RSD-TR-27-88

Robot Path Planning Using Geodesic and Straight
Line Segments with Voronoi Diagrams

by
Kang G. Shin
Robert D. Throne

Department of Electrical Engineering and Computer Science
Center for Research on Integrated Manufacturing
The University of Michigan
Ann Arbor, MI 48109

Decgmber 1986

CENTER FOR RESEARCH ON INTEGRATED MANUFACTURING

Robot Systems Division

COLLEGE OF ENGINEERING
THE UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109-1109

The work reported here is supported in part by the NSF under Grant No. ECS-8409938
and the US AFOSR under Contract No. F33615-85-C-5105. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the authors
do not necessarily reflect the view of the funding agencies.

t Henceforth the term “position” or “point” will be used to mean both position and
orientation.

RSD-TR-27-86

Abstract

We develop a method for determining a continuous path for a robot
manipulator’s tip from an initial position and orientation to a final point}
in a room filled with convex polygon obstacles. First, suitable intermediate
points are selected which, when connected with straight line segments, pro-
duce an obstacle avoiding path. These points are then linked with suitable
path types (straight lines or geodesics). These path segments are joined
with fifth order polynomials to generate all obstacle avoiding paths which
can be constructed from the path segments. Finally, the minimum traversal
time for each of the paths generated is computed to determine which of the
paths generated has the smallest traversal time.

Simulation results indicate that whenever paths made up of geodesic
segments pass through the same intermediate points as paths made up of
straight line segments, the geodesic paths can be traversed in less time.
However, a path composed of straight line segments may have the smallest
traversal time of those paths generated since the corresponding geodesic
path may intersect an obstacle.

Robot Path Planning

3.1

3.2

3.8

3.4.

RSD-TR-27-86

TABLE OF CONTENTS

GENERATION OF PATH SEGMENTS AND NEW

INTERMEDIATE POINTSocoovvemiviiieeeieeeeeeeeeeeeeiieeeeeeee e

CONNECTING THE PATH SEGMENTS INTO A

CONTINUOQUS PATHcccouvvvueevveeeimviiierereeeeirereeeeeeinaeenn.

4. SIMULATION RESULTScccoooomutreieeieiinieeeeeecreeeeeeeennneeeneee e

5. CONCLUSIONcoouviiiiiiiieeieesiniecssitree s ccee et cesve s s

6. REFERENCEcccooviiiiiiiiiiiiniiiitieneee st eeeeieeeeeseseneneeeseeeens

14

17
20
29

30

1 Introduction

Robots are increasingly being used in industrial applications because of
their high potential for increased productivity and improved quality. Ide-
ally. the robot should be able to avoid obstacles while not wasting valuable
time. We develop a method of determining a continuous path for a robot
manipulator’s tip from an initial position to a final position in a room filled
with convex polygon obstacles. Along this path the manipulator’s tip must
not intersect any of the obstacles and the traversal time should be as small
as possible.

Lin, Chang, and Luh [1 investigated the use of a suitable number of
prescribed or fixed knot points fitted with cubic splines to produce mini-
mum time paths. They introduced two additional knot points which could
be placed so as to produce the minimum time path through the prescribed
knot points. Rajan 2] also presented a procedure based on cubic splines
where all of the knot points were allowed to move to produce a minimum
time path. However, it is not clear whether the path produced is a local
or global minimum. In each of these papers obstacle avoidance can be
achieved if a sufficient number of knot points are chosen in advance so that
the cubic splines do not intersect any obstacles, though neither of them
allows for the generation of new knot points that would be required if the
cubic splines did intersect an obstacle. Also, in both papers, the path must
connect all of the knot points, and is not allowed to skip a knot point even
if a trajectory passing through each intermediate point requires a longer
traversal time.

Sahar and Hollerbach {3. presented a method for determining a mini-
mum time trajectory through the combined use of joint space tesselation,
dynamic time scaling, and graph searching. Though good results appear to
have been obtained with this method, even relatively coarse meshes require
substantial computation. _

Gilbert and Johnson 4] expressed obstacle avoidance in terms of dis-
tance functions, and used optimal control principles to derive differential
equations whose solutions are the geometric paths which minimize a pre-
scribed functional. This method also introduces computational and numer-
ical difficulties.

Robot Path Planning

RSD-TR-27-86

RSD-TR-27-86

If we know that a certain path type, e.g., a geodesic segment, is nearly
optimal. then connecting intermediate points with this path type may pro-
duce a path (nearly) locally optimal. As the distance between intermediate
points is increased, the path composed of these near optimal path segments
may perform better than a path composed of splines or Cartesian straight
line segments. For this reason, our paths are allowed to bypass interme-
diate points so long as the resulting paths do not intersect any obstacles.
However. because we do not know the exact route a geodesic path segment
will take between two intermediate points until we have constructed it, we
must systematically construct and check all of the possible path segments
connecting intermediate points to determine if they intersect any of the ob-
stacles. While the overall path we obtain may not be a global optimum even
if we know all of the locally optimal paths between intermediate points, we
will arrive at a good suboptimal path.

In this paper, we use a Voronoi diagram to determine intermediate
points initially so that a path consisting of straight line segments can
be found to connect the initial and final points. Once these intermedi-
ate points have been determined, the path segments joining these points
can be constructed by various techniques. In particular, we will join these
intermediate points with both straight line segments and geodesics. Carte-
sian straight line paths have been extensively studied in [5] and 6]. For
the collision-free case, Shin and McKay [7] introduced geodesics in inertia
space as an approximate minimum time path, with the geodesic path an
exact minimum time path under certain restrictive conditions. Because of
the method used to construct the intermediate points, and because it is
difficult a priori to determine the path of a geodesic curve segment, the
resulting path need not pass through all of the intermediate points so long
as it does not intersect any obstacles. However, since more than one path
from the initial position to the final position may be possible, we would
like to generate all possible obstacle avoiding paths using the previously
generated path segments and determine which of these paths requires the
smallest traversal time.

