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PREFACE 

 This thesis contains five chapters covering my dissertational studies into the 

protein-protein interactions involved in polyketide biosynthesis. Chapter 1 is an 

introduction into bacterial polyketide biosynthesis and is an expansion of a published 

review entitled “Polyketides, Modular Polyketide Synthases” in Wiley Encyclopedia of 

Chemical Biology, 2008, doi:10.1002/9780470048672.wecb459. Chapter 2 is focused on 

the structural and biochemical characterization of the modular polyketide synthase 

docking domains and is adapted from ACS Chemical Biology, 2009, 4, 41-52 and 

Chemistry & Biology, 2007, 14, 944-954. Chapter 3 describes our progress toward in 

vitro characterization of enzymes from the putative bryostatin biosynthetic pathway from 

the uncultured symbiont of Bugula neritina, Ca. Endobugula neritina. It covers key 

protein-protein interactions of BryR, the free-standing HMG-ACP synthase involved in 

β-branching, and it is adapted from a manuscript in preparation as well the review 

mentioned above. Chapter 4 highlights our initial characterization of the acyl carrier 

protein usage of the type III PKS, Germicidin synthase (Gcs) and is an extension of the 

work published in Chembiochem, 2007, 8, 863-868. Finally, in Chapter 5, conclusions 

and future directions are presented. 
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ABSTRACT 

 

 
  
 Polyketide metabolites are produced by diverse bacterial taxa, including soil-

dwelling bacteria, cyanobacteria, and bacterial symbionts living within insects or marine 

invertebrates, and are generated by decarboxylative condensations of simple coenzyme A 

(CoA) building blocks. At present, polyketide natural products find clinical utility as 

antibiotics, antiparasitics, antifungals, anticancer drugs, and immunosuppressants. These 

comprehensive pharmacological activities provide continued motivation to unravel 

polyketide biosynthetic mechanisms to enable the discovery of novel compounds for the 

benefit of human health. This dissertational research explores the molecular basis for 

guiding ACP-mediated protein-protein interactions in three diverse pathways 

(pikromycin, bryostatin and germicidin). 

 Accessing new members of the ketolide class of macrolide antibiotics remains an 

important goal given the increasing prevalence of drug-resistant pathogens. As a naturally 

occuring ketolide, the pikromycin could serve as a scaffold to build a diverse set of 

polyketides. The Sherman laboratory has spent over a decade investigating the catalytic 

mechanisms of pikromycin biosynthesis by the modular PKS-containing pathway found 

in Streptomyces venezuelae. Here, we explore the protein-protein interactions of the 

large, multifunctional polypeptides at the PikAIII/PikAIV interface. The combination of 

 xiii



structural characterization of the docking domains together with discrete docking domain 

affinity measurements supports a paradigm wherein the binding specificity that 

determines the linear arrangement of proteins in modular PKS systems is encoded in the 

small, terminal docking domains. Additionally, a model for the observed docking domain 

specificity across a matrix of interacting pairs from the pikromycin and erythromycin 

pathways is presented.  

 Secondly, we profiled the ACP binding and catalysis of BryR, the HMG-ACP 

synthase from an uncultured symbiont of Bugula neritina, a marine bryazoan. BryR 

functions to install β-branches in bryostatin, a PKC modulator with both anti-cancer and 

neuroprotective activities. Lastly, we have explored a unique type III PKS, Gcs, that is 

capable of using both acyl-CoA and acyl-ACP starter units in the catalysis of pyrones. A 

structural model for Gcs is reported. Together with the growing understanding of protein-

protein interactions in PKSs, the knowledge and mechanistic understanding of the 

pikromycin, bryostatin, germicidin and other complex metabolic systems will provide 

additional opportunities to engineer chemical diverse polyketides using rational 

approaches.    

 xiv



Chapter 1  

Protein-Protein Interactions in Natural Product Biosynthesis 

1.1  Introduction 

 Polyketides constitute a large class of microbial and plant-derived secondary 

metabolites that displays a vast array of structural diversity. These organic molecules 

vary in molecular weight, functional group modification, and include linear, polycyclic, 

and macrocyclic structural forms. At present, polyketide natural products find clinical 

utility as antimicrobials, antiparasitic agents, anticancer drugs, and immunosuppressants 

(Figure 1-1) (1-5) Given these impressive and wide-ranging pharmacological activities, 

an ever-increasing demand is placed upon natural products research to uncover novel 

polyketide metabolites for the benefit of human health.  

 
Figure 1-1. Clinically relevant polyketides, their producing organisms and activities 
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 The quest for novel natural product-based compounds to be used as drug 

candidates and/or tools for chemical biology and biomedical research is moving forward 

on many fronts. Unbiased extraction and bioassay-guided isolation of small molecules 

from terrestrial or marine sources continue to reveal new compounds with interesting 

activities (6). However, it is often challenging to obtain the quantities (or sustainable 

sources) necessary to truly pursue many of these complex compounds as therapeutic 

agents (7). Efforts are also ongoing to devise effective synthetic methods that would give 

access to natural product-inspired compound libraries encompassing a large range of 

structural classes (carbocycles, oxa- and aza-heterocycles, and linear molecular 

organizations) (8). Although these scaffolds are often thought of as prevalidated, 

multistep synthesis of small libraries of these molecules still requires significant effort 

(though it is becoming increasingly feasible) (8). Analogs derived directly from natural 

products can often be accessed through semi-synthetic methods (9-11), or as an 

alternative, via genetic engineering of biosynthetic enzymes and pathways (12, 13).  

 Before researchers can successfully alter the basic activities of polyketide (PK), 

fatty acid (FA) and non-ribosomal peptide (NRP) megasynthetases and their accessory 

enzymes to produce novel natural products, the inherent structures, mechanisms and 

potential limitations of these proteins must first be understood. The past two decades 

have resulted in an explosion of structural and mechanistic information on biosynthetic 

proteins ranging from small, individual enzymatic domains all the way to full module-

sized multifunctional polypeptides (14-22). Individual domains, or groups of domains, 

have also been studied extensively in vitro using biochemical methods to determine the 

chemical flexibility of individual catalytic activities (23-28). Though growing, a thorough 

 2



understanding of the protein-protein interactions used by nature to create these efficient 

pathways still lags behind the structural and mechanistic information (29). This 

dissertational research explores the molecular basis for guiding ACP-mediated protein-

protein interactions in three diverse biosynthetic pathways (pikromycin, bryostatin and 

germicidin).  

1.1.1  The Polyketide Synthase Superfamily 

 

Figure 1-2. General strategy for polyketide biosynthesis. 

  

 The general strategy employed for the generation of polyketide natural products is 

elegantly simple, yet it allows for the introduction of chemical diversity at a variety of 

stages (Figure 1-2). A number of polyketide synthase (PKS) architectures have evolved 

to accomplish the task of polyketide biosynthesis; the organization of the enzymes in 

these systems allows one to group them into three major classes (1, 30, 31). Type I 
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biosynthetic systems have been identified that produce polyketide (PK) as well as fatty 

acid (FA) and non-ribosomal peptide (NRP) natural products (15, 20, 32, 33). Those 

biosynthetic systems classified as type I (or modular) are comprised of a number of large, 

multifunctional enzymes that generate their products via a stepwise, assembly-line type 

mechanism. The modular polyketide synthases (PKSs) are responsible for catalyzing the 

initiation, elongation, and processing steps that ultimately give rise to the characteristic 

macrolactone scaffold (Figures 1-2, 1-3, 1-4A-B). As seen for the pikromycin pathway, 

the genes encoding type I PKS proteins (pikA) are typically found clustered together near 

the genes encoding the tailoring enzymes (des and pikC) and resistance-conferring 

proteins (pikR) (Figure 1-3). In type I megasynthetases, modules can act either 

processively or iteratively to grow the linear chain intermediates. 

 

Figure 1-3. Pikromycin biosynthetic pathway.The pikA genes encode a type I PKS responsible for 
generating 1 and 2. The des genes encode the necessary proteins for sugar (desosamine) biosynthesis and 
attachment to yield macrolides 8 and 12. pikC encodes a cytochrome P450 monooxygenase responsible for 
hydroxylations of 8 amd 12 to generate the remaining suite of macrolide antibiotics shown above. The pikR 
locus encodes two resistance genes, and the pikD gene product is a transcriptional regulator (34-36). 
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 Conversely, type II systems capable of synthesizing FAs and PKs contain a 

dissociable complex of discrete and usually monofunctional enzymes/domains (Figure 1-

4C-D). Their functions are similar to those found in a single module from a type I system 

(37, 38). Type II systems function mostly in an iterative fashion to create FAs and PKs of 

varying lengths and often produce aromatic polyketide products. Finally, in PK synthesis, 

a third type exists. Type III PKSs are multifunctional, single domain enzymes often 

creating natural products solely from small molecule pools (39). These architecturally 

simple systems are able to initiate, extend and cyclize their products using a single active 

site. There is recent evidence that a small number of type III PKSs partner with other 

proteins to generate their polyketide products (40-42). In exploring protein-protein 

interactions during acyl transfer, my work has focused on the type I and type III PKSs. 

 

 

 
Figure 1-4.Organization of PKS and FAS enzyme systems. A) Type I PKS elongation module at the C-
terminus of a polypeptide. The ACP must interact with all domains in its given module plus the 
downstream KS domain. B) Terminal module in a type I PKS system or a type I FAS system. C) Type II 
FAS system where the ACP must interact with each domain iteratively in trans. D) In a type II PKS 
system, the ACP interacts with the KS and MAT iteratively, but may only use the KR on selected cycles. 
E) Type III PKSs – ACP interactions are the exception to the rule, but examples are growing. 
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1.1.2  Type I PKSs 

 The sequential arrangement of modules within a type I PKS system effectively 

serves as a biosynthetic program, responsible for dictating the final size and structure of 

the polyketide core. Sets of domains grouped together to accomplish a single round of 

extension are referred to as modules (Figures 1-4, 1-5). Each module is typically used 

once to generate the linear polyketide. The number, arrangement, and type of modules 

within type I systems serve as a template to determine the core structure of the natural 

product (for specific examples, see Figure 1-3 and 2-1). Typically, initiation of 

polyketide biosynthesis begins by the acyltransferase (AT) catalyzed linkage of a 

coenzyme A (CoA) priming unit (e.g., methylmalonyl-CoA, malonyl-CoA, propionyl-

CoA) to the acyl carrier protein (ACP) of the loading module. Once initiated, 

downstream elongation modules carry out repetitive extensions of the starter unit. In most 

type I PKS systems, each elongation module contains at minimum an AT domain, an 

ACP domain, and a ketosynthase (KS) domain. The AT domain is responsible for loading 

the appropriate CoA extender unit onto the ACP domain (i.e., malonyl-CoA, 

methylmalonyl-CoA, etc.). The KS domain then catalyzes a decarboxylative 

condensation of the extender unit with the growing polyketide chain obtained from the 

preceding module to generate an ACP-bound β-ketoacyl product.   
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Figure 1-5. Components of a dimeric type I PKS elongation module.  An internal monomodular 
polypeptide with both an N- and a C-terminal docking domain is depicted here.  
 

 In addition to the three core domains, each elongation module may contain up to 

three additional domains (ketoreductase (KR), dehydratase (DH), enoyl reductase (ER)) 

that are responsible for the reductive processing of the β-keto functionality prior to the 

next extension step (Figure 1-6). These reductive steps contribute to the overall structural 

diversity that is observed among polyketide natural products. The presence of a KR 

domain alone gives rise to a β-hydroxyl functionality, the presence of both a KR and a 

DH domain generates an alkene, while the combination of KR, DH, and ER results in 

complete reduction to the alkane. Finally, termination of polyketide biosynthesis is 

catalyzed by a thioesterase (TE) domain located at the carboxy terminus of the final 

elongation module. The activity of this domain results in the cleavage of the acyl chain 

from the adjacent ACP; typically intramolecular cyclization results in the formation and 

release of a macrolactone ring. Tailoring enzymes, such as hydroxylases and glycosyl 

transferases often serve to further modify the polyketide, to yield the final bioactive 

compound (Figures 1-2 and 1-3). 
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Figure 1-6. Reductive domains in type I systems. In type I PKSs, the presence or absence of processing 
domains determines the chemical outcome on the growing polyketide chain. 
 

The modular organization of type I PKSs has made them attractive targets for 

rational bioengineering. Combinatorial biosynthetic efforts centered on prototypical 

modular PKSs have been the topic of many recent review articles (12, 43, 44). Several 

strategies are currently being pursued that attempt to leverage PKS systems for the 

generation of structurally diverse polyketides. For example, it has been demonstrated that 

alterations of individual catalytic domains (i.e., inactivation, substitution, addition, 

deletion) within a PKS module can result in predicted structural alterations of the final 

PKS product. Likewise, the addition, deletion, or exchange of intact modules can also 

impart structural variety into polyketide metabolites (45). Using these and other 

approaches, hundreds of novel polyketide structures have been generated, thereby 

establishing the potential of these applications (12, 44). However, often these PKS re-

engineering efforts have resulted in low efficiency of product formation (46-49). This 

suggests that much remains to be learned regarding the molecular intricacies of these 

complex biosynthetic machines.  
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1.1.3  Type III PKSs 

 Type III PKSs differ from type I and type II PKSs in several key aspects. First, 

they function as homodimers with each subunit consisting of a single domain of ~40 kDa. 

Additionally, rather than utilizing substrates that are covalently linked to acyl-carrier 

proteins, they are thought to use mainly acyl-coenzyme A (acyl-CoA) thioesters as 

substrates (39). Notable exceptions to this starter unit preference have recently been 

reported and will be discussed in chapter 4 (40-42). Furthermore, the same active site that 

catalyzes the Claisen condensations is also responsible for loading of the starter unit and 

cyclizing the polyketide intermediate. Members of this family share a conserved active 

site triad (Cys-His-Asn), and their mechanism for condensation resembles that of the 

ketosynthase domain of type I PKSs (39, 50, 51). Through extension, condensation and 

cyclization, a wide range of aromatic polyketides are made by plant and bacterial type III 

PKSs (39). The diversity observed in type III PKS-derived natural products results from 

the selection of the acyl starter unit, control over the number of extension rounds, and the 

mechanism of cyclization (39). Moreover, the type III PKSs have demonstrated broad 

substrate specificity and have been shown to convert non-native acyl-CoA substrates to 

pyrones in vitro, making them accessible targets for bioengineering (40, 52, 53). 

1.1.4  Simple, Activated Monomers are Used in Polyketide Biosynthesis 

 Despite the architectural diversity in arrangement of catalytic domains/enzymes 

across the variety of FAS and PKS types, individual reaction steps are essentially 

conserved across all kingdoms of life. Fatty acid chains and polyketides are built up 

through the condensation of a small set of activated carboxylic acid monomers. Details of 

the stepwise catalytic reactions in fatty acid and polyketide biosynthesis are well 
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understood (15). Three reaction types are used to accomplish a single round of 

elongation. First, activation of monomers occurs. Second, two monomers are condensed 

to form the extended chain; and third, processing of the newly extended chain occurs.  

To create the ready-to-use building blocks, the carboxylate-containing substrates  

are converted to acyl thioesters by conjugation to the free thiol of the 4’-

phosphopantethiene (PPant) prosthetic group. The PPant moiety can be part of either a 

carrier protein (CP) or a small molecule cofactor (Figure 1-7). Enzymatic thioester 

formation on coenzyme A (CoA) creates an acyl-CoA species. Alternatively, the 

carboxylic acid can be attached to the terminal thiol of the PPant that has been linked to 

the CP at its conserved serine residue in a post-translational modification step utilizing 

CoA as a substrate. While the chemical environment of the thioester is quite similar 

between the two species, there appear to be significant differences in the abilities of some 

metabolic enzymes to recognize the acyl chains when attached to CoA as opposed to 

ACP (40, 54). Additionally, there are instances where substituting one ACP for another 

leads to a change in activity (55, 56).  
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Figure 1-7. ACP Forms. As an example of the three-dimensional structure of a typical ACP, AcpM, is 
shown in its three states of modification (57). The N- and C- termini are labeled as well as the four helices. 
The transition from apo (A) to holo (C) requires the coenzyme A cofactor shown in (B).  
 

Interest in studying CP structure and its possible modes of interaction with its 

attached acyl chain and/or other partner enzymes is well justified, and research in this 

field has been ongoing since the late 1980s (58, 59). Carrier proteins are widely used for 

delivering carboxylate-containing substrates and intermediates to a variety of enzymes 

and enzymatic domains in both primary and secondary metabolite production. It is likely 

that much of the efficiency and fidelity of complex polyketide biosynthesis can be 

attributed to the tethering of intermediates to the CPs during assembly. Additionally, via 

binding to the various catalytic domains or discrete enzymes in the pathway, CPs can 

help to coordinate reaction sequence (58) (Figure 1-6). 
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1.1.5  Acyl-, Aryl-, and Peptidyl-Carrier Proteins 

 The distinguishing structural features of the carrier protein family are their small 

size (8-10 kDa), their predominantly alpha helical secondary structure (as a rule, CPs 

contain three or four helices connected by short loops), the presence of a conserved 4’-

phosphopantetheine attachment site (a serine residue in a loop near the start of helix II), 

their conformational flexibility, and their overall acidic nature (though most NRPS CPs 

have a more neutral net charge) (Figure 1-7) (58, 60). During fatty acid and polyketide 

synthesis, acyl carrier proteins (ACPs) are employed. Depending on the class of synthase 

(see section 1.1.1), the ACPs are either integrated into the multidomain proteins (type I 

FAS and PKS) or they exist as free-standing proteins (bacterial type II FASs and type II 

PKSs) (Figure 1-4). Peptidyl carrier proteins (PCPs) are similarly found embedded within 

the related multimodular nonribosomal peptide synthetases (NRPSs) (PCPs are 

sometimes referred to as thiolation (T) domains). Lastly, aryl carrier proteins (ArCPs) are 

designed to shuttle aromatic compounds, such as salicylic and 3,4-dihydroxybenzoic 

acids for the generation of aryl-containing NRPs and siderophores (61-64). 

 CPs can exist in one of three forms; the native protein apo form, the 

phosphopantetheinylated carrier protein referred to as the holo form, and finally, the 

activated acyl- or aminoacyl-loaded species (Figure 1-7). The apo (inactive) to holo 

(activated) conversion is mediated by holo-acyl carrier protein synthases (ACPSs) or 

more generally, by phosphopantetheinyl transferases (PPTases) (65). PPTases transfer the 

PPant moiety from coenzyme A to the conserved serine (usually in the recognizable 

“DSL” motif) of apo-ACP to produce holo-ACP and 3’,5’-ADP in a Mg2+-dependent 

reaction. Typically, loading of an acyl group onto the holo-CP occurs through the action 
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of an acyltransferase (AT) domain in fatty acid and polyketide synthesis and amino acyl 

adenylation (A) domains in NRPSs (15, 66). The AT domain (or enzyme) can catalyze 

the acyl chain attachment to ACP via a thioester linkage to the terminal cysteamine thiol 

of the PPant prosthetic group. At this point, elongation and processing take place via 

interaction with remaining FAS or PKS domains/enzymes in the system as outlined 

above. For this reason, the PPant prosthetic group is sometimes referred to as a “tether” 

that transfers the growing acyl chains between the various enzymes or active sites in the 

biosynthetic system. Some promiscuous secondary metabolism phosphopantetheinyl 

transferases (PPTases) have been exploited to convert apo-ACPs directly to acyl-ACPs. 

