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CHAPTER I

Introduction

1.1 Motivation

The unifying theme of this dissertation is supply chain and revenue management.

This area of research aims to enhance firms’ profitability by aligning supply with

demand through integration of marketing decisions (e.g., pricing) that influence the

demand process and strategic and operational decisions (e.g., capacity installations

and production planning) that govern the supply process.

Within this broad area, this dissertation focuses on stochastic optimal control

problems related to joint pricing, demand management, and production control de-

cisions for multiple products under capacity limitations and demand uncertainties.

Manufacturing and service firms across various industries face uncertainties in

their demand and supply processes. These uncertainties may result in demand losses

and excess inventories, lowering profitability and competitiveness in the long run.

Traditionally, firms countered variability in demand and supply by either building

extra capacity or keeping reserve inventories. In addition, over the last decade,

many industries have seen investments in reconfigurable and flexible manufacturing

systems that enable the production of multiple variations of products in the same

factory. This enables the product mix to be easily altered if demand for one product

1
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increases while demand for another decreases, hence providing a risk-pooling benefit.

Devising optimal capacity investment, production control and inventory management

strategies under uncertainty has been among the foremost interests of supply chain

and operations management research.

More recently however, revenue management has emerged as a powerful tool

to endogenize the demand process. Strategies such as dynamic pricing in which

prices respond to demand and availability of products, or customer segmentation

and prioritization in which different customer classes may be offered different service

availability levels have been widely used in service industries such as airline and

hotel management. With the advent of e-commerce and the ability to frequently

change and advertise prices, these strategies have also increasingly been adapted by

manufacturing enterprises in industries such as electronics and automotive.

Consequently, gaining insight into optimal production control decisions within a

multiple product setting where firms also influence demand constitutes an interesting

research question and is the main motivation for this dissertation. The problems

addressed in this thesis were motivated by actual business concerns and apply to

a wide array of industry practices. Through a rigorous and theoretical analysis

of each research question set forth in the subsequent chapters, the focal point has

been providing managers significant insights and implementable policies throughout

their dynamic decision making processes regarding production, pricing and demand

prioritization.

1.2 Research Objectives and Methodologies

Manufacturing firms often produce multiple variations of products that are sub-

stitutable from a customer’s perspective. For example, an automotive manufacturer
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may produce several types of vehicles of the same model with varying engine dis-

placements. In such a setting, the relative price of each product is a key factor that

determines the consumer demand for a specific product.

A manufacturer that employs flexible resources to produce multiple products and

that implements a dynamic pricing strategy thus has the following choices to respond

to a change in demand. It may either individually increase or decrease the prices

of items to stimulate, restrict, or shift demand from one item to another, it may

assign more of the flexible capacity to a product that faces shortages, or it may use

a combination of the two policies. To prevent impairing consumers’ perception of

product valuations in the long run, an important consideration for the manufacturer

is to maintain a reasonable price gap among the different models.

How a firm under this setting should manage its joint pricing and production

policies using flexibility, how the availability of a flexible resource influences the firm’s

pricing strategy, and the circumstances under which dynamic pricing contributes to

profitability more than capacity flexibility (and vice versa) are among the main

research questions addressed in Chapter 2.

Next, we consider a business setting that consists of multiple selling channels for

a product for different purposes and at different prices. For example, in addition to

assembling end products, a firm may also sell some intermediate products separately

in order to sustain an after-sales service operation or to supply another firm through

a component sharing agreement. If a firm operating within this setting has sufficient

inventories of a certain product, it may choose to sell the item through a low revenue

and/or low priority channel. Besides bringing in revenues, this sale will also reduce

inventory levels and generate additional cost savings. However, when the inventories

of a specific item are low, the firm faces a tradeoff between whether to sell the item
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through the secondary channel or reserve it for assembly purposes that could bring

in a higher revenue. Resolving this tradeoff is a difficult task when the final product

requires coordination of availabilities of other items and when both the demand and

production/assembly processes exhibit uncertainties.

In such a setting, determining efficient production control and demand prioritiza-

tion decisions may contribute significantly to profitability. Among the decisions the

firm faces at any point in time are whether to accept or reject individual demands

for intermediate products, the production quantities for each product and, deter-

mining whether an intermediate product is more valuable individually or as part of

an assembled end product. These questions are the main motivating factors for the

problem studied in Chapter 3.

The final consideration of this dissertation corresponds to the make-to-order and

mass customization paradigm. Business models such as make-to-stock, which may

usually be preferred if the number of products offered is limited, lead to very sig-

nificant inventory costs for a high variety of end products especially under both

production and demand uncertainties. On the other hand, a make-to-order system

keeps inventory only at the component level and products are assembled after a

customer order is received.

As many firms increasingly implement a make-to-order strategy, the challenges

faced by firms in this setting to effectively coordinate the production of components,

allocate assembly line capacity shared across many different products, and set de-

mand admission decisions for products that bring in diverse revenues constitute the

research questions investigated in Chapter 4.

Besides the common theme of jointly determining production control and demand

management strategies under a variety of problem settings, the analysis in each subse-
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quent chapter of this dissertation also share several elements of the following research

objectives and outcomes. These are: (a) the modeling and formulation of a multiple

period optimization problem, (b) characterization of optimal policy structures, (c)

investigating the sensitivity of the optimal policy to various problem parameters, (d)

providing managerial insights, (e) performing numerical studies, and (f) development

of heuristic solution approaches and algorithms to facilitate implementations in large

scale and practical problems.

Characterization of the optimal policy structure for each of the problems studied

in this thesis is especially pivotal. The structural properties enable us to gain man-

agerial insights on the nature of the optimal actions. They also facilitate sensitivity

analysis, furthering our understanding of how various problem parameters influence

the optimal decisions. Moreover, knowing the structure of the optimal policies allows

us to perform efficient computations to determine the optimal decisions for a partic-

ular problem instance. Finally, the structural properties also enable the construction

of algorithms that search among only specific types of decision rules.

Due to the highly interdisciplinary nature of this research, the theoretical analysis

within this dissertation draws from many tools and methodologies from disciplines

such as engineering, operations research, applied mathematics, statistics, and eco-

nomics. Specifically, the formulation and analysis of the problems set forth in the fol-

lowing chapters apply methodologies related to convex optimization, optimal control

theory, stochastic dynamic programming, Markov decision processes, and queueing

theory.
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1.3 Organization of the Dissertation

The dissertation is presented in a multiple manuscript format. The results in

Chapters 2, 3, and 4 have appeared as individual research papers [10, 11, 13]. The

organization of the dissertation is as follows.

Chapter 2 considers a firm that utilizes both dynamic pricing and capacity flex-

ibility to manage the demand and supply for multiple products. Specifically, the

setting consists of a firm that employs a capacity portfolio of product-dedicated

and flexible resources and produces two substitutable products for which it sets the

prices dynamically. The structure of the optimal production and pricing policies are

characterized. In addition, the sensitivity of the optimal policy to various problem

parameters (e.g., production costs, capacity levels and the demand model) is inves-

tigated. Further, several numerical studies are presented to visualize the benefits of

the joint strategy as well as the circumstances under which each strategy is most

beneficial.

Chapter 3 studies a manufacturing firm that has a two-stage operation where sev-

eral intermediate products are produced in the first stage which are then assembled

into an end-product through a second stage assembly operation. The manufacturer

experiences demands for both the end-product and any of the intermediate items. We

provide structural results regarding the optimal demand admission, production and

assembly decisions. In addition, we investigate the sensitivity of the optimal policy

to product prices. Further, the model is also extended to take into account multiple

customer classes based on their willingness to pay and to a more general revenue

collecting scheme where only an upfront partial payment for an item is received if a

customer demand is accepted for future delivery with the remaining revenue received
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upon delivery. Finally, an effective heuristic policy is proposed.

Chapter 4 also examines a two-stage make-to-order production system where

products are assembled only after an order is received. In this study, we allow

customers to choose among several versions of the same product to be assembled

rather than a single end-product. The structure of the optimal policies regarding

the firm’s decisions on how many components of each type to produce and how to

set demand admission and rejection rules to prioritize orders for various products

that compete for a shared capacity is discussed. In addition, a heuristic algorithm is

devised that is robust with respect to the number of product alternatives offered.

Finally, Chapter 5 concludes the thesis by summarizing major contributions and

presenting future research directions.



CHAPTER II

Managing Demand and Supply for Multiple Products
through Dynamic Pricing and Capacity Flexibility

2.1 Overview

Firms that offer multiple products are often susceptible to periods of inventory

mismatches where one product may face shortages while the other has excess in-

ventories. This chapter studies a joint mechanism of dynamic pricing and capacity

flexibility to alleviate the level of such inventory disparities. The setting consists of a

firm producing two products with correlated demands utilizing capacitated product

dedicated and flexible resources. The first objective is to characterize the structure

of the optimal production and pricing decisions followed by an exploration on how

changes in various problem parameters affect this optimal policy structure.

The results in this chapter show that the availability of a flexible resource helps

maintain stable price differences across items over time even though the price of

each item may fluctuate over time. This result has favorable ramifications from a

marketing standpoint as it suggests that even when a firm applies a dynamic pricing

strategy, it may still establish consistent price positioning among multiple products

if it can employ a flexible replenishment resource.

In addition, the economic benefits of a joint strategy is compared to applying each

tool individually. The results indicate that dynamic pricing and capacity flexibility

8
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can be viewed as substitute, but not fully interchangeable approaches and that the

former is a more powerful tool if demands are positively correlated while the latter

provides much of the benefits when demands are negatively correlated.

2.2 Introduction

Virtually all manufacturing and service industries are susceptible to periods of

supply and demand mismatches. Due to capacity limitations and demand uncertain-

ties, firms producing multiple products may frequently encounter instances where one

of their products faces shortages while the other has excess inventories. In order to

alleviate the level of such inventory mismatches, firms may utilize several tools to

either alter supply or demand. Our focus in this paper will be a joint analysis of two

of these mechanisms, namely, dynamic pricing and capacity flexibility.

In the last decade, firms in many industries have invested in flexible manufac-

turing systems that enable the production of multiple variations of products in the

same factory. This enables the firm to easily alter its product mix if demand for

one product increases while demand for another decreases. However, firms can also

dynamically decrease or increase prices in response to demand fluctuations. For ex-

ample, many LCD manufacturers make multiple sizes of LCDs in the same factory.

The facilities are flexible so the firm can alter its mix fairly easily and demand is

subject to tremendous variability.

During the “great recession” of 2009, demand for larger sized (42 inches and

above) LCD TVs have slowed down in the U.S. as consumers trimmed their budgets

and preferred smaller sized and lower priced models, according to the market research

firm DisplaySearch. Thus an LCD TV manufacturer that produces multiple models

of different sizes has the following choices to respond to this change in demand: 1)
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It can decrease the price of larger sized models to stimulate more demand, 2) it

can switch more of their production to smaller sized models (e.g., 32, 37 and 40

inch) or a combination of the two policies. Further, DisplaySearch estimates that

the increased demand for smaller sized TVs as a result of the economic downturn is

temporary and as the world emerges from the recession, demand for larger sizes will

again outpace the smaller size TVs. Therefore, an important consideration is that the

LCD TV manufacturers would like to maintain a reasonable price difference between

the different size models (e.g., it may not be a good strategy to drastically reduce the

price of 46 inch TVs below those of 37 inch TVs to respond to short term demand

fluctuations and inventory excess as this will influence customers’ perceptions of

product valuations in the long run). This motivates the problem addressed in this

chapter: How should a firm manage its simultaneous production and pricing policies

for multiple products using flexibility?

Dynamic pricing in which prices respond to demand and availability of prod-

ucts has long been used in airline management. More recently, with the advent

of e-commerce and the ability to frequently change and advertise prices, dynamic

pricing has also been increasingly used in many other industries such as electronics

and automobiles. As discussed by Biller et al in [6], several companies in various

industries, notably Dell Computer, implement a Direct-to-Customer model in which

dynamic pricing is used based on inventory levels and competition. As another exam-

ple from the automotive industry, Copeland et al [18] provide empirical observations

on whether vehicle prices are correlated with inventory fluctuations and they con-

clude that a significant negative relationship exists between inventories and prices.

Through price discounts or price surcharges that may stimulate or reduce the overall

demand or shift demand from one item to another, dynamic pricing may enable re-
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ductions in both high inventories and long customer backlogs. As a result, dynamic

pricing may help firms to achieve higher profits. According to a recent study, if

managed well, dynamic pricing can improve revenues and profits by up to 8% and

25%, respectively [49].

On the supply side, flexible manufacturing systems may also be utilized to align

supply with demand. By shifting additional resources to a product with deficient

inventory, flexible resources enable reductions in costs associated with production

delays and customer backlogs. Goyal et al [28] analyze empirically how flexibility

is utilized in the automotive industry where they consider flexibility as the abil-

ity of the general assembly line to manufacture different car platforms. Their data

indicate that the share of flexible capacity is increasing over time and constituted

approximately 40% and 30% of the overall capacity portfolio for GM and Ford, re-

spectively in 2004. They also find that flexibility deployment is positively associated

with demand uncertainty and negatively associated with demand correlation among

different models.

Several interesting questions arise when dynamic pricing and capacity flexibility

are considered simultaneously. First, we are interested in answering (i) how should

the firm decide on the price charged for each item, (ii) how much of each product

should the firm produce and (iii) how should the flexible resource be allocated among

products in a given period. Hence, the first goal in this study is to characterize

the optimal dynamic pricing and replenishment policy for multiple products over

multiple periods in the presence of capacity limitations and the availability of a

flexible resource. Second, we are interested in understanding the influence of the

availability of a flexible resource on the firm’s pricing decision. That is, we would like

to compare the optimal pricing policy of a firm which may utilize flexible resources
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to that of a firm which employs only product dedicated resources. Third, we aim to

identify the economic benefits obtained by applying each tool jointly and separately

and understand (i) whether dynamic pricing and capacity flexibility are substitute

approaches, i.e. if the economic benefits obtained by one tool diminishes with the

utilization of the other, (ii) whether applying one tool dominates the other, and (iii)

the circumstances under which dynamic pricing may contribute to profitability more

than capacity flexibility, and vice versa.

The first contribution of this chapter is therefore providing a full characterization

of joint optimal production and pricing decisions for two substitutable products with

limited production capacities in the form of product dedicated and flexible resources.

Assuming a linear additive stochastic demand model that is commonly used in the

literature, this study shows that the optimal production policy can be characterized

by modified base-stock levels that exhibit distinct forms across two broad regions

of the state-space. To assist in the representation of the optimal policy, the initial

inventory level of a product is classified as overstocked if the item requires no further

replenishment, as moderately understocked if the available capacity is adequate to

bring the inventory to a desired level, and as critically understocked if capacity is

restrictive to reach the desired inventory level. The analysis shows that when at most

one item is critically understocked, the modified base-stock level for each product is

described by a decreasing function of the inventory level of the other item. However,

when both items are critically understocked, it is shown that the modified base-stock

level for a product is characterized by an increasing function of the inventory position

of both products.

Regarding the optimal pricing policy, the results indicate that a list price is

charged for an item if it is moderately understocked. If an item is critically un-
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derstocked, then a price markup that depends on both inventory levels is applied.

When an item is overstocked, a price discount that depends on both inventory levels

is given. Furthermore, the analysis reveals that when inventory levels for both items

are critically understocked and when the flexible capacity is simultaneously shared

between products, the existence of the flexible resource leads to an optimal pricing

scheme that maintains a constant price difference between products. At such in-

stances, dynamic pricing only adjusts the overall level of demand for both products

but does not attempt to shift demand from one product to another while mismatches

between the desired and actual inventory level of products is restored solely by the

availability of flexible capacity.

Hence, the second major finding in this chapter is that the availability of a flexible

resource helps maintain stable price differences across items over time even though

the price of each item may fluctuate over time. This result has favorable ramifications

from a marketing standpoint as it suggests that even when a firm applies a dynamic

pricing strategy, it may still establish consistent price positioning among multiple

products if it can employ a flexible replenishment resource.

On the economic benefits of implementing dynamic pricing and capacity flexibility

individually or simultaneously, this study shows that the two mechanisms may be

viewed as substitute, but not fully interchangeable approaches. Through numerical

examples, it is demonstrated that dynamic pricing is a more effective tool when both

items are either under- or over-stocked. Such instances may be observed frequently

when demand uncertainties for the products are positively correlated. On the other

hand, the results indicate flexible capacity to be the more effective tool when there

is a negative correlation between the demand uncertainties which yields to instances

with inventory mismatches where one item is well stocked and the other having
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limited inventories.

The remainder of this chapter is organized as follows. In Section 2.3, the related

literature is reviewed. The model framework and the problem formulation is provided

in Section 2.4. In Section 2.5, the structure of the optimal pricing and production

policies is characterized while in Section 2.6 the sensitivity properties of the optimal

policy with respect to various demand, cost, and capacity parameters are analytically

investigated. Section 2.7, numerical studies are performed to evaluate the benefits

of flexibility and compare the performances of joint strategies to applying each tool

individually. Section 2.8 summarizes the conclusions and main results. Finally, 2.9

provides the proofs of all results.

2.3 Literature Review

There exists a vast literature on dynamic pricing. Due to the positioning of the

research question addressed in this chapter, only those studying joint pricing and

replenishment decisions are referenced. Extensive reviews on the interplay of pricing

and production decisions have been provided by Elmaghraby and Keskinocak [21],

Bitran and Caldentey [8], and Chan et. al. [14].

Single product settings have been the focus of much of the earlier work in this

area. Whitin [56] is among the first to consider joint pricing and inventory control

for single period problems under both deterministic and stochastic demand models.

For a finite horizon, periodic review model, Federgruen and Heching [23] show that

the optimal policy is of a base-stock, list-price type. When it is optimal to order, the

inventory is brought to a base-stock level and a list-price is charged. For inventory

levels where no ordering takes place, the optimal policy assigns a discounted price.

In a subsequent work, Li and Zheng [39] extend the setting studied by Federgruen
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and Heching to include yield uncertainty for replenishments. Chen and Simchi-Levi

[15] further extend the results of Federgruen and Heching to include fixed ordering

costs and show that a stationary (s,S,p) policy is optimal for both the discounted and

average profit models with general demand functions. In such a policy, the period

inventory is managed based on the classical (s,S ) type policy, and price is determined

based on the inventory position at the beginning of each period.

Recently, settings consisting of multiple substitutable products have received

more attention. Aydin and Porteus [3] study a single period inventory and pric-

ing problem for an assortment consisting of multiple products. They investigate

various demand models and show that a price vector accompanied by corresponding

inventory stocking levels constitute the unique solution to the profit maximization

problem although the profit function may not necessarily be quasi-concave in product

prices. Song and Xue [52] extend the setting studied by Aydin and Porteus to mul-

tiple periods and characterize the optimal policy structure and develop algorithms.

Zhu and Thonemann [58] study a periodic review, infinite capacity, joint produc-

tion and pricing problem with two substitutable products assuming a linear additive

demand model. They show that production for each item follows a base stock policy

which is nonincreasing in the inventory position of the other item. They also show

that the optimal pricing decisions do not necessarily exhibit monotonicites with re-

spect to inventory positions except for settings where the demand process for both

products are influenced by identical cross-price elasticities. They find that a list price

is optimal whenever an order is placed for a product, regardless of the inventory posi-

tion of the other product and a discount is given for any product that is not ordered.

Ye [57] extends their results to an assortment of more than two products and shows

that under a similar linear additive demand model and identical cross-price elas-



16

ticities, a base-stock, list-price policy extends to an arbitrary number of products.

Both of these papers assume infinite production capacity. If production capacity is

limited, charging list prices for an item whenever an order is placed for that item is

no longer optimal. Intuitively, one would expect to charge a higher price when the

desired production quantity is restricted by a limited capacity. In this chapter, it is

show that this expectation is indeed true. Consequently, as opposed to the results

for the infinite capacity setting, whenever an order is placed for a product, its price

is no longer independent of the inventory position of the other item.

On the flexible capacity side, a major research area has been determining the

optimal portfolio of flexible and dedicated capacities under demand uncertainty. We

refer the reader to the pioneering works by Fine and Freund [24] and Van Mieghem

[42] for the analysis of optimal capacity investments as well as the more recent works

[44, 12, 35] and the references therein for extensions to discrete capacity choices.

Rather than the optimal investment problem, the setting studied in this chapter

considers the optimal allocation problem. In one of the earliest works, Evans [22]

studies a periodic review problem with two products produced by a single shared

resource and characterizes the optimal allocation policy for the flexible resource.

DeCroix and Arreola-Risa [19] study extensions to multiple products. For an infinite

horizon problem with homogenous products where all products have identical cost

parameters and resource requirements, they derive structural results regarding the

optimal allocation of the flexible capacity. Besides these periodic review models,

continuous time formulations and corresponding results may also be found in works

such as the ones by Glasserman [27] and Ha [29]. However, these papers on flexible

capacity allocation treat the demand process as exogenous whereas our focus is to

also consider dynamic pricing that influences the demand for each item.
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There has also been prior interest in combining these two streams of research.

Chod and Rudi [16] study the effects of resource flexibility and price-setting in a

single period model. In their model, the firm first decides on the capacity invest-

ments prior to demand realizations. After product demands are realized, capacity

allocations and product pricing decisions are given. Hence the major differences in

the setting discusses in this chapter are that 1) here we consider a multiple period

model requiring price selections and production decisions every period whereas they

consider a single period model and 2) they assume that allocation decisions can be

made after demand is realized which implicitly means zero lead times, whereas in

this study, the assumption is that the allocation decisions are made prior to demand

realization.

2.4 Problem Formulation

Consider a firm that produces two products where prices and replenishment quan-

tities for both items are dynamically set at the beginning of each period over a finite

planning horizon of length T . Let xt
i, yt

i , and dt
i denote the initial inventory position

at the beginning of period t, the produce-up-to-level in period t, and the demand

in period t for product i, i = {1, 2}, respectively. The sequence of events is given

in Figure 2.1. At the beginning of period t, the manufacturer reviews the current

inventory positions (xt
1, x

t
2) ∈ #2 and decides on (i) the optimal order up to levels

(yt
1, y

t
2) and (ii) the prices, (pt

1, p
t
2) to charge during the period.

The demands for both items are assumed to be correlated by the following linear

additive demand model which has been prevalent in related literature.

dt
1(p

t
1, p

t
2, ε

t
1) = bt

1 − at
11p

t
1 − at

12p
t
2 + εt

1

dt
2(p

t
1, p

t
2, ε

t
2) = bt

2 − at
21p

t
1 − at

22p
t
2 + εt

2

(2.1)
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1. Give ordering
    decisions (y1

t,y2
t)

(bounded by capacity)

2. Set prices (p1
t,p2

t)

Period t
begins

Review
inventory
(x1

t,x2
t)

Demand realizations

Collect 
revenue

Incur costs: 
holding,
shortage

Period t-1
begins

d1
t(p1

t,p2
t)

d2
t(p1

t,p2
t)

Figure 2.1: Sequence of events

In (2.1), bi denotes the demand intercept whereas at
ii and at

ij for i, j = {1, 2} and

i %= j refer to the individual and cross-price elasticities for product type-i. We

let εt
1 and εt

2 refer to independent random variables having continuous probability

distributions with mean zero and nonnegative support on the product demands. For

future reference, the mean demand for product type-i is denoted by d̄t
i(p

t
1, p

t
2) where

d̄t
1(p

t
1, p

t
2) = bt

1 − at
11p

t
1 − at

12p
t
2 and d̄t

2(p
t
1, p

t
2) = bt

2 − at
21p

t
1 − at

22p
t
2.

We assume that the square matrix At with elements at
ij for i, j = {1, 2} has

positive diagonal elements and negative off-diagonal elements, that is at
ii > 0 and

at
ij < 0 for i %= j. This assumption reflects the substitutable nature of the products

and that the demand for an item is decreasing in its own price and increasing with

the price of the other item. It is also assumed that At possesses diagonal dominance

property, i.e., at
11 ≥ |at

12| and at
22 ≥ |at

21|. This implies that the income effect is at

least as strong as the substitution effect, i.e., a price change on an item influences its

demand at least as strongly as it influences the demand for the other item. These

assumptions on demand parameters, besides their economic justification, also result

in a concave revenue function. Further, we impose another assumption on At, that

At is symmetric. A symmetric At is equivalent to settings where the demands for
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both items may be influenced by different individual price elasticities but they expe-

rience identical cross-price elasticities. In other words, the derivative of the expected

demand for an item with respect to the price of the other item is equivalent for

both products. Albeit restrictive in modeling more diverse demand structures, this

assumption has been incorporated in a number of related works and is also essential

in our derivations to fully characterize the structure of the optimal policy. Further-

more, the same property is also inherently present in Multinomial Logit (MNL) type

demand models that is described in Section 2.7. Finally, no restrictions are imposed

on the price decisions with pt ∈ #2 as non-negativity of optimal prices may be

guaranteed within a set of demand parameters reflecting a practical setting.

Production decisions are made at the beginning of period t, and prices are set be-

fore the demand is realized. The firm utilizes fixed dedicated capacities K1, K2 ≥ 0

for the production of each item exclusively, as well as a limited flexible resource,

K0 ≥ 0, that may be assigned partially or entirely for the production of both items.

A unit of flexible resource may be used towards producing a unit of either product.

At each period, the optimal production quantities are bounded by the correspond-

ing available flexible and product-dedicated capacity levels. We let D(xt) denote

the set of admissable values for yt, i.e., yt ∈ D(xt) where D(xt) := {yt|xt
i ≤ yt

i ≤

xt
i + K0 + Ki ∀i = 1, 2 and yt

1 + yt
2 ≤ xt

1 + xt
2 + K0 + K1 + K2}. We let ct

i denote

the unit production cost for product type-i in period t and assume that this unit

cost is applicable to both dedicated and flexible production systems when produc-

ing the same item. Consequently, this allows incurring separate production costs

corresponding to each item at instances when both items are produced on the same

flexible resource. This assumption is especially applicable when the production cost

for an item constitutes mostly of the raw materials or when the processing costs
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differ across products yet remain constant across types of resources. All unsatisfied

demands are allowed to be backordered. At the end of period t, the firm incurs

holding and backorder costs of ht
i and πt

i per unit of product type-i that is kept

in inventory or backordered, respectively. To simplify the notation throughout the

subsequent analysis, we suppress the superscript t on demand and cost parameters

at
ij, b

t
i, c

t
i, h

t
i, and πt

i . The results in this chapter do not assume that these parameters

are stationary over the planning horizon.

Letting V t(xt) denote the expected discounted profit-to-go function under the

optimal policy starting at state xt with t periods remaining until the end of the

horizon, the problem can be expressed as a stochastic dynamic program satisfying

the following recursive relation:

V t(xt) = max
yt∈D(xt),pt

Gt(yt,pt)

where

Gt(yt,pt) = R(pt)− c(yt − xt) + Eεt

{
− h(yt − d̄t − εt)+ − π(d̄t + εt − yt)+

+ βV t−1(yt − d̄t − εt)
}
,

R(pt) = pt(b−Apt),

(2.2)

and β is the discount factor. V 0(x) denotes the terminal value function and is set

at V 0(x) = 0. In order to facilitate the analysis, a change of variables is performed

by defining zt such that zt = yt − d̄t, i.e., zt = yt − b + Apt. Therefore, if we let

D′(xt,pt) denote the set of admissable decisions for zt, we can write D′(xt,pt) =

{zt|xt
i ≤ zt

i + bi− ai1pt
1− ai2pt

2 ≤ xt
i + K0 + Ki ∀i = 1, 2 and zt

1 + zt
2 + b1 + b2− (a11 +

a21)pt
1− (a12 + a22)pt

2 ≤ xt
1 + xt

2 + K0 + K1 + K2}. Then, the dynamic programming
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formulation given in (2.2) may be written as:

V t(xt) = max
zt∈D′(xt,pt),pt

J t(zt,pt)

where

J t(zt, pt) = R′(pt) + cxt − czt + Eεt

{
−h(zt − εt)+ − π(εt − zt)+ + βV t−1(zt − εt)

}
,

R′(pt) = (pt − c)(b−Apt)

(2.3)

In this reconstructed formulation, the new decision variables are zt and pt, where

zt corresponds to a target inventory level reached after the current inventory position

is augmented by the replenishment quantity and depleted by the selected mean de-

mand. The profit-to-go function, V t−1(zt − εt), only depends on the set of variables

zt and proves useful in deriving several structural results on the value function that

we require in the analysis of the optimal policy.

The next section explores the effects of the presence of a flexible resource and

the limitations in production capacity on the optimal pricing and production policy

structure.

2.5 Characterization of the Optimal Policy Structure

In this section, we first establish several structural properties on the value func-

tion and prove that these properties are preserved under the dynamic programming

recursions. Under the assumptions outlined in the preceding section, Lemma 2.1

shows that the single period objective function and the optimal value function are

strictly concave throughout the planning horizon.

Lemma 2.1. J t(zt,pt) and V t(xt) are jointly strictly concave for all t = 1, 2, · · · , T .

Proof: The proof of Lemma 2.1 is provided in Section 2.9.1.
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Strict concavity of the objective function J t(zt,pt) implies the uniqueness of an

optimal solution and thus strict complementary slackness holds almost everywhere

except for a set of points with measure zero on #2. Following Fiacco (1976), Lagrange

multipliers are differentiable in decision variables, hence J t(zt,pt) and V t(xt) are

twice continuously differentiable almost everywhere. The analysis is based on the

first-order optimality conditions (provided in Section 2.9.1) which are necessary and

sufficient due to the concavity of the problem.

While joint concavity established in Lemma 2.1 implies that the production policy

will be of base-stock type and that there is a price pair that maximizes the profits,

determining the complete structure of the optimal production and pricing policies

requires additional properties on J t(zt,pt) which are summarized in Lemma 2.2.

Lemma 2.2. For all t = 1, 2, · · ·T ,

(a) J t(zt,pt) is submodular in (zt),

(b) J t(zt,pt) possesses the following diagonal-dominance property:

∂2Jt

∂zt
i∂zt

i
≤ ∂2Jt

∂zt
i∂zt

j
∀ i, j; i %= j

Proof: The proof of Lemma 2.2 is provided in Section 2.9.1.

We next characterize the optimal production and pricing policies which exhibit

distinct forms across several regions of the state space.

2.5.1 Optimal Production Policy

In order to establish the optimal policy, we segment the state space into two broad

regions based on the initial inventory levels of the items. The first region corresponds

to instances for which there remains some resource (either dedicated or flexible) that

is not fully utilized, and is denoted as Region A. The second, denoted as Region B,

corresponds to initial inventory levels for which all resources are fully utilized.
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The boundaries of these two regions are described by two monotone functions

γt
1(x

t
2) and γt

2(x
t
1) (as specified in Theorem 2.1) which also subdivide Region A into

several subregions with respect to the inventory position of each product and capacity

limitations according to the following definition.

Definition 2.1. Consider initial inventory levels (xt
1, x

t
2) and the functions γt

1(x
t
2)

and γt
2(x

t
1) and let (x̄t

1, x̄
t
2) := {(xt

1, x
t
2), s.t. xt

1 = γt
1(x

t
2) and xt

2 = γt
2(x

t
1)}. Further,

let γ̂t
1(x

t
2) (and γ̂t

2(x
t
1) in a similar fashion) be given by

γ̂t
1(x

t
2) :=






γt
1(x

t
2)−K1 if xt

2 ≤ x̄t
2 −K0 −K2

γt
1(x

t
2) + x̄t

2 − xt
2 −K0 −K1 −K2 if x̄t

2 −K0 −K2 < xt
2 ≤ x̄t

2 −K2

γt
1(x

t
2)−K0 −K1 if x̄t

2 −K2 < xt
2

Then, product 1 (and likewise, product 2) is classified as: (a) “overstocked” if xt
1 >

γt
1(x

t
2), (b) “moderately understocked” if γt

1(x
t
2) ≥ xt

1 > γ̂t
1(x

t
2), and (c) “critically

understocked” if γ̂t
1(x

t
2) ≥ xt

1.

Defining an item as overstocked means the item requires no further replenish-

ment. A moderately understocked product requires production for which the avail-

able capacity is adequate to reach the desired base stock level whereas a critically

understocked product may not be brought to the desired base stock level due to

capacity restrictions.

Region A collectively represents all states in which at most one product is criti-

cally understocked whereas Region B corresponds to initial inventory levels for which

both items are critically understocked. The segmentation of the state space is illus-

trated in Figures 2.2 and 2.3 and formally derived by accompanying lemmas within

the proof of Theorem 2.1 which describes the optimal production policy.
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Theorem 2.1. (Production Policy): The optimal production policy is a state de-

pendent modified base stock policy characterized by three monotone functions γt
1(x

t
1),

γt
2(x

t
1), and αt(xt

1) such that

(i) In states corresponding to initial inventory levels for which at most one product

is critically understocked (i.e. in Region A),

(a) the optimal production policy for product i (i = 1, 2) is to produce up to

the modified base stock level min
(
xi + K0 + Ki, γt

i(x
t
3−i)

)
.

(b) the modified base stock level for product i is non-decreasing with xt
i and

non-increasing with xt
j, j %= i.

(ii) In states corresponding to initial inventory levels for which both products are

critically understocked (i.e. in Region B),

(a) the optimal production policy for product 1 and product 2 is to produce

up to the modified base stock level xt
1 + K1 + lt(xt

1, x
t
2) and xt

2 + K2 +

K0− lt(xt
1, x

t
2), respectively, where lt(xt

1, x
t
2) denotes the amount of flexible

capacity allocated to product 1.

(b) lt(xt
1, x

t
2) = 0 if xt

2 ≤ αt(xt
1) − K0, lt(xt

1, x
t
2) = K0 if xt

2 ≥ αt(xt
1 + K0).

Otherwise, lt(xt
1, x

t
2) satisfies lt(xt

1, x
t
2) + αt(xt

1 + lt(xt
1, x

t
2)) = xt

2 + K0 and

the modified base stock levels for either product is a function of the starting

inventory levels through their sum.

(c) lt(xt
1, x

t
2) is decreasing with xt

1 and increasing with xt
2.

(d) The modified base stock levels for product i is nondecreasing with either

product’s inventory level.

Proof: The proof of Theorem 2.1 is provided in Section 2.9.2.
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Figure 2.2: Optimal production policy in Region A
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Figure 2.3: Optimal production policy in Region B
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As Theorem 2.1 suggests, the optimal production policy has a number of prop-

erties depending on the inventory state at the beginning of a period. Figure 2.2

illustrates the optimal production policy in region A. When both products are mod-

erately understocked, as shown by the starting inventory level P on Figure 2.2, it is

optimal to produce both products up to the uniquely defined point (x̄t
1, x̄

t
2) which is

depicted by point P ′ in Figure 2.2 and the optimal order-up-to levels in this region

are independent of initial inventories.

Initial inventory levels Q and R in Figure 2.2 are examples of states where one

item is overstocked and the other is understocked. Point Q illustrates an instance

where item 2 is overstocked and item 1 is moderately understocked. Thus, starting

at Q, with a base-stock level of γt
1(x

t
2) for item 1 and no production for item 2, the

optimal policy is to move to point Q′. We note that, point Q′ refers to a base-stock

level for item 1 which is lower than the one suggested by P ′. The reason is twofold.