Once the intermediate points are generated and the path segments com-
puted. the path segments must be joined to form a single continuous path.
Various methods have been proposed for joining path segments. Kim and

Robot Path Planning

Shin [8) performed local optimization at each corner (intermediate) point
and utilize the dynamics of the manipulator to minimize the transition
times between path segments. Paul [5] assumed a fixed transition time
that is chosen to allow for velocity changes from minimum to maximum
and from maximum to minimum. Luh and Lin [9' proposed a nonlinear
programming method to choose the transition points along straight line
path segments.

Because we will determine the minimum time trajectory for each of our
paths using the method presented in 10!, which requires the path to be
continuous with continuous first and second derivatives, quintic polynomials
will be used as the joining functions. Specifically, we will join each curve
in joint space with a different quintic polynomial rather than joining the
path segments in Cartesian space with a single quintic polynomial. Since
geodesics are naturally functions of their arc length (s) in inertia space,
these quintic polynomials will also be parameterized by their arc length in
inertia space. Determining which of the sample points on two path segments
are to be joined with the quintic joining functions would be very inefficient
if all possible sample points on each segment were tested. Instead, we only
look at a fixed number of sample points on each segment. After all of
the joining paths between the chosen sample points are generated, we use
the quintic polynomials which have the minimum average absolute value of
curvature in inertia space. A geodesic in inertia space has zero curvature,
hence in some sense our joining paths will be like a geodesic.

Finally we determine the minimum time path among those generated.

The remainder of this paper is organized as follows. Section 2 states
the problem. Section 3 discusses the method used to solve the problem, as
well as the major algorithms used in the solution. Section 4 presents typical
simulation results for the first three joints of the Stanford manipulator, and
Section 5 contains the conclusions.

2 Problem Statement

Given the two Cartesian points describing the position of a manipulator’s
tip, denoted by Pintias and Pfina, in a room filled with convex polygon ob-
stacles, the problem is to determine a collision avoiding path which requires

Robot Path Planning

RSD-TR-27-86

as small a traversal time as possible. Specifically, we first want to generate
intermediate points P; such that for a given curve type (i.e., straight line
or geodesic) we can find at least one continuous path from Pinitiar t0 Pfinal-
For Pinitiats Pfinai, and each intermediate point P;, we then want to con-
struct all obstacle avoiding path segments that originate at that point and
end at each of the other points. All paths which can be constructed from
these path segments must be determined whether or not the resulting path
passes through all of the intermediate points. If more than one continuous
path is found from Pinitiat to Pfina, we want to determine which of these
paths will require the least traversal time.

Since there are N(N — 1)/2 possible path segments for N intermediate
points (including Pinitiat and Ppinai), the algorithm used must determine all
of the segments without storing unnecessary or duplicate information.

A simple analysis shows that for N intermediate points (including Pinpitial
and Pjina) there are 2¥-? possible paths! from Piniai t0 Pfinai. Due to
the rapid growth of the number of possible paths, it is very important to
generate and store only those segments which are needed.

3 Solution Method

The solution to the problem is partitioned into the following five steps:
e The selection of suitable intermediate points.

o Generating the path segments to connect each intermediate point
with all of the other intermediate points. Those segments that inter-
sect an obstacle are discarded. If any other intermediate points are
needed for collision avoidance, they are generated during this phase
of the solution procedure.

e Determining all possible obstacle avoiding paths from the initial po-
sition (Pnitiai) to the terminal position (Pfing) which are constructed
by joining the path segments which connect intermediate points.

! Assuming none of the paths intersected an obstacle. This is the maximum, and for most
cases far fewer obstacle avoiding paths are actually possible.

(@]

Robot Path Planning

RSD-TR-2

o Joining the path segments together to form a single continuous path
with continuous first and second derivatives.

o Determining the minimum time required to traverse each of the paths.

In the remainder of this section, the the first four of the above five
steps are described in detail. The details of determining the minimum time
trajectory for a suitably parameterized path are described in {10'.

3.1 Intermediate Point Selection

The initial intermediate points are determined by generating the Voronoi
diagram for the points that make up the corner points of the obstacles.
Dinlaing and Yap {11! studied the case of a circular disk moving among
polygon obstacles and proved that if there exists a collision-free path from
an initial position to a final position, then there exists a collision avoiding
path along the generalized Voronoi diagram?®. We do not use the generalized
Voronoi diagrams since we are only interested in selecting suitable interme-
diate points which can be connected with Cartesian straight line segments
and geodesic segments. However, if the obstacles are large compared to the
workspace, then more than just the corner points must be used in generat-
ing the Voronoi diagram. For example, we may have to use eight points for
each rectangular obstacle (the four corner points and the four midpoints
of each side) instead of using just the four corner points. The algorithm
used to generate the Voronoi diagram was similar to that presented in [12,,
which requires that at most three edges in the Voronoi diagram intersect
at a single point. This requires a slight modification of the position of one
end point of each of the rectangular obstacles used. since the local Voronoi
diagram of the four corner points is made up of the bisectors of the outside
edges (which all meet at the center of the rectangle). In some degenerate
cases, we may have to slightly alter more than one of an obstacle’s corner
points to avoid having more than three edges of the Voronoi diagram inter-
secting at a point due to the effects of the other obstacles. If this causes a

2This does not take into account the initial and final portions of the path, when the disk
must be moved to the Voronoi diagram.

