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Chapter 1

Introduction

Heat transfer is usually dominated by conduction and convection processes. However,
at sufficiently high material temperatures, it becomes necessary to add another mode
of heat transfer called Thermal Radiative Transfer (TRT). It is known that materials
in equilibrium emit photons with a power proportional to T 4, where T is material
temperature. Because of this rapid growth of emitted power with increasing material
temperature, at high temperatures TRT will dominate the heating and cooling of a
material over both conduction and convection.

The Thermal Radiative Transfer process couples the heating and cooling of a
material by the absorption and emission of photons by a material. This results in two
equations, one for the transportation (absorption and scattering) of photons and the
other for the emission of photons. In this thesis we will omit any consideration of
scattering as a simplification. These equations can be recast so that there are two
fundamental unknowns that describe the radiation field and the temperature of the
material, which is assumed to be in local thermodynamic equilibrium (LTE). The
material equation and the radiative field equation are coupled together by absorption
and emission of radiation.

1.1 Radiative Transfer Equations

In radiative transport, energy is transfered by photons that are emitted from material
at one location and absorbed by material in another location. To understand this
process, it is worthwhile to consider the example of a stellar atmosphere with a particle
density N = 1016cm−3, implying an average distance between atoms of ≈ 3× 10−6cm
(14). The large atomic density makes it currently impossible to create a model that
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can treat every particle exactly. This implies that any practical solution to radiative
transfer problems must use a statistical approach to the interaction of photons and
matter. Therefore a probabilistic description of photon interaction is introduced as
an opacity (or cross-section) which is defined as the probability to interact per cm
traveled.

The de Broglie wavelength of the photon is small compared to the particle spacing
of the material (14). Therefore, a photon will travel in a straight line to the next
interaction without changing frequency or energy. Photon-material absorption mecha-
nisms of interest are those of photon-electron interactions. These interactions include
line absorption, photoelectric effect, and photon absorption by free state electrons.
Compton scattering has been omitted as one of the simplifications used in this thesis,
but is typically considered in production level codes. At higher energies, additional
material interactions can occur like nuclear excitation and pair-production but these
are “seldom of interest in usual radiative transfer problems” (17).

To simplify the relationship between the radiation field and the material, local
thermodynamic equilibrium (LTE) is assumed. LTE means that “the matter is in
thermal equilibrium at the temperature T , emitting photons in a Planckian spectrum
(with temperature T ), and the radiation field, which may be far from equilibrium,
does not affect this thermal equilibrium.”(11) The LTE assumption also allows for the
absorption and emission coefficients of the material to be related through the Planck
function (17).

A photon traveling through phase space is described using:

x = particle location (three variables) (1.1)

Ω = particle direction of movement (two variables) (1.2)

ν = particle frequency (one variable) (1.3)

t = time (one variable). (1.4)

The combination of the above seven variables describes the phase space in which
a photon resides while traveling at the speed of light, c. A photon can leave its
differential phase space volume dV by leaking spatially or interacting with an electron.
Photons may enter the phase space dV by streaming into the phase space spatially or
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by being emitted from the material into the phase space. The material is assumed to
be purely absorbing so that there is no scattering. The combination of these processes
represents the gains and losses of photons within a phase space volume.

By balancing these processes, the equations of radiation transfer may be stated as
(17)

1

c

dI(x,Ω, ν, t)

dt
+ Ω · ∇I(x,Ω, ν, t) + σ(x, ν, T )I(x,Ω, ν, t) = σ(x, ν, T )B(ν, T ) + q

(1.5)

dUm(x, t)

dt
=

∫ 4π

0

∫ ∞
0

σ(x, ν, T )(I(x,Ω, ν, t)−B(ν, T ))dνdΩ (1.6)

where

I(x,Ω, ν, t) = chνn(x,Ω, ν, t) (1.7)

= Specific Intensity (keV / (steradians ·cm2· s)),

n(x,Ω, ν, t) = Number of photons in a unit phase space, (1.8)

h = 4.135667× 10−18(keV · s) = Planck’s constant, (1.9)

c = 299, 792, 458 meters per second = speed of light, (1.10)

B(ν, T ) =
2hν3

c2
(e

hν
T − 1)−1 = Planck’s function for radiation, (1.11)

T = T (x, t) = Material temperature (keV) (1.12)

σ(x, ν, T ) = Opacity (probability of absorption per cm), (1.13)

Um(x, t) = ρ

∫ T

0

Cv(x, T )dT = Material energy density, (1.14)

Cv(x, T ) = Specific heat capacity of material (keV / (g · keV)), (1.15)

ρ = Material density (g / cm3) = 1 in this thesis, (1.16)

q(x, ν, t) = External source. (1.17)

Equation (1.5) represents the photon transport equation while Eq. (1.6) represents the
material energy density equation. The equilibrium radiation energy density, Ur(x, t)
is defined as

Ur(x, t) =
4π

c

∫ ∞
0

B(ν, T )dν = aT 4 (1.18)

with the radiation constant a
a =

8k4π5

15c3h3
(1.19)
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where
k = 8.617343× 10−5eV per Kelvin = Boltzmann’s constant. (1.20)

The equilibrium radiation density can also be described in terms of the number density
n(x,Ω, ν, t) as

Ur(x, t) =

∫ ∞
0

∫
4π

hνn(x,Ω, ν, t)dΩdν.

In other words, both the specific radiation intensity and the equilibrium radiation
density can be described by modeling individual particles, a necessity for Monte Carlo
transport. Because they are both monotonic functions of temperature, the equilibrium
radiation energy density, Ur(x, t), and the material energy density, Um(x, t), can be
related (11) by defining the quantity β(x, t) as

dUm(x, t)

dUr(x, t)
=

1

β(x, t)
, (1.21)

which allows the thermal radiative transfer material energy density equation to be
recast as

1

β(x, t)

dUr(x, t)

dt
=

∫ 4π

0

∫ ∞
0

σ(x, ν, T )(I(x,Ω, ν, t)−B(ν, T ))dνdΩ. (1.22)

It is worthwhile to note that Eqs. (1.6) and (1.22) are mathematically equivalent.
However, to solve the coupled thermal radiative transfer equations, approximations
will be made that will make the two equations mathematically different.

1.1.1 Gray Thermal Radiative Transfer in One-Dimension

The seven independent variables make the TRT equations computationally intensive
to solve, and therefore not conducive to numerical solution even in the presence of
a supercomputer. We will assume a 1D semi-infinite slab geometry for most of this
thesis since it will capture the temporal and spatial discretizations that are of interest.
The vector x is now one variable denoted by x, instead of three. Similarly, Ω may now
be expressed as only one angular variable, µ = cos θ where θ is the angle measured
from the positive x direction. Finally, the opacities are assumed to be independent of
the frequency of the photon. Defining∫ ∞

0

I(x, µ, ν, t)dν = I(x, µ, t) (1.23)
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yields the 1D Gray Thermal Radiative Transfer (GTRT) equations

1

c

dI(x, µ, t)

dt
+ µ

dI(x, µ, t)

dx
+ σ(x, T )I(x, µ, t) =

1

2
σ(x, T )Ur(x, t) +

Q

2
(1.24)

dUm(x, t)

dt
+ σ(x, T )Ur(x, t) = σ(x, T )

∫ 1

−1

I(x, µ, t)dµ (1.25)

1

β(x, t)

dUr(x, t)

dt
+ σ(x, T )Ur(x, t) = σ(x, T )

∫ 1

−1

I(x, µ, t)dµ. (1.26)

Equations (1.24) and (1.26) represent a coupled system of equations that can be
solved for two unknowns Ur and I. However, this system of equations still has very
strong non-linearities in the definitions of both σ and β, which can both depend
on temperature. Although there exist non-physical problems that will remove these
non-linearities, in this dissertation solution methods are sought for the general case.

Typically, the values of β and σ are fixed at the beginning of a time step as

β(x, t) ≈ β(x, tn) = βn(x) (1.27)

σ(x, t) ≈ σ(x, tn) = σn(x) (1.28)

and then held constant over a time step ∆t. Fixing β to a specific value makes
Eqs. (1.25) and (1.26) mathematically different. Therefore Eq. (1.26) is used for the
solution of the specific intensity I but Eq. (1.25) is required for the conservation of
energy in the material energy update.

1.1.2 Gray Thermal Radiative Transfer in Zero-Dimension

To examine the truncation error associated with the time approximations made to
both β and σ, a detailed truncation analysis via Taylor expansion has been conducted
on two different solution methods for the TRT equations. The Carter-Forrest (CF)
method (10), which solves the TRT equations exactly for a time step (excepting the
constant β and σ approximations), and the Implicit Monte Carlo (IMC) method (5)
which is the current industry standard for the solution of the TRT equations. For
simplicity, the analysis of the GTRT equations will be conducted in 0D with no source
since there is no time dependent truncation in either the source or the spatial leakage.
For clarification the internal arguments will be suppressed except the time dependent
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variables. Finally, defining the angle integrated specific intensity as∫ 1

−1

I(x, µ, t)dµ = φ(x, t) (1.29)

the 0D radiative transfer equations are defined as

1

c

dφ(t)

dt
+ σ(t)φ(t) = cσ(t)Ur(t) (1.30)

dUm(t)

dt
+ cσ(t)Ur(t) = σ(t)φ(t) (1.31)

1

β(t)

dUr(t)

dt
+ cσ(t)Ur(t) = σ(t)φ(t). (1.32)

When solving the TRT equations in any form, a certain number of simplifying
approximations must be made. The typical approach is to find a solution to Eq. (1.32)
for Ur(t), then substitute that result into Eq. (1.30). This usually requires the values
of β(t) and σ(t) to be evaluated at the beginning of the time step and then held
constant over the calculation. Next, Eq. (1.30) is solved as a linear radiation transport
problem for the absorption of photons. Finally, the Material Balance Equation (1.31)
is solved to update the material temperature. The updated material temperature is
then used to update the values of β(t) and σ(t) to be used in the next time step.

How the solution to Ur(t) is calculated will differentiate the two methods that
will be discussed in this thesis. The current approach is the Implicit Monte Carlo
(IMC) method (5) which was created in 1971. While Monte Carlo is in the title of
this method, the IMC assumptions can also be implemented in a deterministic code.
The IMC method has proven to be robust in a host of problems in arriving at the
equilibrium solution. More recently however, there has been a focus on the stability
issues of the IMC method as well as ways to try and improve its accuracy (20).

An alternative method called the Carter-Forest (CF) method (10) was proposed
in 1973 and makes fewer approximations than the IMC method. In particular the CF
method more accurately treats the transport of photons within a time step than the
IMC method. However, the CF method was never adopted due to being more compu-
tationally expensive than the IMC method while not giving a significant improvement
in accuracy to warrant a new code development effort.
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1.2 Thesis Synopsis

While the Implicit Monte Carlo has been used for a number of years, there has been
little work to identify the sources of error that occur due to its approximations. In this
thesis, we will explore the effect of these assumptions and how the error associated
with them will propagate through the solution. After the sources of error have been
identified, methods will be suggested for the reduction of the effect of these errors.
This thesis will be organized as follows:

Chapter 2: Error Associated with the Solutions to the Gray Thermal
Radiative Transfer Equations

For simplified, zero dimensional results there exists an exact solution for the Gray
Thermal Radiative Transfer equations. This exact solution will be used to determine
the bias in the IMC method. Next, a detailed truncation error analysis (in time) will
be conducted to show how the approximations used to solve the GTRT equations will
propagate. These results will give insight into how predictor-corrector methods may
be employed to change the order of the accuracy of the solution.

Chapter 3: Zero Dimensional Numerical Results

Here we will show numerical results and compare them to the analytical work of the
previous chapter. We will graphically demonstrate the bias in the IMC method as well
as the effect of employing predictor-corrector techniques. These predictor-corrector
techniques will demonstrate the ability to change the order of accuracy of both the
IMC and CF method. Furthermore, the numerical results will show definitively the
O(∆t) sources of global error and how they can be removed.

Chapter 4: 1D Radiative Transfer

The introduction of a spatial dependence in the GTRT equations will add another
source of error known as “Photon Teleportation”. The effects of this error will be
examined and Functional Expansion Tallies (FET’s) will be introduced to reduce
this error. Next, the predictor-corrector scheme will be examined in a more realistic
problem and a variable-weight predictor-corrector scheme will be examined to reduce
the computation time.
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Chapter 5: Time Step Controllers

Knowing the leading sources of time truncation error from the previous truncation
analysis, a time step controller is proposed to control it. The resulting controller is
then compared to two different approaches that are currently implemented. Then,
predictor-corrector methods are combined with a time step controller to make the
most of both methods. The predictor step can be used to estimate the correct time
step size to be used in the corrector step while also updating pertinent information to
improve accuracy in the solution.

Chapter 6: Conclusions and Future Work

Finally we discuss the results presented in this thesis to give a larger perspective on
the work. We will also discuss future work that could be continued.
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Chapter 2

Error Associated with the Solutions
to the Gray Thermal Radiative

Transfer Equations

To solve the nonlinear TRT equations, a couple of simplifying approximations are
required. Each time that an approximation is made, a new source of error is added to
the solution of the equations. To understand and quantify these errors, it is neces-
sary to build models that can isolate and quantify the error produced by a certain
approximation. For this purpose, a simple zero dimensional Gray problem allows for
the isolation of the IMC approximations and the temporal approximations that are
made to both β(t) and σ(t).

2.1 Residual Error Analysis of the Zero Dimensional
Gray TRT Linear Problem

To determine the effect of the IMC approximations, an artificial problem is proposed.
When both the σ(t) and β(t) terms are constant with respect to time, the zero di-
mensional TRT equations become linear. Under these conditions the CF solution to
the linear 0-D TRT problem is exact, while the IMC results are an approximation.
While this problem is not physically meaningful, it allows for the isolation of the IMC
approximations compared to the exact solution. By performing a residual analysis
of the solutions to the CF and IMC methods, the error of the IMC method can be
quantified. There has been no previous quantification of this error.

The analytic solution (12) to the Carter-Forest formulation of the Gray RT equa-
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tions yields

φ(tn+1)CF = φ(tn) +
c2σβQo∆t

γ
+

[
c2σ

γ
Ur(tn)− cσ

γ
φ(tn)

]
(1− e−γ∆t) (2.1)

−
[
cQo

γ
− c2σβQo

γ2

]
(1− e−γ∆t)

where γ = cσ(1 + β). It is worth noting that in this particular problem, the solution
to the CF method is exact while the Implicit Monte Carlo (IMC) analytic solution
(16),

φ(tn+1)IMC = φ(tn)e−cσf(∆t) + [cUr(tn) +
Qo

σf
]

(
1− e−cσf(∆t)

)
(2.2)

is an approximation. The residual error of the IMC is determined to by subtracting
the IMC estimate of φ(tn+1) from the CF value of φ(tn+1) to quantify the error in the
IMC approximations as

φCF (tn+1)− φIMC(tn+1) = φ(tn) +
c2σβQo∆t

γ
+
c2σ

γ
Ur(tn)− cσ

γ
φ(tn) (2.3)

+
cQo

γ
− c2σβQo

γ2
− c2σ

γ
Ur(tn)e−γ∆t +

cσ

γ
φ(tn)e−γ∆t

− cQo

γ
e−γ∆t +

c2σβQo

γ2
e−γ∆t − φ(tn)e−cσf∆t

− cUr(tn) + cUr(tn)e−cσf∆t − Qo

σf
+
Qo

σf
e−cσf∆t.

Similar terms are grouped from Eq. (2.3) as follows

Rφ = φ(tn)− cσ

γ
φ(tn) +

cσ

γ
φ(tn)e−γ∆t − φ(tn)e−cσf∆t. (2.4)

Expanding around ∆t = 0, the exponentials may be rewritten as

e−γ∆t = 1− γ∆t+
γ2∆t2

2
+O(∆t3) (2.5)

and
e−cσf∆t = 1− cσf∆t+

c2σ2f 2∆t2

2
+O(∆t3). (2.6)

Substituting Eqs. (2.6) and (2.5) into (2.4) yields

Rφ = cσφ(tn)∆t

[
(f − 1) +

γ∆t

2
− cσf 2∆t

2

]
+O(∆t3). (2.7)
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Now, Taylor expand the Fleck factor with the assumption that αβcσ∆t� 1 as

f =
1

1 + αβcσ∆t
= 1− αβcσ∆t+

α2β2c2∆t2

2
+O(∆t3). (2.8)

Using the Fleck factor expansion and neglecting terms that are O(∆t2), the residual
for φ(tn) terms becomes

Rφ = cσφ(tn)∆t

[
− αβcσ∆t+

βcσ∆t

2

]
+O(∆t3). (2.9)

Next, the source terms are grouped together as

RQo =
βc2σQo∆t

γ
+
cQo

γ
− βc2σQo

γ2
− cQo

γ
e−γ∆t +

βc2σQo

γ2
e−γ∆t − Qo

σf
+
Qo

σf
e−cσf∆t.

(2.10)
Expanding the exponentials by using Eqs. (2.5) and (2.6) yields

RQo =
βc2σQo∆t

2

2
− cQoγ∆t2

2
+
c2σfQo∆t

2

2
+O(∆t3), (2.11)

which is simplified again by expanding the Fleck factor f to give the expected small
truncation error result

RQo = O(∆t3). (2.12)

Finally, the Ur(tn) terms are grouped together as

RUr =
c2σ

γ
Ur(tn)− c2σ

γ
Ur(tn)e−γ∆t − cUr(tn) + cUr(tn)e−cσf∆t. (2.13)

Simplify by expanding the exponentials in Eq. (2.13) to get

RUr = c2σUr(tn)∆t− c2σγ∆t2

2
Ur(tn)− c2σf∆tUr(tn) +

c3σ2f 2∆t2

2
Ur(tn) +O(∆t3),

(2.14)
and expanding the Fleck factor f will yield the final Ur residual,

RUr = αβc3σ2∆t2Ur(tn)− βc3σ2∆t2

2
Ur(tn) +O(∆t3). (2.15)

Combining the residual terms from Eqs. (2.9), (2.12), and (2.15) yields the local
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residual error of the IMC equations

R = αβc3σ2∆t2Ur(tn)−βc
3σ2∆t2

2
Ur(tn)+

βc2σ2∆t2φ(tn)

2
−αβc2σ2∆t2φ(tn)+O(∆t3).

(2.16)
Local error is the result of taking one time step from the initial conditions. However,

this local error accumulates through the course of the simulation. After taking a
second time step away from the initial conditions, the numerical solution has an error
of 2O(∆tm) where m is the order of the method. Over the course of a simulation, the
local error accumulates as (6)

n∑
1

Error =
n∑
1

O(∆tm) = nO(∆tm) (2.17)

where n is the number of time steps used to get to time tn. Assuming a uniformly
distributed time mesh, the number of steps n can be described as n = (tn − to)/∆t.
Replacing the value of n in Eq. (2.17) gives the global error at time tn as

Total Error =
tn − to

∆t
O(∆tm) = O(∆tm−1). (2.18)

In short, the accumulation of local truncation error builds up over multiple times steps
decreasing the accuracy of the method on the global scale. In numerical simulations,
it is the global error that counts since it dictates the accuracy of the final numerical
solution.

In the case of α = 1 the local residual error term may be simplified to

R = c2βσ2∆t2
[
c
Ur(tn)

2
− φ(tn)

2

]
. (2.19)

If α = 0.5 the residual terms in Eq. (2.16) clearly cancel out yielding

R = O(∆t3) (2.20)

and when α = 0

R = c2βσ2∆t2
[
φ(tn)

2
− cUr(tn)

2

]
. (2.21)

Eqs. (2.19) to (2.21) shows the local residual error after a time step for a given
value of α. The result for α = 0.5 is a special case since the order of the residual error
in the method changes. This result is expected since Mosher has already demonstrated
that the solution to the IMC equation would be O(∆t2) accurate numerically in a
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linear 0-D problem without explanation (16).
The residual error analysis also yields a non-intuitive result. One of the IMC approx-

imations assumes an instantaneous re-emission of photon absorptions, a nonphysical
process. However, since the residual error depends only on α, the approximation
that all emissions occur instantaneously is not a dominant source of error in the
IMC approximations. Numerical results exist that confirm this explanation since
Wollaber was able to achieve O(∆t2) accuracy in a linear 0D Gray problem using a
time dependent fleck factor (20) with instantaneous emissions. These results will also
be confirmed in Chapter 3 using the more traditional IMC implementation.

Since the industry practice is to set the value of α = 1, we will examine the residual
error that comes from that approximation in more detail. It is important to consider
the types of problems being solved when examining the residual error. In particular,
for warming problems where φ(tn) � cUr(tn), the residual will be negative when
setting α = 1. In other words, the IMC method will store more energy in the photon
field φ(t) than it should, leaving a cooler material temperature T . Conversely, if the
problem is cooling when α = 1 then the residual will be positive. A positive residual
means that the IMC method will store less energy in the photon field φ(t) and more
energy in the material giving a higher material temperature T . The results of the
residual error will be exactly the opposite of α = 1 if α = 0, but no one ever uses
α = 0 in practice for stability concerns. Of course this residual error, hence forth
called bias, is only of concern during a transient since at equilibrium φ(tn) ≈ cUr(tn),
and the IMC bias vanishes.

This bias in the IMC method has never been examined before and we will show
that it will have unintuitive effects to the accuracy of a numerical solution. As one
might expect, the influence of the IMC bias will be the greatest during rapid transients
with sources or at a Marshak wave front where the incident radiation is much higher
than the material equilibrium radiation density. In some situations, this bias will
improve the accuracy of the problem by canceling out other sources of error, but in
general this bias will have detrimental effects for the accurate transport of radiation.
Throughout this thesis numerical results can be seen of how the IMC method, with
α = 1, maintains a cooler material temperature than the CF method during rapid
warming transients.
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2.2 Detailed Truncation Error Analysis of the Carter-
Forest and Implicit Monte Carlo Solutions to the
Nonlinear TRT Equations

To fully understand the differences of the CF and IMC methods, a detailed truncation
error analysis is conducted on the 0-D nonlinear GTRT equations. The addition of the
truncation error associated with approximating both σ(t) and β(t) as constant over a
time step significantly changes the accuracy of the Carter-Forest method. While the
CF method is an exact solution for the linear GTRT equations, it is an approximation
in the nonlinear GTRT equations. By examining the propagation of error in both the
CF and IMC methods, a more intuitive feel can be developed about the limitations of
each method.

2.2.1 Carter-Forest (CF) Truncation Error

Starting with the 0D radiative transfer equations with gray approximation

1

c

dφ(t)

dt
+ σ(t)φ(t) = cσ(t)Ur(t) (2.22)

1

β(t)

dUr(t)

dt
+ cσ(t)Ur(t) = σ(t)φ(t) (2.23)

equation (1.32) is solved exactly for Ur(t) by integrating factor.

d

dt′

[
Ur(t

′
)e

R t′
tn
cβ(t

′′
)σ(t

′′
)dt
′′
]

= φ(t
′
)β(t

′
)σ(t

′
)e

R t′
tn
cβ(t

′′
)σ(t

′′
)dt
′′

(2.24)

Integrating from tn to t over dt′

Ur(t)e
R t
tn
cβ(t

′′
)σ(t

′′
)dt
′′

= Ur(tn) +

∫ t

tn

φ(t
′
)β(t

′
)σ(t

′
)e

R t′
tn
cβ(t

′′
)σ(t

′′
)dt
′′

dt
′

(2.25)
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then simplifying the equation for Ur(t) and combining the bounds of integration for
the two exponentials

Ur(t) = Ur(tn)e
R t
tn
−cβ(t

′′
)σ(t

′′
)dt
′′

+ e
R t
tn
−cβ(t

′′
)σ(t

′′
)dt
′′
∫ t

tn

φ(t
′
)β(t

′
)σ(t

′
)e

R t′
tn
cβ(t

′′
)σ(t

′′
)dt
′′

dt
′

(2.26)

= Ur(tn)e
R t
tn
−cβ(t

′′
)σ(t

′′
)dt
′′

+

∫ t

tn

φ(t
′
)β(t

′
)σ(t

′
)e−

R t
t
′ cβ(t

′′
)σ(t

′′
)dt
′′

dt
′
.

