouraging preliminary results, but further optimizations are required to improve yields. 

 

4.6 Expansion to Other Heterocycles 

A variety of heterocycles similar to indole and pyrrole were attempted for 

palladium catalyzed C–H arylation. First, the phenylation of benzofuran (41) catalyzed 

by 8 was examined as a function of solvent. This reaction provided a single phenylation 

product 42 at 100 ºC (as determined by GCMS). A solvent study revealed that several 

solvents were viable for this substrate, with the most successful being AcOH, 

trifluorotoluene, CHCl3, and ClCH2CH2Cl (Table 4.6).  

 

Table 4.6: Solvent Effects on the Arylation of Benzofuran. 

60%

39%

57%

17%

Solvent GC Yield*

AcOH

NO2Ph

THF

CF3Ph

53%

0%

CHCl3

CH3CN

IIII

BF4

5 mol % IMesPd(OAc)2•H2O
100 ºC, Solvent

O
H

O

24%Acetone
0%

50%

MeOH

ClCH2CH2Cl

(41) (42)

Conditions: 1 equiv benzofuran, 2 equiv
[Ph–IIII–Ph]BF4, Pd(OAc)2, Solvent (0.1M) 
at 100 ºC for 12 hr, *Based on
uncorrected GC peak areas  

 We next examined benzofuran phenylation as a function of palladium catalyst, 

since large catalyst effects were observed for indole arylation. A number of palladium 

complexes were viable catalysts for this transformation, with the most promising being 
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PdBr2 and Pd(tfa)2 (Table 4.7). This reaction was conducted on a large scale (1.0 mmol) 

to isolate the desired product. To do this, 1 equiv of benzofuran 41 was combined with 2 

equiv of [Ph–IIII–Ph]BF4, and 5 mol % of Pd(tfa)2 in AcOH at 100 ºC to afford the 

desired product (42) in 65% isolated yield (Scheme 4.12). Comparisons of 1H NMR 

spectrum of the isolated product with reported literature values demonstrated that the 

phenylation occurred selectivity at the C2 position.19,20 

 

Table 4.7: Catalyst Effects on the Arylation of Benzofuran. 

Conditions: 1 equiv benzofuran, 2 equiv [Ph–IIII–
Ph]BF4, 5 mol % [Pd], AcOH (0.1M) at 100 ºC for 
12 hr, *Based on uncorrected GC peak areas

(41) (42)

IIII

BF4

5 mol %[Pd]
100 ºC, AcOH

O
H

O

60%

64%

80%

50%

Catalyst GC Yield

Pd(OAc)2

PdCl2

PdI2

PdBr2

78%

0%

7%

60%

Pd(tfa)2

(PhCN)2PdCl2

(PPh3)2PdCl2

(SEt2)2PdCl2

56%

69%

NaPdCl4

IMesPd(OAc)2•H2O

 
 

Scheme 4.12: Pd-Catalyzed Arylation of Benzofuran. 

2 equiv(41) (42, 65%)

IIII

BF4

5 mol %Pd(tfa)2

100 ºC, AcOH

O
H

O

 
 

In addition to substituting the heteroatom for oxygen, sulfur was also employed. 

Less extensive screening was completed for benzothiophene (43), but began with a brief 

temperature study (Table 4.8). Benzothiophene was employed at several different 
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temperatures under the conditions identified for indole arylation. It was observed that 

increasing the temperature led to improved yields of a single arylation product (as 

determined by GCMS) (81% yield at 120 ºC). A solvent screen demonstrated that 

nitrobenzene worked well for the desired phenylation. This reaction was completed on a 

larger scale (1 mmol) with 1 equiv of benzothiophene (43), 2 equiv of [Ph–IIII–Ph]BF4 

and 5 mol % of IMesPd(OAc)2•H2O in NO2Ph at 120 ºC to afford the desired product 44 

in a 61% isolated yield (95% purity by GC, Scheme 4.13). The regioselectivity of 

phenylation could not be confirmed by 1H NMR based on comparisons to reported 

values, due to similarities in spectra of 2- and 3-phenyl-benzothiophenes.20,21 

 

Table 4.8: Solvent Effects for the Pd-Catalyzed Arylation of Benzothiophene. 

Conditions: 1 equiv benzothiophene, 2 equiv [Ph–IIII–Ph]BF4,
Pd(OAc)2, Solvent (0.1M) at respective temp for 12 hr, *Based on 
uncorrected GC peak areas

IIII

BF4

5 mol % IMesPd(OAc)2•H2O
temp, solvent

S
H

S

Temp Solvent

25 ºC

80 ºC

120 ºC

100 ºC

GC Yield*

0%

38%

50%

81%

AcOH

AcOH

AcOH

AcOH

120 ºC

120 ºC 91%

6%

NO2Ph

CF3Ph

(43) (44)

 
 

Scheme 4.13: Pd-Catalyzed Arylation of Benzothiophene. 

IIII

BF4

5 mol % IMesPd(OAc)2•H2O
120 ºC, NO2Ph

S
H

2 equiv

S

(43) (44, 61%)  
 

In contrast to the examples above, Table 4.9 highlights a group of substrates for 

which phenylation was unsuccessful. These phenylations were attempted under a variety 

of reaction conditions including variation of temperature (≥ 60 ºC) and solvent, but did 

not result in the addition of a phenyl group. A common feature of most of these substrates 



 161 

is that they contain a Lewis basic nitrogen functionality that is likely affecting this 

reaction in two ways (Table 4.9 entries 1–7). First, Lewis bases are problematic since the 

mechanism of this reaction relies on nucleophilic attack by an electron rich arene on a 

Lewis acidic PdII. The Lewis basic functional groups can coordinate to the palladium, 

making it less electrophilic and thereby preventing nucleophilic attack by the 

heterocycles. Furthermore, the favorability for Lewis basic nitrogen heterocycles to 

coordinate to [Ph–IIII–Ph]BF4 resulting in an N–IIII adduct has previously been 

demonstrated.17,22-25 This interaction will decrease the electrophilicity of the oxidant and 

therefore its reactivity towards oxidation of PdII to PdIV. The last substrate that did not 

prove successful was furfuryl alcohol (Table 4.9, entry 8). This is likely due to oxidation 

and polymerization under the reaction conditions. Thus, this group of substrates has 

demonstrated the limitations of this methodology and presents a challenge to be 

overcome with future investigations. 

 

Table 4.9: Substrates Unsuccessful in Pd-Catalyzed C–H Phenylation. 

Substrate SubstrateEntry

1

2

Entry

5

6

3

4

SubstrateEntry

O

OH

N

N

N

H
N

N
O

N

S

NN

H
N

N H
N

SubstrateEntry

7

8

 
 

4.7 Expansion to Non-Heterocyclic Substrates 
 Due to the success achieved with heterocycles, the reactivity of simple 

unactivated arenes was next probed. Previously, Crabtree had demonstrated C–H 

acetoxylation of a number of simple arenes with PhIIII(OAc)2 as the oxidant.26 For 

example, it was reported that 3 equiv of naphthalene (45) combined with 0.5 mol % of 

Pd(OAc)2 and 1 equiv of PhIIII(OAc)2 in AcOH at 100 ºC resulted in 46−α  and 46−β in a 

61% overall yield based on oxidant, and in a ratio of 57:43. All of Crabtree’s 

acetoxylation experiments were completed with excess substrate, and oxidant as the 

limiting reagent of the reaction. 
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Scheme 4.14: Crabtree’s Acetoxylation of Naphthalene.26 

OAccat. Pd(OAc)2
1 equiv PhIIII(OAc)2

100 ºC, AcOH
OAc

H!

H"

(45, 3 equiv) (46-!) (46-")

61% Overall Yield  
  

 By analogy, our initial experiments focused on naphthalene C–H phenylation and 

began by probing the effect of excess substrate relative to oxidant. This was completed 

by combining 2, 5, 10, and 20 equiv of naphthalene (45) with 1 equiv of [Ph–IIII–Ph]BF4 

and 5 mol % of Pd(OAc)2 in AcOH (0.1 M in naphthalene) and heated to 120 ºC. 

Analysis of these reactions by GCMS provided several interesting results (Table 4.10). 

First, this study demonstrated that higher conversion is achievable with large excesses of 

substrate relative to limiting oxidant. Second, two peaks were observed in each reaction, 

with a mass corresponding to the two regioisomers 47−α  and 47−β . Each reaction 

favored phenylation at the α position in >5:1 ratio as determined by comparison to an 

authentic sample. This is particularly interesting given that Crabtree had observed a 

statistical mixture of the α and β products for the acetoxylation using PhIIII(OAc)2. The 

nature of the observed selectivity for naphthalene phenylaiton is not understood, and 

mechanistic investigations will be required to provide more insight.  
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Table 4.10: Naphthalene Phenylation Equivalents Study. 

Conditions: X equiv napthalene, 1 equiv [Ph–IIII–Ph]BF4, 5 mol 
% Pd(OAc)2 AcOH (0.1M) at 120 ºC for 12 hr, *Based on
uncorrected GC peak areas

5 mol% Pd(OAc)2IIII
120 ºC, AcOH

BF4

11%

23%

50%

55%

Equivilents GC Yield*

2

5

20

10

H!

H"

! : "

10 : 1

9 : 1

6 : 1

5 : 1

(47-!) (47–")(45)

 
 

The yield was determined from the experimental ratio of uncorrected peak areas 

of the phenylation products to the remaining starting material versus the theoretical 

maximum possible ratio. For example, with 5 equiv of naphthalene the experimental ratio 

of product to starting material was 1:90, and comparison of this to the maximum 

theoretical ratio of 1:9 results in an 11% conversion. However, this method is inaccurate 

because it falsely assumes that 1 equiv of starting material and product will have the 

same peak area. For our purposes, this is only useful to provide an estimate and 

demonstrate the relative trends.  

 With the observation that phenylation of naphthalene favors the α regioisomer 

over the β, experiments moved forward with three general goals. First, we wanted to 

identify conditions to give the maximum conversion with the least excess substrate. 

Second, we hoped to optimize the reaction to achieve the maximum selectivity for the α 

regioisomer. Finally, we desired to modify the conditions such that the β regioisomer 

would be favored. This exploration began with a catalyst screen. We chose employed 10 

equiv of naphthalene because it provided the maximum efficiency in the study in Table 

4.10. These experiments were accomplished by combining 1 equiv of [Ph–IIII–Ph]BF4 

with 10 equiv of naphthalene and 5 mol % of several catalysts in AcOH at 120 ºC for 12h 

(Table 4.11). This study showed that the best catalyst for this reaction was PdI2. 

Furthermore, none of the catalysts screened significantly changed the relative ratio of α 
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to β products. In instances where the ratio was not determined (ND), the α regioisomer 

was still favored, but an accurate GC integration of the β regioisomer could not be 

obtained due to low yields. 

 

Table 4.11: Catalyst Screen for Naphthalene Phenylation. 

Conditions: 10 equiv napthalene, 1 equiv [Ph–IIII–Ph]BF4, 5 mol % 
[Pd], AcOH (0.1M) at 120 ºC for 12 h, *Based on uncorrected GC
peak areas

5 mol% [Pd]
IIII

120 ºC, AcOH, 12 h

BF4H!

H"

(47-!) (47–")

20%

38%

22%

63%

Catalyst GC Yield*

Pd(OAc)2

PdCl2

PdI2

PdBr2

! : "

8 : 1

6 : 1
33%

15%

0%

25%

Pd(tfa)2

(PhCN)2PdCl2

(PPh3)2PdCl2

(SEt2)2PdCl2

8 : 1

-

36%

36%

NaPdCl4

IMesPd(OAc)2•H2O

8 : 1

8 : 1

ND

ND

ND

ND

(45)

 
 

 Next, a solvent screen was completed with PdI2 as the catalyst to identify the 

optimal solvent for this reaction. These experiments involved the combination of 10 

equiv naphthalene with 1 equiv of [Ph–IIII–Ph]BF4 and 5 mol % of PdI2 of  in several 

solvents at 120 ºC for 12 h (Table 4.12). This study revealed that phenylation was viable 

in a number of solvents, with AcOH providing this highest yield, while CH2Cl2 and 

ClCH2CH2Cl also proving to be sufficient.  
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Table 4.12: Solvent Screen for Naphthalene Phenylation. 

Conditions: 10 equiv napthalene, 1 equiv [Ph–IIII–Ph]BF4, 5 mol
% PdI2, solvent (0.1M) at 120 ºC for 12 h, *Based on uncorrected 
GC peak areas

5 mol% PdI2IIII
120 ºC, solvent, 12 h

BF4

59%

50%

25%

2%

Solvent GC Yield

AcOH

CH2Cl2

CH3CN

CF3Ph

H!

H"

! : "

5 : 1

10%

48%

THF

ClCH2CH2Cl

6 : 1

6 : 1

6 : 1

11 : 1

ND

(47-!) (47–")(45)

 
 

Catalyst loading was next investigated by combining 10 equiv of naphthalene and 

1 equiv of [Ph–IIII–Ph]BF4 with varying equivalents of PdI2 in AcOH at 120 ºC for 12 h 

(Table 4.13). Predictably, an increase in yield was observed with an increase in the 

amount of catalyst. For example, a 30 mol % catalyst loading resulted in near complete 

conversion. As in previous experiments, no substantial change was seen in the ratio of 

product regioisomers. 
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Table 4.13: Catalyst Loading Study for Naphthalene Phenylation. 