Robot Path Planning

RSD-TR-27.8¢

problem a better implementation of the algorithm presented in {12}, which
removes this restriction, would be an alternative.

Depending on the manipulator structure and the general location of
the initial and final positions, it may be necessary to insert some pseudo
obstacles. These are different from those presented in [13: which were in-
troduced to prevent the boom of the Stanford arm from colliding with any
of the real obstacles. We use pseudo obstacles to force the Voronoi diagram
to generate paths which remain within the manipulator’s workspace. The
center obstacle in Figure 1 is such a pseudo obstacle, and it forces the paths
away from the manipulator (which is located at the center of the pseudo
obstacle).

An important restriction on the method used to generate the inter-
mediate points is that they all must lie in the same plane. Although we
could have used a three dimensional Voronoi diagram to choose intermedi-
ate points, we were only interested initially in essentially planar problems
and chose to use only the planar Voronoi diagram. However, though all
of the intermediate points are in the same plane, the joining paths need
not remain in the same plane. In fact, the geodesic path segments will not
remain in the plane of the intermediate points.

Having generated the Voronoi diagram, suitable intermediate points can
now be computed by determining the points where the edges that make up
the diagram intersect. These intermediate points, the initial point, and the
final point are arranged in the sequence that would occur if each point was
included in the final loop-free path. The initial point is labeled as point 0
and the final point is labeled as point N, assuming that there are N — 1
intermediate points found from the Voronoi diagram.

3.2 Generation of Path Segments and New Interme-
diate Points

Each point is associated with a data structure or record which contains in-
formation on whether the joint location for that point has been determined
(and if so what it is), pointers to the next and last records (corresponding
to the previous and last intermediate points, respectively), and a pointer
to the list of all of the obstacle avoiding path segments that end at that

Robot Path Planning

RSD-TR-2

RSD-TR-27-86

start

stop

Figure 1: A room containing convex polygon obstacles and a pseudo obstacle.

Robot Path Planning

8

point. The top row in Figure 2 corresponds to this linked list of records,
each record corresponding to an intermediate point. We then create two
pointers, P, and Pj,om, and use the following algorithm to generate all of
the path segments. (In what follows, to “increment” a pointer P means to
set P to the nezt pointer in the record that P currently points to.)

Generate All Path Segments

1. Set both P, and P;,,m to point to the record corresponding to the
initial point Pipitia (Or point number 0). This is the first record in
the linked chain of records associated with intermediate points and
will henceforth be called the initial record.

2. If P, is equal to NULL, then stop.

3. If P,, is equal to Pj,,m, then increment P, and set Pf;om to the initial
record and go to step 2.

4. Generate a path segment from the point in the record pointed to by
Ptrom to the point in the record pointed to by Pi,.

5. If the path segment intersects any obstacle or is outside of the manip-
ulators’ workspace, Py,,m points to the last record before the record
pointed to by P,,, and the record P, points to has no obstacle avoid-
ing path segments connecting its intermediate point with any other
intermediate point, then insert a new record with a new intermediate
point (using Generate New Intermediate Point) between the records
pointed to by P,, and Pj,,m. Set P, to point to this new record, and
Ptom to point to the initial record. Go to step 4.

6. If the path segment intersects any obstacles or is outside of the ma-
nipulator’s workspace, increment Pf,,m and go to step 3.

7. Create a record with fields identifying the origin (“from”) point and
terminal (“t0”) point and a pointer, crv, pointing to the path segment
generated in step 4. Link this record at the end of P,,’s curves list
(see Figure 2) and increment Pf,om. Go to step 3.

RSD-TR-

point 0
nezrt o
curves »

]

RSD-TR-27-86

point 1 poxnt4 point 2 point 3
nezt .__I_' nezt -——I_‘ nezt o——l—. next o
curvecs * | curves «— curves * L curves .
cro o—t» L cry o+ L crv o+ L crv o
from 0 from 0 from O from 0
tol to 4 to 2 to 3
nezt -—-—1 next o nezrt o nezt o
l— crv o crv o
from 1 from 1
to 4 to 3
nezt o nexrt o
crv —t

Figure 2: Data structure after Generate All Path Segments algorithm. Note
the inclusion of a new intermediate point (point 4 shown in the dashed box).

Robot Path Planning

10

This algorithm requires O(N"’) time, where N is the number of points
along the path (including Pinitiat and Prina)-

It should be noted that since many manipulators have more than one
set of joint positions for each point in Cartesian space, it is important to
assign a unique joint position to each intermediate point. This will enable
us to join all combinations of path segments that originate or terminate at
each intermediate point since each intermediate point will correspond to
only one point in joint space. (If all possible joint positions were used for
each intermediate point, and a path segment generated for all of the com-
binations, the number of possible paths would grow very rapidly.) In the
preceding algorithm, the joint position that corresponds to each interme-
diate point is the joint position corresponding to the first acceptable path
segment ending at that intermediate point®.

Because of the way in which the intermediate points are selected, there
must always exist a path composed of straight line segments connecting
the initial and final positions. If the manipulator strays too far off this
path (in following a geodesic) and intersects any obstacles, we will choose a
new intermediate point along one of the the straight line segments making
up this path. This is the basis for the method used for generating a new
intermediate point.