The PPTases from surfactin (Sfp) and bleomycin (Svp) biosynthesis are able to generate 

acyl-ACP species in vitro by substituting an acyl-CoA for reduced CoA as the substrate 

(65, 67).  

1.1.6  Carrier Protein - Partner Enzyme Interactions 

 A variety of binding strategies are employed to facilitate acyl transfer of 

polyketide and non-ribosomal peptide intermediates between the CP and its partner 

enzymes. Recognition of the CP can occur either in cis or in trans, and these binding 

events can be driven by protein-protein, protein-PPant, or protein-acyl (or aminoacyl) 

interactions. In modular FAS, PKS and NRPS systems, the majority of CP interactions 

occur between domains that are physically attached to one another (Figure 1-4). It is 

tempting to speculate that the interactions between the ACP and its type I PKS partner 

domains could therefore be more passive than active (that is allowed, but not favored). 

Within the type I PKS paradigm, the ACP must still react with noncovalent partners, 

including the initial pantetheinylation reaction via the PPTase, building block loading by 
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AT domains in the subset of trans-AT PKS pathways, transfer of the growing chain to a 

downstream module on a separate polypeptide (often mediated by docking domains), and 

interactions with a growing number of free-standing enzymes such as editing 

thioesterases (TE IIs) and cassettes of enzymes involved in β-branching. It is also 

possible that the ACP has specific interactions witheach domain. In type II FAS and PKS 

systems, the free-standing CP interfaces with all of its partners in trans (37). In these 

systems, specific recognition between CPs and the catalytic domains has been 

demonstrated, though the systems are often tolerant of CP substitution from a related type 

II system (56). Lastly, a small, but growing, number of type III PKSs have been 

identified that likely use CP-linked substrates (40, 42, 52, 68). Understanding the 

rationale behind each of the specific modes of association will help unlock the logic for 

multiprotein assembly line construction and enable efficient reengineering of, or de novo 

design of, novel biosynthetic pathways.  

1.2  Prior Work 

1.2.1  Pikromycin 

 The Sherman laboratory has been engaged in investigations of the biosynthesis of 

the pikromycin (13) and methymycin (9) macrolides by Streptomyces venezuelae for 

more than a decade (Figure 1-3) (34, 36). As a naturally-occurring ketolide in the 

macrolide antibiotic class of compounds (69), the potential of this scaffold for generation 

of clinically useful anti-infectives motivates the continued study of the molecular 

mechanisms of this pathway (70). Additionally, the intriguing observation that the pik 

gene cluster was responsible for the generation of an entire family of compounds (as 
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opposed to a single polyketide product) is suggestive that inherent flexibility may exist 

within the system (34, 71). Using in vitro biochemistry and structural biology, PikAIII 

and PikAIV have been studied extensively (14, 21, 26-28, 72). Both the chain elongation 

and chain termination mechanisms have been investigated, and a model has been 

proposed for the method of multiple macrolactone product formation (26). However, the 

role for the docking domains in the generation of the 12- and 14-membered lactones had 

not yet been studied. The dissertational research described in chapter 2 reports on our  

examinination into the docking domain-mediated protein-protein interactions in the 

pikromycin pathway at the PikAIII-PikAIV interface. In addition, potential cross-talk 

between docking domains elsewhere in the pikromycin pathway as well as in the related 

erythromycin pathway are reported.    

1.2.2  Bryostatin 

 Another area of interest in the Sherman laboratory is the discovery of novel 

natural products and their production from marine sources (73). Exploring biosynthetic 

pathways found within marine invertebrates or bacteria can be particularly challenging 

when the organisms are reluctant to grow in the laboratory setting. Advances in cloning 

and expression of microbial secondary metabolism genes in heterologous hosts has 

increased our ability to gain a fundamental understanding of the mechanisms used to 

generate this pool of bioactive compounds (7, 73). The putative bryostatin gene cluster 

was proposed after sequencing bacteria-enriched B. neritina DNA libraries (74). 

Recently, we demonstrated in vitro biochemical activity for the first enzyme from the bry 

pathway (75). bryP encodes two acyltransferase domains and resides upstream of the 

genes encoding five multimodular type I PKS proteins. BryP was shown to selectively 
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load malonyl-CoA onto a variety of ACPs as well as a full module from the bryostatin 

pathway (75). These successes motivated the characterization of a second discrete 

enzyme from the bry cluster, BryR, an HMG-ACP synthase.    

1.2.3  Germicidin 

 The potential to build novel biosynthetic pathways on microchips was explored 

by the Sherman and Dordick groups using tetrahydroxynaphthalene synthase 

(THNS/SCO1206), a type III PKS from Streptomyces coelicolor (53, 76). This 

technology appeared suited for the generatation of pyrone-containing small molecules. 

However, THNS prefers to use malonyl-CoA as a building block for both initiation and 

extension, which results in pyrone formation being secondary to flaviolin synthesis. In 

the search for other type III PKSs whose starter unit specificity was orthogonal to 

extender unit preference and would, therefore, not compete with malonyl-CoA, a 

remarkable finding was made. One of the Streptomyces coelicolor type III PKSs, 

SCO7221, now known as Germicidin synthase (Gcs) (41), has the ability to accept 

efficiently its starter unit as an acyl-ACP (40). Recently it has been proposed that a small 

number of other type III PKSs are able to accept type I FAS biosynthetic products still 

tethered to their ACPs as starter units (42, 52, 68) in the generation of aromatic 

polyketides. These reports, and direct demonstration of ACP usage by a type III PKS in 

vitro by the Sherman laboratory (40) challenged the prevailing paradigm that type III 

PKSs used exclusively acyl- or aryl-CoA starter units (39). To explore the molecular 

basis of this unusual protein selectivity, we initiated the structural characterization of 

Gcs. 
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1.3  Summary 

 The projects presented in this dissertational study are linked through a basic 

question in natural product biosynthesis. What strategies do ACPs use to pick up and 

deliver their tethered substrates during polyketide production, assuring efficient and 

accurate assembly of the compound? Three different modes of ACP-mediated acyl 

transfer have been investigated. First, the observation that the PikA pathway from 

Streptomyces venezuelae produces two macrolactones of different ring sizes (10-

deoxymethynolide, a 12-membered heterocycle, and narbonolide, a 14-membered ring) 

prompted biochemical investigations into the structure and binding specificity of the 

docking domains at the PikAIII and PikAIV interface. Second, the search for the acetate 

substrate for BryR, the HMG-CoA synthase homolog implicated in β-branching in the 

bryostatin pathway, led to us to investigate the binding profile of a small subclass of 

discrete ACPs with this enzyme. Lastly, the discovery of a type III PKS, Germicidin 

Synthase (Gcs), capable of accepting both CoA- and ACP-linked starter units initiated 

structural and mutagenesis studies of this enzyme.        
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Chapter 2  

Type I PKS Inter-Polypeptide Docking in the Pikromycin and 

Erythromycin Systems 

2.1  Introduction 

 Type I modular PKSs, consisting mainly of large, multi-functional enzymes, use 

sequential decarboxylative condensation reactions to form carbon – carbon bonds 

between simple carboxylic acid extender units (2, 31) during the production of a diverse 

family of structurally-rich and often biologically-active natural products (e.g. 

antimicrobial, antifungal, antiviral, anticancer and immunosuppressant compounds) (2, 

3). Recently, structural studies have provided important new insights relating to the 

architecture and mechanism of type I PKSs and the related fatty acid synthases (15, 17, 

77, 78). Found in a variety of bacteria, modular PKSs direct biosynthesis via covalently-

linked catalytic domains that are organized into linear modules where each module 

houses the requisite catalytic domains to perform a single elongation step in the building 

of the polyketide chain (Figure 2-1).  Each elongation module receives the nascent chain 

from the previous module, extends the polyketide by two carbons, and (typically) 

modifies this portion before passing the intermediate to the downstream PKS protein (15, 

79). The final chemical structure is determined by the number of modules in the pathway, 

their catalytic domain composition, and arrangement in the biochemical assembly line 

(Figure 2-1). Extensive research has identified signature amino acid sequences within the 
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catalytic domains that guide substrate specificity (15, 80). However, details about the 

protein-protein interactions that govern acyl transfer between modules have only recently 

been explored (29, 81, 82).  

 The modular nature of type I PKSs has led many to envision rational “mix and 

match” bioengineering for the generation of novel polyketide products. As such, 

metabolic engineering or combinatorial biosynthesis has emerged as one potential route 

to create novel polyketide agents (43, 46, 47, 83). Specific changes can be introduced to 

the final polyketide core in a controlled fashion by manipulating the genes that encode 

modular PKSs. Modifications at the level of the modules or the individual catalytic 

domains within a PKS module have been used to generate hundreds of novel polyketide 

structures, thereby establishing the potential of these applications (43, 46, 47, 83, 84). 

However, engineered PKS modules often fail to produce significant quantities of the 

desired product (84). Fundamental studies to establish the mechanistic basis for efficient 

molecular interactions between PKS multifunctional proteins will likely facilitate 

effective design and assembly of productive bioengineered pathways. The importance of 

this new information motivated the studies described in this chapter.  
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Figure 2-1. Type I polyketide synthases. Arrangement of the polyketide portions of the erythromycin and 
pikromycin biosynthetic pathways and their macrolactone products. Docking domains are colored by 
proposed subclass; H1-T1 are red, and H2-T2 is gold. Domain sizes are not drawn to scale. 
 

 The fidelity and efficiency of acyl transfer at the interfaces of the individual PKS 

proteins is thought to be governed by helical regions, termed docking domains (dd), 

located at the C-terminus of the upstream and N-terminus of the downstream polypeptide 

chains (Figure 2-1) (85). Two main strategies have been employed to study the specificity 

determinants for inter-polypeptide (e.g. module module) communication. In the first 

strategy, modules (or excised domains) from the erythromycin PKS system were used to 

create a variety of in vitro intermodular transfer and elongation assays (Figure 2-2) (86-

89). Typically, a variety of chimeric proteins were generated to investigate the effect of 

matched or mismatched docking domains in combination with a series of ACP/KS 
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pairings. Detection of triketide lactones resulting from the transfer and elongation of 

diketide intermediates established that complementary docking domain pairs are required 

for efficient transfer of polyketide intermediates between polypeptides (81, 90). In some 

cases, formation of the cognate ACP and KS pairs also appears to impart a catalytic 

advantage, although tolerance for mispairing at this junction is also evident (88, 89).  

 

 
Figure 2-2. Intermodular transfer and elongation assays. Examples of assays featuring the 
erythromycin PKS system. 
 

 The second strategy for analysis of PKS module-module molecular recognition 

has been to structurally characterize the docking interface. A docking domain complex 

model for the DEBS 2/DEBS 3 interface (Figure 2-1A) was developed via protein NMR 

spectroscopy (85). The structure established that the docking domains are helical and 

revealed two roles for the C-terminal PKS docking domain (ACP-side docking domains, 

ACPdd). First, this region appears important for stabilizing the PKS homodimer. Second, 

ACPdd is poised to interact with the downstream KS polypeptide through its terminal 

helix. The N-terminal PKS docking domain (KS-side docking domain, KSdd) exhibits a 

coiled-coil motif that has been observed both in the solution structure of the fused DEBS 

2/DEBS 3 construct (85) and subsequently in the X-ray crystal structure of the DEBS 3 

KS-AT didomain (78). The KSdd dimer presents a small hydrophobic patch, sometimes 
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flanked by charged residues, as a narrow binding groove where the ACPdd terminal helix 

can bind.   

 Extension of the current DEBS 2/DEBS 3 structural model to the full range of 

docking domains across modular PKSs has not been possible due to low sequence 

similarity for a large subset of sequences. However, in a recent report based on the DEBS 

2/DEBS 3 structural model and computational analysis of docking domain sequences 

from 42 characterized PKS systems, Thattai et al. proposed a new organization of PKS 

docking domains into distinct subclasses (91). Based on this classification system, the 

majority of docking domains (including the structurally characterized DEBS2/DEBS3 

pair) fall into a single group termed H1-T1 (for head 1 and tail 1). Until this work, there 

was no structural information available for the proposed H2-T2 group of PKS docking 

domains. 

2.2  Results and Discussion 

 To develop further our understanding of docking domain interactions in modular 

PKSs, and to expand fundamental information about docking domain protein structure, 

we pursued both biochemical and structural characterization of docking domains from 

two well-studied PKS biosynthetic systems. Here, we report an analysis of the binding 

affinities of discrete docking domain pairs excised from the erythromycin (DEBS) and 

pikromycin (Pik) PKSs, using surface plasmon resonance and fluorescence polarization 

methods. In addition, we report the first X-ray crystal structure of a member of the 

recently proposed H2-T2 class of PKS docking domains, derived from the interface 

between PikAIII (module 5) and PikAIV (module 6) proteins from the Pik PKS system 

(Figure 2-1B) (36). Combining structural characterization of the PikAIII/PikAIV 
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interface with discrete docking domain affinity measurements, we provide evidence in 

support of the prevailing model wherein the binding specificity that determines the linear 

arrangement of proteins in the biosynthetic assembly line is encoded in these small, 

terminal docking domains. Finally, we present a model for the observed docking domain 

specificity across a matrix of interacting pairs from the pikromycin and erythromycin 

pathways. 

2.2.1  Binding Affinities of Discrete Docking Domains Determined by Surface 

Plasmon Resonance  

 To test the capacity of discrete docking domains to discriminate between possible 

partners within a single biosynthetic pathway and/or between related pathways, we 

produced peptides corresponding to each ACPdd and KSdd region of the pikromycin and 

erythromycin PKS pathways (Figure 2-1).  Peptides were overexpressed in E.coli and 

purified using a His6-affinity handle followed by removal of the His-tag via TEV 

protease cleavage where necessary. While each of the docking domain constructs resulted 

in stable, soluble protein, the yields of the PikAII KSdd and PikAIII KSdd were low. 

Figure 2-3. Purified discrete docking domains. Apparent molecular weight of the SeeBlue Plus2 
molecular weight marker (Invitrogen) is shown for reference. Proteins were run on a NuPAGE 12% 
SDS-PAGE gel using MES buffer.   
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Hence, for these two peptides, chemical synthesis was employed to produce larger 

quantities. The ability of KSdds to bind native immobilized ACPdd partners was 

evaluated using surface plasmon resonance (SPR). Biosensors based on SPR technology 

have been used to measure binding interactions across a wide range of affinities between 

partners (including discrete docking domains from a related mixed PKS/NRPS 

megasynthase system) varying from small molecules to large protein complexes (92-94). 

In modular PKSs, individual docking domains are identifiable by considering sequences 

directly downstream from the ends of the C-terminal ACP domain or directly upstream 

from the conserved start sites of the N-terminal KS domain. Using multiple sequence 

alignments of a number of characterized type I PKS systems, we designed, 

overexpressed, and purified (and in two cases synthesized) a complete set of discrete 

ACPdds and KSdds from the erythromycin and pikromycin system (Figure 2-3). In these 

studies, we used a noncovalent method to immobilize the N-terminally His-tagged 

ACPdds to a nickel-loaded NTA sensor chip (Figure 2-4A) (95). The measured affinity 

(KD) of His-tagged PikAIII ACPdd to the nickel-NTA surface was 4.0 ± 0.04 nM (Figure 

2-5). This binding was sufficiently tight to enable measurement of the desired ACPdd-

KSdd interactions when paired with tagless KSdds in solution.  
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Figure 2-4. Binding of discrete docking domains determined by SPR. Binding analysis of discrete 
ACPdd’s to matched and mismatched KSdd’s measured by SPR. A) SPR assay design: after immobilizing 
the ACPdd’s via their His-tags, varying concentrations of discrete KSdd’s were injected over the ACPdd 
and control surfaces. B,C) KDs were calculated using a one-site binding model, Y = BBmax*X(KD + X). 
Dose-response curves were performed in triplicate, and the error bars are SEM. NB = no binding. 
 

 After immobilization of ACPdd, equilibrium analysis of a variety of matched or 

mismatched docking domains pairs was performed using sequential injections of KSdd at 

varying concentrations. Using docking domains from the erythromycin and pikromycin 

PKSs, we measured KD’s for the matched docking domain pairs between 70 - 130 μM 

(Figure 2-4B,C). Additionally, we were able to calculate individual kinetic parameters for 

the PikAIII/PikAIV binding pair (kon = 3000 ± 1800 M-1s-1, koff = 0.21 ± 0.03 s-1
, KD = 73 

± 43 μM) (Figure 2-6) that were in good agreement with the equilibrium analysis. As a 

negative control, a PikAIII ACPdd construct lacking the final nine amino acids was 

unable to bind to its partner KSdd (PiKAIV) or any other KSdds (Figure 2-4B, C). A 

similar C-terminal deletion of the PikAIII ACPdd was also shown to be incompetent for 

production of narbonolide in our in vitro PikAIII/PikAIV chemoenzymatic system (26).  
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Furthermore, studies with mismatched docking domains clearly demonstrate that the 

ability to discriminate between potential PKS protein partners is encoded within the 

docking domains themselves (Figure 2-7).   

 

 
Figure 2-5. His-tagged ACPdd immobilization. Immobilization of His-tagged docking domains to the 
Ni-NTA BIAcore chip surface. A) Subtracted sensorgram (green) of 1 μM His-tagged PikAIII ACPdd 
binding to the nickel-NTA surface showing stable immobilization. The association phase was fit to a one-
site association model (Y=Ymax*(1-exp(-K*X)). B) Overnight dissociation of the His-tagged PikAIII 
ACPdd. The dissociation phase was fit to a one phase exponential decay (Y=Span*exp(-K*X) + Plateau). 
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Figure 2-6.  Kinetic fit of PikAIII ACPdd – PikAIV KSdd binding via SPR. Corrected sensorgram (in 
black) after subtraction of the control lane (nickel only). The association and dissociation phase data for 
four concentrations (150, 75, 37.5, 19 μM) were fit simultaneously using a global data analysis program, 
Scrubber2 (BioLogic Software) (shown in red) to determine the KD. Error for the individual association 
and dissociation values was calculated by fitting each concentration separately. 
 

 
Figure 2-7. Matched and mismatched docking domain binding determined by SPR. The difference in 
response units between the ACPdd loaded surface and the nickel-only control surface in ΔRU is shown.  
 

 Ultimately, docking domains function not as discrete peptides, but as small 

appendages on much larger proteins (Figure 2-1). In addition to testing the complete 

library of discrete ACPdds and KSdds from the pikromycin and erythromycin PKS 

systems, we extended our analysis of the PikAIII/PikAIV docking interface to the 
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neighboring domains (Figure 2-8). Assigning affinity and specificity determinants to 1) 

the docking domains, 2) the neighboring catalytic domains, 3) the phosphopantethiene 

arm, and 4) the growing polyketide chain will begin to separate the importance of the 

correct protein-protein interaction from the questions of substrate specificity at the 

catalytic centers. Although binding of a larger KSdd-containing protein (PikAIV KSdd-

KS-AT) to the His-tag immobilized PikAIII ACPdd via SPR was observed, we were 

unable to calculate affinity values due to the high background refractive index change 

exhibited. We thus sought an alternative method to address this question. 