Conditions: 10 equiv napthalene, 1 equiv [Ph–IIII–Ph]BF4, X 
mol % PdI2, AcOH (0.1M) at 120 ºC for 12 h, *Based on
uncorrected GC peak areas

X mol% PdI2IIII
120 ºC, AcOH, 12 h

BF4

28%

73%

78%

85%

mol % PdI2 GC Yield*

5

10

20

15

H!

H"

! : "

6 : 1

97%30 6 : 1

7 : 1

6 : 1

6 : 1

(47-!) (47–")(45)

 
 

 Finally, we sought to investigate the effect of added base on the reaction. This 

necessitated the use of a solvent other than AcOH, and dichloroethane was chosen based 

on the study in Table 4.14. These reactions included 1 equiv of [Ph–IIII–Ph]BF4, 10 equiv 

of naphthalene, 30 mol % of PdI2, and 2 equiv of added base in ClCH2CH2Cl at 120 ºC 

for 12 h. From these experiments it was shown that added base increased the yield, with 

ZnO giving the most promising result of 92% yield. The ratio of regioisomers was again 

unaffected. This reaction proved to work as well as reactions in AcOH. However, since 

the theoretical maximum yield has been nearly reached, further experiments with a 

decreased catalyst loading will be necessary to determine the added benefit of base 

relative to the reaction in AcOH. 
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Table 4.14: Catalyst Loading Study for Naphthalene Phenylation. 

Conditions: 10 equiv napthalene, 1 equiv [Ph–IIII–Ph]BF4, 30
mol % PdI2, 2 equiv Base, ClCH2CH2Cl (0.1M) at 120 ºC for 12 
h, *Based on uncorrected GC peak areas

30 mol% PdI2IIII
120 ºC, dichloroethane

2 equiv base, 12 h

BF4

50%

73%

92%

5%

Base GC Yield*

NaHCO3

MgO

Cs2CO3

ZnO

H!

H"

! : "

5 : 1

30%none

ND

5 : 1

4 : 1

ND

(47-!) (47–")(45)

 
 

 An interesting analysis of the selectivity is to employ this transformation with 

arenes containing both benzylic C–H and aromatic C–H bonds. Previously, we have 

demonstrated that when directing groups are employed to attain site selective arylation, 

benzylic C–H bonds remain unaffected. However, Crabtree reported that the Pd-catalyzed 

C–H acetoxylation of toluene with PhIIII(OAc)2 resulted in the formation of both aromatic 

C–H acetoxylation products, and oxidation of a benzylic C–H bond to form 

benzaldehyde. 

We chose to investigate this question by exploring the phenylation of p-xylene 

(48). Preliminary experiments began by completing a solvent screen using conditions 

similar to naphthalene phenylation. Reactions combined 1 equiv of p-xylene with 1.1 

equiv of [Ph–IIII–Ph]BF4 and 5 mol % of Pd(OAc)2 at 100 ºC in several solvents (Table 

4.15). Gratifyingly, in CH2Cl2 a single phenylation product was formed in a 12% yield (as 

determined by GCMS based on uncorrected peak areas). Reactions in AcOH and CH3CN 

afforded only trace amounts of a phenylated product by GCMS. This result is interesting 

considering the reactivity of naphthalene in AcOH, and thus would merit further 

investigation. Employment of toluene as the solvent led to the observation of three peaks 

with a masses corresponding to phenylated toluene, with each peak presumably 

representing one of the three possible regioisomers.  
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Table 4.15: Phenylation of p-Xylene. 

Conditions: 1 equiv napthalene, 1.1 equiv
[Ph–IIII–Ph]BF4, 5 mol % Pd(OAc)2, Solvent 
(0.1M) at 100 ºC for 12 h, *Based on
uncorrected GC peak areas

1%

12%

Toluene Phenylation

3%

Solvent GC Yield*

AcOH

CH2Cl2

CH3CN

Toluene

5 mol% Pd(OAc)2IIII
100 ºC, solvent, 12 h

BF4

(49)(48)

 
 

Next, the conditions described above with CH2Cl2 as the solvent were then 

employed to evaluate this reaction with 5, 10, and 20 equiv of p-xylene relative to the 

oxidant. This resulted in the improved yields of 34%, 50%, and 100%, respectively. The 

isolation of the product of this reaction was attempted from the reaction with 20 equiv of 

p-xylene. Isolation of the product proved challenging due to the large excess of substrate 

required. Nevertheless the desired product was obtained in approximately 80% purity 

(based on GC). 1H NMR analysis of this product revealed two aliphatic singlets with an 

integration of 1:1. This provides evidence that C–H arylation occurs at an aromatic 

position and not a benzylic site. 

 

4.8 Synthesis of the IMesPd(OAc)2•H2O Ligand 
 Several examples of Pd(OAc)2 complexes bearing the IMes N-heterocyclic 

carbene ligands have been reported in the literature, including IMesPd(OAc)•H2O (8), 

IMesPd(OAc)2 (50), and IMes2Pd(OAc)2 (51).27-29 Complex 8 was employed as the 

catalyst for many of the C–H arylations described above. Additionally, attempts were 

also made to synthesize catalyst 50, but in our hands, afforded a different product than 

that reported in the literature.27 Upon further investigation it was determined that the 

products obtained in the synthesis of 50, were a mixture of Pd(OAc)2 and complex 51.29 
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Figure 4.2: Pd(OAc)2 Complexes Bearing IMes Ligands. 

N N

Pd OO

O O
O

H H

N N

Pd

N N

OAcAcO
N N

Pd
OAcAcO

(8) (50) (51)  
 

Catalyst 8 was synthesized according to a literature procedure. This was 

accomplished by combining 1 equiv of the imidizolium HCl salt 52 in Et2O with 2.2 

equiv of NaH and 0.1 equiv NaOtBu to give the free carbene 53 (Scheme 4.15). The 

carbene was then metallated by combining 2.1 equiv of 53 with allyl palladium chloride 

in THF, to afford the palladium complex 54.30 The allyl group was then protonated by 

addition of HCl/Et2O, to give the chloride bridged palladium dimer 55.30 This complex 

was then combined with 1.1 equiv of AgOAc, resulting in an anion metathesis and 

yielding the desired catalyst 8. 30,31 All intermediates as well as the final catalyst showed 

NMR spectra identical to those reported in the literature. 

 

Scheme 4.15: Synthesis of IMesPd(OAc)•H2O.27 

N NN N

H
Cl

NaH
KOtBu
Et2O

N N

Pd

Pd Cl
Cl Pd

Cl
ClCl
Pd Cl

N N

N N

Pd
Cl

HCl/Et2O

Et2O

Et2O
AgOAc

N N

Pd OO

O O
O

H H

(8)

(53) (54)

(55)

(52)

 
 

Next, the literature procedure for the synthesis of IMesPd(OAc)2 (50) was 

followed (Scheme 4.16). 28,32 Synthesis of this catalyst involved the direct metallation of 
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1 equiv of the free carbene 53 with 1 equiv of carefully purified Pd(OAc)2 (recrystallized 

from dry benzene) in hexanes to afford a gray powder.  

 

Scheme 4.16: Reported Synthesis of IMesPd(OAc)2.28 

N N
Hexanes

(53)

1.0 equiv Pd(OAc)2 N N

Pd
OAcAcO

(50)  
 

The 1H NMR chemical shifts of the major product closely resemble the reported 

values in CDCl3, but with two key differences. First, the spectra contained several 

unidentified impurities in addition to the product, including a major singlet at 2.00 ppm 

(Figure 4.3). Second, the acetate methyl group and the p-Me of mesityl were expected to 

integrate 1:1 (2.45 ppm to 1.25 ppm). However our spectra revealed a 2:1 integration. To 

investigate the impurities, a 1H NMR spectra of Pd(OAc)2 was obtained and the chemical 

shift the Pd(OAc)2 matched that of the unidentified singlet (2.00 ppm). Due to the 

presence of free Pd(OAc)2, it was reasoned that the remaining material was the bis-IMes 

complex 51. However, the NMR data of the two complexes could not be directly 

compared based on the literature reports, since they were reported in different solvents. 
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Figure 4.3: 1H NMR Spectra of the Product Obtained in the Synthesis of 50 and 51 in 
CDCl3. 

 
 

For comparison, synthesis of the bis carbene containing IMes2Pd(OAc)2 51 was 

completed as reported by Stahl.29 The IMes carbene 53 (2.1 equiv) was combined with 1 

equiv of Pd(OAc)2 (recrystallized from benzene) to afford the desired product 51. The 

isolated product showed a 1H NMR spectrum identical to that reported in the literature in 

C6D6.29 Additionally, the 1H NMR spectrum of 51 in CDCl3 matched exactly the 

chemical shifts reported by Nolan for 50, but with the integration expected for 51 (Figure 

4.3). Thus, in our hands, the products obtained using Nolan’s procedure were a mixture 

of the bis-carbene complex 51 and Pd(OAc)2. 
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Scheme 4.17: Synthesis of IMes2Pd(OAc)2.29 

N N
THF

N N

Pd

N N

OAcAcO

(53)

0.45 equiv Pd(OAc)2

(51)  
 

 Interestingly however, 51 and the products obtained in the synthesis of 50 are 

viable catalysts for the arylation of indoles. First, the mixture of products obtained in 

from synthesis of 50 was used for the phenylation of 1 equiv of 3-methylindole with 2.0 

equiv of [Ph–IIII–Ph]BF4 and 5 mol % of 50 to obtain the phenylated product 56 in 73% 

yield (Scheme 4.18). Additionally, complex 51 was employed in the reaction of 1 equiv 

of 5-fluoroindole 57, with 5 mol % of IMes2Pd(OAc)2 (51) and 2 equiv of [(p-

FC6H4)2IIII]BF4 in CD3CO2D at 25 ºC to yield the phenylated product 58 (Scheme 4.19). 

This reaction afforded the desired product as confirmed by 19F NMR spectroscopy, as 

compared to an isolated sample employing Pd(OAc)2 as the catalyst (40% isolated yield). 

Interestingly, no product appearance was observed after 3 h but the product was present 

after 6.5 h suggesting an induction period (vide infra). 

 

Scheme 4.18: Utilization of the Products from Synthesis of 50 for Indole Arylation. 

H
N

H
N

25 ºC, AcOH
H

5 mol % 50
2 equiv [Ph–IIII–Ph]BF4 (56, 73%)

 
 

Scheme 4.19: Utilization of IMes2Pd(OAc)2 in Catalysis. 

H
N

H
N

25 ºC CD3CO2D
IH

5 mol % 51
F F

F F
F

(2.0 equiv)(57, 1.0 equiv)

BF4

(58)  
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4.9 Subsequent Examples of Direct C–H Arylation 
 Following the publication of our palladium-catalyzed indole C–H arylation 

methodology, several related reports of indole arylation were published.1 These examples 

of indole C–H arylations fall into three general categories: (1) arylation employing [Ar–

IIII–Ar]+ oxidants with copper catalysts, (2) palladium catalyzed oxidative coupling, and 

(3) the use of Ag+ salts with Ar–I. 

 First, a report from the Gaunt group demonstrated regioselective indole arylation 

employing [Ar–IIII–Ar]OTf (59) oxidants and a copper catalyst.33 It was demonstrated 

that indoles N–H and N–Me indoles reacted with the IIII reagent [TRIP–IIII–Ar]OTf (59, 

TRIP = 2,4,6-tri-isopropylphenyl), the base dtbpy (2,6-di-tert-butylpyridine) and a copper 

catalyst to afford C3 indole arylation products like 60 in high selectivity under mild 

conditions (35 ºC) (Scheme 4.20). When N-acetylindoles were employed at elevated 

temperatures (>60 ºC), moderate selectivity (3:1 to 9:1) was achieved for C2 arylation to 

form 61 (Scheme 4.21). The change in selectivity is attributed to the presence of the N-

acetyl group, which can act as a directing group for the copper to the C2 position. 

  

Scheme 4.20: C3 Indole Arylation with a Cu Catalyst and [Ar–IIII–Ar]OTf.33 

H
N

H
N

DCE, 35 ºCI

OTf

H

i-Pr

i-Pr

i-Pr
R

R
(59) (60)

10 mol % Cu(OTf)2
1.1 equiv dtbipy

 
 

Scheme 4.21: C2 Indole Arylation with a Cu Catalyst and [Ar–IIII–Ar]OTf.33 

N N

DCE, 35 ºCI

OTfi-Pr

i-Pr

i-Pr
R

(59) (61)

10 mol % Cu(OTf)2
1.1 equiv dtbipyH

O O

R

 
 

 The second general category includes oxidative coupling of indoles with simple 

arenes.34-36 Fagnou first demonstrated the C–H arylation of N-acetylindole 62 by 

combining this substrate with 30 equiv of benzene, 10 mol % of Pd(tfa)2, 10 mol % of 3-
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nitropyridine, 0.4 equiv of CsOpiv, and a 3.0 equiv of a Cu(OAc)2 oxidant, followed by 

subjection to microwave conditions to provide the C3 arylation product 63 in good yield 

and selectivity (87%, 9:1, Scheme 4.22).34 He then demonstrated that this selectivity 

could be changed from C2 to C3 arylation by variation of the additives. By instead 

combining N-pivalylindole (64) with 60 equiv of benzene, 5 mol % Pd(tfa)2, and 2.0 

equiv of AgOAc as an oxidant, and PivOH the C2 arylation product 65 was obtained in 

84% yield and 25:1 selectivity (Scheme 4.23).35 The nature of the observed selectivity is 

not clear, but the authors indicate work is ongoing to study this issue. 