Generate New Intermediate Point

The geodesic path segments are parameterized by their arc length (s)
in inertia space and are sampled at equal intervals of s. Hence if #;nersect
is the index into the sampled path segment where the segment first in-
tersects an obstacle, and there are N...,. sample points in the segment.
then t = tintersect / Newrve Tepresents the fraction of the total segment length
covered before the collision. We select the next intermediate point at the
same fractional distance along the straight line connecting the intermediate
points. By selecting each new intermediate point this way, eventually an
intermediate point will be chosen so that the geodesic path will return to
a point along the line segment before intersecting any obstacle. The new

3Whenever a path segment is generated between two Cartesian points, the joint position
of the origin point will be known. If more than one joint position corresponds to the
terminal point, we choose the closest to the initial point in joint space.

11

Robot Path Planning

RSD-TR-¢

RSD-TR-27.g5

intermediate points are computed as:

Znew = Tfrom + (Ito - zfrom) * 1
Ynew = Ysrom + (yta - yfrom.) * t
Znew = Zfrom + (Zto - Zfrom) * t
where
(Zgroms Ygroms 2from) = the origin point of the line segment.
(Ztos Ytos 2t0) = the terminal point of the line segment,
(Znews Ynews Znew) = the new intermediate point location.

Note that since the fraction ¢t will always be less than one, each new
intermediate point (if more than one is needed) gets closer to the starting
point along the straight line formed by the original end points of the seg-
ment. Since a straight line between intermediate points will not intersect
any obstacles, and since the geodesic (or any other path type) will eventu-
ally shrink to an essentially straight line segment, we will eventually be able
to generate a collision-free path this way. In addition, any t € (0,1) will
work, even if it remains fixed. The new intermediate point is labeled with
a number p + 1, where the highest previous intermediate point label was p.
Figure 3 shows graphically the selection of a new intermediate point.

This method of intermediate point selection does not always lead to
the “best” choice of intermediate points, since more points than necessary
are sometimes created. However, since our final path is not required to
pass through all of the intermediate points, this effect will generally be
diminished.

At the completion of this stage all of the path segments have been
constructed and there exists at least one path from the initial point to the
final point. We now have a structure like that pictured in Figure 2. Note
that the structure in Figure 2 includes a new intermediate point (point 4)
which is shown in the dashed box. In addition, none of the path segments
in the figure intersect any of the obstacles. In many cases a number of
path segments would intersect one or more of the obstacles and hence the
pointers to them would be set to NULL. Now we must construct a tree
which will allow us to determine all of the paths from the initial point,

12

Robot Path Planning

RSD-TR-¢

N Points on_ this curve

i isindex of this pol
interest

...

intermediate intermediate
point j ~ point j+1

new intermediate point
located where 8/8' = b/b’

Figure 3: Graphical illustration of the selection of a new intermediate point.

13
Kobot Path Planning

Pinitial, to the final point, Pyina, which can be constructed from the path
segments.

3.3 Construction of Solution Path Tree

The data structure used in constructing all of the obstacle avoiding path
segments does not lend itself well to the determination of all the possible
paths from the initial to the final point. We would like a data structure
like that depicted in Figure 4, which contains records with the following
pointers.

e cruv: points to the path segment records generated by the Generate
All Path Segments algorithm. Since we do not want to waste time
copying segments already generated, we just use pointers to the paths
already generated.

e next path: points to the record corresponding to the next path seg-
ment which originates at the current segment’s endpoint. This next
segment is one of the possible segments that could be joined with the
current segment to produce a path from the initial to final positions.

e same origin: points to the record corresponding to the next path
segment with the same origin point as the current segment.

In order to generate this type of structure, the following recursive algo-
rithm is used.

Butld Path Tree

1. Create a record and set the pointer P, to point to this record. The
first path must originate at the point 0, which corresponds to the
manipulator’s starting position. Search through all path segments
until the first segment with point O as its starting point is found. Set
the pointer crv to point to this path segment.

2. Initialize pointers Op¢start and Ppistare tO the first record of the inter-
mediate point list.

14

Robot Path Planning

RSD-TR-27-86

next path ot

crv S I cry NS i
same OMIgin o same origin o]
nezt path o

[omite2.

from11t03

nert path ot

crv N S crv o
same ongin o same onigin o

RSD-TR-2

from0to3

cn . . .-‘
same ongin o

next path o

-

from2t03

|

-

L.‘ crv .« . han
em e]

nezt path el

cn R . H
same ongin o

next path o

Figure 4: Data structure after Build Path Tree algorithm.

15

Robot Path Planning

RSD‘TR.27.%

3. (The main procedure with three arguments, Pirees Optatarts Pptstart,
begins here.)

Determine the origin point of the path segment in the record pointed
to by Pi,.., and search the intermediate point list starting at the point
pointed to by Opiear: for the next path segment with the same origin.
Update Oypgtart to point to the record corresponding to this segment.
If no such segment is found, set Opeart tO NULL.

4. If Optetare is equal to NULL, set Pneworigin to NULL and go to step 3.
Otherwise, create a new record and set the crv of this record to point
to the segment found in step 3. Set Pneworigin tO point to this record
and set the nezxt origin of the record pointed to by Py to point to
this new record.

5. Determine the end point of the segment in the record pointed to
by Pir.., and search the intermediate point list starting at the point
pointed to by Ppsare for the next segment with its origin equal to
that end point. Update Ppsare to point to the record corresponding
to this segment. If no such segment is found, set Ppegtare to NULL.

6. If Pyyare is equal to NULL, set Pneupatn to NULL and go to step 7.
Otherwise, create a new record and set the crv of this record to the
segment found in step 5. Set Prewpath to point to this new record. Set
the nezt path of the record pointed to by Pi.. to point to this new
record.