Now, substituting equation (2.26) into equation (1.30) yields the exact expression for
the photon intensity for the 0D and gray approximation radiative transfer as

1

c

dφ(t)

dt
+ σ(t)φ(t) = cσ(t)Ur(tn)e−

R t
tn
cβ(t

′′
)σ(t

′′
)dt
′′

(2.27)

+ cσ(t)

∫ t

tn

β(t
′
)σ(t

′
)φ(t

′
)e−

R t
t
′ cβ(t

′′
)σ(t

′′
)dt
′′

dt
′
.

To solve this equation, σ(t) and β(t) are Taylor expanded around the value tn
yielding

β(t) = β(tn) +
dβ(tn)

dt
(t− tn) +O(∆t2) (2.28)

σ(t) = σ(tn) +
dσ(tn)

dt
(t− tn) +O(∆t2) (2.29)

where β(tn) = βn and σ(tn) = σn. The dβ(tn)
dt

(t− tn) and dσ(tn)
dt

(t− tn) terms are O(∆t)

terms that are followed explicitly through the truncation analysis. Now, substitute
(2.28) and (2.29) into (2.27) then integrate over a time step to yield∫ tn+1

tn

1

c

dφ(t)

dt
dt+

∫ tn+1

tn

[
σn +

dσn
dt

(t− tn) +O(∆t2)

]
φ(t)dt (2.30)

=

∫ tn+1

tn

R(t)dt+

∫ tn+1

tn

S(t)dt

where
R(t) = c

[
σn +

dσn
dt

(t− tn) +O(∆t2)

]
Ur(tn)e−F (t) (2.31)
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and

S(t) = c

[
σn +

dσn
dt

(t− tn) +O(∆t2)

]
(2.32)∫ t

tn

[
βn +

dβn
dt

(t
′ − tn)

] [
σn +

dσn
dt

(t
′ − tn)

]
φ(t

′
)e−F (t,t

′
)dt
′

with

F (t) =

∫ t

tn

c

[
βn +

dβn
dt

(t
′′ − tn)

] [
σn +

dσn
dt

(t
′′ − tn)

]
+O(∆t2)dt

′′
(2.33)

F (t, t
′
) =

∫ t

t′
c

[
βn +

dβn
dt

(t
′′ − tn)

] [
σn +

dσn
dt

(t
′′ − tn)

]
+O(∆t2)dt

′′
. (2.34)

Each term in equation in (2.30) will be examined separately to determine the trunca-
tion error from the Taylor expansion approximation then combined back together to
find the error in the estimate of φ.

The
∫ tn+1

tn
1
c
dφ(t)
dt
dt Term

With no approximation, this term is evaluated to yield∫ tn+1

tn

1

c

dφ(t)

dt
dt =

1

c
φ(tn+1)− 1

c
φ(tn) (2.35)

The
∫ tn+1

tn
[σn + dσn

dt
(t− tn) +O(∆t2)]φ(t)dt Term

Simplifying this term will yield

∫ tn+1

tn

[σn +
dσn
dt

(t− tn) +O(∆t2)]φ(t)dt =

∫ tn+1

tn

σnφ(t)dt+

∫ tn+1

tn

dσn
dt

(t− tn)φ(t)dt

(2.36)

+O(∆t3)

Using the mean value theorem of integration which states∫ b

a

G(x)D(x)dx = G(x∗)

∫ b

a

D(x)dx (2.37)
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where
a ≤ x∗ ≤ b. (2.38)

Equation (2.36) can be rewritten as

∫ tn+1

tn

[σn +
dσn
dt

(t− tn) +O(∆t2)]φ(t)dt =

∫ tn+1

tn

σnφ(t)dt+
dσn
dt

φ(t∗)

∫ tn+1

tn

(t− tn)dt

(2.39)

+O(∆t3)

=

∫ tn+1

tn

σnφ(t)dt+O(∆t2)

where
tn ≤ t∗ ≤ tn+1. (2.40)

Inherent in using the mean value theorem of integration is the assumption that φ(t) is
a smooth, continuous function over the time step.

The
∫ tn+1

tn
R(t)dt Term

The expression of R(t) is still fairly complicated and will be evaluated in parts. First,
the exponential will be evaluated for and then Taylor expanded such that,

e−F (t) = exp

[∫ t

tn

−c[βn +
dβn
dt

(t
′′ − tn)][σn +

dσn
dt

(t
′′ − tn)] +O(∆t2)dt

′′
]

(2.41)

= exp

[
−cβnσn(t− tn)− c

2
(σn

dβn
dt

+ βn
dσn
dt

)(t− tn)2 +O(∆t3)

]
= exp

[
− cβnσn(t− tn)

]
exp

[
− c

2
(σn

dβn
dt

+ βn
dσn
dt

)(t− tn)2 +O(∆t3)

]
Now, Taylor expand the error portion of equation (2.41) to get a simplified expression
of e−F (t). The error can be expanded as

exp

[
− c

2
(σn

dβn
dt

+ βn
dσn
dt

)(t− tn)2 +O(∆t3)

]
= 1− c

2
(σn

dβn
dt

+βn
dσn
dt

)(t−tn)2+O(∆t3)

(2.42)
which allows for the simplification

e−F (t) = exp

[
− cβnσn(t− tn)

]
+O(∆t2). (2.43)

17



Neglecting higher order errors, the integration of R(t) can now be examined as∫ tn+1

tn

R(t)dt =

∫ tn+1

tn

c

[
σn +

dσn
dt

(t− tn) +O(∆t2)

]
Ur(tn)e−F (t)dt (2.44)

=

∫ tn+1

tn

c

[
σn +

dσn
dt

(t− tn)

]
Ur(tn)×[

1− c(σn
dβn
dt

+ βn
dσn
dt

)(t− tn)2

]
exp−cβnσn(t−tn) dt

=

∫ tn+1

tn

cσnUr(tn) exp−cβnσn(t−tn) dt

+

∫ tn+1

tn

c
dσn
dt

(t− tn)Ur(tn) exp−cβnσn(t−tn) dt+O(∆t3)

Expanding the exponential in the error term, Eq. (2.44) may be rewritten as

∫ tn+1

tn

R(t)dt =

∫ tn+1

tn

cσnUr(tn) exp−cβnσn(t−tn) dt (2.45)

+

∫ tn+1

tn

c
dσn
dt

(t− tn)Ur(tn) exp−cβnσn(t−tn) dt+O(∆t3)

=

∫ tn+1

tn

cσnUr(tn) exp−cβnσn(t−tn) dt

+ c
dσn
dt

Ur(tn)

∫ tn+1

tn

[
(t− tn)− cβnσn(t− tn)2

]
dt+O(∆t3)

=

∫ tn+1

tn

cσnUr(tn) exp−cβnσn(t−tn) dt+O(∆t2)
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The
∫ tn+1

tn
S(t)dt Term

Now, the expression for
∫ tn+1

tn
S(t)dt is expanded into the parts shown below

∫ tn+1

tn

S(t)dt =

∫ tn+1

tn

σn

∫ t

tn

βnσnφ(t
′
)e−F (t,t

′
)dt
′
dt (2.46)

+

∫ tn+1

tn

σn

∫ t

tn

βn
dσn
dt

(t
′ − tn)φ(t

′
)e−F (t,t

′
)dt
′
dt

+

∫ tn+1

tn

σn

∫ t

tn

dβn
dt

(t
′ − tn)σnφ(t

′
)e−F (t,t

′
)dt
′
dt

+

∫ tn+1

tn

σn

∫ t

tn

dβn
dt

dσn
dt

(t
′ − tn)2φ(t

′
)e−F (t,t

′
)dt
′
dt

+

∫ tn+1

tn

dσn
dt

(t− tn)

∫ t

tn

βnσnφ(t
′
)e−F (t,t

′
)dt
′
dt

+

∫ tn+1

tn

dσn
dt

(t− tn)

∫ t

tn

βn
dσn
dt

(t
′ − tn)φ(t

′
)e−F (t,t

′
)dt
′
dt

+

∫ tn+1

tn

dσn
dt

(t− tn)

∫ t

tn

dβn
dt

(t
′ − tn)σnφ(t

′
)e−F (t,t

′
)dt
′
dt

+

∫ tn+1

tn

dσn
dt

(t− tn)

∫ t

tn

dβn
dt

dσn
dt

(t
′ − tn)2φ(t

′
)e−F (t,t

′
)dt
′
dt

The expression of S(t) will be broken down in a similar manner as R(t) was done
previously. First, the exponential is expanded to better characterize its error.

e−F (t,t
′
) = exp

[
−
∫ t

t′
c[βn +

dβn
dt

(t
′′ − tn)][σn +

dσn
dt

(t
′′ − tn)] +O(∆t2)dt

′′
]

(2.47)

= exp
[
−cβnσn(t− t′)

]
×

exp

[
−c(σn

dβn
dt

+ βn
dσn
dt

)(
t2

2
− ttn −

t
′2

2
+ tnt

′
) +O(∆t3)

]
= exp

[
−cβnσn(t− t′)

]
× (2.48)

exp

[
− c

2
(σn

dβn
dt

+ βn
dσn
dt

)((t− tn)2 − (t
′ − tn)2) +O(∆t3)

]
Taylor expanding the first order error of Eq. (2.47) around tn with regard to t′ yields
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exp

[
− c

2
(σn

dβn
dt

+ βn
dσn
dt

)((t− tn)2 − (t
′ − tn)2) +O(∆t3)

]
(2.49)

≈ exp

[
− c

2
(σn

dβn
dt

+ βn
dσn
dt

)(t− tn)2

] [
1 +

c

2
(σn

dβn
dt

+ βn
dσn
dt

)(t
′ − tn)2 +O(∆t3)

]
.

Next, expanding the error of Eq. (2.49) around tn with regard to t results in

exp

[
− c

2
(σn

dβn
dt

+ βn
dσn
dt

)((t− tn)2 − (t
′ − tn)2) +O(∆t3)

]
(2.50)

=

[
1− c

2
(σn

dβn
dt

+ βn
dσn
dt

)(t− tn)2 +O(∆t3)

]
×[

1 +
c

2
(σn

dβn
dt

+ βn
dσn
dt

)(t
′ − tn)2 +O(∆t3)

]
= 1− c

2
(σn

dβn
dt

+ βn
dσn
dt

)((t− tn)2 − (t
′ − tn)2)

therefore
e−F (t,t

′
) ≈ exp

[
−cβnσn(t− t′)

]
+O(∆t2). (2.51)

Expanding e−F (t,t
′
) and using the mean value theorem of integration, Eq. (2.46) can

be rewritten as
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∫ tn+1

tn

S(t)dt =

∫ tn+1

tn

σn

∫ t

tn

βnσnφ(t
′
) exp[−cβnσn(t− t′)] +O(∆t2)dt

′
dt (2.52)

+

∫ tn+1

tn

σnφ(t∗∗)e−cβnσntβn
dσn
dt
×∫ t

tn

(t
′ − tn)

[
1 + cβnσn(t

′ − tn) +O(∆t2)
]
dt
′
dt

+

∫ tn+1

tn

σnφ(t∗∗)e−cβnσnt
dβn
dt

σn×∫ t

tn

(t
′ − tn)

[
1 + cβnσn(t

′ − tn) +O(∆t2)
]
dt
′
dt

+

∫ tn+1

tn

σnφ(t∗∗)e−cβnσnt
dβn
dt

dσn
dt
×∫ t

tn

(t
′ − tn)2

[
1 + cβnσn(t

′ − tn) +O(∆t2)
]
dt
′
dt

+

∫ tn+1

tn

dσn
dt

(t− tn)βnσnφ(t∗∗) exp [−cβnσn(t− t∗∗)] +O(∆t3)dt

+

∫ tn+1

tn

dσn
dt

(t− tn)φ(t∗∗)e−cβnσnt

× βn
dσn
dt

∫ t

tn

(t
′ − tn)

[
1 + cβnσn(t

′ − tn) +O(∆t2)
]
dt
′
dt

+

∫ tn+1

tn

dσn
dt

(t− tn)φ(t∗∗)e−cβnσnt

× dβn
dt

σn

∫ t

tn

(t
′ − tn)

[
1 + cβnσn(t

′ − tn) +O(∆t2)
]
dt
′
dt

+

∫ tn+1

tn

dσn
dt

(t− tn)φ(t∗∗)e−cβnσnt

× dβn
dt

dσn
dt

∫ t

tn

(t
′ − tn)2

[
1 + cβnσn(t

′ − tn) +O(∆t2)
]
dt
′
dt

where
tn ≤ t∗∗ ≤ t. (2.53)

Simplifying Eq. (2.52), complete the integration of the error terms and use the mean
value theorem to yield
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∫ tn+1

tn

S(t)dt =

∫ tn+1

tn

σn

∫ t

tn

βnσnφ(t
′
) exp[−cβnσn(t− t′)] +O(∆t2)dt

′
dt (2.54)

+ φ(t∗)

∫ tn+1

tn

σnβn
dσn
dt

[1− cβnσn(t− tn)]
(t− tn)2

2
dt

+ φ(t∗)

∫ tn+1

tn

σn
dβn
dt

σn [1− cβnσn(t− tn)]
(t− tn)2

2
dt

+ φ(t∗)

∫ tn+1

tn

σn
dβn
dt

dσn
dt

[1− cβnσn(t− tn)]
(t− tn)3

3
dt

+ φ(t∗) exp [−cβnσn(t∗ − t∗∗)]
∫ tn+1

tn

dσn
dt

(t− tn)βnσn +O(∆t3)dt

+ φ(t∗)

∫ tn+1

tn

dσn
dt

(t− tn)βn
dσn
dt

[1− cβnσn(t− tn)]
(t− tn)2

2
dt

+ φ(t∗)

∫ tn+1

tn

dσn
dt

(t− tn)
dβn
dt

σn [1− cβnσn(t− tn)]
(t− tn)2

2
dt

+ φ(t∗)

∫ tn+1

tn

dσn
dt

(t− tn)
dβn
dt

dσn
dt

[1− cβnσn(t− tn)]
(t− tn)3

3
dt

where
tn ≤ t∗∗ ≤ t∗ ≤ tn+1, (2.55)

finally yielding∫ tn+1

tn

S(t)dt =

∫ tn+1

tn

σn

∫ t

tn

βnσnφ(t
′
)e−F (t,t

′
)dt
′
dt+O(∆t2). (2.56)

Therefore, the
∫ tn+1

tn
S(t)dt is O(∆t2) accurate locally.

Carter-Forest Material Temperature Update

Now, Eq. (2.27) with the Taylor expansion approximations to σ(t) and β(t) may be
rewritten as

φ(tn+1) = φ(tn)−
∫ tn+1

tn

cσnφ(t)dt+

∫ tn+1

tn

c2σnUr(tn)e−cβnσn(t−tn)dt (2.57)

+

∫ tn+1

tn

σn

∫ t

tn

βnσnφ(t
′
) exp[−cβnσn(t− t′)]dt′dt+O(∆t2).
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It is worthwhile to note that the error in the Taylor expansion approximations was
dominated by the approximation to σ(t) but not β(t). By examining each term in the
CF equation and following the truncation error in time through temporal integration,
the approximation to σ(t) added O(∆t2) local error while the β(t) term added O(∆t3)

local error. The difference in the order of error that is added by each term is related
to the number of times that the approximation is integrated. In the CF method,
the truncation error for the β(t) term is integrated at least two times while the
approximations of σ(t) are sometimes integrated only once. Assuming small values of
∆t, each temporal integration diminishes the size of the error of the values from the
Taylor expansion of each coefficient. Combining all of the terms, the approximation of
φ(tn+1) is O(∆t2) locally and O(∆t) globally.

To get the end of time step temperature, the conservation of energy equation is
found by summing Eqs. (1.30) and (1.31),

1

c

dφ(t)

dt
+
dUm(t)

dt
= 0 (2.58)

and then integrating over a time step to yield

Um(tn+1) = Um(tn)− 1

c
(φ(tn+1)− φ(tn)). (2.59)

Knowing the start of time step values of Um(tn) and φ(tn), then using Eq. (2.57) for
the value of φ(tn+1), the material energy density update becomes

Um(tn+1) = Um(tn)− 1

c
(φ(tn+1)− φ(tn)) +O(∆t2). (2.60)

The temperature is related to the material energy density Um by

Um(t) =

∫ T (t)

0

Cv(T (t))dT. (2.61)

The approximation of Um(t) means the temperature at time t will be estimated
with O(∆t2) local and O(∆t) global accuracy. Therefore the error in the Carter-Forest
method is O(∆t2) locally and O(∆t) globally.
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2.2.2 Implicit Monte Carlo (IMC) Truncation Error

Restating the 0D radiative transfer equations,

1

c

dφ(t)

dt
+ σ(t)φ(t) = cσ(t)Ur(t) (2.62)

1

β(t)

dUr(t)

dt
+ cσ(t)Ur(t) = σ(t)φ(t) (2.63)

the IMC method solves this set of equations in a significantly different way then the
Carter-Forest method. Instead of solving the equation for Ur(t) exactly, the IMC
method makes two approximations. First, Ur(t) is expressed as a combination of the
emissivity at the beginning and end of the time step with a user defined parameter α
which has the properties 0 ≤ α ≤ 1. Ur(t) is approximated by first Taylor expanding
around different time steps,

Ur(t) = Ur(tn) +
d

dt
Ur(tn)(t− tn) +O(∆t2) (2.64)

Ur(t) = Ur(tn+1) +
d

dt
Ur(tn+1)(t− tn+1) +O(∆t2) (2.65)

then multiplying Eq. (2.64) by (1−α) and Eq. (2.65) by α. Adding the two modified
equations together yields

Ur(t) = αUr(tn+1) + (1− α)Ur(tn) + (1− α)
d

dt
Ur(tn)(t− tn) (2.66)

+ α
d

dt
Ur(tn+1)(t− tn+1) +O(∆t2).

Substituting this estimate of Ur(t) into Eq. (2.63), then integrating over a time step
yields∫ tn+1

tn

dUr(t)

dt
dt =

∫ tn+1

tn

β(t)σ(t)φ(t)dt−
∫ tn+1

tn

cβ(t)σ(t)× (2.67)[
αUr(tn+1) + (1− α)Ur(tn) + (1− α)

d

dt
Ur(tn)(t− tn)

+ α
d

dt
Ur(tn+1)(t− tn+1)

]
dt+O(∆t3).

Applying the Taylor expansion approximation to σ(t) and β(t) shown in Eqs.
(2.28) and (2.29) to (2.67) and simplifying by removing higher than O(∆t2) errors
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gives

Ur(tn+1)− Ur(tn) =

∫ tn+1

tn

(βn +
dβn
dt

(t− tn))(σn +
dσn
dt

(t− tn))φ(t)dt (2.68)

−
∫ tn+1

tn

c(βn +
dβn
dt

(t− tn))(σn +
dσn
dt

(t− tn))×[
αUr(tn+1) + (1− α)Ur(tn) + (1− α)

d

dt
Ur(tn)(t− tn)

+ α
d

dt
Ur(tn+1)(t− tn+1)

]
dt

= βnσn

∫ tn+1

tn

φ(t)dt− cβnσn∆t

[
αUr(tn+1) + (1− α)Ur(tn)

]
+

1

2

[
σn
dβn
dt

+ βn
dσn
dt

]
φ(t∗)∆t2

+

[
cβnσn

2

]
((1− α)

d

dt
Ur(tn)− α d

dt
Ur(tn+1))∆t2

+
c

2
(σn

dβn
dt

+ β
dσn
dt

)

[
αUr(tn+1) + (1− α)Ur(tn)

]
∆t2

where
tn ≤ t∗ ≤ tn+1. (2.69)

Now solve for the value of Ur(tn+1) neglecting detailed O(∆t2) terms

(1+αβncσn∆t)Ur(tn+1) = Ur(tn)+βnσn

∫ tn+1

tn

φ(t)dt−βncσn∆t(1−α)Ur(tn)+O(∆t2)

(2.70)
which simplifies to the expression

Ur(tn+1) =
Ur(tn) + (α− 1)βncσn∆tUr(tn)

1 + αβncσn∆t
+
βnσn

∫ tn+1

tn
φ(t)dt

1 + αβncσn∆t
+O(∆t2). (2.71)

Substituting Eq. (2.71) into Eq. (2.66), the Ur(tn+1) term is now replaced in the IMC
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approximation of the equilibrium radiation density as

Ur(t) =
αUr(tn) + α(α− 1)βncσn∆tUr(tn)

1 + αβncσn∆t
+
αβnσn

∫ tn+1

tn
φ(t)dt

1 + αβncσn∆t
+ (1− α)Ur(tn)

(2.72)

+ (1− α)
d

dt
Ur(tn)(t− tn) + α

d

dt
Ur(tn+1)(t− tn+1) +O(∆t2)

=
αUr(tn) + α2βncσn∆tUr(tn)− αβncσn∆tUr(tn)

1 + αβncσn∆t

+
αβnσn

∫ tn+1

tn
φ(t)dt

1 + αβncσn∆t
+ (1− α)Ur(tn)

1 + αβncσn∆t

1 + αβncσn∆t

+ (1− α)
d

dt
Ur(tn)(t− tn) + α

d

dt
Ur(tn+1)(t− tn+1) +O(∆t2)

=
Ur(tn)

1 + αβncσn∆t
+
αβnσn

∫ tn+1

tn
φ(t)dt

1 + αβncσn∆t

+ (1− α)
d

dt
Ur(tn)(t− tn) + α

d

dt
Ur(tn+1)(t− tn+1) +O(∆t2).

The second IMC approximation is applied to φ(t) changing the time dependency as

φ(t) ≈ φ(t
′
) +

dφ(t
′
)

dt
(t− t′) +O(∆t2) (2.73)

or more pertantly stated as∫ tn+1

tn

φ(t)dt ≈ φ(t
′
)∆t+O(∆t2). (2.74)

The approximation to φ(t) has the effect that all photons absorbed into the material
will be emitted instantaneously instead of being held as in the CF equations. Applying
the second IMC approximation from Eq. (2.73) to (2.72) yields

Ur(t) =
Ur(tn)

1 + αβncσn∆t
+
αβnσn∆tφ(t

′
)

1 + αβncσn∆t
+ (1− α)

d

dt
Ur(tn)(t− tn) (2.75)

+ α
d

dt
Ur(tn+1)(t− tn+1) +O(∆t2).