 

Scheme 4.22: C3 Indole Arylation Through Oxidative Coupling.34  

N
N

(62) (63, 87%)

10 mol % Pd(tfa)2
3.0 equiv Cu(OAc)2

O
O

(30 equiv)

H
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10 mol % 3-nitropyridine

microwave
140 ºC

 
 

Scheme 4.23: C2 Indole Arylation Through Oxidative Coupling.35  

N N

(64) (65, 87%)

10 mol % Pd(tfa)2
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O
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O
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 Finally, methodology has been developed that affords indole C–H arylation using 

aryl iodides and a AgOAc additive.37 Daugulis found that the combination of N-

methylindole 7,  5 mol % of Pd(OAc)2, 0.75 equiv of Ag2O and 1.5 equiv of o-

nitrobenzoic acid in DMF selectively provided the C2 arylation product in good yield at 

room temperature (Scheme 4.24). The authors propose that this reaction proceeds 

through a Pd0/II catalytic cycle with the Ag+ acting to remove I– from PdII thereby 

rendering it a more electrophilic catalyst for functionalization. 
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Scheme 4.24: C2 Indole Arylation Using Ag+ and Ar–I.37  

N N

(7) (1, 92%)

5 mol % Pd(OAc)2
0.75 equiv Ag2O
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4.10 Conclusions 

In summary we have developed a series of PdII catalyzed C–H arylation reactions, 

that employ [Ar–IIII–Ar]BF4 as terminal oxidant and are believed to proceed through a 

PdII/IV mechanism. The utility of this reaction has been demonstrated by the site selective 

C2 arylation of indoles. Additionally, we have achieved installation of a range of aryl 

groups with a broad functional group tolerance, which includes complimentary reactivity 

to Pd0/II catalytic cycles. Next, investigations led to successful generation of [Ar–IIII–Ar]+ 

reagents in situ, followed by selective arylation of indoles. This methodology was 

preliminarily extended to the functionalization of other oxygen and sulfur containing 

heterocycles. Finally, preliminary investigations have also shown that these reactions can 

be applied to the arylation of simple arenes. 

 

4.11 General Procedures and Materials and Methods 

General Procedures: NMR spectra were obtained on a Varian Inova 400 (399.96 MHz 

for 1H; 100.57 for 13C) spectrometer unless otherwise noted. 1H NMR chemical shifts are 

reported in parts per million (ppm) relative to TMS, with the residual solvent peak used 

as an internal reference. Multiplicities are reported as follows: singlet (s), doublet (d), 

doublet of doublets (dd), doublet of doublets of doublets (ddd), triplet of doublets (td), 

quartet (q), multiplet (m), and broad resonances (br). 

 

Materials and Methods: Substrates for products 1, 2, 10, 13, 15, 16, 20 and 21 were 

obtained from commercial sources and were used as received. Substrates for products 13, 

and 21 were prepared by N-methylation of the corresponding indoles.3 The Substrate for 

product 12 was prepared by reaction of 5-hydroxyindole with acetyl chloride (1.1 equiv) 

and Et3N (1.1 equiv) in CH2Cl2. Substrate 9 was prepared according to a literature 

procedure.38 Aryliodonium salts with Ar = Ph, m-CF3, p-F, p-Cl, p-Br, p-Me, o-Me, and 
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1-napthyl were prepared in two steps – (i) conversion of the aryl iodide to the 

corresponding diacetoxyiodoarene39 and (ii) reaction of ArI(OAc)2 with ArB(OH)2 in the 

presence of BF3•OEt2.40 The aryliodonium salt [(p-MeOC6H4)2I]BF4 was prepared by the 

reaction of anisole and trifluoromethanesulfonic acid with p-MeOC6H4I(OAc)2 according 

to a literature procedure.41 Boronic acids were purchased from commercial sources and 

used as received. Other palladium catalysts were obtained from commercial sources 

(Strem or Pressure Chemicals) and used as received. Solvents were obtained from Fisher 

Chemical and used without further purification. Flash chromatography was performed on 

EM Science silica gel 60 (0.040-0.063 mm particle size, 230-400 mesh) and thin layer 

chromatography was performed on Merck TLC plates pre-coated with silica gel 60 F254. 

Control reactions (in the absence of Pd catalyst) were run for each substrate and generally 

showed no reaction under our standard conditions. GC yields were calculated from the 

peak area of the product divided by the total peak area of starting material and products, 

unless otherwise noted. 

 

N

 
Product 1: 1-Methylindole (131.2 mg, 1.00 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(26.5 mg, 0.05 mmol, 0.05 equiv) were dissolved in AcOH (10 mL), and the resulting 

solution was stirred at 25 oC for ~5 min. [Ph2I]BF4 (735.4 mg, 2.0 mmol, 2.0 equiv) was 

added, and the reaction was stirred for 18 h at 25 ºC. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer 

was dried with MgSO4, concentrated, and the product was purified by chromatography on 

silica gel (Rf = 0.33 in 96% hexanes/4% EtOAc). The product was obtained as a white 

solid (178 mg, 86% yield, average of three runs). Mp = 99-102 ºC. 1H NMR (500 MHz, 

CDCl3): δ 7.65 (d, J = 7.9 Hz, 1H), 7.53-7.51 (multiple peaks, 2H), 7.48 (t, J = 8.0 Hz, 

2H), 7.43-7.39 (m, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.26 (td, J = 7.6, 1.4 Hz, 1H), 7.15 (td, 

J = 7.9, 1.0 Hz, 1H), 6.57 (s, 1H), 3.76 (s, 3H). 13C{1H} NMR (125 MHz, CDCl3): δ 
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141.7, 138.5, 132.9, 129.5, 128.6, 128.1, 127.9, 121.8, 120.6, 120.0, 109.8, 101.8, 31.3. 

Anal. Calcd for C15H13N: C, 86.92, H, 6.32, N, 6.76; Found; C, 86.87, H, 6.54, N, 6.71. 

HRMS electrospray (m/z): [M+] calcd for C15H13N, 207.1048; found, 207.1044. 

 

N

N
O

 
Product 9: 1-Methyl-5-morpholine-indole (175.0 mg, 0.81 mmol, 1.0 equiv) and 

IMesPd(OAc)2•H2O (42.8 mg, 0.81 mmol, 0.1 equiv) were dissolved in AcOH (8.1 mL), 

and the resulting solution was stirred at 25 ºC for ~5 min. [Ph2I]BF4 (893.3 mg, 2.43 

mmol, 3.0 equiv) was added, and the reaction was stirred for 15 h at 60 ºC. The reaction 

mixture was filtered through a plug of Celite and then evaporated to dryness. The 

resulting oil was dissolved in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 

30 mL). The organic layer was dried with MgSO4, concentrated, and the product was 

purified by chromatography on silica gel (Rf = 0.25 in 70% hexanes/30% EtOAc). The 

product was obtained as a white solid (204 mg, 86% yield). Mp = 143-145 ºC. 1H NMR 

(400 MHz, C6D6): δ 7.27-7.32 (multiple peaks, 2H), 6.93-7.16 (multiple peaks, 6H), 6.57 

(s, 1H), 3.63-3.67 (multiple peaks, 4H), 3.12 (s, 3H), 2.84-2.89 (multiple peaks, 4H). 
13C{1H} NMR (100 MHz, C6D6): δ 146.9, 141.8, 134.9, 133.6, 129.5, 129.2, 128.7, 

115.3, 110.3, 107.9, 102.1, 67.4, 52.3, 30.7. Two carbon resonances are coincidentally 

overlapping. Anal. Calcd for C19H20N2O: C, 78.05, H, 6.89, N, 9.58; Found; C, 78.18, H, 

7.03, N, 9.61. HRMS electrospray (m/z): [M+] calcd for C19H20N2O, 292.1576; found, 

292.1575. Small amounts of product (~7% by GC) were observed in the control reaction 

(in the absence of Pd catalyst), which is believed to result from traces of palladium in the 

starting material (which was prepared via Pd catalyzed cross coupling). 

 

H
N

MeO
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Product 10: 5-Methoxyindole (147.2 mg, 1.00 mmol, 1.0 equiv) and 

IMesPd(OAc)2•H2O (26.5 mg, 0.05 mmol, 0.05 equiv) were dissolved in AcOH (10 mL), 

and the resulting solution was stirred at 25 ºC for ~5 min. [Ph2I]BF4 (735.4 mg, 2.00 

mmol, 2.0 equiv) was added, and the reaction was stirred for 15 h at 25 ºC. The reaction 

mixture was filtered through a plug of Celite and then evaporated to dryness. The 

resulting oil was dissolved in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 

30 mL). The organic layer was dried with MgSO4, concentrated, and the product was 

purified by chromatography on silica gel (Rf = 0.28 in 90% hexanes/10% EtOAc). The 

product was obtained as white solid (130 mg, 58% yield). Mp = 166-169 ºC. δ 1H NMR 

(400 MHz, CDCl3): δ 8.24 (br s, 1H), 7.65 (d, J = 7.2 Hz, 2H), 7.41-7.47 (multiple peaks, 

2H), 7.25-7.36 (multiple peaks, 2H), 7.11 (d, J = 2.4 Hz, 1H), 6.88 (dd, J = 8.8, 2.4 Hz, 

1H), 6.77 (d, J = 1.9 Hz, 1H), 3.88 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 154.4, 

138.5, 132.4, 131.9, 129.7, 129.0, 127.6, 125.0, 112.6, 111.6, 102.2, 99.8, 55.8. Anal. 

Calcd for C15H13NO: C, 80.69, H, 5.87, N, 6.27; Found; C, 80.61, H, 5.93, N, 6.19. 

HRMS electrospray (m/z): [M+] calcd for C15H13NO, 223.0997; found, 223.0996. 

 

H
N

HO

 
Product 11: 5-hydroxyindole (100.0 mg, 0.75 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(19.9 mg, 0.037 mmol, 0.05 equiv) were dissolved in AcOH (7.5 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [Ph2I]BF4 (552 mg, 1.50 mmol, 2.0 equiv) was 

added, and the reaction was stirred for 15 h at 25 ºC. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer 

was dried with MgSO4, concentrated, and the product was purified by chromatography on 

silica gel (Rf = 0.24 in 70% hexanes/30% EtOAc). The product was obtained as white 

solid (62 mg, 40% yield). δ 1H NMR (400 MHz, DMSO-d6): δ 11.2 (br s, 1H), 8.67 (br s, 

1H), 7.80 (d, J = 7.2 Hz, 2H), 7.43 (t, J = 7.4 Hz, 2H), 7.28 (t, J = 7.4 Hz, 2H), 7.18 (d, J 

= 8.7 Hz, 1H), 6.83 (d, J = 2.3 Hz, 1H), 6.71 (d, J = 1.5 Hz, 1H), 6.61 (dd, J = 8.6, 2.3 
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3H). 13C{1H} NMR (100 MHz, DMSO-d6): δ 150.9, 137.8, 132.4, 131.7, 129.4, 128.8, 

127.1, 124.7, 112.0, 111.6, 103.8, 98.0. 

 

H
N

AcO

 
Product 12: 5-Acetoxyindole (100.0 mg, 0.57 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(15.1 mg, 0.028 mmol, 0.05 equiv) were dissolved in AcOH (5.7 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [Ph2I]BF4 (419.7 mg, 1.14 mmol, 2.0 equiv) was 

added, and the reaction was stirred for 15 h at 25 ºC. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer 

was dried with MgSO4, concentrated, and the product was purified by chromatography on 

silica gel (Rf = 0.22 in 78% hexanes/22% EtOAc). The product was obtained as a light 

orange crystalline solid (101 mg, 71% yield). Mp = 170.7-172.2 ºC. 1H NMR (500 MHz, 

CDCl3): δ 8.39 (br s, 1H), 7.65 (d, J = 7.3 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.35-7.30 

(multiple peaks, 3H), 6.89 (dd, J = 8.6, 2.2 Hz, 1H), 6.79 (s, 1H), 2.33 (s, 3H). 13C{1H} 

NMR (125 MHz, CDCl3): δ 170.6, 144.6, 139.3, 134.7, 132.1, 129.5, 129.1, 127.9, 125.2, 

116.3, 112.6, 111.4, 100.1, 21.2. IR (KBr): 3392, 1742, 1371 cm–1. HRMS electrospray 

(m/z): [M+] calcd for C16H13NO2, 251.0946; found, 251.0938. 