7. If Preworigin is equal to NULL go to step 8, else go to step 3 with
arguments Pneworigt’ne Optsta.rts Optetart-

8. If Ppewpatn is equal to NULL then done, else go to step 3 with argu-
ments Pnewpaths Pptatart’ Pptatart-

This algorithm requires O(2") time, where N is the number of points
along the path (including Pinitiat and Prinal)-

At this point we have a structure like the example shown in Figure 4.
(No new intermediate points were used in this figure.)

16

Robot Path Planning

Note that we have determined em all possible loop-free paths. From
this structure, determining all of the path segments that make up a path
is straightforward. :

3.4 Connecting the Path Segments into a Continuous
Path

In order to determine the minimum traversal time along a path, the phase
plane algorithm presented by Shin and McKay [10] is used, since this
method determines the true minimum time trajectory for a parameterized
path utilizing the full robot dynamics. Since the phase plane method used
to derive the minimum time trajectory requires continuous first and second
derivatives, the parameterized path must have continuous first and second
derivatives. Fifth order polynomials (quintics) are used to join path seg-
ments (in joint space) so that the position, first, and second derivatives at
the sample points where the two path segments are joined match. Because
our paths are parameterized by arc length in inertia space, the quintics
should also be parameterized by their arc length in inertia space. How-
ever, due to the highly nonlinear form of the inertia matrix, this arc length
cannot be determined a priori. The following simple algorithm is used to
determine the quintic curves as a function of their arc length.

1. Make an initial estimate of the arc length in inertia space by assuming
the two sample points are to be joined by a joint interpolated path.
For each joint { we compute d' = gfny — Ginitiar- NOW break this
distance up into N — 1 equal parts, §' = d'/(N — 1), N > 1. At each
of these N — 1 points, estimate the arc length from the last point using
ds = 4/ Jijdg'dg’ and sum these to estimate the total arc length, Sma:.

2. Using this estimate of Spmaz, compute the quintics which have the
same position, first, and second derivatives as the (joint space) path
segments joined at s = 0 (the sample point along the first path) and
at 8 = Spmq: (the sample point along the second path).

3. Divide Sn.; into N — 1 equal parts, and compute a new estimate of

Sma.z .

17

Robot Path Planning

RSD-TR.

RSD-TR-27.86

4. If the change in estimates of Sm,. is within a specified tolerance then
stop; otherwise go to step 2 with the new estimate of Spa..

With the above method for joining two path segments to make a con-
tinuous path, the remaining problem is to determine which sample point
on the first path segment should be joined with which sample point on the
second segment. If the functions used to join intermediate points are nearly
optimal (locally), then when connecting path segments together, we would
like the original segments to retain their basic shapes* (straight lines or
geodesics in our case). Otherwise, we may be substituting quintic curves
for one that was nearly optimal. However, the resulting path should be
reasonably smooth with no sharp corners. Let us define the head curve
as the portion of the path which has already been generated, and the ta:l
curve as the path segment we wish to join to the head curve. Then the
following algorithm is used to determine the sample points used in joining
two path segments.

Choose Joining Points

Given:
Niast = the number of points in the last segment of the head curve
Niail = the number of points in the tail curve
a = the maximum percent of each curve’s points to be used

N minimum
Phea.d
Ptcil

the minimum number of points from each curve to use
the number of points in the head curve to try
the number of points in the tail curve to try.

1. Compute Start,..q as the initial index into the head curve to begin
the search, and set Stopn.q.q to the last index into the head curve. Set
Start,,; to 0 and compute Stopis;; . The calculations for Start,,.q
and Stop:.; are based on Niy, @, Nminimum, and N

4However, if one of the segments to be joined has fewer than a prescribed amount of
sample points, it may be essentially eliminated when a quintic curve is joined to the
beginning and end of the segment.

18

Robot Path Planning

2. Compute

Ohead = (Stophead - Starthead)/Phead
btat = (Stoptait — Startisi)/ Prair

3. Join all sample points in the head curve which are indexed by
thead = Starthead ~ kbheads k =0,...,(Phreas — 1),
with all sample points in the tail curve defined which are indexed by
tta = Startiei + Joait, J=1,..., P
with quintic curves.

4. For each joint i, compute t;, where t; is the average value (over all
of the sample points on the quintics) of the absolute value of the
curvature in inertia space. The curvature in inertia space is given as

14]
(1)
os ds 7k ds
where
q = the position of joint 1,
S = the arc length in inertia space,
pi = dqi/d's’ |
{,} = the Christoffel symbol of the second kind.

ot

The quintics which minimizes T = Y ;t;, while avoiding all of the
obstacles and remaining within the manipulators workspace, are used
to join the head and tail curves together.

The number of sample points in the joining quintic polynomials was
equal to the larger of a predefined minimum or the number of sample points
being replaced by the quintics. The quintic samples were equally spaced in
the parameter s.

19

Robot Path Phnnlng

RSD-TR.

If all of the quintic curves generated using the above procedure either
intersect an obstacle or are outside of the manipulator’s workspace, then
an alternative procedure must be used. Starting with the lowest index
tested in the head curve and the highest index tested in the tail curve,
generate the joining quintic curves. Determine the index in the joining
curves which corresponds to the first sample point intersecting an obstacle
(or going outside of the manipulator’s workspace). Determine which curve
this sample point corresponds to (either the head or the tail curve). If the
sample point corresponds to the head curve, then increment the index in
the head curve used to start the joining quintics, otherwise decrement the
index into the tail curve used. Now, go back and generate new joining
quintics using the new indices into the two curves. Eventually we must be
able to find two indices into the head and tail curve which correspond to
sample points which can be joined without the joining quintics intersecting
any obstacles, since the head and tail curves do not intersect any obstacles.

