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Abstract 
 

One of the primary drugs used in treatment of acute lymphoblastic leukemia is L-

asparaginase (ASNase), which despite its therapeutic efficacy, faces challenges often 

faced in protein drug treatment: the immunogenicity and short half-life of the drug. In 

order to overcome these major challenges, the red blood cell (RBC) encapsulation 

method has been employed to prevent degradation by serum proteases and elimination by 

reticuloendothelial system, thereby increasing circulation half-life of the protein drug. 

However, the encapsulation methods used thus far, such as hypotonic dialysis/resealing 

and electroporation, showed compromise in the oxygen transport function and structural 

integrity of RBCs.  

Herein we introduce a novel RBC encapsulation method that involves low 

molecular weight protamine (LMWP), a protein transduction domain (PTD) peptide. 

Protein drug was first conjugated to LMWP via disulfide bond and the cell penetrating 

property of LMWP allowed encapsulation of protein drug into RBCs as verified by the 

confocal microscopy images. The optimal encapsulation condition was determined to be 

37 °C for 30 minutes. Hematological parameters as well as SEM and osmotic fragility 

curve of LMWP-ASNase encapsulated RBCs showed that the structural integrity was 

maintained while Hill coefficients and pO50 values indicated oxygen transport 

functionality was maintained. LMWP-mediated encapsulation method considerably 

increased the circulating half-life of ASNase compared to that of the hypo-osmotic 



 x 

rupture/resealing method and improved the survival time of tumor-bearing mice by 44% 

compared to the saline control group.  

Based on these data, novel method for encapsulating protein drugs into intact and 

fully functional RBCs was established for potential treatment of acute lymphoblastic 

leukemia.



 1 

Chapter 1 

Background 

Acute lymphoblastic leukemia (ALL) 

Acute lymphoblastic leukemia (ALL) is cancer of the white blood cells, the cells that 

normally fight infections. As the number of lymphocytes increase in the blood and bone 

marrow, there is also less room for healthy white blood cells, red blood cells, and 

platelets. As a consequence ALL patients often suffer infections, anemia, and easy 

bleeding. Almost 4000 cases of ALL are diagnosed annually in the United States alone, 

approximately two thirds of which are in adolescent children, making ALL the most 

common cancer in this age group. Indeed, ALL represents 23% of the cancer diagnoses 

among children younger than 15 years of age, occurring at an annual rate of 30 to 40 per 

million1. While a cure rate of ~80% was estimated for childhood ALL, the experience 

with adult ALL was far less rewarding, as the reported cure rate seldom exceeded 40%2. 

 

L-Asparaginase 

One of the primary drugs used in the treatment of ALL is L-asparaginase (ASNase). 

ASNase was first discovered in 1953 by Kidd in guinea pig serum3 and has been in 

clinical use since 19674. ASNase is an enzyme that hydrolyzes amino acid L-asparagine 

(ASN) to L-aspartic acid (ASP) and ammonia. Most human tissues can self-synthesize 

ASN from L-glutamine by the action of asparagine synthetase (AS). Certain neoplastic 

tissues, including ALL cells, however, express significantly lower levels of AS and thus 
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have to rely solely on extracellular source of ASN to maintain protein synthesis5. 

Systemic depletion of ASN by ASNase would therefore impair protein biosynthesis in 

these cells, leading to their deaths through cellular dysfunction6. 

However, ASNase therapy is not without problems. Aside from hypersensitivity, 

which will be addressed in the next section, the use of ASNase can result in liver 

dysfunction. The elevated transaminase, abnormal bilirubin and alkaline phosphatase 

levels, and depression in albumin and lipoprotein levels have been observed.7 Other 

toxicities of ASNase include coagulation abnormalities, pancreatitis, cerebral 

dysfunction, parotitis, and immune suppression. 

ASNase formulations currently in use originate from two bacterial sources: 

Escherichia coli and Erwinia chrysanthemi. The active form of enzyme is tetrameric with 

each monomer containing an active site and has an overall molecular weight of 133-140 

kDa. The specific activity of purified ASNase ranges between 300-400 umole of 

substrate/min/mg of protein. The isoelectric point lies between pH 4.5-5.5 for the E.coli 

enzyme and 8.6 for Erwinia enzyme.8 The Km is approximately 1 x 10-5 M.9 ASNase is 

not adsorbed from the GI track and thus, in clinical use, is normally administered 

intravenously or intramuscularly. 

 

Problems with Protein Drug Delivery and Remedies 

As with most protein drugs, the clinical application of ASNase faces two major 

obstacles. First, due to the bacterial origin of ASNase its clinical use is associated with a 

high incidence of hypersensitivity. ASNase can trigger significant immunological 

consequences that include activation of B-lymphocytes and production of antibodies 
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causing severe anaphylactic reactions. When a patient has a reaction, the route of 

administration, form or source of drug is changed. The reaction rate with intravenous (iv) 

administration of the free form is very high. For this reason the free enzyme is almost 

always given by an intramuscular (im) or subcutaneous (sc) route. Most reactions occur 

within one to several hours after administration and include signs and symptoms typical 

of anaphylaxis, sometimes including death. 

Secondly, as with most protein drugs, ASNase is susceptible to degradation by 

serum proteases and elimination by the reticuloendothelial system (RES). The plasma 

half-life of ASNase is estimated to be in the range of 8-30 hrs.10 This rapid clearance 

necessitates frequent injection of large doses, further elevating the possibility of inducing 

immunological responses. 