 

H
N

O2N

 
Product 13: 1-Methyl-5-nitroindole (150.0 mg, 0.85 mmol, 1.0 equiv) and 

IMesPd(OAc)2•H2O (22.5 mg, 0.043 mmol, 0.05 equiv) were dissolved in AcOH (8.5 

mL), and the resulting solution was stirred at 25 ºC for ~5 min. [Ph2I]BF4 (1.88 g, 5.11 

mmol, 6.0 equiv) was added, and the reaction was stirred for 24 h at 60 ºC. The reaction 
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mixture was filtered through a plug of Celite and then evaporated to dryness. The 

resulting oil was dissolved in CH2Cl2 950 mL) and extracted with aqueous NaHCO3 (2 x 

30 mL). The organic layer was dried with MgSO4, concentrated, and the product was 

purified by chromatography on silica gel (Rf = 0.2 in 92% hexanes/8% ethyl acetate). The 

product was obtained as a yellow powder (150 mg, 70% yield). Mp = 180-183 ºC. 1H 

NMR (500 MHz, CDCl3): δ 8.59 (d, J = 2.2 Hz, 1H), 8.16 (dd, J = 9.0, 2.2 Hz, 1H), 7.52-

7.45 (multiple peaks, 5H), 7.38 (d, J = 9.0 Hz, 1H), 6.73 (s, 1H), 3.81 (s, 3H). 13C{1H} 

NMR (100 MHz, CDCl3): δ 144.8, 141.8, 140.9, 131.4, 129.3, 128.8, 128.7, 127.1, 117.6, 

117.3, 109.4, 103.8, 31.6. Anal. Calcd for C15H12N2O2: C, 71.42, H, 4.79, N, 11.10; 

Found; C, 71.63, H, 4.88, N, 10.85. HRMS electrospray (m/z): [M+] calcd for 

C15H12N2O2, 252.0899; found, 252.0894. 

 

H
N

Br

 
Product 14: 5-Bromoindole (117.6 mg, 0.60 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(15.8 mg, 0.03 mmol, 0.05 equiv) were dissolved in AcOH (6 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [Ph2I]BF4 (441 mg, 1.20 mmol, 2.0 equiv) was 

added, and the reaction was stirred for 15 h at 60 ºC. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer 

was dried with MgSO4, concentrated, and the product was purified by chromatography on 

silica gel (Rf = 0.13 in 90% hexanes/10% ethyl acetate). The product was obtained as a 

white solid (121 mg, 74% yield). Mp = 193-196 ºC. 1H NMR (300 MHz, DMSO-d6): δ 

11.75 (s, 1H), 7.86 (d, J = 7.2 Hz, 2H), 7.71 (d, J = 1.9 Hz, 1H), 7.44-7.50 (multiple 

peaks, 2H), 7.31-7.38 (multiple peaks, 2H), 7.2 (dd, J = 8.6, 2.0 Hz, 1H), 6.89 (d, J = 1.4 

Hz, 1H). 13C{1H} NMR (100 MHz, DMSO-d6): δ 139.1, 135.7, 131.5, 130.4, 128.9, 

127.8, 125.1, 123.9, 122.0, 113.1, 111.8, 98.2. Anal. Calcd for C14H10NBr: C, 61.79, H, 

3.70, N, 5.15; Found; C, 61.86, H, 3.82, N, 5.10. HRMS electrospray (m/z): [M+] calcd 

for C14H10NBr, 270.9997; found, 270.9993. 
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H
N

 
Product 2: Indole (117.2 mg, 1.00 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O (26.5 mg, 

0.05 mmol, 0.05 equiv) were dissolved in AcOH (10 mL), and the resulting solution was 

stirred at 25 ºC for ~5 min. [Ph2I]BF4 (735.4 mg, 2.00 mmol, 2.0 equiv) was added, and 

the reaction was stirred for 15 h at 25 ºC. The reaction mixture was filtered through a 

plug of Celite and then evaporated to dryness. The resulting oil was dissolved in CH2Cl2 

(50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer was dried 

with MgSO4, concentrated, and the product was purified by chromatography on silica gel 

(Rf = 0.1 in 96% hexanes/4% EtOAc). The product was obtained as a white solid (155.9 

mg, 81% yield). Mp = 188-189 ºC. 1H NMR (400 MHz, CDCl3): δ 8.31 (br s, 1H), 7.65-

7.69 (multiple peaks, 3H), 7.39-7.49 (multiple peaks, 3H), 7.35 (t, J = 7.4 Hz, 1H), 7.23 

(ddd, J = 7.8, 7.0, 1.2 Hz, 1H), 7.16 (ddd, J = 7.7, 7.0, 1.0 Hz, 1H), 6.86 (s, 1H). 13C{1H} 

NMR (100 MHz, CDCl3): δ 137.8, 136.7, 132.2, 129.2, 129.0, 127.7, 125.1, 122.3, 120.6, 

120.2, 110.9, 99.9. Anal. Calcd for C14H11N: C, 87.01, H, 5.74, N, 7.25; Found; C, 87.03, 

H, 5.71, N, 7.16. HRMS electrospray (m/z): [M+] calcd for C14H11N, 193.0891; found, 

193.0892. 

 

N

 
Product 15: 1,3-Dimethylindole (150.0 mg, 1.03 mmol, 1.0 equiv) and 

IMesPd(OAc)2•H2O (27.3 mg, 0.05 mmol, 0.05 equiv) were dissolved in AcOH (10 mL), 

and the resulting solution was stirred at 25 ºC for ~5 min. [Ph2I]BF4 (759.7 mg, 2.00 

mmol, 2.0 equiv) was added, and the reaction was stirred for 15 h at 25 ºC. The reaction 

mixture was filtered through a plug of Celite and then evaporated to dryness. The 

resulting oil was dissolved in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 
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30 mL). The organic layer was dried with MgSO4, concentrated, and the product was 

purified by chromatography on silica gel (Rf = 0.2 in 98% hexanes/2% EtOAc). The 

product was obtained as a light yellow viscous oil (203 mg, 89% yield). 1H NMR (500 

MHz, CDCl3): δ 7.61 (d, J = 7.84 Hz, 1H), 7.50 (t, J = 7.93 Hz, 2H), 7.44-7.40 (multiple 

peaks, 3H), 7.34 (d, J = 8.2 Hz, 1H), 7.28-7.25 (m, 1H), 7.16 (td, J = 7.0, 1.0 Hz, 1H), 

3.62 (s, 3H), 2.29 (s, 3H). 13C{1H} NMR (125 MHz, CDCl3): δ 137.6, 137.2, 132.1, 

130.6, 128.4, 128.3, 127.7, 121.7, 119.1, 118.8, 109.2, 108.5, 30.9, 9.3. Anal. Calcd for 

C16H15N: C, 86.84, H, 6.83, N, 6.33; Found; C, 86.71, H, 6.92, N, 6.33. HRMS 

electrospray (m/z): [M+] calcd for C16H15N, 221.1204; found, 221.1202. 

 

N

 
Product 16: 2-Methylindole (150 mg, 1.03 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(27.3 mg, 0.05 mmol, 0.05 equiv) were dissolved in AcOH (10 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [Ph2I]BF4 (758 mg, 2.07 mmol, 2.0 equiv) was 

added, and the reaction was stirred for 15 h at 25 ºC. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was taken up in 

CH2Cl2 and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer was dried 

with MgSO4, concentrated, and the product was purified by chromatography on silica gel 

in 80% hexanes/20% benzene (Rf = 0.25) followed by a second column in 97.5% 

hexanes/2.5% EtOAc (Rf = 0.18). The two columns were required to remove a high 

molecular weight side product (Rf = 0.18 in 80% hexanes/20% benzene) as well as 

unreacted starting material (Rf = 0.22 in 97.5% hexanes/2.5% EtOAc). The product was 

obtained as a white solid (66 mg, 29% yield). Mp = 108.9-111.2 ºC. 1H NMR (400 MHz, 

CDCl3) δ 7.71 (d, J = 7.9 Hz, 1H), 7.55-7.49 (multiple peaks, 4H), 7.37-7.33 (multiple 

peaks, 2H), 7.25 (t, J = 8.1 Hz, 1H), 7.15 (t, J = 7.9 Hz, 1H), 3.77 (s, 3H), 2.53 (s, 3H). 
13C{1H} NMR (125 MHz, CDCl3): δ 136.5, 135.7, 133.3, 129.7, 128.4, 126.9, 125.6, 

121.1, 119.6, 118.7, 113.9, 108.7, 29.6, 11.0. HRMS electrospray (m/z): [M+] calcd for 

C16H15N, 221.1204; found, 221.1201. 
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Product 20: Pyrrole (939 mg, 14.0 mmol, 10 equiv) and IMesPd(OAc)2•H2O (37.0 mg, 

0.07 mmol, 0.05 equiv) were dissolved in AcOH (13 mL), and the resulting solution was 

stirred at 25 ºC for ~5 min. [Ph2I]BF4 (515 mg, 1.40 mmol, 1.0 equiv) was added, and the 

reaction was stirred for 15 h at 25 ºC. The reaction mixture was filtered through a plug of 

Celite and then evaporated to dryness. The resulting oil was dissolved in CH2Cl2 (50 mL) 

and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer was dried with 

MgSO4, concentrated, and the product was purified by chromatography on silica gel (Rf = 

0.20 in 95% hexanes/5% EtOAc). The product was obtained as a white solid (137 mg, 

69% yield). Mp = 125-128 ºC. 1H NMR (400 MHz, CDCl3): δ 8.45 (br s, 1H), 7.48 (d, J 

= 7.3 Hz, 2H), 7.34-7.40 (multiple peaks, 2H), 7.21 (t, J = 7.3 Hz, 1H), 6.88 (m, 1H), 

6.54 (m, 1H), 6.31 (td, J = 3.5, 2.6 Hz, 1H). 13C{1H} NMR (100 MHz, DMSO-d6): δ 

132.7, 132.0, 128.8, 126.1, 123.8, 118.8, 110.0, 105.9. HRMS electrospray (m/z): [M+] 

calcd for C10H9N, 143.0735; found, 143.0735. 
 

N

 
Product 21: 1-Methylpyrrole (1.136 g, 14.0 mmol, 10 equiv) and IMesPd(OAc)2•H2O 

(37.0 mg, 0.07 mmol, 0.05 equiv) were dissolved in AcOH (14 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [Ph2I]BF4 (515 mg, 1.40 mmol, 1.0 equiv) was 

added, and the reaction was stirred for 15 h at 25 ºC. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer 

was dried with MgSO4, concentrated, and the product was purified by chromatography on 

silica gel (Rf = 0.27 in 82% hexanes/18% benzene). The product was obtained as a white 
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solid (148 mg, 67% yield, 0.94 mmol) which was 96% pure by GC analysis. This product 

was inseparable from 4% of the corresponding diphenylated product 1-methyl-2,5-

diphenylindole (6.6 mg, 0.028 mmol). Mp = 45-48 ºC. 1H NMR (400 MHz, CDCl3): δ 

7.37-7.50 (multiple peaks, 4H), 7.27-7.34 (m, 1H), 6.72 (t, J = 2.0 Hz, 1H), 6.19-6.26 

(multiple peaks, 2H), 3.67 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): ! 134.5, 133.3, 

128.5, 128.2, 126.6, 123.6, 108.6, 107.7, 34.9. HRMS electrospray (m/z): [M+] calcd for 

C11H11N, 157.0891; found, 157.0888. 
 

N
CF3

 
Product 22: 1-Methylindole (78.7 mg, 0.60 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(15.9 mg, 0.03 mmol, 0.05 equiv) were dissolved in AcOH (6 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [(m-CF3C6H5)2I]BF4 (604.8 mg, 1.2 mmol, 2.0 

equiv) was added, and the reaction was stirred for 15 h at 25 ºC. The reaction mixture 

was filtered through a plug of Celite and then evaporated to dryness. The resulting oil 

was dissolved in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The 

organic layer was dried with MgSO4, concentrated, and the product was purified by 

chromatography on silica gel (Rf = 0.26 in 90% hexanes/10% benzene). The product was 

obtained as a pale yellow oil (106 mg, 64% yield). 1H NMR (400 MHz, CDCl3): δ 7.82 

(s, 1H), 7.67-7.74 (multiple peaks, 3H), 7.59-7.65 (multiple peaks, 1H), 7.39-7.43 (m, 

1H), 7.32 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.21 (ddd, J = 7.9, 7.0, 1.1 Hz, 1H), 6.66 (s, 

1H), 3.78 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 139.7, 138.6, 133.6, 132.4 (q, 
4JCF3 = 1.2 Hz), 131.0 (q, 2JCF3 = 32 Hz), 129.0, 127.8, 125.9 (q, 3JCF3 = 3.9 Hz), 124.4 

(q, 3JCF3 = 3.8 Hz), 124.0 (q, 1JCF3 = 273 Hz), 122.2, 120.7, 120.1, 109.7, 102.6, 31.1. 

Anal. Calcd for C16H12F3N: C, 69.81, H, 4.39, N, 5.09; Found; C, 69.89, H, 4.46, N, 5.05. 