 
Figure 2-8. Protein purification of PikAIV proteins. Apparent molecular weight of the SeeBlue Plus2 
molecular weight marker (Invitrogen) is shown for reference. A) PikAIV KSdd-KS-AT (lane 2), PikAIV 
full module (lane 4), and P3P4dock (lane 6) resolved on a 4-20% Tris-Glycine SDS-PAGE gel. B) PikAIV 
KS (TEV-cleaved) run on a NuPAGE 12% SDS-PAGE gel using MES buffer. 
 

2.2.2  Binding Affinities of Discrete Docking Domains Determined by Fluorescence 

Polarization 

 To assess the effect of larger protein complexes on docking domain binding 

affinity, a fluorescence polarization (FP) assay was employed (96). We empirically 

determined the best fluorophore placement through the addition of a cysteine residue at 

each of the four possible termini (N-terminus and C-terminus of PikAIII ACPdd and 

PikAIV KSdd). Inclusion of a single cysteine residue enabled site-specific labeling with 
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iodoacetamide-BODIPY-FL. Titration of increasing concentrations of the unlabeled 

matched docking domain identified the C-terminus of PikAIII ACPdd (termed PikAIII 

ACPdd-FL) as the optimal fluorophore placement, as this tracer exhibited the largest 

change in FP upon protein binding. The binding affinity of the PikAIV KSdd for PikAIII 

ACPdd-FL measured using this method provided an independent confirmation of the 

discrete docking domain binding affinities generated using SPR (Figure 2-9). When the 

larger KSdd-containing PikAIV proteins were titrated against ACPdd-FL, a 2-10-fold 

increase in affinity was observed (Figure 2-9). However, a construct consisting of only 

the KS domain of PikAIV (without its docking domain) did not bind to PikAIII ACPdd-

FL (data not shown). Most likely, the presence of downstream domains in these longer 

constructs stabilizes the productive binding conformation of the PikAIV KSdd. 

Furthermore, it is possible that additional protein-protein contacts exist between the 

upstream ACPdd and the downstream KS-AT region of the module, although these 

regions have yet to be identified (29, 87).  

 
Figure 2-9. Binding of PikAIII ACPdd monitored by fluorescence polarization. A) FP assay design: 50 
nM PikAIII ACPdd-Fl was mixed with varying concentrations of KSdd, KSdd-KS-AT, or full module 
PikAIV and allowed to equilibrate at RT before reading. B, C) KDs were calculated using a one-site binding 
model, Y = Bmax*X/(KD + X). Dose response curves were performed in triplicate, and the error bars are 
SEM. 
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 Our in vitro binding affinities for these canonical modular PKS docking domains 

are similar to those measured by SPR and ITC for the orthogonal discrete TubB/TubC 

docking elements (KD ~50 μM), domains found in some mixed-PKS-NRPS synthetases, 

whose novel structure was reported recently (94). Additionally, the affinity of the PikAIV 

full module for PikAIII ACPdd as assessed by fluorescence polarization (5 ± 1 μM) is 

comparable to that estimated for the DEBS 1 / DEBS module 3+TE obtained by 

monitoring rates of tri- and tetraketide lactone synthesis (2.6 μM) in vitro (97). Thus, 

correct pairing of large multi-domain modules in both PKS and mixed PKS-NRPS 

biosynthetic assembly lines appears to result, at least in part, from specificity 

determinants with rather weak affinities. Despite these weak affinities, discrete docking 

domains from the related phoslactomycin (Plm) biosynthetic cluster have been used to 

separate the trimodular PikAI PKS (Figure 2-1B) into monomodular proteins in a 

Streptomyces venezuelae strain lacking pikAI (98). Remarkably, generation of the final 

macrolide products (methymycin and pikromycin) were within two-fold of the total yield 

compared with production when using native PikAI. The mechanism bacteria use to 

achieve such exquisite selectivity, albeit with modest protein-protein affinities, remains 

poorly understood. However, one clue might come from the analysis of the PksX 

megacomplex, a mixed PKS-NRPS responsible for producing bacillaene. In this system, 

the proteins of the biosynthetic machinery have been visualized via fluorescence 

microscopy to reside at a single organelle-like complex in the bacteria, perhaps 

suggesting that higher order multivalent interactions are available to further increase the 

affinities if needed (99).  
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Figure 2-10. Protein purification of PikAIII-PikAIV docking domain fusions.For reference, molecular 
weights are listed along side each gel in kDa. A) dilutions of the direct PikAIII-PikAIV fusion. B) PikAIII-
PikAIV fusion with one GGGS spacer before (lane 1) and after (lane 2) tag removal, and PikAIII-PikAIV 
fusion with two GGGS spacers before (lane 3) and after (lane 4) tag removal. All proteins were resolved on 
a 15% Tris-Glycine SDS-PAGE gel and stained with coomassie. 

2.2.3  Structure of the PikAIII/PikAIV Docking Interface 

 We next explored the structural basis for the observed binding specificity between 

the discrete pikromycin and erythromycin docking domain pairs. Given the low sequence 

similarity between the structurally characterized H1-T1 class and the uncharacterized H2-

T2 class of PKS docking domains, we targeted the recently proposed H2-T2 class for 

structure determination (91). A direct fusion strategy had been used successfully to 

generate a construct to solve the DEBS 2/DEBS 3 solution structure (85). To characterize 

the low-affinity PikAIII/PikAIV docking domain complex, we generated constructs 

where the C-terminus of PikAIII ACPdd was either directly fused to the N-terminus of 

PikAIV KSdd or separated by one or two Gly-Gly-Gly-Ser spacers. In the 

PikAIII/PikAIV system, this docking domain fusion strategy yielded proteins that were 

highly soluble, and purification yielded 25-75 mg protein/L of culture (Figure 2-10). 

Docking domain constructs derived from PikAIII/PikAIV containing all four predicted 

helices eluted as two oligomeric species on size exclusion chromatography, but these 
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proteins failed to form crystals. This is likely due to the existence of mobile linker 

regions, as were found in the DEBS 2/DEBS 3 docking complex (85). We then targeted a 

smaller construct focused only on the putative inter-polypeptide docking helices (amino 

acids 1534-1562 of PikAIII ACPdd fused to amino acids 1-37 of the KSdd of PikAIV, 

together termed P3P4dock) (Figure 2-11). The P3P4dock crystal structure was solved by 

single wavelength anomalous diffraction using selenomethionyl protein. The 1.75 Å 

crystal structure of P3P4dock includes residues 1544-1562 of PikAIII ACPdd and 1-37 of 

PikAIV KSdd, whereas residues 1534-1543 were disordered and lacked elctron density. 

 
Figure 2-11. PKS docking interface structures. A, B) Packing of the PikAIII ACPdd/PikAIV KSdd 
crystal structure (PDB id 3F5H). Three P3P4dock dimers are shown. The docking interaction formed by 
neighboring dimers is highlighted. C) In the NMR structure of the DEBS 2 ACPdd-DEBS3 KSdd (PDB id 
1PZR), the docking interaction is intramolecular. In panels B and C, polypeptide chains are colored blue to 
red from the N-terminus to the C-terminus of the construct. D) P3P4dock sequence; top line is residual 
purification tag (SN) followed by PikAIII (residues 1534-1562), bottom line is PikAIV (residues 1-37). 
ACPdd helices are indicated below the sequence.  
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Figure 2-12. PikAIV KSdd coiled-coil structure. A) PikAIII and PikAIV multidomain proteins. The 
docking domains are colored gold, and the region used to construct the P3P4dock fusion is boxed. B, C) 
The electrostatic potential map of the coiled-coil generated in PyMOL; in yellow, the short helix of the 
PikAIII ACPdd (residues 1543-1559) is bound to the small hydrophobic patch of the PikAIV KSdd. Blue 
represents positive charge and red negative charge. D, E) The PikAIV KSdd parallel coiled-coil.  The “a” 
and “d” residues make up the core of the homodimeric interface and are colored in cyan and light blue.  
The “e” and “g” residues are colored orange and pink, respectively.  An inter-coil hydrogen bond is found 
between residue g2 and e’3. F) The coiled-coil heptad repeat of the PikAIV KSdd. 
  
 The P3P4dock protein structure consists of a short helix bound to a parallel 

coiled-coil (Figure 2-11B, C and 2-12) (85). The relevant docking interface is made up of 

a coiled-coil of a single homodimer flanked by two individual ACPdd helices from 

neighboring protein molecules in the crystal lattice (Figure 2-11B and 2-12). The coiled-

coil packing exhibits the familiar heptad repeat architecture with the “a” and “d” amino 

acids forming the core of the coiled-coil, and the “e” and “g” positions providing the 

majority of the residues for contacting the upstream PiKAIII ACPdd helix (Figure 2-12 

D-F). The dominant interaction of the PikAIII ACPdd helix occurs in a hydrophobic 
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patch on the PikAIV KSdd coiled-coil (Figure 2-12B, C). The interacting hydrophobic 

surfaces display exquisite shape complementarity (Figure 2-13). Additional inter-domain 

interactions are found where residues 1544-1547 of PikAIII ACPdd fold back to interact 

further downstream on the KSdd dimer (Figure 2-13A, B). This positioning of residues 

1544-1547 in PikAIII ACPdd is mediated by a charge-charge interaction between 

Asp1545 of PikAIII and Lys17 of PikAIV, as well as hydrogen bonds between main 

chain carbonyls from Ile1544 and Leu1547 of PikAIII and Arg13 of PikAIV (Figure 2-

13A). No other charge-charge interactions are seen at the PikAIII/PikAIV docking 

interface. These electrostatic interactions and remarkable shape complementarity 

represent a potential selectivity filter (Figure 2-13D). 

 
Figure 2-13. Shape complementarity in PKS docking domains. A-C) Docking interface of PikAIII-
PikIAV; KSdd of PikAIV is colored gray, and the terminal helix of PikAIII ACPdd is light yellow. D) 
Multiple sequence alignment of the docking domains tested (or highlighted) in this chapter generated in 
JalView. Residue numbering is shown for the PikAIII/PikAIV pairing. Basic residues are colored dark 
blue, acidic residues are red, hydrophobic amino acids are light blue, and tyrosine is highlighted in green. 
Regions of interaction for each subclass are denoted by matching symbols.  
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 The PikAIII/PikAIV docking domain structure revealed an overall architecture 

similar to that of the DEBS 2/DEBS 3 docking domain model obtained via NMR 

spectroscopy (Figure 2-11B, C) (85). In both the PikAIII/PikAIV and DEBS 2/DEBS 3 

docking domain structures, the ACPdd helix binds to the KSdd coiled-coil approximately 

30 Å (Figure 2-11B, C) from the downstream KS catalytic domain (not present in either 

structure). However, many details of the structures differ. The most apparent structural 

difference between the PikAIII/PikAIV and DEBS 2/DEBS 3 docking domains is the 

length of the terminal ACPdd helix (Figures 2-11, 2-12, and 2-13). The 9-residue PikAIII 

ACPdd helix (residues 1549-1557) is considerably shorter than its 15-residue DEBS 2 

ACPdd counterpart. Although both the PikAIII/PikAIV and DEBS 2/DEBS 3 docking 

domain interfaces display well-defined shape complementarity between matched pairs, 

the mis-matched pairs appear highly non-complementary. Polar interactions also differ 

between the two interfaces (Figure 2-13D). 

 The classification of PKS docking domains proposed by Thattai et al. is generally 

consistent with the two experimental structures of paired docking domains in which 

DEBS 2/DEBS 3 is type H1-T1 and PikAIII/PikAIV is type H2-T2 (Figure 2-13D). For 

example, the residues analogous to PikAIII Asp1545 and PikAIV Lys17 of the H2-T2 

subclass are most frequently an Asp/Lys pair.  In contrast, small or hydrophobic residues 

occupy those positions in the H1-T1 subclass of PKS docking domains (Figure 2-13D 

and Appendix A). In addition, the key residues involved in the hydrophobic interface are 

shifted between the proposed H1-T1 and H2-T2 subclasses of PKS docking domains (see 

bars above the sequence alignments in Figure 2-13D). Furthermore, residue 11 is an 

alanine in PikAIV and all other H2-T2 KSdds, whereas in over 90% of H1-T1 KSdds the 
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analogous residue is a tyrosine (91). (Figure 2-13 and Appendix A). On the ACPdd helix, 

the large, hydrophobic residues Ile1553 and Leu1557 are across the interface from Ala11 

of PikAIV KSdd (Figure 2-13C). Due to the size of these residues on the ACPdd helix, 

accommodating the tyrosine side chain of an H1-T1 KSdd at the position analogous to 

Ala11 of PikAIV KSdd appears unfavorable and likely represents another selectivity 

filter between the H1-T1 and H2-T2 subclasses. Altogether, these data lend support to the 

hypothesis that H1-T1 and H2-T2 are structurally distinct subclasses of PKS docking 

domains. 

 Specificity within the H1-T1 class appears to be driven by three distinct 

interaction zones. The hydrophobic core of the protein-protein interface is symbolized 

(Figure 2-13D) by solid bars above both the ACPdd and the KSdd in the multiple 

sequence alignment. On either side of the hydrophobic core are positions of potential 

charge-charge interaction (Figure 2-13D, stars & circles). Mismatching at any of the three 

zones appears to be sufficient to inhibit non-cognate docking domains from binding 

productively to one another in vitro. For example, at the “star” position, the DEBS 

2/DEBS 3 pair and the PikAII/PikAIII pair both contain the same attractive charge-

charge pair (Asp/Arg). However, at the “circle” position, a mismatched PikAII/DEBS 3 

pairing would bring two negatively charged residues (Glu/Asp) in close proximity. A 

report of productive association and transfer between PiKAII and DEBS 3 in vivo 

suggests that within the H1-T1 class, inter-polypeptide interactions beyond the docking 

domains may also come into play (83), although further structural work is needed to 

identify additional contact regions. 
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2.3  Summary 

 Applying techniques from both analytical biochemistry and structural biology to 

the pikromycin biosynthetic pathway, we have increased our understanding of the key 

steps involved in intermodular acyl group transfer. Specifically, we have demonstrated 

the first direct binding analysis of the discrete PKS docking domains via two 

complementary methods, surface plasmon resonance and fluorescence polarization. We 

combined our binding analysis with a structural protein model generated by x-ray 

crystallography to elucidate the molecular details of the PikAIII-PikAIV docking domain 

interface. Collectively, with the predictive tools already in place for PKS catalytic 

domains, the enhanced diagnostic power should enable more accurate assignment of 

individual pathway metabolic products.    

2.4  Experimental Methods 

2.4.1  Design of Expression Constructs 

 Plasmids for the expression of the discrete docking domain fragments, PikAIV 

KSdd-KS-AT, and the full module of PikAIV were generated by amplification using 

PCR with LIC overhangs and inserted into the vector pMCSG7 (100). DEBS 1, DEBS 2, 

and DEBS 3 docking domains were amplified from cosmid pDHS9746. PikAI ACPdd 

and KSdd were amplified from plasmid pDHS0030. PikAII ACPdd and KSdd were 

amplified from plasmid pDHS0805. PikAIII ACPdd, PikAIII ACPdd-C-FL and KSdd 

were amplified from plasmid pDHS8011. PikAIV KSdd, KSdd-KS-AT, and the full 

module were amplified from plasmid pDHS0137. All primers  are listed 5’ to 3’ in Table 

2-1. Sequences in all capital letters represent the LIC overhangs necessary for insertion 

 37



into the pMCSG7 vector. The engineered cysteine codon for the P3ACPdd-C-Cys is 

indicated in bold. The overlaps used to generate the PikAIII-PikAIV fusion are shown in 

italics. All PCR fragments were inserted in the vector pMCSG7 via ligation independent 

cloning. Similarly, a construct lacking the N-terminal docking domain, termed PikAIV 

KS, was amplified from plasmid pDHS0137 and inserted into pMocr (101).  The C-

terminus of the PikAIV discrete ketosynthase construct terminates at a position near that 

of a recently reported soluble DEBS module 3 KS (25).  

 A plasmid encoding the full PikAIII ACPdd fused to the PikAIV KSdd 

(pDHS9672) was generated via sequential PCR amplification of 1) individual dd’s 

PikAIII and PikAIV containing appropriate overlapping DNA at the ends using plasmid 

DNA for PikAIII (pDHS8011) and PikAIV (pDHS0137) and 2) the fused construct from 

PCR amplification of the combined fragments using outside primers. The plasmid 

pDHS9570 (encoding P3P4dock) was generated by PCR amplification of a fragment of 

pDHS9672 followed by insertion into the vector pMCSG7.  All DNA sequences were 

confirmed by sequencing.  
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Table 2-1. Primer list for PikA and DEBS protein expression. 