First, as we will see in the discussion of the optimal pricing policy, the overstocked

item 2 results in a price decrease for that item which in turn increases its demand

and decreases the demand for item 1 which further decreases the base stock for item

1. Second, an overstocked item 2 reduces the potential work load on the flexible

resource for that item and increases the availability of the flexible capacity for item 1

in future periods. This allows for fewer units of item 1 to be produced in the current

period.

An initial inventory position such as point R on the other hand, shows an instance

when the available capacity is not sufficient to bring the inventory position of a

critically understocked item 2 to γt
2(x

t
1). Hence, with no production for item 1 and

using all available capacity to produce K0 + K2 units of item 2, the optimal policy

is to move to point (xt
1, x

t
2 + K0 + K2) which is depicted by point R′.
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Point S refers to a state where item 1 is critically and item 2 is mildly under-

stocked. In this case, Theorem 2.1 states that it is optimal to produce K0 +K1 units

of item 1 and to bring the inventory of item 2 to the desired order-up-to level of

γt
2(x

t
1), as shown by point S ′. Again, we note that point S ′ corresponds to a base

stock level higher than the one implied by P ′ with similar but reverse dynamics as

discussed previously. That is, a critically understocked item 1 not only results in a

price increase for this item which increases the demand for item 2, but also poten-

tially requires a higher share of the flexible capacity in future periods to be allocated

to item 1 and reduces its availability for item 2. Consequently, the base stock level

for item 2 is set higher in the current period. Finally, in the region where both items

are sufficiently stocked, i.e., xt
i > γt

i(x
t
j), it is optimal not to produce either product.

Part 2 of Theorem 2.1 corresponds to the states in region B where both products

are critically understocked and thus all production resources are fully utilized. As

illustrated in Figure 2.3, Theorem 2.1 part 2 states that when the initial inventory

levels for both products fall within a band defined by {(xt
1, x

t
2), s.t. (xt

1, x
t
2) ∈ Region

B, and α(xt
1 + K0) > xt

2 > α(xt
1) −K0}, the optimal policy allocates lt(xt

1, x
t
2) > 0

units of the flexible resource to product 1 and the remaining K0− lt(xt
1, x

t
2) > 0 units

to product 2. Moreover, for any two inventory states corresponding to the same total

inventory, the intermediate inventory positions after the flexible resource is utilized

are identical. From this point on, additional units of each item is produced to the

full extent of their dedicated resources. In Figure 2.3, points U1 and U2 refer to two

states with equivalent total inventories and point U ′ corresponds to the inventory

level reached by the optimal policy.

For initial inventory levels that fall outside this band, the flexible resource is fully

assigned to the product which experiences the most severe shortage. For example, in
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Figure 2.3, point T refers to an instance where all flexible capacity is used towards

item 1 whereas point V shows an instance where the flexible capacity is used entirely

for the production of item 2.

Part 2 (c) of Theorem 2.1 states that the share of flexible resource an item receives

is decreasing with its own inventory and increasing with the other item’s inventory.

Referring to Figure 2.2, since the initial inventory level of product 1 corresponding

to point U1 is less than that of corresponding to U2, the amount of flexible capacity

allocated to item 1 when starting at U1 is larger than the one starting at U2. This

reflects how flexible capacity is able to shift resources towards the product experi-

encing more severe shortages. As will be discussed next, the optimal prices charged

for each product have a specific relationship within this band.

2.5.2 Optimal Pricing Policy

When making pricing decisions, it is often helpful to think in terms of mark-

downs and markups where a markdown (markup) corresponds to a price discount

(surcharge) relative to a current period list price. Earlier results in the literature

focused on infinite capacity settings, hence the optimal pricing policy was character-

ized by a list price, markdown policy. In such a policy, whenever an item is produced,

a list price is charged regardless of the inventory position of the other item and a

discount is given otherwise. In the presence of capacity limitations however, we find

that, unlike the infinite capacity setting, charging list prices whenever production

takes place for an item is no longer optimal. Consequently, the characterization of

the optimal pricing policy relies on a third component, namely price markups.

In this section, we let mt
i(x

t
1, x

t
2) to denote the price markup/markdown for item

i in period t with mt
i < 0 corresponding to markdowns and mt

i > 0 corresponding to
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markups in reference to a current period list price pt
iL. Thus, in period t we have,

pt
i(x

t
1, x

t
2) = pt

iL + mt
i(x

t
1, x

t
2) (2.4)

The following theorem defines the optimal pricing policy.

Theorem 2.2. (Pricing Policy): For all i = 1, 2, in period t, we have the following:

a) In Region A, if an item i is moderately understocked, then mt
i(x

t
1, x

t
2) = 0 and

it is optimal to charge a list price, pt
iL, for that item where

pt
i,L =

at
3−i,3−ib

t
i − at

12b
t
3−i

2(at
11a

t
22 − at

12
2)

+
ct
i

2

If an item i is overstocked, then mt
i(x

t
1, x

t
2) < 0, i.e., it is optimal to give a price

discount to that item. If on the other hand, item i is critically understocked,

then mt
i(x

t
1, x

t
2) > 0, indicating that it is optimal to give a price markup to that

item.

b) In Region B, mt
i(x

t
1, x

t
2) > 0, hence the optimal policy marks up the price of

both items. Furthermore, if (xt
1, x

t
2) is such that 0 < lt(xt

1, x
t
2) < K0, then

mt
1(x

t
1, x

t
2) = mt

2(x
t
1, x

t
2) resulting in

pt
2(x

t
1, x

t
2) = pt

1(x
t
1, x

t
2) + Ct

where Ct = pt
2L − pt

1L.

c) The optimal price pt
i(x

t
1, x

t
2), i = 1, 2 is decreasing with respect to xt

1 and xt
2.

Proof: The proof of Theorem 2.2 is provided in Section 2.9.2.

Figure 2.4 illustrates the optimal pricing policy in terms of markups (markdowns)

for each product. It is optimal to give discounts on a product if it is overstocked,

apply the list price on the product if it is moderately understocked and to markup

the price of the item if it is critically understocked.
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Figure 2.4: Optimal pricing policy with the shaded area indicating constant price difference
between products

Part (b) of Theorem 2.2 suggests an interesting fact about the pricing policy

when the inventory level falls within the band in region B where both products

use a positive share of the flexible capacity. In states corresponding to this region,

both products are marked up by exactly the same amount. This results in the price

difference between items to remain identical to the difference between their list prices.

(Although the exact price difference being maintained is due to the linear additive

stochastic demand model with uniform cross price elasticities, in section 2.7, we show

that even when a different demand model is used, the price difference between the

products remains in a very narrow range.) This is due to the fact that the availability

of flexible capacity enables us to direct capacity where it is most urgently needed

and relieves the use of drastic changes in prices to shift demand.

This special structure of the optimal price policy has favorable consequences.
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Capacity flexibility may be viewed as a significantly beneficial tool when firms use

dynamic pricing and are sensitive to maintaining consistent price gaps among items

in order to preserve product price positioning over different items.

2.6 Sensitivity of the Optimal Policy

Having characterized the optimal policy, we now discuss how changes in various

problem parameters affect the optimal policy structure. Specifically, we explore the

sensitivity of the optimal policy to (i) cost parameters including the production,

holding and backorder costs, (ii) capacity parameters, and (iii) demand parameters

including demand intercepts, individual and cross price elasticities. (In the following,

the terms increasing and decreasing are used in the weak sense to denote nondecreas-

ing and nonincreasing, respectively.)

2.6.1 Sensitivity to Cost Parameters

First, we are interested in how the production, holding or backorder costs for

an item influence the optimal price and modified base-stock levels. Intuitively, as

it becomes more costly to produce product 1, the selling price for this item would

increase, reducing the demand and therefore its modified base-stock level. However,

it is not obvious how the price of item 2 is affected. On the one hand, a resulting price

increase for item 1 strengthens the demand for item 2 which may drive the prices for

this item higher. On the other hand, the cost increase and the resulting price increase

for item 1 decreases item 1’s demand, potentially allowing more flexible capacity to

be assigned to item 2, increasing item 2’s availability and thereby decreasing its price.

Our first result in Theorem 2.3 shows that the former argument dominates un-

less both items are critically understocked and are receiving a share of the flexible

capacity, for which the second argument prevails.
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Theorem 2.3. (a) If the current period production cost c1 for product 1 increases,

the optimal price charged for product 1 increases. The price for product 2 decreases

if both items are critically understocked and the flexible resource is shared between

the items, otherwise the price for product 2 increases. The modified base stock level

for product 1 decreases while the modified base stock level for product 2 increases.

(b) If the current period holding (backorder) cost h1 (π1) for product 1 increases,

the price for item 1 decreases (increases) and the base stock level for product 1 de-

creases (increases).

Proof: The proof of Theorem 2.3 is provided in Section 2.9.3.

When the unit holding cost for item 1 increases, in order to reduce the number of

unsold items, we would intuitively increase the demand for the product by decreasing

its price. In addition, we would lower the modified base stock level for item 1. Part

(b) of Theorem 2.3 verifies that this intuition is indeed correct. Similar but reverse

reasoning applies for an increase in the backorder cost. That is, when the unit

backorder cost for item 1 increases, the price of item 1 increases to lower its demand,

and the modified base-stock level for the item increases. Both changes reduce the

possibility of facing backorders. An increase in the holding or backorder cost for item

1 however, does not necessarily result in uniform monotonicities regarding the price

and modified base stock level for product 2.

2.6.2 Sensitivity to Capacity Parameters

Next, we consider how changes in capacity parameters influence the optimal pol-

icy. Theorem 2.4 parts (a) and (b) correspond to a capacity increase in either dedi-

cated resource and the flexible resource, respectively.
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Theorem 2.4. (a) If the current period dedicated capacity for product 1, K1, in-

creases, the prices charged for both products decrease. The modified base stock level

for product 1 increases. The modified base stock for product 2 increases if both items

are critically understocked and the flexible resource is shared between the items, oth-

erwise the modified base stock level for product 2 decreases.

(b) If the current period flexible capacity K0 increases, the prices charged for both

products decrease. The modified base stock level for item 1 (item 2) increases if item

1 (item 2) is critically understocked. Otherwise, the modified base-stock level for item

1 (item 2) decreases.

Proof: The proof of Theorem 2.4 is provided in Section 2.9.3.

When capacity increases, one would expect that the price for both products would

decrease. In Theorem 2.4 parts (a) and (b), we show that this expectation is true. A

capacity increase in either the dedicated resource or the flexible resource helps reduce

instances where products are critically understocked which limits price markups and

hence reduces prices.

Regarding the modified base stock levels, Theorem 2.4 part (a) shows that an

increase in the dedicated capacity for product 1 leads to an increase in the modified

base stock level for item 1. When both items share the flexible resource and are

critically understocked, an increase in the dedicated capacity for item 1 allows more

flexible capacity to be allocated to item 2 increasing item 2’s modified base stock

level. In all other instances, the modified base stock level for item 2 decreases. As

an example, consider the instance when item 1 is critically understocked while item

2 is moderately understocked. An increase in the dedicated capacity and thus the

modified base stock level for item 1 results in less price surcharge for item 1 as we do

not have to decrease product 1 demand as much by pricing which in turn results in
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less inventory of item 2 needed, i.e. a reduced modified base stock level. The logic

of Theorem 2.4 part (b) is similar.

2.6.3 Sensitivity to Demand Parameters

Finally, we examine the effect of demand parameters on the optimal policy. The-

orem 2.5 part (a) corresponds to an increase in the demand intercept for a product

whereas part (b) and part (c) states the sensitivity with respect to individual and

cross price elasticities, respectively.

Theorem 2.5. (a) If the current period demand intercept b1 for product 1 increases,

the price for both items increase. The modified base stock level for product 1 increases.

The modified base stock level for product 2 increases except when both items are

critically understocked and the flexible resource is shared between the items, in which

case the modified base stock level for product 2 decreases.

(b) If the current period individual price elasticity a11 for product 1 increases, the

price and the modified base stock level for item 1 decreases.

(c) If magnitude of the current period cross price elasticity a12 increases, when

both products are moderately understocked, the prices and base-stock levels for both

products increase.

Proof: The proof of Theorem 2.5 is provided in Section 2.9.3.

An increase in the demand intercept for product 1 can be viewed as an exogenous

factor (such as an increase in the perceived quality) that makes product 1 more de-

sirable. Theorem 2.5 part (a) shows that this increased demand allows a higher price

to be charged for both products. (A similar relationship was also recently observed

by Aydin and Porteus [3] for a one period problem without capacity considerations).

As the demand and price for product 1 increases, its modified base stock level also in-
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creases. We find that a joint increase in prices also yields an increase in the modified

base stock level for item 2 except when both items are critically understocked and

requesting a share of the flexible capacity. In that case, the increase in the demand

intercept for item 1 necessitates more of the flexible capacity to be allocated to item

1, and thus decreases the modified base stock level for item 2.

A higher individual price elasticity means fewer customers will demand the prod-

uct at the current prices. Theorem 2.5 part (b) shows that when the demand for

an item is more sensitive to its own price, it is optimal for the firm to counter this

demand reduction by setting a lower price and modified base-stock level for that

item. However, the price and modified base stock level of item 2 do not necessarily

have uniform monotonicities with respect to an increase in item 1’s individual price

elasticity. Finally, part (c) corresponds to a setting where the magnitude of the cross

price elasticity is higher. Such a setting results in a higher demand for both products

and we show that it results in an increase in both prices and modified base stock

levels when both products are moderately understocked. When either product is

critically understocked or overstocked, the behavior of base stock levels and prices

do not appear to possess uniform monotonicity.

2.7 Numerical Study

In this section, we first investigate how the availability of a flexible resource in-

fluences the firm’s optimal pricing strategy. We then compare the economic benefits

obtained by using dynamic pricing and capacity flexibility jointly and individually

and explore settings under which dynamic pricing may be more valuable than capac-

ity flexibility to improve profitability, and vice versa.
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2.7.1 Impact of Capacity Flexibility on Optimal Pricing Policy

In order to explore the impact of flexible resources on the optimal pricing policy,

we construct three problem instances with a gradually increasing share of a flexible

resource in the firm’s capacity portfolio. In the first setting, the firm implements dy-

namic pricing using only dedicated production capacities for each item with capacity

installations K0 = 0 and K1 = K2 = 15. In the second setting, the firm employs a

portfolio of dedicated and flexible resources where K0 = K1 = K2 = 10. Finally, in

the third problem setting, the firm utilizes full flexibility in the production line with

K0 = 30 and K1 = K2 = 0.

For a T = 15 period problem initialized at state x15 = (0, 0), we run 500 randomly

generated sample paths which follow the optimal production and pricing policies at

each period until the end of the planning horizon. We observe the optimal price

selections for both products at each period for the following demand model.

dt
1(p

t
1, p

t
2, ε

t
1) = 35− 0.75pt

1 + 0.25pt
2 + εt

1

dt
2(p

t
1, p

t
2, ε

t
2) = 30 + 0.25pt

1 − 0.5pt
2 + εt

2 (2.6)

The remaining problem parameters are set as c1 = 15, c2 = 20, h1 = 7.5, h2 =

10, π1 = 30, π2 = 40, and β = 0.8. We let εt
1 and εt

2 be randomly drawn from a

uniform distribution over the interval [-10,10] with a positive support on the realized

demand. The model yields list prices of pt
1,L = 47.5 and pt

2,L = 60.0 over the time

horizon with list-price mean demands of d̄t
1(p

t
1, p

t
2) = 14.4 and d̄t

2(p
t
1, p

t
2) = 11.9 units

per period for products 1 and 2. (This corresponds to dedicated capacity utilizations

of 96% and 79%, respectively.) Table 2.1 reports the average and standard deviation

of the prices and price differences observed along the planning horizon of 15 periods

for the 500 randomly generated problem instances. We observe that the standard
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Table 2.1: Price statistics for systems with (i) only dedicated resources, (ii) a portfolio of
dedicated and flexible resources and (iii) a fully flexible resource

(i) K0 = 0, (ii) K0 = 10, (iii) K0 = 30,
K1 = K2 = 15 K1 = K2 = 10 K1 = K2 = 0

Average Price 1 49.83 49.00 48.85
Average Price 2 61.75 61.34 61.33

Std. Dev. of Price 1 2.62 2.10 2.05
Std. Dev. of Price 2 2.57 2.10 2.07

Std. Dev. of Price Difference 3.05 0.76 0.19

deviation of the prices charged for each item over time decreases as the share of

the flexible resource in the capacity portfolio increases. Moreover, we see that the

standard deviation of the price difference between products also decreases, and rather

significantly, as the firm utilizes more flexible resources.

To visualize the effect of flexible capacity on the optimal pricing policy, we next

illustrate a particular sample path over the 15-period horizon. Figure 2.5 depicts the

optimal price selection at each decision period for the three settings and highlights

the advantages of flexible resources. First, as implied by the reduction of the standard

deviation of prices presented in Table 2.1, we observe that the prices for items 1 and 2

have somewhat smoother fluctuations across periods when capacity is more flexible.

We calculate that the standard deviation of prices over the 15-period horizon for

items 1 and 2 are, respectively, 3.48 and 3.31 for the dedicated capacity setting,

2.94 and 2.79 for the hybrid capacity portfolio setting, and 2.75 and 2.75 for the

fully flexible capacity setting. This small sample of data which shows that there is a

slight reduction in price fluctuations for an item over time but not a complete price

smoothing also suggests that the presence of capacity flexibility does not entirely

eliminate the need for dynamic pricing.

The most interesting aspect displayed by Figure 2.5 is that when flexible systems

are used instead of product dedicated resources, the difference between the prices
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(c) A fully flexible resource, K0=30, K1=K2=0

Figure 2.5: Optimal price selections for products 1 and 2 for a 15-period problem.
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charged for products 1 and 2 remain almost constant across periods (compare the

corresponding dotted lines in Figure 2.5). For this particular instance, we find that

the standard deviations of the price difference between items 1 and 2 over the 15-

period horizon are 4.44, 1.57, and 0 for the dedicated only, hybrid, and fully flexible

capacity settings, respectively. This is in line with the statement in Theorem 2.2 that

the price difference between the two products will be constant when both items are

either moderately understocked or critically understocked and sharing the flexible

resource. Table 2.1 and Figure 2.5 indicate that the availability of flexible capacity

actually results in the price difference between the products to be fairly constant in

most instances, aiding in the consistent price positioning of the products.

The extended constant price difference region set forth in Theorem 2.2 is based

on the linear additive stochastic demand model with uniform cross price elasticities.

However, we are also interested to explore whether flexible capacity continues to en-

able more stable price differences between items over time for nonuniform cross-price

elasticities and for other possible demand models. Figure 2.6 illustrates a particular

sample path based on a modified version of the previously described demand model

in (2.6) with b1 = 45, b2 = 35, a11 = 1.2, a12 = −0.3, a21 = −0.4, and a22 = 0.8

and preserving the same capacity and cost parameters. We find that the standard

deviation of the price difference between items 1 and 2 over the 15-period horizon is

3.47%, and 0.21% for the dedicated only, and fully flexible capacity settings, respec-

tively. Thus, for this setting, the flexible capacity continues to help maintain stable

price differences.

Next, we consider a Multinomial Logit (MNL) demand model based on con-

sumer choice behavior. For a detailed discussion of MNL demand models in this

context, we refer the reader to a study by Aydin and Porteus [3]. Following [3],
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Figure 2.6: Non-uniform cross-price elasticities: Optimal price selections for products 1
and 2 for a 15-period problem.
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Figure 2.7: Multinomial Logit (MNL) demand model: Optimal price selections for products
1 and 2 for a 15-period problem.
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we let ut
i − pt

i denote the surplus utility of a customer who purchases product i.

We let the deterministic part of the demand for product i be given by d̄t
i(p

t
1, p

t
2) =

Θ (exp(ut
i − pt

i)) /
(
1 +

∑
j exp(ut

j − pt
j)

)
where Θ denotes the market size. Figure

2.7 displays a sample path of product prices for a setting where u1 = 8, u2 = 10,

Θ = 30 and with c1 = 3, c2 = 5, h1 = 1.5, h2 = 2.5, π1 = 6, π2 = 10, and β = 0.8. We

find that the insights we have gained by the linear demand model regarding the price

gap stabilizing effects of flexible capacity continue to hold under the MNL demand

model.

2.7.2 Economic Benefits of Dynamic Pricing and Capacity Flexibility

To explore the economic benefits obtained by dynamic pricing and capacity flex-

ibility, we study several numerical examples where each strategy may be utilized

jointly or individually. Specifically, we consider problem settings where the follow-

ing strategies are implemented: fixed list prices with dedicated resources, fixed list

priced with a fully flexible resource, dynamic pricing with dedicated resources, and

dynamic pricing with a fully flexible resource.

For the example problem given in (2.6), we analyze how each strategy performs

under instances with high or low demand uncertainty, and negatively or positively

correlated product demands. We let the uncertain component of demand for the high

and low variability settings be drawn from a uniform distribution over the interval

[-10,10] and [-4,4], respectively with a positive support on the period’s demand. For

the positive and negative correlation settings, we use the high demand variability

parameters with a correlation coefficient of ρ = 1 and ρ = −1, respectively. Table

2.2 displays the profit obtained by each strategy for a 5-period problem starting from

an initial state of (x15
1 , x15

2 )=(0, 0).
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Table 2.2: Economic benefits of dynamic pricing and/or capacity flexibility

Fixed list price Dynamic price
High demand variability

Dedicated capacity 5,253 6,039
Flexible capacity 5,950 6,119

Low demand variability
Dedicated capacity 6,511 6,637
Flexible capacity 6,619 6,670

Positively correlated demand
Dedicated capacity 5,361 5,979
Flexible capacity 5,522 5,987

Negatively correlated demand
Dedicated capacity 5,113 6,044
Flexible capacity 6,158 6,181

The profits reported in Table 2.2 shows that, for a system with high demand

variability, dynamic pricing and capacity flexibility provide profit gains of 15.0% and

13.2%, respectively, compared to a base setting of fixed list prices and dedicated

capacities. A joint strategy improves the profits by 16.5%. Furthermore, we calcu-

late that, for a system with flexible capacity, the additional economic benefit derived

by dynamic pricing is 2.8%. Similarly, the profit gain by flexibility for a system

which already uses a dynamic pricing strategy is 1.3%. These results imply that,

although dynamic pricing and capacity flexibility may be viewed as substitute ap-

proaches, neither strategy dominates the other and a joint strategy may still provide

significant economic benefits. For a system with low demand variability, we observe

that dynamic pricing and capacity flexibility provides economic benefits of 1.9% and

0.5%, respectively. Thus, the value of both tools increase significantly as the demand

variability increases.

Regarding the correlation among demand uncertainties, we see that dynamic

pricing is a more valuable tool than capacity flexibility in settings where demand un-

certainties are positively correlated. We calculate that the respective profit gains are
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11.5% and 3.0%. For negatively correlated demand uncertainties, on the other hand,

we find that capacity flexibility is a slightly more powerful tool than dynamic pricing

implied by a profit gain of 20.4% compared to 18.2%. Positively correlated demands

may result in occasions where both items are overstocked or critically understocked.

At such instances, the products will either jointly require or do not require additional

capacity. Hence, capacity flexibility can only offer a marginal benefit, much less than

the one obtained by dynamic pricing which can raise or reduce the demand for both

products to prevent excessive holding or backorder costs. Negatively correlated de-

mands may frequently result in instances when one item is critically understocked

while the other is either moderately understocked or overstocked. Shifting demand

by dynamic pricing at such instances alleviates the shortage costs arising due to the

critically understocked item. However, this benefit comes at the expense of losing

some of the overall product revenue due to the concavity of the revenue function.

A flexible resource, on the other hand, may be used to shift production to the item

with deficient supply enabling a reduction in the shortage cost without having an

impact on the revenue.

2.8 Conclusions

In this chapter, we studied a joint mechanism of dynamic pricing and capacity

flexibility to mitigate demand and supply mismatches. We considered a firm produc-

ing two products with correlated demands utilizing capacitated product dedicated

and flexible resources and characterized the structure and sensitivity of the optimal

production and pricing decisions.

Under a linear additive stochastic demand model that is commonly adapted in ex-

isting literature, we showed that the optimal production policy can be characterized
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by modified base-stock levels that exhibit distinct forms across two broad regions of

the state-space. We presented the optimal policy by classifying the initial inventory

level of a product as overstocked if the item requires no further replenishment, as

moderately understocked if the available capacity is adequate to bring the inventory

to a desired level, and as critically understocked if capacity is restrictive to reach

the desired inventory level. Our analysis showed that when at most one item is crit-

ically understocked, the modified base-stock level for each product is described by

a decreasing function of the inventory level of the other item. However, when both

items are critically understocked, we showed that the modified base-stock level for a

product is characterized by an increasing function of the inventory position of both

products.

In terms of the pricing policy, our results showed that a list price is charged for

an item if it is moderately understocked. If an item is critically understocked, then

a price markup that depends on both inventory levels is applied. When an item is

overstocked, a price discount that depends on both inventory levels is given. Our

analysis also indicated that when inventory levels for both items are critically under-

stocked and when the flexible capacity is simultaneously shared between products,

the flexible resource led to an optimal pricing scheme that maintained a constant

price difference between products. At such instances, dynamic pricing only served

to adjust the overall level of demand for both products and not to attempt to shift

demand from one product to another. The flexible capacity was the sole factor in

restoring the mismatches between the desired and actual inventory levels of products.

We found that the presence of a flexible resource may significantly reduce the

fluctuations of price differences across items over time. Thus, the existence of a

flexible resource in the firm’s capacity portfolio helps maintain stable price differences
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across items over time. This enables the firm to establish consistent price positioning

among multiple products even if it uses a dynamic pricing strategy. Regarding the

contribution to a firm’s profitability, we find that the two mechanisms may be viewed

as substitute, but not fully interchangeable approaches and that using a joint strategy

may improve profits significantly. We find dynamic pricing to be the dominant

contributor to increased profits when demand uncertainties for the products are

positively correlated and flexible capacity to be the more powerful contributor when

there is a negative correlation between demand uncertainties.

Our focus in this chapter has been limited to studying price based substitutions

between the products. It remains an interesting question for future research to

identify how stockout based substitutions such as upgrading a customer to a higher

quality item when the low quality item experiences shortages would effect the firm’s

optimal pricing and production policy. In addition, the flexible resource may be

viewed as a dual source option with a higher production or ordering cost. Earlier

work in such models with exogenous demand processes indicate that a two-tier base

stock policy is optimal. Incorporating pricing decisions to investigate how the dual

sourcing option influences the firm’s pricing policy and vice versa may constitute

another interesting research question.

2.9 Appendix

2.9.1 Proofs of Preserved Structural Properties

Proof of Lemma 2.1: (Concavity)

The proof is by induction. J1(z1
1 , z

1
2 , p

1
1, p

1
2) is separable in (z1

1 , z
1
2) and (p1

1, p
1
2)

and it is straightforward to check that R′(p1) is strictly concave in (p1
1, p

1
2) and the

terms associated with holding and backorder costs are concave in (z1
1 , z

1
2). Since
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J1(z1
1 , z

1
2 , p

1
1, p

1
2) is formed by the addition of strictly concave, concave and linear

functions, itself is strictly concave. Next, note that the capacity constraints result in

a convex domain over which the maximization is performed. Since concavity is pre-

served under maximization in a convex domain [33], we have V 1(x1
1, x

1
2) strictly con-

cave. Now, assume that V t(xt
1, x

t
2) is strictly concave which implies, through a similar

argument, that J t+1(zt+1
1 , zt+1

2 , pt+1
1 , pt+1

2 ) is strictly concave. Again, due to concav-

ity preservation under maximization in a convex domain, we have V t+1(xt+1
1 , xt+1

2 )

strictly concave. !

The Karush-Kuhn-Tucker Optimality Conditions:

To construct the KKT optimality conditions, we first introduce Lagrange multi-

pliers λt
ij > 0 for i, j = {1, 2} and µt > 0 where λt

i1 > 0 and λt
i2 > 0 are associated

with constraints zt
i + bi−ai1pt

1−ai2pt
2 ≥ xt

i and zt
i + bi−ai1pt

1−ai2pt
2 ≤ xt

i +K0 +Ki,

respectively and µt corresponds to the constraint zt
1 + zt

2 + b1 + b2 − (a11 + a21)pt
1 −

(a12 + a22)pt
2 ≤ xt

1 +xt
2 +K0 +K1 +K2. Together with the complementary slackness

conditions, we then have for i={1,2},

∂J t

∂pt
i

= a1i(λ
t
11 − λt

12) + a2i(λ
t
21 − λt

22)− (a1i + a2i)µ
t (2.7a)

∂J t

∂zi
= µt − (λt

i1 − λt
i2) (2.7b)

Several pairs of constraints form “box constraints” and may not be simultaneously

active for positive capacity parameters. As the following observation suggests, we

can exploit this complementary sparsity pattern arising from the special structure of

constraints to represent the first-order optimality conditions in simpler notation.

Observation 2.1. For i = 1, 2, let λt
i be defined such that λt

i := λt
i1 − λt

i2. Then, λt
i

uniquely determines λt
ij for j = 1, 2 where (a) λt

i < 0 implies λt
i1 = 0 and λt

i2 > 0,

(b) λt
i > 0 implies λt

i1 > 0 and λt
i2 = 0; and (c) λt

i = 0 implies λt
i1 = λt

i2 = 0.
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In addition, for = {1, 2}, the conditions given in the set of equations (2.7) may be

represented as:

∂J t

∂pt
i

= a1iλ
t
1 + a2iλ

t
2 − (a1i + a2i)µ

t (2.8a)

∂J t

∂zi
= µt − λt

i (2.8b)

Proof: We first observe that having λt
11 > 0 and λt

12 > 0 simultaneously, implies that

both zt
1 + b1− a11pt

1− a12pt
2− xt

1 = 0 and zt
1 + b1− a11pt

1− a12pt
2− xt

1−K0−K1 = 0.

Since this is not possible for any K0, K1 > 0, we conclude that λt
11 and λt

12 cannot be

simultaneously positive. Thus, if we define λt
1 := λt

11 − λt
12, any value of λt

1 uniquely

determines the values of λt
11 and λt

12. We note that with this definition, λt
1 is no

longer sign restricted. Specifically, we have λt
1 < 0 for the case where λt

11 = 0,

λt
12 > 0, and we have λt

1 > 0 for the case where λt
11 > 0 and λt

12 = 0. For the case

where λt
11 = λt

12 = 0, we have λt
1 = 0. An analogous argument holds for λt

21 and λt
22,

hence a corresponding λt
2 := λt

21 − λt
22 can be similarly defined. !

Following Observation 2.1, λt
i is no longer sign restricted and is associated with

two constraints where its sign - negative, positive or zero - identifies which of the

corresponding constraints, if any, is binding.

Proof of Lemma 2.2: (Submodularity, Diagonal Dominance)

The proof is by induction. To simplify the notation, recalling that J t is separable

in (zt
1, z

t
2) and (pt

1, p
t
2), we let J t

ij := ∂2Jt

∂zt
i∂zt

j
. Similarly, we also let V t

ij = ∂2V t

∂xt
i∂xt

j
. For

J1(z1
1 , z

1
2 , p

1
1, p

1
2), both cross partials are zero, thus part (1) follows. For part (2), we

note that, by Lemma 2.1, J1(z1
1 , z

1
2 , p

1
1, p

1
2) is strictly concave. Therefore, J1

11, J
1
22 < 0.

Hence part (2) follows. We now assume that the Lemma holds for t and show that it

continues to hold for t+1. It is sufficient to show that EV t(zt
1− εt

1, z
t
2− εt

2) preserves

these properties. It can be verified recursively that the first and second derivatives
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of V t(xt
1, x

t
2) are bounded. Through the interchangeability of differentiation and

expectation, it is sufficient to show that V t(xt
1, x

t
2) has the required properties. From

Envelope Theorem, we have

∂V t(xt
1, x

t
2)

∂xt
1

=
∂J t

∂xt
1

− λt
1 + µt = c1 − λt

1 + µt (2.9a)

∂V t(xt
1, x

t
2)

∂xt
2

=
∂J t

∂xt
2

− λt
2 + µt = c2 − λt

2 + µt (2.9b)

At this point, it is helpful to partition the state space in two broad regions where

µt = 0 and µt > 0. We first treat the cases associated with µt = 0. For these cases,

we have

V t
12(x

t
1, x

t
2) = −∂λt

1

∂xt
2

(2.10)

From the KKT conditions, we further have

−∂λt
1

∂xt
2

=
∂

∂xt
2

(
∂J t

∂zt
1

)

Therefore,

V t
12(x

t
1, x

t
2) =

∂

∂xt
2

(
∂J t

∂zt
1

)
= J t

11

∂zt
1

∂xt
2

+ J t
12

∂zt
2

∂xt
2

(2.11)

We implicitly assume V t
12(x

t
1, x

t
2) = V t

21(x
t
1, x

t
2) which requires continuity of the second

partial derivatives. This is fulfilled since J t is strictly concave and twice continuously

differentiable in (zt
1, z

t
2) and zt

1, z
t
2 are differentiable in (xt

1, x
t
2).

There are four cases: (1) λt
1 = 0 or λt

2 = 0, (2) λt
1 > 0 and λt

2 > 0, (3) λt
1 > 0 and

λt
2 < 0, and (4) λt

1 < 0 and λt
2 > 0. Note that, the case λt

1 < 0 and λt
2 < 0 is not

feasible since this case would have implied that the flexible capacity is fully utilized

for both products simultaneously.

Case 1: When λt
1 = 0, we have ∂λt

1
∂xt

2
= 0. Thus V t

12(x
t
1, x

t
2) = −∂λt

1
∂xt

2
= 0. A similar

argument for λt
2 = 0 also yields V t

12(x
t
1, x

t
2) = −∂λt

2
∂xt

1
= 0. This establishes the result

for part (1), i.e., that V t(xt
1, x

t
2) is submodular.
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For part (2), since V t(xt
1, x

t
2) is strictly concave, we have V t

11(x
t
1, x

t
2) < 0 and

V t
22(x

t
1, x

t
2) < 0, hence V t

11(x
t
1, x

t
2) ≤ V t

12(x
t
1, x

t
2) and V t

22(x
t
1, x

t
2) ≤ V t

12(x
t
1, x

t
2) hold.