HRMS electrospray (m/z): [M+] calcd for C16H12F3N, 275.0922; found, 275.0920. 
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Product 23: 1-Methylindole (131.2 mg, 1.00 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(26.5 mg, 0.05 mmol, 0.05 equiv) were dissolved in AcOH (10 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [(p-FC6H5)2I]BF4 (808.0 mg, 2.00 mmol, 2.0 

equiv) was added, and the reaction was stirred for 15 h at 25 ºC. The reaction mixture 

was filtered through a plug of Celite and then evaporated to dryness. The resulting oil 

was dissolved in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The 

organic layer was dried with MgSO4, concentrated, and the product was purified by 

chromatography on silica gel (Rf = 0.43 in 90% hexanes/10% benzene). The product was 

obtained as a light orange solid (180 mg, 80% yield). Mp = 119-122 ºC. 1H NMR (400 

MHz, CD3OD): δ 7.51-7.57 (multiple peaks, 3H), 7.36 (d, J = 8.3 Hz, 1H), 7.15-7.25 

(multiple peaks, 3H), 7.05 (ddd, J = 7.8, 7.0, 1.0 Hz, 1H), 6.48 (s, 1H), 3.71 (s, 3H). 
13C{1H} NMR (100 MHz, CDCl3): δ 162.4 (d, 1JF = 247 Hz), 140.3, 138.2, 130.9 (d, 3JF 

= 7.4 Hz), 128.8 (d, 4JF = 4.4 Hz), 127.8, 121.7, 120.4, 119.9, 115.4 (d, 2JF = 22 Hz), 

109.6, 101.6, 30.9. Anal. Calcd for C15H12FN: C, 79.98, H, 5.37, N, 6.22; Found; C, 

80.33, H, 5.43, N, 6.26. HRMS electrospray (m/z): [M+] calcd for C15H12FN, 225.0954; 

found, 225.0953. 

 

N
Cl

 
Product 24: 1-Methylindole (131.2 mg, 1.00 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(26.5 mg, 0.05 mmol, 0.05 equiv) were dissolved in AcOH (10 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [(p-ClC6H5)2I]BF4 (873.6 mg, 2.00 mmol, 2.0 

equiv) was added, and the reaction was stirred for 15 h at 25 ºC. The reaction mixture 

was filtered through a plug of Celite and then evaporated to dryness. The resulting oil 

was dissolved in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The 
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organic layer was dried with MgSO4, concentrated, and the product was purified by 

chromatography on silica gel (Rf = 0.25 in 98% hexanes/2% ethyl acetate). The product 

was obtained as white solid (219 mg, 90% yield). Mp = 115-118 ºC. 1H NMR (400 MHz, 

CDCl3): δ 7.65 (d, J = 7.8 Hz, 1H), 7.38-7.45 (m, 4H), 7.35 (d, J = 7.9 Hz, 1H), 7.27 

(ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.17 (ddd, J = 7.9, 6.9, 1.1 Hz, 1H), 6.56 (s, 1H), 3.69 (s, 

3H). 13C{1H} NMR (100 MHz, CDCl3): δ 140.1, 138.4, 133.8, 131.2, 130.4, 128.7, 

127.8, 121.9, 120.5, 120.0, 109.6, 101.9, 31.1. Anal. Calcd for C15H12ClN: C, 74.53, H, 

5.00, N, 5.79; Found; C, 74.23, H, 5.00, N, 5.61. HRMS electrospray (m/z): [M+] calcd 

for C15H12ClN, 241.0658; found, 241.0655. 

 

(X)

H
N

Br

 
Product 25: Indole (88.1 mg, 0.75 mmol, 1.00 equiv) and IMesPd(OAc)2•H2O (19.8 mg, 

0.037 mmol, 0.05 equiv) were dissolved in AcOH (7.5 mL), and the resulting solution 

was stirred at 25 ºC for ~5 min. [(p-BrC6H5)2I]BF4 (788.6 mg, 1.50 mmol, 2.0 equiv) was 

added, and the reaction was stirred for 15 h at 80 ºC. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer 

was dried with MgSO4, concentrated, and the product was purified by chromatography on 

silica gel (Rf = 0.13 in 95% hexanes/5% ethyl acetate). The product was obtained as a 

white solid (135 mg, 66% yield). Mp = 208-212 ºC. 1H NMR (400 MHz, DMSO-d6): δ 

11.59 (s, 1H), 7.82 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 7.9 Hz, 1H), 

7.40 (d, J = 8.0 Hz, 1H), 7.11 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.00 (ddd, J = 7.8, 7.0, 1.0 

Hz, 1H), 6.94 (d, J = 0.9 Hz, 1H). 13C{1H} NMR (100 MHz, DMSO-d6): δ 137.1, 136.3, 

131.7, 131.4, 128.4, 126.8, 121.8, 120.2, 120.1, 119.4, 111.3, 99.2. Anal. Calcd for 

C14H10BrN: C, 61.79, H, 3.70, N, 5.15; Found; C, 61.59, H, 3.77, N, 5.07. HRMS 

electrospray (m/z): [M+] calcd for C14H10BrN, 270.9997; found, 271.0002. 
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Product 26: 1-Methylindole (131.2 mg, 1.00 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(26.5 mg, 0.05 mmol, 0.05 equiv) were dissolved in AcOH (10 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [(p-CH3C6H5)2I]BF4 (791.9 mg, 2.00 mmol, 2.0 

equiv) was added, and the reaction was stirred for 15 h at 25 ºC. The reaction mixture 

was filtered through a plug of Celite and then evaporated to dryness. The resulting oil 

was dissolved in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The 

organic layer was dried with MgSO4, concentrated, and the product was purified by 

chromatography on silica gel (Rf = 0.21 in 90% hexanes/10% benzene). The product 

obtained was a white solid (155 mg, 70% yield). Mp = 96-98 ºC. 1H NMR (400MHz, 

CDCl3): δ 7.65 (d, J = 7.8Hz, 1H), 7.43 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 1H), 

7.31-7.24 (multiple peaks, 3H), 7.16 (td, J = 8.0, 1.0 Hz, 1H), 6.55 (s, 1H), 3.76 (s, 3H), 

2.45 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 141.5, 138.2, 137.6, 129.8, 129.2, 

129.1, 127.9, 121.4, 120.3, 119.7, 109.5, 101.2, 31.0, 21.2. Anal. Calcd for C16H15N: C, 

86.84, H, 6.83, N, 6.33; Found; C, 86.69, H, 6.89, N, 6.40. HRMS electrospray (m/z): 

[M+] calcd for C16H15N, 221.1204; found, 221.1197. 

 

H
N

OMe

 
Product 27: 1-Methylindole (111 mg, 0.84 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(22.3 mg, 0.042 mmol, 0.05 equiv) were dissolved in AcOH (8.5 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [(p-OMeC6H5)2I]BF4 (721 mg, 1.68 mmol, 2.0 

equiv) was added, and the reaction was stirred for 15 h at 60 ºC. The reaction mixture 

was filtered through a plug of Celite and then evaporated to dryness. The resulting oil 

was dissolved in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The 

organic layer was dried with MgSO4, concentrated, and the product was purified by 
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chromatography on silica gel (Rf = 0.23 in 70% hexanes/30% benzene). The product was 

obtained as a light brown solid (161 mg, 80% yield). Mp = 117-120 ºC. 1H NMR (400 

MHz, CDCl3): δ 7.76 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.2 Hz, 

1H), 7.36 (ddd, J = 7.9, 7.0, 1.1 Hz, 1H), 7.27 (ddd, J = 7.7, 6.9, 1.0 Hz, 1H), 7.10 (d, J = 

8.8 Hz, 2H), 6.63 (s, 1H), 3.95 (s, 3H), 3.80 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): 

δ 59.3, 141.3, 138.1, 130.5, 127.9, 125.1, 121.3, 120.2, 119.7, 113.9, 109.5, 100.9, 55.2, 

30.9. Anal. Calcd for C16H15NO: C, 80.98, H, 6.37, N, 5.90; Found; C, 80.95, H, 6.37, N, 

5.92. HRMS electrospray (m/z): [M+] calcd for C16H15NO, 237.1154; found, 237.1151. 

 

N

 
Product 28: 1-Methylindole (116 mg, 0.88 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O 

(23.4 mg, 0.044 mmol, 0.05 equiv) were dissolved in AcOH (8.5 mL), and the resulting 

solution was stirred at 25 ºC for ~5 min. [(o-MeC6H5)2I]BF4 (700 mg, 1.77 mmol, 2.0 

equiv) was added, and the reaction was stirred for 15 h at 60 ºC. The reaction mixture 

was filtered through a plug of Celite and then evaporated to dryness. The resulting oil 

was dissolved in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The 

organic layer was dried with MgSO4, concentrated, and the product was purified by 

chromatography on silica gel (Rf = 0.17 in 95% hexanes/5% benzene). The product was 

obtained as a light orange solid (121 mg, 62% yield). Mp = 90-92 ºC. 1H NMR (400 

MHz, CDCl3): δ 7.66 (d, J = 7.8 Hz, 1H), 7.23-7.40 (multiple peaks, 6H), 7.16 (ddd, J = 

7.8, 6.9, 1.0 Hz, 1H), 6.45 (s, 1H), 3.53 (s, 3H), 2.22 (s, 3H). 13C{1H} NMR (100 MHz, 

CDCl3): δ 140.5, 138.0, 137.3, 132.5, 131.1, 130.0, 128.6, 128.0, 125.5, 121.2, 120.4, 

119.6, 109.4, 101.5, 30.3, 20.0. Anal. Calcd for C16H15N: C, 86.84, H, 6.83, N, 6.33; 

Found; C, 86.57, H, 6.87, N, 6.26. HRMS electrospray (m/z): [M+] calcd for C16H15N, 

221.1204; found, 221.1198. 
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H
N

 
Product 29: Indole (94 mg, 0.80 mmol, 1.0 equiv) and IMesPd(OAc)2•H2O (21.2 mg, 

0.04 mmol, 0.05 equiv) were dissolved in AcOH (8.0 mL) and the resulting solution was 

stirred at 25 ºC for ~5 min. [(1-Naphthyl)2I]BF4 (749 mg, 1.60 mmol, 2.0 equiv) was 

added, and the reaction was stirred for 15 h at 60 ºC. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer 

was dried with MgSO4, concentrated, and the product was purified by chromatography on 

silica gel (Rf = 0.20 in 95% hexanes/5% ethyl acetate). The product was obtained as a 

white solid (131 mg, 67% yield). Mp = 99-102 °C. 1H NMR (400 MHz, DMSO-d6): δ 

11.59 (s, 1H), 8.31-8.37 (m, 1H), 7.96-8.05 (multiple peaks, 2H), 7.72 (dd, J = 7.1, 1.2 

Hz, 1H), 7.56-7.65 (multiple peaks, 4H), 7.47 (d, J = 8.1 Hz, 1H), 7.16 (ddd, J = 8.0, 7.0, 

1.2 Hz, 1H), 7.07 (ddd, J = 7.8, 7.0, 1.0 Hz, 1H), 6.75 (d, J = 2.1 Hz, 1H). 13C{1H} NMR 

(100 MHz, CDCl3): δ 136.7, 136.4, 133.5, 130.9, 130.7, 128.3, 128.0, 127.2, 126.6, 

126.0, 125.4, 121.3, 120.0, 119.2, 111.3, 102.4. Note: two of the 13C peaks for this 

compound appear to be coincidentally overlapping. HRMS electrospray (m/z): [M+] 

calcd for C18H13N, 243.1048; found, 243.1042. 

 

O

 
Product 42: Benzofuran (118.1 mg, 1.0 mmol, 1.0 equiv), [Ph–IIII–Ph]BF4 (735.4 mg, 

2.0 mmol, 2.0 equiv) and Pd(tfa)2 (16.6 mg, 0.05 mmol, 0.05 equiv) were combined in 

AcOH (10 mL) then the vial was then sealed with a Teflon-lined cap, and heated to 100 

ºC for 12 hours. The reaction mixture was filtered through a plug of Celite and rinsed 

with CH2Cl2, and the solvent was then removed under vacuum. The residue was taken up 

in CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 mL). The organic layer 
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was then dried over MgSO4, filtered, and concentrated onto silica gel for purification by 

column chromatography (125.3 mg, 65% yield, Rf = 0.26 in 99% hexanes/1% CH2Cl2). 
1H NMR (CDCl3): δ 7.84 (d, J = 7.6, 2H), 7.56 (d, J = 7.6 , 1H), 7.50 (d, J = 8 Hz, 1H), 

7.43 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 7.29-7.18 (multiple peaks, 2H), 7.01 (s, 

1H).  