Primer name Primer sequence Plasmid(s)  

P1ACPddLICF TACTTCCAATCCAATGCC ctg cct cgc ggc gcc tcg gac ca 

P1ACPddLICR TTATCCACTTCCAATGCTA gtc cgt gct ggg gtc ctg gt 
pDHS9683 

P2ACPddLICF TACTTCCAATCCAATGCC gcg ggc ggg tcc tgg gcg gaa 

P2ACPddLICR TTATCCACTTCCAATGCTA gaa gtc gga gtc gcc cag ctc ctt 
pDHS9687 

P3ACPddLICF TACTTCCAATCCAATGCC ctc cac gag gcg tac ctc gca c 

pDHS9560 & 

pDHS9672 

P3ACPddLICR TTATCCACTTCCAATGCTA ggt gag gcg cag gac ggt gt pDHS9560 

P3ACPddCysLICR TTATCCACTTCCAATGCTA aca ggt gag gcg cag gac ggt gt pDHS9681 

P3ACPddOverR act gtt cgt tgg aac tcg tca tgg tgt tac ggg ggc cga gag c 

P4KsddOverF tct cgg ccc ccg taa cac cat gac gag ttc caa cga aca g 
pDHS9672 

P4KSLICF TACTTCCAATCCAATGCC cag gag ccc atg gca atc gt pDHS9703 

P4postATLICR TTATCCACTTCCAATGCTA ctc gcg ccc gga agc ggt gtg 

P4CtermLICR TTATCCACTTCCAATGCTA ctt gcc cgc ccc ctc gat gc 
pDHS9696 

P4KSddLICF TACTTCCAATCCAATGCC atg acg agt tcc aac gaa cag ttg 

pDHS9561, 

pDHS9736, 

pDHS9734 

P4KSddLICR TTATCCACTTCCAATGCTA cat ggg ctc ctg ccg acg gt 

pDHS9561 & 

pDHS9672 

P4KSLICR TTATCCACTTCCAATGCTA cgg ggc ctc ctc cag gac aac gt pDHS9703 

P3P4dockLICF TACTTCCAATCCAATGCC gac cct ggt gcg gag ccg gag g pDHS9570 

D1ACPddLICF TACTTCCAATCCAATGCC ggc acc gag gtc cga ggg gag 

D1ACPddLICR TTATCCACTTCCAATGCTA atc gcc gtc gag ctc cc 
pDHS9691 

D2KSddLICF TACTTCCAATCCAATGCC gtg act gac agc gag aag gtg gc 

D2KSddLICR TTATCCACTTCCAATGCTA gga ttc cag ctc acg gat g 
pDHS9693 

D2ACPddLICF TACTTCCAATCCAATGCC ttc gcg gcc agt ccg gcg gtg gac a 

D2ACPddLICR TTATCCACTTCCAATGCTA cag gtc ctc tcc ccc c 
pDHS9695 

D3KSddLICF TACTTCCAATCCAATGCC atg agc ggt gac aac ggc atg a 

D3KSddLICR TTATCCACTTCCAATGCTA acc ggc ccg gtg ctc gac tt 
pDHS9696 

 

2.4.2  Expression and Purification of Docking Domain Proteins 

 Plasmids encoding TEV protease-cleavable N-terminal His6-fusion proteins were 

transformed into E. coli BL21(DE3) and grown at 37 °C in TB medium to an OD600 of 
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~1.0 in 2L flasks. The cultures were cooled to 18 °C, and isopropyl β-D-

thiogalactopyranoside was added to a final concentration of 0.2 mM and grown 12-16 h 

with shaking. The cells were harvested by centrifugation and frozen at either -20 or -80 

°C.  Selenomethionyl protein was produced in a similar fashion using selenomethionine 

minimal medium (102). Cell pellets were  thawed to 4 °C and resuspended in 5X volume 

of lysis buffer (20 mM HEPES, pH 7.8, 300 mM NaCl, 20 mM imidazole, 1 mM MgCl2, 

and ~100 mg CelLytic Express (Sigma-Aldrich)) before lysis via sonication. For discrete 

KSdds, Complete Protease Inhibitor Cocktail tablets (Roche) were added to the lysis 

buffer. Centrifugation at 25,000xg for 30 min provided clarified lysates. Proteins were 

purified using Ni-Sepharose affinity chromatography on an Akta FPLC. Briefly, after 

filtration of the supernatant through 0.45 μm membrane, the solution was loaded onto a 

5-mL HisTrap nickel-nitrilotriacetic acid column. The column was washed with 10 

column volumes of buffer A (20 mM HEPES, pH 7.8, 300 mM NaCl, 20 mM imidazole) 

and eluted with a linear gradient of buffer B (20 mM HEPES, pH 7.8, 300 mM NaCl, 400 

mM imidazole). His-tag removal was achieved by TEV protease incubation overnight at 

4 °C in HEPES buffered saline (20 mM HEPES, pH 7.8, 150 mM NaCl, HBS) or buffer 

A containing 1 mM TCEP. His-tagged peptides and TEV protease were removed by 

repassaging the solution over the HisTrap column. Flow-through fractions were pooled, 

concentrated, and loaded onto a HiLoad 16/60 Superdex 75 (GE Healthcare) column 

equilibrated with HBS. Fractions were combined, concentrated, frozen, and stored at -80 

°C. Because many of the small peptides lack amino acids with appreciable absorbance at 

280 nm, protein concentration was determined using the bicinchoninic acid (BCA) 

method using BSA as a standard.  Protein yields varied from 1 – 75 mg/L of cell culture.  
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PikAII and PikAIII KSdd were chemically synthesized by Genscript corporation. 

Proteins were further purified by size exclusion chromatography on the HiLoad 16/60 

Superdex 75 as above to remove residual HPLC purification contaminants before using 

the peptides in binding assays. To assure that no undesired cleavage products were 

formed during TEV protease incubation, the PikAIV, DEBS2 and DEBS3 KSdds were 

subjected to high resolution mass spectrometry (data not shown). For each peptide, the 

observed molecular weight was consistent with cleavage exclusively at the predicted 

TEV protease site (Figure 2-4). 

2.4.3  Expression and Purification of PikAIV KS, PikAIV KSdd-KS-AT and PikAIV 

Full Module 

 Proteins were expressed as described for the docking domains above except that 

the PikAIV full module construct was grown in BAP1 E.coli cells (103) to provide post-

translational modification of its ACP domain. Proteins were purified as above using the 

following buffers. For cell lysis, lysis buffer with reductant (20 mM HEPES, pH 7.8, 300 

mM NaCl, 20 mM imidazole, 0.5 mM TCEP 1 mM MgCl2, and ~100 mg CelLytic 

Express) was used. During FPLC purification, wash buffer was buffer C (20 mM HEPES, 

pH 7.8, 300 mM NaCl, 20 mM imidazole, 10% glycerol, 0.5 mM TCEP) and the elution 

buffer used was buffer D (20 mM HEPES, pH 7.8, 300 mM NaCl, 400 mM imidazole, 

10% glycerol, 0.5 mM TCEP). Size exclusion chromatography was performed on a 

HiLoad 16/60 Superdex 200 (GE Healthcare) column equilibrated with storage buffer (20 

mM HEPES, pH 7.5, 150 mM NaCl, 10% glycerol, 0.5 mM TCEP). Protein 

concentrations were determined using absorbance at 280 nm and calculated extinction 
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coefficients (PikAIV KS, 1 A280 = 1.0 mg/ml; PikAIV KSdd-KS-AT, 1 A280 = 0.91 

mg/ml; PikAIV full module, 1 A280 = 0.94 mg/ml) (Figure 2-8). 

2.4.4  Surface Plasmon Resonance Assays 

 Sensor chips (NTA) and HBS-P buffer were purchased from GE Healthcare Life 

Sciences. SPR experiments were performed on a BIAcore 3000 instrument. Running 

buffer for SPR was HBS-P+E (10 mM Hepes, pH 7.4, 0.15 M NaCl, 0.005% surfactant 

P20, 50 μM EDTA). The surface was prepared for immobilization of ACPdd by 

activating with 12 μL of 500 μM NiCl2 in HBS-P. Both the loading concentration and 

contact time were empirically determined for each ACPdd so that the maximum amount 

of protein was immobilized on the chip and that this protein was stably bound for the 

course of the experiment. ACPdd concentrations used for loading varied depending on 

the protein between 50 nM – 1 μM.  Typically, 700 – 1500 RU of ACPdd was bound to 

the Ni-NTA sensor chip for each experiment. To measure binding to ACPdd by SPR, 

solutions of KSdd in HBS-P+E were injected over the prepared surface as well as a 

nickel only flow cell at a flow rate of 10 μL/min. After multiple injections (8 – 10 

concentrations), the surface was regenerated using 30 μL of 175 mM EDTA in HBS-P, 

pH 8.3. Maximum testable concentrations for the KSdds were limited by either the 

solubility of the peptide or its level of nonspecific binding to the nickel-only control lane. 

Kinetic data analysis was carried out using Scrubber2 (BioLogic Software) and 

BIAevaluation (GE Healthcare Life Sciences). Nonlinear curve fitting of the equilibrium 

binding response was carried out using GraphPad Prism software.  
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2.4.5  Fluorescence Polarization Assays 

 Labeled ACPdds were generated by reaction of BODIPY® FL C1-IA (N-(4,4-

difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl)iodoacetamide) 

(Invitrogen)  with cysteine-containing ACPdds.  Briefly, 4 μL of 100 mM TCEP in water 

and 40 μL of 10 mM BODIPY® FL C1-IA in DMSO was added to 360 μL of 500 μM 

ACPdd in HBS. Reactions were protected from light and proceeded for 2 hours at room 

tempetature. Unreacted BODIPY® FL C1-IA was removed from the labeled protein by 

passing the mixture over a preequilibrated Zeba spin desalting column (Pierce) and 

dialyzing into HBS. FP assays were performed at 20 μL total volume in a low volume 

black opaque polystyrene plate (Matrix Technologies). Proteins (50 nM PikAIII ACPdd-

FL tracer and varying concentrations of unlabeled KSdd-containing PikAIV constructs) 

were allowed to incubate together for 10 minutes at room temperature in HBS-P (10 mM 

Hepes, pH 7.4, 0.15 M NaCl, 0.005% surfactant P20). Fluorescence polarization 

measurements were made at high sensitivity setting on a SpectraMax M5 (Molecular 

Devices) using 485 nm excitation, 538 nm emission, and 530 nm cutoff filter. The G 

factor was determined experimentally by setting a standard of 50 nM fluorescein in 0.1 N 

NaOH to 20 mP.  Nonlinear curve fitting of the equilibrium binding response was carried 

out using GraphPad Prism software. Control experiments using up to 1 mg/ml BSA 

confirmed that the polarization increase upon incubation of PikAIII ACPdd-FL with 

unlabeled PikAIV KSdd was due to a specific protein-protein interaction (data not 

shown). 
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2.4.6  Crystallization, Data Collection and Structure Determination 

 Initial screening with P3P4dock produced small crystals of needle morphology 

under a variety of conditions containing high concentrations of organic solvents such as 

dioxane and 2-methyl-2,4-pentanediol (MPD) (Figure 2-14). The best-diffracting native 

crystals grew in 4-8 weeks at 4 °C using hanging-drop vapor diffusion techniques. 

Similarly, selenomethionyl P3P4dock crystals grew in 1-2 weeks at 4 °C after 

microseeding with native crystals. For crystal growth, an equal volume of protein 

solution (2.5 - 5 mg/ml) in HBS (20 mM HEPES, pH 7.8, 150 mM NaCl) was mixed 

with mother liquor containing 55% MPD, 150 – 200 mM sodium acetate, pH 5.0. The 

crystals were harvested in loops and frozen in liquid N2.  

 
Figure 2-14. P3P4dock crystals. 2.5 mg/ml selenomethionyl P3P4dock protein in 20 mM HEPES, pH 7.8, 
150 mM NaCl. Crystals seeded with a 1:1000 dilution from a 5 mg/ml native protein well. Crystals are 
shown from a well containing 55% MPD and 150 mM sodium acetate. 
  
 Diffraction data were collected at 100 K on GM/CA-CAT beamlines 23ID-B and 

23ID-D at the Advanced Photon Source in the Argonne National Laboratory (Argonne, 

IL). The data were processed using the HKL2000 suite (104). Initial phasing by the 

single-wavelength anomalous diffraction (SAD) method was performed using data 

collected at the wavelength with strongest anomalous signal from a single 
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selenomethionyl-labeled protein crystal (Table 2-2). To minimize radiation damage, the 

dataset was assembled from 45° wedges of data collected from multiple points along a 

single crystal using a 10-micron X-ray beam (105). The PHENIX software package (106) 

located five of the six selenium atoms and approximately two-thirds of the structure was 

automatically built from the 3.0 Ǻ SAD-phased map. Two molecules were present in the 

asymmetric unit (Vm = 2.40, 49% solvent). Modeling was completed manually using 

COOT (107). The model was refined against the 1.75 Ǻ native dataset using REFMAC5 

of the CCP4 suite (108-110). (Table 2-3). The atomic coordinates of the PikAIII / PikAIV 

complex have been made publicly available through the Protein Data Bank 

(www.rcsb.org/pdb) with the PDB ID 3F5H. 

Table 2-2. P3P4dock diffraction data 
Parameter Native SeMet 

Space Group C2221 C2221

Dimensions (Å) a,b,c 59.0, 117.9, 41.8 59.7, 118.5, 41.9 

X-ray source 23ID-D 23ID-D 

Wavelength λ (Å) 0.97934 0.97940 

dmin(Å) a 1.75 (1.81-1.75) 2.80 (2.90-2.80) 

Unique observations 15,084 3,917 

Rmerge (%) a,b 6.9 (50.7) 12.3 (29.7) 

〈I/σ〉 a 15.6 (2.1) 11.5 (4.3) 

Completeness (%) a 99.2 (98.0) 100 (100) 

Avg. redundancy a 3.6 (3.1) 5.1 (5.1) 
a Values in parenthesis are for outer shell 
b Rmerge = Σ|Ii-〈I〉|/ΣIi, where Ii is the intensity of the ith observation and 〈I〉 is the mean intensity 
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Table 2-3. P3P4dock refinement statistics 
 P3P4dock 

Date range 50-1.75 

R/Rfree
a,b 0.201/0.250 

RMSD bond length (Å) 0.011 

RMSD bond angle (°) 1.216 

Avg. Protein B-factor (Å2) 24.4 

Avg. Solvent B-factor (Å2) 39.5 

Wilson B (Å2) 20.3 

Ramachandran plotc  

      Favored 100 

      Allowed 0.0 

      Disallowed 0.0 

Protein atoms 919 

Water molecule 151 

Other atoms 1 
a R = Σ|Fo-|Fc||/Σ|Fo| where Fo is the observed structure factor and Fc is the calculated structure factor used in 
the refinement 
b Rfree = Σ|Fo-|Fc||/Σ|Fo| where Fo is the observed structure factor and Fc is the calculated structure factor 
from 5% of reflections not used in the refinement 
c From output of MOLProbity 

2.4.7  Sequence and Structure Analysis. 

 Multiple sequence alignments were performed using the ClustalX method within 

JalView software (111). Structural figures were generated with PyMOL (DeLano 

Scientific).  

 

Notes: 

This work has been published as “Structural Basis for Binding Specificity between 
Subclasses of Modular Polyketide Synthase Docking Domains,” Buchholz, T. J., Geders, 
T. W., Bartley 3rd, F. E., Reynolds, K. A., Smith, J. L. and Sherman, D. H. ACS Chem. 
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Chapter 3  

BryR, an HMG-ACP Synthase with Specificity for HMG-CoA Synthase 

Cassette ACPs 

3.1  Introduction 

 The wide distribution of PKSs in the microbial world and the extreme chemical 

diversity of their products result from a varied use of the well known catalytic domains 

described above (section 1.1) for the canonical type I PKS systems. Taking a theoretical 

view of polyketide diversity, the Hatzimanikatis and Broadbelt groups have suggested 

that even if the starter and extender units are fixed, over 100,000 linear heptaketide 

structures are possible using only the 5 common reductive outcomes at the β-carbon 

position (ketone, (R- or S-) alcohol, trans-double bond, or alkane) (112). Recently it has 

become apparent that even this does not represent the upper limit for polyketide 

diversification. In order to create chemical functionalities beyond those mentioned above, 

nature has modified some enzymes from sources other than fatty acid synthesis (the 

mevalonate pathway in primary metabolism is one example) not typically thought of as 

type I PKS domains. Presented here is one way PKS containing systems have modified 

these domains for the catalysis of some unique chemistries observed in their natural 

products. 
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3.1.1  Bryostatins 

 The bryostatins are antifeedant polyketide natural products putatively produced 

by a bacterial symbiont of the marine bryozoan Bugula neritina (74). They are highly 

potent protein kinase C (PKC) modulators (113), and, as such, bryostatin 1 (Figure 3-1, 

18) has been tested in numerous clinical trials as a potential anticancer agent (114). 

Separately, the neuroprotective activity of PKC activators has recently been demonstrated 

in preclinical studies where bryostatin 1 was able to rescue memory loss after 

postischemic stroke (115). Additional studies suggest that bryostatin 1 (and a synthetic 

analog) may be able to reduce the levels of Aβ, a toxic peptide implicated in Alzheimer’s 

disease (116, 117). However, like many marine-derived natural products, fulfilling the 

promise of these initial studies may be hindered by the low abundance of bryostatins 

available from either natural sources or chemical synthesis (118). The intriguing 

biological activities and lingering supply questions motivate our continued study of the 

bryostatin biosynthetic pathway (Figure 3-2). Increasing our knowledge of the molecular 

mechanisms employed may help open the door to new methods of bryostatin production 

as well as the generation of related bryostatin analogs.  
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Figure 3-1. Products from HMGS-containing biosynthetic pathways.  Positions of β-branching are 
shaded blue. 

3.1.2  Methylation at the α- and β-Carbons 

 As described in section 1.2.1 for type I polyketide biosynthesis, the presence or 

absence of a methyl group on the α-carbon position of the growing polyketide chain is 

most often governed by the selection of the extender unit (malonyl-CoA versus 

methylmalonyl-CoA). However, in PKS systems that use trans acyltransferases (AT-less 

type I PKSs) (31, 119), the module by module control over extender unit selection is 
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sometimes not possible. In most of these cases, malonyl-CoA is used as the extender unit, 

and a methyl group can be added to selected positions through the action of embedded 

methyl transferase (MT) domain or discrete MT enzyme. For example, the C6 methyl 

group of leinamycin 22 is thought to be installed by the MT embedded in LnmJ (120), 

and the gem dimethyl groups on C8 and C18 of bryostatin 18, most likely are the 

consequence of the MT domains in BryB and BryC (74). 

 
 
Figure 3-2. bry gene cluster. Portions of the pathway utilized in β-branching are highlighted in this 
depiction of the bryostatin biosynthetic pathway. BryC, BryX and BryD are not shown. ACP, acyl carrier 
protein; AT, acyltransferase; DH, dehydratase; FkbH, homolog to FkbH (121); HMGS, HMG-CoA 
synthase homolog; KR, ketoreductase; KS, ketosynthase; KSDC, decarboxylative ketosynthase; MT, 
methyltransferase; Unk, domain with unknown function.  
 

 In contrast to the α-carbon methylations, the incorporation of methyl or 

methylene groups (or functional groups derived from such groups) at the β-position 

represents the assimilation of a full suite of enzymes into the typical PKS machinery. A 
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subset of type I modular PKSs (and hybrid NRPS/PKS megasynthases) recently have 

been identified that contain multiple enzymes acting in trans during the traditional linear 

assembly-line process. These systems provide a unique method of expanding the 

repertoire of the traditional reductive domains (KR, DH, ER). Significant genetic and 

biochemical evidence has been accumulated to demonstrate that β position alkyl side-

chains are typically introduced through an HMG-CoA synthase (HMGS) cassette of 

enzymes/domains performing chemistry similar to that seen in mevalonate biosynthesis. 

These enzymes work in conjunction with the PKS machinery to create unique 

functionalities seen at the branch points that include the pendant methyl groups of 

bacillaene 17 (122-124), mupirocin 23 (125), and virginiamycin M 28 (126), the 

methoxymethyl and ethyl groups of myxovirescin A 24 (127-129), the exomethylene 

groups of difficidin 20 (124), onnamide 25 (130), pederin 26 (130-132), and psymberin 

27 (133), the cyclopropyl ring of curacin A 19 (54, 134, 135), the vinyl chloride of 

jamaicamide 21 (136), the unique 1,3-dioxo-1,2-dithiolane moiety of leinamycin 22 (120, 

137), and the exocyclic olefins in bryostatin 18 (74) (Figure 3-2). 

3.1.3  HMG-CoA Synthase Cassettes 

 In primary metabolism, HMG-CoA synthase (HMGS) is responsible for the 

condensation of C2 of acetyl-CoA onto the β-ketone of acetoacetyl-CoA to form 3-

hydroxyl-3-methylglutaryl-CoA and free CoASH (138) (Figure 3-3A). A number of 

secondary metabolite pathways have been identified over the past 5 years that perform an 

analogous reaction, although they appear to use ACP-tethered acyl groups as opposed to 

acyl-CoA substrates. After generation of the HMG-ACP analog on the growing 

polyketide chain, the product is usually dehydrated and decarboxylated to yield the 
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branched intermediate. Found in 12 pathways to date (54, 74, 120, 122-134, 136, 137) 

(Table 3-1 and Appendix B), included in the cassette are a discrete donor ACP (ACPD), a 

decarboxylative KS (cysteine to serine active site variant, KSDC), an HMGS homolog, 

one or two enoyl CoA hydratase-like (ECH) enzymes/domains, and an acceptor ACP site 

(ACPA) (Figure 3-3B). Often, the pathways contain tandem ACPAs at the site of 

modification, though the purpose of these ACP repeats is not clear. Additionally, 

acyltransferase activity is needed, though this may come from a variety of sources. 