Case 2: When λt
1 > 0 and λt

2 > 0, from KKT conditions we have

pt
1 = pt

1L +
1

2

∂J t

∂zt
1

pt
2 = pt

2L +
1

2

∂J t

∂zt
2

where

pt
1L =

a22b1 − a12b2

2(a11a22 − a2
12)

+
c1

2

pt
2L =

a11b2 − a12b1

2(a11a22 − a2
12)

+
c2

2

Complementary slackness yields xt
1 = zt

1 + b1 − a11pt
1 − a12pt

2 and xt
2 = zt

2 + b2 −

a21pt
1 − a22pt

2. Combining these we get,

xt
1 =zt

1 + b1 − a11p
t
1L − a12p

t
2L −

a11

2

∂J t

∂zt
1

− a12

2

∂J t

∂zt
2

xt
2 =zt

2 + b2 − a21p
t
1L − a22p

t
2L −

a21

2

∂J t

∂zt
1

− a22

2

∂J t

∂zt
2

(2.12)

Taking partial derivatives with respect to xt
2 and solving for ∂zt

1
∂xt

2
and ∂zt

2
∂xt

2
, we get

∂zt
1

∂xt
2

=
1

Λ

(
a11J

t
12 + a12J

t
22

)

∂zt
2

∂xt
2

=
1

Λ

(
2− a11J

t
11 − a12J

t
21

) (2.13)

where Λ = 2 − (a11J t
11 + 2a12J t

12 + a22J t
22) + 1

2 [(a11a22 − a2
12)(J

t
11J

t
22 − J2t

12)]. We

note that Λ > 0 by first observing that the terms in the brackets are strictly positive

since a11a22 − a2
12 > 0 by the assumptions on demand parameters and J t

11J
t
22 −

J2t
12 > 0 is strictly concave as shown in Lemma 2.1. We only need to show that

a11J t
11 + 2a12J t

12 + a22J t
22 ≤ 0. We have,

a11J
t
11 + 2a12J

t
12 + a22J

t
22 ≤ (a11 + 2a12 + a22) J t

12 (by diagonal dominance)

≤ 0 (since a11 + a12 > 0, a12 + a22 > 0 and J t
12 ≤ 0)
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Substituting (2.13) into (2.11) establishes submodularity as follows:

V t
12(x

t
1, x

t
2) =

1

Λ

(
J t

11

(
a11J

t
12 + a12J

t
22

)
+ J t

12

(
2− a11J

t
11 − a12J

t
21

))

=
1

Λ

(
a12

(
J t

11J
t
22 − J2t

12

)
+ 2J t

12

)

≤ 0 (since J t
12 ≤ 0, J t

11J
t
22 − J2t

12 > 0, and a12 < 0)

To show part (2), we first state the expressions for V t
11(x

t
1, x

t
2) and V t

22(x
t
1, x

t
2) as

well as evaluate ∂zt
1

∂xt
1

and ∂zt
2

∂xt
1
. Following similar steps as in (2.10)-(2.11), we have;

V t
11(x

t
1, x

t
2) =

∂

∂xt
1

(
∂J t

∂zt
1

)
= J t

11

∂zt
1

∂xt
1

+ J t
12

∂zt
2

∂xt
1

(2.14)

V t
22(x

t
1, x

t
2) =

∂

∂xt
2

(
∂J t

∂zt
2

)
= J t

21

∂zt
1

∂xt
2

+ J t
22

∂zt
2

∂xt
2

(2.15)

and with analogous arguments as in (2.12)-(2.13), we get

∂zt
1

∂xt
1

=
1

Λ

(
2− a12J

t
12 − a22J

t
22

)

∂zt
2

∂xt
1

=
1

Λ

(
a12J

t
11 + a22J

t
12

) (2.16)

We now consider V t
11(x

t
1, x

t
2) ≤ V t

12(x
t
1, x

t
2). Substituting (2.16) into (2.14), we get

V t
11(x

t
1, x

t
2) =

1

Λ

(
J t

11

(
2− a12J

t
12 − a22J

t
22

)
+ J t

12

(
a12J

t
11 + a22J

t
12

))

=
1

Λ

(
2J t

11 − a22

(
J t

11J
t
22 − J2t

12

))

Therefore we get

V t
11(x

t
1, x

t
2)− V t

12(x
t
1, x

t
2) =

1

Λ

((
2J t

11 − a22

(
J t

11J
t
22 − J2t

12

))

−
(
2J t

12 + a12

(
J t

11J
t
22 − J2t

12

)))

=
1

Λ

((
2J t

11 − 2J t
12

)
− (a12 + a22)

(
J t

11J
t
22 − J2t

12

))

≤ 0 (by J t
11 − J t

12 ≤ 0, a12 + a22 > 0, and concavity)

The fact that V t
22(x

t
1, x

t
2) ≤ V t

12(x
t
1, x

t
2) may be shown similarly by substituting

(2.16) into (2.15).
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The analysis for Cases 3 and 4 are very similar to the analysis of Case 2 and are

omitted for brevity.

We now consider the regions corresponding to µt > 0. By the definition of the

multipliers and their relationships among each other, this region is subdivided into

three subregions such that (1) µt > 0, λt
1 < 0, λt

2 = 0; (2) µt > 0, λt
1 = 0, λt

2 = 0; (3)

µt > 0, λt
1 = 0, λt

2 < 0.

Case 1 corresponds to the regions where the flexible capacity is used solely and

fully to produce item 1. Once again, the Envelope Theorem yields

V t
12(x

t
1, x

t
2) =

∂

∂xt
2

(
∂J t

∂zt
1

)
= J t

11

∂zt
1

∂xt
2

+ J t
12

∂zt
2

∂xt
2

(2.17)

Complementary slackness conditions yield xt
1 = zt

1 + b1 − a11pt
1 − a12pt

2 − K0 − K1

and xt
2 = zt

2 + b2− a21pt
1− a22pt

2−K2. Combining these, we get a similar expression

as in (2.12):

xt
1 =zt

1 + b1 − a11p
t
1L − a12p

t
2L −K0 −K1 −

a11

2

∂J t

∂zt
1

− a12

2

∂J t

∂zt
2

xt
2 =zt

2 + b2 − a21p
t
1L − a22p

t
2L −K2 −

a21

2

∂J t

∂zt
1

− a22

2

∂J t

∂zt
2

The same arguments as presented in the analysis of the previous case yields the

desired result. Further, the analysis for Case 3 is also symmetric to the analysis of

Case 1 and hence omitted. Case 2 defines the only remaining region and it corre-

sponds to µt > 0, λt
1 = 0, λt

2 = 0, where the flexible capacity is used fully and by

both products simultaneously.

In this region we have

xt
1 + xt

2 = zt
1 + zt

2 + b1 + b2 − (a11 + a21)p
t
1 − (a12 + a22)p

t
2 −K0 −K1 −K2 (2.18)
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Differentiating (2.18) with respect to xt
2, we get:

1 =

(
1− (a11 + a21)

2
J t

11 −
(a12 + a22)

2
J t

21

)
∂zt

1

∂xt
2

+

(
1− (a11 + a21)

2
J t

12 −
(a12 + a22)

2
J t

22

)
∂zt

2

∂xt
2

(2.19)

Through the KKT conditions, in this region we also have J t
1 = J t

2, hence differenti-

ating with respect to xt
2 we get

J t
11

∂zt
1

∂xt
2

+ J t
12

∂zt
2

∂xt
2

= J t
21

∂zt
1

∂xt
2

+ J t
22

∂zt
2

∂xt
2

(2.20)

Combining (2.19) and (2.20), we get

∂zt
1

∂xt
2

=
1

Λ′ (J
t
12 − J t

22)

∂zt
2

∂xt
2

=
1

Λ′ (J
t
12 − J t

11)

(2.21)

where Λ′ = −J t
12+2J t

12−J t
12+(a11+a12)(J t

11J
t
22−J2t

12)/2+(a22+a12)(J t
11J

t
22−J2t

12)/2.

As in the previous discussion for Λ, it can easily be shown that Λ′ > 0. Substituting

(2.21) into (2.11), we get

V t
12(x

t
1, x

t
2) =

1

Λ

(
J t

11

(
J t

12 − J t
22

)
+ J t

12

(
J t

12 − J t
11

))

=
1

Λ

(
J2t

12 − J t
11J

t
22

)

≤ 0

To show part (2); we first consider V t
11(x

t
1, x

t
2) ≤ V t

12(x
t
1, x

t
2). Using the above argu-

ment, we find V t
11(x

t
1, x

t
2)−V t

12(x
t
1, x

t
2) = 1

Λ (J2t
12 − J t

11J
t
22) ≤ 0. Similarly, V t

22(x
t
1, x

t
2)−

V t
12(x

t
1, x

t
2) = 1

Λ (J2t
12 − J t

11J
t
22) ≤ 0. !

2.9.2 Proofs of Optimal Policy Structure

Proof of Theorem 2.1 (Optimal Production Policy):
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We utilize the shadow prices on capacity constraints by both determining the

pricing and production decisions in terms of these Lagrangian variables and parti-

tioning the state space with respect to their signs. We start by solving (2.8a) for pt
1

and pt
2 and find

pt
i = pt

i,L −
1

2
(λt

i − µt) (2.22)

where we define pt
i,L as the list-price in period t for product i, i = {1, 2}, given by

the following expressions.

pt
1,L =

a22b1 − a12b2

2(a11a22 − a2
12)

+
c1

2
(2.23a)

pt
2,L =

a11b2 − a12b1

2(a11a22 − a2
12)

+
c2

2
(2.23b)

Further, (2.8b) imply implicit functions φt
1 and φt

2 such that zt
1 = φt

1(λ
t
1, λ

t
2, µ

t)

and zt
2 = φt

2(λ
t
1, λ

t
2, µ

t) as stated in Lemma 2.3 below.

Lemma 2.3. There exists implicit functions φ1 and φ2 such that zt
1 = φ1(λt

1, λ
t
2, µ

t)

and zt
2 = φ2(λt

1, λ
t
2, µ

t). Furthermore, φ1(λt
1, λ

t
2, µ

t) is increasing in λt
1, and decreas-

ing in λt
2, µ

t whereas φ2(λt
1, λ

t
2, µ

t) is increasing in λt
2, and decreasing in λt

1, µ
t.

Proof: We first introduce two functions F1(Lt, zt) and F2(Lt, zt) where Lt = (λt
1, λ

t
2, µ

t)

and zt = (zt
1, z

t
2). We define these functions to represent KKT conditions (2.8b).

F1(L
t, zt) = J t

1(z
t
1, z

t
2) + λt

1 − µt (2.24a)

F2(L
t, zt) = J t

2(z
t
1, z

t
2) + λt

2 − µt (2.24b)

Differentiating (2.24a) and (2.24b), and letting DLF and DzF to denote partial

Jacobians, we have

DLF =




∂F1
∂λ1

∂F1
∂λ2

∂F1
∂µ

∂F2
∂λ1

∂F2
∂λ2

∂F2
∂µ



 =




1 0 −1

0 1 −1



 , DzF =




∂F1
∂z1

∂F1
∂z2

∂F2
∂z2

∂F2
∂z2



 =




J t

11 J t
12

J t
21 J t

22




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Since J t(zt
1, z

t
2) is strictly concave by Lemma 2.1, DzF is invertible. Thus, there exists

implicit functions φ1 and φ2 such that zt
1 = φ1(λt

1, λ
t
2, µ

t) and zt
2 = φ2(λt

1, λ
t
2, µ

t).

Moreover, by the Implicit Function Theorem, we have

Dφ = −DzF
−1DLF

that is,




∂φ1

∂λ1

∂φ1

∂λ2

∂φ1

∂µ

∂φ2

∂λ1

∂φ2

∂λ2

∂φ2

∂µ



 = −




J t

11 J t
12

J t
21 J t

22





−1 


1 0 −1

0 1 −1





=
1

J t
11J

t
22 − (J t

12)
2




−J t

22 J t
12 J t

22 − J t
12

J t
12 −J t

11 J t
11 − J t

12



 (2.25)

The strict concavity established in Lemma 2.1 yields J t
11 < 0, J t

22 < 0, and J t
11J

t
22 −

(J t
12)

2 > 0. The submodularity and diagonal dominance properties in Lemma 2.2,

gives J t
12 ≤ 0, J t

11−J t
12 ≤ 0, J t

22−J t
12 ≤ 0. Therefore, the monotonicity results follow

immediately. !

By Lemma 2.3, we can rewrite the capacity constraints as follows.

xt
1 ≤φt

1(λ
t
1, λ

t
2, µ

t)− a11p
t
1(λ

t
1, µ

t)− a12p
t
2(λ

t
2, µ

t) + b1 ≤ xt
1 + K0 + K1 (2.26a)

xt
2 ≤φt

2(λ
t
1, λ

t
2, µ

t)− a21p
t
1(λ

t
1, µ

t)− a22p
t
2(λ

t
2, µ

t) + b2 ≤ xt
2 + K0 + K2 (2.26b)

φt
1(λ

t
1, λ

t
2, µ

t) + φt
2(λ

t
1, λ

t
2, µ

t)− (a11 + a21)p
t
1(λ

t
1, µ

t)

− (a12 + a22)p
t
2(λ

t
2, µ

t) + b1 + b2 ≤ xt
1 + xt

2 + K0 + K1 + K2

(2.26c)

The inventory state space may be partitioned into several regions based on the

signs of λt
1, λt

2, and µt. In order to clarify the portrayal of state space segmentation,

we define two broad regions: region A and region B, corresponding to initial inventory

levels for which µt = 0 and µt > 0, respectively. In words, region A represents the
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initial inventory levels for which there remains some resource, either dedicated or

flexible, that is not fully utilized. Region B, on the other hand, corresponds to

inventory levels for which all resources are fully utilized.

A specific point is of certain interest in our partitioning of the state space. When

none of the constraints are binding, we have λt
1 = λt

2 = µt = 0 hence, (φt(0, 0, 0),pt
L)

is the optimal solution to the unconstrained problem of max J t(zt,pt). If we define

x̄t such that

x̄t
1 = φt

1(0, 0, 0)− a11p
t
1L − a12p

t
2L + b1 (2.27a)

x̄t
2 = φt

2(0, 0, 0)− a21p
t
1L − a22p

t
2L + b2 (2.27b)

then, (x̄t,pt
L) is the optimal solution for maxGt(yt,pt), the unconstrained original

problem.

Lemma 2.4. The boundaries of the state space Region A are defined by two mono-

tone functions:

i. γt
1(x

t
2) : # → # with γt

1(x
t
2) = x̄t

1 for xt
2 ∈ [x̄t

2−K0−K2, x̄t
2] and γt

1(x
t
2) strictly

decreasing with respect to xt
2 for xt

2 ∈ # \ [x̄t
2 −K0 −K2, x̄t

2].

ii. γt
2(x

t
1) : # → # with γt

2(x
t
1) = x̄t

2 for xt
1 ∈ [x̄t

1−K0−K1, x̄t
1] and γt

2(x
t
1) strictly

decreasing with respect to xt
1 for xt

1 ∈ # \ [x̄t
1 −K0 −K1, x̄t

1].

that further partitions Region A into the following eight subregions:

A(0,0) := {(xt
1, x

t
2) : x̄t

i −K0 −Ki ≤ xt
i < x̄t

i ∀i = 1, 2 and

xt
1 + xt

2 > x̄t
1 + x̄t

2 −K0 −K1 −K2}

A(0,j) :=





(xt

1, x
t
2) :

γt
1(x

t
2)−K0 −K1 ≤ xt

1 < γt
1(x

t
2) and xt

2 ≥ x̄t
2 if j=1

γt
1(x

t
2)−K1 ≤ xt

1 < γt
1(x

t
2) and xt

2 < x̄t
2 if j=−1





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A(1,j) :=






(xt
1, x

t
2) :

xt
1 ≥ x̄t

1 and γt
2(x

t
1)−K0 −K2 ≤ xt

2 < γt
2(x

t
1) if j=0

xt
1 ≥ γt

1(x
t
2) and xt

2 ≥ γt
2(x

t
1) if j = 1

xt
1 ≥ γt

1(x
t
2) and xt

2 < γt
2(x

t
1)−K0 −K2 if j=−1






A(−1,j) :=






(xt
1, x

t
2) :

xt
1 ≤ x̄t

1 −K0 −K1 and

γt
2(x

t
1)−K2 ≤ xt

2 < γt
2(x

t
1) if j=0

xt
1 ≤ γt

1(x
t
2)−K0 −K1 and xt

2 ≥ γt
2(x

t
1) if j=1






Proof: The subscripts of A reflect the sign of the Lagrange variables and imply

which, if any, of the constraints are binding. As an example, consider the region

defined by A{k1,k2}. The index ki = 1 if λt
i > 0, ki = 0 if λt

i = 0, and ki = −1

if λt
i < 0. We prove the results associated with regions A{0,0}, A{0,1}, A{0,−1}, A{1,1},

and A{1,−1}. The analysis for regions A{1,0}, A{−1,0}, and A{−1,1} are symmetric to

the ones for regions A{0,1}, A{0,−1}, and A{1,−1}, respectively. An illustration of the

state space segmentation is provided in Figure II.8(a).

We first consider region A{0,0} that corresponds to λt
1 = λt

2 = 0. Following (2.26a)

- (2.26c), in this region we have

xt
1 <φt

1(0, 0, 0)− a11p
t
1L − a12p

t
2L + b1 < xt

1 + K0 + K1 (2.28a)

xt
2 <φt

2(0, 0, 0)− a21p
t
1L − a22p

t
2L + b2 < xt

2 + K0 + K2 (2.28b)

φt
1(0, 0, 0) + φt

2(0, 0, 0)− (a11 + a21)p
t
1L − (a12 + a22)pt

2L + b1 + b2

< xt
1 + xt

2 + K0 + K1 + K2 (2.28c)

Thus, by substituting (2.27a) and (2.27b) into (2.28a)-(2.28c), we can define this

region as {(xt
1, x

t
2) : x̄t

i −K0 −Ki ≤ xt
i < x̄t

i ∀i = 1, 2 and xt
1 + xt

2 > x̄t
1 + x̄t

2 −K0 −

K1 −K2}.
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x1

x2

Region B

!2(x1)

!1(x2)!1(x2)-K0-K1

!2(x1)-K0-K2

!2(x1)-K2

!1(x2)-K1

K0+K1

K1

K2

K0+K2

K0

K0

A(1,1)

"1>0, "2>0

A(1,0)

"1>0, "2=0

A(1,-1)

"1>0, "2<0

A(0,1)

"1=0, "2>0

A(0,0)

"1=0, "2=0

A(0,-1)

"1=0, "2<0

A(-1,1)

"1<0, "2>0

A(-1,0)

"1<0, "2=0

(a) Partitioning of region A

x1

x2

!(x1)

Region A

B(0,0)

"1=0, "2=0

B(0,-1)

"1=0, "2<0

B(-1,0)

"1<0, "2=0

K0

!2(x1)-K2

!
1(x2)-K1

(x1-K1, x2-K0-K2)

(x1-K0-K1, x2-K2)

K0

(x1-K1, x2-K2)

(b) Partitioning of region B

Figure 2.8: Segmentation of the state space
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We now consider region A{0,1} that corresponds to λt
1 = 0 and λt

2 > 0. Since

λt
2 > 0, after substituting in (2.22), (2.27a) and (2.27b), constraints (2.26a) - (2.26c)

reduce to the following:

xt
1 < φt

1(0, λ
t
2, 0) + x̄t

1 − φt
1(0, 0, 0) +

a12

2
λt

2 < xt
1 + K0 + K1 (2.29a)

xt
2 = φt

2(0, λ
t
2, 0) + x̄t

2 − φt
2(0, 0, 0) +

a22

2
λt

2 (equality due to λt
2 > 0) (2.29b)

We first consider (2.29b) which defines one boundary for this region.

xt
2 = φt

2(0, λ
t
2, 0) + x̄t

2 − φt
2(0, 0, 0) +

a22

2
λt

2

> x̄t
2 (since φt

2 ↑ λt
2 by Lemma B.2.3 and a22 > 0)

and limλt
2→0 xt

2 = φt
2(0, 0, 0) + x̄t

2 − φt
2(0, 0, 0) = x̄t

2.

Furthermore, as φt
2 ↑ λt

2 by Lemma B.2.3 and a22 > 0, xt
2 is strictly increasing

with respect to λt
2 in this region (equivalently, λt

2 to be strictly increasing with respect

to xt
2), there is a one-to-one function defining λt

2 in terms of xt
2, that is λt

2 = λt
2(x

t
2).

The remaining boundaries are given by the inequalities in (2.29a). Since λt
1 = 0,

the constraints are not binding. By rearranging the terms, we get

φt
1(0, λ

t
2, 0)+x̄t

1−φt
1(0, 0, 0)+

a12

2
λt

2−K0−K1 < xt
1 < φt

1(0, λ
t
2, 0)+x̄t

1−φt
1(0, 0, 0)+

a12

2
λt

2

(2.31)

Temporarily defining a function δ1(λt
2) := φt

1(0, λ
t
2, 0) − φt

1(0, 0, 0) + a12
2 λt

2, we can

rewrite (2.31) as

δt
1(λ

t
2) + x̄t

1 −K0 −K1 < xt
1 < δt

1(λ
t
2) + x̄t

1 (2.32)

Lemma B.2.3 and a12 < 0 yields δt
1(λ

t
2) < 0 and that δt

1(λ
t
2) is strictly decreasing

with respect to λt
2. If we now define γt

1(x
t
2) := x̄t

1 + δt
1 (λt

2(x
t
2)), we can write the

boundaries for this region as

γt
1(x

t
2)−K0 −K1 < xt

1 < γt
1(x

t
2) (2.33)
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The fact that γt
1(x

t
2) strictly decreasing with respect to xt

2 follows immediately from

δt
1(λ

t
2) strictly decreasing with respect to λt

2 and λt
2 strictly increasing with respect

to xt
2.

Next, the region denoted by A{0,−1} corresponds to λt
1 = 0 and λt

2 < 0. In this

region constraints (2.26a) - (2.26c) reduce to the following:

xt
1 < φt

1(0, λ
t
2, 0) + x̄t

1 − φt
1(0, 0, 0) +

a12

2
λt

2 < xt
1 + K1 (2.34a)

xt
2 = φt

2(0, λ
t
2, 0) + x̄t

2 − φt
2(0, 0, 0) +

a22

2
λt

2 + K0 + K2 (2.34b)

The analysis of this region is very similar to the analysis of Region A{0,1}. The

three differences are (i) the right-hand side of inequality (2.34a) includes the term

K1 instead of K0 +K1, (ii) the right-hand side of equation (2.34b) has the additional

terms K0 + K2 and (iii) λt
2 < 0 throughout the region. Similar steps in the proof for

Region A{0,1} yields the boundaries xt
2 < x̄t

2−K0−K2 and γt
1(x

t
2)−K1 < xt

1 < γt
1(x

t
2)

and ensures γt
1(x

t
2) strictly decreasing with respect to xt

2.

We next consider region A{1,1} that corresponds to λt
1 > 0 and λt

2 > 0. Since,

in this region, both λt
1 > 0, and λt

1 > 0, constraints (2.26a) - (2.26c) reduce to the

following equalities.

xt
1 = φt

1(λ
t
1, λ

t
2, 0) + x̄t

1 − φt
1(0, 0, 0) +

a11

2
λt

1 +
a12

2
λt

2 (2.35a)

xt
2 = φt

2(λ
t
1, λ

t
2, 0) + x̄t

2 − φt
2(0, 0, 0) +

a21

2
λt

1 +
a22

2
λt

2 (2.35b)

Substituting in the previously defined function γt
1(x

t
2), equation (2.35a) defines the

first boundary of this region as:

xt
1 = φt

1(λ
t
1, λ

t
2, 0) + x̄t

1 − φt
1(0, 0, 0) +

a11

2
λt

1 +
a12

2
λt

2

= φt
1(λ

t
1, λ

t
2, 0)− φt

1(0, λ
t
2, 0) +

a11

2
λt

1 + γt
1(x

t
2)

> γt
1(x

t
2) (since φt

1 ↑ λt
1 and a11 > 0, λt

1 > 0)

(2.36)
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and limλt
2→0 xt

1 = φt
1(λ

t
1, 0, 0) − φt

1(0, λ
t
2, 0) + γt

1(x
t
2) = γt

1(x
t
2), the left-hand-side

boundary for Region A{0,1}. Likewise, the remaining boundary is given by xt
2 > γt

2(x
t
1)

where γt
2(x

t
1) is defined similar to γt

1(x
t
2) in the analysis for Region A{0,1}.

Lastly, we examine the region denoted by A{1,−1} where λt
1 > 0 and λt

2 < 0.

Constraints (2.26a) - (2.26c) give the following equalities.

xt
1 = φt

1(λ
t
1, λ

t
2, 0) + x̄t

1 − φt
1(0, 0, 0) +

a11

2
λt

1 +
a12

2
λt

2 (2.37a)

xt
2 = φt

2(λ
t
1, λ

t
2, 0) + x̄t

2 − φt
2(0, 0, 0) +

a21

2
λt

1 +
a22

2
λt

2 −K0 −K2 (2.37b)

As in (2.36), one boundary is given by xt
1 ≥ γt

1(x
t
2). The remaining boundary is given

by

xt
2 = φt

2(λ
t
1, λ

t
2, 0) + x̄t

2 − φt
2(0, 0, 0) +

a11

2
λt

1 +
a22

2
λt

2 −K0 −K2

= φt
2(λ

t
1, λ

t
2, 0)− φt

2(λ
t
1, 0, 0) + γt

2(x
t
1) +

a22

2
λt

2 −K0 −K2

< γt
2(x

t
1)−K0 −K2 (since λt

2 < 0, φt
2 ↑ λt

2 and a22 > 0)

and limλt
2→0 xt

2 = φt
2(λ

t
1, 0, 0)− φt

2(λ
t
1, 0, 0) + γt

2(x
t
1)−K0 −K2 = γt

2(x
t
1)−K0 −K2,

the lower boundary for Region A{1,0}. !

Lemma 2.5. Together with γt
1(x

t
2) and γt

2(x
t
1), a monotone function αt(xt

1) : [−∞, x̄t
1−

K1] → [−∞, x̄t
2−K2] with αt(x̄t

1−K1) = x̄t
2−K2 and αt(xt

1) strictly increasing with

respect to xt
1 divides Region B into the three subregions:

• B(0,−1) := B′
(0,−1) ∪B′′

(0,−1) where

B′
(0,−1) := {(xt

1, x
t
2) : x̄t

1 −K1 < xt
1 ≤ γt

1(x
t
2)−K1 and xt

2 ≤ x̄t
2 −K0 −K2}

B′′
(0,−1) := {(xt

1, x
t
2) : xt

1 ≤ x̄t
1 −K1 and xt

2 ≤ αt(xt
1)−K0}

• B(−1,0) := B′
(−1,0) ∪B′′

(−1,0) where

B′
(−1,0) := {(xt

1, x
t
2) : xt

1 ≤ x̄t
1 −K0 −K1 and x̄t

2 −K2 ≤ xt
2 ≤ γt

2(x
t
1)−K2}
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x2=x2-K0-K2

B’’(0,-1)

!
1(x2)-K1"(x1)-K0

x1=x1-K1

B’(0,-1)

Figure 2.9: Subregions for the proof of Lemma 2.5

B′′
(−1,0) := {(xt

1, x
t
2) : xt

1 ≤ x̄t
1 −K0 −K1 and αt(xt

1 + K0) < xt
2 ≤ x̄t

2 −K2}

• B(0,0) := #2\{A ∪
(
B(0,−1) ∪B(−1,0)

)
}.

Proof: We only provide the proof for region B{0,−1} as the analysis of B{−1,0} is

similar and region B{0,0} is defined by the remaining area in Region B. Region B{0,−1}

corresponds to λt
2 < 0 and µt > 0 for which constraints (2.26a) - (2.26c) reduce to

xt
1 =φt

1(0, λ
t
2, µ

t)− φt
1(0, 0, 0) + x̄t

1 +
a12

2
λt

2 −
(a11 + a12)

2
µt −K1 (2.38a)

xt
2 =φt

2(0, λ
t
2, µ

t)− φt
2(0, 0, 0) + x̄t

2 +
a22

2
λt

2 −
(a21 + a22)

2
µt −K0 −K2 (2.38b)

The analysis of this region is simpler if we consider the cases where xt
1 > x̄t

1 −

K1 and xt
1 ≤ x̄t

1 − K1 separately corresponding to subregions B′
(0,−1) and B′′

(0,−1),

respectively. For subregion B′
(0,−1), we first find the feasible values for xt

2 and then

show that γt
1(x

t
2) −K1 defines the possible values for xt

1. For subregion B′′
(0,−1), we

find a function αt(xt
1) that is defined on the domain xt

1 ≤ x̄t
1 −K1 which establishes

the boundaries for the subregion. Figure 2.9 illustrates the subregions B′
(0,−1) and

B′′
(0,−1). We first show that in the subregion B′

{0,−1}, we have xt
2 ≤ x̄t

2−K0−K2. For
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arbitrary λt
2 < 0 and µt > 0, by (2.38b), we have,

xt
2 = φt

2(0, λ
t
2, µ

t)− φt
2(0, 0, 0) +

a22

2
λt

2 −
(a21 + a22)

2
µt + x̄t

2 −K0 −K2

< φt
2(0, λ

t
2, µ

t)− φt
2(0, λ

t
2, 0) + x̄t

2 −K0 −K2

(since λt
2 < 0, µt > 0, and a22 > 0, a11 + a12 > 0)

< x̄t
2 −K0 −K2 (since φt

2 ↑ λt
2, ↓ µt and λt

2 < 0, µt > 0)

and limλt
2,µt→0 xt

2 = φt
2(0, 0, 0)− φt

2(0, 0, 0) + x̄t
2 −K0 −K2 = x̄t

2 −K0 −K2.

Examining the expression for xt
1 given in (2.38a), we get

xt
1 = φt

1(0, λ
t
2, µ

t)− φt
1(0, 0, 0) + x̄t

1 +
a12

2
λt

2 −
(a11 + a12)

2
µt −K1

= φt
1(0, λ

t
2, µ

t)− φt
1(0, λ

t
2, 0)− (a11 + a12)

2
µt + γt

1(x
t
2)−K1

< γt
1(x

t
2)−K1 (since µt > 0, φt

1 ↓ µt and a11 + a12 > 0)

and limµt→0 xt
1 = φt

1(0, λ
t
2, 0) − φt

1(0, 0, 0) + x̄t
1 + a12

2 λt
2 − K1 = γt

1(x
t
2) − K1, the

left-hand-side boundary for Region A{0,−1}. We note that the increasing property of

γt
1(x

t
2) established in the proof of Lemma 2.4 ensures that x̄t

1 − K1 ≤ γt
1(x

t
2) − K1.

Thus the expressions x̄t
1 −K1 ≤ xt

1 ≤ γt
1(x

t
2) −K1 and xt

2 ≤ x̄t
2 − K0 −K2 defines

the states corresponding to B′
{0,−1}.

For subregion B′′
{0,−1}, we first note that limλt

2→0 xt
1 defines the boundary be-

tween regions B′′
{0,−1} and B{0,0}. Along this boundary, by (2.38a), we have xt

1 =

φt
1(0, 0, µ

t)− φt
1(0, 0, 0) + x̄t

1 −
(a11+a12)

2 µt −K1. Using Lemma 2.3, we find that xt
1 is

strictly decreasing with respect to µt. Hence xt
1 falls solely in this subregion B′′

{0,−1}

(xt
1 ≤ x̄t

1 − K1). Further xt
1 strictly decreasing with respect to µt implies, there is

a one-to-one function defining xt
1 and µt, i.e., µt(xt

1) where µt is strictly decreasing

with respect to xt
1.

Considering (2.38b) along the boundary, we have xt
2 = φt

2(0, 0, µ
t)− φt

2(0, 0, 0) +

x̄t
2−

(a21+a22)
2 µt−K0−K2. Let us temporarily define σ2(µt) = φt

2(0, 0, µ
t)−φt

2(0, 0, 0)+
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x̄t
2 −

(a21+a22)
2 µt. Then, by Lemma 2.3, σ2(µt) is strictly decreasing with respect

to µt. Consequently, as µt(xt
1) is strictly decreasing with respect to xt

1, we have

σ2 (µt(xt
1)) strictly increasing with respect to xt

1. We now introduce and define

α(xt
1) := σ2 (µt(xt

1)) − K2, thus the function xt
2 = α(xt

1) − K0 forms the bound-

ary between regions B′′
{0,−1} and B{0,0}. Since σ2 (µt(xt

1)) ↑ xt
1, we have α(xt

1) ↑ xt
1.

Lastly, by (2.38a), xt
1 = x̄t

1 −K1 implies φt
1(0, 0, µ

t)− φt
1(0, 0, 0)− (a21+a22)

2 µt = 0 for

which the only solution is µt = 0. (Note φt
1 ↓ µt and µt ≥ 0). Hence by (2.38b), we

have xt
2 = x̄t

2 −K0 −K2, which also yields α(x̄t
1 −K1) = x̄t

2 −K2. !

To complete the Proof of Theorem 2.1, we note that part 1(a) follows directly

from the definitions of the monotone functions γt
1(x

t
2) and γt

2(x
t
1) in Lemma 2.4

and the complementary slackness conditions. For example, in region A{−1,1}, the

binding constraints yield yt
1 = xt

1 + K0 + K1 and yt
2 = xt

2. In region A{0,1}, we have

yt
1 = zt

1 + d̄t
1 = φt

1(0, λ
t
2, 0)+b1−a11pt

1−a12pt
2 = φt

1(0, λ
t
2, 0)−φt

1(0, 0, 0)+φt
1(0, 0, 0)+

b1 − a11pt
1L − a12pt

2L + a12
2 λt

2 =φt
1(0, λ

t
2, 0)− φt

1(0, 0, 0) + x̄t
1 + a12

2 λt
2 = γt

1(x
t
2).

For part 1(b), in Regions A{0,j}, the optimal order-up-to level for product 1 is

independent of its own starting inventory xt
1 and by Lemma 2.4 and part (a), it is

non-increasing with xt
2. Specifically, in Region A{0,0}, it is independent of xt

2 and in

regions A{0,1} and A{0,−1}, it is strictly decreasing with the inventory position of xt
2.

In Regions A{1,j}, by part (a), we have yt
1 = xt

1, hence the order-up-to level of product

1 is increasing with xt
1 and independent of xt

2. For regions A{−1,0} and A{−1,1}, again

by part (a), we have yt
1 = xt

1 + K0 + K1, thus the order-up-to level of product 1 is

increasing with xt
1 and independent of xt

2. Symmetric arguments hold for product 2.

The proofs of part 2 (a) and (b) are due to Lemma 2.5. Suppose lt(xt
1, x

t
2) denotes

the optimal amount of flexible capacity allocated to product 1. Since in Region

B, the complementary slackness conditions imply full utilization of each resource,



65

K0−lt(xt
1, x

t
2) will be the amount of flexible capacity allocated to product 2. After the

allocation of the flexible resource and employing the dedicated resources, the optimal

production policy brings inventories of products 1 and 2 to xt
1 + K1 + lt(xt

1, x
t
2) and

xt
2 +K2 +K0− lt(xt

1, x
t
2), respectively. Specifically, in region B{−1,0}, complementary

slackness yields yt
1−xt

1 = K0 +K1 and yt
2−xt

2 = K2, thus lt(xt
1, x

t
2) = K0. Similarly,

in region B{0,−1}, complementary slackness conditions give yt
1−xt

1 = K1 and yt
2−xt

2 =

K0 + K2, hence lt(xt
1, x

t
2) = 0. For region B{0,0}, the definition of lt(xt

1, x
t
2) yields

yt
2 − xt

2 = K0 + K2 − lt(xt
1, x

t
2) which is equivalent to φt

2(0, 0, µ
t)− φt

2(0, 0, 0) + x̄t
2 −

(a21+a22)
2 µt − xt

2 = K0 + K2 − lt(xt
1, x

t
2)=αt(xt

1 + lt(xt
1, x

t
2)) = K0 + K2 − lt(xt

1, x
t
2).