 

S

 
Product 44: Benzothiophene (134.2 mg, 1.0 mmol, 1.0 equiv), [Ph–IIII–Ph]BF4 (735.4 

mg, 2.0 mmol, 2.0 equiv) and IMesPd(OAc)2•H2O (26.5 mg, 0.05 mmol, 0.05 equiv) 

were combined in nitrobenzene (10 mL) then the vial was then sealed with a Teflon-lined 

cap, and heated to 120 ºC for 12 hours. The reaction mixture was filtered through a plug 

of Celite and rinsed with CH2Cl2, and the solvent was then removed under vacuum. The 

residue was concentrated onto silica gel for purification by column chromatography and 

found to be 95% pure by gas chromatography (100.7 mg, 65% yield, Rf = 0.45 in 100% 

hexanes). 1H NMR (CDCl3): δ 7.97-7.90 (multiple peaks, 2H), 7.62-7.59 (multiple peaks, 

2H), 7.52-7.46 (multiple peaks, 2H), 7.46-7.38 (multiple peaks 4H). 1H NMR (d6-

acetone): δ 8.20-7.99 (multiplet, 1H), 7.90-7.96 (multiplet, 1H), 7.64-7.59 (multiple 

peaks, 3H) 7.51 (t, J = 7.6, 2H), 7.46-7.39 (multiple peaks, 3H). 13C{1H} NMR (d6-

acetone): δ 141.57, 138.65, 138.57, 136.70, 129.60, 129.34, 128.73, 125.33, 125.27, 

124.61, 123.79, 123.45. 

 

In Situ Oxidant Gerneration: 

 

General Procedure for in situ Oxidant Generation for 1 and 26. Pd(OAc)2 (8.5 mg, 

0.04 mmol, 0.05 equiv), ArI(OAc)2 (1.52 mmol, 2 equiv) and ArB(OH)2 (1.52 mmol, 2 

equiv) were combined in AcOH (7.6 mL). The resulting mixture was stirred for 15 min at 

room temperature. 1-Methylindole (100 mg, 0.76 mmol, 1 equiv) was then added and the 

reaction was stirred for 12 h at room temperature. The reactions were worked up and 
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purified as described above for products 1 and 26 to afford the corresponding 2- 

arylindoles in 80% and 81% isolated yields, respectively. 

 

General Procedure for in situ Oxidant Generation for 24. Pd(OAc)2 (8.5 mg, 0.04 

mmol, 0.05 equiv), p-ClC6H5I(OAc)2 (1.09 g, 3.05 mmol, 4 equiv) and p-ClC6H5B(OH)2 

(477 mg, 3.05 mmol, 4 equiv) were combined in AcOH (7.6 mL). The resulting mixture 

was stirred for 15 min at room temperature. 1-Methylindole (100 mg, 0.76 mmol, 1 

equiv) was then added and the reaction was stirred for 12 h at room temperature. The 

reaction was worked up and purified as described above for product 24, to afford the 

corresponding product in 67% isolated yield. 

 

General Procedure for in situ Oxidant Generation with MesI(OAc)2. Pd(OAc)2 (1.7 

mg, 0.008 mmol, 0.05 eq), MesI(OAc)2 (114 mg, 0.31 mmol, 2.0 equiv) and ArB(OH)2 

(0.31 mmol, 2.0 equiv) were combined in AcOH (1.56 mL), and the resulting mixture 

was stirred for 15 min at room temperature. 1-Methylindole (20.5 mg, 0.16 mmol, 1 

equiv) was then added and the reaction was stirred for 12 h at room temperature. The 

reactions were analyzed by GC, and yields were determined by integration relative to an 

internal standard. Products 1, 24 and 26, were obtained in 44%, 39% and 62% GC yields 

respectively. 

 

N S

 
Product 39: Iodomesitylene diacetate (728.4 mg, 2.0 mmol, 2.0 equiv), and 3-thiophene 

boronic acid (256.0 mg, 2.0 mmol, 2.0 equiv) were combined in AcOH (10 mL) and 

stirred for 15 minutes in a 20 mL scintillation vial. Then N-methylindole (131.2 mg, 1.0 

mmol, 1.0 eqiuv) and Pd(OAc)2 (11.2 mg, 0.05 mmol, 0.05 equiv) were added to the 

reaction mixture. The vial was then sealed with a Teflon-lined cap, and heated to 100 ºC 

for 12 hours. The reaction mixture was filtered through a plug of Celite and rinsed with 

CH2Cl2, and the solvent was then removed under vacuum. The residue was taken up in 
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CH2Cl2 and extracted with saturated aqueous NaHCO3 (3 × 30 mL). The organic layer 

was then dried over MgSO4, filtered, and concentrated onto silica gel for purification by 

column chromatography (43.9 mg, 20% yield, Rf = 0.13 in 100% hexanes. 1H NMR 

(CDCl3): δ 7.67 (d, J = 6.4 Hz, 1H), 7.46 (dd, J = 4.0, 2.0 Hz, 1H), 7.43 (dd, J = 2.0, 1.0 

Hz, 1H), 7.39 (d, J = 6.4 Hz, 1H), 7.33 (dd, J = 4.0, 1.0 Hz, 1H), 7.28 (td, J = 6.0, 1Hz, 

1H), 7.19 (t, J = 6.4 Hz, 1H), 6.64 (s, 1H), 3.82 (s, 3H). 13C{1H} NMR (CDCl3): δ 

138.04, 136.33, 133.33, 128.41, 127.75, 125.82, 123.16, 121.64, 120.37, 119.81, 109.42, 

101.40. 

 

N
F

F

 
Product 58: 5-fluoroindole (75.0 mg, 0.56 mmol, 1.0 equiv) and Pd(OAc)2 (6.3 mg, 

0.028 mmol, 0.05 equiv) were dissolved in AcOH (10 mL), and the resulting solution was 

stirred at 25 ºC for ~5 min. [(p-FC6H4)2I]BF4 (448.3 mg, 1.11 mmol, 2.0 equiv) was 

added, and the reaction was stirred for 15 h at 25 ºC. The reaction mixture was filtered 

through a plug of Celite and then evaporated to dryness. The resulting oil was dissolved 

in CH2Cl2 (50 mL) and extracted with aqueous NaHCO3 (2 x 30 mL). The organic layer 

was dried with MgSO4, concentrated, and the product was purified by chromatography on 

silica gel (Rf = 0.15 in 96% hexanes/4% EtOAc). The product was obtained as white 

solid (51.7 mg, 40% yield). δ 1H NMR (400 MHz, CD3CO2D): δ 7.90 (dd, J = 8.4, 5.2 

Hz, 2H), 7.34 (dd, J = 8.8, 4.4 Hz, 1H), 7.26-7.12 (multiple peaks, 3H), 6.89 (dt, J= 9.2, 

2.4, 1H), 6.76 (s, 1H). The resonance at 6.76 ppm for the C3 H disappears over time due 

to H/D exchange with the solvent.19F NMR (376 MHz, CD3CO2D): δ -115.60 (multiplet, 

1F), -125.92 (multiplet, 1F) 
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Chapter 5 
 
 
Initial Mechanistic Investigations of Palladium-Catalyzed C–H 

Arylation of Indole 
 
 

5.1 Background and Significance 
After exploring the scope of palladium-catalyzed indole C–H arylation (Chapter 

4), we next sought to investigate the mechanism of the reaction for two purposes. First, a 

mechanistic understanding could allow us to achieve a number of goals for indole 

arylation. These include: (1) understanding the differences between catalysts, (2) 

resolving mass balance issues, (3) employing other IIII reagents, (4) improving the in situ 

oxidant generation, and (5) achieving lower catalyst loadings. Second, insight gained 

from understanding the mechanism of indole arylation may lead to more efficient C–H 

arylation reactions of simple unactivated arenes such as naphthalene. 

We initially proposed a PdII/IV mechanism for this arylation reaction (Scheme 5.1) 

by analogy to mechanistic studies performed by Sames’ with a similar transformation 

proceeding through a Pd0/II catalytic cycle (Chapter 4).1 The proposed mechanism 

consists of the following: (i) palladation of the indole at PdII resulting in intermediate 1, 

(ii) oxidation of the electron rich σ-indole-PdII species 1 by [Ph–IIII–Ph]BF4 to afford 

PdIV intermediate 2, and (iii) C–C bond forming reductive elimination to generate the C2 

phenylated product and release PdII. 
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Scheme 5.1: Proposed Mechanism of Non-Directed Arylation with [Ph–IIII–Ph]BF4. 
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(1) (2)  

We now sought to obtain evidence in support of the proposed PdII/IV mechanism, 

by conducting several key kinetic experiments including reaction order studies, Hammett 

studies, and kinetic isotope effect studies. As described in Chapter 4, a dramatic 

difference in product yield and mass balance was observed between the two catalysts 

Pd(OAc)2 and IMesPd(OAc)2•H2O (3, IMes = 1,3-Bis(2,4,6-trimethylphenyl)imidzazole). 

For this reason we undertook these kinetic experiments with both catalysts using 19F 

NMR spectroscopy to monitor the reactions. 

 

Figure 5.1: IMesPd(OAc)2•H2O Catalyst. 

N N

IMesPd(OAc)2•H2O (3)

PdII
O O

O O
O HH

 
 

5.2 Development of Collection Method 
Investigations to probe the mechanism of this reaction focused on exploring 

kinetics using the method of initial rates. We wanted to choose an analysis strategy that 

would enable us to compare several catalysts and probe the origin of the dramatic catalyst 

effects. Due to the fast reaction rate observed with Pd(OAc)2, gas chromatography was 

avoided because of difficulty obtaining the necessary time points in a short time period 

(<2 min). For example, the phenylation of N-methylindole proceeded to 49% yield in 5 

min at rt with Pd(OAc)2 (note – cooling not possible due to solvent). 1H-NMR analysis 

also proved to be challenging due to overlapping resonances of the starting material and 

product. We circumvented these challenges by instead placing fluorine substituents on 
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both starting material and product and monitoring the reaction progress by 19F NMR 

spectroscopy (Figure 5.2).  

Pd(OAc)2 was initially examined as a catalyst for two reasons. First, 

IMesPd(OAc)2•H2O (3) is a more precious catalyst and thus is undesirable to use for 

exploratory chemistry. Second, the reaction rate is faster with this Pd(OAc)2, so 

optimizing this method would ensure the ability to compare with the slower 

IMesPd(OAc)2•H2O reactions. 

The reaction of 1 equiv of 5-fluoroindole 4 with 2.1 equiv of [(p-FC6H4)2–IIII]BF4 

(5) and 5 mol % of Pd(OAc)2 in CD3CO2D was followed by 19F NMR spectroscopy, and 

an arrayed series of spectra is displayed in Figure 5.2. During data collection the 

relaxation delay was set to 1 s. The number of transients per spectrum was 8, and each 

spectrum represents one data point.  Additionally, there was no delay between collections 

of each spectrum. In these spectra, disappearance of the indole starting material (δ = –

126.8 ppm) and oxidant (δ  = –105.8, –147.0 ppm) can be observed. Also, the appearance 

of phenylated product (δ = –114.8, –115.5 ppm), and the p-FC6H4I reaction byproduct (δ 

= –115.8 ppm) can be monitored. Additional resonances were also observed at –117.2 

and –149.6 ppm, that are as of yet unidentified. 
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Figure 5.2: Arrayed 19F NMR Spectra of Indole Arylation. 
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This strategy allows for the determination of reaction rate based on both starting 

material disappearance and product appearance. Plotting the relative integration of 

product (–125.5 ppm) versus time (s) reveals the presence of an induction period (Figure 

5.3). A plot of relative integration of starting material (–126.8 ppm) versus time (s) 

showed a similar induction period (Figure 5.4). Typically, an induction period signifies 

the conversion of a pre-catalyst to an active catalyst prior to the reaction that generates 

the desired product. 
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Figure 5.3: Induction Period Based on Product Appearance. 

 
 

Figure 5.4: Induction Period Based on Starting Material Disappearance. 

 
 

 This presented a challenge for determining the initial reaction rates, and unless the 

induction period can be avoided, such analysis is not possible. To eliminate the induction 

period a method must be developed to form the active catalyst prior to initiating the 

desired reaction. It was reasoned that initial addition of a 0.1 equiv of a sacrificial 

substrate and 0.1 equiv of catalyst with excess oxidant in solution would allow for the 

formation of the active catalyst (Scheme 5.2). This was done by combining 0.1 equiv of 

N-methylindole 7 with 2.1 equiv of [(p-FC6H4)2–IIII]BF4 and 0.1 equiv of Pd(OAc)2 in 

CD3CO2D in an NMR tube and agitating the tube for 2 min. The length of the induction 

period (2 min in this example) was determined by following the reaction without the 
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sacrificial indole, and this was the method for determining the induction period in all 

future examples. Next, a solution containing 5-fluoroindole (4, 1.0 equiv) was added to 

the NMR tube, and data acquisition commenced. During data collection the relaxation 

delay was set to 1 s. The number of transients per spectrum was 8, and each spectrum 

represents one data point. Additionally, there was no delay between collections of each 

spectrum.A plot of the relative integration of product versus time (s) revealed that the 

induction period had been eliminated (Figure 5.5). This was corroborated by analysis of 

the relative integration of starting material versus time (Figure 5.6).  

 

Scheme 5.2: Strategy for Eliminating the Induction Period Using a Sacrificial Substrate. 
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Figure 5.5: Product Appearance After Eliminating the Induction Period. 
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Figure 5.6: Starting Material Disappearance After Eliminating the Induction Period. 