Note that O(∆t2) error terms are dominated by O(∆t) error terms,

(1− α)
d

dt
Ur(tn)(t− tn) + α

d

dt
Ur(tn+1)(t− tn+1),
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and therefore will be disregarded. Defining the Fleck Factor as

f =
1

1 + αβncσn∆t
(2.76)

equation (2.75) may be rewritten as

Ur(t) = fUr(tn) +
1− f
c

φ(t
′
) +O(∆t) (2.77)

= fUr(tn) +
1− f
c

φ(t) +O(∆t)

where the dummy variable t′ has been replaced by t. It is worthy to note that the
O(∆t) error in the expression for Ur(t) is in fact caused by the IMC approximations
and not the Taylor expansions of σ(t) or β(t).

Next, the equation for photon intensity is solved by substituting Ur(t) with the
approximation from equation (2.77) into (2.62) to yield

1

c

dφ(t)

dt
+ σ(t)φ(t) = cσ(t)

[
fUr(tn) +

1− f
c

φ(t) +O(∆t)

]
. (2.78)

Like the equation for emissivity, σ(t) is approximated by a Taylor expansion shown in
equation (2.29)

1

c

dφ(t)

dt
+ (σn +

dσn
dt

(t− tn))φ(t) = c(σn +
dσn
dt

(t− tn))

[
fUr(tn) +

1− f
c

φ(t) +O(∆t)

]
(2.79)

which is simplified to give the IMC estimated intensity equation

1

c

dφ(t)

dt
+ fσnφ(t) = cσnfUr(tn) +

[
cσn −

dσn
dt

φ(t) +
dσn
dt

cfUr(tn)

]
O(∆t). (2.80)

Using an integrating factor to solve the differential IMC flux gives

d

dt
[φ(t)ecσnft] = c2σnfUr(tn)ecσnft +O(∆t) (2.81)

and integrating over the time step from tn to tn+1

φ(tn+1)ecσnftn+1 − φ(tn)ecσnftn = cUr(tn)
[
ecσnftn+1 − ecσnftn

]
+O(∆t2) (2.82)
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which is simplified to give the final solution

φ(tn+1) = φ(tn)e−cσnf∆t + cUr(tn)(1− e−cσnf∆t) +O(∆t2). (2.83)

Therefore, the estimate of the flux is in fact O(∆t2) locally and O(∆t) globally.
This is the same order of error that the Carter-Forest method had for the same
Taylor expanded values for both σ(t) and β(t). However, it should be noted that the
dominating error in this expression comes from both the estimate of σ(t) and the
actual IMC approximations, meaning that while more approximations were made in
the derivation of the Implicit Monte Carlo method, the order accuracy of the method
is the same as the more exact Carter-Forest.

Implicit Monte Carlo Temperature Update

Just as before with the CF equations, the temperature is updated by using the
conservation of energy

dUm(t)

dt
+

1

c

dφ(t)

dt
= 0. (2.84)

Integrating over a time step and including the approximation to the flux φ(t)

Um(tn+1) = Um(tn)− 1

c
(φ(tn+1)− φ(tn)) +O(∆t2). (2.85)

Using the relation between specific heat and temperature,

Um(t) =

∫ T (t)

0

Cv(T (t))dT (2.86)

the IMC estimates of the temperature after a time step are O(∆t2) locally and O(∆t)

globally.
The order accuracy of the IMC and CF methods are exactly the same. However,

the increased use of exponentials in the CF method makes it computationally more
intensive than the traditional IMC method. Therefore, it appears the higher fidelity
of the Carter-Forest method is not a clear improvement on the Implicit Monte Carlo
method. It is worth noting that the IMC method has two sources of O(∆t) global error
coming from the approximation of the equilibrium radiation density and the estimation
of σ(t) while the CF method has only one, due to the σ(t) approximation. Therefore
predictor-corrector methods are examined to determine if the error associated with
the time truncation of σ(t) can be reduced and yield a more accurate solution.
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2.3 Predictor-Corrector Truncation Error for the
Carter-Forest and Implicit Monte Carlo Solu-
tions

Since both the CF and IMC methods have a leading order error term caused by the
truncation of σ(t), a predictor-corrector is applied to better resolve the nonlinearity
in σ(t). If the predictor-corrector removes the leading order error, the CF method will
become O(∆t2) globally accurate in the zero dimensional, nonlinear problem. However,
since there are two dominant sources of error for the IMC method, a predictor-corrector
alone will not be able to change the order error of the method.

2.3.1 Carter-Forest Predictor-Corrector Truncation Error

To reduce the truncation error caused by the approximation to σ(t), the midpoint
method is used. First, σ(t) will be expanded as

σ(t) = σ(tn+ 1
2
) +

dσ(tn+ 1
2
)

dt
(t− tn+ 1

2
) +

1

2

d2σ(tn+ 1
2
)

dt2
(t− tn+ 1

2
)2 +O(∆t3). (2.87)

Therefore, estimates of σ(tn+1) and σ(tn) may be expressed as

σ(tn+1) = σ(tn+ 1
2
) +

dσ(tn+ 1
2
)

dt
(t− tn+ 1

2
) +

1

2

d2σ(tn+ 1
2
)

dt2
(t− tn+ 1

2
) (2.88)

and

σ(tn) = σ(tn+ 1
2
)−

dσ(tn+ 1
2
)

dt
(t− tn+ 1

2
) +

1

2

d2σ(tn+ 1
2
)

dt2
(t− tn+ 1

2
). (2.89)

Adding equations (2.88) and (2.89) yields

σ(tn+1) + σ(tn) = 2σ(tn+ 1
2
) +

d2σ(tn+ 1
2
)

dt2
(t− tn+ 1

2
) (2.90)

which can be rearranged to show

σ(tn+ 1
2
) =

σ(tn+1) + σ(tn)

2
+O(∆t2). (2.91)

The value of σ(tn+1) must be estimated with an accuracy that is at least O(∆t2) for
the midpoint method to work. To that end, a predictor step is used to get an estimate
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of the temperature at the time tn+1 which is O(∆t2) accurate since only one step is
being taken. Next, the opacity is evaluated at the predicted temperature to yield an
O(∆t2) estimate of σ(tn+1) defined as σ̃(tn+1). Equation (2.91) can be restated with
the estimated value σ̃(tn+1) as

σ(tn+ 1
2
) =

[σ̃(tn+ 1
2
) +O(∆t2)] + σ(tn)

2
+O(∆t2) (2.92)

=
σ̃(tn+ 1

2
) + σ(tn)

2
+O(∆t2).

After calculating the end of time step temperature (and therefore opacity), a corrector
step is used to run the same time step again with the updated values for the opac-
ity. Using the predictor-corrector equation (2.92) in (2.27), the truncation error is
examined in all terms that contain the new approximation to σ(t) but still use the old
approximation to β(t). The σ(tn+ 1

2
) term will be written as σn+ 1

2
for simplicity.

The
∫ tn+1

tn
[σn+ 1

2
+O(∆t2)]φ(t)dt Term

Simplifying this term will yield∫ tn+1

tn

[σn+ 1
2

+O(∆t2)]φ(t)dt =

∫ tn+1

tn

σn+ 1
2
φ(t)dt+

∫ tn+1

tn

φ(t)O(∆t2)dt (2.93)

=

∫ tn+1

tn

σn+ 1
2
φ(t)dt+O(∆t3)

The
∫ tn+1

tn
R(t)dt Term

The expression of R(t) is still fairly complicated and will be evaluated in parts. First,
the exponential will be Taylor expanded such that,

e−F
∗(t) = exp

[∫ t

tn

−c[βn +
dβn
dt

(t
′′ − tn)][σn+ 1

2
+O(∆t2)]dt

′′
]

(2.94)

= exp

[
−cβnσn+ 1

2
(t− tn)− 1

2

dβn
dt

σn+ 1
2
(t− tn)2 +O(∆t3)

]
= exp

[
− cβnσn+ 1

2
(t− tn)

]
exp

[
−1

2
(
dβn
dt

σn+ 1
2
)(t− tn)2 +O(∆t3)

]
As shown previously, the Taylor expansion of the error will yield
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e−F
∗(t) ≈ exp

[
− cβnσn+ 1

2
(t− tn)

]
+O(∆t2). (2.95)

Neglecting higher order errors,the integration of R(t) can now be examined as∫ tn+1

tn

R(t)dt =

∫ tn+1

tn

c[σn+ 1
2

+O(∆t2)]Ur(tn)e−F
∗(t)dt (2.96)

=

∫ tn+1

tn

cσn+ 1
2
Ur(tn) exp

−cβnσn+1
2

(t−tn)
+O(∆t2)dt

=

∫ tn+1

tn

cσn+ 1
2
Ur(tn) exp

−cβnσn+1
2

(t−tn)
dt+O(∆t3).

The
∫ tn+1

tn
S(t)dt Term

As shown previously in Eq. (2.46), the expansion of e−F ∗(t,t
′
) is

e−F
∗(t,t

′
) ≈ exp

[
−
∫ t

t′
c[βn +

dβn
dt

(t
′′ − tn)][σn+ 1

2
+O(∆t2)]dt

′′
]

(2.97)

≈ exp
[
−cβnσn+ 1

2
(t− t′)

]
+O(∆t2).
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Now, the expression for
∫ tn+1

tn
S(t)dt is rewritten with the error approximation for the

exponential already included∫ tn+1

tn

S(t)dt = (2.98)∫ tn+1

tn

σn+ 1
2

∫ t

tn

βnσn+ 1
2
φ(t

′
)[exp

[
− cβnσn+ 1

2
(t− t′)

]
+O(∆t2)]dt

′
dt

+

∫ tn+1

tn

σn+ 1
2

∫ t

tn

βnO(∆t2)φ(t
′
)[exp

[
−cβnσn+ 1

2
(t− t′)

]
+O(∆t2)]dt

′
dt

+

∫ tn+1

tn

σn+ 1
2

∫ t

tn

dβn
dt

(t
′ − tn)σn+ 1

2
φ(t

′
)[exp

[
−cβnσn+ 1

2
(t− t′)

]
+O(∆t2)]dt

′
dt

+

∫ tn+1

tn

σn+ 1
2

∫ t

tn

dβn
dt

(t
′ − tn)O(∆t2)φ(t

′
)[exp

[
−cβnσn+ 1

2
(t− t′)

]
+O(∆t2)]dt

′
dt

+

∫ tn+1

tn

O(∆t2)

∫ t

tn

βnσn+ 1
2
φ(t

′
)[exp

[
−cβnσn+ 1

2
(t− t′)

]
+O(∆t2)]dt

′
dt

+

∫ tn+1

tn

O(∆t2)

∫ t

tn

βnO(∆t2)φ(t
′
)[exp

[
−cβnσn+ 1

2
(t− t′)

]
+O(∆t2)]dt

′
dt

+

∫ tn+1

tn

O(∆t2)

∫ t

tn

dβn
dt

(t
′ − tn)σn+ 1

2
φ(t

′
)[exp

[
−cβnσn+ 1

2
(t− t′)

]
+O(∆t2)]dt

′
dt

+

∫ tn+1

tn

O(∆t2)

∫ t

tn

dβn
dt

(t
′ − tn)O(∆t2)φ(t

′
)[exp

[
−cβnσn+ 1

2
(t− t′)

]
+O(∆t2)]dt

′
dt.

Following the same steps before in applying the mean value theorem of integration,
the error again is dominated by one of the expanded terms such that∫ tn+1

tn

S(t)dt =

∫ tn+1

tn

σn+ 1
2

∫ t

tn

βnσn+ 1
2
φ(t

′
) exp

[
−cβσn+ 1

2
(t− t′)

]
dt
′
dt+O(∆t3).

(2.99)

Carter-Forest Predictor-Corrector Temperature Update

Now, Eq. (2.27) with the Taylor expansion predictor-corrector approximations to σ(t)

and β(t) may be rewritten as
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φ(tn+1) = φ(tn) +

∫ tn+1

tn

cσn+ 1
2
φ(t)dt+

∫ tn+1

tn

c2σn+ 1
2
Ur(tn) exp

−cβnσn+1
2

(t−tn)
dt

(2.100)

+

∫ tn+1

tn

σn+ 1
2

∫ t

tn

βnσn+ 1
2
φ(t

′
)e−F

∗(t,t
′
)dt
′
dt+O(∆t3).

The most significant difference between equations (2.57) and (2.100) is the order of
their approximation. For the predictor-corrector method, the order error is O(∆t3)

locally and O(∆t2) globally when used to solve the energy balance equation to cal-
culate the end of time step temperature, while the traditional approach is O(∆t2)

locally and O(∆t) globally. It appears that the predictor-corrector method can be an
improvement over the traditional Carter-Forest method implementation even though
twice the amount of work must be done to get the next temperature estimate. The
higher order error after the predictor-corrector approach will allow an over-all faster
convergence to the correct solution.

2.3.2 Implicit Monte Carlo Predictor-Corrector Truncation
Error

As with the Carter-Forest method, the IMC method has an O(∆t2) error in estimating
of the temperature for one time step and therefore can be used in the midpoint method
predictor-corrector. Restating equation (2.67), the IMC approximation to Ur(t) before
the Taylor expansion of the σ(t) and β(t) terms is

∫ tn+1

tn

dUr(t)

dt
dt =

∫ tn+1

tn

β(t)σ(t)φ(t)dt−
∫ tn+1

tn

cβ(t)σ(t)× (2.101)[
αUr(tn+1) + (1− α)Ur(tn) + (1− α)

d

dt
Ur(tn)(t− tn)

+ α
d

dt
Ur(tn+1)(t− tn+1)

]
dt.

Applying the predictor-corrector estimate for σ(t) given in Eqs. (2.67) to (2.91) yields
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Ur(tn+1)− Ur(tn) =

∫ tn+1

tn

(βn +
dβn
dt

(t− tn))(σn+ 1
2

+O(∆t2))φ(t)dt (2.102)

−
∫ tn+1

tn

c(βn +
dβn
dt

(t− tn))(σn+ 1
2

+O(∆t2))×[
αUr(tn+1) + (1− α)Ur(tn) + (1− α)

d

dt
Ur(tn)(t− tn)

+ α
d

dt
Ur(tn+1)(t− tn+1)

]
dt

= βnσn+ 1
2

∫ tn+1

tn

φ(t)dt− cβnσn+ 1
2
∆t

[
αUr(tn+1) + (1− α)Ur(tn)

]
+

1

2

[
σn+ 1

2

dβn
dt

]
φ(t∗)∆t2

+

[
cβnσn+ 1

2

2

]
((1− α)

d

dt
Ur(tn)− α d

dt
Ur(tn+1))∆t2

+
c

2
(σn

dβn
dt

)

[
αUr(tn+1) + (1− α)Ur(tn)

]
∆t2.

Solving for Ur(tn+1) yields a similar result to (2.71),

Ur(tn+1) ≈
Ur(tn) + (α− 1)βncσn+ 1

2
∆tUr(tn)

1 + αβncσn+ 1
2
∆t

+
βnσn+ 1

2

∫ tn+1

tn
φ(t)dt

1 + αβncσn+ 1
2
∆t

+O(∆t2).

(2.103)
Next, the second IMC approximation is applied to (2.103). Simplifying this yields

Ur(t) = fn+ 1
2
Ur(tn) +

1− fn+ 1
2

c
φ(t) +O(∆t) (2.104)

where
fn+ 1

2
=

1

1 + αβncσn+ 1
2
∆t
. (2.105)

It appears at this stage that the IMC approximations themselves are unaffected by
this particular predictor-corrector method. Next, Eq. (2.104) is substituted into the
predictor-corrector modified photon intensity Eq. (2.106)

1

c

dφ(t)

dt
+(σn+ 1

2
+O(∆t2))φ(t) = c(σn+ 1

2
+O(∆t2))

[
fn+ 1

2
Ur(tn)+

1− fn+ 1
2

c
φ(t)+O(∆t)

]
(2.106)
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which is simplified to give the IMC estimated intensity equation

1

c

dφ(t)

dt
+ fn+ 1

2
σn+ 1

2
φ(t) = cσn+ 1

2
fn+ 1

2
Ur(tn) +

[
cσn+ 1

2

]
O(∆t). (2.107)

Using an integrating factor and then integrating over a time step, (2.107) can be
rewritten as

φ(tn+1) = φ(tn)e
−cσ

n+1
2
f
n+1

2
∆t

+ cUr(tn)(1− e−cσn+1
2
f
n+1

2
∆t

) +O(∆t2). (2.108)

The truncation error for the IMC predictor-corrector method is O(∆t2) locally
and O(∆t) globally. Unfortunately, this is not an improvement over the traditional
implementation of the IMC equations. The lack of improvement occurs because of
the IMC approximation shown in Eq. (2.66) that is made in addition to the time
truncation to σ(t). However, it is still possible to achieve O(∆t2) global convergence
with the IMC method in the 0D equations using a predictor-corrector if the value
of α = 0.5. However, for stability reasons α is almost always set equal to 1. The
reason that α = 0.5 is different than other values of α in terms of accuracy in the
IMC equations was determined by the previous residual error analysis.
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Chapter 3

Zero Dimensional Numerical Results

For the TRT (Thermal Radiative Transfer) equations, the 0D test bed allows for the
testing of the fundamental mechanics of photon transport with energy deposition
and the coupled material emissions in computationally easy manner. The linear zero
dimensional Gray Thermal Radiation Transport (GTRT) equations can be solved
exactly during a time step by the CF method. By comparing the results of the CF
and IMC methods in this problem, the IMC bias can be examined graphically.

Additional approximations must be made to solve the nonlinear zero dimensional
GTRT problems since both β and σ are functions of temperature. In this nonlinear
problem, the CF solution is no longer exact. However, a very good estimate of the
true solution can be made by using a highly refined time step size. The result of the
refined solution is then used as the benchmark to test the predicted accuracy of the
predictor-corrector methods.

3.1 Bias in the Implicit Monte Carlo Method

Equation (2.19) demonstrates mathematically that there is a bias in the GTRT linear
analytic solution of the IMC equation. Depending on whether the problem is warming
or cooling, the material temperature will be cooler or warmer than the correct solution
respectively. To confirm the mathematical result, a numerical simulation is performed
here. A linear radiative 0D radiative transfer problem is solved with the radiation
constant a = 1, the speed of light c = 1, β(t) = 1, σ(t) = 1, using a time step size
of ∆t = 0.1 and a starting temperature of T = 0.1. Figure 3.1 shows the difference
between the IMC and CF method. The IMC method with α = 1 clearly has a lower
transient temperature for the material than the CF method even though both methods
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Figure 3.1: Temperature vs. time for IMC and CF.

eventually reach the same equilibrium material temperature. Similarly, when α = 0,
the IMC method has a warmer temperature than the CF method during the transient.
In this particular problem, the CF method is exact, exposing the residual error that
comes from the IMC approximations described previously. As the size of the time step
is decreased, the IMC bias is reduced and the computed solution during the transient
becomes closer to the exact CF solution.

While the linear radiative transfer solutions are interesting, they are still unphys-
ical. To determine the effects of the bias in the IMC method with more realistic
problems, a warming and cooling problem are defined to explore the analytical results
shown in Eqs. (2.19) and (2.21) Both the warming and cooling problems set a = 1,
c = 1, have the nonlinear values of σ(T ) = 1000/T 3 and a constant heat capacity
Cv such that β(T ) = 40T 3. The warming problem has a burst of photons with an
intensity φ(0) = 1000cUr(0) at the start of the problem with an initial temperature of
T = 0.1. No new energy is added to the problem after this point. The cooling down
problem starts with a temperature T = 1.0 and has a cooler radiation field starting
at φ(0) = cUr(0)/16. Therefore, the warming problem starts with a higher radiation
temperature which eventually will cause the material to warm and the cooling problem
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has a colder radiation temperature which will cause less absorptions in the material
causing it to cool. The material temperature of the infinite medium problem vs. time
can be seen in Figs. 3.2a and 3.2b.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
em

pe
ra

tu
re

Time

(a) Warming Problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time

T
em

pe
ra

tu
re

(b) Cooling Problem

Figure 3.2: Material temperature at different times for the warming and cooling
problems.

To determine the error in the estimate of the temperature of both the CF method
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and the IMC method, a finely resolved time step solution of ∆t = 10−13 is created
using the CF method. Next, the instantaneous relative error defined as

Re(t) =
| Tr(t)− Tc(t) |

Tr(t)
(3.1)

where Tr(t) represents the reference solution at time t and Tc(t) represents the calcu-
lated solution. The relative error will be examined in both the heating and cooling
problems at the times t = 0.1× 10−4, t = 0.5× 10−4, and t = 1.0× 10−4 as a function
of time step ∆t.

The IMC method will be compared in both the heating and cooling problem to the
CF method. Furthermore, the same problems will be run 3 times with different values
of α to show the bias in the IMC solutions vs. the CF solutions predicted by the
residual error analysis. In Figs. 3.3a and 3.3b the CF method is shown as lines and
the IMC method is shown as symbols at three different time periods. In the warming
problem with α = 1, it appears that the IMC solution yields a more accurate solution
than the CF method for smaller time step sizes later in the problem time. For the
cooling problem, it is the CF method that is more accurate than IMC with α = 1.

To understand the differences between the accuracy of the two methods, it is
important to examine the change in the opacities during these transients. Plotting
the first 20 points of both the warming and cooling problems in Figs. 3.4a and 3.4b it
can be seen that the two problems have very different changes in opacity in the early
transient.
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Figure 3.3: Relative error at different times with α = 1.
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Figure 3.4: Value of the opacity at different times with α = 1.
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For the warming problem, the opacities get halved between the first time step
and the second. This implies that the GTRT is modeling radiation transport with a
very poor estimate of the opacity during the first couple of time steps. Eventually,
the opacities do not change as significantly from time step to time step, making the
approximation of σ(tn) a better estimate than it was early on in the transient. By
keeping the material overly opaque for an extended period of time there will be more
absorptions than should have physically occurred during the time step. It is here
that the IMC bias actually helps the approximation of the solution. Because of the
higher number of absorptions, the material temperature becomes larger than it should
be. This error in the temperature, caused by a poor approximation of σ(t), is offset
by the IMC bias. Since the IMC method in a warming problem causes the material
temperature to be cooler than it should be, it gives a solution that is closer to the
true transient than the CF method at the same larger time step size.

For the cooling down problem, the opacities are changing relative slowly compared
to the warming problem, meaning the constant opacity approximation is more appro-
priate but still inaccurate since the number of particles emitted from the material is
based on the value of σ. However, the IMC method in the cooling down problem will
keep more energy in the material than should be there, keeping it artificially warm.
This will keep the value of the opacity smaller than it should be, thus limiting the
material emissions during a time step. As shown in the truncation analysis, when
α = 0.5 the IMC approximation error no longer dominates the temporal convergence.
Rather, in this case, it is the estimation of the opacities that dominates. Figures 3.5a
and 3.5b demonstrate that the IMC and CF method are effectively the same during
the transients when α = 0.5, as predicted by Eq. (2.16).

Finally, setting α = 0, which is never done in practice, the effect of the bias in
the IMC solutions is opposite of what occurs when setting α = 1. Equation (2.21)
predicts that the IMC solutions will keep too little energy in the radiation field and
keep more in the material temperature. Figure 3.6a now shows the IMC method to be
a worse approximation than the CF method in the warming problem because the bias
makes the material temperature higher on top of extra energy added to the material
due to poor opacity estimates. Figure 3.6b shows the IMC method to be a better
than the CF method in the cooling problem (give better explanation). Though these
numerical results have shown the range 0 ≤ α ≤ 1, for stability reasons the suggested
range of α is (5) 0.5 ≤ α ≤ 1 but the most common practice is to simply set α = 1.
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Figure 3.5: Relative error at different times with α = 0.5.
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Figure 3.6: Relative error at different times with α = 0.
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3.2 Predictor-Corrector Methods

Both the IMC method and the CF method approximate the values of both β(t)

and σ(t) as constant during a time step to linearize a nonlinear problem. These
approximations make the CF method inexact, and introduce an O(∆t) global error
into both the IMC and CF methods. Although two approximations are made in the
linearization of the problem, it is the approximation to σ(t) that introduces the O(∆t)

global error while the approximations to β(t) are O(∆t2). A better prediction of the
value of σ during a time step should allow for a more accurate solution. By running a
simulation twice per time step, once to predict the end of time step temperature (or
opacity) and once to correct that temperature (or opacity), a more accurate solution
can be produced.