 
Figure 3-3. HMG generation in primary and secondary metabolism A) the mevalonate pathway and B) 
the full HMGS cassettes found in PKS and mixed biosynthetic pathways incorporating β branches.  
 

 Three HMGS-containing cassettes (those in the curacin A, bacillaene and 

myxovirescin pathways) have been biochemically validated in the past three years and 

will serve as the basis to analyze the individual components in this complex (54, 123, 
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135, 139-141). The mechanistic and structural details for HMG-CoA synthase in primary 

metabolism have been elucidated for both bacterial and eukaryotic HMGSs (142-146). 

While polyketide HMGSs share only 20-30% sequence identity with their primary 

metabolism homologs (in both prokaryotes and eukaryotes), multiple sequence alignment 

reveals that the key catalytic residues (Glu/Cys/His) are conserved. As shown in Figure 

3-3, the first step in the formation of the HMG-intermediate is the generation of acetyl-

ACPD. This is typically accomplished through the loading of malonyl-CoA via either an 

embedded or discrete AT (123, 139, 147). The decarboxylative KS then converts the 

malonyl-ACP into acetyl-ACP, after which the tethered acetyl group is condensed onto 

the β-ketone of the polyketide intermediate. However, a unique enzyme with dual 

acyltransferase/decarboxylase activity was recently characterized from the leinamycin 

pathway, LnmK (137). LnmK is responsible for generation of a propionyl-ACPD. A 

homolog of this enzyme (TaD) has been found in the pathway of myxovirescin, an ethyl-

branch-bearing compound (129). Finally, formation of the HMG-analog is completed 

upon addition of water.  
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Table 3-1. Known HMGS cassettes and their producing organisms 

 
 Processing of the HMG-intermediate can vary considerably, but typically 

proceeds via dehydration and decarboxylation catalyzed by two enoyl-CoA reductase 

domains (Figure 3-3B). Based on sequence similarity, the members of the crotonase fold 

family seen in these HMGS cassettes can be subdivided into two groups, termed ECH1 

and ECH2 (54, 141). The successive dehydration and decarboxylation steps are catalyzed 

by the ECH1 and ECH2 enzymes/domains, respectively. Evidence for the specific 

function of the curacin ECH1 and ECH2 enzyme pair from the curacin pathway has been 

demonstrated using a coupled enzyme assay, ESI-FT-ICR MS, and x-ray crystallography 

(54, 141). Using purified ECH1 (CurE) and ECH2 (the N-terminal domain of CurF) 

overexpressed in E. coli, (S)-HMG-ACP was converted first to 3-methylglutaconyl-ACP 

then to 3-methylcrotonyl-ACP, the proposed intermediate for subsequent formation of the 

cyclopropyl ring. Further in vitro evidence for the function of these enzymes has been 
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generated using proteins from the PksX pathway of Bacillus subtilis (123) and the 

myxovirescin pathway from Myxococcus xanthus (139). Before the identification of 

bacillaene as the product of the PksX pathway, Calderone et al. reported the function of a 

number of its discrete enzymes (123, 140). Using radioactive biochemical assays together 

with mass spectrometry, they were able to assign functional roles to AcpK, PksC, the 

tandem ACPs in PksL, PksF, PksG, PksH and PksI. Using the model acceptor ACP, 

acetoacetyl-ACP, and malonyl-CoA in combination with the above proteins, a Δ2-

isoprenyl-S-carrier protein was generated (123). More recently, a similar in vitro 

investigation was carried out using the homologous enzymes from the myxovirescin 

pathway (139). The HMGS cassette logic proposed above held fast for the myxovirescin 

pathway. Though the generation of the propionyl- or methylmalonyl-S-ACP could not be 

demonstrated, by analogy to the leinamycin pathway, TaD is the likely missing piece 

(137). 

 In vivo evidence for the function of these HMGS cassettes has recently come from 

the Müller lab (127, 128). Both of the HMGS homologs in the myxovirescin A pathways 

(TaC and TaF) were individually deleted and the impact on the products of the 

engineered Myxococcus xanthus strains were analyzed. Though masses of predicted 

products were not detectable in the ΔtaC strain, disruption of TaF led to the production of 

a myxovirescin analog with a methyl group in place of the ethyl group at C16 of 24, 

presumably via compensation by TaC. 

 Analysis of the placement of the known HMGS cassettes identified to date into 

their biosynthetic clusters reveals a variety of possible architectures (Appendix B).  For 

example, the ECH2 can exist as a discrete enzyme downstream of the ECH1 (mupirocin 
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and others), as an N-terminal domain of a large PKS (curacin and jamaicamide), and as 

an embedded domain (pederin and onnamide). While most of the clusters published to 

date are mixed PKS/NRPS systems with in trans ATs and tandem ACPs at the site of 

HMGS modification, exceptions exist for each of these examples (difficidin is PKS only, 

curacin and jamaicamide contain embedded ATs, and bryostatin and myxovirescin do not 

contain tandem ACPs at the site of HMGS modification).   

 Partial HMGS cassettes have been identified in the onnamide, difficidin, 

psymberin, leinamycin (120, 124, 130, 133, 137) and bryostatin (missing ACPD, ECH1 & 

ECH2) (74) biosynthetic pathways (Table 3-1). Lack of complete gene cluster sequencing 

or annotation is one possible explanation for the presence of a partial HMGS cassette. 

This is likely the case for the onnamide, virginiamycin, difficidin and bryostatin systems 

where either firm pathway boundaries have yet to be determined for contiguous pathways 

or the pathway is possibly dispersed over multiple chromosomal loci. In other instances 

(leinamycin, bryostatin), product formation is unlikely to require enzymatic 

transformations performed by the ECH homologs (dehydration and decarboxylation). 

Alternately, functions typically performed by the cassette members may be carried out by 

other domains/enzymes within the pathway. For example, the leinamycin pathway does 

not need a KSDC enzyme, as LnmK fulfills this as one of its roles as an 

acyltransferase/decarboxylase to generate the acyl donor propionyl-LnmL (137). 

Similarly, the β-methoxylacylidene moieties found in the bryostatins are hypothesized to 

be the result of a β-γ dehydration (whereas the dehydration performed by ECH1 enzymes 

typically occurs at the α-β positions) (147). Possible candidate domains for these 

transformations are the N-terminal domains of unknown function found on BryB and 
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BryC, immediately downstream of both HMGS modification sites in the bryostatin 

pathway (74).  

3.1.4  Protein-Protein Specificity in HMG-CoA Synthase Cassettes 

 As HMGS enzyme cassettes have only been identified and functionally 

characterized recently, some of the mechanistic details as well as many of the key 

protein-protein interactions needed to orchestrate communication among the polypeptide 

components remain unclear. Details on how the individual proteins are brought to the 

correct place in the pathway to perform their functions are still unknown for the majority 

of the pathways. In the case of the PksX/bacillaene pathway, some intriguing microscopy 

performed on B. subtilis suggests that the bacillaene proteins are clustered into a huge 

mega-enzyme factory inside the bacterial cell (99). Whether this organization extends (or 

is limited) to the other members of HMGS cassette containing pathways remains to be 

seen.   

3.2  Results and Discussion 

 The type I PKS biosynthetic gene cluster presumed responsible for the synthesis 

of the bryostatins, bry, has been identified and sequenced from two sibling species of 

“Ca. Endobugula sertula/B. neritina” (74). The shallow-water North Carolina (NC) 

sibling species appears to be located within a contiguous DNA fragment approximately 

77 kb in length, whereas the deep-water California (CA) species is split between two or 

more locations on the chromosome. Apart from the transposition of the HMGS cassette 

and AT enzymes, the two sequences exhibit >99.5% sequence identity at the DNA level. 
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For all of the following studies, we have used BryR from the presumed NC species of 

“Ca. Endobugula sertula/B. neritina”. 

3.2.1  BryR -ACP Binding Determined by Surface Plasmon Resonance 

 A key step for selectivity in the HMGS cassette appears to be the HMGS reaction 

itself. Biochemical studies of PksG, the HMGS homolog of the bacillaene pathway, 

revealed that the enzyme only accepts the acetyl group when presented on AcpK, its 

cognate ACPD (123). In addition, gene deletion studies of the myxovirescin HMGS 

cassette enzymes indicate that the two HMGS homologs present (TaC/TaF) utilize 

separate ACPDs (TaB/TaE) (128). The ability of PksG to accept a model substrate, 

ACPA-bound acetoacetyl (Acac), is consistent with the importance of protein-protein 

interactions for HMGS-ACPD specificity (123).  

By analogy to the previously characterized secondary metabolite HMGS 

homologs PksG and TaC (123, 139), the discrete HMGS in the bryostatin pathway, BryR, 

is likely to be involved in the β-branching at C13 and C21 of the bryostatins (Figures 3-1 

and 3-2). To date, no discrete ACPD for the HMGS cassette of the bryostatin pathway has 

been identified in either the CA or NC bry cluster sequences. It has been suggested that 

BryR, like its primary metabolism counterparts, may be able to use acetyl-CoA as the 

acyl donor in its reaction (147). However, the presence of a KS-type (BryQ) 

decarboxylase, whose putative role is to generate acetyl-ACP from malonyl-ACP, makes 

this an unlikely scenario. In the absence of a Bry ACPD, we sought to identify surrogate 

acetyl donors for substrate loading of BryR. 
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Figure 3-4. The HMGS cassette ACPD subclass of acyl carrier proteins. Both the A) multiple sequence 
alignment (Clustal) and B) phylogenetic tree (average distance BIOSUM2) were generated using Jalview 
software (148). Numbering is based on MacpC. Helix designations are predicted from alignment with 
DEBS1_ACP2 structure (149). Basic residues are colored in red, acidic in blue, and hydrophobic in grey. 
 

Several types of ACPs were surveyed (discrete ACPDs from HMGS-cassettes, 

type II PKSs and bacterial FASs, and excised ACPs from type I PKSs) in search of 

suitable ACPD partners for BryR (Figure 3-4). The direct binding of BryR to a variety of 

potential acetyl-ACP donors (Ac-ACPDs) and a model acetoacetyl acceptor substrate, 

Acac-BryM3 ACP, an embedded ACP excised from the BryA tetramodule at one of the 

predicted HMGS modification sites (Figure 3-2) was evaluated by surface plasmon 

resonance (SPR) (Figure 3-5). The unmodified (apo-), phosphopantetheine (PPant)-

containing (holo-) and Ac- or Acac-loaded forms of the ACPs were accessed by 

overexpression and purification in E. coli followed by loading with either Sfp or Svp 
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(flexible phosphopantetheinyl transferases (PPTases) from surfactin and bleomycin 

biosynthesis) (65, 67). Modified ACPs were separated from unreacted CoAs before 

testing.  

After BryR immobilization to a BIAcore CM5 SPR ship using standard amine 

coupling chemistry (Figure 3-6), equilibrium binding analysis was performed using 

sequential injections of apo-, holo-, Ac-, or Acac-ACPs at varying concentrations (Figure 

3-5 and 3-7). Wild-type (WT) and an active site BryR mutant (C114A) behaved similarly 

in our binding studies. BryR was able to bind to ACPs from the curacin 19 (CurB), 

jamaicamide 21 (JamF), and mupirocin 23 (MacpC) HMGS cassettes as well as to the 

excised native acceptor (BryM3 ACP). Affinities (KDs) were in the middle to high 

micromolar range for ACPDs (40 – 110 μM) and the ACPA (180 μM). A discrete ACP 

upstream of the bry gene cluster was found adjacent to genes that encode proteins  

resembling components of fatty acid synthases (FAS). Though other FAS ACPs have not 

been reported as part of HMGS cassettes, no other endogenous ACPD candidates were 

evident in or near the bry cluster. Referred to here as Bry FAS ACP, no significant 

binding was observed between it and BryR at up to 500 μM. A related FAS ACP from 

the well-studied Streptomyces coelicolor, (SCO2389, Sc FAS ACP) (150), also failed to 

interact with BryR at 650 μM (Figure 3-5B). The affinity of BryR for the ACPs seems to 

be mediated mainly by protein-protein contacts (as opposed to protein-acyl chain or 

protein-PPant contacts). No enhancement of affinity was observed between apo- and Ac-

ACPD or between apo-, holo-, Ac-, Acac-, or HMG-ACPA (Figure 3-5B). These data also 

suggest that specificity for a protein-bound acyl group is a distinguishing feature between 
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HMGS homologs found in PKS or mixed PKS/non-ribosomal peptide synthase (NRPS) 

biosynthetic pathways and those of primary metabolism. 

 
Figure 3-5. Binding of apo-ACPs to immobilized BryR, monitored by SPR. A) Each data point is the 
average of triplicate measurements; error bars are standard deviation. The data were fit to a one-site binding 
model (Y = Bmax*X/(KD + X)). Y = fraction bound, Bmax = maximal response, X = ACP concentration. B) 
Dissociation constants (KDs) table. 
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Figure 3-6. BryR immobilization sensorgram. Raw sensorgram data from BIACORE 3000 Control 
software. FC1 is shown in red, FC2 in blue, FC3 in green and FC4 in pink.   
 

 
Figure 3-7. Subtracted BIAcore data for JamF:BryR binding. Data analyzed with BIAevaluation 
software. Report point was set at 75 seconds after the ACP injection.  

 

3.2.2  Probing the HMGS - ACPD Interface   

 To date, no structures have been reported for members of the secondary 

metabolism class of HMGS enzymes or the small set of discrete donor ACPs (Figure 3-4 

and Appendix B). Sequence analysis of the discrete ACPs found in related HMGS 

cassettes suggested potential key regions flanking the PPant modification site that may 

present a unique ACP binding interface. Specifically, we focused on those positions that 
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differed between TaB and TaE, two ACPD’s found in a single biosynthetic pathway with 

orthogonal HMGS partners (128). Based on homology to ACPs of known structure, the 

chosen mutations are predicted to lie in the loop between helix 1 and helix 2 (R15A, 

E16R, E20A, Q22A, Q22E, Q22R, D29A, V32R) or the end of helix 2 (G53R) (18, 58). 

(Figure 3-4). Mutations were engineered into the mupirocin ACPD, MacpC, as this 

protein exhibited the highest affinity for BryR in our testing set. Of the nine over-

expressed mutant proteins, we were only able to obtain full equilibrium binding curves 

for three (E20A, Q22E, Q22R) of them due to limited solubility in the SPR assay 

conditions. Affinities of BryR for the the MacpC proteins were within 2-fold of WT 

MacpC (Figure 3-8). We were unable to draw significant conclusions on the residues 

likely to be involved in the BryR:MacpC interface based on such a limited data set.  

 
Figure 3-8. Binding of testable MacpC mutant proteins to immobilized BryR, monitored by SPR. 
Each data point is the average of triplicate measurements; error bars are standard deviation. The data were 
fit to a one-site binding model (Y = Bmax*X/(KD + X)). Y = fraction bound, Bmax = maximal response, X = 
ACP concentration. Binding constants are reported in Table 1. KDs - E20A = 45 ± 6 μM / Q22R = 76 ±  14 
μM / Q22E = 53 ± 5 μM. 
 

 Attempts to produce crystallographic quality polyketide HMGS homolog protein 

were made for both BryR, and CurD, the discrete HMGS of the curacin pathway. CurD 
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was targeted as our second HMGS to pursue based on the previous success solving 

protein structures for other domains from the curacin pathway such as the ECH2 and 

GNATL (141, 151). Both BryR and CurD were cloned into multiple vectors (pMCSG7, 

pMCSG9 and pMOCR) (100, 152) and their solubility was tested before and after tag 

removal via TEV protease. None of the over-expression constructs resulted in HMGS 

proteins with increased solubility.    

3.2.3  BryR Enzymatic Activity 

To assess the ability of BryR to catalyze HMG formation using the surrogate 

acetyl donors (Ac-ACPD + Acac-ACPA → HMG-ACPA), the enzymatic activity of BryR 

when paired with different Ac-ACPD and AcAc-ACPA substrates was monitored. By 

analogy to primary metabolism HMGSs, the first step in the BryR enzyme mechanism 

should be acetylation of the active site cysteine in BryR (143, 144, 153). Subsequently, 

the C2 of acetate group reacts with the β-keto group of the acetoacetyl-ACPA substrate to 

form HMG (or a related molecule during biosynthesis) (Figure 3-3). These steps were 

followed by both radio-SDS PAGE (Figure 3-9) and Fourier transform ion cyclotron 

resonance mass spectrometry (FTICR-MS) (Figure 3-10, 3-11, 3-12 and Table 3-2). 

Substrate transfer from acetyl-ACP (FTICR-MS) or [1-14C]-acetyl-ACP (radio-SDS 

PAGE) to BryR was confirmed by both methods only when a member of the discrete 

HMGS-cassette ACP donor group (Figure 3-4B) was paired with wild-type BryR.  
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Figure 3-9. BryR-catalyzed formation of HMG-BryM3 ACP. Acetyl  transfer from [1-14C]-Ac-CurB to 
Acac-BryM3 ACP is shown in lane 1. All other lanes represent control reactions.  
 

Generation of the Ac-BryR intermediate during the first half of the reaction can 

be visualized in the phosphorimage only when [1-14C]-Ac-CurB donates the acetyl group 

(Figure 3-9). To verify that the BryR reaction does in fact proceed through the same 

enzyme intermediate as those observed in primary metabolism, we monitored the 

acetylation state of Cys114. BryR (10 μM) was reacted with Ac-MacpC (50 μM)in the 

absence of BryM3 ACPA. After the sample was proteolyzed with trypsin, peptides were 

separated by HPLC, and using LC-FTICR MS and iontrap LC-MS/MS the BryR active 

site peptide was identified and acetylation of Cys114 was confirmed (Table 3-4). 

Additionally, a mutation at this location (C114A) was enzymatically inactive (data not 

shown). This is the first direct demonstration of the Ac-Cys species in an HMGS 

homolog in polyketide biosynthesis. By FTICR-MS, we were also able to observe the 
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loss of the Ac-ACPD species and its conversion to holo-ACPD in the presence of wild-

type BryR (Figures 3-10, 3-11, 3-12).  

 
Figure 3-10. BryR catalyzed generation of HMG-BryM3 ACP from Ac-MacpC as monitored by 
FTICR-MS.  Data are presented as m/z versus intensity.  PPant ejection assay data from the entire charge 
state distribution are presented.  As well, intact donor and acceptor ACP data are also illustrated.   
 

 
Figure 3-11. BryR catalyzed generation of HMG-BryM3 ACP from Ac-CurB as monitored by 
FTICR-MS.  Data are presented as m/z versus intensity.  PPant ejection assay data from the entire charge 
state distribution are presented.  As well, intact donor and acceptor ACP data are also illustrated.   
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Figure 3-12. BryR catalyzed generation of HMG-BryM3 ACP from Ac-JamF as monitored by 
FTICR-MS.  Data are presented as m/z versus intensity.  PPant ejection assay data from the entire charge 
state distribution are presented.  As well, intact donor and acceptor ACP data are also illustrated.   
 
Table 3-2. Negative control reactions of ACPD/ACPA’s with BryR HMGS monitored by FTICR-MS. 