 

 

5.3 Mechanistic Investigations with Pd(OAc)2 
With a method developed for determining initial rates by 19F NMR spectroscopy, 

the reaction order in [PdII] was determined. This was accomplished by obtaining the 

initial reaction rate at several different [PdII] under conditions where the induction period 

was eliminated. In these reactions, solutions with varying concentrations of Pd(OAc)2 

(0.025–0.10 equiv) were combined with N-methyl indole 7 (0.025–0.10 equiv) and [(p-

FPh)2–IIII]BF4 (1.025–1.10 equiv) in CD3CO2D. These solutions were allowed to mix in 

an NMR tube for the predetermined induction period for that [PdII]. Next, a solution of 5-

fluoroindole (4, 1.0 equiv) was added to the NMR tube and acquisition of the arrayed 

spectra was initiated. For data collection, the relaxation delay was set to 1 s. The number 

of transients per spectrum was 8, and each spectrum represents one data point. Also, there 

was no delay between collections of each spectrum. For reproducibility, this procedure 

was completed three times at each [PdII]. The relative initial rate of product appearance 

and of starting material disappearance, as well as the mixing time (induction period) for 

each [PdII] are shown in Table 5.1. A plot of the initial rate of product appearance versus 

[PdII] showed a linear relationship suggesting a first order dependence (Figure 5.7). This 

conclusion is also supported by the linearity of the plot of starting material disappearance 

versus [PdII] (Figure 5.8).  

 

 



 203 

Table 5.1: Kinetic Order in Pd(OAc)2. 

H
NIIIIF F

F
F

1 equiv + X equiv

1) X equiv N-methylindole
X equiv Pd(OAc)2
25 ºC, CD3CO2D

appropriate mix time
2) 1 equiv 5-fluoroindole

1 + 0.07

Relative Rate
(Product)

3.1 + 0.8

1.8 + 0.2
2.9 + 0.5

1.0 x 10-3

4.2 x 10-3

2.1 x 10-3

3.2 x 10-3

X = [PdII] (M)

60

Mix time (s)

6000

210
3600

BF4

1 + 0.1

Relative Rate
(Starting Material)

6 + 2

2.5 + 0.7
4.2 + 0.5

 
 

Figure 5.7: Kinetic Order in Pd(OAc)2 Based on Product Appearance. 

 
 

Figure 5.8: Kinetic Order in Pd(OAc)2 Based on Starting Material Disappearance. 
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From the observed 1st order dependence on [PdII], we can conclude that the 

catalyst is involved at or before the rate-limiting step of the reaction. Notably, this is 

somewhat different than the directed C–H arylation where a second order dependence on 

catalyst was observed.2 It was also found that the induction period was dependant upon 

the [PdII].  

However, it was expected that relative initial rate for the appearance of product 

and the disappearance of starting material would be the same. Clearly this is not the case, 

which may indicate this is not an accurate representation of the kinetics. A first possible 

explanation for the discrepancy in initial rates is that the relaxation delay for the 

acquisition is too short (1 s), and there is no delay between spectra, not allowing for the 

nuclei to completely relax and leading to inaccurate integrations. Unfortunately, since the 

reaction rates are very fast, increasing the relaxation delay is problematic because it also 

increases the length of time to acquire each spectrum and limits the number of data points 

that can be taken. This same problem is encountered if the delay between acquiring 

spectra is increased. To test this hypothesis, an array should be collected where a single 

transient represents each data point with a long relaxation delay (~10 s) between each 

acquisition. The second possible explanation is that the unidentified peaks (–117.1 and –

149.6 ppm) result from the formation of a byproduct, however, analyzing the integration 

of these peaks did not completely account for the observed discrepancy. 

Next, the order in substrate 4 using was probed using Pd(OAc)2 as the catalyst. 

The same method for the determination of the catalyst order with Pd(OAc)2 was 

employed by combining N-methylindole 7 (0.05 equiv) with Pd(OAc)2 (0.05 equiv) and 

[(p-FPh)2–IIII]BF4 (5, 1.05 equiv) in CD3CO2D and agitating in an NMR tube for 6 min. 

After this time, a solution of 5-fluoroindole (4, 0.25–1.0 equiv) was added to this solution 

and acquisition of the array was begun (Table 5.2). During data collection the relaxation 

delay was set to 1 s. The number of transients per spectrum was 8, and each spectrum 

represents one data point. Additionally, there was no delay between collections of each 

spectrum. Additionally, there was no delay between collections of each spectrum. Several 

pieces on information can be drawn from this data. First, it was determined that the 

induction period is independent of substrate concentration. Second, a plot of the initial 
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rate based on product appearance versus time show a non-linear relationship (Figure 

5.9). A plot of initial rate of starting material disappearance versus time is also not linear 

(Figure 5.10). Third, Preliminary analysis suggests that when [5] > [4] the reaction is 

zero order in substrate, and when [5] < [4] the reaction is first order or greater in 

substrate, with the change in order occurring near [5] = [4]. However, more data is 

necessary to support this assertion. Fourth, the relative reaction rate based on product 

appearance and starting material disappearances again do not agree.  

 

Table 5.2: Order in Substrate 4 with Pd(OAc)2. 

H
NIIIIF F

F
F

1.05 equiv

1) 0.05 equiv N-methylindole
0.05 equiv Pd(OAc)2

25 ºC, CD3CO2D
3600 s

2) X equiv 5-fluoroindole

1.1 + 0.1

Relative Rate
(Product)

1.2 + 0.2

1.0 + 0.1
1.00 + 0.09

2.1 x 10-2

6.2 x 10-2

3.1 x 10-2

4.2 x 10-2

[X] (M)

BF4

1.3 + 0.2

Relative Rate
(Starting Material)

2.1 + 0.5

1.2 + 0.3
1.1 + 0.1

2.2 + 0.38.3 x 10-2 5 + 1  
 

Figure 5.9: Order in 4 with Pd(OAc)2 based on Product Appearance. 
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Figure 5.10: Order in 4 with Pd(OAc)2 based on Starting Material Disappearance. 

 
 

 Due to the apparent change in order when [5] = [4] we next investigated whether 

the substrate and the oxidant are interacting. It is known that basic functional groups can 

coordinate to IIII reagents, and it was reasoned that this may lead to inhibition by 

substrate, similar to what has been observed in related systems.2 To study this 1 equiv of 

5-fluoroindole was combined with 0, 1, and 2 equiv of [(p-FC6H4)2–IIII]BF4 in CD3CO2D 

and the resulting solutions were analyzed by 1H and 19F NMR spectroscopy. No change 

in any chemical shifts was observed, suggesting that there is not an interaction between 

the substrate and the oxidant. 

 Finally, the reaction order in oxidant with Pd(OAc)2 as the catalyst has not yet 

been determined. These studies should include the determination of oxidant order where 

[5] > [4] and [5] < [4]. These conditions should be chosen due to the apparent change in 

substrate order discussed above, which may indicate a change in rate-limiting step or 

mechanism. For this same reason, catalyst order studies also need to be repeated where 

[5] > [4] and [5] < [4] since the initial studies were completed under conditions where the 

substrate order changes from zero to higher order ([5] = [4]). 
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5.4 Mechanistic Investigations with IMesPd(OAc)2•H2O 
Due to the challenges associated with mass balance and the unclear kinetic results 

with Pd(OAc)2, we also investigated the mechanism with IMesPd(OAc)2•H2O as the 

catalyst. Preliminary kinetic studies employing IMesPd(OAc)2•H2O focused on 

determining the order in oxidant. As was previously described with Pd(OAc)2, an 

induction period was observed, prompting the use of a sacrificial indole to eliminate the 

induction period. These experiments were completed by combining N-methylindole (7, 

0.10 equiv) with IMesPd(OAc)2•H2O (3, 0.1 equiv) and [(p-FC6H4)2–IIII]BF4 (5, 1.1–3.1 

equiv) in CD3CO2D. The solutions were agitated in an NMR tube for 2 min. Then a 

solution of 5-fluoroindole (1.0 equiv) was added and data acquisition was begun (Table 

5.3). During data collection the relaxation delay was set to 1 s. The number of transients 

per spectrum was 16, and each spectrum represents one data point. Additionally, there 

was no delay between collections of each spectrum. A plot of the initial rate of product 

appearance versus time resulted in a linear relationship, and suggests a first order 

dependence on [IIII] (Figure 5.11). Furthermore, a linear relationship was also observed 

upon plotting the initial rate of starting material disappearance versus time, corroborating 

this first order dependence on [IIII] (Figure 5.12). Additionally, it was found that the 

induction period was independent of [IIII]. Determination of kinetic order in both catalyst 

and substrate under these conditions have not been completed, but are necessary for a 

more thorough analysis. 

 

Table 5.3: Order in Oxidant with IMesPd(OAc)2•H2O. 

H
NIIIIF F

F
F

X equiv + 0.1 equiv

1) 0.1 equiv N-methylindole
0.1 equiv IMesPd(OAc)2•H2O

25 ºC, CD3CO2D
120 s

2) 1.0 equiv 5-fluoroindole

1.0 + 0.4

Relative Rate
(Product)

3.3 + 0.3

1.75 + 0.01
2.6 + 0.2

4.2 x 10-2

10.4 x 10-2

6.2 x 10-2

8.4 x 10-2

[X] (M)

BF4

1.4 + 0.5

Relative Rate
(Starting Material)

3.6 + 0.3

2.4 + 0.2
3.6 + 0.2
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Figure 5.11: Oxidant Order with IMesPd(OAc)2•H2O based on Product Appearance. 

 
 

Figure 5.12: Oxidant order with Pd(OAc)2 based on Starting Material Disappearance. 

 
 

5.5 Comparison of Pd(OAc)2 and IMesPd(OAc)2•H2O 
Several tentative conclusions can be made based upon the data with Pd(OAc)2 and 

IMesPd(OAc)2•H2O. A first order dependence on oxidant suggests that it is involved at or 

before the rate-limiting step of the reaction. Next, preliminary qualitative experiments 

have suggested that Pd(OAc)2 catalyzes arylation at faster rate than IMesPd(OAc)2•H2O, 

which was confirmed by these kinetic results. The initial rate of arylation with 5-

fluoroindole (1 equiv) with [(p-FPh)2I]BF4 (1 equiv) and 10 mol % of [PdII] is eight times 

faster with Pd(OAc)2 than IMesPd(OAc)2•H2O. Furthermore, using IMesPd(OAc)2•H2O, 
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the discrepancy between product appearance and starting material difference is 

negligible. This difference between catalysts may be related to the unidentified resonance 

at –117.2 ppm observed with Pd(OAc)2, but not with IMesPd(OAc)2•H2O. Notably 

however, the unidentified resonance at –149.6 ppm also appeared with both catalysts 

(Figure 5.13 compared to Figure 5.2). 

 

Figure 5.13: Example 19F NMR Spectra of Indole Arylation Kinetics with 
IMesPd(OAc)2•H2O. 

H
NIIIIF F

F
F

1.6 equiv

1) 0.1 equiv IMesPd(OAc)2•H2O
0.1 equiv N-methylindole

25 ºC, CD3CO2D
3600 s

2) 1.0X equiv 5-fluoroindole

BF4

 

 

Finally, it is important to note that the length of the induction period using 

IMesPd(OAc)2•H2O differed between batches of the catalyst synthesized. The kinetic 

data described above was obtained using cleanly isolated IMesPd(OAc)2•H2O. 

Employing catalyst that contained unidentified impurities, did not provided the product 

within the same time period as clean IMesPd(OAc)2•H2O (<45 min). It was found that the 

impure catalyst does provided product after 3 h. This was determined by periodically 
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analyzing these reactions by 19F NMR spectroscopy. This indicated that these catalysts 

are viable, but displays a long induction period. This is possibly due to difficulty in 

attaining clean catalyst required for reliable kinetics and highlights the necessity for a 

more reproducible catalyst synthesis. 

 

5.6 Possible Mechanisms for Indole Arylation 
A general mechanism involving a PdII/IV catalytic cycle was proposed in Scheme 

5.1. However, the details of the palladation step of this reaction remain unclear. Three 

detailed mechanisms for this transformation can be envisioned that would proceed 

through a PdII/IV catalytic cycle.3 These include (1) nucleophilic palladation at the C3 

position of the indole followed by migration to C2, (2) direct palladation of the indole C2 

position, and (3) an olefin insertion mechanism. 

The first pathway would involve a similar mechanism to Sames’ Pd0/II 

transformation, as summarized in Scheme 5.3.1,4,5 He provided evidence that his reaction 

proceeds through initial oxidative addition of Pd0 to an Ar–I to afford 8, then nucleophilic 

attack of the Ar–PdII by the indole to yield the proposed intermediate 9. This Ar–PdII–

indole intermediate 9 can rearomatize to generate intermediate 10, followed by direct 

reductive elimination to afford the C3 arylation product (Path A). Alternatively, the 

palladium in intermediate 9 can migrate from C3 to C2 to yield intermediate 11. 