Therefore, the optimal production policy satisfies xt
2 + K0 − lt(xt

1, x
t
2) = αt(xt

1 +

lt(xt
1, x

t
2)). Furthermore, the complementary slackness condition (2.26c) yields µt

to be a function of xt
1 and xt

2 only through their sum xt
1 + xt

2. Thus, the optimal

modified base stock levels for products 1 and 2 are identical for starting inventory

positions for which the total inventory level, xt
1 + xt

2, is identical.

For part 2(c), first let α′t(xt
1 + lt) denote the derivative of αt(xt

1 + lt) with respect

to its argument. By Lemma 2.5, αt is increasing, thus α′t(xt
1 + lt) > 0. Next,

differentiating both sides of lt(xt
1, x

t
2) + αt(xt

1 + lt(xt
1, x

t
2)) = xt

2 + K0 with respect to

xt
1, we get

∂lt

∂xt
1

= − α′t(xt
1 + lt)

1 + α′t(xt
1 + lt)

< 0 (2.39)

Thus, lt is decreasing with respect to xt
1. Similarly, differentiating both sides of

lt(xt
1, x

t
2) + αt(xt

1 + lt(xt
1, x

t
2)) = xt

2 + K0 with respect to xt
2, we get

∂lt

∂xt
2

=
1

1 + α′t(xt
1 + lt)

> 0 (2.40)

Hence, lt is increasing with respect to xt
2. Finally, for part 2(d), the order-up-to level

for product 1 is xt
1 + lt(xt

1, x
t
2) + K1. Differentiating it with respect to xt

1 and with
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respect to xt
2 and using (2.39) and (2.40) we get

∂xt
1 + lt(xt

1, x
t
2) + K1

∂xt
1

=
1

1 + α′t(xt
1 + lt)

> 0

∂xt
1 + lt(xt

1, x
t
2) + K1

∂xt
2

=
1

1 + α′t(xt
1 + lt)

> 0

The order-up-to level for product 2 is xt
2 +K0− lt(xt

1, x
t
2)+K2. Again, differentiating

it with respect to xt
1 and with respect to xt

2, we get

∂xt
2 + K0 − lt(xt

1, x
t
2) + K2

∂xt
1

=
α′t(xt

1 + lt)

1 + α′t(xt
1 + lt)

> 0

∂xt
2 + K0 − lt(xt

1, x
t
2) + K2

∂xt
2

=
α′t(xt

1 + lt)

1 + α′t(xt
1 + lt)

> 0

Hence, the order-up-to level for both products is increasing with respect to either

starting inventory position xt
i. !

Proof of Theorem 2.2 (Optimal Pricing Policy):

The proof of part (a) follows from the expression given in (2.22) and (2.23). In

region A, µt = 0, therefore combining (2.22) and (2.4) we have

mt
1(x

t
1, x

t
2) = −1

2
λt

1(x
t
1, x

t
2) (2.41a)

mt
2(x

t
1, x

t
2) = −1

2
λt

2(x
t
1, x

t
2) (2.41b)

Thus, we have mt
1(x

t
1, x

t
2) > 0 for λt

1 < 0, mt
1(x

t
1, x

t
2) = 0 for λt

1 = 0, and mt
1(x

t
1, x

t
2) <

0 for λt
1 > 0. Following the state space segmentation set forth in Lemma B.2.4,

λt
1 < 0, λt

1 = 0, and λt
1 > 0 correspond to item 1 being critically understocked,

moderately understocked, and overstocked, respectively. Similar arguments yield the

results corresponding to mt
2(x

t
1, x

t
2). The expressions for current period list prices are

given by (2.23). In Region B, the expressions given in (2.22) yields

mt
1(x

t
1, x

t
2) = −1

2

(
λt

1(x
t
1, x

t
2)− µt(xt

1, x
t
2)

)
(2.42a)

mt
2(x

t
1, x

t
2) = −1

2

(
λt

2(x
t
1, x

t
2)− µt(xt

1, x
t
2)

)
(2.42b)
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Since region B is defined as the states corresponding to µt > 0 and non-positive λt
1

and λt
2, we have mt

1(x
t
1, x

t
2) > 0 and mt

2(x
t
1, x

t
2) > 0. For part (b), in the states that

correspond to B{0,0}, (2.42a) and (2.42b) reduce to

mt
1(x

t
1, x

t
2) =

1

2
µt(xt

1, x
t
2) (2.43a)

mt
2(x

t
1, x

t
2) =

1

2
µt(xt

1, x
t
2) (2.43b)

Therefore, we have mt
1(x

t
1, x

t
2) = mt

2(x
t
1, x

t
2). Further, (2.4) then yields

pt
2(x

t
1, x

t
2) = pt

1(x
t
1, x

t
2) + Ct (2.44a)

where Ct = pt
2L − pt

1L. The fact that mt
i(x

t
1, x

t
2) is a function of xt

1 and xt
2 through

their sum follows from (2.26c) which for this region implies that µt is a function of

xt
1 + xt

2. For part (c), we only show the proof for product 1, as similar arguments

yield the desired monotonicity results for product 2. In regions A{0,0}, A{0,1}, and

A{0,−1}, we have pt
1 = pt

1L and hence pt
1 is independent of both xt

1 and xt
2. In region

A{1,0}, we have pt
1 = pt

1L− 1
2λ

t
1. Based on Lemma 2.4, in this region λt

1 increases with

xt
1 and is independent of xt

2, hence pt
1 decreases with xt

1 and is independent of xt
2.

With a similar analysis, we also find that pt
1 decreases with xt

1 and is independent of

xt
2 in region A{−1,0} as well.

In region A{1,1}, we have

xt
1 = φt

1(λ
t
1, λ

t
2, 0) + x̄t

1 − φt
1(0, 0, 0) +

a11

2
λt

1 +
a12

2
λt

2 (2.45a)

xt
2 = φt

2(λ
t
1, λ

t
2, 0) + x̄t

2 − φt
2(0, 0, 0) +

a21

2
λt

1 +
a22

2
λt

2 (2.45b)

By differentiating both sides of (2.45a) and (2.45b) with respect to xt
1, we find that

both λt
1 and λt

2 are increasing with respect to xt
1. Similarly, λt

1 and λt
2 are increasing

with respect to xt
2. Since, in this region pt

1 is given by pt
1 = pt

1L − 1
2λ

t
1, pt

1 decreases
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with respect to both xt
1 and xt

2. Similar analysis yield λt
1 to be independent of xt

1 and

xt
2 in Regions B{0,−1} and B{0,0} and be increasing with respect to xt

1 and xt
2 in Region

B{−1,0}. Likewise, we find λt
2 to be independent of xt

1 and xt
2 in Regions B{−1,0} and

B{0,0} and be increasing with respect to xt
1 and xt

2 in Region B{0,−1}. Lastly, we find

µt to be increasing with respect to xt
1 and xt

2 in regions B{−1,0}, B{0,−1} and B{0,0}.

Therefore, the desired monotonicity results follow immediately form the definitions

of pt
1 in these regions. !

2.9.3 Proofs of Sensitivity Results

Proof of Theorem 2.3

For sensitivity with respect to production cost, we only present the proof for

instances where both items are critically understocked and share the flexible capacity

or when one item is moderately understocked while the other is overstocked. The

analysis of the other cases are similar and omitted for brevity. When both items are

critically understocked and share the flexible capacity, we have λt∗
1 = λt∗

2 = 0 and

µt∗ > 0. The optimality conditions in this region yield to the following relationships

that define the sensitivity of the optimal policy to a change in item 1’s production

cost, c1.

− 2a11
∂pt∗

1

∂c1
− 2a12

∂pt∗
2

∂c1
+ a11 + (a11 + a12)

∂µt∗

∂c1
= 0

− 2a12
∂pt∗

1

∂c1
− 2a22

∂pt∗
2

∂c1
+ a12 + (a12 + a22)

∂µt∗

∂c1
= 0

− 1 + βV t−1
11 (zt∗

1 − εt
1, z

t∗
2 − εt

2)
∂zt∗

1

∂c1
+ βV t−1

12 (zt∗
1 − εt

1, z
t∗
2 − εt

2)
∂zt∗

2

∂c1
− ∂µt∗

∂c1
= 0

βV t−1
12 (zt∗

1 − εt
1, z

t∗
2 − εt

2)
∂zt∗

1

∂c1
+ βV t−1

22 (zt∗
1 − εt

1, z
t∗
2 − εt

2)
∂zt∗

2

∂c1
− ∂µt∗

∂c1
= 0
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∂zt∗
1

∂c1
− ∂yt∗

1

∂c1
− a11

∂pt∗
1

∂c1
− a12

∂pt∗
2

∂c1
= 0

∂zt∗
2

∂c1
− ∂yt∗

1

∂c1
− a12

∂pt∗
1

∂c1
− a22

∂pt∗
2

∂c1
= 0

∂yt∗
1

∂c1
+

∂yt∗
2

∂c1
= 0 (2.46)

Solving the set of equations in (2.46) for ∂pt∗
1

∂c1
, ∂pt∗

2
∂c1

, ∂yt∗
1

∂c1
and ∂yt∗

2
∂c1

,we find

∂pt∗
1

∂c1
=

−2V11 + 2V12 − a12βV 2
12 − a22βV 2

12 + a12βV11V22 + a22βV11V22

−4V11 + 8V12 − 4V22 + 4a12βV11V22 + 2(a11 + a22)β(V11V22 − V 2
12)

(2.47a)

∂pt∗
2

∂c1
=

−2V12 + 2V22 + a11βV 2
12 + a12βV 2

12 − a11βV11V22 − a12βV11V22

−4V11 + 8V12 − 4V22 + 4a12βV11V22 + 2(a11 + a22)β(V11V22 − V 2
12)

(2.47b)

∂yt∗
1

∂c1
= −

(
∂yt∗

2

∂c1

)

= −4− 2a11βV11 − 4a12βV12 − 2a22βV22 + (a11a22 − a2
12)β

2(V11V22 − V 2
12)

β(−4V11 + 8V12 − 4V22 + 4a12βV11V22 + 2(a11 + a22)β(V11V22 − V 2
11))

(2.47c)

The term in the denominators of (2.47a-c) is positive. (Recall Λ′ > 0 in the proof

of Lemma 2.2). The numerator of (2.47a) is nonnegative since 2V11 ≤ 2V12, and

(a12 +a22)β(V11V22−V 2
12) ≥ 0 by a12 +a22 > 0 and V11V22−V 2

12 ≥ 0. Hence, ∂pt∗
1

∂c1
≥ 0.

With a similar argument, we find ∂pt∗
2

∂c1
≤ 0. The numerator of (2.47c) is also positive

(with a similar reasoning in showing Λ > 0 in Case 2 of Lemma 2.2). Thus, we have

∂yt∗
1

∂c1
≤ 0 and ∂yt∗

2
∂c1

≥ 0.

Next, we consider the case where item 1 is moderately understocked and item

2 is overstocked. In this region, λt∗
1 = 0, λt∗

2 > 0, and µ = 0, thus the modified

base-stock level for product 2 is yt∗
2 = xt

2 and is independent of the production cost

parameter. The optimality conditions result in the following relationships regarding

the sensitivity with respect to c1.
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∂pt∗
1

∂c1
=

1

2
(2.48a)

∂pt∗
2

∂c1
= − −2V12 + a12βV 2

12 − a12βV11V22

2 (2V11 + a22βV 2
12 − a22βV11V22)

(2.48b)

∂yt∗
1

∂c1
= −




4− 2a11βV11 − 4a12βV12 + a2

12β
2V 2

12 − a11a22β2V 2
12

−2a22βV22 − a2
12β

2V11V22 + a11a22β2V11V22





2β(−2V11 − a22βV 2
12 + a22βV11V22)

(2.48c)

Hence ∂pt∗
1

∂c1
> 0. It can be easily shown that the numerator of (2.48b) is nonnegative

and the denominator of (2.48b) is negative. With the negative sign in front, we thus

find ∂pt∗
2

∂c1
> 0. Finally, the numerator of (2.48c) is positive (recall proof of case 2 in

Lemma 2.2). The denominator is easily shown to be positive. Therefore, we have

∂yt∗
1

∂c1
< 0.

The proof of part (b) regarding holding and backorder costs is similar and thus

omitted for brevity. !

Proof of Theorem 2.4

We show the result for sensitivity regarding and increase in the dedicated ca-

pacity, for the two instances when item 1 is critically understocked, while item 2

is overstocked, and when both items are critically understocked sharing the flexible

resource. The analysis of the remaining cases are similar.

When item 1 is critically understocked and item 2 is overstocked, we have, λt∗
1 < 0

while λt∗
2 > 0 indicating that yt∗

1 = xt
1+K0+K1 and yt∗

2 = xt
2. Hence we immediately

have ∂yt∗
1

∂K1
= 1 > 0 and ∂yt∗

2
∂K1

= 0. For sensitivity results for pt∗
1 and pt∗

2 , we again

consider the optimality conditions to get
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∂pt∗
1

∂K1
=

2βV11 + a22β2(V 2
12 − V11V22)


4− 2a11βV11 − 4a12βV12 + a2

12β
2V 2

12 − a11a22β2V 2
12

−2a22βV22 − a2
12β

2V11V22 + a11a22β2V11V22





(2.49a)

∂pt∗
2

∂K1
=

2βV12 − a12β2(V 2
12 − V11V22)


4− 2a11βV11 − 4a12βV12 + a2

12β
2V 2

12 − a11a22β2V 2
12

−2a22βV22 − a2
12β

2V11V22 + a11a22β2V11V22





(2.49b)

It is straightforward to check that the numerators in (2.49a) and (2.49b) are nonpos-

itive and the denominators are positive. Thus, we find ∂pt∗
1

∂K1
≤ 0 and ∂pt∗

2
∂K1

≤ 0. When

both items are critically understocked and receive a share of the flexible resource,

the optimality conditions yield

∂pt∗
1

∂K1
=

β(V 2
12 − V11V22)

−2V11 + 4V12 − 2V22 + (a11 + 2a12 + a22)β(V11V22 − V 2
12)

(2.50a)

∂pt∗
2

∂K1
=

β(V 2
12 − V11V22)

−2V11 + 4V12 − 2V22 + (a11 + 2a12 + a22)β(V11V22 − V 2
12)

(2.50b)

∂yt∗
1

∂K1
=

2(V12 − V22) + (a11 + a12)β(V11V22 − V 2
12)

−2V11 + 4V12 − 2V22 + (a11 + 2a12 + a22)β(V11V22 − V 2
12)

(2.50c)

∂yt∗
2

∂K1
=

2(V12 − V11) + (a12 + a22)β(V11V22 − V 2
12)

−2V11 + 4V12 − 2V22 + (a11 + 2a12 + a22)β(V11V22 − V 2
12)

(2.50d)

Similar to the previous results, we verify that ∂pt∗
1

∂K1
≤ 0, ∂pt∗

2
∂K1

≤ 0, ∂yt∗
1

∂K1
≥ 0 and

∂yt∗
2

∂K1
≥ 0.

The proof of part (b) is similar. !

Proof of Theorem 2.5

We show the result for sensitivity regarding and increase in the demand intercept,

for the two instances when both items are overstocked, and when both are critically

understocked sharing the flexible resource. The analysis of the remaining cases are
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similar and therefore omitted for brevity. When both items are overstocked, we find,

∂pt∗
1

∂b1
=




2a22 + a2

12βV11 − 2a11a22βV11 − 2a12a22βV12

−a2
22βV22 + a22β2 (V11V22 − V 2

12) (a11a22 − a2
12)








(a11a22 − a2

12)(4− 2a11βV11 − 4a12βV12

−2a22βV22 + (a11a22 − a2
12)β

2(V11V22 − V 2
12))





(2.51a)

∂pt∗
2

∂b1
=




−2a12 + a11a12βV11 + 3a2

12βV12 − a11a22βV12

+a12a22βV22 − a12β2 (V11V22 − V 2
12) (a11a22 − a2

12)








(a11a22 − a2

12)(4− 2a11βV11 − 4a12βV12

−2a22βV22 + (a11a22 − a2
12)β

2(V11V22 − V 2
12))





(2.51b)

In equation (2.51a), both the numerator and denominator are positive. The denom-

inator is positive since a11a22− a2
12 > 0 and the remaining term in the paranthesis is

also positive as discussed in the previous cases. The numerator is positive because

2a22 > 0, and a22β2 (V11V22 − V 2
12) (a11a22 − a2

12) ≥ 0 and a2
12βV11 − 2a11a22βV11 −

2a12a22βV12−a2
22βV22 = − (a11a22 − a2

12) βV11−a22β (a11V11 + 2a12V12 + a22V22) ≥ 0

(nonpositivity of term in last paranthesis follows from similar arguments as in the

proof of Lemma 2.2 case 2.) Therefore, ∂pt∗
1

∂b1
≥ 0.

In equation (2.51b), both the numerator and denominator are also positive. The

denominator is positive since a11a22 − a2
12 > 0 and the remaining term in the paran-

thesis is also positive as discussed previously. The numerator is positive because

−2a12 > 0, and −a12β2 (V11V22 − V 2
12) (a11a22 − a2

12) ≥ 0 and a11a12βV11 +3a2
12βV12−

a11a22βV12 + a12a22βV22 = − (a11a22 − a2
12) βV12 + a12β (a11V11 + 2a12V12 + a22V22) ≥

0 Therefore, we also have ∂pt∗
2

∂b1
≥ 0.
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When both items are critically understocked and receive a share of the flexible

resource, the optimality conditions yield

∂pt∗
1

∂b1
= −




2a22V11 − 4a22V12 + 2a22V22

+(V11V22 − V 2
12)(a

2
12 − a2

22 − 2a22(a11 + a12))





2(a11a22 − a2
12)




(−2V11 + 4V12 − 2V22

+β(a11 + 2a12 + a22)(V11V22 − V 2
12))





(2.52a)

∂pt∗
2

∂b1
= − a12

2(a11a22 − a2
12)

+
(−a12(a11 + a12) + a11(a12 + a22))β(V11V22 − V 2

12)

2(a11a22 − a2
12)




−2V11 + 4V12 − 2V22

+β(a11 + 2a12 + a22)(V11V22 − V 2
12)





(2.52b)

∂yt∗
1

∂b1
= −

(
∂yt∗

2

∂b1

)

= −2V11 − 2V12 + a12βV 2
12 + a22βV 2

12 − a12βV11V22 − a22βV11V22

2(−2V11 + 4V12 − 2V22 + β(a11 + 2a12 + a22)(V11V22 − V 2
12))

(2.52c)

Based on results from previous cases, the denomiator of (2.52a) is positive. The

numerator is negative since 2a22V11− 4a22V12 + 2a22V22 < 0 and (V11V22− V 2
12)(a

2
12−

a2
22− 2a22(a11 + a12)) may be easily shown to be negative. Hence, with the negative

sign in front, we find ∂pt∗
1

∂b1
≥ 0. The first term in (2.52b) is positive. The denominator

of the second term is positive due to earlier results. The numerator is also clearly

positive. Hence, we find ∂pt∗
2

∂b1
≥ 0. The denominator of (2.52c) is positive. The

numerator may easily shown to be negative. With the negative sign in front, we find

∂yt∗
1

∂b1
≥ 0 and ∂yt∗

2
∂b1

≤ 0.

For part (b), we only show the result for the instances where both items are

overstocked. The analysis for the other cases are similar. Through the optimality
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conditions we find

∂pt∗
1

∂a11
=

A + B + C

(a11a22 − a2
12)




(4− 2a11βV11 − 4a12βV12 − 2a22βV22

+(a11a22 − a2
12)β

2(V11V22 − V 2
12))





(2.53a)

where

A = 2a22(c1 − λt∗
1 − 2pt∗

1 ) (2.54a)

B = (−a2
12βV11 − 2a11a22βV12 − a2

22βV22)(c1 − λt∗
1 − 2pt∗

1 ) (2.54b)

C = pt∗
1

(
2(a11a22 − a2

12)βV11 − a22(a11a22 − a2
12)β

2(V11V22 − V 2
12)

)
(2.54c)

Substituting the expression for pt∗
1 from (2.22) and (2.23a), we find that

c1 − λt∗
1 − 2pt∗

1 =
a12b2 − a22b1

a11a22 − a2
12

≤ 0

Furthermore, in A, a22 > 0 and in B, −a2
12βV11 − 2a11a22βV12 − a2

22βV22 ≥

−a2
12βV12− 2a11a22βV12− a2

22βV12 = −βV12(a12 + a22)2 ≥ 0. Thus, both terms A and

B are nonpositive. In C, pt∗
1 ≥ 0, and both 2(a11a22 − a2

12)βV11 and −a22(a11a22 −

a2
12)β

2(V11V22 − V 2
12) are nonpositive. Thus C is nonpositive as well. Since the de-

nominator of (2.53a) has been shown to be nonnegative previously, we find that

∂pt∗
1

∂a11
≤ 0.

A similar analysis proves part (c). !



CHAPTER III

Optimal Control of an Assembly System with Demand for
the End-Product and Intermediate Components

3.1 Overview

In this chapter, we consider the production and admission control of a two-stage

manufacturing system where intermediate components are produced to stock in the

first stage and an end-product is assembled from these components through a second

stage assembly operation which may allow backorders. The manufacturing firm faces

two types of demand. The one directed at the end-product is satisfied immediately

if there are available products in inventory, and the firm has the option to accept

the order for later delivery or to reject the order if no inventory is available. The

second type of demand is for any of the intermediate components and the firm again

has the option to accept the order or reject it to keep the components available

for assembly purposes. We provide structural results for the demand admission,

component production and product assembly decisions.

We also extend the model to take into account multiple customer classes based

on revenue and a more general revenue collecting scheme where only an upfront

partial payment for an item is received if a customer demand is accepted for future

delivery with the remaining revenue received upon delivery. Since the optimal policy

structure is rather complex and defined by switching surfaces in a multidimensional

75
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space, we also propose a heuristic policy that is easily implementable regardless of

the problem size and test its performance under a variety of example problems.

3.2 Introduction

This chapter focuses on a manufacturing setting where a firm, having both com-

ponent production and final assembly operations, faces demands for its end-product

as well as the intermediate components.

Several business practices may lead a firm to operate within this setting. For

example, consider a major appliance manufacturer such as Whirlpool, that produces

various components and assembles them into a refrigerator. In addition to the de-

mand for the refrigerator, Whirlpool also supplies individual components such as

compressors in order to sustain its after-sales service operations. In many instances,

efficient production control and demand management skills may be crucial for prof-

itability when the product and component sales both have a significant contribution

to the firm’s revenues. The after-sales service is regarded as a high profit margin

business and has become a comparable revenue generator throughout numerous in-

dustries. According to Cohen et al [17], in industries such as automobiles and white

goods, the earlier units that companies have sold over the years have created after-

markets four to five times larger than the original product markets. Consequently,

businesses across many industries earn on average 45% of gross profits from the

aftermarket.

As another example, consider TRW, which produces a range of automotive com-

ponents such as braking, steering and suspension systems. TRW has a unit that

makes engineered fastener components for its own products but the fastener unit

also sells fasteners to other Tier 1 automotive suppliers which may sometimes even
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compete with TRW. Thus, at any point in time, the fastener unit has the option to

accept or reject outside demand but also needs to coordinate its production policies

to serve the demand arising from the assembly of its own products.

Our main objective in this chapter is to address several important decisions that

a firm operating within this setting faces. Specifically, we will be focusing on the

following questions: 1) How many of each type of intermediate components should

the firm produce? 2) How should the firm decide whether to accept or reject an order

for any of these intermediate components? 3) How does the firm determine whether

to initiate the assembly of another end-product? 4) How does the firm regulate

end-product admissions to its assembly queue?

The remainder of this chapter is organized as follows. In Section 3.3, we review

the related literature. We provide the problem formulation in Section 3.4. In Sections

3.5 and 3.6, we characterize the structure and sensitivity of the optimal policy. In

Section 3.7, we discuss extensions of the original model to multiple customer classes

and partial revenue collecting schemes. In Section 3.8, we devise a heuristic solution

approach and provide numerical results to evaluate the performance of the heuristics

for a variety of problem instances. Finally, we conclude in Section 3.9. The proofs

of all theoretical results are provided in Section 3.10.

3.3 Literature Review

This study interconnects the two research areas of assembly and admission con-

trol. There exists a rich literature on inventory control of assembly systems. An

extensive literature survey has been provided by Song and Zipkin [53]. In one of the

earliest works, Schmidt and Nahmias [50] study an assembly system with two com-

ponents and a single final product that is assembled-to-stock. They assume a two
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stage manufacturing system where both the production and assembly stages have

deterministic lead times. They identify the optimal assembly policy which states

that there exists a target assemble-up-to point to reach as long as there are available

components. They also identify the optimal production policies for the components

which follows a modified base-stock policy due to differing replenishment lead times

for the components. Rosling [48] extends the findings of Schmidt and Nahmias to

multi-stage assembly systems by also assuming deterministic lead times.

In more recent works on pure assembly systems which are closest to our set-

ting, Benjaafar and ElHafsi [4] consider the production and inventory control of a

multi-component assembly system with several customer classes. Assuming instan-

taneous assembly, they show that a state dependent base stock policy is optimal for

component production and there exists state dependent rationing levels for differ-

ent demand classes. A subsequent work by Benjaafar et al [5] relaxes their earlier

assumption of instantaneous assembly and incorporates multiple production and in-

ventory stages. They again characterize the structure of the optimal production and

rationing policies in the presence of multiple customer classes and show that produc-

tion at each stage follows a state dependent base-stock policy which decreases with

the inventory level of downstream items and increases with the inventory level of all

other items. As in their previous work, demand admission for the product follows

state dependent rationing levels.

In Benjaafar et al. [5], all customer classes require the same end-product but are

willing to pay different amounts for the product. Therefore, rationing decisions are

taken at the end product inventory level to prioritize several demand streams for the

same product. In our setting, different customers demand different products, either

the end-product or any of the intermediate components.
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There is also a rich literature on admission control which falls outside the assembly

systems classification. Stidham [54] presents a review of the literature on admission

control for a single class make-to-order queue. Ha [31] considers a single item make-

to-stock production system with several demand classes and lost sales. He shows

that the optimal admission control policy is characterized by stock rationing levels

for each demand class. He later extends the results to allow backorders in Ha [30]

for a make-to-stock production system with two priority classes.

Specifically, controlled arrival to multiple nodes of queues in series has also at-

tracted interest. Ghoneim and Stidham [26] study one such setting with two queues

in series where customer arrivals to the first queue go through service in both queues

whereas customer arrivals to the second queue only require service by that queue.

They show that the optimal demand admission policy has a monotonic structure. Ku

and Jordan [37] also study a similar system with finite queue sizes. They introduce

randomness on whether a customer admitted to the first queue will actually stay

in the system to get service from the second queue. They show that the optimal

admission policy is defined by a monotonic threshold. In a subsequent work, Ku and

Jordan [38], extend their results to systems with parallel first-stage queues. Duenyas

and Tsai [20] study a two-stage production/inventory system where there is demand

for the end product as well as the intermediate product with admission control on

the demand for the latter. They derive the structure of the optimal policy for the

centralized control problem and consider several pricing schemes for the decentral-

ized case that achieves the profits of the centralized problem. Their formulation

for the centralized control problem where there is only a single component and no

admission control on the end-product is a special case of the problem considered in

this chapter.
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Our work is also related to the general assemble-to-order manufacturing systems

literature involving multiple products assembled from a selection of intermediate

components. As stated in Song and Zipkin [53], optimal policies regarding such

general systems are still unknown. Several authors have focused on control policies

assuming an independent base-stock order policy along with some allocation rule,

such as committing inventories to the earliest backlog or simply following a first

come first serve allocation. Examples of such work include those of Hausman et al

[32], Song et al [51], and Akcay and Xu [2]. Our formulation may be regarded as

a special case of the general system in the sense that it only allows demands - in

addition to the demand for the end product - for one component at a time rather

than an arbitrary selection of multiple components. Albeit limited compared to a

general product portfolio architecture, our model enables us to fully characterize the

optimal policies.

3.4 Problem Formulation

We consider a two-stage assembly system as shown in Figure 3.1. In the first

stage, N intermediate components (also referred to as intermediate products) are

produced-to-stock in exclusive subassembly lines and in the second stage, they are

assembled into a single end-product. There are two types of demand sources in the

system. The first type of demand is for the end-product, arriving based on a Poisson

distribution with rate λ0. The second type of demand is directly for the intermediate

components. Customers may request a specific component i with a demand rate λi,

i = 1, 2, ...N .

We assume that production of a unit of component i (i = 1, 2, ...N) takes an

exponentially distributed amount of time with mean 1
µi

. For each unit of component
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Production Line 1

Assembly Line

( Produce or 
Stay Idle ? )

Demand for 
component 1

Component 
Production

Production Line N

( Assemble or 
Stay Idle ? )

End-product 
Assembly

( Accept or Reject ? )

( Produce or 
Stay Idle ? )

Demand for comp. N

( Accept or Reject ? )

on-hand inv.

queue

Demand for 
end-product( Admit to queue

or Reject ? )

Figure 3.1: The assembly system demonstrating the demand for intermediate components
as well as the end-product and the corresponding decisions.

i kept in stock, inventory holding costs are accrued at the rate of hi per unit time.

The subassembly lines feed a single downstream assembly line, referred to as the

second stage of the manufacturing system. During this assembly stage, one unit of

each type of component is drawn from its inventory, and assembled into a single end-

product. We let the assembly operation for the product also take an exponentially

distributed amount of time with mean 1
µ0

. The firm incurs inventory holding and

backorder costs at the rate of h0 and b0 per unit time for each product kept in stock

and order kept in the assembly queue, respectively. We note that preemptions are

allowed during both the assembly and production operations. In addition, we exclude

the cost of subassembly and assembly operations from the model since, without loss

of generality, we can define the revenues from individual component and end-product

demands as marginal revenues.

The decision epochs considered in this model consists of all demand arrivals to-

gether with the production and assembly completions. At each decision epoch, a

policy specifies whether a production server should stay idle or produce a unit of

the corresponding component and whether the assembly line should stay idle or
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initiate the assembly of another end-product. At decision epochs corresponding to

demand arrivals for the end-product or to individual components, the policy deter-

mines whether to accept or reject the orders.

The goal is to find a policy which maximizes the average profit per unit time

through an infinite horizon. The profit is the revenue from accepted orders minus

the inventory holding costs and the backorder costs due to orders waiting in the

assembly queue.

The optimal production, assembly and admission control problem can be formu-

lated as a Markov Decision Process. The state (x, y) ∈ S where x = (x1, x2, ..., xN)

and xi ≥ 0, ∀ i = 1, ..., N is defined such that x1, x2, ..., xN denote the amount of

inventory of components 1 through N respectively, and y denotes the inventory po-

sition for the end-product. The states at which y < 0 correspond to customer orders

waiting in the assembly queue whereas states at which y > 0 indicate that there

is available inventory ready to satisfy end-product demand. We let v(x, y) denote

the relative value function of being in state (x, y) and g be the average profit per

transition, where transitions occur with rate Λ =
N∑

i=0
(λi + µi), resulting in an aver-

age profit per unit time of gΛ. We use uniformization as in Lippman [40] to write

the average profit infinite horizon dynamic programming formulation. To keep the

notation simple and to assist us in the analysis to follow, we first introduce a set of

operators to represent the firm’s decisions.

First, we will consider the end-product demand admission decision. When an

order for the end-product arrives, if the end-product inventory is positive, the order

is met immediately from inventory. However, if there is no available end-product

inventory, the firm has the option to accept or reject the order. Each accepted order

generates a revenue of R0. If an order is rejected, it is considered as lost sales. If the
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end-product inventory is zero, and we accept the order, we incur a backorder cost.

Operator T 1
0 in (3.1) represents this decision regarding product admission.

T 1
0 v(x, y) =






v(x, y − 1) + R0 if y > 0

max[v(x, y − 1) + R0, v(x, y)] if y ≤ 0

Similarly, there is an admission decision associated with each demand arrival

for any of the intermediate components. Acceptance of a demand for a specific

component i leads to a revenue of Ri whereas rejection of an order leads to lost sales.

Since components are produced to stock, an order for a component may be accepted

only if the inventory of the corresponding component is positive. Thus, component

demand cannot be backordered. The operator T 1
i defined below corresponds to the

component demand admission decision where I(·) denotes the indicator function and

ei is the ith unit vector.

T 1
i v(x, y) = max

[
(v(x− ei, y) + Ri) · I(xi>0) + v(x, y) · I(xi=0), v(x, y)

]

Finally, operators T 2
0 and T 2

i defined below correspond to the assembly initiation and

component production decisions, respectively.

T 2
0 v(x, y) = max

[
(v(x− 1, y + 1)) · I(xi>0 ∀i) + v(x, y) · I(∃ i | xi=0), v(x, y)

]

T 2
i v(x, y) = max[v(x + ei, y), v(x, y)]

We now present the average profit infinite horizon dynamic programming formula-

tion.

v(x, y)+g =
1

Λ

(
−

N∑

i=1

(hi xi)− h0 y+ − b0 y− +
N∑

i=0

(
λi T 1

i v(x, y) + µi T 2
i v(x, y)

)
)

(3.1)

where y+ := max(y, 0), and y− := −min(y, 0).
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In (3.1), the terms 1
Λ(−

N∑
i=1

hixi− h0y+− b0y−) denote, respectively, the expected

costs per decision epoch due to holding of component inventories, holding of end-

product inventories, and backordering customer orders in the queue. The terms

multiplied by λi, (i = 0, 1, 2, ..., N) correspond to transitions and revenues generated

with the arrival of a demand for the end-product when i=0 and the components

when i=1,...,N . Finally, the terms multiplied by µi correspond to transitions and

revenues generated by a product assembly when i=0 and by a component production

completion opportunity when i = 1, ...N . We also define the operator T by letting

Tv(x, y) to refer to the right hand side of (3.1).

3.5 Structure of Optimal Production, Assembly and Admission Policies

In this section, we characterize the optimal production, assembly and admission

policies. The main questions of interest are the following: (1) Should the firm pro-

duce an additional unit of a component or not? (2) If a demand arrives for an

individual component, should this demand be satisfied or rejected in order to keep

the components available for the end-product assembly? (3) When there are avail-

able components, should another unit of an end-product be assembled? (4) When a

demand arrives for the end-product while no inventory is available, should the firm

admit the demand to the assembly queue or reject it?

First, we introduce the following difference operators that will facilitate the char-

acterization of the optimal policy structure. For any real valued function v on the

state space, we define:

Div(x, y) = v(x + ei, y)− v(x, y) ∀ i = 1, . . . , N ,

Dpv(x, y) = v(x, y + 1)− v(x, y),

D-1,pv(x, y) = v(x, y + 1)− v(x + 1, y).
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Di represents the additional value of an additional unit of component type-i

inventory under value function v. Dp is the additional value of an additional unit

of end-product inventory. Finally, D-1,p refers to the value of having an additional

unit of an end-product relative to the value of keeping the components in component

inventories.