PPant ejection ion Donor ACP Acceptor ACP 
Donor Acceptor 

Holo- Ac- Acac- HMG- Holo- Ac- Acac- HMG-

Ac-Bry 

FAS ACP 
Acac-Bry M3 =1 = = nd2 nd nd = nd 

Ac-CoA Acac-Bry M3 = = = nd = = = nd 

none Acac-Bry M3 = nd = nd = = = nd 

Ac-CurB 

ACP 

Acac-Sc FAS 

ACP 
= nd = nd = = = nd 

Ac-BryM3 

ACP 
Acac-MacpC = = = nd = = = nd 

Ac-MacpC 

ACP 
Acac-MacpC = = = nd = = = nd 

 1 no change upon incubation with BryR  
 2 none detected 
 

As evidence of BryR’s ability to catayze the complete reaction (Ac-ACPD + 

Acac-ACPA → HMG-ACPA), we observed a third radioactive band, consistent with 

modification of BryM3 ACP (Figure 3-9). To identify the chemical modification on 

BryM3 ACP, the reaction mixtures were monitored by top-down FTICR-MS. The mass 
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shift of +60 Da on the intact BryM3 ACP between the +/- BryR samples is consistent 

with conversion of the Acac-BryM3 ACPA substrate to HMG-BryM3 ACPA (Figures 3-

10, 3-11, 3-12). An MS/MS experiment was performed using the PPant ejection assay 

(140, 154). This confirmed that the mass shift between +/- BryR samples was due to a 

modification of the PPant prosthetic group. The pattern of BryR activity, the highest 

activity using MacpC, lesser activity with CurB and JamF, and no activity with other Ac-

ACPDs, observed in our enzymatic activity assays was consistent with the protein-protein 

binding activity reported above (Figure 3-5B and Table 3-2). Finally, while it serves as 

the donor substrate for HMGSs from primary metabolism, acetyl-CoA was unable to load 

the BryR active site Cys (Table 3-2).  

3.3  Summary 

 In summary, we have confirmed the enzymatic activity of BryR (condensation of 

acetyl-ACPD with acetoacetyl-ACPA to form HMG-ACPA) using two complementary 

methods, radio-SDS PAGE and FTICR-MS. The activity of BryR was dependent on 

pairing of the native Acac-BryM3 acceptor ACP with an appropriate surrogate Ac-ACPD 

from a related HMGS cassette (CurB, JamF, or MacpC). In addition, the ability of BryR 

to discriminate between various ACPs was assessed using an SPR-based protein-protein 

binding assay. BryR bound selectively to ACPs obtained from a series of HMGS 

cassettes (MacpC, CurB, JamF, and BryM3 ACP). Despite testing a small set of MacpC 

residues to identify key BryR/ACPD contact points, no single amino acid residues were 

identified to control binding ability. Finally, this work, as well as other recent studies (75, 

133) demonstrates further that natural product biosynthetic genes isolated from 
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uncultured endosymbiotic bacteria can be manipulated in vitro in order to probe the 

functionalities of these enzymes from previously inaccessible sources. 

3.4  Experimental Methods 

3.4.1  Expression and Purification of Proteins.   

 Plasmids for the expression of CurB, JamF, SCO2389 (Sc FAS ACP), Bry FAS 

ACP and BryR were generated by amplification using PCR with LIC overhangs and 

inserted into either the vector pMCSG7 (CurB, JamF and Bry FAS ACP) or pMCSG9 

(100). CurB was amplified from plasmid pDHS2412 and JamF from Jamf:pET20. BryR 

was amplified from cosmid MM5 and Bry FAS ACP from cosmid MM7. PCR fragments 

were inserted into the vectors via ligation independent cloning. All mutants were 

generated according to the Quikchange® site-directed mutagenesis protocol 

(Stratagene/Agilent). All DNA sequences were confirmed by sequencing. The expression 

construct for MacpC (pGTB340) was a gift from Prof. Christopher M. Thomas. 

pDHS278 (BryM3 ACP in pMCSG7) was published previously (75). Primers used are 

listed in Table 3-3. 
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Table 3-3. Primer list for protein expression. 

Primer name Primer sequence Plasmid(s) 

CurBLICF TACTTCCAATCCAATGCC atg agc aaa gaa caa gta cta 

CurBLICR TTATCCACTTCCAATGCTA caa ttt tgc tgc aaa taa atc 
pDHS9780 

JamFLICF TACTTCCAATCCAATGCC atg agc aaa gaa caa gta ctc aaa cta a 

JamFLICR TTATCCACTTCCAATGCTA taa ttt cgc cgc aaa taa atc agc 
pDHS9781 

BryFAS_ ACPLICF TACTTCCAATCCAATGCC agc aac cca agc aac act ga 

BryFAS_ ACPLICR TTATCCACTTCCAATGCTA atc tag gtg tgc gtt gat gta at 
pDHS9812 

ScFAS_ ACPLICF TACTTCCAATCCAATGCC gcc act cag gaa ga 

ScFAS_ ACPLICR TTATCCACTTCCAATGCTA ggc ctg gtg gtc gag gat gta 
pDHS9758 

BryRLICF TACTTCCAATCCAATGCC agg tat att ggt ata gaa tca at 

BryRLICR TTATCCACTTCCAATGCTA att gat cca ctg ata ttc tct atg 
pDHS279 

MacpC_ R15AF tcg tca agc atg ccg cgg aaa ccc tcc ctg 

MacpC_ R15AR cag gga ggg ttt ccg cgg cat gct tga cga 
pDHS9801 

MacpC_ E16RF gtc aag cat gcc cgc aga acc ctc cct gag ct 

MacpC_ E16RR agc tca ggg agg gtt ctg cgg gca tgc ttg ac 
pDHS9803 

MacpC_ E20AF gcg aaa ccc tcc ctg cgc ttc aac aac cca t 

MacpC_ E20AR atg ggt tgt tga agc gca ggg agg gtt tcg c 
pDHS9794 

MacpC_ Q22AF gaa acc ctc cct gag ctt gca caa ccc atc gcc 

MacpC_ Q22AR ggc gat ggg ttg tgc aag ctc agg gag ggt ttc 
pDHS9796 

MacpC_ Q22EF ccc tcc ctg agc ttg agc aac cca tcg ccc g 

MacpC_ Q22ER cgc gcg atg ggt tgc tca agc tca ggg agg g 
pDHS9802 

MacpC_ Q22RF cga aac cct ccc tga gct tag aca acc cat cgc cc 

MacpC_ Q22RR ggg cga tgg gtt gtc taa gct cag gga ggg ttt cg 
pDHS9798 

MacpC_ D29AF cgc ccg gaa cgc ccg cct ggt gg 

MacpC_ D29AR cca cca ggc ggg cgt tcc ggg cg 
pDHS9797 

MacpC_ V32RFor gaa cga ccg cct gag gga cct ggg cgc c 

MacpC_ V32ERev ggc gcc cag gtc cct cag gcg gtc ggt c 
pDHS9804 

MacpC_ G53RFor gac ttt gag cgc cct tag gtt gcg cat gcc 

MacpC_ G53RRev ggc atg cgc aac cta agg gcg ctc aaa gtc 
pDHS9806 

  

 Plasmids encoding N-terminal His6- or His6/MBP- fusion protein tags were 

transformed into E. coli BL21(DE3) and grown at 37 °C (ACPs) or 30 °C (BryR) in TB 

medium to an OD600 of ~1.0 in 2L flasks. The cultures were cooled to 18 °C, and 

 71



isopropyl β-D-thiogalactopyranoside was added to a final concentration of 0.2 mM and 

grown 12-16 h with shaking. The cells were harvested by centrifugation and frozen at -20 

°C. Cell pellets were  thawed to 4 °C and resuspended in 5X volume of lysis buffer (20 

mM HEPES, pH 7.8, 300 mM NaCl, 20 mM imidazole, 1 mM MgCl2, 0.7 mM Tris(2-

carboxyethyl) phosphine (TCEP), ~100 mg CelLytic Express (Sigma-Aldrich)) before 

lysis via sonication. Centrifugation at 25,000xg for 30 min provided clarified lysates. 

Proteins were purified using Ni-Sepharose affinity chromatography on an Åkta FPLC. 

Briefly, after filtration of the supernatant through 0.45 μm membrane, the solution was 

loaded onto a 5-mL HisTrap nickel-nitrilotriacetic acid column. The column was washed 

with 10 column volumes of buffer A (20 mM HEPES, pH 7.8, 300 mM NaCl, 20 mM 

imidazole, 0.7 mM TCEP) and eluted with a linear gradient of buffer B (20 mM HEPES, 

pH 7.8, 300 mM NaCl, 400 mM imidazole, 0.7 mM TCEP). For ACP purifications, 

fractions were pooled, concentrated, and loaded onto a HiLoad 16/60 Superdex 75 (GE 

Healthcare Life Sciences) column equilibrated with storage buffer (20 mM HEPES, pH 

7.4, 150 mM NaCl, 0.7 mM TCEP). Fractions were combined, concentrated, frozen, and 

stored at -80 °C. Because some of the acyl carrier proteins lack amino acids with 

appreciable absorbance at 280 nm, protein concentrations were determined via the 

bicinchoninic acid (BCA) method using BSA as a standard. BryR purifications differed 

from ACP purifications in that all buffers contained 10% glycerol in addition to the 

components listed above. In addition, for SPR and FTICR-MS assays, His-MBP-tag 

removal was achieved by TEV protease incubation overnight at 4 °C in buffer A. TEV 

protease and the N-terminal His-MBP tag were removed by repassaging the solution over 

the HisTrap column. Flow-through fractions were pooled, concentrated, and loaded onto 
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a HiLoad 16/60 Superdex 200 column equilibrated with BryR storage buffer (10% 

glycerol, 20 mM HEPES, pH 7.4, 150 mM NaCl, 0.7 mM TCEP). Fractions were 

combined, concentrated, frozen, and stored at -80 °C. Protein concentrations were 

determined using absorbance at 280 nm and calculated extinction coefficients (1 A280 = 

1.2 mg/ml). ACPs were greater than 95% pure following the above purification. Typical 

yields for BryR batches were ~ 3 mg/L of cell culture. TEV-cleaved BryR was 

approximately 85-90% pure. Purity estimates are based on SDS-PAGE (Figure 3-13).  

 

 
Figure 3-13. SDS-PAGE analysis of purified proteins. Apparent molecular weight of the SeeBlue Plus2 
molecular weight marker (Invitrogen) is shown for reference. A-C) Proteins were run on a NuPAGE 12% 
SDS-PAGE gel using MES buffer. D) Proteins were run on a NuPAGE 4-12% SDS-PAGE gel using 
MOPS buffer. Lane 1 – MBP-BryR; Lane 2 – BryR after TEV protease cleavage. 
 

3.4.2  Surface Plasmon Resonance Assays.   

 Sensor chips (CM-5) and HBS-P buffer were purchased from GE Healthcare Life 

Sciences. SPR experiments were performed on a BIAcore 3000 instrument. Running 

buffer for SPR was HBS-P+T (10 mM Hepes, pH 7.4, 0.15 M NaCl, 0.005% surfactant 

P20, 50 μM TCEP). The surface was prepared for immobilization of BryR by activating 

with 70 μL of a fresh mixture of 0.2 M 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC) plus 0.05 M N-hydroxysuccinimide at 10 μL/min. BryR was freshly diluted to 20 
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μM in 10 mM phosphate/citrate buffer at pH 5.5 and loaded at 5 μL/min. Typically, 1000 

– 8000 RU of BryR was immobilized. Activated carboxy groups were blocked with 1 M 

ethanolamine/HCl (70 μL at 10 μL/min). The surface was regenerated with 10 μL of 50 

mM NaOH, 1 M NaCl after immobilization and between ACP binding cycles. To 

measure binding to BryR by SPR, solutions of ACPs in HBS-P+T were injected over the 

prepared surface as well as an ethanolamine treated control flow cell at a flow rate of 10 

μL/min. Baseline subtraction was performed using a mock treated lane (activated with 

EDC/NHS and blocked with ethanolamine). Multiple injections (8 – 10 concentrations) 

were tested in duplicate or triplicate. Maximum testable concentrations for the ACPs 

were limited by their solubility. Data analysis was carried out using BIAevaluation 

software (GE Healthcare Life Sciences). Representative sensorgrams for apo-ACPs are 

shown as Figure 3-7. Nonlinear curve fitting of the equilibrium binding response was 

carried out using GraphPad Prism software. 

3.4.3  Enzymatic Analysis of BryR via Radio-TLC 

 Radiolabeled and unlabeled acyl-CoA substrates were transferred onto the various 

ACPs using Svp, a phosphopantheine transferase (PPTase) from Streptomyces verticillus 

(67). Acyl-CoAs (500 µM) were combined with 75 µM ACPs (CurB, BryM3 ACP) and 5 

µM Svp in a Tris buffer (pH 7.4) containing MgCl2 (10 mM) and DTE (1 mM), and the 

reaction proceeded for 1 hr at room temperature. The substrate-bound ACPs were 

desalted, and utilized for experiments with BryR. The purified acylated donor (15 µM) 

and acceptor ACPs (30 µM ) were incubated with BryR (10 µM) in 25 mM Tris buffer 

(pH 7.4) with DTE (1 mM) at room temperature for 5 minutes. Reactions were quenched 

by the addition of SDS-PAGE gel loading buffer. Samples were separated on 
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polyacrylamide gels by SDS-PAGE. The gels were first stained using SimplyBlue 

(Invitrogen), and were then exposed to Phosphoimager screens. The screens were 

scanned using a Typhoon Scanner (GE Healthcare), and analyzed using ImageQuant. 

3.4.4  Identification of BryR Active Site Acetylation  

 BryR (10 μM) was reacted with acetyl-donor ACP (50 μM) and no acceptor ACP 

in 75 mM HEPES (pH 7.5) buffer, 1 mM TCEP. 1mg/ml TPCK trypsin (Pierce) was 

added to a final 1:100 ratio. Samples were incubated at 37 °C overnight. 20 μl of sample 

was injected onto an Jupiter C18 1x150mm 300 μm column (Phenomenex) using an 

Agilent 1100 LC system with a flow rate of 75 μl/min and a gradient of 2-98% solvent B 

(solvent A, water/0.1% fomic acid; solvent B, acetonitrile/0.1% formic acid) over 85 

minutes. A divert valve was utilized for online desalting. The LC was coupled to an 

FTICR MS (APEX-Q with Apollo II ion source and actively shielded 7T magnet; Bruker 

Daltonics). Data was gathered from m/z 200–2,000 in positive ion mode. Electrospray 

was conducted at 2,600 V with 4 scans per spectra utilizing 0.33 s external ion 

accumulation in the hexapole prior to analysis in the FTICR using a loop value of 4. 

Collision cell pressure was reduced to 2.5e-6 torr. Data was analyzed using DECON2LC 

and VIPER (Pacific Northwest National Labs). The acetylated active site QA(Ac-

C)YSGTAGFQMAINFILSR (2219.050 Da expected) was observed at 2219.045 Da 

representing a mass error of of -2 ppm uncalibrated. The same LC conditions were 

coupled to an LTQ Deca XP iontrap MS (Thermo). Online MS identified the same 

modified peptide, and online MS2 allowed for confirmation that the modification occured 

on the active site cystiene (Cys114) (Table 3-4). Data was processed in Excaliber version 

3.0 (Thermo). 
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Table 3-4. Ac-BryR Peptide Fragment Ions 

Mass Intensity ID dppm

480.18 62 a4 -28

463.13 30 a4-nh3 -65

567.19 18 a5  -67

550.24 28 a5-nh3 79

708.28 76 a7-nh3 19

753.19 51 b7 -132

735.22 451 b7-h20 -76

736.23 145 b7-nh3 -37

824.28 22 b8 -53

806.54 16 b8-h20 276

807.32 91 b8-nh3 28

732.35 17 y6-mh3 -70

749.30 21 y6-mh3 -171

845.34 20 y7-nh3 -172

1,064.52 18 y9 -63

1,047.46 35 y9-nh3 -104

 

3.4.5  Enzymatic Analysis of BryR via FTICR-MS  

 The preparation of acetyl-donor and acetoacetyl-acceptor ACPs was performed as 

above using Svp or Sfp PPTases (155). Acylated-ACPs were separated from CoA 

substrates via Zeba desalting columns (Pierce) or overnight dialysis in 3.5 kDa Slide-a-

lyzer MINI dialysis units (Pierce) into 20 mM HEPES (pH 7), 150 mM NaCl. BryR (10 

μM) was reacted with acetyl-donor ACP (50 μM) and acetoacetyl-acceptor ACP (80 μM) 

75 mM HEPES (pH 7.5) buffer and 1 mM TCEP. After incubation for 60 min at room 

temperature, samples were acidified with 1% formic acid. Intact protein samples were 

desalted with Handee Microspin columns (Pierce) packed with 20 μl of 300 Å polymeric 

C4 resin (Vydac). Samples were loaded onto the columns and washed with 30 column 
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volumes of 0.1% formic acid prior to elution with 10 column volumes of 50% acetonitrile 

plus 0.1% formic acid. Intact protein samples were analyzed by an FTICR MS (APEX-Q 

with Apollo II ion source and actively shielded 7T magnet; Bruker Daltonics). Data was 

gathered from m/z 200–2,000 utilizing direct infusion electrospray ionization in positive 

ion mode. Electrospray was conducted at 3,600 V with 24–60 scans per spectra utilizing 

0.5 s external ion accumulation in the hexapole prior to analysis in the FTICR using a 

loop value of 15. Collision cell pressure was reduced to 2.5e-6 torr.  All IRMPD MS/MS 

was performed in the FTICR cell to avoid time of flight effects. Laser power was utilized 

at 40% with duration of 0.05 to 0.25 s.  The entire mass range was fragmented, without 

any prior mass selection. Data was processed in Data Analysis (Bruker Daltonics) and 

Midas (NHMFL).  All mass shifts shown were confirmed across all charge states for each 

ACP present. The most abundant charge state is used for all figures. All identified species 

were accurate to 20 ppm uncalibrated monoisotopic mass. All experiments were 

performed at least twice to verify the findings. 

 

Notes: 

This work has been submitted for publication as “Polyketide β-Branching in Bryostatin 
Biosynthesis: Identification of Surrogate Acetyl-ACP Donors for BryR, an HMG-ACP 
Synthase,” Buchholz, T. J., Rath, C. M., Lopanik, N. B., Gardner, N. P., Håkansson, K., 
Sherman, D. H.  
 

Author contributions: 

Tonia Buchholz, Nicole Lopanik, Chris Rath and David Sherman designed the 
experiments;  
Tonia Buchholz conducted the biochemical studies including cloning, protein 
purification, enzymatic assays and binding studies;  
Chris Rath, Noah Gardner, and Kristina Håkansson performed and analyzed the mass 
spectrometry experiments.  
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Chapter 4  

Gcs, a Type III PKS with an Acyl-ACP Substrate 

4.1 Introduction 

 While the vast majority of studies regarding protein-protein interactions in PKS 

systems have been focused on the modular and iterative type I and iterative type II PKSs, 

recent work has led to a new appreciation for the homodimeric type III PKSs (50, 156, 

157) that give rise to a range of aromatic compounds including the flavonoids and 

chalcones as well as to some α-pyrone acylketides. Pyrone-containing natural products 

exhibit a wide range of biological activities, a consequence of their structural diversity 

(Figure 4-1). Pyrones are synthesized by polyketide synthases (PKSs) through successive 

condensations of malonyl-CoA derived two carbon units followed by lactonization 

(Figure 4-2). The fungal metabolites fusapyrone (158) and D8646-2-6 (159) are most 

likely derived from iterative type I PKSs; enterocin is produced by a type II PKS (160). 