Rearomatization to the σ-indole-PdII intermediate 12, and final reductive elimination 

leads to the C2 arylation product (Path B). Migration to the C2 position is 

thermodynamically favorable due to inductive stabilization provided by the adjacent 

heteroatom. Notably, the authors reasoned that the decreased selectivity when employing 

ortho substituted aryl iodides was due a decreased rate of C3 to C2 palladium migration 

leading to competitive formation of C3 arylation products. 
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Scheme 5.3: Proposed Palladation Mechanism for a Pd0/II C–H Arylation. 
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Elimination
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Elimination

C3 Product (minor)

C2 Product (major)

(9)
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(11)

(10)

(12)  
 

With this precedent, a mechanism involving a similar pathway can be proposed 

for a transformation involving a PdII/IV catalytic cycle (Scheme 5.4, Path B). The 

palladation mechanism would initiate by nucleophilic attack of the indole on the [PdII] 

(13) to yield intermediate 14. Next, the PdII in intermediate 14 migrates from the C3 to 

the C2 position to afford intermediate 17 (Path B). This intermediate can then undergo 

rearomatization to afford the C2 indole-PdII (1). Oxidative addition by [Ar–IIII–Ar]BF4 

affords the Ar-PdIV-indole species 2, and final reductive elimination results in the C2 

arylation product. Notably, a C3 arylation mechanism can be proposed proceeding 

through Path A, however these product are not observed under our reaction conditions. 
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Scheme 5.4: Proposed Palladation Mechanism for a PdII/IV C–H Arylation. 
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There are several key differences in this PdII/IV and Sames Pd0/II mechanism. First, 

[PdII] (13) does not have an aryl ligand and is more electrophilic, as compared to the Ar–

PdII (8) in the PdII/0 mechanism. Second, slow oxidative addition of [Ar–IIII–Ar]BF4 

allows for equilibration of PdII from intermediate 14 to the more thermodynamically 

favored C2 palladation intermediate (17). This agrees with the observed selectivity for 

exclusively C2 arylation products, which differs significantly from that observed by 

Sames. Additionally, cursory evidence for this is given by the low yielding, yet 

productive reaction with a 2-substituted indole in which intermediate 1 cannot be attained 

due to the substitution. 

 The second possible mechanism involves direct palladation of the C2 position of 

the indole (Scheme 5.5).3 This mechanism proceeds through (i) direct metallation to give 

intermediate 1, via either nucleophilic attack on PdII at the C2 position or through a σ 

bond metathesis mechanism; (ii) oxidative addition of the PdII to [Ar–IIII–Ar]BF4 to 

afford the Ar–PdIV intermediate 2; and (iii) reductive elimination results in the observed 

C2 arylated product. It has been well documented that substitution by electrophiles at the 

C3 position of an indole is strongly favored over the C2 position.6 Direct palladation at 

the C2 position of indoles has been observed previously, however this required the 

presence of strong a directing group that is not present in this chemistry.7,8 Thus it seems 

unlikely that in the absence of a directing group palladation at the C2 position would 

occur through nucleophilic attack. However, a direct σ bond metathesis mechanism to 

yield intermediate 1 cannot be ruled out. 
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Scheme 5.5: PdII/IV Direct C2 Metallation Mechanism for Arylation. 
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 Finally, arylation through an olefin insertion mechanism can also be envisioned 

(Scheme 5.6).3 This would proceed through (i) initial oxidative addition of PdII to yield a 

Ar–PdIV 18, (ii) syn addition of Ar–PdIV to the indole to afford intermediate 19, and (iii) 

anti β-hydride elimination to give the C2 arylated product. Notably this mechanism 

requires an unprecedented olefin insertion into an Ar–PdIV bond, followed by an unusual 

anti β-hydride elimination.9-11 Additionally, oxidative addition occurs at an electron poor 

Pd(OAc)2, rather than the more electron rich indole σ-indole-PdII as proposed in the 

alternative mechanisms (1). 

 

Scheme 5.6: PdII/IV Olefin Insertion Mechanism for Arylation. 
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Considering these mechanisms, a PdII/IV pathway involving C3 palladation 

followed by migration to C2 is most plausible based on Sames work. The latter two 

mechanisms are less likely due to the lack of precedent for the individual steps. It is also 

necessary to consider Pd0/II mechanisms since coupling reactions employing this reaction 

manifold with diaryl iodonium salts are known.12 There are three Pd0/II mechanisms to be 

considered that are similar to the PdII/IV pathways discussed above. All would require 
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initial reduction of PdII to Pd0. First is the Pd0/II mechanism involving a PdII C3 to C2 

migration analogous to Sames mechanism in Scheme 5.2.  

The second possible Pd0/II mechanism is a direct C2 metallation (Scheme 5.7). 

This mechanism occurs via (i) oxidative addition of Pd0 to [Ar–IIII–Ar]BF4 to give Ar–

[PdII] (20), (ii) direct C2 metallation of indole by this intermediate to provide 12, and (iii) 

reductive elimination to afford the C2 arylated product and Pd0. The mechanism of 

metallation may proceed via direct C2 palladation or σ-bond metathesis as discussed in 

the context of the PdII/IV catalytic cycle involving direct metallation. 

 

Scheme 5.7: Pd0/II Direct C2 Metallation Mechanism for Arylation. 
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The third possibility is a Pd0/II olefin insertion mechanism (Scheme 5.8). This 

mechanism involves (i) oxidative addition of Pd0 to [Ar–IIII–Ar]BF4 to afford 8, followed 

by (ii) insertion of Ar–[PdII] into the olefin of indole to provide 21, and lastly (iii) β–

hydride elimination to afford the C2 arylation product. As previously discussed for the 

PdII/IV olefin insertion mechanism (Scheme 5.6), this mechanism also involves an unusual 

anti β–hydride elimination. 

 

Scheme 5.8: Pd0/II Olefin Insertion Mechanism for Arylation. 
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Each of these Pd0/II pathways are unlikely based on the observed tolerance of aryl 

halides, which are known to be reactive toward the low valent palladium required for 
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these mechanism. Nevertheless, they warrant consideration, and the experiments 

discussed for exploration of the directed chemistry (Chapter 3, section 5.2) would be 

useful. These include the Hg drop test to test for palladium nano particles, as well as 

substitution of the diaryliodonium oxidant with Ph–I and Ph–OTf to determine if these 

are viable electrophiles for this transformation. Finally, radical pathways cannot be ruled 

out without conducting these reactions in the presence of free radical inhibitors. 
 

5.7 Conclusions 
In summary, attempts have been made to obtain mechanistic information about 

the palladium-catalyzed C–H arylation of indoles. A method to obtain kinetic data has 

been developed employing fluorine labeled starting materials and oxidants. This labeling 

allows for the reaction to be monitored by 19F NMR spectroscopy. There is an induction 

period observed in these reactions, which is likely associated with the formation of an 

active intermediate. This induction period can be eliminated with the addition of a 

sacrificial substrate. Using this approach, we examined the catalyst order and substrate 

order when employing Pd(OAc)2 as the catalyst. We also explored the oxidant order with 

IMesPd(OAc)2•H2O. The results from these studies are preliminary and can lead to no 

final conclusion about the details of this mechanism, but present a method to further 

study this reaction. 

 

5.8 General Procedures and Materials and Methods 

General Procedures: NMR spectra were obtained on a Varian Inova 400 (399.96 MHz 

for 1H, 376 MHz for 19F) spectrometer. 1H-NMR chemical shifts are reported in parts per 

million (ppm) relative to TMS, with the residual solvent peak used as an internal 

reference.  

 

Materials and Methods: Substrates 4, 7 and palladium sources were obtained 

commercially and were used as received. Diaryliodonium salt [(p-FC6H4)2–I]BF4 were 

prepared by (i) conversion of the aryl iodide to the corresponding diacetoxyiodoarene13 

and (ii) reaction of p-FC6H4I(OAc)2 with p-FC6H4B(OH)2 in the presence of BF3•OEt2.14 
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Catalysts were synthesized as outline in Chapter 4. Solvents were obtained from 

Cambridge Isotopes and used without further purification.  

 

Order in [Pd] with Pd(OAc)2: [(p-FC6H4)2–IIII]BF4 (0.02563–0.02754 mmol, 1.025–

1.10 equiv) was diluted in a 0.2 mL stock solution of CD3CO2D containing Pd(OAc)2 

(0.000625–0.00254 mmol, 0.025–0.10 equiv). This was combined with 0.2 mL of a stock 

solution of N-methyl indole 7 (0.000625–0.00254 mmol, 0.025–0.10 equiv) and 10µL of 

trifluorotoluene was added as an internal standard. This solution transferred to the NMR 

tube via pipette was then mixed by rotating the NMR tube for the appropriate time based 

on the length of the induction period time. Finally 0.2 mL of a stock solution of 5-

fluoroindole (0.025 mmol, 1 equiv) was added to the NMR tube. The tube was then 

placed in the NMR spectrometer, which has already been shimmed to a blank sample, 

and acquisition of the 19F NMR array was begun. During data collection the relaxation 

delay was set to 1 s. The number of transients per spectrum was 8, and each spectrum 

represents one data point. Additionally, there was no delay between collections of each 

spectrum. The initial rate (M/s) for each data point was determined based on the initial 

concentration of 5-fluoroindole and normalized based on the internal standard. Each data 

point was repeated three times and the rate was taken as the average of those two points 

with the error being the standard deviation. 

 

Table 5.4: Rate Data for [Pd] Order Study with Pd(OAc)2. 

7.9 + 0.5 x 10-4

rate (M/s)
(Product)

24 + 6 x 10-4

14 + 2 x 10-4

23 + 4 x 10-4

1.0 x 10-3

4.2 x 10-3

2.1 x 10-3

3.2 x 10-3

[PdII] (M)

60

Mix time (s)

6000

210
3600

7.9 + 0.5 x 10-4

rate (M/s)
(Starting Material)

44 + 1 x 10-4

20 + 5 x 10-4

33 + 4 x 10-4

 
 

Order in Substrate with Pd(OAc)2: [(p-FPh)2–IIII]BF4 (0.0263 mmol, 1.05 equiv) was 

diluted in 0.2 mL of a stock solution of CD3CO2D containing Pd(OAc)2 (0.00127 mmol, 

0.05 equiv). This was combined with 0.2 mL of a stock solution of N-methyl indole 

(0.00126 mmol, 0.05 equiv) and 10µL of trifluorotoluene was added as an internal 

standard. This solution transferred to the NMR tube via pipette was then mixed by 
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rotating the NMR tube for the appropriate time based on the length of the induction 

period time. Finally 0.2 mL of a stock solution containing varying equivalents of 5-

fluoroindole (0.0125–0.05 mmol, 0.5–2 equiv) was added to the NMR tube. The tube was 

then placed in the NMR spectrometer, which has already been shimmed to a blank 

sample, and acquisition of the 19F NMR array was begun. During data collection the 

relaxation delay was set to 1 s. The number of transients per spectrum was 8, and each 

spectrum represents one data point.  Additionally, there was no delay between collections 

of each spectrum.  The initial rate (M/s) for each data point was determined based on the 

initial concentration of 5-fluoroindole and normalized based on the internal standard. 

Each data point was repeated two times and the rate was taken as the average of those 

two points with the error being the standard deviation. 

 

Table 5.5: Rate Data for Substrate Order Study with Pd(OAc)2. 

8.8 + 0.5 x 10-4

9 + 2 x 10-4

7 + 1 x 10-4

7.7 + 0.7 x 10-4

2.1 x 10-2

6.2 x 10-2

3.1 x 10-2

4.2 x 10-2

[4] (M)

10 + 2 x 10-4

16 + 4 x 10-4

9 + 2 x 10-4

8 + 1 x 10-4

17 + 3 x 10-48.3 x 10-2 40 + 9 x 10-4

rate (M/s)
(Product)

rate (M/s)
(Starting Material)

 
Order in Oxidant with IMesPd(OAc)2•H2O: Varying amounts of [(p-FC6H4)2–IIII]BF4 

(0.041–0.0775 mmol, 1.1–3.1 equiv) were diluted in 0.2 mL of a stock solution of 

CD3CO2D containing IMesPd(OAc)2•H2O (0.0025 mmol, 0.1 equiv). This was combined 

with 0.2 mL of a stock solution of N-methyl indole (0.0025 mmol, 0.1 equiv). This 

solution transferred to the NMR tube via pipette was then mixed by rotating the NMR 

tube for the appropriate time based on the length of the induction period time. Finally 0.2 

mL of a stock solution of 5-fluoroindole (0.025 mmol, 1 equiv) was added to the NMR 

tube. The tube was then placed in the NMR spectrometer, which has already been 

shimmed to a blank sample, and acquisition of the 19F NMR array was begun. During 

data collection the relaxation delay was set to 1 s. The number of transients per spectrum 

was 16, and each spectrum represents one data point. Additionally, there was no delay 

between collections of each spectrum. The initial rate (M/s) for each data point was 

determined based on the initial concentration of 5-fluoroindole; in this case no internal 
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standard was employed. Each data point was repeated twice and the rate was taken as the 

average of those two points with the error being the standard deviation. 

 

Table 5.6: Rate Data for Oxidant Order Study with IMesPd(OAc)2•H2O. 

3  + 2 x 10-5

Rate (M/s)
(Product)

10.0  + 0.9 x 10-5

5 .23 + 0.03 x 10-5

7.7  + 0.5 x 10-5

4.2 x 10-2

10.4 x 10-2

6.2 x 10-2

8.4 x 10-2

[5] (M)

4  + 2 x 10-5

Rate (M/s)
(Starting Material)

9.6  + 0.9 x 10-5

7.1  + 0.7 x 10-5

10.8  + 0.7 x 10-5
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