Let V be the set of functions defined on the state space such that if v ∈ V , then

∀ i, j = 1, . . . N where j %= i;

(i) Div(x, y) ↓ xi, ↑ xj, ↓ y ∀ i = 1, . . . , N

(ii) Dpv(x, y) ↓ xi, ↓ y, and ≤ R0 for y > 0

(iii) D-1,pv(x, y) ↑ xi, ↓ y

The above conditions are the sub- and super-modularity conditions on v and

characterize the structure of the optimal component production and rationing poli-

cies. For example, Di ↓ xi means that the additional value gained by producing a

unit of component type-i gets smaller with each additional unit of component type-i

inventory. Hence, if it is optimal not to produce component type-i in state (x, y), it

remains optimal not to produce it in state (x + ei, y). This in turn implies that if

condition (i) holds, the component production policies follow state-dependent base-

stock policies. Further, Di ↑ xj and Di ↓ y mean, respectively, that the base-stock

level for component type-i is nondecreasing with the inventory of other components

and nonincreasing with the end-product inventory. Consequently, since backorders

for the end-product imply a negative inventory position for this product, as the

number of customers waiting in the assembly queue increases, the base-stock level

for component type-i increases.

We further introduce secondary difference operators followed by a set of additional

conditions that facilitate our derivation of the optimal policy structure.
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D1v(x, y) = v(x + 1, y)− v(x, y)

Di,jv(x, y) = v(x + ei + ej, y)− v(x, y) ∀ i, j = 1, . . . , N where j %= i

D−i,pv(x, y) = v(x, y + 1)− v(x + ei, y)

Di,−1,pv(x, y) = v(x + ei, y + 1)− v(x + 1, y)

Lemma 3.1. If a value function v satisfies conditions (i)-(iii), then v also satisfies

the following conditions ∀ i, j, k = 1, . . . N where i, j, k are distinct:

(iv) D1v(x, y) ↓ xi, ↓ y

(v) Di,jv(x, y) ↓ xi, ↓ xj, ↑ xk, ↓ y

(vi) D−i,pv(x, y) ↑ xi, ↓ xj, ↓ y

(vii) Di,−1,pv(x, y) ↓ xi, ↑ xj, ↓ y

Proof: The proof of Lemma 3.1 is provided in Section 3.10.1.

As Lemma 3.1 reveals, the above relations are implied solely by conditions (i)-(iii).

Although they do not have direct ramifications on the optimal policy structure, their

frequent appearances in the analysis of the following lemma warrants their universal

treatment. Lemma 3.2 shows that the conditions (i)-(iii) are preserved under the

operator T .

Lemma 3.2. If v ∈ V then, T 1
0 v, T 1

i v, T 2
0 v, T 2

i v, and Tv ∈ V ∀i = 1, . . . , N .

Proof: The proof of Lemma 3.2 is provided in Section 3.10.1.

We now present the main result. The policies defined below reflect the structure

of the optimal policy for our model.

Definition 3.1. Consider the N-dimensional integer valued vectors (x−i, y) and (x)

where x−i denotes the inventory level of all components except component type-i.

Define the following (state-dependent) component rationing and product admission

policies:
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(a) Rationing policy for component type-i: A demand for component type-i is

satisfied if the amount of inventory for the component is higher than a rationing

threshold αi(x−i, y), i.e. if xi ≥ αi(x−i, y). If xi < αi(x−i, y), the demand for the

component is rejected.

(b) Admission policy for end-product: A demand for the end-product is admitted

if the end-product inventory position is higher than an admission threshold β(x). If

y < β(x), the product demand is rejected.

Definition 3.2. For the integer valued vectors (x−i, y) and (x), define the following

(state-dependent) base-stock policies for component production and product assembly:

(a) Base-stock policy for component type-i: An additional unit of component type-

i is produced if the inventory for component type-i is less than a production threshold

γi(x−i, y). If xi > γi(x−i, y), the production resource for the component stays idle.

(b) Base-stock policy for end-product: When all components are available, the

assembly operation is initiated if the end-product inventory position is lower than an

assembly threshold level δ(x). Otherwise, the assembly resource for the product stays

idle.

The following theorem gives the characterization of the optimal policy structure.

Theorem 3.1. (a) Demand admissions for each individual component type-i, i =

1, . . . , N , follows a rationing policy characterized by the rationing threshold αi(x−i, y).

Furthermore, αi(x−i, y) is non-decreasing with xj, j = 1,...,N , j %= i, and non-

increasing with y.

(b) Admissions for end-product demand follow an admission policy characterized

by the threshold β(x) which is non-increasing with xi, ∀i = 1,..., N .
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Figure 3.2: Optimal demand admission decisions for component type-1 and the end-
product.

(c) Production policy for each component type-i is defined by a base-stock policy

with a production threshold γi(x−i, y). Furthermore, γi(x−i, y) is non-decreasing with

xj, j = 1,...,N , j %= i, and non-increasing with y.

(d) Assembly policy for the end-product follows a base-stock policy with an assem-

bly threshold δ(x) which is non-decreasing with xi, ∀i = 1,..., N .

Proof: The proof of Theorem 3.1 is provided in Section 3.10.1.

Figures 3.2 and 3.3 illustrate the structure of the optimal policies described in

Theorem 3.1 for an example problem with two components with the following pa-

rameters: λ0 = 5, λ1 = 3, λ2 = 4, µ0 = 8, µ1 = µ2 = 10, R0 = 40, R1 = 20, R2 = 10,

b0 = 4, h0 = 2, and h1 = h2 = 1.

The switching curves α1 and β in Figure 3.2 depict the component rationing (for

component type-1) and end-product admission threshold levels, respectively.
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Figure 3.3: Optimal production and assembly decisions for component type-1 and the end-
product.

As indicated in Theorem 3.1 part (a), we observe that the rationing threshold

for component 1 increases as there are more units of component 2 in inventory and

there are more end product customers backlogged in the system. Regarding the end

product admission decision, we observe that the admission threshold decreases (more

units are admitted) when there are more components of either type in inventory as

stated in Theorem 3.1 part (b).

Figure 3.3 displays the structure of the optimal component production and end-

product assembly policies represented by the switching curves γ1 and δ, respectively.

Similar switching curves exist for the type-2 component.

We observe that the production threshold for component 1 increases as there are

more units of component 2 in inventory and as there are more end product customers

backlogged in the system as depicted in Theorem 3.1 part (c). This is essentially a
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similar dynamics as the component demand rationing, i.e. when end-product queue

is longer and when component type-2 is available, more units of component 1 are

desired and used for the final product assembly. Lastly, as stated in Theorem 3.1

part (d), more units of the end product will be assembled if either type of component

has additional inventories.

For this example problem consisting of two components, the optimal threshold

values are defined by switching surfaces in three dimensions. The solid and the dotted

curves in both figures are results of two-dimensional cuts on the switching surfaces at

two separate values of the type-2 component inventory levels. For a general problem

with N components, each threshold is defined by a switching surface embedded in

an N + 1 dimensional Euclidean space.

3.6 Sensitivity of the Optimal Policy

Next, we will examine how the optimal policies described in Theorem 3.1 change

as the end-product revenue decreases. We will use the prime symbol (’) while refer-

ring to the relative value function and parameters of the modified problem.

Theorem 3.2. Suppose that µ′i = µi, λ′i = λi and h′i = hi for i=0,1,...,N; b′0 = b0,

and R′
i = Ri for i = 1, ..., N whereas R′

0 < R0. Then, α′i(x−i, y) ≤ αi(x−i, y),

β′(x) ≥ β(x), γ′i(x−i, y) ≤ γi(x−i, y), and δ′(x) ≤ δ(x).

Proof: The proof of Theorem 3.2 is provided in Section 3.10.2.

Regarding the admission policies, Theorem 2 states that as the revenue from the

end-product gets smaller, it may be optimal to switch from accepting a demand for

the end-product to rejecting it, and from rejecting a demand for the intermediate

product to accepting it. In terms of the production and assembly policies, it may

be optimal to switch from assembling another end-product to staying idle, and from
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(a) Sensitivity of the optimal demand admission decisions.
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Figure 3.4: Changes in optimal policies due to a decrease in the end-product revenue:
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producing a component to staying idle. Figure 3.4 illustrates the changes in the

optimal admission and production/assembly policies due to a product revenue change

from R0 = 40 to R′
0 = 25 with remaining parameters set as λ0 = 6, λ1 = 2, λ2 = 3,

µ0 = 8, µ1 = µ2 = 10, R1 = 20, R2 = 10, b0 = 5, h0 = 2, and h1 = h2 = 1.

A decrease in the revenue of the end-product reduces the relative importance of

satisfying an end-product demand compared to that of satisfying an individual com-

ponent demand. Therefore, the system tends to admit less end-product demand in

the assembly queue, and instead, it accepts more of the demand for the intermediate

products. Consequently, this results in fewer end-products to be assembled. For

component production, the decreased requirements due to fewer products assembled

outweighs the increased requirement due to a higher number of individual component

demands satisfied. As a result, fewer components of each type are produced.

Although the optimal policies are monotonic with respect to the end-product

revenue, they don’t necessarily have uniform monotonicities with respect to other

problem parameters. We will show three such cases by way of counter examples. The

solid lines in Figure 3.5 (a)-(c) display the threshold curves for assembly, component

production, and component rationing, respectively for a two-component problem

with parameters λ0 = 3, λ1 = λ2 = 2, µ0 = 4, µ1 = µ2 = 6, h0 = 2, h1 = h2 = 1, b0 =

2, R0 = 30, R1 = 10, and R2 = 12. In each of these figures, the dashed lines refer to

the corresponding policies with one of the parameters modified as discussed below.

In Figure 3.5 (a), we observe the effects of lowering the revenue from a type-2 com-

ponent on the optimal product assembly threshold. We observe that the threshold

curves δ and δ′ cross each other, hence the optimal policy does not possess mono-

tonicity with respect to a change in R2. A low value of R2 shifts the priority from

satisfying individual component type-2 demands towards producing end-products in-
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Figure 3.5: Counter examples for the optimal policy sensitivity on (a) component revenues,
(b) backorder cost, and (c) product assembly rate

stead. This generates two sorts of dynamics. On the one hand, the priority shift

towards the end-product enables the assembly line to have smoother access to com-

ponent inventories thereby lowers the assembly threshold. On the other hand, as

selling individual components separately brings in relatively lower revenues com-

pared to selling them as an end-product, it is more favorable to turn the components

into products, thus increasing the assembly threshold. Through numerical studies,

we observe the former effect to have a higher influence when component inventories

are low to moderate. This makes sense as the competition between the assembly

operation and the individual component demands on a component is more critical

when component inventories are scarce. At system states with high inventories for

both components, the latter effect is more dominant resulting in a higher assembly

threshold.

We analyze the effect of increasing the backorder cost on the optimal component

production policies in Figure 3.5 (b). A higher backorder cost requires more of the

product demand to be met from inventory and discourages demand admissions to

the assembly queue if there are already a high number of backorders in the system.
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Therefore, for states with on-hand inventories or moderate backorders, we tend to

produce more components as we try to meet as much of the product demand as

possible without further backordering. However, when there is already a high number

of customers waiting in the queue, further product demand admission is prevented,

hence the requirement for components decreases.

Finally, in Figure 3.5 (c) we observe the changes in the optimal component ra-

tioning policy based on an increase in the assembly process rate. We again observe

two different dynamics. A faster assembly line can make up for a delayed availability

of individual components. Therefore it enables more of the individual component

demand to be satisfied resulting in lower component rationing thresholds. On the

other hand, in order to utilize its fast pace, the assembly operation also requires high

component availability allowing quick supplies. We observe that the first effect is

stronger at system states where there is on-hand product inventory or only a few

customers waiting in the assembly queue. However, when there is a high amount of

backorders in the queue, the second effect is influential, saving the components for

assembly purposes to quickly lower the number of backorders.

3.7 Extensions to the Original Model

3.7.1 Multiple Customer Classes

It is straightforward to extend our model to include multiple customer classes

that are willing to pay different amounts for the same end-product as in Benjaafar

et al [5] given that end-products supplied to any customer class require the same

processing time and that they have identical backorder costs under which the original

state space representation may be retained. In fact, we can also include multiple

customer classes for the component demand. For example, let the demand for a
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type-i component arise by Mi customer classes with arrival rates λm
i where m =

1, 2, ...,Mi, generating a revenue of Rm
i . Without loss of generality, we rank Rm

i

such that R1
i ≥ R2

i ≥ ... ≥ RMi
i . In this modified problem, Mi operators of the form

T 1,m
i v(x, y) = max

[
(v(x− ei, y) + Rm

i ) · I(xi>0) + v(x, y) · I(xi=0), v(x, y)
]
replace the

original operator T 1
i . This results in the original problem given by (4.1) to have the

terms
Mi∑

m=1
λm

i T 1,m
i v(x, y) instead of the term λi T 1

i v(x, y).

The conditions set forth in the analysis of Lemma 3.2 and Theorem 3.1 suffices

to show that the optimal policy has a similar structure as the one described in

Theorem 3.1, except for a replacement of the component demand admission thresh-

olds αi(x−i, y) with multiple component admission threshold levels α1
i (x−i, y) ≤

α2
i (x−i, y) ≤ ... ≤ αMi

i (x−i, y) for each demand class.

3.7.2 A Partial Revenue Collecting Scheme

In this section, we consider another extension to the basic model that takes into

account a more general revenue collecting scheme. It is common practice in many

businesses that if a customer is to be made to wait for and end-product, only an

upfront partial payment for the item is collected rather than the item’s full revenue.

Consequently, the firm receives the remaining price of the item at the time of delivery.

In such a setting, a discounted profit formulation is more valid since we would like

to account for the time value of money. Interestingly, the policy structure described

in Theorem 3.1 remains exactly the same with this more general revenue collection

scheme.

Let r0 denote the upfront payment amount received when a customer is admitted

to the product assembly queue such that R0 ≥ r0 ≥ 0. Further, let the operators

corresponding to the product demand admission and product assembly decisions be
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modified as follows:

T 1
0 v(x, y) =






v(x, y − 1) + R0 if y > 0

max[v(x, y − 1) + r0, v(x, y)] if y ≤ 0

T 2
0 v(x, y) =






max
[
(v(x− 1, y + 1)) · I(xi>0 ∀i) + v(x, y) · I(∃ i | xi=0), v(x, y)

]

if y ≥ 0

max[(v(x− 1, y + 1) + R0 − r0) · I(xi>0 ∀i)

+v(x, y) · I(∃ i | xi=0), v(x, y)] if y < 0

Then, using uniformization with transition rate Λ = φ+
N∑

i=0
(λi +µi) where φ denotes

the discount factor, we can rewrite the problem given in (3.1) as a discounted infinite

horizon dynamic program as follows:

v(x, y) =
1

Λ

(
−

N∑

i=1

(hi xi)− h0 y+ − b0 y− +
N∑

n=0

(
λj T 1

j v(x, y) + µn T 2
j v(x, y)

)
)

(3.2)

The following theorem depicts the optimal policy structure.

Theorem 3.3. For the problem given in (3.2), the optimal demand admission, com-

ponent production and product assembly policies follow the optimal policy structure

described in Theorem 3.1. That is, demand admission for the end-product and the

components are characterized by state-dependent admission thresholds and produc-

tion and assembly decisions follow state-dependent base-stock policies with similar

monotonicity properties as set forth in Theorem 3.1.

Proof: The proof of Theorem 3.3 is provided in Section 3.10.3.
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3.8 A Heuristic Policy

3.8.1 Construction of the Heuristic Policy

The optimal policy structure determined by Theorem 3.1 is fairly complex. In

addition to the assembly and admission control decisions for the end-product, the firm

also needs to make production and rationing decisions for each component. As shown

in the previous section, all of these decisions are characterized by state dependent

threshold levels. For a general problem with N components, each threshold is defined

by a switching surface embedded in an N +1 dimensional space. Since the number of

possible system states grows exponentially as the number of components gets larger,

computing the optimal policy in such cases ceases to be a practical task.

For problems with a limited number of components, however, the optimal switch-

ing surfaces may be computed with relative ease as we have previously illustrated

in Figures 3.2 and 3.3. Motivated by the ease of computation for a two-component

problem and the prohibitive inefficiencies associated with problems of large sizes,

we introduce the following heuristic solution approach. For each component type-

i, we construct a two-component subproblem Pi that assumes its type-1 compo-

nent as the component type-i of interest and aggregates all the remaining com-

ponents into a type-2 component. In the original problem of N components, at

each decision epoch corresponding to a demand arrival or production opportunity

for component type-i, the heuristic policy maps the system state (x, y) to state

(xi, min{xj, j = 1, ..., N, j %= i}, y) in subproblem Pi and imitates the corresponding

decision given at this state for component type-i.

The underlying assumption that leads us to construct two-component subprob-

lems lies in the intuitive expectation that the production and rationing decisions for

a certain component is influenced strongly by the component with the lowest inven-
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tory level as opposed to by others with higher inventory levels. In other words, it

is the limiting component that mostly impacts the assembly capabilities and hence

influences the amount of inventory to hold for others. Although exceptions to this

conjecture may occur when there are discrepancies among component production

rates, we will maintain this assumption as it allows us to develop a simpler heuristic.

Let the symbol ( ˆ ) denote the parameters for the constructed two-component

subproblem Pi. We define the revenues and cost parameters as R̂0 = R0, R̂1 =

Ri, R̂2 =
∑
j (=i

Rj, ĥ1 = hi, ĥ2 =
∑
j (=i

hj, ĥ0 = h0, and b̂0 = b0. The demand

arrival, production and assembly rates for component type-1 and the end-product

in problem Pi are set identically at their values in the original problem. Hence we

define λ̂0 = λ0, λ̂1 = λi, µ̂0 = µ0, and µ̂1 = µi.

We handle the production and demand arrival rates corresponding to the type-2

component in subproblem Pi rather differently as this component reflects an ag-

gregation of all the remaining ones. Since upon a demand arrival for component

type-2, we receive the sum of the revenues from all remaining components, we adjust

the demand arrival rate based on the time it takes for a demand to arrive for all

components. This rate adjustment calls for a maximum of exponentially distributed

random variables where this maximum itself no longer follows exponential distribu-

tion. The mean of the maximum of several random variables appears frequently in

the reliability literature when calculating the reliability of a system consisting of sev-

eral servers in parallel. Following equation (7.27) in Billinton and Allan [7], the mean

of the maximum of n random variables (Z1, . . . , Zn) where each random variable Zi

is exponentially distributed with mean 1/λi is given by:
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E[max(Z1, . . . , Zn)] =
(

1
λ1

+ 1
λ2

+ · · · + 1
λn

)
−

(
1

λ1+λ2
+ 1

λ1+λ3
+ · · · + 1

λi+λj
+ · · ·

)

+
(

1
λ1+λ2+λ3

+ 1
λ1+λ2+λ4

+ · · · + 1
λi+λj+λk

+ · · ·
)

− · · · + (−1)n+1 1Pn
i=1 λi

When calculating the demand arrival rate for the type-2 component, we treat the

inverse of this mean time as the corresponding rate. For the production rate, we

set µ̂2 as the average of the production rate of all the remaining components, i.e.,

µ̂2 = (
∑
j (=i

µj)/(N − 1).

For the component production and rationing decisions, we therefore construct

a total of N such two-component subproblems Pi (i = 1, . . . , N). As for the end-

product admission and assembly decisions, we follow an analogous argument by

forming a single one-component subproblem P0, where the parameters for the com-

ponent are determined by aggregating all the components in a similar fashion. At

each decision epoch corresponding to an end-product arrival or assembly opportunity,

the heuristic policy maps the system state (x, y) to state (min{xi, i = 1, ..., N}, y) in

problem P0 and imitates the corresponding decision given at this state.

3.8.2 Performance of the Heuristic Policy

Next, we evaluate the performance of the heuristic policy. Tables 3.1 and 3.2

compare the profits obtained by the optimal and the heuristic policies for 24 ex-

ample problems each for systems consisting of three and four identical components,

respectively. For each problem, we report the profits per unit time obtained by the

optimal policy, our heuristic policy and a “strawman” heuristic policy we picked from

the literature. The “strawman” heuristic policy is a base-stock/rationing policy for

each product where a base-stock and a rationing level is set for each product which
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ignores the inventory levels for all other products (e.g. see Song et al. [51] and

Benjaafar et al. [5] for such heuristic policies).

In Tables 3.1 and 3.2, the parameters varied include the revenues from the in-

termediate and end-products, the demand arrival rates for the intermediate and

end-products, and the utilizations for the production and assembly lines.

The revenue parameters are selected to allow the testing of the heuristics for

cases where the revenue from an end-product is higher, equal to, or lower than the

sum of the revenues from intermediate components. Specifically, for both the three-

and four-component problems, we evaluate the heuristics where the end-product

revenue is 2
3 , 1,

4
3 times the sum of the individual component revenues. For example,

for the case of three intermediate components, the price pair R0 = 30 and Ri =

15 corresponds to a revenue ratio of 2
3 while the price pair R0 = 60 and Ri =

15 corresponds to a revenue ratio of 4
3 . Generally, due to further processing, the

end-product revenue may be at least as much as the sum of the revenues of its

constituents. However, there may be examples where the reverse holds, such as

after-sales parts that are sold at much higher prices. The revenue ratio of 2
3 enables

us to investigate the performance of the heuristics in such settings.

We also change the intermediate and end-product demand arrival rates between a

high and a low ratio to observe the cases where individual sales are a significant part

of the business and the cases where the focus is overwhelmingly on the end-product

with occasional demands arising for intermediate products.

Finally, we vary both component production and assembly utilizations between

low and high values by selecting µ0 and µi such that λ0
µ0

= ρ0 and λi+λ0

µi
= ρi ∀ i =

1, ..., 4. Throughout these example problems, we assume b0 = 0.2R0, h0 = 0.1R0,

and hi = 0.1Ri ∀ i = 1, . . . , N .
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Table 3.1: Performance of the heuristics and independent base-stock/rationing policy for

a system with three identical intermediate products

Optimal Heuristic Indep. BS&R

No R0 Ri λ0 λi ρ0 ρi Profit Profit % diff. Profit % diff.

1 30 10 4 3 0.5 0.5 193.2 193.1 0.02 191.4 0.91

2 30 10 4 3 0.5 0.9 178.6 177.4 0.68 175.2 1.89

3 30 10 4 3 0.9 0.5 178.9 178.9 0.01 177.0 1.03

4 30 10 4 3 0.9 0.9 167.0 166.6 0.24 164.4 1.56

5 30 10 6 0.5 0.5 0.5 181.2 181.2 0.01 178.2 1.70

6 30 10 6 0.5 0.5 0.9 162.0 161.3 0.46 158.6 2.10

7 30 10 6 0.5 0.9 0.5 163.2 163.1 0.02 159.8 2.04

8 30 10 6 0.5 0.9 0.9 150.5 150.3 0.11 148.4 1.38

9 30 15 4 3 0.5 0.5 232.7 232.2 0.19 230.1 1.08

10 30 15 4 3 0.5 0.9 213.1 209.9 1.51 208.7 2.08

11 30 15 4 3 0.9 0.5 217.7 217.6 0.07 216.4 0.61

12 30 15 4 3 0.9 0.9 201.6 200.9 0.36 199.3 1.15

13 30 15 6 0.5 0.5 0.5 185.3 185.3 0.04 172.2 7.08

14 30 15 6 0.5 0.5 0.9 163.3 161.9 0.87 158.8 2.81

15 30 15 6 0.5 0.9 0.5 165.9 165.8 0.03 162.4 2.08

16 30 15 6 0.5 0.9 0.9 150.4 150.0 0.25 148.4 1.35

17 60 15 4 3 0.5 0.5 346.9 346.9 0.00 344.1 0.81

18 60 15 4 3 0.5 0.9 323.7 323.0 0.21 316.4 2.25

19 60 15 4 3 0.9 0.5 319.2 319.1 0.02 316.9 0.72

20 60 15 4 3 0.9 0.9 300.2 299.9 0.09 295.1 1.70

21 60 15 6 0.5 0.5 0.5 358.5 358.5 0.00 353.1 1.51

22 60 15 6 0.5 0.5 0.9 324.6 323.7 0.28 321.8 0.87

23 60 15 6 0.5 0.9 0.5 323.9 323.9 0.00 319.1 1.50

24 60 15 6 0.5 0.9 0.9 302.0 301.8 0.09 297.6 1.47
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In Table 3.1, the average difference between the profits obtained by the optimal

and the heuristic policy is 0.23% whereas the profit difference between the optimal

policy and the independent base-stock/rationing policy is 1.74%. By making use of

the inventory positions of the end-product and the limiting component, the heuristic

policy performs better than the independent base-stock/rationing policy which only

uses local inventory information. In fact, we observe that the heuristic policy out-

performs the independent base-stock/rationing policy in all instances of the example

problems.

Regarding product revenues, we find that the profit attained by the heuristic

policy differs from that of the optimal policy for an average value of 0.41, 0.19 and

0.09 corresponding to product revenue ratios of 2
3 , 1, and 4

3 , respectively, i.e. averages

from problems No.9-16, 1-8 and 17-24. Thus, we observe that the performance of the

heuristic policy improves as the revenue from the end-product increases with respect

to the sum of the revenues from intermediate components.

In terms of demand arrival rate ratios, we find that the heuristic policy performs

slightly better at high arrival rates for the end-product and low arrival rates for

intermediate products. These two properties suggest that the heuristic policy is also

capable of controlling pure assembly systems with no exogenous demand for the

intermediate components.

Lastly, we observe that the heuristic policy performs very well for problem in-

stances where utilization for the production line is low with an average difference

of 0.04% between the profits obtained by the optimal and the heuristic. This is

somewhat expected since the heuristic plans the production of an item based on the

inventory of the limiting product. A faster production rate allows withholding the

processing of an item until the inventory position of the limiting item is restored. In
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settings where the production line utilization is high and the assembly line utiliza-

tion is low, however, we find that the performance of the heuristic policy is degraded

to an average difference of 0.67%. On the other hand, settings with low assembly

utilizations also lead to even lower performance by the independent policy with an

average difference of 2.09% and a maximum difference of up to 7.08% as observed in

problem No.13.

Table 3.2 is constructed in a similar fashion to Table 3.1 in order to evaluate the

performance of the heuristic policy when applied to systems with a larger number of

intermediate products.

We find that the average difference between the optimal and the heuristic profit is

0.31% while the average difference between the optimal profit and the profit obtained

by the independent base-stock/rationing policy is 1.91%. Comparing the three- and

four-component results, an important characteristic of the heuristic policy seems

to be its retained robustness moving from a three-component problem to a four-

component one.

In accordance with the results obtained by Table 3.1, a closer look into Table 3.2

also reveals that the performance of the heuristic policy is strongest in settings where

the revenue from the end-product is higher compared to the sum of the revenues

from intermediate components, when the demand rate for the end-product is higher

compared to the demand rate for intermediate components, and when the production

line utilizations are low. The heuristic is robust with respect to the assembly line

utilization.

Finally, we are interested in how the heuristic policy performs in systems with

asymmetric rate, revenue and cost parameters. In Table 3.3, we construct a base case

labeled as problem No.0, for which we set R0 = 50, R1 = 20, R2 = 15, R3 = 10, R4 =
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Table 3.2: Performance of the heuristics and an independent base-stock/rationing policy

for a system with four identical intermediate products

Optimal Heuristic Indep. BS&R

No R0 Ri λ0 λi ρ0 ρi Profit Profit % diff. Profit % diff.

1 40 10 4 3 0.5 0.5 257.1 257.0 0.07 254.8 0.91

2 40 10 4 3 0.5 0.9 236.9 234.7 0.90 232.2 1.97

3 40 10 4 3 0.9 0.5 238.0 237.9 0.04 235.6 1.02

4 40 10 4 3 0.9 0.9 221.5 220.7 0.35 216.3 2.34

5 40 10 6 0.5 0.5 0.5 240.9 240.8 0.05 235.7 2.17

6 40 10 6 0.5 0.5 0.9 213.1 211.7 0.67 208.6 2.13

7 40 10 6 0.5 0.9 0.5 216.8 216.7 0.00 212.4 2.04

8 40 10 6 0.5 0.9 0.9 198.2 198.0 0.07 195.3 1.45

9 40 15 4 3 0.5 0.5 309.6 309.2 0.14 305.0 1.49

10 40 15 4 3 0.5 0.9 282.3 277.1 1.82 272.4 3.50

11 40 15 4 3 0.9 0.5 289.5 289.4 0.05 287.2 0.79

12 40 15 4 3 0.9 0.9 267.0 266.1 0.36 264.1 1.11

13 40 15 6 0.5 0.5 0.5 246.2 245.9 0.11 227.1 7.76

14 40 15 6 0.5 0.5 0.9 214.0 211.2 1.33 208.1 2.76

15 40 15 6 0.5 0.9 0.5 220.0 219.9 0.06 215.7 1.96

16 40 15 6 0.5 0.9 0.9 197.4 196.8 0.33 194.1 1.69

17 80 15 4 3 0.5 0.5 461.9 461.7 0.05 457.9 0.86

18 80 15 4 3 0.5 0.9 429.7 428.4 0.32 417.8 2.79

19 80 15 4 3 0.9 0.5 424.8 424.6 0.05 421.5 0.76

20 80 15 4 3 0.9 0.9 398.6 398.0 0.15 393.7 1.22

21 80 15 6 0.5 0.5 0.5 476.9 476.8 0.02 471.8 1.05

22 80 15 6 0.5 0.5 0.9 428.0 426.2 0.41 425.1 0.67

23 80 15 6 0.5 0.9 0.5 430.7 430.6 0.01 422.7 1.85

24 80 15 6 0.5 0.9 0.9 399.1 398.4 0.16 393.1 1.49
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Table 3.3: Performance of the heuristics and an independent base-stock/rationing policy

for an asymmetric system with four intermediate products

Optimal Heuristic Indep. BS&R

No R0 R1 λ0 λ1 ρ0 ρ1 b0 h0 h1 Profit Profit % diff. Profit % diff.

0 50 20 10 1 0.7 0.8 10 5 2 552.1 551.0 0.20 540.8 2.05

1 100 20 10 1 0.7 0.8 10 5 2 1058.2 1057.7 0.05 1044.9 1.26

2 30 20 10 1 0.7 0.8 10 5 2 356.5 349.8 1.88 345.8 3.00

3 50 40 10 1 0.7 0.8 10 5 2 571.4 570.3 0.19 561.4 1.75

4 50 5 10 1 0.7 0.8 10 5 2 538.8 537.8 0.17 526.8 2.22

5 50 20 20 1 0.7 0.8 10 5 2 1046.6 1045.9 0.07 1035.2 1.09

6 50 20 5 1 0.7 0.8 10 5 2 307.0 306.0 0.32 299.0 2.62

7 50 20 10 5 0.7 0.8 10 5 2 630.5 629.6 0.13 612.4 2.87

8 50 20 10 0.2 0.7 0.8 10 5 2 536.3 535.3 0.17 527.5 1.64

9 50 20 10 1 0.9 0.8 10 5 2 528.3 527.7 0.15 522.2 1.15

10 50 20 10 1 0.5 0.8 10 5 2 560.6 560.0 0.11 532.1 5.09

11 50 20 10 1 0.7 0.9 10 5 2 545.5 543.0 0.47 537.0 1.56

12 50 20 10 1 0.7 0.4 10 5 2 559.7 559.2 0.09 548.9 1.93

13 50 20 10 1 0.7 0.8 20 5 2 544.5 542.8 0.31 535.7 1.61

14 50 20 10 1 0.7 0.8 5 5 2 560.3 559.7 0.11 552.1 1.47

15 50 20 10 1 0.7 0.8 10 10 2 545.1 544.5 0.11 539.6 1.01

16 50 20 10 1 0.7 0.8 10 2 2 562.9 561.5 0.26 554.8 1.45

17 50 20 10 1 0.7 0.8 10 5 4 545.0 543.6 0.26 526.5 3.39

18 50 20 10 1 0.7 0.8 10 5 1 557.2 556.4 0.14 550.3 1.24

5 for revenues, λ0 = 10, λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4 for demand arrival rates,

ρ0 = 0.7, ρ1 = 0.8, ρ2 = 0.9, ρ3 = 0.5, ρ4 = 0.6 for utilizations, and b0 = 0.2R0, h0 =

0.1R0, Ri = 0.1∀i for backorder and holding cost parameters. In the 18 instances to

follow, a parameter corresponding to the end-product and one of the intermediate

products (product type-1) is either increased or decreased. For this experiment, we
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keep the parameters for the remaining intermediate products unchanged and hence

omit representing their values in Table 3.3. In example 1, the revenue from the end-

product is much higher than the sum of the revenues from intermediate products. In

example 2, on the other hand, the end-product revenue is lower. Similarly, examples

3 and 4 depict instances when the revenue from the intermediate product type-1 is

high and low. Examples 5-8 correspond to high and low demand arrival rates for the

end-product and the intermediate product. Examples 9-12 explore the effects of high

and low assembly and production utilizations. Finally, in examples 13-15 we change

the backorder and holding costs for the end-product and the intermediate product

type-1.

In Table 3.3, we observe that the difference between the profits obtained by the

optimal and the heuristic policy is 0.27% whereas the difference between the profits

attained by the optimal and the independent base-stock/rationing policy is 2.02%.

Hence, we find that the heuristic policy maintains its performance when there are

differences in the rate, revenue, and cost parameters of various intermediate products.

In addition, as was the case in Tables 3.1 and 3.2, the heursitic policy performs

better than the independent base-stock/rationing policy in every problem instance.

Through the experiment in Table 3.3, we again observe that the performance of the

heuristic policy improves when the end-product revenue and demand rate is high

and when production line utilization is low. The heuristic also performed better

when assembly backorder cost was low, end-product holding cost was high, and

intermediate product holding cost was low. The heuristic has been robust with

respect to changes in the revenue and demand rate of the intermediate component

as well as the assembly utilization.

We would like to end this section with a note on systems with larger number of
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components. The computational requirements for the heuristic policy grows linearly

with the number of components (a total of N +1 subproblems need to be constructed

and solved optimally for a system with N components). However, as discussed during

the motivation for the development of a heuristic procedure, computing the optimal

policies for large systems is computationally impractical since the number of states

that the system as a whole may be in grows exponentially with N . Although we

can determine the parameters of the heuristic policy for a large system with ease,

computational limitations for evaluating the profits obtained by the optimal and

heuristic policy prevent us from exploring its performance in such systems. However,

as the results for Table 3.1 and 3.2 imply, we expect the heuristic to maintain a

highly satisfactory level of performance for systems with a moderately large number

of components. Therefore, due to its performance in the problems tested, ease of

implementation, and requirement of only a manageable number of subproblems, we

believe this heuristic policy would be very effective and beneficial for the control of

such systems in practice.

3.9 Conclusions

In this chapter, we studied an assembly system where there is demand for both

the end-product and intermediate products. For a general system composed of an

arbitrary number of components, we showed that demand admission for the prod-

uct and for any of the intermediate products are characterized by state-dependent

rationing and admission threshold levels while both component production and prod-

uct assembly follow state-dependent base-stock levels. We explored the sensitivity

properties of the optimal policy to various problem parameters.