On the other hand, germicidins A, B and C (41) as well as the signaling molecule 

precursor, phlorocaprophenone (161) have been shown to be produced via PKS proteins 

from the type III family.  

 A number of characteristics make type III PKSs ideal candidates for engineering 

of artificial, enzyme-based systems for the creation of diverse pyrone-containing small 

molecules. The self-contained nature of the type III PKS opens up the potential exists for 

removing type III PKSs from their natural biosynthetic context and adapting them to 
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accept non-natural substrates in order to access a more structurally diverse chemical 

space (53). A single protein is capable of generating a complete natural product, as the 

same active site that catalyzes the Claisen condensations is also responsible for loading of 

the starter unit and cyclizing the polyketide intermediate. Additionally, rather than 

utilizing substrates that are covalently linked to acyl-carrier proteins, they are thought to 

use mainly acyl-CoA thioesters as substrates. Two notable exceptions to this have 

recently been reported and will be discussed below. Finally, the type III PKSs have 

demonstrated relaxed substrate specificity and have been shown to convert non-native 

acyl-CoA substrates to pyrones in vitro (53, 162, 163). 

  

 
Figure 4-1. Structures of α-pyrone metabolites and closely related metabolites. Shown above are 
examples of natural products from type I, type II, and type III PKSs. 
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 Streptomyces coelicolor hosts a wide array of genes homologous to various types 

of natural product biosynthetic enzymes, including type I modular polyketide synthases 

(PKSs), type II PKSs, type III PKSs, non-ribosomal peptide synthases, sesquiterpene 

synthases, siderophore synthetases, among others (164). Based upon predicted proteins 

encoded by its genome, S. coelicolor is thought to have the genetic capacity to produce 

more than 20 natural products (165, 166). Though the physiological roles for some of 

these gene clusters remain unclear, the Sherman laboratory sought to explore the capacity 

of the type III PKSs to create novel small molecules.   

 Of the three type III PKSs found in S. coelicolor (SCO1206, SCO7221, 

SCO7671), tetrahydroxynaphthalene synthase (THNS/SCO1206) has been extensively 

studied; its homolog from Streptomyces griseus was the first bacterial type III PKS to be 

identified and biochemically characterized (167-169). THNS is known to catalyze the 

sequential decarboxylative condensation, intramolecular cyclization, and aromatization of 

an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-

tetrahydroxynaphthalene (THN) that spontaneously oxidizes to flaviolin (Figure 4-2B). In 

addition, the kinetics of THN formation and the crystal structure of this enzyme have 

been reported (161, 170). Based on previous studies that revealed substrate tolerance of 

THNS, this enzyme was explored for the biosynthesis of novel small molecules (53, 76). 

However, THNS prefers malonyl-CoA as a building block for both initiation and 

extension (Figure 4-2), which results in pyrone formation being secondary to flaviolin 

synthesis.  
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Figure 4-2. Type III PKS-catalyzed product formation. A) Reaction scheme for the formation of tri- and 
tetraketide pyrones. R groups that have been shown to function as type III PKS starter units include linear 
fatty acyl chains of various lengths, branched chains such as iso-butyryl-CoA, and even aromatic 
functionalities such as a benzoyl group. B) THNS catalyzed formation of THN, which is then oxidized to 
flaviolin. 
 

 The physiological role for SCO7221 has been reported and this type III PKS was 

designated Germicidin synthase (Gcs) to reflect its role in generating the germicidin 

series of natural product pyrones (Figure 4-1) (41). Though the physiological role for 

SCO7671 and its corresponding metabolite remain unidentified, we have confirmed that 

this enzyme belongs to the type III PKS class. We have recently described our in vitro 

investigation into the function, substrate specificity and product profile of Gcs and 

SCO7671 (40). Our results provided evidence that Gcs and SCO7671 type III PKSs are 

capable of accepting a variety of acyl-CoA starter units, extending them by one to three 

malonyl-CoA equivalents, and cyclizing the linear polyketide to form pyrone natural 

products. During the search for other type III PKSs whose starter unit specificity was 

orthogonal to extender unit preference and would, therefore, not compete with malonyl-
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CoA, the remarkable finding was made that SCO7221(Gcs), has the ability to accept 

efficiently its starter unit as an acyl-ACP.  

  This work and other recent reports (40-42, 52, 68) have challenged the traditional 

view that all type III PKSs must use exclusively acyl-CoA starter units. Based upon 

sequence alignments, Austin and Noel suggested that perhaps bacterial type III PKSs, and 

not plant type III PKSs, might be able to accept starter units from ACPs (39). Evidence 

for this prediction came when the structure of a C-terminal type III PKS domain from the 

social amoeba, Dictyostelium discoideum was reported (42). In this system, the iterative 

type III PKS (Steely1) is comprised of a much larger polypeptide that includes upstream 

type I fatty acid synthase (FAS) domains.  

 
Figure 4-3. Proposed Gcs biosynthetic pathway. The proposed physiological pathway for germicidin A 
and B in Streptomyces coelicolor is shown. Starting with 2-methylbutyryl-CoA yields germicidin A, while 
condensation of one malonyl and one ethylmalonyl equivalent with isobutyryl-CoA produces germicidin B 
(shaded in gray).    
 

 A further suggestion came from the recent work of Challis and colleagues on the 

physiological role for Gcs (41). Specifically, branched chain fatty acid metabolites were 

proposed as the priming units of Gcs (Figure 4-3). This complex starter unit is extended 

only once by Gcs in vivo using an ethylmalonyl thioester to produce germicidin. It is 

possible that type III PKSs might accept either the ACP-tethered acyl chain or the acyl-
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CoA after off-loading from the ACP. More recently, it has been proposed that the 

bacterial type III PKSs implicated in the production of phenolic lipids (alkylresorcinols 

and alkylpyrones) in Azotobacter vinelandii (ArsB and ArsC) (68) and Bacillus subtilis 

(BpsA) (52) accept their starter units as acyl-ACPs from type I FAS systems. We, 

therefore, sought definitive biochemical evidence for acyl-ACP transfer in type III PKSs. 

We demonstrated that Gcs was able to accept an acyl starter unit directly from a 

hexanoyl-charged ACP, a model substrate for the acyl-ACP transfer reactions (40).  

4.2 Results and Discussion 

4.2.1 Germicidin Synthase (Gcs) Structure  

 It is notable that in vitro Gcs is capable of utilizing acyl groups carried by either 

the small molecule, CoA or the small protein, ACP. This is in contrast to the selectivity 

exhibited by BryR (Chapter 3) for acetyl-ACPD over acetyl-CoA substrates. To gain 

fundamental information about ACP-type III PKS interactions, we first pursued the 

structural characterization of Gcs. Though the number of bacterial type III PKSs 

characterized to date continues to grow, there are still numerous family members with 

potentially novel activities yet to be described (157). As expected for bacterial type III 

PKSs, amino acid sequence similarities were in the 20-35% range when compared to 

other bacterial and plant chalcone-like synthases (Figure 4-4). Analysis of these 

sequences revealed that the only other known enzyme with significant similarity to 

SCO7221 (Gcs) is found in the pathogen Streptomyces scabies (www.sanger.ac.uk), with 

86% sequence identity at the amino acid level. However, no physiological or metabolic 

role has been reported for this type III PKS homolog. Both of these enzymes contain a 

long insertion between helices 4 and 5 (Chalcone synthase nomenclature) not observed in 
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other type III PKSs (Figure 4-4). The role of this insertion is unclear based solely on 

sequence alignments, but may play a structural role. 

 A pET-28b-containing sco7221 expression vector was used to over-express Gcs 

in E. coli. Gcs can be purified to greater than 90% in one step on Ni-NTA resin. Further 

purification over a size exclusion column provided crystallographic quality protein and 

was consistent with a dimeric form for the enzyme (see section 4.4.1). The Gcs crystal 

structure was solved by molecular replacement (MR) using the THNS structure (PDBid = 

1U0M) as a homology model in combination with the automated MR server, BALBES 

(171). Though the N-terminal His-tag is disordered, the 2.9 Å crystal structure of Gcs 

includes the full protein sequence (residues 1-389).  
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Figure 4-4. Sequence comparisons among selected type III PKSs.  A) Sequence alignments are shown 
for selected residues only. Numbering and secondary structure assignment is based on Chalcone Synthase 
(CHS) from Medicago sativa (alfalfa). Catalytic triad residues are boxed. Similarity bars above the 
majority sequence are colored from red to blue for each position; red represents 100% identity.  B) 
Cladogram of selected type III PKSs.  C) Percent identities above 70% are highlighted in red, those 
between 50-69% in orange, and identities between 30-49% are colored yellow.  
 

 85



 All previously reported type III PKS structures are dimeric, and our size exclusion 

chromatography data indicate that two Gcs molecules are associated to form a 

homodimer in solution. The asymmetric unit of Gcs contains a single protein molecule. 

However, the presumed physiologically relevant dimer is formed by a crystallographic 2-

fold axis (Figures 4-5 and 4-7) and buries 2300 Å2 of protein surface area per monomer 

(~13.6% of the monomer surface area). In our current model, residues 35-38 and 80-82 

were disordered and remain unresolved. Due to the low resolution of the data and the 

extraordinarily high solvent content (80%), electron density was noisy in regions, but 

interpretable. Specifically, the density for the long insertion was poor, and absolute 

positioning of these residues is not possible with the current maps. At the current time, 46 

residues are modeled as alanine residues (Figure 4-6). 

 

 
Figure 4-5. Packing of Gcs monomers in the crystal lattice. Two views of the crystal packing are shown; 
a single Gcs monomer is colored as a reference. 
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Figure 4-6. Secondary structure assignments of the current Gcs model. Residue numbers are shown at 
left for reference. Refinement of the model is still ongoing. Secondary structure assignment in blue is based 
on the Gcs structure shown in Figure 4-7. Disordered residues are underlined, and residues currently 
modeled as Ala are shaded gray. Members of the Cys-His-Asn catalytic triad are boxed in red. The long 
insertion (“basket”) is in the dashed box.  
 

 Similar to other known type III PKS structures (39, 161), Gcs contains a Cys-His-

Asn catalytic triad within a deep active site cavity that is accessible to the surrounding 

solvent. Apart from a few exterior loops, there are no drastic differences in the conserved 

αβαβα-fold or dimer interface as compared with the structure of the S. coelicolor THNS 

(Figure 4-7). The large insertion observed in the multiple sequence alignment (Figure 4-

4) folds into a four-helix bundle made up of two helices from each monomer. The shape 
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of the helical bundle resembles a “basket” hanging down from the remainder of the 

protein. The basket residues are currently modeled as poly-alanine helices, as the side 

chains were not well resolved. Electron density is especially poor for the “basket” as it 

extends into the large solvent channels of the crystal and makes no contacts with other 

molecules within the lattice. Presumably, this insertion reinforces the dimer interface, 

though a role in ACP utilization has not been ruled out. As a physiological role for the 

basket is not apparent, we attempted to generate a “basket-less” Gcs protein by removing 

residues 62-99. The basket-less Gcs did not over-express in E. coli, so we were unable to 

assess its function biochemically. Further analysis of the Gcs crystal structure will be 

carried out following completion of the exploratory enzyme kinetics using the presumed 

physiological substrates. The fine-tuning of an HPLC-based pyrone detection assay to 

complete these studies is underway, and the synthesis of the native substrates is ongoing 

by a post-doctoral fellow in the Sherman laboratory. Based on our previous results using 

malonyl-CoA as an extender unit, acetoacetyl (Acac)-CoA and Acac-ACP can initially be 

used as model starter units. This assay will provide the means to compare CoA- to ACP-

tethered substrates.  
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Figure 4-7. Overall structure of Gcs and related type III PKS from S. coelicolor. A) A view of the 
physiological dimer colored by secondary structure. B) Alignment of the Gcs structure with the THNS 
structure (PDBid: 1U0M).   

4.2.2 Gcs Mutagenesis  

 We hypothesized that a patch of positively charged amino acids on the Gcs 

surface near the active site opening mediates binding to the negatively charged ACPs and 

faciliates usage of acyl-ACP starter units. To test this proposal, a series of mutations were 

designed to explore the effect of removing charge on a number of surface exposed 

residues near the substrate binding pocket opening (Figure 4-8 and Table 4-1). The 

cloning of expression vectors has been completed, and assessment of these proteins is 

ongoing. Characterization of these proteins awaits the results of the kinetic analysis of 

wild-type Gcs. In addition to generating mutant proteins to assess usage of acyl-ACP 

versus acyl-CoA starter units, we have designed and constructed vectors for the 

assessment of active-site flexibilty (Table 4-1).  A small set of these proteins have been 

over-expressed and purified (C175S, C175A, L263A, T208S, T208C, F272A R317A). 

The proteins were soluble; Gcs mutant proteins L263A, T208S and T208C have been 

tested and shown to be active in an initial assay monitoring 4-hydroxy-3,6-dimethyl-2H-
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pyran-2-one formation using Acac-CoA as a starter unit and methylmalonyl-CoA as the 

extender unit (data not shown). 

  

 

Figure 4-8. Gcs active site. A) A view of the Gcs dimer; individual monomers are colored blue to red from 
N- to C- terminus. Breaks in the chain are visible where the electron density maps are still too noisy to 
model amino acids as model refinement is still in progress. B) Close up of the active site. The Cys-His-Asn 
catalytic triad and planned mutations are labeled.  
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Table 4-1. Gcs mutant list 

Mutant Type Plasmid # Mutant Vector 
Wild-type pDHS9744  pMCSG7 
Active Site pDHS9745  C175S pMCSG7 
 pDHS9755 C175A pMCSG7 
Substrate Specificity pDHS6650a L263A pET28b 
 pDHS6651a L263G pET28b 
 pDHS6652a L263S pET28b 
 pDHS6653a L263W pET28b 
 pDHS6654a L263Y pET28b 
 pDHS9740 T208S pET28b 
 pDHS9742 T208A pET28b 
 pDHS9741 T208G pET28b 
 pDHS9739 T208C pET28b 
 pDHS9738 G348A pET28b 
 pDHS9784 F272A pET28b 
 pDHS9785b F272T pET28b 
 pDHS9786 F272N pET28b 
 pDHS9787 F272L pET28b 
 pDHS9788 F272V pET28b 
Surface Residues pDHS9753 R317A pMCSG7 
 pDHS9754 R317S pMCSG7 
 pDHS9807 R276A pET28b 
 pDHS9789 R276D pET28b 
 pDHS9790 R277A pET28b 
 pDHS9743 R277D pET28b 
 pDHS9791 R280A pET28b 
 pDHS9792 R280D pET28b 
“Basket-less” pDHS9793 Δ63-98 pMCSG7 

a Plasmids with changes at the L263 position were generated by Sabine Grüschow. 
b F272T was a fortutious mutation identified through DNA sequencing of F272A colonies, therefore, no 
primers are listed in Table 4-2. 

4.3 Summary 

 At the time of conception, the idea to engineer a pathway where a type I PKS 

intermediate could be shuttled to a type III PKS for incorporation of a pyrone had no 

literature precedence. There were no reported exceptions to the acyl-CoA starter 

preference of type III PKSs. Over the past three years the first biosynthetic pathways 

wherein an intermediate is passed off from a type I FAS to a type III PKS have been 

proposed (40, 42, 52, 68). The similarity between the type I FAS and the type I PKS 

polyproteins makes generation of a type I – type III PKS hybrid pathway more plausible. 

During our biochemical characterization of the type III PKSs in S. coelicolor, we have 
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identified robust conditions for over-expression, purification and crystallization of Gcs, 

an ACP-utilizing type III PKS from S. coelicolor. Complete refinement of the structural 

model of the Gcs protein is underway; our in-progress model is reported here. Though 

complete characterization of the binding and catalytic capabilities of Gcs is currently an 

ongoing project, our structural model represents a key step in enabling the design of a 

model type III PKS for use in an engineered pathway for the generation of complex 

pyrones.  

 

4.4  Experimental Methods 

4.4.1  Design of Expression Constructs 

 Generation of the Gcs expression vector, pDHS100019, was previously published 

(40). A plasmid for the expression of the Gcs with a TEV protease cleavable His-tag was 

generated by amplification using PCR with LIC overhangs and inserted into the vector 

pMCSG7 (100). Sequences in all capital letters represent the LIC overhangs necessary 

for insertion into the pMCSG7 vector. The “basket-less” Gcs insert was generated via 

sequential PCR amplification of 1) the left and right pieces of Gcs and 2) the fused 

construct from PCR amplification of the combined fragments using the same LIC primers 

listed for pDHS9744 construction. All single point mutants were generated according to 

the Quikchange® site-directed mutagenesis protocol (Stratagene/Agilent). Primers were 

designed using the online Quikchange primer generation software (Stratagene/Agilent). 

DNA sequences were confirmed by sequencing by the University of Michigan 

Sequencing Core. Primers used are listed in Table 4-2. 
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Table 4-2. Primer list for Gcs protein expression. 