4 Simulation Results

A simulation of the proposed method for the first three joints of the Stanford
manipulator was written in C and run on a VAX® 11/780 under the UNIX®
4.2 operating system. The results of two of these simulations are presented
in Tables 1 - 4.

The common parameters for both simulations are Pi.oq = 8, Prit = 8,
and Nminimum = 20. The only difference between simulation runs was that
in the first a = 0.25 while in the second a« = 0.10. The parameter «
indicates the percentage of each path segment can be replaced with a quin-
tic polynomial when joining segments. Npinimum represents the minimum
number of sample points from each segment involved in the joining process
(unless the segment had fewer than Npinimum POiNts). Preaq and Pigq indi-
cate the number of sample points from the head curve and that from the
tail curve to be joined with quintic polynomials. With both Ph.q and Py
set to 8, there will be a total of 64 quintic joining paths to choose from. It

SVAX is a trademark of Digital Equipment Corporation.
6UNIX is a trademark of AT & T Bell Laboratories.

20

Robot Path Phnnlng

RSD-TR-27.86

should be noted that if 25 percent of each path segment is replaced with
a quintic polynomial, then at most 50 percent of the total path can be
composed of quintic polynomials.

For the room and obstacles presented in Figure 1, there are two possible
path directions. The first direction is above the pseudo obstacle using five
intermediate points (labeled with numbers in squares), while the second
direction is below the pseudo obstacle using three intermediate points (la-
beled with numbers in circles). The points used for the “top™ and “bottom”
paths are shown in Figure 5.

Table 1 contains the results for the “top” paths for a = 0.25, and is
sorted by increasing traversal time. The left column indicates the points
used (point O is the initial point and point 6 is the final point), the middle
column indicates the traversal time of path made up of straight line seg-
ments, and the final column represents the traversal time for paths made
up of geodesic segments. For this “top” path there were 16 paths made up
of straight line segments and 12 paths made up of geodesic segments. The
quickest times for all “top” paths were paths constructed of straight line
segments. Note, however, that in any case where both the straight line and
geodesic path segments connected the same intermediate points, the path
made up of geodesic segments could be traversed in less time than the path
made up of straight line segments.

Table 2 presents the results of the “bottom” paths for a = 0.25, in
increasing order of traversal time. Note that there is no overlap between
the geodesic and straight line paths. This is because an intermediate point,
point 53, was needed for the geodesic paths to get from the intermediate
point 2 to intermediate point 3, while no such intermediate point was needed
for the straight line segments. Nearly all of the “bottom” paths are quicker
than the fastest of the “top” paths.

Tables 3 and 4 present similar results of the simulation runs with a =
0.10. Table 3 presents the results for the “top” paths, while Table 4 presents
the results for the “bottom” paths. Note that in all cases the traversal times
have increased, and in a few cases the ordering has been changed slightly.

Tables 5 and 6 present additional results of the simulation for the the
“top” paths for both geodesic and straight line path segments (the order-
ing of the paths is in the order the simulation generated them, unlike the

21

Robot Path Planning

RSD-TR-2

RSD‘TR°27 ‘w

..

...............................

................................

...

stop

Figure 5: Points used for “top” and “bottom”™ paths.

Robot Path Planning

22

RSD-TI

Path Line Segments | Geodesic Segments

0—-3—6 2.588 —

{ 0-1—-3—6 2.655 —

! 0-52—-5—6 — ! 3.074
- 0—-1—-5—6 — | 3.078 |
0—-1—2—-5—6 ; — | 3.081 |
0—-1—3—-5—6 | 3.316 5 3.144 !
0—-1—-4—>5—6 3.652 J 3.252 ‘

. 0—1—23—-4—-5—6 3.461 5 3.272
| 0-3—-5—-6 3.279 — |
| 0—-1—-2—-3—6 3.290 — ;
0—-2—-3—6 3.304 — g
0+2—-4—5—6 3.624 3.339 ;
0—-1—>2—-4—5—6 3.565 3.354 ’

0-3—-4—-5—6 3.513 —

0-+2—-3-55—6 3.910 3.717

0-1—-22-53—-5-6 3.896 3.721

0—-2—-3—-24—5—6 4.047 - 3.857
0-1>52—-3—24-55—6 4.032 3.861 |
! 0—-4—-5—6 4.450 — |

Table 1: Simulation results for the “top” paths for a = 0.25.

Path Line Segments | Geodesic Segments ||

| 0-2—>5—4 ' — 2.163 |
0—-2—-5—-23—-4 —_ 2.198
Il 021—-22—>55—4 -— 2.200

' 0—-1—-2—>5—3—4 — 2.235 !
0—-1—3—4 2.460 | —
0-2—-3—-4 2.483 —
0—-3—4 2.580 —
0—-1—-2—-53-4 2.596 —

Table 2: Simulation results for the “bottom” paths for a = 0.25.

23

Robot Path Planning

Path Line Segments | Geodesic Segments |
0-3—6 2.702 — |
0—+-1—3—-6 2.727 —
0—-2—-5—6 — 3.190
0—1—-5—6 — : 3.206
0—>1—2—5—6 — 3.206
0—-1—-3—-5—6 3.420 ! 3.309
0—-2—-3—6 3.365 —
0-1—-2—-3—6 3.374 | —
0—-1—4—-5—6 3.742 3.407
0—-3—-5—6 3.409 ! — ‘
0—-1—3—-54—-5—6 3.576 . 3.422 N
0—-2—-4—-5—6 3.758 * 3.502 §
0—-1—22—-24—-5—6 3.719 3.502
0—-3—24—-55—6 3.610 — i
0—-2—-3-5—6 4.032 3.961 i
0-1—-2—-3—-5—6 4.041 3.957 '
0—-1—22—-3—-4—-5—6 4.194 4.072
0 >2—-3—-4—-5—6 4.184 | 4.075 "
0—>4—5—6 4230 — I

Table 3: Simulation results for the “top” paths for a = 0.10.