In addition, we provided two extensions for the basic model, one concerning
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with multiple customer classes based on revenue in addition to the classes based on

the type of item they request, and the other, investigating the effects of a partial

payment scheme on the optimal policy structure. Since the optimal policies were

rather complex and defined by switching surfaces in a multidimensional space, we

also introduced a heuristic policy that performed well under a variety of example

problems.

Extensions that allow customer demands for a selection of components may con-

stitute interesting and challenging problems for future research. The scope of this

paper may be regarded as a special case of the general assemble-to-order problem for

which assembly is done from a selection of components chosen by a customer. The

optimal policies have not been fully characterized for such systems and extensions

to this research may provide valuable additional results and insights applicable to

these problems.

3.10 Appendix

3.10.1 Proofs of Optimal Policy Structure

Proof of Lemma 3.1

(iv) D1v(x, y) ↓ xi: D1v(x + ei, y) − D1v(x, y) = v(x + ei + 1, y) − v(x + ei, y) −

v(x + 1, y) + v(x, y) ≤ v(x + ei + 1, y)− v(x + ei, y + 1)− v(x + 1, y) + v(x, y + 1) =

−D-1,pv(x + ei, y) + D-1,pv(x, y) ≤ 0 where the first and second inequalities follow

from (i) and (iii), respectively.

D1v(x, y) ↓ y: By expanding and regrouping the terms we get D1v(x, y + 1) −

D1v(x, y) = Dpv(x + 1, y)−Dpv(x, y) ≤ 0 where the inequality follows from succes-

sive applications of Dp ↓ xi in (ii).
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(v) Di,jv(x, y) ↓ xi (↓ xj similar): By (iv), we have D1v(x, y) ↓ xi, i.e., v(x+e1+e2+

... + eN , y)− v(x, y) ↓ xi. Adding and subtracting the term v(x + ei + ej, y), we get

[v(x+e1 +e2 + ...+eN , y)−v(x+ei +ej, y)]+ [v(x+ei +ej, y)−v(x, y)] ↓ xi. Since,

the term in the first brackets is a combination of difference operators for having one

more unit of a component k, where k = 1, ..., N , k %= i, j, this term is increasing with

respect to xi by (i). Therefore, the term in the second brackets must be decreasing

with respect to xi, i.e., Di,jv(x, y) ↓ xi.

Di,jv(x, y) ↑ xk and ↓ y: Follows immediately from (i).

(vi): D−i,pv(x, y) ↑ xi: By (iii), we have D-1,pv(x, y) ↑ xi, i.e. v(x, y + 1) − v(x +

e1 + e2 + ... + eN , y) ↑ xi. Adding and subtracting the term v(x + ei, y), we get

[v(x, y + 1) − v(x + ei, y)] + [v(x + ei, y) − v(x + e1 + e2 + ... + eN , y)] ↑ xi. The

term in the second bracket is decreasing with respect to xi due to (i). Therefore,

D−i,pv(x, y) ↑ xi.

D−i,pv(x, y) ↓ xj: D−i,pv(x, y) = v(x, y+1)−v(x+ei, y). Adding and subtracting

the term v(x, y), we get Dpv(x, y)−Div(x, y). The first term is ↓ xj due to (ii) and

the second term, excluding the negative sign, is ↑ xj due to (i), thus D−i,pv(x, y) ↓ xj.

D−i,pv(x, y) ↓ y: By (iii), we have, D−1,pv(x, y) ↓ y, that is v(x, y + 1) − v(x +

e1 + e2 + ... + eN , y) ↓ y. Adding and subtracting the term v(x + ei, y), we get

[v(x, y + 1) − v(x + ei, y)] + [v(x + ei, y) − v(x + e1 + e2 + ... + eN , y)] By (i), the

term in the second bracket is increasing with respect to y. Therefore, the term in

the second bracket must be decreasing with respect to y. Hence, D−i,pv(x, y) ↓ y.

(vii): Di,−1,P v(x, y) ↓ xi: Di,−1,P v(x, y) = Di,−1v(x, y + 1) + Dpv(x, y). Since the

second term is ↓ xi by (ii), we only need to show that the first term is ↓ xi. Di,−1v(x+

ei, y + 1)−Di,−1v(x, y + 1) = Div(x + ei − 1, y + 1)−Div(x, y + 1) ≤ Div(x + ei +
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ej − 1, y + 1)−Div(x, y + 1) ≤ Div(x + 1− 1, y + 1)−Div(x, y + 1) = 0 where the

inequalities are due to successive applications of Di ↑ xj in (i).

Di,−1,pv(x, y) ↑ xj and ↓ y: Di,−1,pv(x, y) = Div(x− 1, y + 1) + D−1,pv(x, y). The

terms are ↑ xj and ↓ y by (i) and (iii), respectively. !

Proof of Lemma 3.2

For controlled queueing systems, Koole [34] develops a framework on the preser-

vation of the properties of dynamic programming value functions and gives examples

for a rich set of properties and operators that are frequently encountered in the

analysis of production systems including single server and tandem settings (see for

example, Definition 5.2 and Theorem 7.2 in [34]). In our model, the arbitrary num-

ber of production lines feeding a shared assembly operation and admission decisions

on both the component and the assembly stage prevents us from using his results

directly in most cases.

Further, the recent work by Benjaafar et al [5] also establishes preservation results

for an assembly system with multiple stages. Although our model also requires

similar sub- and supermodularity conditions, it also necessitates us to show that

they are preserved under different operators. Our analysis follows the framework

given by Ha [31] and Carr and Duenyas [9].

For brevity, we only present the proof for a supermodularity condition given in

(i). The proofs that the other conditions are also preserved under the operators are

similar and therefore omitted. Specifically, we will show that if v satisfies Div(x, y) ↑

xj, then T 1
0 v, T 1

i v, T 1
j v, T 1

k v, T 2
0 v, T 2

i v, T 2
j v, T 2

k v, and Tv (where i, j, k are distinct)

all satisfy the same condition.

We start by showing that DiT 1
0 v(x, y) ↑ xj. For y > 0, as we satisfy the demand
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from available inventory, DiT 1
0 v(x + ej, y) − DiT 1

0 v(x, y) = Div(x + ej, y − 1) −

Div(x, y − 1) ≥ 0 by Div ↑ xj.

For y ≤ 0, we have

DiT
1
0 v(x + ej, y) = max[v(x + ei + ej, y − 1), v(x + ei + ej, y)]

−max[v(x + ej, y − 1), v(x + ej, y)] (3.3)

DiT
1
0 v(x, y) = max[v(x + ei, y − 1), v(x + ei, y)]−max[v(x, y − 1), v(x, y)]

(3.4)

We need to show that (3.3) minus (3.4) ≥ 0.

The outcome v(x + ei + ej, y) − v(x + ej, y − 1) is not feasible for (3.3) due

to Dp ↓ xi in (ii). The three remaining feasible outcomes are Div(x + ej, y − 1),

v(x + ei + ej, y − 1)− v(x + ej, y), and Div(x + ej, y).

(a) Suppose Div(x+ej, y−1) is the outcome for (3.3). We have three possibilities

for the outcome of (3.4). If Div(x, y− 1) is the result of (3.4), then (3.3) minus (3.4)

yields Div(x + ej, y − 1)−Div(x, y − 1) which is ≥ 0 by Div ↑ xj. If, on the other

hand, the outcome of (3.4) is v(x+ei, y−1)−v(x, y), then (3.3) minus (3.4) becomes

Div(x+ej, y− 1)− v(x+ei, y− 1)+ v(x, y) ≥ Div(x+ej, y− 1)−Div(x, y− 1) ≥ 0

where the first inequality follows from the case requirement that v(x, y) ≥ v(x, y−1).

Finally, if Div(x + ej, y) is the outcome for (3.4), then (3.3) minus (3.4) results in

D−j,P v((x, y)−D−j,P v((x + ei, y) and that is ≥ 0 since D−j,P ↓ xi by (vi).

(b) Suppose v(x+ei +ej, y−1)−v(x+ej, y) is the outcome for (3.3). Then (3.3)

minus (3.4) either yields D−i,P v((x, y) −D−i,P v((x + ej, y) which is ≥ 0 by (vi), or

yields v(x+ ei + ej, y− 1)− v(x+ ej, y)−Div(x, y) ≥ Div(x+ ej, y)−Div(x, y) ≥ 0

where the first inequality is due the underlying case assumption for the outcomes

and the second inequality follows from Div ↑ xj in (i).
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(c) Finally, if the outcome of (3.3) is Div(x+ej, y), then (3.3) minus (3.4) reduces

to Div(x + ej, y)−Div(x, y) ≥ 0.

Next, we show DiT 1
i v(x, y) ↑ xj and first consider the states away from the

boundary, i.e., xi > 0.

DiT
1
1 v(x + ej, y) = max[v(x + ej, y) + Ri, v(x + ei + ej, y)]

−max[v(x− ei + ej, y) + Ri, v(x + ej, y)] (3.5)

DiT
1
1 v(x, y) = max[v(x, y) + Ri, v(x + ei, y)]−max[v(x− ei, y) + Ri, v(x, y)]

(3.6)

We again need to show that (3.5) minus (3.6) ≥ 0. Eliminating the infeasible out-

comes due to conditions (i) and (v), we have the following possible cases:

(a) If the outcome for (3.5) is Div(x − ei + ej, y), the only feasible outcome for

(3.6) results in (3.5) minus (3.6) to equal Div(x − ei + ej, y) − Div(x − ei, y) and

that is ≥ 0 by (i).

(b) Suppose the outcome for (3.5) is v(x + ej, y) + Ri − v(x + ej, y). Then, the

result for (3.5) minus (3.6) is either zero or Ri − v(x, y) + v(x − ei, y) ≥ 0 by the

case assumption.

(c) Suppose now that the outcome for (3.5) is Div(x + ej, y). Then, (3.5) minus

(3.6) either becomes v(x + ei + ej, y)− v(x + ej, y)−Ri ≥ 0 by the case assumption

or becomes Div(xej, y)−Div(x, y) and that is ≥ 0 by (i).

At the boundary states where xi = 0, the outcome analyzed in part (a) also

becomes infeasible and the resulting cases are identical to the ones in parts (b) and

(c) with xi set to zero. The analysis for operators DiT 1
j and DiT 1

k where k %= i, j are

very similar and thus omitted for space.

Next, we consider the operator T 2
0 and show that DiT 2

0 v(x, y) ↑ xj. For xi > 0 ∀i,
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we have

DiT
2
0 v(x + ej, y) = max[v(x + ei + ej − 1, y + 1), v(x + ei + ej, y)]

−max[v(x + ej − 1, y + 1), v(x + ej, y)] (3.7)

DiT
1
1 v(x, y) = max[v(x + ei − 1, y + 1), v(x + ei, y)]−max[v(x− 1, y + 1), v(x, y)]

(3.8)

Eliminating the infeasible outcomes due to (iii), we show that for each of the remain-

ing cases we have (3.7) minus (3.8) ≥ 0.

(a) If (3.7) results in Div(x + ej − 1, y + 1), then (3.7) minus (3.8) may result

in three possible expressions. Div(x + ej − 1, y + 1)−Div(x− 1, y + 1) ≥ 0 by (i),

Div(x + ej − 1, y + 1) − v(x + ei − 1, y + 1) + v(x, y) ≥ Div(x + ej − 1, y + 1) −

Div(x− 1, y + 1) ≥ 0 by (i), and Dj,−1,P v(x + ei − 1, y)−Dj,−1,P v(x− 1, y) ≥ 0 by

(vii).

(b) If the outcome of (3.7) is v(x + ei + ej − 1, y + 1) − v(x + ej, y), then (3.7)

minus (3.8) is either Di,−1,P v(x + ej − 1, y) − Di,−1,P v(x − 1, y) ≥ 0 by (vii) or

v(x + ei + ej − 1, y + 1)− v(x + ej, y)−Div(x, y) ≥ Div(x + ej, y)−Div(x, y) ≥ 0

where the first inequality is due to the case assumption and the second inequality

follows from (i).

(c) Finally, if (3.7) results in Div(x + ej, y + 1), the only possible outcome for

(3.7) minus (3.8) is Div(x + ej, y)−Div(x, y) ≥ 0 by (i).

For boundary states where xi = 0 or xj = 0, the outcome discussed in part

(a) becomes infeasible and only the cases in parts (b) and (c) apply with identical

reasoning. For boundary states with xk = 0, cases analyzed in parts (a) and (b)

become infeasible and only part (c) applies.

The analysis for operators DiT 2
i , DiT 2

j and DiT 2
k are very similar to the ones for

operators DiT 1
i , DiT 1

j and DiT 1
k . Hence, they are omitted for brevity.
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Finally, we consider the operator T . By definition, T is formed by (a) the addition

and multiplication of positive constants with the functions T 1
nv and T 2

nv for n =

0,...,N that are shown to be ↑ xj and (b) linear inventory holding and assembly

queue backorder costs. Therefore, DiTv ↑ xj as well. !

Proof of Theorem 3.1

Consider a value iteration algorithm to solve the optimal policy for the prob-

lem given in (4.1) where initial values v0(x, y) = 0 are used for every state (x, y).

Conditions (i)-(iii) are trivially satisfied by v0(x, y), hence v0(x, y) ∈ V . We apply

vk+1(x, y) = Tvk(x, y) for k = 0, 1, 2, ... to determine the relative value functions for

successive iterations. Suppose now that the value functions in iteration k satisfy (i)-

(iii), i.e. vk(x, y) ∈ V . Then, Lemma 3.1 shows that vk+1(x, y) also satisfy (i)-(iii).

Therefore vk+1(x, y) ∈ V .

We note that, without loss of optimality, we can add the following constraints to

the original problem that we cannot admit a product demand when R0 < b0 y−/Λ, we

cannot produce a component type-i when hi xi/Λ > max(Ri, (b0 +
N∑

i=1
hi/Λ)), and we

cannot assemble another end product when h0 y+/Λ > max(R0, ((
N∑

i=1
hi) − h0)/Λ).

For example, if b0 y−/Λ > R0, this suggests that the amount of backorder cost

incurred until the next transition is greater than any potential revenue of R0 that

would be received if the next event were a product demand arrival. (As another

example, if hi xi/Λ > max(Ri, (b0 +
N∑

i=1
hi/Λ)), this indicates that the amount of

holding cost due to a type-i component incurred during a transition epoch is greater

than the potential benefits of (a) selling that component for a revenue of Ri were

the next event a demand arrival for component i, and (b) assembling another unit of

a backordered product that would save backorder and holding costs for a transition

epoch if the next event were a product assembly opportunity.) Thus, the original



115

problem can be converted to a finite state, finite action set problem. The underlying

Markov chain is also unichain. Thus, Theorem 8.4.5 of Puterman [46] ensures the

existence of a long-run average profit and the validity of the value iteration algorithm

to determine it.

To complete the proof of Theorem 3.1, we note that conditions (i)-(iii) are suf-

ficient to demonstrate the structural properties of the optimal policy. Due to (i),

if it is optimal not to produce component i in state (x, y), it remains optimal not

to do so in state (x + ei, y), implying a base-stock production policy. Further, the

sub- and super-modularity conditions imply that the base-stock level is nondecreas-

ing with the inventory of other components and nonincreasing with the end-product

inventory. Condition (i) also implies that if it is optimal to accept a demand for

component i in state v(x, y), i.e., Ri ≥ v(x, y) − v(x − ei, y), it is also optimal to

accept a demand for component i in state v(x+ei, y), i.e. Ri ≥ v(x+ei, y)−v(x, y).

Thus component demand admission follows a rationing policy. Similarly, the sub-

and super-modularity conditions imply that the rationing level for a component is

nondecreasing with the inventory of other products and nonincreasing with the end-

product inventory position.

Condition (ii) indicates that if v(x, y − 1) + R0 ≥ v(x, y), then v(x, y) + R0 ≥

v(x, y + 1), thus implying an admission threshold for the end-product. Moreover,

D−P ↑ xi implies that the state dependent admission threshold is nondecreasing with

the amount of component inventories. Finally, condition (iii) implies the structure

of the optimal product assembly policy. D-1,p ↓ y means that the additional value

gained by assembling an end-product gets smaller with each additional unit of end-

product in the inventory, implying that product assembly follows a state dependent

threshold structure. D-1,p ↑ xi suggests that the assembly threshold level is non-
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decreasing with the amount of component inventories. !

3.10.2 Proofs of Sensitivity Results

Proof of Theorem 3.2

We construct two systems that are identical in all problem parameters except

the end-product revenues which are chosen such that R′
0 < R0. We refer to the

original problem where the end product revenue is R0 as problem A, and the modified

setting with R′
0 as problem B. We initialize problems A and B with v0(x, y) = 0 and

v′0(x, y) = 0, respectively. We then apply vk+1(x, y) = Tvk(x, y) and v′k+1(x, y) =

Tv′k(x, y). By Lemma 2, vk(x, y) and v′k(x, y) satisfy conditions (i)-(iii) ∀ k. Hence

both vk and v′k ∈ V . We first prove the following lemma.

Lemma 3.3. Let vk and v′k ∈ V for ∀ k. For each state (x, y) and for every k =

0, 1, 2, . . ., the following conditions jointly hold:

(a) Div′k(x, y)−Divk(x, y) ≤ 0

(b) Dpv′k(x, y)−Dpvk(x, y) + R0 −R′
0 ≥ 0

(c) D-1,pv′k(x, y)−D-1,pvk(x, y) ≤ 0

Proof: The proof of Lemma 3.3 is by induction. Conditions (a)-(c) hold trivially for

v0(x, y) and v′0(x, y). We assume the conditions hold for iteration k and show that

they are preserved in iteration k + 1. For brevity, we only present the proof that

Dpv′k(x, y) − Dpvk(x, y) + R0 − R′
0 ≥ 0. The proofs of other conditions are similar

and hence omitted. Since vk+1(x, y) = Tvk(x, y) and v′k+1(x, y) = Tv′k(x, y), we have

Dpv′k+1(x, y)−Dpvk+1(x, y) = DpTv′k(x, y)−DpTvk(x, y)
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As in the proof of Lemma 3.2, we start by showing DpT 1
0 v′k(x, y)−DpT 1

0 vk(x, y)+

R0−R′
0 ≥ 0 and proceed to show that the condition holds for the remaining operators

T 1
i , T 2

0 , T 2
i , and T .

DpT
1
0 v′k(x, y)−DpT

1
0 vk(x, y) + R0 −R′

0

= max[v′k(x, y) + R′
0, v

′
k(x, y + 1)]−max[v′k(x, y − 1) + R′

0, v
′
k(x, y)]

−max[vk(x, y) + R0, vk(x, y + 1)] + max[vk(x, y − 1) + R0, vk(x, y)]

+ R0 −R′
0 (3.9)

In order to simplify the analysis, we adapt a similar notation used in Carr and

Duenyas [9] and introduce two functions w and w′ on {0, 1} x S. Let w be defined

as

w(u,x, y) =






vk(x, y − 1) + R0 if u = 1

vk(x, y) if u = 0

and w′ be defined similarly with the corresponding value function v′k and product rev-

enue R′
0. Therefore T 1

0 vk(x, y) = maxu∈0,1 w(u,x, y) and T 1
0 v′k(x, y)=maxu∈0,1 w′(u,x, y).

We let u(x,y) = argmaxuw(u,x, y) and u′(x,y) = argmaxuw
′(u,x, y).

By condition (ii) (Dp ↓ y), we have u′(x,y+1) ≥ u′(x,y) and u(x,y+1) ≥ u(x,y). By

condition (b), we further have u(x,y) ≥ u′(x,y) and u(x,y+1) ≥ u′(x,y+1). Hence the vec-

tor (u′(x,y+1), u′(x,y), u(x,y+1), u(x,y)) has the following six possible values: (0, 0, 0, 0),

(0, 0, 1, 0), (1, 0, 1, 0), (0, 0, 1, 1), (1, 1, 0, 1), and (1, 1, 1, 1). We show that (3.9) ana-

lyzed for each of these six cases is ≥ 0.

(0,0,0,0): (3.9) equals Dpv′k(x, y)−Dpvk(x, y)+R0−R′
0 and that is ≥ 0 by condition

(b).

(0,0,1,0): yields Dpv′k(x, y)−R′
0 which is ≥ 0 since u′(x,y+1) = 0 implies v′k(x, y)+R′

0 ≤

v′k(x, y + 1).
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(1,0,1,0): (3.9) equals 0.

(0,0,1,1): results in Dpv′k(x, y)−Dpvk(x, y−1)+R0−R′
0 ≥ 0 by the case assumptions

that u′(x,y+1) = 0 and u(x,y) = 1.

(1,1,0,1): (3.9) ≥ Dpv′k(x, y− 1)−Dpvk(x, y)+R0−R′
0 ≥ Dpv′k(x, y)−Dpvk(x, y)+

R0 −R′
0 ≥ 0 where the first inequality follows due to the case assumption

u(x,y) = 1 implying vk(x, y − 1) + R0 > vk(x, y) and the second inequality

follows from (b).

(1,1,1,1): yields Dpv′k(x, y−1)−Dpvk(x, y−1)+R0−R′
0 and that is ≥ 0 by condition

(b).

Next, we show the result for operator T 1
i and first consider the states away from

boundary, i.e., xi > 0.

DpT
1
i v′k(x, y)−DpT

1
i v′k(x, y) + R0 −R′

0

= max[v′k(x− ei, y + 1) + Ri, v
′
k(x, y + 1)]−max[v′k(x− ei, y) + Ri, v

′
k(x, y)]

−max[vk(x− ei, y + 1) + Ri, vk(x, y + 1)]

+ max[vk(x− ei, y) + Ri, vk(x, y)] + R0 −R′
0 (3.10)

We redefine w and w′ as

w(u,x, y) =






vk(x− ei, y) + Ri, if u = 1

vk(x, y) if u = 0

with w′ again defined similar to w, using its corresponding value function v′k. Us-

ing the definitions of u and u′ with the new functions w and w′, we have T 1
i vk(x, y) =

maxu∈0,1 w(u,x, y) and T 1
i v′k(x, y) = maxu∈0,1 w′(u,x, y).

Condition (i) (Di ↓ y), implies u(x,y+1) ≥ u(x,y) and u′(x,y+1) ≥ u′(x,y). Further, by

condition (a), we have u′(x,y) ≥ u(x,y) and u′(x,y+1) ≥ u(x,y+1).
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Hence the vector (u′(x,y+1),u
′
(x,y),u(x,y+1),u(x,y)) now has the following six possible

values: (0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0), and (1, 1, 1, 1). We

analyze (3.10) for each of these cases.

(0,0,0,0): yields Dpv′k(x, y)−Dpvk(x, y) + R0−R′
0 and that is ≥ 0 by condition (b).

(1,0,0,0): (3.10) ≥ Dpv′k(x, y)−Dpvk(x, y)+R0−R′
0 and that is ≥ 0 by condition (b)

where the first inequality follows from v′k(x−ei, y)+Ri > v′k(x, y) implied

by u′(x,y+1) = 0.

(1,1,0,0): results in Dpv′k(x−ei, y)−Dpvk(x, y)+R0−R′
0 ≥ Dpv′k(x, y)−Dpvk(x, y)+

R0 − R′
0 ≥ 0 where the inequalities follow from conditions (b) and (i),

respectively.

(1,0,1,0): gives (by adding and subtracting the terms v′k(x, y + 1) and vk(x, y + 1))

[−Div′k(x− ei, y) + Divk(x− ei, y) + [Dpv′k(x, y)−Dpvk(x, y) + R0 − R′
0]

where the terms in the first and second brackets are ≥ 0 by conditions (a)

and (b), respectively.

(1,1,1,0): (3.10) ≥ Dpv′k(x − ei, y) − Dpvk(x − ei, y) + R0 − R′
0 and that is ≥ 0

by condition (b) where the first inequality follows from vk(x, y) > vk(x −

ei, y) + Ri implied by u(x,y) = 0.

(1,1,1,1): yields ≥ Dpv′k(x− ei, y)−Dpvk(x− ei, y) + R0 −R′
0 which is ≥ 0 by (ii).

For the boundary states with xi = 0, only case (0,0,0,0) applies and (3.10) results

in Dpv′k(x, y)−Dpvk(x, y) + R0 −R′
0 which is ≥ 0 by condition (b).
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For Operator T 2
0 , we first consider the states (x, y) for which xi > 0 ∀i.

DpT
1
i v′k(x, y)−DpT

1
i v′k(x, y) + R0 −R′

0

= max[v′k(x− 1, y + 2), v′k(x, y + 1)]−max[v′k(x− 1, y), v′k(x, y)]

−max[vk(x− 1, y + 2), vk(x, y + 1)] + max[vk(x− 1, y), vk(x, y)]

+ R0 −R′
0 (3.11)

We redefine w and w′ as

w(u,x, y) =






vk(x− 1, y + 1) if u = 1

vk(x, y) if u = 0

with w′ defined similar to w. We let T 2
0 vk(x, y) = maxu∈0,1 w(u,x, y) and T 2

0 v′k(x, y) =

maxu∈0,1 w′(u,x, y). By condition (iii) (D−1,p ↓ y) we have u′(x,y) ≥ u′(x,y+1) and u(x,y)

≥ u(x,y+1). Further, by (c), we also have u(x,y) ≥ u′(x,y) and u(x,y+1) ≥ u′(x,y+1). The

vector (u′(x,y+1),u
′
(x,y),u(x,y+1),u(x,y)) therefore has the six possible values: (0, 0, 0, 0),

(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 1), and (1, 1, 1, 1). We analyze (3.11) for

each of these six cases. All cases except for (0, 1, 0, 1) are very similar to the ones

analyzed previously, hence we only show that case (0, 1, 0, 1) yields D1v′k(x− 1, y +

1)−D1vk(x− 1, y + 1) + R0 −R′
0 ≥ 0 which is implied by jointly by conditions (b)

and (c). For the states where xi = 0 for some component i, the only feasible case

(0, 0, 0, 0) yields Dpv′k(x, y)−Dpvk(x, y) + R0 −R′
0 ≥ 0 by (b).

The analysis for operator T 2
i is very similar to the one for operator T 1

i and is thus

omitted. The results hold for operator T as this operator is formed by addition and

multiplication of positive constants with the functions T 1
nv and T 2

nv for n = 0,...,N

and linear inventory holding and assembly queue backorder costs. !

To complete the proof of Theorem 2, we note that conditions (a)-(c) are sufficient

for the sensitivity results to hold. For example, condition (a) implies that if v′k(x +
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ei, y) − v′k(x, y) > 0, then vk(x + ei, y) − vk(x, y) > 0. Hence, if it is optimal to

produce an additional unit of component i at state (x, y) in problem B, then it is

also optimal to produce an additional unit of component i in state (x, y) in problem

A. Therefore γ′i(x−i, y) ≤ γi(x−i, y). Through a similar argument, (a) also implies

the shift in the component admission threshold αi(x, y).

In terms of the product demand admission policy, Condition (ii) implies that if

v′k(x, y− 1) +R′
0 ≥ vk(x, y), then vk(x, y− 1) +R0 ≥ vk(x, y). Hence, if it is optimal

to admit a demand for the end product in problem B, it remains optimal to admit

a product demand at that state in problem A resulting in β′(x) ≥ β(x). As for the

optimal assembly policies, analogous arguments yield δ′(x) ≤ δ(x). !

3.10.3 Proofs of Extension Results

Proof of Theorem 3.3

The proof of Theorem 3.3 closely follows the steps in the proof of Theorem 3.1.

Therefore, we only provide the sufficient conditions implying the structure of the

optimal policy and show that they are preserved across transitions. We note that, as

described in the proof of Theorem 3.1, without loss of optimality, the problem may

be converted to a finite state and finite action space problem. Therefore, a stationary

policy for the discounted profit infinite horizon problem exists by Theorem 6.2.10 of

Puterman [46].

Let V be the set of functions defined on the state space such that if v ∈ V , then

∀ i, j = 1, . . . N where j %= i;



122

(i’) Div(x, y) ↓ xi, ↑ xj, ↓ y ∀ i = 1, . . . , N

(ii’) Dpv(x, y) ↓ xi, ↓ y, and ≤ R0 for y > 0

Dpv(x, 0)−Dpv(x,−1) ≤ R0 − r0

(iii’) D-1,pv(x, y) ↑ xi, ↓ y

D-1,pv(x, 0)−D-1,pv(x,−1) ≤ R0 − r0

Conditions (i’)-(iii’) are similar to the ones (i)-(iii) associated with the original

problem except for the conditions given in (ii’) and (iii’) which enable the optimal

policy to hold at the boundary states as well. We first prove the following lemma.

Lemma 3.4. If v ∈ V then, T 1
nv, T 2

nv, and Tv ∈ V ∀n = 0, . . . , N .

Proof: For brevity, once again we only present the proof for the supermodularity

condition given in (i’). We will show that if v satisfies Div(x, y) ↑ xj, then T 1
0 v, T 1

i v,

T 1
j v, T 1

k v, T 2
0 v, T 2

i v, T 2
j v, T 2

k v, and Tv (where i, j, k are distinct) all satisfy the same

condition. As the operators T 1
0 and T 2

0 are the ones that have been modified and the

analysis for the remaining operators are similar to the ones in the proof of Lemma

3.1, we restrict our illustration of the proof for these two operators.

For operator T 1
0 and for y > 0, we have DiT 1

0 v(x+ej, y)−DiT 1
0 v(x, y) = Div(x+

ej, y − 1)−Div(x, y − 1) ≥ 0 by Div ↑ xj. For y ≤ 0, we have

DiT
1
0 v(x + ej, y) = max[v(x + ei + ej, y − 1) + r0, v(x + ei + ej, y)]

−max[v(x + ej, y − 1) + r0, v(x + ej, y)] (3.12)

DiT
1
0 v(x, y) = max[v(x + ei, y − 1) + r0, v(x + ei, y)]

−max[v(x, y − 1) + r0, v(x, y)] (3.13)

We need to show that (3.12) minus (3.13) ≥ 0. The outcome v(x+ei +ej, y)−v(x+

ej, y − 1)− r0 is not feasible for (3.12) due to Dp ↓ xi in (ii’). The three remaining
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feasible outcomes are Div(x + ej, y − 1), v(x + ei + ej, y − 1) − v(x + ej, y), and

Div(x + ej, y).

(a) Suppose Div(x+ej, y−1) is the outcome for (3.12). We have three possibilities

for the outcome of (3.13). If Div(x, y − 1) is the result of (3.13), then (3.12) minus

(3.13) yields Div(x + ej, y − 1) − Div(x, y − 1) which is ≥ 0 by Div ↑ xj. If,

on the other hand, the outcome of (3.13) is v(x + ei, y − 1) + r0 − v(x, y), then

(3.12) minus (3.13) becomes Div(x + ej, y − 1) − v(x + ei, y − 1) − r0 + v(x, y) ≥

Div(x+ej, y−1)−Div(x, y−1) ≥ 0 where the first inequality follows from the case

requirement that v(x, y) ≥ v(x, y − 1) + r0. Finally, if Div(x + ej, y) is the outcome

for (3.13), then (3.12) minus (3.13) results in D−j,P v((x, y)−D−j,P v((x + ei, y) and

that is ≥ 0 (see Lemma 3.1 for the derivation of a similar condition (iv).)

(b) Suppose v(x+ei +ej, y−1)+r0−v(x+ej, y) is the outcome for (3.12). Then

(3.12) minus (3.13) either yields D−i,P v((x, y)−D−i,P v((x + ej, y) which is ≥ 0 (see

Lemma 3.1 for the derivation of a similar condition (vi).), or yields v(x+ei +ej, y−

1) + r0 − v(x + ej, y) − Div(x, y) ≥ Div(x + ej, y) − Div(x, y) ≥ 0 where the first

inequality is due the underlying case assumption for the outcomes and the second

inequality follows from Div ↑ xj in (i’).

(c) Finally, if the outcome of (3.12) is Div(x + ej, y), then (3.12) minus (3.13)

reduces to Div(x + ej, y)−Div(x, y) ≥ 0.

For operator T 2
0 we only show the result for y < 0 as the cases for y ≥ 0 are

identical to the ones analyzed in Lemma 3.2. For xi > 0 ∀i, we have

DiT
2
0 v(x + ej, y) = max[v(x + ei + ej − 1, y + 1) + R0 − r0, v(x + ei + ej, y)]

−max[v(x + ej − 1, y + 1) + R0 − r0, v(x + ej, y)]

(3.14)
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DiT
1
1 v(x, y) = max[v(x + ei − 1, y + 1) + R0 − r0, v(x + ei, y)]

−max[v(x− 1, y + 1) + R0 − r0, v(x, y)] (3.15)

Eliminating the infeasible outcomes due to (iii’), we show that for each of the re-

maining cases we have (3.14) minus (3.15) ≥ 0.

(a) If (3.14) results in Div(x+ ej − 1, y + 1), then (3.14) minus (3.15) may result

in three possible expressions. Div(x + ej − 1, y + 1)−Div(x− 1, y + 1) ≥ 0 by (i’),

Div(x+ ej − 1, y + 1)− v(x+ ei− 1, y + 1)−R0 + r0 + v(x, y) ≥ Div(x+ ej − 1, y +

1)−Div(x−1, y +1) ≥ 0 by (i’), and Dj,−1,P v(x+ei−1, y)−Dj,−1,P v(x−1, y) ≥ 0

(see a similar justification outlined in Lemma 3.1 for (vii).)

(b) If the outcome of (3.14) is v(x + ei + ej − 1, y + 1) + R0 − r0 − v(x + ej, y),

then (3.14) minus (3.15) is either Di,−1,P v(x + ej − 1, y)−Di,−1,P v(x− 1, y) ≥ 0 or

v(x+ei+ej−1, y+1)+R0−r0−v(x+ej, y)−Div(x, y) ≥ Div(x+ej, y)−Div(x, y) ≥ 0

where the first inequality is due to the case assumption and the second inequality

follows from (i’).

(c) Finally, if (3.14) results in Div(x + ej, y + 1), the only possible outcome for

(3.14) minus (3.15) is Div(x + ej, y)−Div(x, y) ≥ 0 by (i’).

For boundary states where xi = 0 or xj = 0, the outcome discussed in part (a)

becomes infeasible and only the cases in parts (b)-(c) apply with identical reasoning.

For boundary states with xk = 0, cases analyzed in parts (a)-(b) become infeasible

and only part (c) applies. !



CHAPTER IV

Joint Production and Admission Control in a Two-Stage

Assemble-to-Order Manufacturing System

4.1 Overview

Business models such as make-to-stock, which may usually be preferred if the

number of products offered is limited, lead to very significant inventory costs for a

high variety of end products especially under both production and demand uncer-

tainties. On the other hand, a make-to-order system keeps inventory only at the

component level and products are assembled after a customer order is received. As

many firms increasingly implement a make-to-order strategy, we are motivated by

the challenges faced by firms in this setting to effectively coordinate the production of

components and to allocate the assembly line capacity shared across many different

products.

In this chapter, we study a two-stage assemble-to-order (ATO) system where com-

ponent production lines feed a downstream shared assembly line capacity. The main

difference between the setting of this chapter and the one studied in the preceding

one is that, we now allow a customer to choose which components will be assembled

into the end-product. Hence, the setting discussed in this chapter may be viewed as

125
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a basic mass customization environment for which an ATO strategy is implemented.