Primer name Primer sequence Plasmid(s) 

GcsLICF TACTTCCAATCCAATGCC atg gcc gca tac ctg tgc 

GcsLICR TTATCCACTTCCAATGCTA cag cca ctc ccc ttc cag a 

pDHS9744, 

pDHS9793 

C175S_F ccc agt ggg cca gcg tgg ccg gg 

C175S_R ccc ggc cac gct ggc cca ctg gg 
pDHS9745 

C175A_F acc cag tgg gcc gcc gtg gcc ggg ac 

C175A_R gtc ccg gcc acg gcg gcc cac tgg gt 
pDHS9755 

T208S_F gcg ctg agc acc tcc tac cag ccc g 

T208S_R cgg gct ggt agg agg tgc tca gcg c 
pDHS9740 

T208A_F gcg ctg agc acc gcc tac cag ccc g 

T208A_R cgg gct ggt agg cgg tgc tca gcg c 
pDHS9742 

T208G_F ggc gct gag cac cgg cta cca gcc cgc 

T208G_R gcg ggc tgg tag ccg gtg ctc agc gcc 
pDHS9741 

T208C_F ggc gct gag cac ctg cta cca gcc cgc 

T208C_R gcg ggc tgg tag cag gtg ctc agc gcc 
pDHS9739 

G348A_F gcg gca acc gcg ccg gcg ccg ccg t 

G348A_R acg gcg gcg ccg gcg cgg ttg ccg c 
pDHS9738 

F272A_F gga cgg cac cca cgc cgt gat gga ccg g 

F272A_R ccg gtc cat cac ggc gtg ggt gcc gtc c 
pDHS9784 

F272N_F gga cgg cac cca caa cgt gat gga ccg g 

F272N_R ccg gtc cat cac gtt gtg ggt gcc gtc c 
pDHS9786 

F272L_F cgg acg gca ccc act tag tga tgg acc g 

F272L_R cgg tcc atc act aag tgg gtg ccg tcc g 
pDHS9787 

F272V_F gga cgg cac cca cgt cgt gat gga ccg 

F272V_R cgg tcc atc acg acg tgg gtg ccg tcc 
pDHS9788 

R317A_F ccc ggc ggg acc gcg gtg ctg gag ta 

R317A_R tac tcc agc acc gcg gtc ccg ccg gg 
pDHS9753 

R317S_F ccc ggc ggg acc agc gtg ctg gag tac 

R317S_R gta ctc cag cac gct ggt ccc gcc ggg 
pDHS9754 

R276A_F ttc gtg atg gac gct cgc ggg ccg cg 

R276A_R cgc ggc ccg cga gcg tcc atc acg aa 
pDHS9807 

R276D_F act tcg tga tgg acg atc gcg ggc cgc ggg c 

R276D_R gcc cgc ggc ccg cga tcg tcc atc acg aag t 
pDHS9789 
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R277A_F tga tgg acc ggg ccg ggc cgc ggg 

R277A_R ccc gcg gcc cgg ccc ggt cca tca 
pDHS9790 

R277A_F gtg atg gac cgg gac ggg ccg cgg gc 

R277D_R gcc cgc ggc ccg tcc cgg tcc atc ac 
pDHS9743 

R280A_F gcg cgg gcc ggc ggc ggt gca g 

R280A_R ctg cac cgc cgc cgg ccc gcg c 
pDHS9791 

R280A_F ccg gcg cgg gcc gga tgc ggt gca gga aa 

R280D_R ttt cct gca ccg cat ccg gcc cgc gcc gg 
pDHS9792 

Gcs62Rev TCCTGGACGGTCTGCGAcgcgacggcggcctccagggggagca 

Gcs99For TGGAGGCCGCCGTCGCGtcgcagaccgtccaggagcgcaccgcc 
pDHS9793 

  

4.4.2  Protein Expression 

 The plasmid pDHS10019, which allows expression of SCO7221  

(Gcs) as N-terminal His6-fusion protein, was transformed into BL21(DE3) and cultured 

in LB media containing 50 μg/ml kanamycin until the OD600 reached 0.7 – 1.0. Protein 

expression was induced with 0.1 mM IPTG and culturing continued for 16-20 hours at 18 

°C. Cells were harvested by centrifugation and frozen at -20 °C. Selenomethionyl protein 

was produced in a similar fashion using selenomethionine minimal medium (102). Cell 

pellets were thawed to 4 °C and resuspended in 5X volume of lysis buffer (20 mM 

HEPES, pH 7.8, 300 mM NaCl, 20 mM imidazole, 1 mM MgCl2, and ~100 mg CelLytic 

Express (Sigma-Aldrich)) before lysis via sonication. Centrifugation at 25,000xg for 30 

min provided clarified lysates. Proteins were purified using affinity chromatography on 

an Åkta FPLC (GE Healthcare Life Sciences). Briefly, after filtration of the supernatant 

through a 0.45 μm membrane, the solution was loaded onto a 5 mL HisTrap nickel-

nitrilotriacetic acid column. The column was washed with 10 column volumes of buffer 

A (20 mM HEPES, pH 7.8, 300 mM NaCl, 20 mM imidazole, 0.5 mM TCEP) and eluted 
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with a linear gradient of buffer B (20 mM HEPES, pH 7.8, 300 mM NaCl, 400 mM 

imidazole, 0.5 mM TCEP). Fractions were pooled based on A280 peak height, 

concentrated, and loaded onto a 120 mL HiLoad 16/60 Superdex 200 (GE Healthcare 

Life Sciences) column equilibrated with storage buffer (20 mM HEPES, pH 7.4, 150 mM 

NaCl, 10% glycerol, 0.5 mM TCEP). Fractions were combined, concentrated, frozen, and 

stored at -80 °C. Calibration of the column was performed with molecular weight 

markers from Sigma-Aldrich (St. Louis, MO). Gcs eluted as a single peak at 74 mLs 

which is consistent with a dimeric complex in solution (Figure 4-9). Approximately 50 

mg Gcs could be purified from a 1 L culture. Protein concentrations were determined 

using absorbance at 280 nm and calculated extinction coefficient (1 A280 = 0.62 mg/ml). 

Proteins were estimated to be greater than 95% pure based on SDS-PAGE (Figure 4-10). 

 
Figure 4-9. Size exclusion chromatography of Gcs in 20 mM HEPES, pH 7.4, 150 mM NaCl, 10% 
glycerol, 0.5 mM TCEP. The peak around 45 mLs represents material eluting near the void volume.  The 
major protein peak eluted at 74 mLs.  To calculate the apparent molecular weight, this elution volume was 
fit to the equation, mLs = -12.447(LnMW) + 129.52 (MW in kDaltons).  An apparent molecular weight of 
90,000 Daltons is consistent with a dimer for the His-tagged protein whose calculated molecular weight is 
44,000 Daltons. 
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Figure 4-10. SDS-PAGE analysis of Gcs and selenomethionyl-Gcs. Apparent molecular weight of the 
SeeBlue Plus2 molecular weight marker (Invitrogen) is shown for reference. Proteins were run on a 12% 
Tris-Glycine SDS-PAGE gel.  
 

4.4.3  Crystallization, Data Collection and In Progress Refinement of the Gcs 

Structure 

 Initial screening with Gcs produced crystals of cubic morphology under buffered 

isopropanol conditions containing acetate. For crystal growth, an equal volume of protein 

solution (10 mg/ml, freshly dialyzed into 20 mM HEPES, pH 7.5, 1 mM TCEP from 

storage buffer) was mixed with mother liquor containing 21-25% isopropanol, 300 – 400 

mM sodium (or ammonium acetate), 0.1 M Tris buffer, pH 8.5 – 9.0. The best-diffracting 

crystals grew in 3-5 days at 4 °C using hanging-drop vapor diffusion techniques. 

Selenomethionyl Gcs did not crystallize under conditions similar to those used for native 

Gcs. Twice the volume of glycerol was added to the drop before the crystals were 

harvested in loops and frozen in liquid N2. Attempts to obtain co-crystals with a 

coenzyme A substrate (hexanoyl- or Acac-) were unsuccessful. Attempts to soak in 

hexanoyl- or Acac-CoA into Gcs crystals after they had formed resulted in dissolution of 

the crystals within seconds.   
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Figure 4-11. Gcs crystals. 10 mg/ml Gcs protein in 20 mM HEPES, pH 7.5, 1 mM TCEP were mixed 1:1 
with 23% isopropanol, 300 mM NH4Oac, 0.1 M Tris, pH 8.5. Crystals averaged 70 to 100 μm across. 
 

 Diffraction data were collected at 100 K on GM/CA-CAT beamline 23ID-D at the 

Advanced Photon Source in the Argonne National Laboratory (Argonne, IL). The data 

were processed using the HKL2000 suite (104); data were indexed, integrated and scaled 

in the cubic space group P4132. Initial phasing by molecular replacement using THNS 

(PDBid - 1U0M) as a homology model identified a single molecule in the asymmetric 

unit (Vm – 6.1) and extraordinarily high (80%) solvent content in the unit cell. Phasing 

was completed using the automated MR at the BALBES server (171). The presumed 

physiologically relevant dimer forms on a crystallographic 2-fold axis (Table 4-3). 

Modeling was completed manually using COOT (107). The current model was refined 

against the 2.9 Ǻ native dataset using REFMAC5 of the CCP4 suite (108-110). (Table 4-

4). Electron density was noisy, but interpretable. Specifically, the “basket” density was 

poor, and absolute positioning of these residues is not possible with the current maps.      
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Table 4-3. Diffraction data for Gcs 

Parameter Native 

Space Group P4132 

Dimensions (Å) a,b,c 182.70 

X-ray source 23ID-D 

Wavelength λ (Å) 0.97934 

dmin(Å) a 2.90 (3.00-2.90) 

Unique observations 23,767 

Rmerge (%) a,b 6.4 (59.1) 

〈I/σ〉 a 32.3 (4.1) 

Completeness (%) a 99.9 (100) 

Avg. redundancy a 9.6 (9.7) 
a Values in parenthesis are for outer shell 
b Rmerge = Σ|Ii-〈I〉|/ΣIi, where Ii is the intensity of the ith observation and 〈I〉 is the mean intensity 
 
Table 4-4. Current state of refinement (non-final) 

 Gcs 

Date range 39.9-2.90 

R/Rfree
a,b 0.298/0.323 

RMSD bond length (Å) 0.013 

RMSD bond angle (°) 0.546 

Avg. Protein B-factor (Å2) 63.3 

Wilson B (Å2) 88.8 

Ramachandran plotc  

      Favored 94.2 

      Allowed 2.7 

      Disallowed 3.1 

Protein atoms 2752 
a R = Σ|Fo-|Fc||/Σ|Fo| where Fo is the observed structure factor and Fc is the calculated structure factor used in 
the refinement 
b Rfree = Σ|Fo-|Fc||/Σ|Fo| where Fo is the observed structure factor and Fc is the calculated structure factor 
from 5% of reflections not used in the refinement 
c From output of MOLProbity 

4.4.4  Sequence and Structure Analysis. 

 Alignments, cladogram and percent identities were calculated using the ClustalW 

method using Lasergene MegAlign software from DNASTAR. Sequences: S.co Gcs, 
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S.co 7671, S.co THNS = Streptomyces coelicolor ORFs sco7221, sco7671, sco1206, 

www.sanger.ac.uk; S.scabies = Streptomyces scabies, www.sanger.ac.uk; M.tb PKS10, 

M.tb PKS11, M.tb PKS18 = Mycobacterium tuberculosis CHS-like proteins, accessions 

CAB06631, CAB09101, A70958; P.f PhlD = Pseudomonas fluorescens PhlD, accession 

AAB48106; D.disc Steely1 = Dictyostelium discoideum C-terminal Type III PKS domain 

of Steely1, pdb 2H84; G.h PYS = Gerbera hybrida (daisy) 2-pyrone synthase, accession 

CAA86219; M.s CHS = Medicago sativa (alfalfa) chalcone synthase, accession P30074 

(Figure 4-4). 

 

 

Notes: 

Research on the Gcs enzyme is currently ongoing in the Sherman laboratory by a post-
doctoral fellow. To date, the following people have contributed to the work.  
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Tonia Buchholz, Todd Geders, David Sherman and Janet Smith analyzed the x-ray 
crystal structure. 
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Chapter 5  

Conclusion 

 Since the first report of the genetic programming of a type I PKS pathway in the 

early 1990s, the promise of simple “mix-and-match” reprogamming for the generation of 

novel polyketides has loomed over the natural products field. The ultimate goal is to 

design and build hybrid PKS systems utilizing heterologous module pairs in a 

combinatorial fashion to achieve more efficient polyketide production and generate  

novel drug-like products. To reach this goal, we will be required to combine the lessons 

learned for optimizing key protein-protein interactions at the inter-polypeptide interface 

and acyl transfer positions with those related to identification of catalytic domains 

capable of processing non-native substrates. Towards these goals, we have studied 

protein-protein interactions involved in acyl group transfer in three separate biosynthetic 

pathways.   

 An increased understanding of the key steps involved in PKS docking domain-

mediated intermodular acyl group transfer provides a number of exciting opportunities. 

As the number of orphan non-colinear biosynthetic clusters rises with the completion of 

microbial genome sequencing projects, the ability to sequentially order the polypeptides 

via prediction of docking domain compatibility could enable more facile prediction of 

core polyketide structures. While we have reported progress in decoding the selectivity 

filters for the H1-T1 and H2-T2 subclasses of type I PKS docking domains, a number of 

PKS docking domain structures remain obscure. For example, N- and C-terminal amino 

 100



acid sequences of the PKS polypeptides from the bry pathway do not fall within the 

current classification system.  

 Moreover, while the static pictures of type I PKS docking interactions determined 

by structural biology efforts thus far have proven valuable for understanding the type I 

PKS systems, we still have no model for the orientation of the full ACPdd (helices 1-2 

relative to 3) or the position of the ACPdd within a full module (Figure 5-1). Likewise, it 

is tempting to speculate that ACPdd’s upstream helices (1-2) are not only important for 

dimerization (85), but that they may interact with portions of the PKS outside of the 

ACPdd. 

 

Figure 5-1. Full ACPdd Model from DEBS2-DEBS3. A) Domain organization of DEBS2 and DEBS3 
from the erythromycin PKS. B) Cartoon representation of the DEBS2-DEBS3 fusion protein used to solve 
the NMR structure of the docking domain complex. C) One possible orientation of the full ACPdd-KSdd 
complex (from PDBids 1pzr and 1pzq) (85) The ACPdd helices (H1, H2, H3) and the KSdd coiled coil are 
labeled. 
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 Multiple pieces of circumstantial evidence support a broader role for helices 1-2 

of the ACPdd. In the work presented in chapter 2, the presence of downstream domains 

in the longer PikAIV constructs resulted in an increased affinity for the ACPdd. While a 

likely explanation is that these larger PikAIV constructs simply stabilize the productive 

binding conformation of the PikAIV KSdd, it is possible that additional protein-protein 

contacts exist between the upstream ACPdd and the downstream KS-AT region of the 

module. Additionally, in our version of the intermodular transfer and elongation assay 

(Figure 5-2), we observe a slightly different product profile when comparing competition 

with discrete PikAIII ACPdd (helices 1-3) to deletion of the PikAIII ACPdd terminal 

helix. Specifically, the addition of discrete PikAIII ACPdd to the reaction is able to 

compete with the PikAIII full module for binding to PikAIV, thereby decreasing 

production of both narbonolide and 10-dml in a dose-dependent manner (Figure 5-2B). 

However, upon deletion of only the terminal helix of the PikAIII ACPdd from the full 

PikAIII module, narbonolide formation is completely abolished, but 10-dml formation 

still occurs (albeit at a significantly decreased rate) (Figure 5-2C) (26). Our extension and 

elongation assay data suggest a role for the PikAIII ACPdd helices 1 and 2 in mediating 

the interaction of PikAIII with PikAIV TE. Alternately, the TE may be interacting 

directly with the PikAIII ACP. Using similar surface plasmon resonance or fluoresence 

polarization assay conditions as described in chapter 2, we may be able to decipher the 

remaining molecular details of the direct PikAIV TE-catalyzed 10-dml formation 

observed in the pikromycin/methymycin system.  
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Figure 5-2. PikAIII - PikAIV transfer and elongation assay with full length substrates.  A) Cartoon 
representation of the assay system. Synthetic pentaketide N-acetyl cysteamine thioester (SNAc) is loaded 
onto PikAIII, transferred to, extended and cyclized by PikAIV to form narbonolide. 10-dml is formed after 
loading onto PikAIII and cylclization by PikAIV. B) Radio-TLC image and quantitation of the reaction 
products produced when wild-type PikAIII and PikAIV were treated with increasing amounts of PikAIII 
ACPdd in the presence of the pentaketide SNAc and 2-[14C]-methylmalonyl-CoA. C) Radio-TLC reaction 
products of truncated pikromycin modules. Figure modified from (26). 
 

 To explore the potential interactions of the complete ACPdd, we have begun the 

structural characterization of a larger portion of the PikAIII-PikAIV interface (Figure 5-

1). In collaboration with Dr.Janet Smith’s laboratory, initial crystallization conditions 

have been identified for the PikAIV KSdd-KS-AT tridomain, and the solution of the 

structure is underway. Co-crystallization studies with the PikAIII ACP-ACPdd  could 

then be combined with a binding analysis of ACPdd mutants to gain a further 

understanding into role of the upstream ACPdd helices (1 and 2) in the larger type I PKS 

organization.  

 A subset of type I modular PKSs (and hybrid NRPS/PKS megasynthases) recently 

have been identified that contain multiple enzymes acting in trans during the traditional 

linear assembly-line process to incorporate methyl or methylene groups (or functional 

groups derived from such groups) at the β-position. Though the acyl transfer steps 
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involving discrete ACPs from FAS and type II PKS systems have been well studied, 

much less is known about the details of this new emerging subclass of ACPs found in the 

HMGS cassettes (Figure 3-4 and Table 3-1). Though no ACPD has been identified in the 

bry cluster, BryR, an HMG-ACP synthase from the bryostatin pathway, is able to 

catalyze HMG-ACP formation when presented with a surrogate acetyl-ACP substrate. 

For BryR, we have demonstrated binding specificity for three members of this sub-group 

of ACPs (CurB, JamF, MacpC). We have also observed a weaker affinity for the native 

acceptor ACP (BryM3 ACP).  

 Despite testing a small set of MacpC residues to identify key BryR - ACPD 

contact points, no single amino acid residues of the MacpC protein were identified that 

significantly impacted binding affinity. The major limitation to this set of experiments 

was generating high micromolar concentrations of the mutant proteins in the current 

assay conditions. Therefore, to map the BryR - ACPD interface, a different strategy must 

be taken. The ideal situation would be to identify the native ACPD from the bryostatin 

pathway and probe the molecular mechanisms of binding for this ACP – enzyme pair. To 

date, no structural insights have been reported for the interaction of HMGS cassette 

enzymes with partner ACPDs. Structural data will be important to determine the nature of 

BryR’s ACP binding selectivity. This will require significant improvement in the purity 

of the recombinant BryR, as the current method of production only yields ~80% pure 

protein. Coexpression with additional HMGS cassette member proteins may increase the 

solubility of BryR if these protein do exist as a large, megacomplex inside the cell as in 

the bacillaene case (99). Alternatively, one could explore the binding preferences and 
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structural characterization of the HMGS enzymes from the myxovirescin system (where 

two orthogonal HMGS/ACPD pairs exist). 

 Finally, the reports that a small number of type III PKSs accept their  starter units 

from acyl-ACPs instead of acyl-CoAs has prompted initial exploratory studies into the 

molecular mechanisms involved in this capability. A complete biochemical study 

comparing the Km and kcat values between acyl-CoAs and acyl-ACPs has yet to be 

completed for either the hexanoyl- or acetoacetyl- series of starter units with Gcs, an 

ACP-utilizing type III PKS from S. coelicolor. However, to the best of our knowledge, 

this is the first time that acyl transfer from ACP to type III PKS has been demonstrated in 

vitro. Additionally, our structural characterization of Gcs has allowed for the construction 

of a number of surface residue mutant proteins. Following the kinetic characterization of 

wild-type Gcs, these proteins will be used to probe the surface for residues that allow Gcs 

to access substrates tethered to large macromolecules as well as small molecules. 

Furthermore, application of this information to the design of hybrid type I – type III PKS 

pathways will open the door to generate further diversity using combinatorial 

biosynthesis of polyketides.  
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Appendix B. Architecture of HMGS cassettes within their biosynthetic pathways. Only portions of the 
PKS or PKS/NRPS pathways are shown. The pathway for Psymberin (19) is not shown above, as the 
sequences are not yet publicly available. Abbreviations: A – Adenylation, ACP – acyl carrier protein, AT – 
acyltransferase, C – condensation, Cy – cyclization, DH – dehydratase, ER – enoyl reductase, FkbH – 
FkbH homolog, GNAT – GCN5-related N-acetyltransferase, KS – ketosynthase, KR – ketoreductase, MT – 
methyltransferase, PCP – peptidyl carrier protein, PhyH – phytanoyl-CoA dioxygenase, PS – pyrone 
synthase, TE – thioesterase, unk – unknown function, * - inactive domain. 
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