The Opacity Averaged Predictor-Corrector (OAPC) averages the beginning and
end of time step opacities to achieve a higher order approximation as shown in equation
(2.91). Using the OAPC, the relative error in temperature for the warming problem
changes significantly. Figure 3.7 shows that the CF method becomes an O(∆t2)
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Figure 3.7: Relative error vs. time step size for Opacity Averaged Predictor-Corrector.

method while the IMC method remains an O(∆t) global method. This is an expected
result since it is the estimation of σ(t) that is the main source of error in the CF
method but only one source of O(∆t) global error in the IMC method. While there is
structure in the graph, it is worth while to consider that the linear averaging of the
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opacity that is an inversely cubed function,

σ(tn+ 1
2
) =

σ̃(tn+1) + σ(tn)

2
+O(∆t2) (3.2)

=

γ
T 3
n+1

+ γ
T 3
n

2
+O(∆t2) (3.3)

where γ is material specific, is not expected to be a good estimation for large changes
of temperature.

There are other ways to implement a predictor-corrector than simply averaging the
opacity σ. Another method is the Temperature Averaged Predictor-Corrector (TAPC)
which averages the beginning and predicted end of time step temperature as

Tn+ 1
2

=
Tn+1 + Tn

2
. (3.4)

This averaged temperature can then be used to calculated the temperature depen-
dent opacity used in the corrector step. Figure 3.8 demonstrates a similar order of
global error as the averaging of σ for both the Implicit Monte Carlo method and the
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Figure 3.8: Relative error vs. time step size for Temperature Averaged Predictor-
Corrector.

Carter-Forest method, but without the structure that was seen previously. At this
point, there is no real reason to prefer one method over the other since the structure
in the σ(tn+ 1

2
) predictor-corrector is related to inaccurate, large time step sizes.
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Another temperature estimate proposed by A. Wollaber and E. Larsen (20) as-
sumes a functional form of the opacity σ(t) = γ/T (t)3, and that temperature change
is approximately linear over a small time step. Then the average value of σ(t) is
preserved by

σ̄ =
1

∆t

∫ tn+1

tn

γ

T (t)3
dt =

γ

T 3
∗

(3.5)

where

T∗ =

[
T 2
nT

2
n+1

(Tn+1 + Tn)/2

]1/3

. (3.6)

Note that T∗ ≈ Tn+Tn+1

2
for small time step so it is expected that the Wollaber-Larsen

Temperature Predictor-Corrector (WLTPC) will have similar properties to the TAPC.
Using the Wollaber temperature estimation to calculated the opacities during the time
step, Fig. 3.9 also shows an O(∆t) convergence for IMC and a O(∆t2) convergence
for CF.
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Figure 3.9: Relative error vs. time step size for Wollaber-Larsen Temperature Predictor-
Corrector.

The three afore mentioned predictor-corrector methods listed here are not exhaus-
tive, and other viable approaches may exist as long as the estimation of the value of
σ(t) is O(∆t2) globally. The IMC method can become O(∆t2) globally as well for a
nonlinear problem, but then only if α = 0.5. When α = 0.5, the residual error caused
by the IMC approximations becomes O(∆t2) globally. Applying a predictor-corrector
to the α = 0.5 IMC equations results in a higher order IMC method show in Fig.
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3.10. While the IMC method now shows global O(∆t2) convergence (with slightly
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Figure 3.10: Relative error vs. time step size with Wollaber-Larsen Temperature
Predictor-Corrector and α = 0.5.

different values than the CF method), it is more precarious than the CF method due
to stability concerns. Large time steps can produced non physical oscillations in the
IMC solution for values of α that are not equal to 1 (15).

In the above warming and cooling problems, the value of β(t)σ(t) is a constant
value. To demonstrate that the approximation to the value of σ(t) is the dominant
source of truncation error over the approximation to β(t), a new nonlinear problem is
proposed. Setting a = c = 1, the starting material temperature T = 0.1, the opacity
σ(t) = 2000/T 2, β(t) = 40/T 3, and a starting photon intensity of φ(0) = 1000cUr(0),
a warming problem with a larger nonlinearity in β than σ is explored, henceforth
called 0D Problem 2. The TACP method is only applied to the estimation of σ(t),
however if the predictor-corrector is extended to update the approximation of β(t),
the solutions only change slightly.

The temperature at different times for Problem 2 can be seen in Fig. 3.11. Figure
3.12 shows the expected result that both the IMC and CF method are O(∆t) globally
without a predictor-corrector. When the TAPC is applied, Fig. 3.13 shows the CF
method again becomes O(∆t2) globally while the IMC method is still O(∆t). The
CF method does asymptote out at a given relative error due to the resolution of the
reference solution. If a more resolved reference solution was used, the CF method
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Figure 3.11: Temperature vs. time for 0D Problem 2.
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Figure 3.12: Relative error vs. time for 0D Problem 2.

would continue the O(∆t2) convergence.
Even though the IMC method does not benefit as greatly from the predictor-

corrector methods as the CF method, there are secondary effects. In particular for
large time steps in warming nonlinear problems, a time step can be taken that is far
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Figure 3.13: Relative error vs time for Temperature Averaged Predictor-Corrector for
0D Problem 2.

too large, keeping the opacities overly opaque for a protracted period of time. In
these cases, it is possible to violate the Maximum Principle (9) such that the material
temperature becomes warmer than the radiation temperature heating it. This is
unphysical. To correct for this problem a smaller time step must be used to update
the material temperature more frequently to change the cross-sections.

Predictor-corrector methods have a benefit of minimizing these violations of the
maximum principle. Figure 3.14 shows the effect of a predictor-corrector on a time
step that is too large for the first warming problem mentioned previously. The typ-
ical IMC implementation shows a large unphysical jump in temperature, then an
exponential decline in temperature due to material emission and absorption. This
unphysical temperature change similar to saying a block of ice is brought into a
warm room and instantly turns to steam. The now cold room is warmed back to
an equilibrium temperature by the hot steam. With the same large time step the
predictor-corrector does not violate the maximum principle, but in this particular case
it does not reconstruct the reference solution. Predictor-corrector’s will not remove
the need to perform accurate transport, however the effect of inaccurate transport
seems to be less severe. The improved accuracy with poor transport can be explained
since after a single predictor step, the end of time step temperature is nonphysically
high. This high temperature is used in part to update the opacity, which in this
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Figure 3.14: Temperature vs. time for the IMC method with α = 1.

particular problem would make it lower than physically accurate. Therefore, photons
are not correctly absorbed at the rate they are in an accurate solution. So while the
predictor-corrector is an improvement with physical material temperature, it is still
incorrect during the transient. As the time step size decreases, both the original and
the predictor-corrector implementation of IMC will produce more accurate solutions
but the predictor-corrector is clearly more robust.

3.3 Monte Carlo Predictor-Corrector Methods

Previously, deterministic methods were used to determine the relative error in the CF
and IMC equations. Monte Carlo methods will now be used. Monte Carlo methods
introduce another type of error from the stochastic modeling, which will be referred to
as noise. While the trends of convergence remain the same, the addition of noise into
the TRT equations has meaningful impact on the calculation of the end of time step
temperature. Using the warming up problem described previously, 200,000 particles
are used to simulate the initial source φ(0) = 1000cUr(0). Both the IMC method with
α = 1 and the CF method can be seen in Fig. 3.15

It is easy to note the difference between the Monte Carlo methods and the de-
terministic methods in the relative error graphs. There is oscillation in the relative

51



10
−8

10
−7

10
−6

10
−5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Time step size

R
el

at
iv

e 
E

rr
or

 

 

IMC time=1e−5
IMC time=5e−5
IMC time=1e−4
CF time=1e−5
CF time=5e−5
CF time=1e−4

Figure 3.15: Relative error vs. time step size for Monte Carlo Methods.

error graphs when using the Monte Carlo methods, a phenomenon that was not
seen in deterministic methods. For this Monte Carlo simulation, the relative error
graph asymptotes to the most refined solution it can achieve at around the time
step size of ∆t = 10−8 when the error becomes dominated by the stochastic noise.
Therefore, there are limitations on how accurate a Monte Carlo solution may be based
on the number of particles used in the simulation of the problem. As more and more
particles are used, the stochastic noise introduced into a time step by the Monte
Carlo simulation should reduce by 1/

√
Nn where Nn is the number of particles used

at time step n. Like truncation error, Monte Carlo noise will propagate from one time
step to the next. However, even in a noisy problem, improvements can be seen using
predictor-correctors.

Figure 3.16 shows the WLTPC used on the warming up problem for both the IMC
and CF method. The relative error is smaller in Fig. 3.16 than Fig. 3.15 but there is
no apparent O(∆t2) convergence in the CF method. In fact, the predictor-corrector
CF method quickly asymptotes off to the accuracy of the stochastic noise. It is
worth while to reexamine Fig. 3.9 to note that it is around the time step size of
∆t = 10−8 that the O(∆t2) convergence for the CF method really appears to develop.
Unfortunately, too few particles are used in this case to see this trend.
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Figure 3.16: Relative error vs. time step size for Monte Carlo WLTPC

3.4 Variable Weight Predictor-Corrector Methods

While significant improvements can be seen by using predictor-corrector methods,
they come at the cost of running a simulation twice per time step. For Monte Carlo
methods, this cost can be particularly expensive because each photon bundle must be
transported and tracked. To gain meaningful results, large numbers of these photon
bundles must be modeled, which increases the overall computation time. To reduce
the computational cost of a predictor-corrector method in Monte Carlo methods, we
have created a variable weight predictor-corrector.

The Variable weight predictor-corrector scheme we created uses a different number
of modeled photons in the predictor step than in the corrector step. The predictor
particles have a higher energy per particle than the corrector particles to ensure that
the total energy transported over a time step is the same. No consideration is made to
linearly decrease the number of photon bundles in each cell. Instead a Russian-roulette
scheme is employed to determine the location of the predictor photon bundles. Even
though the predictor step could run more particles than the corrector step, we observed
a significant decrease in accuracy due to a larger statistical uncertainty in the updated
temperature to be used in the next time step. This statistical uncertainty always
depended on the number of particles simulated in the corrector step. For this reason,
we recommend that the corrector step model more particles than the predictor step.
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In this thesis, fewer particles (photon bundles) are always used in the predictor step
than in the corrector step.

While the predictor step will have a less accurate temperature estimate at the end
of the time step, it may be good enough to be used in the corrector step to improve the
accuracy of the results. This concept is similar to using a diffusion calculation before a
transport calculation with one significant difference, the predictor’s accuracy will scale
easily with computer technology. As computers get faster, the number of particles
simulated in a predictor step can be increased while the diffusion approximation’s
accuracy will not change.

The costly Monte Carlo predictor step is replaced by a 100 variable weight pre-
dictor for demonstration. In this case, the 100 variable predictor step uses 1

100
the

number of particles in the corrector step but each particle has 100 times more energy
than in the corrector step. With fewer particles to simulate, the 100 variable weight
simulation speed is significantly faster than a traditional predictor-corrector. The
use of fewer particles in the predictor step than in the corrector step will be called a
Variable Weight Predictor-Corrector (VWPC). After the end of time step values are
predicted, the corrector step uses the original particles as if the predictor step had
not occurred but with new material properties. Figure 3.17 shows that using a rough
estimate of the end of time step temperature in the WLTPC can be sufficient for the
predictor-corrector accuracy improvements. There is significantly more variability
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Figure 3.17: Relative error vs. time step size for traditional and 100 Variable Weight
Predictor-Corrector Methods.

54



in the 100 VWPC method than a full predictor-corrector which can give very poor
estimations of the end of time step temperature. Some care should be used when
deciding how many particles should be used in the predictor step to assure confidence
in the result. Selection of a down sampling value for the VWPC will be explored
further in Chapter 4. Although not shown here, the CF method yields a similar result
as shown in Fig. 3.17.
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Chapter 4

1D Radiative Transfer

While the 0D solutions to the Radiative Transfer equations are informative, they lack
the complexity of spatial leakage which occurs when spatial information is added to
the photon transport. Spatial leakage occurs when photons from one cell “leak” from
the cell into a neighboring cell, and this is represented by the gradient term in Eq.
(1.5). Cells are created when the spatial domain of the problem is represented as a
union of smaller regions. The length of these regions is referred to as the cell width in
1D problems.

4.1 Photon Teleportation

The inclusion of a spatial variable to model a radiation transport problem adds another
source of error called “photon teleportation” into the solution of the radiation transport
equations. Photon teleportation occurs when “the absorption mean free path is small
compared to the size of a zone, and the time step size is also small” (13). As photons
stream into a highly opaque cell many mean free paths thick, they preferentially
tend to be absorbed at the boundary of the optically thick cell shown graphically in
Fig. 4.1. However, these absorption events raise the temperature of the entire cell.
When the material emits from the cell during the next time step, the detailed spatial
information about photons being absorbed at the boundary has been lost and the
photons are emitted uniformly from the region. This unphysical process can even
allow the modeled photons to travel faster than the speed of light, an unphysical
phenomenon that should be avoided.

While the most obvious solution is to decrease the width of the cells, this comes at
a significant computation cost. Instead, the standard solution to this problem is to
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Figure 4.1: Photon absorption and reemission after one time step.

reconstruct some spatial information within each cell. This process is referred to as
“source tilting” (12). Source tilting has two different implementations, both shown in
Fig. 4.2.

There is one histogram for each cell and the height is a representation of the total
amount of energy that the cell will emit during the time step. Lines are drawn from
the center point of each histogram to its neighbors and these lines will be used to
select the sampling location from within a cell. With the Tilt method, after the lines
connecting the histogram center points are drawn, the height of the intercept of each
line at the boundary is determined. Then a sloped line is drawn connecting these
heights determined by the boundaries of the cell (red line in Fig. 4.2). The resulting
area contained between the red line and the cell boundaries of Cell i is used to create a
cdf. The resulting cdf is then sampled to determine the spatial location of the emission
within the cell, but the number of particles that will be emitted from a cell is not
changed.

Alternatively, the Histogram Lines method focuses on the slope of the connecting
lines within the bin itself. Like before, the area swept out by the red lines and cell
boundaries is used to create two cdfs (left and right). The left or right side of the
cell is selected randomly by an area weighted cdf created by area swept out by the
red lines and the cell boundaries. After determining if an emission has occurred on
the left or right side of a cell, the particle location is sampled from the left or right
side cdf. As the spatial cells become optically thicker, the photon teleportation errors
becomes more pronounced. Both “source tilting” methods will reduce the severity of
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Figure 4.2: Source tilting methods.

photon teleportation, but they will not remove it.
While these “source tilting” methods are an improvement over sampling photon

emission locations uniformly over a bin, they may be improved upon. When a photon
is absorbed, the detailed information of the position of the absorption is lost within
a histogram; this is the start of the fundamental problem of photon teleportation.
While it is possible to store the exact location of the absorption and remove the
photon teleportation bias (1) (11) it becomes computationally costly to store large
numbers of photon absorption sites. Instead, we propose a Functional Expansion
Tally (FET) as a compromise between the current source tilting methods and the very
costly Arhens-Larsen method.
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4.1.1 Functional Expansion Tallies (FET)

A function p(x) can be approximated as

p(x) =
N∑
i=1

ciBi(x) (4.1)

where Bi(x) represents a set of basis functions and ci are expansion coefficients. The
approximation of a function in this manner is fairly common. While the basis functions
are known, the coefficients multiplying them are not. To determine the coefficients,
several integrals must be computed. Specifically,

Ik =

∫ b

a

Dk(x)p(x)dx (4.2)

where Dk(x) is a weighting function that may or may not be of the same type as
the basis function. The Ik coefficients are the result of integrating the function of
interest against a weighting function. Monte Carlo methods inherently solve problems
by integration, making the calculation of Ik trivial. Every time a particle is tracked,
the function p(x) is being sampled. Tallying the events of interest against a weighting
function will yield the Ik values without a need to alter the underlying Monte Carlo
simulation.

To relate the expansion coefficients ci and the integral coefficients Ik, Eq. (4.1) is
substituted into (4.2) to yield

Ik =

∫ b

a

Dk(x)
N∑
i=1

ciBi(x)dx (4.3)

=
N∑
i=1

ci

∫ b

a

Dk(x)Bi(x)dx

where k = 1, 2, 3, · · · . This provides a set of equations to solve for the coefficients ci.
The choice of weighting and basis functions will determine the relationship between
the ci and Ik coefficients.

The basis used in this dissertation will be the Legendre polynomials, which are used
as both a weighting and basis set. Because of their orthogonal nature, the Legendre
polynomials have favorable features to simplify the relationship between the ci and Ik
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coefficients. Legendre polynomials are defined recursively as

L0(x) = 1 (4.4)

L1(x) = x

L2(x) =
1

2
(3x2 − 1)

Ln+1(x) =
(2n+ 1)xLn(x)− nLn−1(x)

n+ 1
.

These polynomials are orthogonal to each other such that∫ 1

−1

Li(x)Lk(x) =
2

2i+ 1
δik. (4.5)

Since Legendre polynomials are orthogonal over the −1 to 1 domain, the values
being tallied (such as absorption and emission within a cell) are simply shifted for
each region defined as a ≤ x ≤ b. That is,∫ b

a

Li(xtrans)Lk(xtrans) = κiδik (4.6)

where
xtrans = 2

x− a
b− a

− 1 (4.7)

and
κi =

b− a
2i+ 1

. (4.8)

Therefore, the value of xtrans resides between the values of −1 to 1 regardless of the
value of x in an arbitrary domain from a to b.

Using the first two legendre moments for the basis functions and the weighting
functions in Eq. 4.3 yields the system of equations[ ∫ b

a
D0(x)B0(x)dx

∫ b
a
D0(x)B1(x)dx∫ b

a
D1(x)B0(x)dx

∫ b
a
D1(x)B1(x)dx

][
c0

c1

]
=

[
I0

I1

]
. (4.9)

Using the orthogonal properties shown in Eq. (4.6), Eq. (4.9) can be solved for the
coefficients ci as [

c0

c1

]
=

1

κ0κ1

[
κ1 0

0 κ0

][
I0

I1

]
. (4.10)

When plotting the basis functions modified by the coefficients ci, a shifted xtrans value
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must be used to interpret the Legendre expansions outside of the −1 to 1 domain.
The reconstructed line from the Legendre FET is normalized to be a pdf then used to
sample the emission location of particles.

Unlike the traditional “source tilting” methods, the Legendre FET’s do not require
information from outside of the cell. However, Legendre FET’s may become negative
over a cell (an unphysical solution to the emission and absorption function). To
avoid this problem, another FET based on Maximum Entropy (7) is used to ensure
positivity. Maximum entropy is a method that determines the distribution with the
largest entropy value, typically based on Shannon Entropy (7).

Shannon Entropy is used in Information Theory as a metric for uncertainty asso-
ciated with a distribution. The more uncertainty in the distribution, the larger the
Shannon Entropy of the system. With the Maximum Entropy FET, a distribution is
sought that has the largest uncertainty based on given constraints. While maximizing
uncertainty is counter intuitive when seeking an accurate solution, fundamentally
the Maximum Entropy method ensures that no other assumptions other than the
constraints are used to determine the final distribution reconstruction. Only the given
constraints for the optimization are used to solve for the functional form of the FET.

The value of the Shannon Entropy for a distribution φ(x) is defined as

Eshannon = −
∫
X

φ(x) ln(φ(x)). (4.11)

where X is the domain of φ(x). Constraining the entropy with a basis set Bi(x) as∫
X

B0(x)φ(x)dx = φ0 (4.12)∫
X

B1(x)xφ(x)dx = φ1, (4.13)

Lagrange multipliers are used to define an augmented entropy

Λ(φ, λ0, λ1) = −
∫
X

φ(x) ln(φ(x))dx+ λ0

(
φ0 −

∫
X

B0(x)φ(x)dx

)
(4.14)

+ λ1

(
φ1 −

∫
X

B1(x)φ(x)dx

)
and a maximum point of Λ(φ, λ0, λ1) is sought. To find the stationary points in this
equation, the value of φ(x) is perturbed as φ(x) + εQ where ε is the magnitude of the
arbitrary noise Q. Taking the difference of the perturbation and the original function
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over ε and suppressing the nonessential notation yields

Λ(φ+ εQ)− Λ(φ)

ε
=

1

ε

[
−
∫
X

(φ+ εQ) ln(φ+ εQ)dx+ λ0(φ0 −
∫
X

B0[φ+ εQ]dx)

(4.15)

+ λ1(φ1 −
∫
X

B1[φ+ εQ]dx) +

∫
X

φ ln(φ)dx− λ0(φ0 −
∫
X

B0φdx)

− λ1(φ1 −
∫
X

B1φdx)

]
.

Canceling terms, (4.15) can be simplified to be

Λ(φ+ εQ)− Λ(φ)

ε
=

1

ε

[
−
∫
X

(φ+ εQ) ln(φ+ εQ)dx (4.16)

− λ0

∫
X

B0εQdx− λ1

∫
X

B1εQdx+

∫
X

φ ln(φ)dx

]
.

Taylor expanding around ε = 0 the expression

ln(φ+ εQ) = ln(φ) +
εQ

φ
+O(ε2) (4.17)

can be used in Eq. (4.16) to cancel another term and yield the expression

Λ(φ+ εQ)− Λ(φ)

ε
=

1

ε

∫
X

Q

[
− ε− ε ln(φ)− λ0B0ε− λ1B1ε+O(ε2)

]
dx. (4.18)

Taking the limit ε→ 0, Eq. (4.18) is rewritten as

dΛ(φ)

dε
=

∫
X

−Q
[
1 + ln(φ) + λ0B0 + λ1B1

]
dx. (4.19)

To find the maximum, the derivative of Eq. (4.19) is set to 0 for every arbitrary
perturbation Q, implying that the integrand must be equal to zero for a maximum or
a minimum to exist in the function. Therefore,

0 = 1 + ln(φ) + λ0B0(x) + xλ1B1(x). (4.20)

Solving for φ yields the distribution with the maximum entropy for the given con-
straints. Using Legendre Polynomials as the basis set Bi(x) the distribution φ is
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defined as

φ(x) = e(−1−λ0B0(x)−λ1B1(x)) (4.21)

= αeηx

where α = e−1−λ0 and η = −λ1. Next, the values of α and η are solved for by using
the constraints

φ0 =

∫
X

αeηx (4.22)

φ1 =

∫
X

xαeηx.

Using shifted Legendre polynomials in domain X defined as a ≤ x ≤ b, these equations
become

φ0 =

∫ b

a

α exp

(
η

[
2

(
x− a
b− a

)
− 1

])
(4.23)

=
α(b− a) sinh(η)

η

and

φ1 =

∫ b

a

α

[
2

(
x− a
b− a

)
− 1

]
exp

(
η

[
2

(
x− a
b− a

)
− 1

])
(4.24)

=
α(a− b)(−η cosh(η) + sinh(η))

η2
.