We are interested in how a firm operating under this setting should decide on how

many components of each type to produce and how it should set demand admission

rules to prioritize orders for various products that compete for the shared assem-

bly capacity. Our main contributions in this chapter are to partially characterize the

optimal policy within a certain region of the state space and develop a heuristic algo-

rithm that is effective and robust with respect to the number of product alternatives

offered.

4.2 Introduction

Out of many challenges that manufacturing companies face in the recent years,

one of them is to produce high-mix, low-volume customizable products targeted

to satisfy a vast variety of customer demands with minimum possible inventories.

Business models such as produce-to-stock, which may usually be preferred if the

number of products offered is limited, may lead to very significant inventory costs

for a high variety of end products especially under both production and demand

uncertainties. On the other hand, strategies like produce-to-order, although reducing

inventory costs, may lead to high lead times under capacity uncertainties that exceed

customers’ willingness to wait and result in revenue losses.

In order to utilize the advantages and reduce the shortcomings of these strategies,

many firms choose to operate in an ATO manufacturing setting, where the compo-

nents used in the assembly process are produced to stock while the demand is still

uncertain and a specific selection of those components demanded by a customer is

assembled only after the demand is realized. An ATO manufacturing system can

achieve high levels of responsiveness to customer demands with fairly lower amounts
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of inventory because the inventory is kept only at the component level. Among some

example industries that use ATO manufacturing principles as a business model are

the computer, furniture and to some extent, the automotive industries where mass

customization is popular. Many practitioners and researches believe that the effec-

tive use of ATO manufacturing systems was one of the major contributors to Dell

Computer Corporation’s success [36].

Exploiting the advantages of the ATO manufacturing systems however brings

great challenges to control the component production and assembly admission pro-

cesses of a manufacturing firm. A firm has to make production or ordering decisions

for components that will be required during the assembly stage while the demand

is still uncertain. Yet, there are also uncertainties in the production process itself,

so these decisions should be made taking into account possible machine outages and

capacity disruptions.

When the firm observes demand for a variety of products, it also needs to deter-

mine admission rules regarding which type of product orders will be given priority.

A thorough understanding of the characteristics of these decisions may help many

companies focusing on low volume, high mix manufacturing to use their resources

more efficiently, to lower overall inventories, and to achieve higher responsiveness to

customer demands. As many researches recently identify, optimal policies in general

ATO settings under production and demand uncertainty is still not known [53, 45].

In this chapter, we aim to provide insights to these problems by considering

a firm in an ATO manufacturing setting that faces uncertainties in demand and

due to the production and assembly capacities. Specifically, our focus will be on

a manufacturing firm having a two-stage manufacturing system. The first stage

consists of several dedicated production lines where each line produces a single type
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of component that will be required in the assembly stage. The components are

produced to stock. These production lines feed a shared downstream assembly line

which we refer to as the second stage of the manufacturing system. When a demand

for a certain type of product arrives, the order may be accepted by picking up the

corresponding component form the inventory and placing the order in the assembly

line queue where the remaining assembly tasks will be performed. The firm also has

the option to decline a demand for a certain type of product to ration its assembly

line capacity to a more profitable product.

The problem can be summarized as joint component production and assembly ad-

mission control for an ATO manufacturing system. The component production lines

and the product assembly line are modeled as M/M/1 queues in order to identify

optimal policies regarding the firm’s decision on when to accept or reject an incom-

ing order for a certain product and how many components of each type is required.

One of our contributions in this chapter is a partial characterization of the optimal

production and demand admission decisions over a certain region of the state space.

By performing extensive computational tests, we observed that the policy described

for a certain region of the state space extends to the entire state space. Thus, we con-

jecture that the optimal production and admission policies described in this chapter

hold throughout all possible states. Motivated by the insights we gain by the optimal

policy structure, we develop a heuristic algorithm and test its performance against

the optimal policy. Our computational studies based on numerous problem instances

with varying problem parameters indicate that the algorithm is very effective and

robust even when a higher number of end products is offered.

The remainder of this chapter is organized as follows. In Section 4.3, we review

the related literature. We provide the problem formulation in Section 4.4 and analyze
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the structure of the component production and assembly admission policies in Section

4.5. In Section 4.6, we propose a heuristic solution approach and test its performance

through numerical studies. We conclude in Section 4.7 and provide the proofs of

theoretical results in Section 4.8.

4.3 Literature Review

Earlier works on assemble-to-order manufacturing systems have been convention-

ally focused on the characterization of optimal policies for the two special cases: (i)

the distribution system where there is a single component and many products with

the main issue being the allocation of the component and (ii) the assembly system

where there are many components and a single product where the central concern is

the coordination of the components. However, more recently, there has been grow-

ing interest in the general ATO manufacturing settings and an extensive literature

survey has been provided by Song and Zipkin [53].

One of the earliest works is by Topkis [55], where he analyzes a distribution

system. He uses a periodic review model where ordering decisions can be given only

at specific periods. It is shown that a base-stock policy for ordering the components

and a rationing policy for allocation of these components is optimal. Schmidt and

Nahmias [50] study an assembly system with two components and one final product.

They assume a two stage manufacturing system where both the production and

assembly stages have deterministic lead times. They assume the end product is also

produced before the stochastic demand is realized. Hence, there is inventory holding

costs associated with the end product as well as the components. They develop

the optimal assembly policy which states that there exists a target assemble-up-to

point to reach as long as there are available components. They also identify the
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optimal production policies for the components which follows a modified produce up

to policy due to differing replenishment lead times for the components. Rosling [48]

extends the findings of Schmidt and Nahmias to multi-stage assembly systems with

deterministic lead times and shows that under mild conditions on initial inventory

levels, a balanced base-stock policy is optimal.

Gerchak and Henig [25] consider a periodic review problem of finding optimal

production and allocation policies for a general ATO manufacturing system with

stochastic demands and zero lead times under lost sales assumption. They show that

a base stock production policy and a myopic allocation policy are optimal. Hausman

et al [32] take a different approach by maximizing demand fulfillment probability,

i.e. order fill rate, within a time window instead of profits. They also consider an

ATO system with deterministic lead times. They assume that the production of each

component is managed by an independent produce up to point which is known to be

suboptimal but simpler to analyze. They allow backorders for unfulfilled demands

and assume a first come first serve (FCFS) rule for satisfying demands from different

periods. They determine optimal produce up to levels subject to an overall budget

constraint.

Akcay and Xu [2] also consider a periodic review problem where the allocation of

components across different periods is based on a FCFS basis. The system quotes

a pre-specified response time window for each product and revenues are earned if

the customer demand is satisfied within this time period. The production quantities

and lead times are assumed to be deterministic and optimal base stock levels are

found within a certain budget in order to achieve the maximum reward. Another

work based on performance measurement is by Agrawal and Cohen [1]. Similar to

Akcay and Xu, they assume an ATO system where backorders are permitted and
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there is a FCFS rule between different periods. They assume a consignment policy

for component allocation meaning that a component is assigned to a product even if

the assembly of that product will be delayed due to limitations on other components.

They also propose a fair share allocation rule that allocates a fraction of the available

inventory to different products where this fraction is determined by the ratio of the

realized demand for a component due to a product to the total realized demand for

that component. They use a service level constraint, order completion rate, as a

constraint to determine the optimal base-stock levels for component production.

Song et al [51] performs an exact analysis on several performance measures re-

garding ATO systems. They assume independent production facilities for component

production governed by independent base-stock levels. Their model assumes pro-

duction uncertainty by using exponentially distributed processing times and hence

is similar to the model discussed in the next section of this paper. They allow back-

logging with a certain capacity of outstanding orders. Demands are satisfied based

on a FCFS rule. For a given base-stock policy and a backlog capacity, they derive

expressions for the performance measures such as order fill rate, service level, and

waiting time distributions. In another work utilizing continuous time modeling, Lu

and Song [41] compare the ATO model and single item newsvendor type models to

derive upper bounds on base stock levels which could be used as starting points in

a greedy search algorithm for the optimal base stock levels. They further study the

effects of demand correlation to optimal base stock levels.

Plambeck and Ward [45] also consider a general ATO system with multiple com-

ponents and multiple products. They assume stochastic component replenishment

lead times with fixed ordering costs. Demand is also assumed to be random and back-

logs are permitted. In addition, they allow expediting of components for a higher
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cost that enables the immediate availability of any limited component. They use

discounted cost over a planning horizon as the objective to determine optimal de-

cisions regarding sequencing the assembly of products, component production, and

component expediting. Due to expediting, they show that the problem can be sepa-

rated into single item inventory control problems, hence expediting is demonstrated

as a means to simplify the analysis of ATO systems. Benjaafar and ElHafsi [4] focus

on a special case of ATO systems with multiple demand classes based on demand

rate and revenues but with all products having the same architecture and requiring

one unit of each component. They assume independent production equipment for

each component with exponentially distributed processing times. A queuing model

is used to characterize the optimal production control and rationing policies.

The above selection of papers on assemble-to-order manufacturing systems shows

that although the common issues in almost all of them are determining production

and allocation decisions, there are quite distinctive approaches. While some re-

searchers prefer to take profits and costs as objective functions to determine optimal

production levels, others prefer service level performance measures and inventory

budget constraints. Only a few of these papers aim to develop truly optimal pro-

duction and assembly policies whereas many assume certain allocation rules during

the assembly stage and independent base-stock levels for the production stage for

practical purposes. Although, papers using continuous time models generally allow

stochastic production lead times, their focus have rather been on certain special cases

of ATO systems such as a single end product or allowing expediting to decouple the

problem. Others considering a general ATO structure have been interested in de-

veloping expressions for performance measurements rather than control of the ATO

system. In the vast majority of these papers, assembly is assumed to be instante-
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Figure 4.1: An assemble-to-order system for two products and demand types.

nous. We relax this assumption by allowing a finite production rate. We also relax

the other assumption prevelant in the previous works that the products are assem-

bled on a first come first serve basis. We consider the component production control

problem for an assemble-to-order manufacturing systems jointly with the assembly

admission problem.

4.4 Problem Formulation

We consider an assemble-to-order manufacturing system producing two distinct

products. Demand for product type i (i = 1, 2) arrives based on a Poisson process

with rate λi. Each product is composed of a unique, product-specific component and

possibly some shared parts required by both products at the assembly stage.

The manufacturing system has two stages which is illustrated in Fig. 4.1. The first

stage consists of two dedicated production lines where the product-specific compo-

nents are produced to stock before demand is realized. It is assumed that production

of a unit of component j (j = 1, 2) takes an exponentially distributed amount of time

with mean 1
µj

. Inventory costs are incurred at the rate of hj per unit time for each

unit of component j kept in stock. The production lines feed a shared assembly line.

During this assembly stage, a product-specific component is turned into a final prod-
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uct through further operations which may include the joining of the component with

other common parts shared by both products. We relax the assumption prevalent

in most previous works that assembly is instanteneous and let the assembly opera-

tions also take an exponentially distributed amount of time with mean 1
µ0

, identical

for both products. We note that identical assembly time distributions may seem

restrictive at first, but it is a reasonable assumption in an assemble-to-order setting.

Consider a computer manufacturer that assembles customized notebook computers.

Customers may choose among different sized hard disks and computer memories as

well as processors at different speeds. Although the production times of the variants

within each category of these components may vary, once the customer’s choice is

placed in an assembly kit, the time to assemble the components are similar. This is

due to the fact that even though each computer may have parts with different quality

levels, the number of component categories required to assemble a computer do not

vary significantly (i.e., all computers have hard disks, processors, etc.). Lastly, since

all the products are assembled-to-order, no inventory is kept for finished products.

When an order for a certain type of product arrives, the firm has the option to

accept the order and admit it into the assembly queue, or reject the order. Each

accepted order for a product of type-i leads to a revenue of Ri. To account for the

preference of customers’ willingness to wait until delivery, the firm accrues a cost at

a rate of b per unit time for each order in the assembly queue. If the firm decides to

reject a demand by not admitting it into the assembly queue, the unsatisfied demand

will be considered as lost sales.

The decision epochs considered in this model consists of all demand arrivals to-

gether with the production and assembly completions. At each decision epoch, a

policy specifies whether a production server should stay idle or produce a unit of the
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corresponding component. In addition, at decision epochs corresponding to demand

arrivals, the policy determines whether to accept or reject the assembly of that order.

Our objective is to find a control policy which maximizes the average profit per

unit time over a long term. The profit is the revenue from accepted (assembled)

orders minus the inventory holding costs for the components and the costs due to

orders waiting in the assembly queue.

The overall problem consists of the control of (i) the production of the two

product-specific components and (ii) the admission for assembly of the two types

of product demands. The optimal production and admission control problem can

be formulated as a Markov decision process. Let S ∈ N3 denote the state space

and (n0, n1, n2) ∈ S be defined such that n0 denotes the number of customer orders

waiting in the assembly queue, n1 and n2 denote the amount of inventory for product-

specific components 1 and 2 respectively. Note that our assumptions regarding the

costs associated with customers waiting in the queue and the assembly times being

identical for both products enables us to reduce the dimension of the state space due

to the need of observing only the total number of customers waiting in the assembly

queue.

When the demand for a certain type of product is admitted, its corresponding

component is picked up form inventory to be assigned to the order and the order

is placed in the assembly line queue where the remaining assembly tasks will be

performed. Hence, if a product demand is accepted, the assembly queue length is

increased by one unit and the corresponding component’s inventory level is reduced

by one unit. Letting v(n0, n1, n2) denote the relative value function of being in state

(n0, n1, n2) and g be the average profit per transition, we can present the average

profit infinite horison dynamic programming problem as follows:
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v(n0, n1, n2) + g =
1

Λ






−bn0 − h1n1 − h2n2

+λ1 max[(v(n0 + 1, n1 − 1, n2) + R1) · I(n1>0)

+v(n0, n1, n2) · I(n1=0), v(n0, n1, n2)]

+λ2 max[(v(n0 + 1, n1, n2 − 1) + R2) · I(n2>0)

+v(n0, n1, n2) · I(n2=0), v(n0, n1, n2)]

+µ0 max[v(n0 − 1, n1, n2) · I(n0>0)

+v(n0, n1, n2) · I(n0=0), v(n0, n1, n2)]

+µ1 max[v(n0, n1 + 1, n2), v(n0, n1, n2)]

+µ2 max[v(n0, n1, n2 + 1), v(n0, n1, n2)]






(4.1)

where Λ = λ1 + λ2 + µ0 + µ1 + µ2, and I(·) denotes the indicator function.

In (4.1), the terms 1
Λ{−bn0−h1n1−h2n2} denote the expected costs per decision

epoch due to customers’ waiting in the queue and the holding of component inven-

tories; the terms multiplied by λi (i = 1, 2) correspond to transitions and revenues

generated with the arrival of a demand for product type-i; and the terms multiplied

by µj (j = 0, 1, 2) correspond to transitions generated by either a product assembly

or a component production completion opportunity. Since the transitions occur with

rate Λ, the profit per unit time can be represented as gΛ.

4.5 A Partial Characterization of the Optimal Production and Admis-

sion Policy

The optimal component production policy states whether a production line should

produce another component to meet anticipated demand or stay idle to avoid exces-

sive inventory. The optimal assembly admission policy, on the other hand, determines

whether it is more profitable to admit a certain type of product demand into the

assembly queue or reject it to preserve the assembly capacity to the other product or
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to prevent higher costs associated with longer assembly queues. These two policies

jointly affect the long run profitability of the manufacturing firm.

In this we section, we provide a characterization of the optimal policy structure

for a certain region of the state space. To that end, we first define the following

additional notation for any real valued function v:

D0v(n0, n1, n2) = v(n0 + 1, n1, n2)− v(n0, n1, n2),

D1v(n0, n1, n2) = v(n0, n1 + 1, n2)− v(n0, n1, n2),

D2v(n0, n1, n2) = v(n0, n1, n2 + 1)− v(n0, n1, n2),

and the combinations such as:

D0,−1v(n0, n1, n2) = v(n0 + 1, n1 − 1, n2)− v(n0, n1, n2), and

D0,−2v(n0, n1, n2) = v(n0 + 1, n1, n2 − 1)− v(n0, n1, n2)

For any state (n0, n1, n2), D0 represents the additional value of having an addi-

tional order waiting in the assembly queue. D1 and D2 represent the additional value

of having an additional unit of component 1 and component 2 inventory, respectively.

D0,−1 and D0,−2 are the additional values of having accepted a type 1 and a type 2

demand, respectively.

The following sub- and super-modularity conditions are sufficient to prove the

structure of the optimal policy where the symbols ↑ and ↓ are used in the weak sense

and refer to non-decreasing and non-increasing, respectively.

(i) D0v(n0, n1, n2) ↓ n0, ↓ n1, ↓ n2, and ≤ 0

(ii) D1v(n0, n1, n2) ↓ n0, ↓ n1, ↓ n2, and ≤ R1

(iii) D2v(n0, n1, n2) ↓ n0, ↓ n1, ↓ n2, and ≤ R2

(iv) D0,−1v(n0, n1, n2) ↓ n0, ↑ n1, and ↓ n2

(v) D0,−2v(n0, n1, n2) ↓ n0, ↓ n1, and ↑ n2

(4.2)
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In (4.2), condition (i), D0 ↓ n0, n1 and n2 means the additional value gained by

completing the assembly of an order in the queue (i.e., v(n0−1, n1, n2)−v(n0, n1, n2)

or equivalently, −D0v(n0 − 1, n1, n2)) gets larger with each additional order in the

queue and component in inventory. The fact that D0 ↓ n0 and ≤ 0 implies that it is

not optimal for the assembly line to stay idle if there are any orders waiting in the

queue.

Conditions (ii) and (iii) directly imply the characteristics of the optimal pro-

duction policies. For example, D1 ↓ n1 means that the additional value gained by

producing a unit of component 1 gets smaller with each additional unit of compo-

nent 1 in inventory. Hence, if it is optimal not to produce component 1 in a state

(n0, n1, n2), (i.e., D1v(n0, n1, n2) < 0) it remains optimal not to produce component

1 in state (n0, n1 + 1, n2). D1 ↓ n0 and D1 ↓ n2 imply that if it is optimal not to

produce component 1 in state (n0, n1, n2), then it is also optimal not to produce

component 1 in states (n0 + 1, n1, n2) or (n0, n1, n2 + 1).

In a similar fashion, conditions (iv) and (v) imply the structure of the assembly

admission policies. For example, D0,−1 ↓ n0, and ↓ n2 implies that if it is optimal not

to admit a type 1 demand in state (n0, n1, n2), (i.e., D0,−1v(n0, n1, n2) < −R1) then it

remains optimal not to admit a type 1 demand in states with a longer assembly queue,

(n0 + 1, n1, n2), or with higher component 2 inventories, (n0, n1, n2 + 1). D0,−1 ↑ n1

suggests that if it is optimal to admit a type 1 demand in state (n0, n1, n2), (i.e.,

D0,−1v(n0, n1, n2) > −R1) then, it is also optimal to accept a type 1 demand when

component 1 inventory is higher, (n0, n1 + 1, n2).

Conditions (i)-(v), if hold, are sufficient to the characterize the optimal pol-

icy structure. In our model, unfortunately, the conditions D0,−1v(n0, n1, n2) ↓ n2

and D0,−2v(n0, n1, n2) ↓ n1 in (iv) and (v) do not necessarily hold over the en-
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tire state space. However, through extensive numerical analysis, we find that they

hold within a certain region of the state space away from the boundary where

n0 = 0. If we let a subregion of the state space P ⊂ S to be defined as P :=

{(n0, n1, n2) | D0,−1v(n0, n1, n2) ↓ n2 and D0,−2v(n0, n1, n2) ↓ n1}, then we can

define the structure of the optimal production and admission policies within this

particular region by the following Theorem.

Theorem 4.1. For (n0, n1, n2) ∈ P , the structure of the optimal policy is as follows:

(a) The optimal assembly admission policy for each product is defined by a switching

surface. For products of type i (i = 1, 2), if n0 ≤ γi(n1, n2), the optimal policy accepts

to assemble the order for product i, otherwise it rejects the order. The switching

surface for product i, γi(n1, n2), is non-decreasing in ni and non-increasing in n(3−i).

(b) The optimal component production policy for each component j (j = 1, 2) is

also defined by a switching surface βj(n0, n(3−j)) such that the optimal policy is to

produce an additional unit of component j if nj ≤ βj(n0, n(3−j)), and to stay idle

otherwise. Furthermore, βj(n0, n(3−j)) is non-increasing in n0 and in n(3−j).

(c) It is not optimal for the assembly line to stay idle if there are orders waiting

in the assembly queue.

Proof: The proof of Theorem 4.1 is provided in Section 4.8.

In part (a) of the above theorem, n0 ≤ γi(n1, n2) implies that there is a state-

dependent assembly queue length threshold, i.e., a cutoff point, for a product to

be assembled. The product will be assembled only if the assembly queue length is

shorter than this threshold. This threshold level depends on the inventory levels

of both components. Moreover, for example, γ1(n1, n2), being non-decreasing in n1

implies that while it is not optimal to admit a product type-1 demand for assembly

for a specific queue length and inventory levels, it may be optimal to admit a product
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type-1 demand for assembly when the inventory level of component 1 is higher. In a

similar fashion, γ1(n1, n2), being non-increasing in n2 implies that while it is optimal

to admit a product type-1 demand for assembly for a certain instance, it may be

optimal to reject a product type-1 demand when the inventory level of component 2

is higher.

Similarly, in part (b) of the theorem, nj ≤ βj(n0, n(3−j)) implies that the decision

regarding whether another unit of a component needs to be produced or not is guided

by a state-dependent base-stock policy. A certain type of component will be produced

only if its inventory is lower than this base-stock level. This base-stock level depends

on the assembly queue length as well as the inventory level of the other component.

As an example, β2(n0, n1) being non-decreasing in n0 and in n1 implies that while it

is optimal to produce another unit of component 2 for a specific queue length and

inventory levels, it may be optimal not to produce another unit of component 2 if

the assembly queue length was longer and/or the inventory level of component 1 was

higher.

Even though we partially characterize the structure of the optimal policy in a

specific subregion of the state space, throughout a large number of problems we have

tested, we have observed that the general structure defined by Theorem 4.1 held over

the entire state space. Therefore, we conjecture that the structure given in Theorem

4.1 is optimal for the entire state space, i.e. a state dependent produce-up-to policy is

optimal for the production of components and there exists state dependent assembly

queue length thresholds for each type of product, beyond which it is optimal to reject

a demand for the corresponding product.

We will now illustrate the structure of the demand admission and component

production policies for an example problem with two components with the following



141

30 

35 

40 

45 

50 

0 2 4 6 8 10 12 14 

A
s
s
e
m

b
ly

 q
u
e
u
e
 l
e
n
g
th

, 
n

0
 

!1 (n1,n2)   

n2=5 

n2=1 

Component 1 inventory, n1 

REJECT product 1 

ADMIT product 1 

(a) Structure of demand admission policies

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0 2 4 6 8 10 12 14 

Component 1 inventory n1 

n2=5 
n2=1 

A
s
s
e
m

b
ly

 q
u
e
u
e
 l
e
n
g
th

, 
n

0
 

IDLE 
component 1 

PRODUCE 
component 1 

!1 (n0,n2)   

(b) Structure of component production policies

Figure 4.2: Structure of production and demand admission policies



142

parameters: λ1 = λ2 = 4, µ0 = 10, µ1 = µ2 = 5,, R1 = 75, R2 = 100, h1 =

h2 = 2, and b = 5. In Figure 4.2, the product admission and component production

policies for product type-1 are displayed. For this example problem consisting of

two components, the optimal threshold values are defined by switching surfaces in

three dimensions. The solid and the dotted curves in both figures are results of

two-dimensional cuts on the switching surfaces at two separate values of the type-2

component inventory levels.

As illustrated in Figure 4.2 (a), a type-1 product demand will be admitted for

assembly if the current state of the system falls below this switching curve. In other

words, any component inventory pair (n1, n2) corresponds to a certain admission

threshold value for a type-1 product. A demand for this product will be accepted

only if the assembly queue length, n0, is less than this threshold value. For queue

lengths exceeding this amount, it is optimal not to admit the product for assembly. It

can be observed that the admission switching surface for product 1 is non-decreasing

in the amount of component 1 inventory. The dashed line demonstrates how this

threshold decreases when component 2 inventory is higher.

The production switching curve for the type-1 component is shown in Figure 4.2

(b). An assembly queue length and component 2 inventory pair (n0, n2) corresponds

to a certain base-stock level for component 1. If component 1 inventory level, n1, is

lower than this base-stock level, then it is optimal to produce an additional unit of

component 1. This base-stock level decreases with both the assembly queue length

and the component 2 inventory.
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4.6 A Heuristic Algorithm

In this section, we use the insights gained from the preceding analysis to develop

a heuristic algorithm to determine component production and assembly admission

decisions. The heuristic solution is obtained in two stages: First, we identify the

appropriate admission threshold level for each type of product. Taking into consid-

eration the results of this first stage, we then find corresponding produce-up-to levels

for each component.

Stage 1: Determining admission thresholds:

Our goal is to determine multiple admission thresholds, one for each type of prod-

uct. We first present an optimal admission problem for a single product, formulated

as a Markov decision process. Define x as the number of items in the assembly queue

and let v(x) be the relative value function of being in state x and g denote the av-

erage profit per transition. In addition, let λ and µ denote the demand arrival and

the assembly rates respectively, b denote the cost per unit time for each item kept

in the assembly queue and R denote the revenue generated by an accepted demand.

We can then write,

v(x) + g =
1

λ + µ






−bx + µ(v(x− 1) · I(x>0) + v(x) · I(x=0))

+λ max[v(x + 1) + R, v(x)]





(4.3)

The optimal assembly admission policy has a threshold form [43, 40]. For some l ≥ 0,

the optimal policy will be to admit for assembly if x ≤ l, and to reject the demand

if x > l. This structure enables us to use a simple one dimensional search to find l,

the cutoff point for assembly admission that maximizes the profit. For any choice of

l, the number of items in the assembly queue, X, behaves as an M/M/1/l queue.

In order to find the assembly admission cutoff points for two products, we use

the following approach: We first find the admission threshold for the lower revenue
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Figure 4.3: Transition rate diagram

item assuming that whenever a lower revenue item is admitted, the higher revenue

item would also have been admitted. Then, we search for an admission threshold

for the higher revenue item in a similar fashion. Without loss of generality, we label

the products such that R1 ≤ R2. To determine l1, we let the total arrival into the

assembly queue be given by λ1 + λ2 and substitute R1 for R in (4.3). We opt not to

use a weighted revenue such as R = (λ1R1 +λ2R2)/(λ1 +λ2) as this would lead to an

unfair amount of item 1 admissions if R2 >> R1. Next we determine l2 by setting

the arrival rate to the queue beyond l1 be limited to λ2 generating a revenue of R2.

Stage 2: Determining base-stock levels:

To determine the base stock levels, we first adjust the demands for both products

taking into consideration the orders that were rejected. For a system with admission

threshold levels l2 ≥ l1, standard results in queueing theory [47] allows us to easily

compute the blocking probabilities for this M/M/1/l2 queue (with transitions shown

in Figure 4.3) by solving the global balance equations. Letting p(l1) and p(l2) denote

the blocking probabilities for product 1 and product 2 arrivals, respectively, we adjust

the demand for each product by λ′1 := (1− p(l1))λ1 and λ′2 := (1− p(l2))λ2.

Next, we consider the optimal production control problem for a single product.

We use much of the previous notation except we now define x as the number of items

in the component inventory. Further, let µ denote the component production rate
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and h denote the cost per unit time for each item kept in the component inventory.

We can then write,

v(x) + g =
1

λ + µ






−hx + µ max[(v(x + 1), v(x)]

+λ((v(x− 1) + R) · I(x>0) + v(x) · I(x=0))





(4.4)

The optimal policy is again of a threshold form. For some s ≥ 0, the optimal policy

will be to produce if x ≤ s and not to produce if x > s. For any choice of s, s−X

behaves like an M/M/1/s queue where s implies the queue size. For example, when

the physical component inventory, X, is zero, a demand arrival will be lost. This

corresponds to a queue length of s in the M/M/1/s queue, i.e., a totally full queue,

hence a demand arrival will be lost. Using a one-dimensional search and substituting

the adjusted demand levels obtained previously, we find the base stock levels s1 and

s2 corresponding to products 1 and 2, respectively.

The following two tables provide results of numerical studies comparing the

heuristic policy and the optimal policy. Table 4.1 displays a full numerical experi-

ment including 32 problem instances for a two product case where the revenues form

the products are R1 = 75 and R2 = 100. Two different demand arrival scenarios, one

with the lower priced item having a higher demand rate, and the other with both

products having the same demand rate, were tested. For each demand scenario, the

corresponding production rates and the assembly rate were independently varied be-

tween utilization values of 80% and 90%. Finally, component holding and assembly

queue waiting costs were alternated between a high and a low set of values. l1 and

l2 correspond to the assembly admission threshold values found by the heuristics for

product type 1 and 2, respectively. Similarly, s1 and s2 are the base-stock levels

derived for the components. The average profit per unit time for the optimal and

the heuristic policy are recorded together with the percent difference of the heuristics



146

Table 4.1: Performance of the heuristics for two products.
No λ1 λ2 ρ0 ρ1 ρ2 hi b l1 l2 s1 s2 Opt. Heur. % Diff

1 4 2 0.8 0.8 0.8 1 3 28 37 13 11 464.5 463.9 0.13

2 4 2 0.9 0.8 0.8 1 3 18 31 12 11 452.9 450.9 0.44

3 4 2 0.8 0.9 0.8 1 3 28 37 17 11 460.4 460.0 0.08

4 4 2 0.9 0.9 0.8 1 3 18 31 16 11 449.6 447.8 0.39

5 4 2 0.8 0.8 0.9 1 3 28 37 11 15 461.3 461.0 0.05

6 4 2 0.9 0.8 0.9 1 3 18 31 10 14 450.2 449.1 0.24

7 4 2 0.8 0.9 0.9 1 3 28 37 17 15 457.1 456.7 0.09

8 4 2 0.9 0.9 0.9 1 3 18 31 16 14 446.8 445.2 0.35

9 4 2 0.8 0.8 0.8 2 5 18 32 10 9 443.8 442.3 0.33

10 4 2 0.9 0.8 0.8 2 5 13 26 9 9 429.4 425.8 0.84

11 4 2 0.8 0.9 0.8 2 5 18 32 13 9 438.8 437.4 0.31

12 4 2 0.9 0.9 0.8 2 5 13 26 12 9 425.4 421.7 0.88

13 4 2 0.8 0.8 0.9 2 5 18 32 10 11 440.0 438.8 0.28

14 4 2 0.9 0.8 0.9 2 5 13 26 9 11 426.2 422.9 0.77

15 4 2 0.8 0.9 0.9 2 5 18 32 13 11 435.0 433.9 0.26

16 4 2 0.9 0.9 0.9 2 5 13 26 12 11 422.2 418.8 0.80

17 3 3 0.8 0.8 0.8 1 3 22 36 11 13 489.1 488.5 0.12

18 3 3 0.9 0.8 0.8 1 3 15 35 11 13 477.5 474.4 0.65

19 3 3 0.8 0.9 0.8 1 3 22 36 15 13 485.7 485.1 0.11

20 3 3 0.9 0.9 0.8 1 3 15 35 14 13 474.7 472.0 0.57

21 3 3 0.8 0.8 0.9 1 3 22 36 11 17 484.9 484.5 0.07

22 3 3 0.9 0.8 0.9 1 3 15 35 11 17 473.8 471.0 0.60

23 3 3 0.8 0.9 0.9 1 3 22 36 15 17 481.4 481.1 0.07

24 3 3 0.9 0.9 0.9 1 3 15 35 14 17 471.0 468.6 0.52

25 3 3 0.8 0.8 0.8 2 5 15 32 9 10 467.9 466.5 0.30

26 3 3 0.9 0.8 0.8 2 5 10 32 8 10 453.5 448.5 1.10

27 3 3 0.8 0.9 0.8 2 5 15 32 11 10 463.9 462.8 0.23

28 3 3 0.9 0.9 0.8 2 5 10 32 10 10 450.4 445.7 1.05

29 3 3 0.8 0.8 0.9 2 5 15 32 9 13 462.8 461.5 0.30

30 3 3 0.9 0.8 0.9 2 5 10 32 8 13 449.2 444.2 1.11

31 3 3 0.8 0.9 0.9 2 5 15 32 11 13 458.8 457.7 0.23

32 3 3 0.9 0.9 0.9 2 5 10 32 10 13 445.9 441.3 1.04
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Table 4.2: Performance of the heuristics for three products.
No λ1 λ2 λ3 µ0 µ1 µ2 µ3 h b Opt. Heur. % Diff

1 3 4 2 0.8 0.8 0.8 0.8 1 3 604.0 602.8 0.20

2 3 4 2 0.9 0.9 0.8 0.8 1 3 590.5 585.8 0.81

3 3 4 2 0.8 0.9 0.9 0.8 1 3 597.2 596.3 0.15

4 3 4 2 0.9 0.8 0.9 0.8 1 3 588.9 583.9 0.84

5 3 4 2 0.8 0.9 0.8 0.9 1 3 598.2 597.0 0.19

6 3 4 2 0.9 0.8 0.8 0.9 1 3 589.6 584.6 0.86

7 3 4 2 0.8 0.8 0.9 0.9 1 3 596.5 595.5 0.17

8 3 4 2 0.9 0.9 0.9 0.9 1 3 583.7 579.4 0.74

9 3 4 2 0.8 0.9 0.8 0.8 2 5 574.4 572.1 0.41

10 3 4 2 0.9 0.8 0.8 0.8 2 5 563.2 555.7 1.34

11 3 4 2 0.8 0.8 0.9 0.8 2 5 572.2 569.1 0.53

12 3 4 2 0.9 0.9 0.9 0.8 2 5 556.4 549.6 1.22

13 3 4 2 0.8 0.8 0.8 0.9 2 5 573.5 570.6 0.50

14 3 4 2 0.9 0.9 0.8 0.9 2 5 557.4 550.8 1.18

15 3 4 2 0.8 0.9 0.9 0.9 2 5 565.3 563.2 0.36

16 3 4 2 0.9 0.8 0.9 0.9 2 5 555.1 547.9 1.30

17 3 3 3 0.8 0.9 0.8 0.8 1 3 626.0 624.8 0.19

18 3 3 3 0.9 0.8 0.8 0.8 1 3 617.2 612.2 0.81

19 3 3 3 0.8 0.8 0.9 0.8 1 3 625.1 624.0 0.17

20 3 3 3 0.9 0.9 0.9 0.8 1 3 612.0 607.3 0.76

21 3 3 3 0.8 0.8 0.8 0.9 1 3 624.3 623.2 0.18

22 3 3 3 0.9 0.9 0.8 0.9 1 3 611.1 606.8 0.71

23 3 3 3 0.8 0.9 0.9 0.9 1 3 618.2 617.4 0.13

24 3 3 3 0.9 0.8 0.9 0.9 1 3 610.1 605.3 0.79

25 3 3 3 0.8 0.8 0.8 0.8 2 5 601.6 598.7 0.48

26 3 3 3 0.9 0.9 0.8 0.8 2 5 585.1 578.6 1.12

27 3 3 3 0.8 0.9 0.9 0.8 2 5 594.5 592.6 0.32

28 3 3 3 0.9 0.8 0.9 0.8 2 5 583.8 576.9 1.18

29 3 3 3 0.8 0.9 0.8 0.9 2 5 593.1 591.3 0.30

30 3 3 3 0.9 0.8 0.8 0.9 2 5 582.6 575.4 1.23

31 3 3 3 0.8 0.8 0.9 0.9 2 5 592.1 589.6 0.42

32 3 3 3 0.9 0.9 0.9 0.9 2 5 576.6 570.5 1.06
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from the optimal.

