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 One calm, summer morning just east of the Rockies, a small, boxy payload left 

my hands and hitched a ride skywards aboard a weather balloon.  By the time it landed 

back on terra firma several hours later, the balloonsat’s camera eye had climbed far 

above the rich browns and vibrant greens of the Great Plains, floated through wispy 

tendrils of white, sun-split clouds, and marveled at the sweep of Earth’s blue horizon 

against the inky blackness.  “Once you have tasted flight, you will forever walk the earth 

with your eyes turned skyward; for there you have been, and there you will always long 

to return,” Leonardo da Vinci wrote half a millennium ago.  Daydreaming about the 

images from the flight, I could not have agreed more. 

 Throughout history, space — with its allure of the mysterious unknown and vast 

potential — has stimulated human imaginations and inspired spectacular scientific and 

technical advancements: We have sought to compose the music of the spheres and have 

listened for signals from beyond; we have dreamed of touching the face of heaven and 

have touched down on other worlds.  Space prompts the human spirit to shed its 

terrestrial constraints, proposes prospects for alleviating resource and environmental 

depletion on Earth, and promotes the unifying awareness that despite our differences, all 

humans are members of the same species in our tiny blue cradle. 

 But space is a challenging place to traverse.  Not only can paths be steeply uphill 

against gravity, but the speed police are also always vigilant.  To enhance our ability to 
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achieve present goals and enable future aspirations in space, improved propulsive 

capabilities are both desirable and necessary. 

 This dissertation is a humble contribution to the field of space propulsion.  The 

following pages showcase a novel, nanotechnology-based electric propulsion system that 

may, in the near future, permit the use of the infinitesimal to explore the infinite.  

American rocketry pioneer Robert Goddard once remarked “the dream of yesterday is the 

hope of today and the reality of tomorrow.”  This work hopes to motivate the realization 

of such a dream, borne on summer winds towards the waiting stars. 

 

T. Liu 

March 5, 2010 
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Abstract 

 The Nanoparticle Field Extraction Thruster (NanoFET) is a micropropulsion 

technology that electrostatically charges and accelerates micro- and nano-particles to 

generate thrust.  Designed in a flat-panel configuration for scalability to different 

spacecraft power levels, NanoFET is anticipated to provide a large propulsive envelope 

capable of accomplishing a range of missions not currently possible with a single 

propulsion system.  In addition, NanoFET also has potential applications as a generalized 

nano-particle accelerator for terrestrial uses in the fields of materials processing, 

environmental remediation, and biomedicine. 

 Three key challenges facing NanoFET’s development are: 

1. How can specific charge be controlled to meet propulsive performance targets 

with reasonable operating potentials? 

2. How can inter-particle cohesive and particle-electrode adhesive forces be 

overcome to permit charged particle extraction? 

3. How can technical and integration risk be mitigated to advance NanoFET’s 

technology readiness level? 

 2-D, axisymmetric, finite-element simulations were conducted of particles 

undergoing electrostatic charging in diode configurations.  Maximum charging was 

obtained for extractor gate aspect ratios (i.e., gate orifice diameter to diode separation) 

less than unity and for emitter-to-emitter spacings greater than five particle diameters.  
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Thin-shell particles are proposed as an attractive means of maximizing specific charge by 

reducing the effective particle mass density. 

 Piezoelectrics were considered as an efficient means of applying inertial forces to 

aid with overcoming cohesive and adhesive forces, which are also mitigated by 

nanometer-scale surface coatings that increase the effective surface-to-surface separation.  

The piezoelectrics in NanoFET’s feed system are expected to set the characteristic time 

scale of thruster operations and provide for throttleable mass flow rates and precise 

impulse bits.  Together with throttling the operating voltage, NanoFET is a variable 

specific impulse thruster (e.g., 100-900 s) with expectations of high thrust-to-power  

(e.g., > 1 mN/W) and thrust densities (e.g., ~1 mN/cm2) when used at modest specific 

impulses. 

 Prototype micro-particle extractors are in the process of being tested for both dry 

and liquid-suspended propellants, the latter for terrestrial applications.  Modeling and 

experimental results are promising and recommend NanoFET for continued development. 

 