Knowing the values of both φ0 and φ1, Eqs. (4.23) and (4.24) can be divided to cancel
the value of α and give the transcendental function

φ0

φ1

=
η sinh(η)

η cosh(η)− sinh(η)
(4.25)

which can be root solved for the value of η. The value of α is simply solved for using
the first constraint rearranged to show

α =
φ0η

(b− a) sinh(η)
. (4.26)

The procedure to solve α and η must be done once per time step per cell. Using
a simple bisection root solver, there appears to be negligible computation cost for
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the method. It is also worth mentioning that there is no value of η in Eq. (4.26)
that can make the parameter α < 0. Since α is always positive, the Maximium
Entropy distribution φ(x) in Eq. (4.21) is always positive when using the first two
Legendre polynomial constraints. Therefore, the Legendre Polynomial Maximum
Entropy (Legendre-ME, or Legendre) FET does not require any positivity checks or
corrections before being sampled for emission locations.

To sample the Legendre-ME FET, a pdf must first be created by normalizing the
reconstructed distribution. Integrating over the cell bounds, the normalization value
Ξ can be determined as

Ξ =

∫ b

a

(α exp[β(2
x− a
b− a

− 1)])dx (4.27)

=
(b− a)α sinh(β)

β
.

Next, the pdf to be inverted is defined as

p(x) =
α exp[β(2x−a

b−a − 1)]

Ξ
. (4.28)

Integrating the pdf from a to x

ξ =

∫ x
a
α exp[β(2x−a

b−a − 1)]dx

Ξ
(4.29)

=
−1 + exp[−2(x−a)β

b−a ]

−1 + exp[2β]

which forms the cdf that is inverted to yield

x = a+
(b− a) log[1− (1− e2β)ξ]

2β
. (4.30)

Therefore, there is no need to calculate the value of α to sample the location of an
emission.

In practice, the values for φ0 and φ1 are calculated by tallying the photon en-
ergy from emissions and absorptions against the basis function. The convention is
absorptions have a positive contribution to the tally and emissions have a negative
contribution to the tally. Also the tallies are not reset from time step to time step, so
the values used for φ0 and φ1 at time step n contain tallied information for absorption
and emission of the last n− 1 time steps. The persistance of information from one
time step to the next has only one drawback to note: there can exist values of φ0

φ1
< 1
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which implies that there is no solution for η. While these situations are rare, they do
occur and in these cases the value of η is chosen as 0, causing the Legendre-ME FET
to produce a constant distribution in space.

4.1.2 The Su-Olsen Problem

To determine the effect of traditional “source tilting” compared to the FET approach,
a non-physical 1D problem with analytical solutions proposed by Su and Olson (19) is
used. In the Su-Olsen problem, the radiation constant a = 1, the opacity σ(T ) = 1,
and β(T ) = 1; a reflective left boundary condition is imposed and a time dependent
isotropic 1 keV source that emits uniformly temporally between 0 ≤ t ≤ 10 and
spatially between 0 ≤ x ≤ 0.5. The 1 keV photon source is no longer active after time
t = 10. Fig. 4.3 shows the analytic solution for the Su-Olsen problem at different
times.
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Figure 4.3: Reference solutions for the Su-Olsen Problem.

Until t = 10 the total energy in the problem is increasing, causing a rise in tem-
perature near the left boundary at the source location. As the problem continues
in time, the photons begin streaming out of the source region and continue into the
non-source region, creating a wave effect that has an exponentially decaying wave
front. After t = 10, the source cuts off and the source region begins to cool as the
radiation continues to transport away from the source region.
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When a large time step is taken, ∆t = 1, then the IMC bias can be seen in 1D
solutions compared to the reference solution in Fig. 4.4, while the Carter-Forrest
method is still accurate. Fundamentally, the IMC bias will put an upper limit on
an accurate time step size. The Carter-Forrest method does not have the same time
step limit as the IMC method on this linear problem. However, both the IMC and
CF method will have photon teleportation errors. To determine the effect of “source
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Figure 4.4: One-D bias of the IMC equations on the Su-Olsen Problem at time t = 1.

tilting”, a reference solution is created using a well converged Monte Carlo solution
that agrees with the analytic solution. This is then compared to different tilting
methods to determine their effectiveness in correcting photon teleportation.

Using Legendre Polynomial Maximum Entropy (Legendre-ME or Legendre) FET’s,
Tilt, Histogram Lines and histograms at different spatial widths and a fixed time step
size of 0.005, the error of each method is examined at time t = 5. Using the spatial
widths 0.5, 0.25, 0.1, 0.05, and 0.025 the temperature of each spatial cell is determined.
To compare the solutions from different spatial widths, the cell temperatures are
combined to form a larger bin size of 0.5. The larger averaged bin size will be used to
achieve a meaningful comparison of the different methods at differing spatial widths.
Since the material energy density Um is a nonlinear function of temperature, averaging
the temperature of the small bins to form a larger one will be explained in more depth.
The procedure of compressing bins to a width of 0.5 is as follows:

1. Determine the number of smaller cells, N , that are required to span the total
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spatial width of 0.5
2. Average the material energy densities, Um, of the N equally sized cells
3. Calculate the temperature of the larger combined cell of width 0.5 using

T = (
4
∑

N Um,n
Cv

)
1
4

The resulting temperatures for the different compressed spatial widths are compared
against a refined IMC reference solution (∆t = 0.0025 and ∆x = 0.01) that was
compressed and used the Tilt method for source tilting. The relative error for the first
and second bin (from x = 0.0 to x = 0.5 and x = 0.5 to x = 1.0 respectively) for each
of the methods is shown in Figs. 4.5a and 4.5b.

In both figures, as expected, the traditional source tilting methods Tilt and His-
togram Lines perform better than the histogram approach. For this particular problem,
the Legendre-ME FET’s is competitive with traditional source tilting methods. To
better illustrate this point, in Fig. 4.6 the first six compressed bins are added together
(x = 0.0 to x = 3.0) to show the combined effect on the progression of the photon
wave. In this particular problem, the Legendre-ME FET’s appear to give an overall
competitive solution for the bin widths used in this problem.

Figure 4.6 also shows that the overall relative error for the Legendre-ME FET’s
is not significantly different from the other source tilting methods. However, the bin
widths used to explore the Su-Olsen problem are at largest, 0.5 mean free paths. To
determine the effect of FET’s and source tilting with optically thick cells, a new linear
problem is proposed.

4.1.3 High Opacity Linear Problem

A new problem is proposed where the material opacities are kept constant at σ = 100,
using the constants c = a = 1, the heat capacity varies with temperature as Cv = 4T 3

which gives a constant value of β = 1, and a left boundary isotropic 1 keV source
heats the problem with with vacuum boundary conditions. Since the problem is linear,
the temperature rise in the material will have an exponential decay tail away from
the source region as in the Su-Olsen problem. Examining the temperature solution
at time t = 10, the effect of photon teleportation can be seen. Figures 4.7 and 4.8
show both the reference solution (dx = 0.01 dt = 0.05) and the effect of using larger
cell widths while using the source tilting methods. As the spatial width increases, the
front location shifts away from the reference solution. Photon teleportation is allowing
the photon wave front to penetrate further into the slab than should be physically
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(a) Relative error of the first bin 0 ≤ x ≤ 0.5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Spatial Width Before Compression

R
el

at
iv

e 
E

rr
or

 

 
Histograms
Histogram Lines
Tilt
Legendre

(b) Relative error of the second bin 0.5 ≤ x ≤ 1.

Figure 4.5: Relative error of different compressed bin widths in the Su-Olsen problem.

possible.
Using a 1 mean free path width cell (dx = 0.01) changing the time step size by

an order of magnitude does not significantly change the wave front. However, when
the thickness of the cell becomes 5 mean free paths (dx = 0.05), photon teleportation
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Figure 4.6: Sum of the relative error for different compressed bin widths 0 ≤ x ≤ 3.
in the Su-Olsen problem
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Figure 4.7: Photon teleportation in the High Opacity Linear Problem using Tilt.

can be seen. As was previously warned, a smaller time step size actually exacerbates
the problem making photon teleportation much more pronounced. Therefore, a small
spatial width must be used to counter act this unphysical phenomenon, adding to the
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Figure 4.8: Photon teleportation in the High Opacity Linear Problem using Histogram
Lines.

computational cost of the problem.
However, using the Legendre-ME corrected FET’s show a significantly different

story. Shown in Fig. 4.9, the 5 mean free path, small time step run is indistinguishable
from the reference solution in the region in question. These results are replicated with
even larger spatial widths demonstrating that the Legendre-ME corrected FET’s can
be used to significantly reduce photon teleportation in optically thick cells compared
to the traditional source tilting techniques that are currently employed. While these
results are informative, they come from a non-physical problem where the opacities
remain constant during temperature changes. To better explore the potential of FET’s
a nonlinear 1D problem is needed.

4.1.4 Nonlinear 1D Problem

A more realistic photon transport problem has been proposed (20) with a unit isotropic
source located on the left boundary, which is a vacuum boundary. The right boundary
has a reflective boundary condition. The physical parameters are set as the radiation
constant a = 1, speed of light c = 1, a constant heat capacity Cv = 1/0.14, with
temperature dependent opacity σ(T ) = 1/T 3, and β(T ) = 0.56T 3. The starting
material temperature of the slab is T = 0.1keV. In these problems, time is given
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Figure 4.9: Reference solution and Legendre-ME FET solution in the High Opacity
Linear Problem.

using the scaled variable τ where τ = Cvt. Figure 4.10 shows the propagation of
the rise in temperature of the material due to photon energy deposition. Unlike the
Su-Olsen problem there is no exponential tail in this nonlinear problem due to the
exceptionally high opacities at the front of the wave. As the material warms up, the
material opacities decrease allowing the radiation to transport farther into the slab.
These nonlinear temperature/photon waves are called “Marshak waves”.

To demonstrate photon teleportation, Fig. 4 shows the location of the Marshak
wave fronts using a time step of ∆τ = 0.01 and different spatial widths at τ = 10

with the IMC method. For the same time step size, it is clear that the larger the
spatial width is, the farther the Marshak wave propagates into the problem. To have
a Marshak wave heat more material, it requires more energy. In Fig. 4 it is clear that
the extra energy to raise the total energy of the slab comes from a decrease in spatial
leakage from the left vacuum boundary condition.

This problem highlights the challenges in resolving an accurate solution when using
increasingly thick spatial cells in a nonlinear problem. As the cells become thicker,
photon teleportation plays a larger role in the transport of photons and the Marshak
wave penetrates further into the slab than a more refined spatial width would show.
To combat this effect, smaller and smaller spatial widths must be used to alleviate
this problem.
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Figure 4.10: Marshak wave propogration for ∆τ = 0.1 and ∆x = 0.05 at different
times in the Nonlinear Problem.
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Figure 4.11: Marshak wave fronts with different for different spatial widths in the
Nonlinear Problem.

A comparison of source tilting techniques is now applied to the nonlinear problem
to determine the effectiveness of each method. As before in the Su-Olsen problem,
different cell widths are appropriately combined to compare temperatures at spatial
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Figure 4.12: Energy tallies for leakage and material for different spatial widths.

widths of 0.5. Using spatial widths of 0.025, 0.05, 0.1, 0.25, and 0.5, the IMC method
is used with a time step size of ∆t = 0.01. The relative error of the combined
temperature cells is examined at time τ = 10. As in the Su-Olsen problem, Figs.
4.13 and 4.14 show the Tilt and Histogram Lines method of source tilting to be an
improvement on the histogram approach. However, the Legendre-ME FET’s appear
to give a significant improvement of accuracy at large spatial widths and a result that
is competitive or better at smaller widths.

The relative error of the first four bins are plotted together in Fig. 4.15 which shows
that overall the Legendre-ME FET yields a significant improvement over traditional
source tilting methods. For large spatial widths, the Legendre-ME FET’s are an order
of magnitude more accurate than the traditional source tilting implementations. As
seen in Fig. 4.16, it is clear that the Legendre-ME results are much better at resolving
the Marshak wave fronts for large spatial widths.
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Figure 4.13: Relative error of the first compressed bin 0 ≤ x ≤ 0.5 for the Nonlinear
Problem.
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Figure 4.14: Relative error of the second compressed bin 0.5 ≤ x ≤ 1 for the Nonlinear
Problem.
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Figure 4.15: Sum of the relative error for the first four compressed bins 0 ≤ x ≤ 2.0
in the Nonlinear Problem.

While the Legendre-ME FET’s more closely resemble the reference solution than
the current source tilting methods, the Legendre-ME method does not eliminate
photon teleportation. Like traditional source tilting methods, the photon teleportation
is minimized but not eliminated. However, the Legendre-ME FET’s demonstrate a
significant improvement in photon teleportation reduction over the current techniques.

4.2 1D Predictor-Corrector Methods

The IMC and CF methods differ on how much energy they keep in the material and
in the photon field as shown previously. These differences can have unintuitive effects
on accuracy as seen in Fig. 3.3a. While the IMC method bias improves the accuracy
of the solution in this specific 0-D problem, in general the bias will not offset other
errors in the simulation. This is more clearly seen in problems that contain a spatial
dependency. In 1-D simulations predicting the effect of the bias is more challenging.
Since the temperature of the material changes its’ opacity, this effects the ability
of radiation to stream through the region and therefore the ability to leak into a
neighboring region. By modifying the leakage from one cell to another, the Marshak
wave speed can be altered from the correct solution, making the IMC bias a much
more complicated phenomenon.
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Figure 4.16: Wave front location with ∆x = 0.5 at time τ = 10 in the Nonlinear
Problem.

To see the differences between the IMC and CF method, the 1D nonlinear problem
is modeled with a spatial width of ∆x = 0.05, α = 1, and time step size ∆τ = 0.1 out
to time τ = 20. All of the following simulations will be using the traditional source
tilting technique “Tilt”. Figure 4.17a shows that the IMC method and the CF method
are numerically similar away from the Marshak Wave Front. However, zooming in on
the Wave Front in Fig. 4.17b shows that the IMC method has a lower temperature
than the CF method which changes the exact wave front location.

At the Marshak wave front, there is a large difference between the equilibrium
energy density Ur and the photon flux φ. Therefore, it is expected that the Marshak
wave front should manifest the region with the largest IMC bias. As the size of the
time step decreases, both the IMC and CF solution approach the same result, though
the CF solution changes less than the IMC solution. With each smaller time step
the Marshak wave front moves slightly forward and changes the simulated wave front
location. This is an expected result since as the time step size becomes smaller, the
material opacities are more accurately represented, allowing more radiation to stream
through a cell instead of being absorbed by incorrect, large opacities.

The approximation of the opacities as constant over a time step has a significant
side effect if the opacity is too large for too long for a given radiation density. The
material cell may absorb far too much energy to the point that the results no longer
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(a) Full marshak wave.
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Figure 4.17: Marshak wave differences with IMC and CF method in the Nonlinear
Problem.

77



become physical. Unphysical results in this context are results where the Maximum
Principle (9) is violated. A Maximum Principle violation occurs when the temperature
of the material exceeds the boundary temperature conditions, effectively making
the temperature of the material hotter than the source of radiation heating it. The
magnitude of the violations are dependent on the size of the spatial cell, the time
step size and the total energy absorbed by that cell for a given time step. Figure 4.18
shows the nonlinear problem run with a large time step that yields unphysical results.
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Figure 4.18: Violations of the Maximum Principle with ∆τ = 0.5 and ∆x = 0.05
using IMC in the Nonlinear Problem.

In this simulation the material temperature exceeds the 1 keV temperature of the
source which violates the maximum principle. Because the time step is so large, the
opacity of the material is not updated during the time that the Marshak wave would
naturally pass through the cell. Since the material is so opaque to begin with, the cell
remains optically thick during the simulated time step; absorbing more photons than
physically possible. These excessive absorptions cause the material temperature of the
cell to spike and the cell becomes optically thin during the next time step. Then, the
cool, opaque neighboring cell repeats the same process. This numerical artifact then
propagates through the problem similar to a Marshak wave, decreasing the size of it’s
violation of the maximum principle as it progresses. The decrease in the violation
magnitude occurs since the Marshak wave is slowing down, meaning less energy will
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be absorbed by each successive cold cell. Applying the Wollaber-Larsen Temperature
Predictor-Corrector (WLTPC), Fig. 4.19 shows that there is a significant improvement
in the solution.
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Figure 4.19: Violations of the Maximum Principle with ∆τ = 0.5 and ∆x = 0.05
using IMC WLTPC in the Nonlinear Problem.

The WLTPC approach does not show the same violations of the maximum principle
that are seen at τ = 10 and τ = 20 in the tradiational approach. However, at τ = 10

the WLTPC shows a Marshak wave front that is not smooth. This is the only indica-
tion in the plot that a violation of the maximum principle has occurred. Since the
time step sizes are so large for the given spatial width, the predictor step still violates
the maximum principle at the beginning of the simulation. Since the predictor method
violates the maximum principle, and therefore has a large temperature estimate / low
opacity estimate, the corrector step allows for more radiation streaming through the
once optically thick cells. This reduces the amount of photon energy that would be
unnaturally absorbed in a single cell; reducing and dispersing the violation of the
maximum principle over more cells. This process allows the simulated Marshak wave
with large time steps to better approximate the actual Marshak wave speed. As in the
0D methods however, the predictor-corrector methods do not perfectly reconstruct
the reference solution as shown in Fig. 4.20.

Figure 4.20 also shows that both the traditional approach and the WLTPC methods
do not yield the reference solution even after the violations of the maximum principle
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Figure 4.20: Comparison of the violations of the maximum principle compared to a
reference solution in the Nonlinear Problem.

have been resolved. While the predictor-corrector solution is more accurate, it did
not solve the problem that the time step size used was simply to large to resolve the
nonlinearities within the problem. To better understand the differences between the
two large time step approaches, the Marshak wave front velocity is plotted in Fig.
4.21.

The reference solution wave front slows down as it moves farther and farther away
from the boundary source. The decrease in the speed is due to the dissipation of the
strength of the source the farther into the slab that the front of the Marshak wave pen-
etrates. Since each collision changes the direction of the particle isotropically and the
left boundary has a vacuum condition, the aggregate effect is that the energy diffuses
more slowly away from the source. The predictor-corrector wave speed using large time
steps generally follows the reference solution yielding a much more accurate solution
over the developement of the transient. However, both the traditional approach and
the predictor-corrector do a poor job at resolving the beginning of simulation Marshak
wave velocity. The traditional solution in fact maintains a constant velocity for the
majority of the simulation time modeled here.

The violation of the maximum principle in the traditional approach travels at a
constant rate since photons can not travel through a single artificially thick cell in
one time step. Therefore, the violation of the maximum principle Marshak wave can
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Figure 4.21: Instantaneous velocity of the Marshak wave front vs. time for ∆x = 0.05
and ∆t = 0.5 in the Nonlinear Problem.

only travel at the rate of ∆x
∆t

= 0.05
0.5

= 0.1 in this particular problem. The predicted
Marshak wave velocity can be seen in Fig. 4.21. Even though the Marshak wave
that violates the maximum principle travels slower than the reference solution at the
beginning of the simulation, the reference solution slows down dramatically allowing
the unphysical Marshak wave to close the distance. In this problem, Marshak waves
that violate the maximum principle eventually disipate, making them look like normal
Marshak waves at a later time. Therefore, great care must be made to ensure that the
problem develops physically over the course of the simulation for both the traditional
approach and with predictor-correctors to accurately resolve the Marshak wave at a
later time.

To compare the accuracy of the Carter-Forrest and Implicit Monte Carlo method,
different values of time step sizes and spatial discritization widths are compared on
the same problem. A reference solution for the given spatial discritization width is
used at time τ = 20 to compare the different methods. Eighty million source particles
are used to model the 1D nonlinear problem and the time steps are chosen such that
the largest time step size will violate the maximum principle and the smallest time
step size has the solution start to be dominated by Monte Carlo noise. Tables 4.1 and
4.2 contain the averaged relative errors of the difference between the simulation and
reference solutions for each given spatial width. The averaged relative error is defined
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as

Ravg(t) =
1

N

N∑
i

| T ir(t)− T ic(t) |
T ir(t)

(4.31)

where T ir(t) represents the reference solution at time t in cell i, T ic(t) represents the
simulated solution of interested at time t in cell i and N is the number of cells examined
in the marhsak wave. For each given time step and spatial width combination, the

Table 4.1: Traditional IMC averaged rel-
ative error in temperature from reference
solution for each spatial width.

∆τ\∆x 0.025 0.05 0.1

0.01 0.00161 0.00196 0.00171
0.02 0.00327 0.00375 0.00360
0.04 0.00623 0.00721 0.00679
0.05 0.00730 0.00852 0.00841
0.08 0.01162 0.01269 0.01265
0.1 0.01507 0.01495 0.01527

Table 4.2: Traditional CF averaged rela-
tive error in temperature from reference
solution for each spatial width.

∆τ\∆x 0.025 0.05 0.1

0.01 0.00081 0.00094 0.00082
0.02 0.00205 0.00218 0.00194
0.04 0.00377 0.00422 0.00386
0.05 0.00460 0.00530 0.00489
0.08 0.00707 0.00796 0.00738
0.1 0.01026 0.00937 0.00905

CF method is more accurate than the IMC method for the same reference solution.
Because of the IMC bias, the CF method more accurately models the transients that
occur at the Marshak wave front even though both methods are O(∆t). As the time
step size is decreased for both methods, their solutions at a given time converge to
the same answer.

Predictor-corrector methods with IMC and CF are now explored using the same
time step size and spatial widths, in Tables 4.3 and 4.4. As expected, the predictor-

Table 4.3: IMC WLTPC averaged relative
error in temperature from reference solution
for each spatial width.

∆τ\∆x 0.025 0.05 0.1

0.01 0.00097 0.00169 0.00169
0.02 0.00226 0.00328 0.00299
0.04 0.00481 0.00568 0.00587
0.05 0.00583 0.00693 0.00729
0.08 0.00892 0.01047 0.01122
0.1 0.01093 0.01257 0.01353

Table 4.4: CF WLTPC averaged relative er-
ror in temperature from reference solution
for each spatial width

∆τ\∆x 0.025 0.05 0.1

0.01 0.00039 0.00058 0.00053
0.02 0.00107 0.00127 0.00144
0.04 0.00227 0.00276 0.00296
0.05 0.00280 0.00366 0.00366
0.08 0.00437 0.00507 0.00583
0.1 0.00556 0.00651 0.00692

corrector methods give a more accurate solution in all cases. This increase in accuracy
comes from resolving the nonlinearities in σ(t) in a more accurate manner. However,
this improved estimate of the value of σ(t) during a time step comes at the cost
of running a time step twice; a costly proposal. To reduce the overall computation
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cost, the Variable Weight Predictor-Corrector (VWPC) scheme introduced in Chapter
3 is used. The predictor method uses fewer particle packets to model the photon
transport in the problem to get a less accurate look at the end-of-time-step value of
the temperatures. This estimate of the temperature field will then be used in the
corrector step to modify the opacities during the corrector time step.