Path Line Segments | Geodesic Segments
0—-2—-5—4 — 2.217
0-1—-2—-5—4 — 2.276
0—-2—-5—-3—4 — 2.316
0—-1-2—-5—-3—-4 — 2.376
0—-1—-3—-4 2.563 —
0-2—-3—-4 2.587 —
0-3—-4 2.705 —
0—-1—-2-3—-4 2.733 —

Table 4: Simulation results for the “bottom” paths for a = 0.10.

Robot Path Planning

24

RSD-TR-27-86

ordering in Tables 1 - 4). In these tables we vary a from 0.10 to 0.60 while
the other parameters remain as they were in the previous simulations. As
a increases, more of the original curve segments are replaced by quintics.
These tables show a general trend of smaller traversal times as & increases,
though this is not always true. For example, as Table 6 shows, the mini-
mum traversal time for the path connecting the intermediate points 0,4.5,
and 6 made up of line segments initially increases with increasing a and
then decreases.

This behavior can be explained as follows. We are joining the joint posi-
tions with quintics in joint space (not in Cartesian space). In addition, only
a small number of possible joining points are tested, and we are choosing
the joining quintics which minimize the absolute value of curvature in iner-
tia space. Finally, straight line paths in Cartesian space do not correspond
to straight line paths in joint space, and as we connect the line segments to
form the Cartesian path the corresponding paths in joint space (one path
for each joint) can have many inflection points. As we allow more of the
paths to be quintics (a increasing), the quintics which minimize our cost
function may jump over some of the local inflections in the joint curves.
This behavior can cause the increase in traversal time.

The best improvement in traversal time between the paths composed
of geodesic segments and those composed of straight line segments occurs
when both paths connect the intermediate points 0,1,3,4,5 and 6. In this
case, when a = 0.60, the path of geodesic segments is approximately 15
percent faster. Figures 6 through 9 contain two dimensional projections’
of the paths generated by the simulation for the situation presented in
Figure 1. Figures 6 and 7 show the paths composed of straight line segments
and geodesic segments connecting intermediate points 0,1,3,4,5 and 6 for
a = 0.20, while Figures 8 and 9 show the same paths for a = 0.60.

These simulation results are typical of other cases we have examined.
In nearly all cases the matching quintics joined the two farthest sample
points allowed. In each case where there was a path made up of geodesic
segments and a path made up of line segments, the path composed of
geodesic segments could be traversed faster than the corresponding path
composed of line segments. In those cases where the fastest time was for

"In these figures we are looking down on the workspace and robot.

25

Robot Path Planning

RSD-TR-:

RSD-TR-27.36

Path a=01|a=02|a=03{a=04{a=05|a=06
0 =123 4—-5—6] 4072 3.930 3.794 3.666 3.537 3.436
0=<1—22—~3—5—6 3.957 3.797 3.643 3.490 3.341 3.245
0—+1—2—4¢—-5—6 3.502 3.402 3.308 3.222 3.139 3.077
0—+1—=2—-256—6 3.206 3.118 3.046 2.993 2.943 2.888
0—=+1—=23—4—-5—6 3.422 3.316 3.231 3.157 3.089 3.039
0—=1—=28—25—-6 3.309 3.193 3.096 3.002 2917 2.853
0—1—4—=5—6 3.407 3.295 3.213 3.148 3.092 3.042
0—+1—5—6 3.206 3.110 3.048 2.989 2.934 2.876
024223456 4.075 3.926 3.789 3.658 3.529 3.424
0—~2—=23—-5—6 3.961 3.793 3.638 J3.483 3.333 3.229
0—=2—4—5—6 3.502 3.393 3.288 3.198 3.120 3.062
0—=2—-5—6 3.190 3.101 3.046 2.993 2.942 2.890
Table 5: Simulation results for the “top® paths for geodesics.
Path a=01{a=02|a=03a=04|a=05|a=06|
0—=21—22—=23—24—-5—6| 419 4.078 3.983 4.038 3.980 3.912
0—+1—2—43—-5—6 4.041 3.940 3.852 3.767 3.691 3.583
0—+1—2—-23—-6 3.374 3.313 3.266 3.218 3.175 3.108
0-21—22—=24¢4—-5—6 3.719 3.608 3.621 3.594 3.560 3.534
0—-1—23—4—5—6 3.576 3.494 3.426 3.510 3.492 3.485
0—+]1—=23—=5—-6 3.420 3.345 3.279 3.230 3.218 3.207
0—+1—-3—6 2.727 2.673 2.623 2.588 2.573 2.573
0—-1—4—-5—-6 3.742 3.671 3.632 3.745 3.722 3.356
02223 —24—-+5—6 4.184 4.085 4.000 4.067 4.022 3.923
0—+2—43—-5—6 4.032 3.948 3.869 3.796 3.732 | 3.538
04236 3.365 3.321 3.283 3.247 3.216 3.030
0—-2—4—-5—6 3.758 3.664 3.581 3.656 3.622 3.595
0243 —24—-25—6 3.610 3.541 3.480 3.556 3.503 3.489
023 —~5—6 3.409 3.325 3.253 3.226 3.227 3.212
0—+3—6 2.702 2.616 2.575 2.574 2.571 2.564
00— 4—-5—6 4.230 4.370 4.511 4.771 4.165 | 3.578

Table 6: Simulation results for the “top® paths for line segments.