The average difference between the heuristic and the optimal policy in Table

4.1 was approximately 0.45%. The heuristic algorithm was effective for all cases

studied, where the maximum difference from the optimal was 1.11%. In general, when

the products had different arrival rates (No 1-16), the heuristics performed slightly

better. The assembly line rate was found as a significant factor on the performance

of the heuristics, where the cases corresponding to lower assembly utlizations (odd

numbered cases) performed better than the ones corresponding to higher utilization

rates. However, the component production rates, i.e., the production line utilizations,

did not have a significant effect on the performance. Finally, when the waiting cost in

the assembly queue was higher compared to the component inventory holding costs

(No 9-16, 25-32), the performance of the heuristics slightly deteriorated.

Table 4.2 shows numerical results for an extension to three products with revenues

set as R1 = 50, R2 = 75, and R3 = 100. A partial experiment was carried on to test

the performance of the heuristics. The average difference between the heuristic and

the optimal policy were found to be 0.65% with a maximum difference of 1.34%,

indicating that the heuristic policy maintains its effectiveness at this higher number

of end-products.

The heuristic algorithm that we have developed takes into account that demands

are prioritized by their revenues and assigns separate thresholds for each product.

Moreover, the base-stock levels for each product are determined by considering the

effects of this admission threshold policy. Hence, compared to a first-come first-serve

admission rule, the heuristic algorithm draws on several important properties of the

optimal policy structure. In addition, the algorithm may easily be implemented as

it does not require the current state information.
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4.7 Conclusions

In this chapter, we considered a basic mass customization setting by focusing on

a manufacturing firm that offers a customer to choose among several alternatives of

a product. We were particularly interested in the manufacturer’s decisions on how

to decide the right amount of component inventory to hold and how to dynamically

allocate its shared assembly capacity among customer orders generating different

revenues.

We investigated and partially characterized the structures of the optimal com-

ponent production and assembly admission policies. We showed that the optimal

production decisions can be defined by a state-dependent base-stock policy where

the base-stock level for a component decreases with the inventory level of other com-

ponents and the assembly queue length. In addition, the optimal demand admission

decision for each type of product is described by a state-dependent admission thresh-

old level. Fewer demands for a certain product are admitted as more customer orders

are waiting in the assembly queue or when the inventory level of the other compo-

nents are higher. Through an extensive numerical analysis, we observed that the

policy described for a certain region of the state space extends to the entire state

space. Thus, we conjectured that the optimal production and admission policies

described in this chapter hold throughout all possible states.

Finally, we devised a heuristic solution algorithm that is motivated by the in-

sights we gained from the optimal policy structure. We tested the performance of

the algorithm for a two- and a three-product setting and observed that the profits

obtained by the heuristic policy remained within a narrow gap of the profits attained

by the optimal policy.
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4.8 Appendix

Proof of Theorem 4.1:

The proof of Theorem 4.1 follows the same framework as the proof of Theorem

3.1 in Section 3.5. In order to simplify the representation of the analysis, we first

introduce some additional notation. For any value function v, we define the following

operators:

T1v(n0, n1, n2) = max[(v(n0 + 1, n1 − 1, n2) + R1) · I(n1>0)

+v(n0, n1, n2) · I(n1=0), v(n0, n1, n2)],

T2v(n0, n1, n2) = max[(v(n0 + 1, n1, n2 − 1) + R2) · I(n2>0)

+v(n0, n1, n2) · I(n2=0), v(n0, n1, n2)],

T3v(n0, n1, n2) = max[v(n0−1, n1, n2) ·I(n0>0)+v(n0, n1, n2) ·I(n0=0), v(n0, n1, n2)],

T4v(n0, n1, n2) = max[v(n0, n1 + 1, n2), v(n0, n1, n2)],

T5v(n0, n1, n2) = max[v(n0, n1, n2 + 1), v(n0, n1, n2)],

Tv(n0, n1, n2) = 1
Λ [−bn0 − h1n1 − h2n2 + λ1T1v(n0, n1, n2) + λ2T2v(n0, n1, n2)

+µ0T3v(n0, n1, n2) + µ1T4v(n0, n1, n2) + µ2T5v(n0, n1, n2)]

We restate the sufficient conditions (i)-(v) given in (4.2) that directly imply the

optimal policy structure with the addition of four other technical conditions that

assists us in the proof.

Let V be the set of functions on P such that if v ∈ V, then:

(i) D0v(n0, n1, n2) ↓ n0, ↓ n1, ↓ n2, and ≤ 0

(ii) D1v(n0, n1, n2) ↓ n0, ↓ n1, ↓ n2, and ≤ R1

(iii) D2v(n0, n1, n2) ↓ n0, ↓ n1, ↓ n2, and ≤ R2

(iv) D0,−1v(n0, n1, n2) ↓ n0, ↑ n1, and ↓ n2

(v) D0,−2v(n0, n1, n2) ↓ n0, ↓ n1, and ↑ n2
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(vi) D0,−1v(n0, n1, n2) ↓ in the direction (1,0,-1)

(vii) D0,−2v(n0, n1, n2) ↓ in the direction (1,-1,0)

(viii) D−1,2v(n0, n1, n2) ↓ n1

(ix) D1,−2v(n0, n1, n2) ↓ n2

In the following lemma, we show that these conditions are preserved through

recursions under the operator T.

Lemma 4.1. If v ∈ V then T1v, T2v, T3v, T4v, T5v, Tv ∈ V.

Proof: For brevity, we present only the proof that D1 is non-increasing in n0. The

proofs showing that other conditions are also preserved under the operators is similar

and therefore omitted. We first show that D1T1v(n0, n1, n2) ↓ n0. For any (n0, n1, n2)

such that n1 > 0,

D1T1v(n0, n1, n2) = max[v(n0 + 1, n1, n2) + R1, v(n0, n1 + 1, n2)]

−max[v(n0 + 1, n1 − 1, n2) + R1, v(n0, n1, n2)] (4.5)

D1T1v(n0 + 1, n1, n2) = max[v(n0 + 2, n1, n2) + R1, v(n0 + 1, n1 + 1, n2)]

−max[v(n0 + 2, n1 − 1, n2) + R1, v(n0 + 1, n1, n2)] (4.6)

We need to show that (4.6) minus (4.5) ≤ 0. There are four possible outcomes

for the two max functions in (4.6). One of these outcomes is v(n0 + 1, n1 + 1, n2)−

v(n0 +2, n1−1, n2)−R1 which requires v(n0 +2, n1, n2)−v(n0 +1, n1 +1, n2) ≤ −R1

and v(n0 +2, n1−1, n2)−v(n0 +1, n1, n2) ≥ −R1. However, this violates D0,−1v ↑ n1

(recall v ∈ V ) and therefore is not feasible. Three possible cases remain.

Case(1): If the outcome of (4.6) is v(n0 +2, n1, n2)−v(n0 +2, n1−1, n2), the only

possible outcome for (4.5) is v(n0+1, n1, n2)−v(n0+1, n1−1, n2) due to D0,−1v ↓ n0.
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(4.6) minus (4.5) yields D1v(n0 + 2, n1 − 1, n2)−D1v(n0 + 1, n1 − 1, n2), and this is

≤ 0 by D1v ↓ n0.

Case(2): If the outcome of (4.6) is v(n0 + 2, n1, n2) + R1 − v(n0 + 1, n1, n2), then

v(n0 + 1, n1, n2) + R1 must be the outcome of the first max function in (4.5) (due to

D0,−1v ↓ n0). There are two possible outcomes for the second max function in (4.5).

Case(2a): If the outcome of (4.5) is v(n0 + 1, n1, n2) + R1 − v(n0, n1, n2), then (4.6)

minus (4.5) yields v(n0 +2, n1, n2)−v(n0 +1, n1, n2)−v(n0 +1, n1, n2)+v(n0, n1, n2),

or equivalently D0v(n0 +1, n1, n2)−D0v(n0 +1, n1, n2), and that is ≤ 0 by D0v ↓ n0.

Case(2b): If the outcome of (4.5) is v(n0 +1, n1, n2)−v(n0 +1, n1−1, n2), then (4.6)

minus (4.5) yields v(n0 +2, n1, n2)+R1−v(n0 +1, n1, n2)−v(n0 +1, n1, n2)+v(n0 +

1, n1−1, n2) ≤ v(n0+2, n1, n2)−v(n0+1, n1, n2)−v(n0+2, n1−1, n2)+v(n0+1, n1−

1, n2) = D0v(n0 + 1, n1, n2) −D0v(n0 + 1, n1 − 1, n2), and this is ≤ 0 by D0v ↓ n1.

(The first inequality follows from v(n0 + 2, n1− 1, n2) + R1 ≤ v(n0 + 1, n1, n2) which

must hold based on the outcome of (4.6) for this specific case.)

Case(3): When the outcome of (4.6) is v(n0 + 1, n1 + 1, n2) − v(n0 + 1, n1, n2),

there are three possible outcomes for the two max functions in (4.5). Case(3a): If

v(n0 + 1, n1, n2)− v(n0 + 1, n1 − 1, n2) comes out of (4.5), then (4.6) minus (4.5) is

equal to D1v(n0 + 1, n1, n2)−D1v(n0 + 1, n1 − 1, n2), and that is ≤ 0 by D1v ↓ n1.

Case(3b): If v(n0 + 1, n1, n2) + R1 − v(n0, n1, n2) comes out of (4.5), then (4.6)

minus (4.5) gives v(n0 + 1, n1 + 1, n2) − v(n0 + 1, n1, n2) − v(n0 + 1, n1, n2) − R1 +

v(n0, n1, n2) ≤ v(n0 +1, n1 +1, n2)−v(n0, n1 +1, n2)−v(n0 +1, n1, n2)+v(n0, n1, n2)

= D0v(n0, n1 + 1, n2) − D0v(n0, n1, n2), and this is ≤ 0 by D0v ↓ n1. (The first

inequality follows from v(n0 + 1, n1, n2) + R1 ≥ v(n0, n1 + 1, n2) which holds due to

the outcome of (4.5) for this specific case.) Case(3c): The only remaining possible

outcome for (4.5) is v(n0, n1 + 1, n2) − v(n0, n1, n2) in which case (4.6) minus (4.5)
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results in D1v(n0 + 1, n1, n2)−D1v(n0, n1, n2), and this is ≤ 0 by D1v ↓ n0.

Finally, we consider the boundary states (n0, 0, n2):

D1T1v(n0, 0, n2) = max[v(n0 + 1, 0, n2) + R1, v(n0, 1, n2)]− v(n0, 0, n2) (4.7)

D1T1v(n0+1, 0, n2) = max[v(n0+2, 0, n2)+R1, v(n0+1, 1, n2)]−v(n0+1, 0, n2) (4.8)

We need to show that (4.8)-(4.7) ≤ 0. There are two possibilities for the outcome of

the max function in (4.8). If (4.8) is v(n0+2, 0, n2)+R1−v(n0+1, 0, n2), then the only

possible outcome for (4.7) is v(n0+1, 0, n2)+R1−v(n0, 0, n2) (since D0,−1v ↓ n0), and

the fact that (4.8)-(4.7) ≤ 0 can be shown by following the arguments in Case(2a).

On the other hand, if the outcome of (4.8) is v(n0 + 1, 1, n2)− v(n0 + 1, 0, n2), then

there are two possibilities for the outcome of (4.7). The two resulting cases are

similar to cases (3b) and (3c) analyzed above with n1 = 0.

We will next show that D1T2v(n0, n1, n2) ↓ n0. For any (n0, n1, n2) such that

n2 > 0,

D1T2v(n0, n1, n2) = max[v(n0 + 1, n1 + 1, n2 − 1) + R2, v(n0, n1 + 1, n2)]

−max[v(n0 + 1, n1, n2 − 1) + R2, v(n0, n1, n2)], (4.9)

D1T2v(n0 + 1, n1, n2) = max[v(n0 + 2, n1 + 1, n2 − 1) + R2, v(n0 + 1, n1 + 1, n2)]

−max[v(n0 + 2, n1, n2 − 1) + R2, v(n0 + 1, n1, n2)] (4.10)

and we require (4.10)-(4.9) ≤ 0. There are three possible outcomes for the two max

functions in (4.10) as the outcome v(n0 + 2, n1 + 1, n2 − 1) + R2 − v(n0 + 1, n1, n2)

is not feasible due to D0,−2v ↓ n1.

Case(1): If the outcome of (4.10) is v(n0 +2, n1 +1, n2−1)−v(n0 +2, n1, n2−1),

then the only possible outcome for (4.9) is v(n0+1, n1+1, n2−1)−v(n0+1, n1, n2−1)
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(recall D0,−2v ↓ n0). (4.10) − (4.9) results in D1v(n0 + 2, n1, n2 − 1) − D1v(n0 +

1, n1, n2 − 1), and this is ≤ 0 by D1v ↓ n0.

Case(2): If v(n0 + 1, n1 + 1, n2) − v(n0 + 2, n1, n2 − 1) − R2 is the outcome of

(4.10), v(n0 +1, n1 +1, n2−1)+R2 must be the outcome of the first max function in

(4.9) since D0,−2v(n0, n1, n2) ↓ in the direction (1,-1,0) and v(n0 + 1, n1, n2− 1) + R2

must be the outcome of the second max function in (4.9) as D0,−2v(n0, n1, n2) ↓ n0.

Therefore ((4.10)− (4.9) equals v(n0 + 1, n1 + 1, n2)− v(n0 + 1, n1 + 1, n2 − 1)−

v(n0 + 2, n1, n2 − 1) + v(n0 + 1, n1, n2 − 1)−R2

≤ v(n0+1, n1+1, n2)−v(n0+1, n1+1, n2−1)−v(n0+1, n1, n2)+v(n0+1, n1, n2−1)

= D2v(n0 + 1, n1 + 1, n2 − 1)−D2v(n0 + 1, n1, n2 − 1), and this is ≤ 0 by D0v ↓ n1.

Case(3): If the outcome of (4.10) is v(n0 + 1, n1 + 1, n2)− v(n0 + 1, n1, n2), then

there are three psossible outcomes for (4.9). Case(3a): If (4.9) is v(n0+1, n1+1, n2−

1)− v(n0 + 1, n1, n2 − 1), then (4.10)− (4.9) becomes D2v(n0 + 1, n1 + 1, n2 − 1)−

D2v(n0 + 1, n1, n2 − 1), and this is ≤ 0 by D0v ↓ n1. Case(3b): If the outcome

of (4.9) is v(n0, n1 + 1, n2) − v(n0 + 1, n1, n2 − 1) − R2, then (4.10) − (4.9) equals

v(n0 + 1, n1 + 1, n2)− v(n0 + 1, n1, n2)− v(n0 + 1, n1, n2) + v(n0 + 1, n1, n2− 1)−R2

≤ v(n0+1, n1+1, n2)−v(n0+1, n1+1, n2−1)−v(n0+1, n1, n2)+v(n0+1, n1, n2−1)

= D2v(n0+1, n1+1, n2−1)−D2v(n0+1, n1, n2−1), and this is ≤ 0 again by D0v ↓ n1.

Case (3c): If, on the other hand, the outcome of (4.9) is v(n0, n1+1, n2)−v(n0, n1, n2),

then (4.10) − (4.9) is equal to D1v(n0 + 1, n1, n2) −D1v(n0, n1, n2), and this is ≤ 0

by D1v ↓ n0.

For the boundary states at which n2 = 0, we have

D1T2v(n0, n1, 0) = v(n0, n1 + 1, 0)− v(n0, n1, 0) (4.11)

D1T2v(n0 + 1, n1, 0) = v(n0 + 1, n1 + 1, 0)− v(n0 + 1, n1, 0) (4.12)
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and (4.12) − (4.11) results in D1v(n0 + 1, n1, 0) −D1v(n0, n1, 0), and this is ≤ 0 by

D1v ↓ n0.

Next, we will show that D1T3v(n0, n1, n2) ↓ n0. We will make use of the condition

that D0v(n0, n1, n2) ≤ 0 and the resulting fact that it is not optimal to idle the

assembly queue as long as there are orders waiting in the queue. For any state

(n0, n1, n2) such that n0 > 0

D1T3v(n0, n1, n2) = v(n0 − 1, n1 + 1, n2)− v(n0 − 1, n1, n2), (4.13)

D1T3v(n0 + 1, n1, n2) = v(n0, n1 + 1, n2)− v(n0, n1, n2), (4.14)

and we require (4.14)− (4.13) ≤ 0. (4.14)− (4.13) equals D1v(n0, n1, n2)−D1v(n0−

1, n1, n2), and this is ≤ 0 by D1v ↓ n0.

At the boundary states where n0 = 0, we have:

D1T3v(0, n1, n2) = v(0, n1 + 1, n2)− v(0, n1, n2), (4.15)

D1T3v(1, n1, n2) = v(0, n1 + 1, n2)− v(0, n1, n2), (4.16)

We need to show (4.16)− (4.15) ≤ 0 and that holds since (4.16)− (4.15) = 0.

We next show that D1T4v(n0, n1, n2) ↓ n0. For any state (n0, n1, n2)

D1T4v(n0, n1, n2) = max[v(n0, n1 + 2, n2), v(n0, n1 + 1, n2)]

−max[v(n0, n1 + 1, n2), v(n0, n1, n2)] (4.17)

D1T4v(n0 + 1, n1, n2) = max[v(n0 + 1, n1 + 2, n2), v(n0 + 1, n1 + 1, n2)]

−max[v(n0 + 1, n1 + 1, n2), v(n0 + 1, n1, n2)] (4.18)

and we need to show that (4.18) − (4.17) ≤ 0. There are three possible outcomes

for (4.18) as the outcome v(n0 + 1, n1 + 2, n2)− v(n0 + 1, n1, n2) is not possible since

D1v ↓ n1.
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Case(1): If the outcome of (4.18) is v(n0 + 1, n1 + 2, n2) − v(n0 + 1, n1 + 1, n2),

then the only possible outcome for (4.17) is v(n0, n1 + 2, n2)− v(n0, n1 + 1, n2) since

D1v ↓ n0. Hence, (4.18)− (4.17) = D1v(n0 + 1, n1 + 1, n2)−D1v(n0, n1 + 1, n2), and

this is ≤ 0 by D0v ↓ n1.

Case(2): If the outcome of (4.18) is v(n0+1, n1+1, n2)−v(n0+1, n1+1, n2)(= 0),

then v(n0, n1+1, n2) must be the outcome of the second max function in (4.17). There

are two possibilities for the first max function in (4.17). Case(2b): If v(n0, n1 +1, n2)

is the outcome of the first max function in (4.17), then (4.18)−(4.17) = 0. Case(2b):

If the outcome of (4.17) is v(n0, n1 + 2, n2) − v(n0, n1 + 1, n2), then (4.18) − (4.17)

results in v(n0, n1 + 2, n2)− v(n0, n1 + 1, n2) and that is ≤ 0 due to the assumptions

of this case.

Case(3): Finally, if the outcome of (4.18) is v(n0 +1, n1 +1, n2)−v(n0 +1, n1, n2),

the only possible outcome for the first max function in (4.17) is v(n0, n1 +1, n2) since

D1v ↑ in the direction (1,-1,0), equivalently stated as the condition D0,−1v ↑ n1.

Case(3a): If the outcome of (4.17) is v(n0, n1 + 1, n2) − v(n0, n1 + 1, n2).(= 0),

then (4.18) − (4.17) = v(n0 + 1, n1 + 1, n2) − v(n0 + 1, n1, n2) ≤ 0 by the case

assumption. Case(3b): If, on the other hand, the outcome of (4.17) is v(n0, n1 +

1, n2)−v(n0, n1, n2), then (4.18)− (4.17) = D1v(n0 +1, n1, n2)−D1v(n0, n1, n2), and

this is ≤ 0 by D0v ↓ n1.

Next, we will show that D1T5v(n0, n1, n2) ↓ n0. For any state (n0, n1, n2)

D1T5v(n0, n1, n2) = max[v(n0, n1 + 1, n2 + 1), v(n0, n1 + 1, n2)]

−max[v(n0, n1, n2 + 1), v(n0, n1, n2)] (4.19)

D1T5v(n0 + 1, n1, n2) = max[v(n0 + 1, n1 + 1, n2 + 1), v(n0 + 1, n1 + 1, n2)]

−max[v(n0 + 1, n1, n2 + 1), v(n0 + 1, n1, n2)] (4.20)
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and we require (4.20)− (4.19) ≤ 0. The outcome v(n0 + 1, n1 + 1, n2 + 1)− v(n0 +

1, n1, n2) is not possible for (4.20) as D2v ↓ n1. Three possible cases remain.

Case(1): If v(n0 +1, n1 +1, n2 +1)−v(n0 +1, n1, n2 +1) is the outcome of (4.20),

then the only possible outcome for (4.19) is v(n0, n1 +1, n2 +1)−v(n0, n1, n2 +1) due

to D2v ↓ n0. Then (4.20)−(4.19) becomes D1v(n0+1, n1, n2+1)−D1v(n0, n1, n2+1)

and that is ≤ 0 by D1v ↓ n0.

Case(2): If the outcome of (4.20) is v(n0 + 1, n1 + 1, n2) − v(n0 + 1, n1, n2 + 1),

then the only possible outcome for (4.19) is v(n0, n1 +1, n2 +1)−v(n0, n1, n2 +1) due

to D2v ↓ n0 and D2v ↓ in the direction (1,-1,0), equivalently stated as the condition

D0,−1v ↓ n2. Hence, (4.20)− (4.19) results in

v(n0 + 1, n1 + 1, n2)− v(n0, n1 + 1, n2 + 1)− v(n0 + 1, n1, n2 + 1) + v(n0, n1, n2 + 1)

≤ v(n0 + 1, n1 + 1, n2)− v(n0, n1 + 1, n2 + 1)− v(n0 + 1, n1, n2) + v(n0, n1, n2 + 1)

= D0,−2v(n0, n1 + 1, n2 + 1)−D0,−2v(n0, n1, n2 + 1), and this is ≤ 0 by D0,−2v ↓ n1.

Case(3): If the outcome of (4.20) is v(n0 + 1, n1 + 1, n2)− v(n0 + 1, n1, n2), then

there are three possible outcomes for (4.19). Case(3a): If (4.19) is v(n0, n1 + 1, n2 +

1) − v(n0, n1, n2 + 1), then (4.20) − (4.19) yields to D0,−2v(n0, n1 + 1, n2 + 1) −

D0,−2v(n0, n1, n2 + 1), and this is ≤ 0 by D0,−2v ↓ n1. Case(3b): If the outcome of

(4.19) is v(n0, n1 + 1, n2)− v(n0, n1, n2 + 1), then (4.20)− (4.19) becomes v(n0 +

1, n1 + 1, n2)− v(n0, n1 + 1, n2)− v(n0 + 1, n1, n2) + v(n0, n1, n2 + 1)

≤ v(n0 + 1, n1 + 1, n2)− v(n0, n1 + 1, n2 + 1)− v(n0 + 1, n1, n2) + v(n0, n1, n2 + 1)

and that is ≤ 0 following Case(3b). Case(3c): Finally, if the outcome of (4.19)

is v(n0, n1 + 1, n2) − v(n0, n1, n2), then (4.20) − (4.19) equals D1v(n0 + 1, n1, n2) −

D1v(n0, n1, n2) and that is ≤ 0 by D1v ↓ n0.

The operator T , by definition, is formed by (i) addition and multiplication of

positive constants with the functions T1v through T5v that are shown to be ↓ n0
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and (ii) linear inventory holding and assembly queue backorder costs. Therefore,

D1Tv ↓ n0 as well. !

Next, we need to show that v$ ∈ V . Consider a value iteration algorithm to

solve the optimal policy for which the inital values v(n0, n1, n2) = 0 are used for

every state (n0, n1, n2) ∈ P . Conditions (i)-(ix) are satisfied by v0(x, y), hence

v0(x, y) ∈ V . We apply vk+1(n0, n1, n2) = Tvk(n0, n1, n2) for k = 0, 1, 2, ... to de-

termine the relative value functions for successive iterations. Suppose now that the

value functions in iteration k satisfy (i)-(ix), i.e. vk(n0, n1, n2) ∈ V . Then, Lemma

4.1 shows that vk+1(n0, n1, n2) also satisfy (i)-(ix). Therefore vk+1(n0, n1, n2) ∈ V .

We have v$(n0, n1, n2)=limk→∞ T (k)v(n0, n1, n2) for any v ∈ V where T (k) is the kth

composition of the operator T . Without loss of optimality, we can add the following

constraints to the original problem that we cannot admit a product demand when

max{Ri} < b n0/Λ, and we cannot produce a component type-i when hi ni/Λ > Ri.

For example, if b0 n0/Λ > max{Ri}, this suggests that the amount of backorder

cost incurred until the next transition is greater than any potential revenue of Ri

that would be received if the next event were a product demand arrival. Similarly,

if hi ni/Λ > Ri, this indicates that the amount of holding cost due to a type-i

component incurred during a transition epoch is greater than the potential benefits

of selling the product for a revenue of Ri were the next event a demand arrival for

product type-i. Hence, the problem can be coverted to a finite state and action space

problem. Since the underlying Markov chain is unichain, Theorem 8.4.5 of Puterman

[46] ensures that v$ ∈ V and the existence of a long-run average profit g which can

be determined using a value iteration algorithm.

We conclude the proof by noting that conditions (i)-(v) are sufficient for the

structure of the optimal policy. Condition (i) results in the optimal decision that
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the assembly line never stays idle as long as there are orders waiting in the queue.

Conditions (ii) and (iii) imply the characteristics of the optimal production policies.

For example, D1 ↓ n0 states that if it is optimal not to produce an additional type-1

component in state (n0, n1, n2), it will remain optimal not to produce an additional

type-1 component when there is one more order waiting in the assembly queue, (i.e.,

in the state (n0 + 1, n1, n2)). Finally, conditions (iv) and (v) imply the structure of

the assembly admission policies. !



CHAPTER V

Conclusions

5.1 Summary and Contributions

This dissertation focuses on the integration of dynamic production and demand

management decisions for multiple products facing uncertain demands. The three

chapters within the dissertation study three problem settings in the domain of rev-

enue and supply chain management, inquiring into flexibility’s role in dynamic pric-

ing, managing exogenous demand for intermediary products, and allocation of shared

resources among multiple products in a make-to-order environment.

In Chapter 2, we considered a joint mechanism of dynamic pricing and capac-

ity flexibility to manage demand and supply for multiple products. We studied

the optimal dynamic production and pricing decisions for a firm that produces two

substitutable items using limited product-dedicated and flexible capacities. Our first

contribution in this chapter was to provide a full characterization of the joint optimal

production and pricing decisions by assuming a linear additive stochastic demand

model that is commonly used in the literature. Under this demand model, we showed

that the optimal production policy can be characterized by modified base-stock levels

that exhibit distinct forms across two broad regions of the state-space. We presented

the optimal policy by classifying the initial inventory level of a product as over-

160
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stocked if the item requires no further replenishment, as moderately understocked if

the available capacity is adequate to bring the inventory to a desired level, and as

critically understocked if capacity is restrictive to reach the desired inventory level.

Our analysis showed that when at most one item is critically understocked, the mod-

ified base-stock level for each product is described by a decreasing function of the

inventory level of the other item. However, when both items are critically under-

stocked, it is shown that the modified base-stock level for a product is characterized

by an increasing function of the inventory position of both products.

Regarding the optimal pricing strategy with flexible resources, our results showed

that a list price is charged for an item if it is moderately understocked. If an item is

critically understocked, then a price markup that depends on both inventory levels is

applied. When an item is overstocked, a price discount that depends on both inven-

tory levels is given. Our analysis demonstrated that when inventory levels for both

items are critically understocked and when the flexible capacity is simultaneously

shared between products, the flexible resource resulted in an optimal pricing scheme

that maintained a constant price difference between products. At such instances,

dynamic pricing only served to adjust the overall level of demand for both products

and not to attempt to shift demand from one product to another. Instead, the flexi-

ble capacity has been instrumental in restoring the mismatches between the desired

and actual inventory level of products.

One of our most significant contributions was that we showed that the availability

of a flexible resource gave rise to a certain state space region where the optimal prices

charged for the items had a constant price difference. In other words, flexibility

helps a firm to maintain stable price differences across items over time even when

the optimal price of each item fluctuates over time.
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To the best of our knowledge, our work is the first one to consider the effects

of flexibility on a dynamic pricing strategy. We believe our results have favorable

ramifications from a marketing standpoint as it suggests that even when a firm

applies a dynamic pricing strategy, it may still establish consistent price positioning

among multiple products if it can employ a flexible replenishment resource. Hence,

in the presence of dynamic pricing, flexibility serves as an essential tool to preserve

customer’s valuations of products over the long run.

In addition, we investigated the economic benefits of a joint strategy versus apply-

ing each tool individually. Our results indicate that dynamic pricing and capacity

flexibility can be viewed as substitute, but not fully interchangeable approaches.

Moreover, we found that dynamic pricing is a more powerful tool if demands are

positively correlated while flexibility provides much of the benefits when demands

are negatively correlated.

In Chapter 3, we studied a manufacturing firm that assembles a single end-

product from many intermediate components. The firm experiences demands for

its end-product as well as for any of the intermediary products. The main consider-

ations are the firm’s dynamic decisions on how to decide on the production of each

component as to coordinate the assembly process and satisfy the exogenous demand

for components, when to initiate an assembly operation to convert intermediate com-

ponents into end-products, and how to set admission rules for demands targeted at

intermediary and end-products.

For a general system composed of an arbitrary number of intermediate compo-

nents, we showed that demand admission for the product and for any of the in-

termediate products are characterized by state-dependent rationing and admission

threshold levels. For example, a demand for an intermediate product will be accepted
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only if there is a sufficient number of units of that component in inventory. If there

are fewer units, the optimal action is to reject the demand and save the component

for assembly purposes. We also identified an admission threshold implying that when

the assembly queue length gets larger, it may be optimal to reject a demand for the

end-product. For component production and assembly decisions, we showed that

state-dependent base-stock levels are optimal. That is, if the number of items in

inventory is below a certain base-stock level, it is optimal to produce further units of

that item. In addition, for each decision type, we showed how the state-dependent

thresholds depend on the inventory positions of the other items.

We explored the sensitivity properties of the optimal policy to various problem

parameters. We showed that as the end product revenue decreases, the optimal

strategy is to accept fewer demand for the end-product and more demand for the

intermediate components as well as to produce fewer units of each component and

to assemble fewer units of the end-product.

We also provided two extensions for the basic model, one concerning multiple

customer classes based on revenue in addition to the classes based on the type of

item they request, and the other, investigating the effects of a partial payment scheme

on the optimal policy structure. We characterized the structure of the optimal policy

for each of these extensions.

Finally, since the optimal policies were rather complex and defined by switching

surfaces in a multidimensional space, we also introduced a novel heuristic policy.

We tested our heuristic policy against the optimal solution as well as a commonly

applied basic heuristic policy. Our heuristic policy has performed better in every

single instance compared to the basic heuristic policy. It has also attained profits

very close to that obtained by the optimal policy.
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Lastly, in Chapter 4, we studied a basic mass customization setting by focusing

on a manufacturing firm that assembles two different types of products from two dif-

ferent components. An arriving customer choses an item and the order is assembled

only after the order is received and admitted to the assembly queue. We were par-

ticularly interested in the manufacturer’s decisions on how to decide on the number

of component inventories to hold and how to prioritize the different customer classes

(based on their product choice and revenue) that share the assembly resource.

We partially characterized the structures of the optimal component production

and assembly admission policies. We showed that the optimal production decisions

can be defined by a state-dependent base-stock policy and the optimal demand admis-

sion rules are defined by a state dependent admission threshold policy. We performed

numerous computational tests and conjectured that the partially characterized op-

timal policy structure over the analyzed specific region extends to the entire state

space. Structural results in general assemble-to-order systems are still unknown and

we believe our contribution of providing a partial characterization could prove as

a building block to derive results for more general systems. Finally, we devised a

heuristic solution algorithm that is motivated by the insights we gained from the

optimal policy structure. We tested the performance of the algorithm for a number

of problem instances with varying problem parameters and number of end-products.

We showed that the heuristic policy was very effective in attaining near optimal

results.

5.2 Extensions

There is an exciting research potential in the revenue and supply chain manage-

ment area nourished by rapidly emerging new technology and business practices.
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Several interesting research problems for further investigation are presented below:

1. Dynamic Pricing with Lead-time Differentiated Customers:

Customers may have different preferences regarding the delivery time of a prod-

uct and a class of customers may even be willing to pay more for a delayed

delivery mode. For example, BMW serves customers through a traditional

make-to-stock selling channel as well as a make-to-order system in which a

vehicle is assembled to the exact specifications requested by a customer. Cus-

tomers who value a customized product may be willing to wait even at a higher

price. Different classes of customers may have different preferences for immedi-

ate or delayed but personalized service. In addition, the customers’ utilities for

either type of service may be influenced by the price and length of the expected

delivery period. The decisions given by a manufacturer or service provider re-

garding how to set the prices for both service types and sequence the capacity

to satisfy each class may be a significant contributor to profitability and would

constitute an interesting research problem.

2. Dynamic Pricing and Production Control with Consumer Upgrades:

Along with dynamic pricing, consumer upgrades to a higher quality product also

serve as a valuable tool in revenue management to align supply with demand

across multiple products. In an immediate research paper, we consider joint

price-based and availability-based substitutions by studying a multiple period,

two-stage model where in the first stage the firm sets prices and the production

targets while the demand is still uncertain, and in the second stage, after the

demand is observed, it decides how much (if any) of the customers to upgrade to

the higher quality product. The preliminary analysis indicates that a threshold
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type policy is optimal for the second stage product upgrade decisions. Further

research to reveal the complete structure of the optimal policy, devising an easily

implementable heuristic, and understanding the economic benefits of product

upgrades in a dynamic pricing setting may provide important insights into the

operations of firms in various manufacturing and service industries that adapt

a customer upgrading strategy.

3. Product Upgrades with Strategic Consumers:

When considering product upgrades, a natural extension is to adapt a consumer

choice model where the customers may act strategically anticipating a potential

upgrade offer by the firm. Product upgrades improve customer satisfaction,

which in turn improves the loyalty of the customer to the brand. On the other

hand, the customers may choose the lower quality product hoping that they will

be upgraded to the high quality product, which cannibalizes the demand for the

high quality product. Setting optimal prices and upgrade limits, in addition to

the capacity levels constitute a challenging and interesting problem.
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