To determine the best down sampling value for the VWPC, a parameter study
is conducted on the nonlinear problem using ∆τ = 0.01, ∆τ = 0.02, ∆τ = 0.04,
∆τ = 0.05, ∆τ = 0.08, and ∆τ = 0.1 with ∆x = 0.025 and 80 million source parti-
cles. The relative error of the temperature is compared at time τ = 20 for different
down sampling values for the WLTPC method to determine the fastest and most
accurate solution. Figure 4.22 shows that there is a surprising amount of flexibility
in the choice of a down sampling value. The down sampled values from 10 to 10000
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Figure 4.22: Relative error vs. computation time for different down sampled VWPC’s
using WLTPC in the Nonlinear Problem. For each color / symbol combination plot,
the highest relative error and lowest CPU time point represents ∆τ = 0.1 and the
smallest relative error and highest CPU time point represents ∆τ = 0.01.

require about the same computation time to yield a similarly accurate result using
the WLTPC. When the down sample value reaches 100, 000, there is the first clear
indication that the accuracy of the VWPC method is breaking down. When using the
100000VWPC WLTPC, the accuracy of the predictor-corrector scheme is comperable
to the traditional implementation of the IMC method. Finally, at a down sample
value of 1, 000, 000 the VWPC approach has less accurate results than the tradiational
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IMC approach. Due to this information, the down sample value of 100 has been
chosen since it is competative in both accuracy and computation time with the other
VWPC down sample values. Also, it represents that the predictor step will use 1% of
the particles that would be simulated in the corrector step. While using 1% of the
corrector particles in the predictor step may not be ideal for all problems, it will be
used as the standard choice for the down sampling value for the remainder of this
thesis.

Tables 4.5 and 4.6 show the results from using a 100 Variable Weight Predictor-
Corrector (100VWPC) with the WLPC. While the VWPC are not as accurate as

Table 4.5: IMC with 100VWPC averaged
relative error in temperature from reference
solution for each spatial width.

∆τ\∆x 0.025 0.05 0.1

0.01 0.00152 0.00183 0.00152
0.02 0.00228 0.00299 0.00319
0.04 0.00471 0.00584 0.00603
0.05 0.00595 0.00710 0.00746
0.08 0.00897 0.01050 0.01117
0.1 0.01099 0.01255 0.01353

Table 4.6: CF with 100VWPC averaged
relative error in temperature from reference
solution for each spatial width.

∆τ\∆x 0.025 0.05 0.1

0.01 0.00048 0.00060 0.00056
0.02 0.00097 0.00122 0.00148
0.04 0.00213 0.00307 0.00279
0.05 0.00282 0.00343 0.00353
0.08 0.00440 0.00515 0.00581
0.1 0.00581 0.00622 0.00689

running the predictor-corrector without down sampling particles, they are much faster.
Also, the VWPC are significantly more accurate than the traditional IMC and CF
methods. To determine the cost / gain of these methods, the averaged relative error
is plotted against the cpu time used to calculated the solutions for the spatial width
dx = 0.025 in Figs. 4.23a and 4.23b.

The largest relative error point in each line in each graph represents the largest
time step size used. The most accurate solutions that take longer to run represent the
smallest time step used to resolve the solution. In both the IMC and CF method the
predictor-corrector methods shows an improvement in the accuracy of the solution at
the cost of a longer run time. However, the VWPC methods show competitive run
times with the traditional methods while still showing a meaningful decrease in error.
In the case of the IMC implementation the 100 VWPC runs more accurately and in a
shorter time than the traditional implementation. This result is unexpected and is
not anticipated to be repeated in other problems.

It is worthwhile to mention that the research code used for these timing tests is not
a industry quality code, and lacks a large number of tallies and other functionality that
may in fact dominate the run times of these solutions. So while these timing results
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(a) IMC relative error vs. time.
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Figure 4.23: Relative error vs. time for the spatial width dx = 0.025 for the IMC and
CF method using the data from Tables 4.1 to 4.6. For each color / symbol combination
plot, the highest relative error and lowest CPU time point represents ∆τ = 0.1 and
the smallest relative error and highest CPU time point represents ∆τ = 0.01.
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are interesting, they are by no means reliable to project the effects on computation
time in other radiation transport codes.

Next, the Opacity Averaged Predictor-Corrector (OAPC) is implemented to com-
pare to the WLTPC. Surprisingly, the OAPC did not prove to be an improvement
in the 1D results as they did in the 0D results. Figures 4.24a and 4.24b both show
that for large time step sizes the relative error for the OAPC is surprisingly large.
In fact, it it sufficiently worse than the traditional implementation of the IMC and
CF approximations. As the time step size decreases, the OAPC approaches the same
accuracy as the traditional implementation. The significant differences between the
0D and 1D OAPC results is due to leakage. In the 0D results, radiation could not
leak out of a cell and eventually would come to an equilibrium but with a different
transient as seen using the WLTPC in Fig. 3.14.

With the 1D problems, spatial leakage starts to play a significant role in the accu-
racy of the solution. In the OAPC, the values of the opacity during the corrector step
end up higher than the opacities using the WLTPC. For example, if the temperature
starts at Tn = 0.1 and ends at Tn+1 = 0.9 than the Wollaber temperature estimate
would give the answer that Tn+ 1

2
= 0.253 and would give an opacity of σn+ 1

2
= 61.75.

In contrast the opacity averaging would give an opacity of σn+ 1
2

= 500.69. The two
predictor-corrector methods give very different estimates of the opacity to be used
during the corrector step. For particularly large time steps, this means that the OAPC
will maintain a larger opacity for longer than the WLTPC. The larger opacity can
cause spikes in the temperature distribution similar to violations of the maximum
principle as seen in Fig. 4.25. The Marshak wave progresses more slowly when large
time steps are used since the overall opacity is much larger. Therefore, the OAPC
does not demonstrate itself to be a robust scheme. However, other predictor-corrector
methods can be used besides the WLTPC and OAPC. In the following section, a
predictor-corrector scheme will be examined that allows for the change of the opacities
during a time step.

4.2.1 Time Dependent Opacity Estimations During a Time
Step

Instead of using a predictor-corrector method to find a new constant value of the opac-
ity for the corrector step, a time dependent opacity can be formulated for the corrector
step. By knowing the end of time step value of the opacities, a linear interpolation
of the beginning and end of time step values of the opacities can be used to change
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(a) IMC relative error vs. time.
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Figure 4.24: Relative error vs. time for the spatial width dx = 0.025 for the IMC
and CF method with averaged opacity predictor-corrector. For each color / symbol
combination plot, the highest relative error and lowest CPU time point represents
∆τ = 0.1 and the smallest relative error and highest CPU time point represents
∆τ = 0.01.

87



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X Position

T
em

pe
ra

tu
re

 

 
Reference Solution
OAPC
WLTPC

Figure 4.25: Marshak wave front at time τ = 0.3 using ∆τ = 0.1 with a ∆x = 0.025.

the opacities of a material cell during a time step. A couple of different methods
have been proposed to solve for the transport distance in a media with continuously
varying cross-sections including substepping and delta-tracking. While delta-tracking
is efficient when the cross-section change is small, it becomes increasingly less efficient
with rapid changes of the cross-section within a region. Instead of using a rejection
method to determine particle transport distance, a direct sampling method has been
proposed by Brown and Martin (2; 3). The direct sampling technique will be used
since it is more efficient in regions with large changes in opacity than the delta tracking
method.

To sample the photon transport distance from a region with continuously changing
opacities, it is necessary to first determine the way that the opacities change during a
time step. For this thesis, it is assumed that the change of opacities can be described as
linear function between the start of time step opacities and end of time step opacities
estimated by a predictor step. The current opacity at any given time t is therefore
defined as

σc =
σn+1 − σn

∆t
tc + σn. (4.32)

Using the current opacity σc(tc) at the starting time tc of particle and the predicted
opacity σn+1, a linear interpolation is used to construct the time dependent opacity in
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a time step as

σ(t) =

[
σn+1 − σc
∆t− tc

]
t+ σc (4.33)

where t is bounded as 0 ≤ t ≤ ∆t − tc. The ∆t − tc term represents the time left
before the end of time step census. The time dependent opacity is converted to a
spatially dependent opacity by rearranging the equations as

σ(x) =
σn+1 − σc
xmax

x+ σc (4.34)

where xmax = c(∆t− tc), 0 ≤ x ≤ xmax and x = ct. Effectively, the photon is exposed
to a spatially changing media during an arbitrary flight path. While this process is
straight forward in an analog Monte Caro simulation, it becomes more challenging in
a non-analog simulation.

To determine the flight distance of a photon in a spatially changing media with
non-analog transport, the probability of interaction must first be determined. The
probability that a photon has a collision in [0, xmax] is defined as

Pc =

∫ xmax

0

σs(x)e−
R x
0 σs(x

′
)dx
′

dx. (4.35)

To solve Eq. (4.35) in a general way, the integral is rewritten using a change of
variables. Substituting the transformation

y(x) =

∫ x

0

σ(x
′
)dx

′
, (4.36)

which gives the relationship
dy(x) = σ(x)dx, (4.37)

into Eq. (4.35) yields the general solution∫ x

0

σs(x)e−
R x
0 σs(x

′
)dx
′

dx =

∫ y(x)

0

e−y(x)dy (4.38)

= 1− e−y(x).

Therefore any arbitrary spatially dependent opacity can be used in this format to
determine the interaction probability. The interaction probability Pc can now be
defined using (4.38) as

Pc = 1− e−y(xmax) (4.39)
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where
y(xmax) =

∫ xmax

0

σs(x)dx. (4.40)

Now that that total probability of collision within a given domain is determined,
the probability distribution function (pdf) for flight distances can be examined. The
pdf of the flight distance of a particle that has collided within 0 ≤ x ≤ xmax is defined
as

f(x) =
1

Pc
σs(x)e−

R x
0 σs(x

′
)dx
′

dx. (4.41)

Integrating (4.41) over the domain will give the cumulative distribution function (cdf)

ξ = F (x) =
1

Pc

∫ x

0

σx(x
′
)e−

R x′
0 σs(x

′′
)dx
′′

dx
′

(4.42)

where ξ is a uniform random deviate and the value of x that satisfies the integral is
the distance traveled by the particle. Using Eq. (4.38) and rearranging the cdf, the
general sampling form of the cdf is given as

y(x) = − ln(1− ξPc). (4.43)

In summary, the distance sampling procedure is implemented as:

1. If: ξ1 ≤ Pc,
Sample y(x) = − ln(1− ξ2Pc)
Solve the equation for the value of x

2. Else: the photon did not collide and it reaches census.
After the particle distance traveled has been established, either through distance to
census or distance to collision before the census, the photons energy (E) is attenuated
in the medium as

E
′
= E exp

[
−
∫ s

0

[σt(x)− σs(x)]

]
(4.44)

so the particle has an energy E ′ after traveling and deposits E − E ′ energy into the
cell.

To solve for a transcendental function of y(x) in terms of x, a root solving technique
must be used. In general, a Newton iteration scheme was seen to converge within
10−6 of the solution within 1− 3 iterations (3). By using a direct sampling technique,
Brown and Martin’s work resulted in a good implementation of the non-analog CF
method. Their work will now be extended to incorporate a new time dependency in
the opacities for the CF method and to introduce a time dependency in the opacities
for the IMC method.
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4.2.2 IMC Time Dependent Opacity Predictor-Correctors

The effective scattering cross-section for the IMC method is defined as

σs(t) = (1− f)σt(t) (4.45)

where f is the Fleck factor, σt(t) is the total cross-section and the value of t is consid-
ered constant for a cell during a time step. Since the opacities remain constant during
a time step, the analog implementation is very straight forward. However, the non-
analog approach is desired since it is an accepted variance reduction technique that is
standard in Monte Carlo TRT codes. The traditional non-analog IMC implementation
is also fairly straight forward. Since there is no time dependency in non-analog IMC
opacities, the distance the particle would travel in an infinite medium can be used, or
Pc = 1. The distance the particle actually travels however can be truncated by the
distance to census or distance to another cell boundary. This implementation does
not introduce errors, and the distance traveled is then sampled as

s = − ln(ξ)/σs (4.46)

and the particle energy is attenuated by

E
′
= E(1− e−fσs). (4.47)

Implementing a linearly time dependent opacity created by the predictor step adds
a significant level of complexity to the non-analog IMC sampling routine. Rewriting
Eq. (4.34) and the Fleck factor in a more condensed form gives

σ(x) = ax+ b (4.48)

and
f(x) = 1/(1 +Mσ(x)) (4.49)
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where a = σn+1−σc
xmax

, b = σc, and M = αβnc∆t. Now, compute the function y(x) as

y(x) =

∫ x

0

σs(x
′
)dx

′
(4.50)

=

∫ x

0

[σ(x
′
)(1− f(x

′
))]dx

′

= bx+
ax2

2
+
−aMx− log[1 + bM ] + log[1 + bM + aMx]

aM2
.

While the value of Pc can now be directly calculated using Eq. (4.39), the pdf created
for the sampling of the flight distance is now a transcendental function of x. To solve
for x, a root finding method must be employed. For this case, a Newton iteration is a
robust scheme to solve for the transport distance as was the case with the non-analog
CF method discussed earlier.

Using the accuracy versus timing tests used previously in Tables 4.1 to 4.6, the IMC
Time Dependent Opacity Predictor-Corrector (TDOPC), with and without a VWPC,
can be examined at the time step sizes of 0.1, 0.08, 0.05, 0.04, 0.02, and 0.01 at the
time τ = 20. Figure 4.26 shows that for large time steps the TDOPC are more accurate
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Figure 4.26: IMC relative error vs. time for different predictors in the Nonlinear
Problem. For each color / symbol combination plot, the highest relative error and
lowest CPU time point represents ∆τ = 0.1 and the smallest relative error and highest
CPU time point represents ∆τ = 0.01.

than the WLTPC. However, this accuracy comes at an increased computational cost
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making this predictor-corrector much more costly. Even when using the 100 VWPC,
the run times are nearly double the traditional IMC run times for the same accuracy.
To decrease the computational cost of the TDOPC, a simplification is made to remove
the root solving procedure needed to sample the flight distance.

Instead of assuming that the opacities change during a photons flight path, they
are fixed at a given time similar to the traditional lagging used to linearize the TRT
equations. The key difference is that whenever the particle must sample the distance
to the next collision, the current opacity σc(t) is used. Therefore, a particle will be
transported in a non-analog manner starting at time t′ with an opacity σc(t

′
) and

interact at time t′′ . Then the particle will travel starting at time t′′ with an opacity
σc(t

′′
) where tn ≤ t

′ ≤ t
′′ ≤ tn+1 By keeping the opacity constant during a single flight

distance and updating the opacity for the next flight distance within a step, the root
solving algorithm is no longer required. Figure 4.27 shows that the Constant Emission
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Figure 4.27: IMC relative error vs. Constant Emission Time Dependent Opacities in
the Nonlinear Problem. For each color / symbol combination plot, the highest relative
error and lowest CPU time point represents ∆τ = 0.1 and the smallest relative error
and highest CPU time point represents ∆τ = 0.01.

Time Dependent Opacity Predictor-Corrector (CETDOPC) is significantly faster than
the TDOPC. Also, compared to the standard IMC implementation the CETDOPC
is more accurate for each corresponding time step size. When using the 100 VWPC
CETDOPC there is not a significant increase in computation time for a more accurate
solution.
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Figure 4.28 shows the comparison between the two different time dependent opacity
predictor-correctors. Surprisingly, the CETDOPC does not lose accuracy for the gains
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Figure 4.28: IMC relative error vs. CETDOPC and TDOPC in the Nonlinear Problem.
For each color / symbol combination plot, the highest relative error and lowest CPU
time point represents ∆τ = 0.1 and the smallest relative error and highest CPU time
point represents ∆τ = 0.01.

in speed over the TDOPC; making it an attractive method. Also, there is no a priori
knowledge of the underlying opacity temperature dependency as is required in the
WLTPC, allowing the method to be more generally applicable to a host of arbitrary
opacity models.

4.2.3 CF Time Dependent Opacity Predictor-Correctors

Non-analog transport with the CF method requires a root solving algorithm for the
flight distance of a particle. Using more exponentials and logarithms than the non-
analog IMC method, the non-analog CF method is computationally more intensive.
However, the increased cost is partially offset by the improvements in the accuracy of
the solution by the removal of bias that has been seen in the IMC method.

The effective scattering for the CF method is given as

σs(t) = σ(t)
[
1− e−βcσ(tn+1−t)

]
. (4.51)
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Changing the effective scattering opacity from a function of time to a function of
position yields

σs(x) = σ [1− γepx] (4.52)

where γ = e−ph, p = βσ, h = c(tn+1 − t
′
), t′ is the current time, and 0 ≤ x ≤ h.

Following the previous procedure, the function y(x) can now be defined as

y(x) =

∫ x

0

σs(x
′
)dx

′
(4.53)

=

∫ x

0

σ[1− γepx]dx′

= σx+
σγ

p
(epx − 1).

After sampling the flight distance via a root finding method for this transcendental
function of x, the photon energy is reduced after traveling a distance s by

E
′

= Eexp

[
−
∫ s

0

[σ − σs(x)]dx

]
(4.54)

= E exp [−γ(eps − 1)/β] .

Therefore, E−E ′ energy is deposited into the material where the track length occurred
(3).

To create a CF Time Dependent Opacity Predictor-Corrector, the opacities must
now change with regard to time in the effective scattering term. Using the simplified
form of a linearly changing opacity shown in Eq. (4.48), Eq. (4.52) is rewritten as

σs(x, t) = [ax+ b]
[
1− e−cβ(tn+1−t)[ax+b]

]
(4.55)

= [ax+ b]
[
1− e−cβ(tn+1−t

′−t+t′ )[ax+b]
]

σs(x) = [ax+ b]
[
1− e−β(xmax−x)[ax+b]

]
where xmax = c(tn+1 − t

′
), x = c(t− t′), t′ represents the starting time of the particle

and t represents the time the particle finished traveling to the next interaction. Now
that σs(x) has been determined, the function y(x) can be determined as
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y(x) =

∫ x

0

σs(x
′
)dx

′
(4.56)

= [ax+ b]
[
1− e−β(xmax−x)[ax+b]

]
=

1

4

[
2(e−bβxmax − e−β(xmax−x)(b+ax))

β
+ 2x(2b+ ax)

+

(b+ axmax) exp[−β(b+axmax)2

4a
]
√
π

(
Erfi[

√
β(b−axmax)

2
√
a

]− Erfi[
√
β(b−axmax+2ax)

2
√
a

]

)
√
a
√
β

]
.

A new function Erfi is introduced in Eq. (4.56) and is defined as

Erfi(z) =
Erf(iz)

i
(4.57)

where i =
√
−1 and Erf is the error function.

The inclusion of the Erfi function dramatically complicates the root finding process
and significantly increasing computation time to assure necessary precision in the
solution to the function. For this reason, the TDOPC method will not be examined
with the CF method. Instead, the CETDOPC will be implemented with the expecta-
tion that the CETDOPC and the TDOPC approaches will be as similar in the CF
approach as they were in the IMC approach.

Figure 4.29 shows the CF CETDOPC approach compared to the traditional and
CF WLTPC implementation. Unlike the results shown when using the IMC method in
Fig. 4.27, the CETDOPC approach shows a point for point higher relative error than
the WLTPC. However, the CF CETDOPC approach is still more accurate than the
traditional CF approach and more accurate than either of the IMC predictor-corrector
schemes.
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Figure 4.29: CF relative error vs. Constant Time Dependent Opacities in the Nonlinear
Problem. For each color / symbol combination plot, the highest relative error and
lowest CPU time point represents ∆τ = 0.1 and the smallest relative error and highest
CPU time point represents ∆τ = 0.01.
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Chapter 5

Time Step Controllers

Resolving the nonlinearity in σ(t) is a significant factor affecting the accuracy of both
the IMC and CF methods in a nonlinear problem. For that reason, great care must
be taken to ensure that a time step size used in the calculation is small enough to
yield a good estimate of the opacities to perform accurate transport. On the flip side,
the smaller the time step used, the more costly the simulation required to solve for a
solution at some time τ . To resolve these discrepancies, time step controllers are used
to change the size of the time step from one transport cycle to the next to achieve the
largest time step possible while maintaining accurate transport. Time step controllers
achieve this goal by using constraints that will determine the size of the next time
step.

5.1 General Description of Time Step Controller Al-
gorithm

A flow chart detailing the time step controller algorithm can be seen in Fig. 5.1.
The first step is to run a time step to get the end of time step values for the sim-
ulation. These end of time step values are examined using the time step controller
constraint(s). These constraints can be a number of different heuristics, but in this
thesis the constraints will be limited to the relative changes of a given parameter like
temperature or opacity. If the time step controller constraints are met in every cell
within the problem, then the results of that time step are recorded and a new time
step size is selected. However, if the violations of the time step controller constraints
are considered too large, the time step might be rerun using a smaller ∆t for time
step n. The decision to rerun a time step should not be made lightly, but for severe
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Figure 5.1: Time step controller generalized algorithm.

violations of the time step controller constraint rerunning a time step at time tn may
be the only way to have confidence in the solution.

The constraints in a time step controller represents the mechanism by which we
try to determine and control the propagation of error. Whether the constraint was
violated and how large the violation was will determine how the next time step size
is selected. If the constraint is violated and the problem is not rerun, a smaller ∆t

will be chosen for the n + 1 time step. Conversely, if the constraint is not violated,
the size of ∆t may be increased for the n+ 1 time step. In this way the value of ∆t

will change throughout a simulation. The methods by which we constrain the time
step controller and how we change the time step size due to this information are the
implementation details of a time step controller. Care must be taken when making the
implementation decisions since any time step controller with an arbitrary constraint
and slowly varying ∆t selection might have the appearance of merit while still being
far from the most optimal solution.
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5.2 Photon Energy Density and Opacity Time Step
Controllers in Zero-D

For a deterministic radiative transfer code, the maximum relative change of the energy
in the photon field has been used as a heuristic for the time step controller constraint
(8; 18). By restricting the change of the photon energy density, the change of the
material energy density within a time step is also controlled. Therefore, if the photon
field is correctly modeled, then effects like the warming at the Marshak wave front
could be accurately resolved from one time step to another. Knoll’s time step controller
constraint for the change of the photon energy density is given as

∆E

E
= maxi

[
| En+1

i − En
i |

En+1
i + Efloor

]
= ηn (5.1)

where i refers to the cell index, and n refers to the time step. Efloor is a “prescribed
constant usually set equal to a multiple of the lower bound for the energy in a given
problem”. A new time step size is then calculated as

∆tnew = ∆told

(
ηtarget
ηn

)0.5

(5.2)

where ηtarget is a user defined parameter for acceptable relative change usually chosen
between 0.05 and 0.20. If the value of η is larger than ηtarget, then the size of the time
step is decreased. Conversely if the value of η is less than ηtarget then the time step
size is increased. The square root of the ratio of the target and actual values of η
is used to smooth the change in the size of the time step. By throttling the relative
change of energy in the photon field, the user will be able to control the rate at which
the radiation field cools or heats to ensure proper transport. By controlling the rate
at which energy from the photon field is absorbed or leaked by the material field, the
rate of heating or cooling of the material can be controlled. Though not discussed
by Knoll or Rider, the photon energy density controller is not general since the heat
capacity of the material will directly effect the temperature change of the material for
a given energy deposition. This temperature change will in turn effect the change of
the opacity during a time step. However, the photon energy density controller has a
very circuitous route of controlling the change in the opacity or temperature since the
heat capacity can be different for different materials in the problem.