Robot Path Planning

26

|
i
|
1
i
i

|

Figure 6: Path composed of line segments connecting intermediate points
0,1,3,4.5, and 6. (a = 0.20, traversal time = 3.494 seconds.)

|

1
i
|
|
i
i
1
1
|

|
|
i
|

Figure 7: Path composed of geodesic segments connecting intermediate
points 0,1,3,5 and 6. (a = 0.20, traversal time = 3.316 seconds.)

27

Robot Path Planning

RSD-TR-2

|

|

Figure 8: Path composed of line segments connecting intermediate points
0,1,3.4.5, and 6. (o = 0.60, traversal time = 3.485 seconds.)

i

/
.
\

|
|

Figure 9: Path composed of geodesic segments connecting intermediate
points 0,1,3,4,5, and 6. (a = 0.60, traversal time = 3.039 seconds.)

Robot Path Planning

28

RSD-TR-27-86

a path composed of straight line segments, there was no path composed of
geodesic segments connecting the same intermediate points.

5 Conclusions

We have developed a method of determining a continuous path for a ma-
nipulator’s tip from an initial position to a final position in a room filled
with convex polygon obstacles. Suitable intermediate points were selected
initially using a Voronoi diagram made up of the corner points of the ob-
stacles. All possible obstacle avoiding path segments connecting each in-
termediate point with each of the other intermediate points using a given
path type were generated. All of the feasible paths constructed from these
path segments from the initial to final positions were then constructed.
Path segments were joined with the quintic polynomials which produced
the minimum average absolute value of the curvature in inertia space. The
minimum time required to traverse each trajectory generated was then com-
puted.

Computer simulations for the first three joints of the Stanford manipu-
lator indicated that in cases where both straight line and geodesic segments
passed through the same intermediate points, the path made from geodesics
could be traversed in less time. However, the path generated with the over-
all smallest traversal time could be composed of straight line segments only.

When joining two path segments, not all of the points along each seg-
ment are tested. However, our experience has been that in the majority of
cases the joining path is that which joins the sampled points as far apart as
we allow (as determined by the maximum allowed percentage of each path
segment discarded).

As seen earlier, our method does present advantages over previous meth-
ods. We do not force the path to connect all of the intermediate points if
the resulting path leads to a trajectory which can be traversed in less time.
In addition, in using a near minimum time path for each segment, our so-
lutions may offer a good suboptimal path. Our method also allows for the
generation of new intermediate points whenever they are required.

29

Robot Path Planning

RSD-TR-2;

RSD-TR-27-86

References

|1: C. S. Lin, P. R. Chang, and J. Y. S. Luh, “Formulation and opti-
mization of cubic polynomial joint trajectories for mechanical manip-
ulators,” IEEE Trans. Automat. Cont., vol. AC-28, no. 12, pp.
1066-1074, Dec. 1983.

V. T. Rajan, “Minimum time trajectory planning.” Proc. IEEE Con/.
Robotics and Automation , March 1985, pp. 759-764.

)

'3 G. Sahar and J. M. Hollerbach, “Planning of minimum-time trajecto-
ries for robot arms,” Proc. IEEE Conf. Robotics and Automation ,
March 1985, pp. 751-758.

4 E. G. Gilbert and D. W. Johnson, “Distance functions and their ap-
plication to robot path planning in the presence of obstacles,” IEEFE
Journal of Robotics and Automation, vol. Ra-1, no. 1, pp. 21-30,
March 1985.

(5! R. P. Paul, Robot Manipulators: Mathematics, Programming, and
Control. Cambridge, MA: M.I.T. Press, 1981.

(6, M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez, and
M. T. Mason, eds., Robot Motion: Planning and Control. Cambridge,
MA: M.I.T. Press, 1982.

7. K. G. Shin and N. D. McKay, “Selection of near-minimum time geo-
metric paths for robotic manipulators,” IEEE Trans. Automat. Contr.,
vol. AC-31, no. 6, pp. 501-511, June 1986.

'8 B. K. Kim and K. G. Shin, “Minimum-time path planning for robot
arms and their dynamics,” IEEFE Trans. Sys., Man, and Cybernetics,
vol. SMC-15, no. 2, March 1985.

[9; J. Y. S. Luh and C. S. Lin, “Optimum path planning for mechanical
Manipulators,” Jour. of Dynamic Sys., Measurement, and Control,
vol. 102, pp. 142-151, June 1981.

30

Robot Path Planning

RSD-TR-27

AR

[10] K. G. Shin and N. D. McKay, “Minimum-time control of a robotic
manipulator with geometric path constraints,” IEEE Trans. Automat.
Contr., vol. AC-30, no. 6, pp. 531-541, June 1985.

(111 C. O. Dilaing and C. K. Yap, “The Voronoi method for motion-
planning : 1. The Case of a disk,” Journal of Algorithms, vol. 6,
pp. 104-111, 1985.

(12! F. P. Preparata and M. I. Shamos, Computational Geometry : An
Introduction, New York: Springer-Verlag, 1985.

(131 J. Y. S. Luh and C. Campbell, “Minimum distance collision-free path
planning for industrial robots with a prismatic joint,” IEEE Trans.
Automat. Control, vol AC-29, no. 8, pp. 675-680, August 1984.

(14] J. L. Synge and A. Schild, Tensor Calculus, New York: Dover, 1978.

31

Kobot Path Plann ing