While examining the relative change of energy in the photon field with a tight
constraint will resolve the nonlinearities in σ(t), it does not directly focus on the
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change in σ(t) during a time step. This may seem to be a small point but it has
fairly significant implications. The relative change in photon energy does not have
significant importance in a Su-Olsen problem, but it does have a profound effect in a
problem with an opacity with a 1/T dependency or even more, a 1/T 3 dependency.
The value of ηtarget may be set to a smaller value to better capture these nonlinearities,
but this is an indirect approach to the issue. Putting a constraint on the relative
change of photon energy says nothing about the relative change of the opacities. In
fact, in order to perform accurate transport during a time step, the relative change of
the opacity can not be too large. Also, the detailed truncation analysis in Chapter
2 demonstrated that the change of opacity was a leading source of error. Since σ(t)

is held constant over a time step, large changes in the opacity during a given time
step implies that the assumption is being violated. However, since the photon energy
density is a dependent variable, there is no a priori reason to assume that it should
not change drastically. Therefore, by building a time step controller based off the
change of opacity it maybe possible to directly control the size of the truncation error
per time step.

To this end, we propose a time step controller constraint based on the relative
change in the opacities during a time step as

maxi
[
| σn+1

i − σni |
σni

]
≤ ηtarget. (5.3)

In Eq. 5.3, ηtarget is a user defined relative change that should not be violated. Depend-
ing on how close the time step controller is to violating the controlling condition, the
time step size can be increased or decreased for the next time step. If the constraint is
violated, the controller must determine if the time step must be rerun (which can be
infeasible in Monte Carlo simulations due to memory constraints (21)) or alternatively,
accept the violation of the controller and significantly reduce the time step size for
the next time step.

To explore the effect of both the relative-change-of-photon-energy and relative-
change-of-opacity time step controllers, a set of 0D problems is proposed that will
examine the effectiveness of both controllers. The problems covered will vary in the
functional dependency of σ on temperature at different values of constant heat capacity
Cv. The different heat capacity values will affect the end of time step temperature.
A smaller heat capacity causes a larger change in temperature than a larger heat
capacity for the same amount of energy deposited. Changing the functional form of
the opacities will also change the way that the material will emit and absorb energy
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during the time step, which will affect the simulation accuracy.
To fully determine the effectiveness of each time step controller, the largest time

step that can be taken while not violating the controller is chosen. This time step size
is determined by choosing a large ∆t as the initial guess for a time step at time tn.
If the controller constraint is violated, then the results are discarded and a slightly
smaller time step size is used at time tn. Successively smaller time steps are used at
time tn until the time step controller constraint is not violated. After the time step
controller constraints are met, the problem progresses one time step to tn+1 = tn + ∆t

and then chooses another excessively large time step size for the initial guess for the
next time step. The selection of ∆t for the next time step is not based on the proposed
selection outlined in Eq. 5.2. While this time step size section procedure is not typical,
we use it in this section (only) because it helps us examine the largest predicted safe
time step that can be taken. By focusing on the maximum time step allowed by the
time step controller constraints, we can directly compare each controller’s ability to
constrain truncation error.

In the following figures, three different constant heat capacities are used per opac-
ity model for both time step controllers. Therefore each graph has three different
problems solutions due to the change in the heat capacity. The opacity of the system
will start out at σ(to) = 50 and have a material temperature of T (to) = 0.1 for each
problem. This means that the value of γ in σ(T ) = γ/T n will vary to maintain a
beginning of simulation opacity of 50.0. In other words, the values of γ will be 5.0,
0.5, 0.05 and 0.005 for the opacity models 1/T , 1/T 2, 1/T 3, and 1/T 4 respectively.
The relative error in material temperature will be examined at the time t = 0.01 for
each problem against a reference solution to temperature that was created using a
time step size of 10−7 for each problem. A time step size of 1.0 is used as the initial
guess to violate the time step controller constraints. This large time step will cause
the time step controllers to optimize to the largest time step size that is acceptable
for their constraints.
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(a) Relative error for a change of opacity.
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(b) Relative error for a change in photon energy density.

Figure 5.2: Relative error in material temperature for different constant heat capacity
values and different changes in the time step controller constraints for a σ = γ1/T

1

opacity. The maximum change of the abscissa is forced for every time step in the
simulation.
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(a) Relative error for a change of opacity.
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(b) Relative error for a change in photon energy density.

Figure 5.3: Relative error in material temperature for different constant heat capacity
values and different changes in the time step controller constraints for a σ = γ2/T

2

opacity. The maximum change of the abscissa is forced for every time step in the
simulation.
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(a) Relative error for a change of opacity.
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(b) Relative error for a change in photon energy density.

Figure 5.4: Relative error in material temperature for different constant heat capacity
values and different changes in the time step controller constraints for a σ = γ3/T

3

opacity. The maximum change of the abscissa is forced for every time step in the
simulation.
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(a) Relative error for a change of opacity.
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(b) Relative error for a change in photon energy density.

Figure 5.5: Relative error in material temperature for different constant heat capacity
values and different changes in the time step controller constraints for a σ = γ4/T

4

opacity. The maximum change of the abscissa is forced for every time step in the
simulation.

Figures 5.2a to 5.5b show a significant difference between the two time step con-
trollers. For large relative changes of opacity or photon energy density, both methods
perform poorly and sometimes violate the maximum principle but this is where the
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similarities end. The time step controller based on the change in energy density of
photons has varied results. The change of the heat capacity has a dramatic effect in
the accuracy of the solution for the same relative change of the photon energy. The
relative error of the photon energy time step controller changes by orders of magnitude
depending on the heat capacity for a given opacity model. As the inverse power of the
temperature increases, so does the magnitude of the relative error and the differences
between the relative error for each heat capacity. In short, the user will need an
intuitive feel for each problem to know how to set the constraint for the change in
photon energy density.

However, the time step controller based on the change in the opacity tells a different
story. With the exception of the γ1/T

1 opacity model shown in Fig. 5.2a, the relative
error in temperature of the opacity time step controller is remarkably similar even
with different heat capacities. By decreasing the allowed relative change of opacity
by the time step controller constraint, the γ2/T

2, γ3/T
3, and γ4/T

4 opacity models
linearly tend to a relative error in material temperature of 10−3 for a relative change
of opacity of 10−2. This trend can also be seen in the γ1/T

1 model except when
Cv = 0.01 which yields an even lower relative error in temperature of 10−4 for an
opacity change of 10−2. Generally speaking, the opacity model and heat capacity of
the material appear to have negligible effects on the accuracy of the solution when
using the opacity time step controller. For these 0D models, the time step controller
with the constraint based on the change of opacity does not require any user intuition
about the material properties of the problem, making it a much more robust controller.
The photon energy time step controller can yield the same numerical results as the
opacity time step controller in these simplified problems, but the user must know how
to specify the correct constraint for the specific problem that is being run. If material
discontinuities exist in the problem, the task of choosing a proper constraint becomes
challenging for the photon energy controller due to the its heat capacity sensitivity,
but remains trivial for the opacity time step controller.

Another obvious choice for a time step controller constraint is to limit the relative
change of material temperature from one time step to the next. Similar to the relative
change in opacity constraint, the temperature constraint for the controller is given as

maxi
[
| T n+1

i − T ni |
T ni

.

]
≤ ηtarget (5.4)

While we could not find publications on this controller constraint, it is currently used
in practice (4). In the 0D homogeneous test problems there is no practical difference
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between the opacity constraint and the temperature constraint. However the opacity
constraint will prove to be more robust when spatial details are included in a problem.
The temperature constraint will be discussed in greater detail later in this chapter.

5.3 Timing Tests for Rerunning Time Steps with a
Time Step Controller in 1D

A time step size is chosen at the beginning of the problem simulation and then
increased or decreased by a time step controller. If the next time step size needs
to be decreased, the previous ∆t size selection violated the constraints of the time
step controller during the time step. When the time step controller constraint is
violated, a decision must be made to either rerun that time step or to accept the
results and decrease the time step size for the next time step. The computationally
easier approach is to not rerun the time step, which works well assuming that the
violations of the time step controller are not severe. Alternatively, a time step could
be run again to ensure that the time step controller is not violated. While the cost of
rerunning a problem is high, this may still prove to be beneficial if any violation of
the time step controller is anticipated to have severe consequences.

Determining the correct size change in a time step after a successful time step or
after a violation of the time step controller is a bit of an art. A simple approach to
modify the time step size is to decrease it after a violation as

∆tn+1 = ∆tn/D (5.5)

or to increase the time step size as

∆tn+1 = ∆tnM. (5.6)

The user defined values of D > 1 and M > 1 are constants used to divide or multiply
the previous time step size to determine the next time step size. This process will be
referred to as a DM controller. A timing test is conducted on the nonlinear problem
with 32 million source particles, ∆x = 0.025, a maximum ∆τ = 0.5 and a total
simulation time of τ = 40 using the criterion σmax ≤ 0.15. An exceptionally large
time step size is initially used to ensure that the maximum principle would be violated
so as to test the effectiveness of this time step controller approach. Using the DM
controller, each individual time step is rerun until the constraint ηtarget = 0.15 is met.
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Once the constraint is met, the time step size is increased and the next time step
follows the same procedure. The effect of different values for the D and M constants
are shown in Table 5.1 for the IMC and CF methods.

Table 5.1: IMC and CF opacity time step controller run time (minutes) using DM
controller.

IMC Time Step Controller
D\M 2.0 1.75 1.25 1.01 1.005

2.0 14.31 11.96 7.85 6.16 6.11
1.75 15.30 13.73 8.60 5.93 5.84
1.5 18.71 15.57 8.93 5.94 5.84
1.25 27.11 21.40 11.23 5.52 5.84
CF Time Step Controller
D\M 2.0 1.75 1.25 1.01 1.005

2.0 14.88 12.55 8.27 6.14 6.20
1.75 15.90 22.23 17.06 10.41 11.24
1.5 24.33 15.49 9.25 5.93 5.98
1.25 26.72 22.15 11.62 5.65 5.85

As expected, the CF method took slightly longer than the IMC method to run in
each case. When comparing the divide by and multiply by values, a general rule of
thumb is the D value must be larger than the M value for more optimal results. This
is fairly intuitive if the simulation is on the verge of breaking the time step criterion,
using a large multiply value will overshoot the correct time step size causing multiple
runs of a smaller divide by value to reduce the time step size back down.

A variable weight scheme was added to the DM opacity controller to create a new
controller called Variable Weight Divide Multiply Controller (VWDM). The VWDM
controller was created to determine if a predictor step (with no corrector) with fewer
particles with higher energy could determine if the time step controller would be
violated while taking less computational effort. The predictor step is rerun with
successively smaller time step sizes until the time step size no longer violates the time
step controller constraints. Next, the time step is run one more time using the original
photons that should have been transported during that time step. This predictor
scheme is not intended to and will not change the order error of the problem. All that
the VWDM scheme is attempting to do is determine if the time step size used for
the standard implementation of the CF and IMC methods would violate a controller
constraint and therefore need to be reduced in size. The timing test results for the
VWPC Opacity DM controller are shown in Table 5.2.

109



Table 5.2: IMC and CF opacity time step controller run time (minutes) using 100VW
DM controller.

IMC Time Step Controller with 100 vw Predictor
D\M 2.0 1.75 1.25 1.01 1.005

2.0 10.16 9.75 9.36 13.59 15.27
1.75 10.01 9.57 9.00 13.55 15.55
1.5 10.70 9.74 8.91 12.32 14.37
1.25 12.75 10.98 8.68 11.02 12.46
CF Time Step Controller with 100 vw Predictor
D\M 2.0 1.75 1.25 1.01 1.005

2.0 10.64 10.16 9.64 14.92 16.63
1.75 10.51 10.22 9.39 13.87 16.40
1.5 11.09 10.84 9.09 12.34 13.66
1.25 13.31 11.78 9.22 11.16 11.97

Like before, the CF method is computationally more costly than the IMC ap-
proach. While the VWDM Opacity controller shows some speed improvements over
the DM Opacity controller in the M = 2 column, the VWDM Opacity controller is not
competitive with the fastest DM Opacity controller runs for either method. Therefore,
a quick predictor step in the VWDM controller does not appear to add significant
improvement in computation time compared to the fastest DM controller runs.

As a comparision to the DM Opacity controller, to keep the relative change of
the opacities below 0.15 for the entire problem using only a constant time step size,
then ∆τ = 6.08 × 10−4. This small time step requires 65790 time steps to reach
τ = 40. Therefore it is clear that a time step controller that can control the error in
the problem will significantly decrease the number of time steps required to yield an
accurate solution.

5.4 Implementation of Time Step Controllers With-
out Reruns in a Homogeneous 1D Slab

The relative change of the opacities of the 1D reference solution for the nonlinear
problem with a time step size ∆τ = 0.005 and ∆x = 0.01 can be seen in Figs. 5.6a
and 5.6b. This relative change of the value of σ from time step to time step starts off
at a large value due to effectively an instantaneous source starting at time τ = 0 at
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the left boundary. As the problem progresses in terms of cycles, the relative change in
σ decreases as the Marshak wave moves further from the source driving it. Zooming in
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(a) Trend of the largest relative change of opacity for each time step.
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(b) Oscillations in the largest relative change of opacity for each time
step.

Figure 5.6: Relative change of σ(t) from the previous cycle in a refined IMC solution
for the Nonlinear Problem.

on the relative change of σ, oscillations can be seen. These are due to the progression
of the Marshak wave from one cell to the next. The trough occurs at the time just
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before the Marshak wave enters a new cell and the crest represents when the wave is
about half way through the cell.

By constraining the problem so the opacities can not change more than a given
amount, the cumulative effects of inaccurate transport may be examined. Using
different values for ηtarget for the relative change of opacity, the Marshak wave front is
examined at time τ = 20 and spatial width ∆x = 0.025. The time step size is chosen
during run time to meet the constraint on the change of the opacities. In these runs if
the time step controller constraint is exceeded, the time step is rerun using a smaller
value of ∆t. Figure 5.7 shows the effect of the time step controller on the location of
the wave front. Although none of these results violate the maximum principle, the
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Figure 5.7: Wave front location for different ηtarget values in the Nonlinear Problem.

wave fronts are in distinctly different locations. By keeping larger opacities for an
extended period of time, the wave front is slowed as it tries to transport through the
slab. This slowing process occurs without any indication of error. Effectively, allowing
large changes of opacity during a time step is like modeling a different problem than
actually intended. For this particular problem, it appears that a ηtarget = 0.15 is
an effective constraint to reconstruct the correct location of the Marshak wave front
compared to the reference solution.

There is a difficulty in correctly determining the development of error in time with
respect to using Monte Carlo methods. In the regions in front of the Marshak wave,
there are few particles that simulate the transfer of energy due to photons, allowing for
a noisy solution. Figure 5.8 shows the differences in temperature between the reference
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solution and a time step controller run in a region before the Marshak wave. Due
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Figure 5.8: Material equilibrium before the Marshak wave front.

to this noisy approximation of temperature in a region of little interest, the relative
error in temperature will be examined by only examining regions in the problem that
have been exposed to the Marshak wave. The average relative error in temperature is
calculated by:

1. Determine the number of cells N that are at a material T > 1.005 in time step i
2. Sum the relative error in temperature of the N bins as:

Rerror =
∑
N

| Ti,n − TRefi,n |
TRefi,n

3. Average the relative error Rerror to compare the solutions as:

Ravg = Rerror/N

The average relative error in temperature Ravg will be used as the metric to compare
the differences in methods for the remainder of this chapter.

To examine the differences between the opacity and photon energy density time
step controllers, the 1D nonlinear problem is examined with a small spatial resolution.
Using ∆x = 0.00025, an initial time step size ∆t = 0.000005, and a total simulation
time of 0.05 was chosen. The two controllers are compared using different values of η
and a time step size change dictated by Eq. 5.2 against a reference solution generated
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using 10, 000 time steps with a constant ∆t. Figures 5.9a and 5.9b show the relative
error of the time step controllers during the simulation time.
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(a) Opacity time step controller.
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(b) Photon energy density time step controller.

Figure 5.9: Relative error of time step controllers vs. simulation time.

The controller based on an opacity constraint has less relative error for the same
number of cycles as the controller based on photon energy density. Furthermore, the
opacity controller appears to have a nearly constant relative error for smaller values of
η, demonstrating that the error is being controlled. In comparison the photon energy
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density controller does not always to constrain the error to a given level. In particular,
when η = 0.016 the relative error increases monotonically with time when using the
photon energy density controller.

To better understand the differences between the two controllers, the location of
the material cell with the largest change for the controller is determined. Figures
5.10a and 5.10b show the differences between the two time step controller constraints
using η = 0.01 for the opacity constraint and η = 0.0006 for the photon energy density
constraint. The selection of the values of η correspond to roughly 2000 time steps
for both implementations. While the opacity controller has a smooth transition from
one cell to the next, following the Marshak wave, the energy density controller is
working in a nearly random cell from one time step to the next. While the photon
energy density is as stable as the temperature in deterministic methods, the same is
not true in Monte Carlo methods. The transport of photons in optically thin cells
creates a great deal of noise that is not represented in the material temperature or
opacity. Therefore, the controller based off photon energy density does not appear
to be a valuable heuristic for determining the locations of interest during this Monte
Carlo simulated Marshak wave.

Figure 5.11 demonstrates the effect of noise on the two different controllers and
their selection of a time step size. While the opacity controller is smoothly transi-
tioning to a larger time step size, the energy density controller appears to struggle to
determine an appropriate time step size. This is an anticipated result since it is clear
from Fig. 5.10b that the photon energy controller is not choosing the cell location
where the physics are changing the fastest. Therefore it is not clear that the time
step size selection would ever be relevant to truncation error in a single time step.
Because of the poor performance of the photon energy density controller in Monte
Carlo methods it will no longer be considered as a viable option. However, the opacity
time step controller appears to be a stable choice that appropriately increases the
time step size. To gauge the effectiveness of the opacity time step controller, it will
now be compared to a controller based on the relative change of temperature (4).

As we mentioned in Section 5.2, the temperature controller gave similar results as
the opacity controller in 0D. Both methods take the heat capacity of the material into
consideration unlike the photon energy density controller, making them more robust.
Furthermore, the relative change of temperature and opacity can be related. Define
the relative change of temperature as

Υ =
| Tn+1 − Tn |

Tn
(5.7)
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(a) Opacity time step controller.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

Time

C
el

l L
oc

at
io

n

(b) Photon energy density time step controller.

Figure 5.10: Location of maximum change for the controller vs. simulation time.

and the relative change of opacity as

R =
| σn+1 − σn |

σn
. (5.8)
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Figure 5.11: Time step size vs. simulation time.

Using a simple model σ = γ/Tm, the relative change in opacity can be stated as

R =
| γ
Tmn+1
− γ

Tmn
|

γ
Tmn

(5.9)

=

∣∣∣∣ TmnTmn+1

− 1

∣∣∣∣.
Equation (5.7) is solved for Tn+1 as

Tn+1 = Tn(1 + Υ) (5.10)

and then substituted into Eq. (5.9) to give

R =
| 1− (1 + Υ)m |

(1 + Υ)m
. (5.11)

Examining the temperature range Tn < Tn+1 < ∞, which implies warming of the
material, the relative change in temperature is constrained as 0 < Υ <∞ allowing
Eq. (5.11) to be written as

R =
(1 + Υ)m − 1

(1 + Υ)m
. (5.12)

Therefore, a constraint on the change of temperature Υ will also constrain the relative
change of opacity as 0 < R < 1 for this warming problem. For a fixed change of
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temperature, there will be a fixed change of opacity as shown in Fig. 5.12.
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Figure 5.12: Change of opacity due to change of temperature for different opacity
models.

The relationship between temperature and opacity is why there was no significant
difference between the two controllers in the 0D and homogeneous 1D models. A
change of temperature can be chosen that will constrain the change in opacity at a
given value. Therefore the two controllers can be made equivalent in these simple
problems. However, while these two controllers are clearly tightly coupled together,
the opacity controller has more relevance to controlling truncation error as shown in
Chapter 2.

To demonstrate this, note from Fig. 5.12 that a relative change of temperature
of 0.1 has different changes of opacity from 0.1 to 0.31 for these different simple
power models for opacity. Therefore, the temperature controller can have significantly
different changes in opacity for a fixed relative change in temperature. A comparison
of the two controllers is conducted for the γ1/T , γ2/T

2, γ3/T
3, and γ4/T

4 opacity
models used with a constant heat capacity. The values of γm are chosen so that the
material has an initial opacity of 1000 for each opacity model. The spatial width
is given as ∆x = 0.001, the starting time step size is ∆t = 0.0001, β = 0.56 and
a total simulation time of 0.1. Figures 5.13a to 5.14b show the degradation of the
accuracy of the solution when using the relative change of temperature controller
compared to the reference solution. As expected from Fig. 5.12, the results for
the 1/T opacity model are nearly identical for the opacity and temperature TSC’s.
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Conversely, the 1/T 4 opacity model shows a significant difference between the two
controller constraints at ηtarget = 0.1. The relative change of opacity controller does a
much better job of resolving the reference solution for the different γm/Tm opacity
models. This improvement can be seen at the Marshak wave front where the opacity
controller demonstrates itself to be equal to or better than the temperature controller
(both methods using ηtarget = 0.1).
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(a) Opacity model γ1/T .
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Figure 5.13: Marshak wave front for the different time step controllers with ηtarget = 0.1.
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Figure 5.14: Marshak wave front for the different time step controllers with ηtarget = 0.1.

In Figs. 5.13a to 5.14b, the number of total time steps used to show the Marshak
wave at τ = 0.1 was not the same for the two controllers. While the two controllers
used a similar number of time steps for the γ1/T model, the opacity controller used
more smaller time steps in the m > 1 opacity models. This is an expected result
since Fig. 5.12 shows that the relative change of temperature and opacity are nearly
the same for the 1/T opacity model, but significantly different at the 1/T 4 opacity
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model. Therefore the opacity time step controller constrains the quickly changing
opacity and appears to be constraining the error from one time step to the next.
However the temperature controller does not seem to adapt to constrain the error for
the same value of ηtarget on the changing problems like the opacity controller. The
temperature controller appears to successively show a decreasingly accurate depiction
of the Marshak wave front.

5.5 Time Step Controllers in a Multi-Material 1D
Slab

Since the opacity and temperature controller constraints have a direct relationship in
simplified gray homogeneous problems, a multi-material problem is required to separate
the characteristics of each approach. Using different temperature dependencies in the
opacity model, the time step controllers will no longer be equivalent. In these problems
we will be using a DM controller with D = 1.25 and M = 1.05. During the following
TSCPC runs, there will be no time step rerunning. The multi-material problems
examined are composed of two materials. The material located from 0 ≤ x ≤ 0.1

uses an opacity model of 0.1/T 4, while the material located from 0.1 < x ≤ 0.3 uses
an opacity model of 10/T 2. Both materials start at an initial temperature T0 = 0.1,
implying both materials have a starting material opacity of 1000. Using c = a = 1, a
constant heat capacity Cv = 1/.14, a 1 unit isotropic source on the left boundary with
vacuum boundary conditions, an initial time step size ∆τ = 0.005, and a simulation
time out to τ = 1. This problem will hence forth be referred to as Problem 8. The
average relative error in temperature is compared for the temperature and opacity
controllers in Fig. 5.15.

For large values of ηtarget there is a decrease in the average relative error for the
problem as the simulation progresses. For ηtarget = 0.4 for the opacity controller and
ηtarget = 0.2 for the temperature controller, it is clear that the opacity controller does
a better job at the beginning of the simulation. However, as the simulation continues
the temperature controller becomes the more accurate estimate of the Marshak wave
front. As the value for ηtarget becomes smaller, both controllers appear to be able to
maintain a constant average relative error in temperature.

By changing ηtarget by a factor of two, the two controllers have different responses
for the number of time steps that are simulated as seen in Table 5.3. The opacity
controller almost perfectly doubles the number of time steps required when the relative
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Figure 5.15: Average relative error in temperature vs. simulation time using opacity
and temperature TSC’s for Problem 8.

Table 5.3: ηtarget values and time steps taken for time step controllers for Problem 8

Opacity time step controller.
ηtarget time steps taken
0.4 255
0.2 511
0.1 1033
0.05 2085

Temperature time step controller.
ηtarget time steps taken
0.2 271
0.1 467
0.05 866
0.025 1681

change allowed is halved. However, the temperature controller time steps do not
follow a predictable pattern. This indicates that the user defined relative change
corresponds more directly with time steps required in the opacity controller than in
the temperature controller.

Looking how the different controllers evolve the time step in Fig. 5.16, we can
see how the two approaches differ. The opacity controller uses a larger number of
time steps (with a smaller size) at the beginning of the simulation time and a smaller
number of time steps (with larger size) at the end. It can be seen that at a time
just before 1, the Marshak wave passes from the 0.1/T 4 opacity model material to
the 10/T 2 opacity model material causing a pronounced shift in the time step size
selection. The change of material also changes the relative rate at which the material
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temperature changes and the opacity changes over a time step. This has the effect of
making the opacity controller more accurate at the beginning of the simulation time,
then often being overtaken by the temperature controller in accuracy at later time
steps. The DM controller used for this problem caused the time step to be rerun on
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Figure 5.16: Time step size vs. time using a relative change of 0.05 for opacity and
0.025 for temperature.

average about every 4.7 time steps. The number of reruns can be minimized as was
previously discussed by changing the D and M parameters.

Our next multi-slab problem is almost identical to Problem 8. The only difference
is that the materials are switched in the previous problem such that the material
located from 0 ≤ x ≤ 0.1 uses an opacity model of 10/T 2 while the material located
from 0.1 < x ≤ 0.3 uses an opacity model of 0.1/T 4. This material configuration will
be referred to as Problem 9. By switching the materials, the less temperature sensitive
material is now next to the source, changing the characteristics of the simulation, as
shown in Fig. 5.17.

Like before, the opacity controller has a strong relationship between the change
of time steps used in a simulation and the change of the relative change parameter
shown in Table 5.4. The temperature controller again does not have a linear relation-
ship between the relative change of temperature and the number of time steps used.
However, what has changed is the accuracy of each controller over the course of the
simulation time. Unlike previously, the opacity controller now takes fewer time steps
at the beginning of the simulation as the Marshak wave passes through the 10/T 2
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Figure 5.17: Average relative error in temperature vs. time in Problem 9.

material and more time steps near the end of the simulation as the Marshak wave
passes through the 0.1/T 4 material than the temperature controller.

Table 5.4: ηtarget values and time steps taken for time step controllers for Problem 9

Opacity time step controller.
ηtarget time steps taken
0.4 285
0.2 561
0.1 1135
0.05 2286

Temperature time step controller.
ηtarget time steps taken
0.2 273
0.1 454
0.05 826
0.025 1598

These differences mean that the opacity controller is less accurate at the beginning
of the simulation and improves during the course of the simulation compared to the
temperature controller. Effectively, the temperature controller or the opacity controller
can be shown to be more accurate for a given number of time steps in a given problem.
Neither controller will be best for every problem. However, the opacity controller
appears to directly constrain the truncation error in a problem as we would expect
from the truncation error analysis in Chapter 2. As noted earlier, it is better to
constrain the opacity since it is an input variable instead of the photon energy density
since there is no a prior knowledge of how quickly that dependent variable should
change.

124



5.6 Time Step Controller with Predictor-Corrector
Methods

The methods that have been proposed in this thesis can be combined in beneficial
ways that are not initially intuitive. When using a predictor-corrector with a time step
controller, the predictor step can be used to adjust the corrector step time step size.
Assuming that the opacity changes are linear over a single time step, if a violation
of the time step controller occurs in the predictor step a good approximation can be
used to determine the time step size for the corrector step. The corrector step is then
run using a new time step size determined by the predictor step and time adjusted
opacities or temperatures that correspond to the new end of time step values for the
predictor step.

Figure 5.18: Time step controller with predictor-corrector flow chart.

The corrector step then runs a single time step and then determines the maximum
change of temperature or opacity that occurred over the problem. This maximum
change is then used with the time step controller to determine the next time step
size that should be taken in the predictor step. In this particular instance, if the
time step controller is violated in the predictor or the corrector calculation, the time
step is not rerun. It is assumed that the predictor step will adequately identify the
appropriate time step size that should be used. If the time step size for the corrector
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step is reduced, the value of σn+1 or Tn+1 will be scaled linearly as

σ
′

n+1 =
σn+1 − σn

∆t
∆t
′
+ σn (5.13)

and
T
′

n+1 =
Tn+1 − Tn

∆t
∆t
′
+ Tn (5.14)

where ∆t
′ is the new time step size determined by the predictor step. The values of

σ
′
n+1 and T ′n+1 will be used as the results of a predictor step of time step size ∆t

′ as
shown previously in Chapter 4. The predictor step in the following problems will only
decrease the time step size and not increase it to be conservative. A flow chart of this
procedure can be seen in Fig. 5.18. This method will be referred to as a Time Step
Controller with Predictor-Corrector (TSCPC)

The CETDOPC and the WLTPC will be examined using the opacity time step con-
troller on the previously defined Problem 8 using an initial large time step ∆t = 0.005

to a time of τ = 1 with 100 million source particles. Figure 5.19 shows the two
predictor-correctors as their error develops over the simulation. It can be clearly seen
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Figure 5.19: Average relative in temperature error of the CETDOPC and the WLTPC
using the opacity time step controller on Problem 8.

that the average relative error plots of both methods decrease rapidly at the beginning
of the simulation. This is due to the fact that there are no reruns in the TSCPC
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method and the simulation is started with a very large initial time step. Without
reruns to correct the inaccurate transport, the linear interpolation of opacity is not an
accurate prediction of an appropriate time step size to take with these poor initial
conditions. However, very quickly a smaller time step size is settled on that brings the
error of the simulation down dramatically, and the TSCPC without reruns performs
well. Both TSCPC schemes achieve a low error without reruns but the time step
controller with the WLTPC yields a lower error result. This result is surprising since
there is not a single 1/T 3 dependency of the opacity in the entire problem.

Comparing the results of the WLTPC to the basic opacity time step controller, you
can see a marked improvement in Fig. 5.20. The time step controller with WLTPC is
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Figure 5.20: Average relative error in temperature of the CETDOPC and WLTPC
using the opacity time step controller on Problem 8.

has a low average relative error using 476 time steps compared to the opacity time step
controller using 2085 time steps. Even if the predictor-corrector took twice the amount
of time per time step as the basic opacity time step controller approach, the time step
controller with WLTPC would still be faster and more accurate for the majority of
simulation time. To compare all three of the previously mentioned approaches a table
is generated to compare the average of the summed average relative error for each
method at each % change of opacity for the controller shown in Table 5.5.

It is clear that both TSCPC’s yield a more accurate solution than the basic opacity
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Table 5.5: Characteristics of the opacity time step controller, the WLTPC and
CETDOPC with the opacity time step controller on Problem 8.

Average of the summed average relative error.
% Change\Method Opacity TSC WLTPC CETDOPC

0.4 0.01138 0.00264 0.00692
0.2 0.00554 0.00118 0.00309
0.1 0.00252 0.00080 0.00149
0.05 0.00108 0.00064 0.00082

Number of time steps used.
% Change\Method Opacity TSC WLTPC CETDOPC

0.4 255 203 222
0.2 511 476 490
0.1 1033 1017 1027
0.05 2085 2101 2108

Run time (wall time) for simulation in minutes.
% Change\Method Opacity TSC WLTPC CETDOPC

0.4 143.0 128.3 170.6
0.2 155.9 142.4 185.0
0.1 189.2 185.3 238.9
0.05 260.9 285.8 355.7

time step controller for a similar number of time steps over the development of the
entire problem. For this problem, the CETDOPC yields a more accurate solution
than the opacity TSC for a given ηtarget but at a significant computational cost. The
additional computational cost of the CETDOPC means that it is competitive with the
opacity TSC, but not a clear winner. The WLTPC with the opacity time step con-
troller on the other hand, is surprisingly accurate compared with the other approaches.
This result is surprising since there is not a γ/T 3 opacity model in Problem 8 which
was one of the fundamental assumptions in generating the WLTPC. Examining the
run times for the different approaches, the WLTPC is both more accurate and faster
than the other approaches until ηtarget = 0.05.

The accuracy of the WLTPC approach in these problems merits understanding.
One of the fundamental approximations made in the WLTPC is that the temperature
change over a sufficiently small time step is linear. Because of this assumption, the
Wollaber-Larsen temperature estimate will reduce in Eq. 3.6 to a simple linear average
of temperature as mentioned in Chapter 3. Therefore, we expect the WLTPC and the
Temperature Averaged Predictor-Corrector (TAPC) to have a similar performance for
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small time step sizes. A comparison of the two TSCPC can be seen in Fig. 5.21
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Figure 5.21: Average relative error in temperature of the WLTPC and TAPC using
the opacity time step controller on Problem 8.

As expected, for smaller time step sizes the WLTPC and TAPC methods approach
the same solution. This result implies that the assumption of the functional form of
the opacities is not the source of the accuracy improvements in the WLTPC. Noting
this distinction, the TAPC method could be a substitute for the WLTPC approach
for sufficiently small time step sizes.

Next, Problem 9 is examined with the WLTPC and the CETDOPC like Problem
8 to determine the effectiveness of each method. As before, the WLTPC appears more
accurate than the CETDOPC approach as shown in Fig. 5.22 while using a similar
number of time steps. The reduced average relative error of the WLTPC method
occurs despite there being no 1/T 3 dependency in Problem 9.
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Figure 5.22: Average relative error in temperature of the CETDOPC and WLTPC
using the opacity time step controller on Problem 9.
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Comparing the WLTPC with the opacity time step controller to the simple opacity
time step controller, it is clear in Fig. 5.23 that the WLTPC is much more accurate
over the development of the problem. The least accurate WLTPC with opacity TSC
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Figure 5.23: Average relative error in temperature of the CETDOPC and WLTPC
using the opacity time step controller on problem 9.

run is competitive with the second most accurate opacity TSC approach. The WLTPC
method yields an overall more accurate solution using 222 time steps (ηtarget = 0.4)
compared to the opacity TSC use of 1135 time steps (ηtarget = 0.1). This represents
a significant reduction in required time steps for a given accuracy. The numerical
comparison between the different methods can be seen in Table 5.6.

Like in Problem 8, both the WLTPC and the CETDOPC give more accurate
results for a similar number of time steps than the simple opacity TSC in Problem
9. The CETDOPC method is computationally competitive for a given accuracy with
the opacity TSC approach for ηtarget ≤ 0.1. Like in Problem 8, the WLTPC method
appears to be the most accurate solution for a given run time up to ηtarget = 0.05.
This dramatic improvement in accuracy over the simple opacity TSC can be seen
again when applying the TAPC as seen in Fig. 5.24. This again reinforces the notion
that the assumption of the opacity model is not the crucial assumption that makes
the WLTPC with opacity TSC more accurate than the CETDOPC with opacity TSC.
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Table 5.6: Characteristics of the opacity time step controller, WLTPC and CETDOPC
with the opacity time step controller on Problem 9.

Average of the summed average relative error.
% Change\Method Opacity TSC WLTPC CETDOPC

0.4 0.01302 0.00222 0.00407
0.2 0.00676 0.00094 0.00234
0.1 0.00332 0.00056 0.00160
0.05 0.00145 0.00041 0.00097

Number of time steps used.
% Change\Method Opacity TSC WLTPC CETDOPC

0.4 285 222 244
0.2 561 520 534
0.1 1135 1119 1017
0.05 2286 2300 2313

Run time (wall time) for simulation in minutes.
% Change\Method Opacity TSC WLTPC CETDOPC

0.4 144.2 127.3 172.4
0.2 175.6 170.7 217.4
0.1 242.8 255.8 353.2
0.05 377.0 441.4 540.0
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Figure 5.24: Average relative error in temperature of the WLTPC and TAPC using
the opacity time step controller on Problem 9.
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Chapter 6

Conclusions

In this thesis we have examined the Implicit Monte Carlo method in an attempt to
better understand the effects of the assumptions used. Concurrently, the Carter-Forest
method was also examined to compare and contrast the differences between these two
methods. While both methods have been in existence for over thirty years, there has
been little work detailing the sources of error in each approximation. The focus of this
thesis has been detailing the sources of error in the equations and how this knowledge
can be used to develop improved methods.

6.1 Chapter Review

In Chapter 2 we explored a 0D gray linear problem with both the IMC and CF
method. In this particular problem, the CF method gives an exact solution to the
linear coupled set of equations. This allowed us to examine the bias in the solution of
the IMC method related to problem parameters and the user selection of parameter α.
The results showed analytically that when α = 1, the IMC method would maintain
a cooler material temperature during a warming transient than would be physically
correct. In contrast, during a cooling transient with α = 1, the IMC method would
yield a warmer material temperature than is physically correct. As the time step
size ∆t is decreased, the IMC bias is reduced. However, when α = 0.5 the IMC bias
became an O(∆t2) source of global error instead of O(∆t). For stability reasons, α = 1

is the common user choice.
Next, a detailed truncation analysis explored the propagation of error related to

fixing the values of the opacity σ and parameter β as constant during a time step.
Both the IMC and CF method turned out to be O(∆t) error methods even though
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the CF method makes fewer approximations. The detailed truncation analysis also
demonstrated that the approximation of β as constant was not a leading source of error,
while the approximation of σ as constant was. Because of this, a predictor-corrector
method was introduced to improve the approximation of σ during a time step.

The analytical results of the predictor-corrector method showed that the Carter-
Forest method was an O(∆t2) method globally while the IMC method remained O(∆t)

for a nonlinear problem. The IMC method with α 6= 0.5 is only O(∆t) because the
IMC method has another leading order error term besides the opacity truncation.
This second leading order error is the IMC bias that was previously mentioned when
α 6= 0.5. These analytical results were confirmed numerically in Chapter 3.

In Chapter 3 we were able to demonstrate numerically the effects of the IMC bias
in simplified problems. The expected influence of the user selected parameter α on
the resulting temperature bias can be seen in different linear and nonlinear problems.
Furthermore, this bias is eliminated only when α = 0.5. These results verify the
analytical results that were produced in Chapter 2 with the residual error analysis.

Next, the predictor-corrector method was implemented numerically. The CF
method becomes an O(∆t2) method globally in the 0D Gray nonlinear problem using
a predictor-corrector scheme. However, the IMC method was shown to be an O(∆t)

accurate method even when the previously mentioned predictor-corrector was applied.
Applying a predictor-corrector with the value of α = 0.5, the IMC method becomes
O(∆t2) accurate. This result confirms that the leading error terms in the IMC solution
come from the estimation of the opacity and the bias introduced by assumption of the
functional form of Ur(t) in Eq. 2.66.

The order of accuracy for both the IMC and CF methods is confirmed using differ-
ent variations on the predictor-corrector scheme. A predictor-corrector that averages
opacity, averages temperature, or preserves the time integrated average opacity can be
used successfully to improve the order of error of the CF method (and IMC method if
α = 0.5). Therefore both the CF and IMC method can gain significant improvements
by using a predictor-corrector scheme. However, the IMC method may have unphysical
behavior when α 6= 1.

Chapter 4 introduces a spatial dependency into the Gray Thermal Radiative
Transfer (GTRT) equations; this requires spatial discretization. This discretization
adds another source of error into the solution of the equations, known as “photon
teleportation.” Photon teleportation occurs because of the difference between the
distribution of absorption locations and the emission locations within a cell. When the
difference of these two distributions becomes large, unphysical transport phenomenon
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can occur. Photon teleportation can change the amount of energy that leaks from
a cell, causing significant alteration of the Marhsak wave front location. Functional
Expansion Tallies (FET’s) are introduced to minimize the effect of photon teleporta-
tion. Using the Legendre Polynomial Maximum Entropy FET, significant reduction
in photon teleportation is observed over different types of problems.

Like the zero dimensional results, the one dimensional results also show the IMC
bias. In these spatially dependent problems, the IMC bias is usually most pronounced
at the wave fronts where the difference between cUr(t) and φ(t) is the largest. The
bias can significantly alter the wave front location and shape when a large time step
size is used. As the time step size is decreased, the bias in the IMC method is reduced
and the solution approaches the same solution as the CF method.

Predictor-corrector methods become more complicated with the addition of a
spatial dependence in the problem. Unlike in the zero dimensional results, a sim-
ple opacity estimation will yield poor results except for very small time step sizes.
While the predictor-corrector method using the Wollaber-Larsen temperature estimate
yields a more accurate result, it assumes a functional form of the opacity. A new
predictor-corrector method is therefore introduced called the Time Dependent Opacity
predictor-corrector (TDOPC).

The TDOPC uses the predictor step’s estimate of the opacity at time tn+1 and
then assumes a linear dependency from the beginning to the end of the time step as
σ(t) = (σn+1 − σn) t−tn

∆t
+ σn where tn ≤ t ≤ tn+1. In the corrector step, a particle is

born or taken from the time census at a given time t′ with an opacity σ(t
′
). Next,

the distance to next collision must be determined in an optically changing media.
A direct solution technique is employed to solve for the flight distance, requiring a
transcendental root solve for each particle move. While this technique is accurate, it
is computationally costly to employ. To simply this procedure, a Constant Emission
Time Dependent Opacity predictor-corrector (CETDOPC) was created.

The CETDOPC method still employs the time dependent opacity technique by
assuming a linear interpolation between the beginning and end of time step opacities,
however the opacity is kept constant between interactions. In other words, a particle
is tracked starting at time t′ with a constant opacity σ(t

′
). At the next interaction

at time t∗, the opacity is updated to σ(t∗) and this is treated as constant until the
next interaction. Since the CETDOPC method does not require a root solve for every
transport distance, it is much faster than the TDOPC method, yet it achieves a similar
accuracy.

However, all predictor-corrector methods can be computationally costly since the
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time step must be run twice. To reduce the required computation time, a Variable-
Weight Predictor-Corrector (VWPC) scheme is introduced. The VWPC uses a different
number of particles to simulate the predictor step than the number that is used in the
corrector step. Fewer particles with higher energy-weight are used in the predictor
step to get a rough estimate of the end of time step values. Then the original number
of particles at their normal weight are used in the corrector step. The result is that the
VWPC scheme drastically reduces the run time of every predictor-corrector scheme
while maintaining similar accuracy. For an IMC simulation, shown in Fig. 4.23a, with
a given accuracy of 0.008, the 100VWPC WLTPC run required 148 minutes while the
traditional IMC approach required 173 minutes. This time change represents a %14

reduction in required computation time for the same accuracy.
Chapter 5 introduces a new implementation of time step controllers in Radiative

Transfer. Traditionally, the relative change of temperature in the radiation or material
field has been used as a heuristic to determine the size of the next time step. In
practice, using the relative change of temperature in the radiation field as proposed
by Knoll and Rider (8; 18) does not work effectively in a Monte Carlo simulation due
to excessive noise (4). Furthermore, this heuristic is fundamentally a poor constraint
since a percent change in the temperature of the radiation field has no clear effect on
the change of material temperature or the error terms in the discrete equations. In a
non-homogeneous problem, the heat capacities of different materials will affect the
material temperature response to a given energy deposition.

By examining the truncation analysis that was developed in Chapter 2, we have
developed a time step controller that controls the change of opacity. Since the change
of opacity is a leading source of error in the radiative transfer solutions, controlling the
change of the opacity should directly control simulation error. Controlling the change
of opacity is also more intuitive since if the opacity has changed by eighty-percent,
say, over one time step, there can be little confidence that the radiation transport
simulation for that time step bears much resemblance to the actual problem. The
time step controller based on the change of opacity is correlated strongly with the
number of time steps required to conduct a simulation. For example, by making the
constraint smaller by a factor of two, the required time steps are roughly doubled for
a given simulation. In contrast, when examining the material temperature time step
controller, there was no linear correlation between the constraint and the resulting
number of time steps required.

The time step controller method was also combined with a predictor-corrector
scheme. By using our variable weight predictor-corrector, an end of time step value
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of the opacity can be estimated. Using this information, a new time step size can
be determined for the corrector step to control the relative change in the opacity or
material temperature. The value of the opacities or material temperatures is then
linearly interpolated to determine the new time step size for the corrector step. The
combined time step controller predictor-corrector scheme showed a great combination
of accuracy with a significant reduction in the number of time steps required to arrive
at a solution. The results of this chapter also indicated that the WLTPC and the
TAPC approaches were nearly indistinguishable at smaller time step sizes. This was
due to the common approximation between the two approaches that the temperature
would change linearly from the beginning and end of time step temperatures for
sufficiently small time step sizes.

The CF time step controller approach on Problem 8, shown in Table 5.5, had an
accuracy of 0.00252 for a run time of 189 minutes. Using a time step controller with a
variable weight predictor-corrector yielded an accuracy of 0.00264 for a run time of 128

minutes. Therefore the time step controller with variable weight predictor-corrector
scheme was %32 faster than the basic implementation of the opacity time step con-
troller. This is a significant reduction of computation time that is shown when using
the combined time step controller and variable weight predictor-corrector scheme over
a basic time step controller.

6.2 Future Work

The Legendre Polynomial Maximum Entropy (Legendre-ME) FET’s proved to be
a significant improvement over the current source tilting approach. However, the
exponential form of the FET does not match the actual concave down shape of the
Marshak wave in a nonlinear problem. Therefore, a higher order Legendre-ME FET
should be examined. By allowing for another constraint, the Legendre-ME FET would
have a functional form of

p(x) = α exp[βx+ γx2]. (6.1)

This new FET would allow for a shape that would better fit for the Marshak wave
front.

The truncation analysis in Chapter 2 indicated that the time dependent Fleck
factor proposed by Wollaber-Larsen could be an order ∆t2 method in 0D with a
predictor-corrector. It is quite possible that the proposed method could have all of the
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benefits of the CF method with the reduced computational cost of the IMC method.
For this reason, and the general familiarity of the community with the IMC approach,
a time dependent Fleck factor predictor-corrector warrants further examination.

To reduce the computational effort associated with the Time Dependent Opacity
predictor-corrector, opacity tables depending on time could be generated for each
material cell. While these tables would require additional memory and computation
time at the beginning of a time step, they could be referenced quickly afterwards to
determine flight distances. Of course, this procedure would probably only produce
computational savings for large numbers of particles.

A more realistic time step controller should also be considered. This thesis has
focused largely on the upper bounds of one constraint being used by the time step
controllers. However, we have largely avoided examination of time step size selection
which is a critical component of any time step controller. The crude time step selection
by the DM controller should be replaced to avoid the large and abrupt changes in
time step size selection. In practice, smoothly and slowly changing the time step
sizes is preferred to not induce oscillations in the solution (21). By including a more
realistic time step size selection, we will be able to test the effect of a realistic time
step controller with the improved constraint against the current approach.

Finally, we should relax the assumption of a mono-energetic one dimensional
universe.
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