To overcome such problems of short circulating half-life and immunogenicity, 

various remedies have been attempted. The most successful or commonly employed 

methods to-date includes: attaching hydrophilic polyethylene glycol (PEG) to enzyme 

drug, or encapsulating drug into soluble, synthetic (e.g. polymers) or natural (e.g. 

liposomes, cells) carriers. Attachment of PEG chains to enzyme drug increases its mass 

as well as shields the enzyme from proteolytic degradation, improving pharmacokinetics 

of the drug.11  

Indeed, the PEG-modified ASNase, with a trademark name of pegaspargase, has 

been successfully developed during the 1970s, with its first clinical trial in the 1980s.  

Clinical results showed that attachment of PEG molecule increased the half-life of 

ASNase from 26 hrs to 12 -15 days13. In addition, because of the assistance of PEG in 

alleviating detection by the host immune system, this new form of ASNase was better 
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tolerated than the free form, especially when given intramuscularly.  Hence, pegaspargase 

has been specifically indicated for treating ALL patients who are sensitive to native 

ASNase.  According to a review of clinical data, in re-induction therapy for patients who 

were hypersensitive to E. coli-derived ASNase, pegaspargase was able to reduce the 

frequency of drug administration from 6-9 times to 1-2 times per therapy.  Nevertheless, 

pegaspargase has not yet been proven to be superior to E. coli ASNase for the first 

remission of ALL.  Most critically, pegaspargase failed to completely abort the 

anaphylactic responses in patients who are hypersensitive to ASNase therapy. 

 

Red Blood Cells (RBCs) as Drug Carrier 

Among all carriers employed for ASNase encapsulation, the use of RBCs (red blood 

cells; RBCs) as the drug carrier appears to be most appealing, simply because the RBCs 

would not only protect the loaded protein drug from proteolytic degradation but also 

prevent detection of the drug by the host immune system.  Furthermore, RBCs are 

completely biodegradable without generation of toxic products, and they are also 

biocompatible, particularly when autologous RBCs are used.  In addition, RBCs are the 

most abundant cells of the human body (5.4x106 and 4.8x106 RBCs/mL in men and 

women, respectively), therefore giving an affordable source of supply for use in drug 

encapsulation.  Moreover, the biconcave disk shape of RBCs endows them with the 

highest surface to volume ratio (1.9x104cm/g) usable for drug encapsulation.14 Most 

critically, RBCs possess a lifespan in circulation of approximately 120 days, which is 

significantly longer than any of the currently existing drug carriers.  A detailed discussion 
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of the benefits of utilizing RBCs as the drug carrier can be found in a review article 

authored by Hamidi and Tajerzadeh.15  

 

RBC Loading Methods 

A variety of methods have already been developed to entrap protein drugs into 

RBCs.  The most adapted techniques thus far include drug (e.g. primaquine, 

hydrocortisone, etc.)-induced endocytosis16, electroporation17, and hypo-osmotic-based 

pre-swelling18, rupture/resealing19, 20 or dialysis21. Using these methods to create 

sufficiently large pores or perturbations on the cell membrane, a number of the 

impermeable protein drugs including ASNase, erythropoietin, acetaldyhyde 

dehydrogenase, and alcohol dehydrogenase have been successfully loaded into RBCs. 

Despite reasonable success, all of these methods are still beset by a host of 

shortcomings.  The most crucial drawbacks come from two aspects following RBC 

processing.  First, these techniques all require the application of a chemical (drug-induced 

endocytosis), electrical (electroporation), or mechanical (osmotic dialysis) force to the 

RBC membrane to create sufficiently large pores for the protein drug to diffuse through.  

Such disruption of the cell membrane often leads to partial, but irreversible, deterioration 

of the structural integrity and morphology of the RBC. A significant alteration of the 

RBC morphology from the native discocyte form (i.e. normal RBCs with a small area of 

central pallor and biconcave disc shape) to stomatocyte (i.e. abnormal RBCs with oval or 

rectangular area of central pallor) following treatment by electroporation22 and hypo-

osmosis23 was observed (see Figure 1).  Consequently, these processed RBCs will be 
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recognized by the phagocytic system as foreign entities, rendering their rapid destruction 

and clearance by the host immune system. 

The second issue is that RBCs processed by any of the existing encapsulation 

methods, regardless of whether it is electroporation or hypotonic dialysis, would 

inevitably result in a loss of important cellular constituents, such as hemoglobin and 

cytoskeleton, from the cells.  This is because all of these methods rely on a pore-opening 

and a resealing step, both of which involve a dialysis procedure.20, 24 Thus far, the largest 

protein encapsulated in RBCs by using such methods was alcohol oxidase from Pichea 

pastoria,25 which had a molecular weight (675 kDa) that was 10-fold larger than that of 

hemoglobin (65 KDa); the major constituent of an RBC.  Since dialysis is an equilibrium 

process and with such large pores being created on the cell membrane, in theory and 

practice, it is inevitable that a certain portion of the cytosolic constituents including 

hemoglobin, glutathione, and cytoskeleton would be leaked out of the RBC.  Indeed, loss 

of hemoglobin was clearly observed in RBCs treated with the hypotonic dialysis, and 

electroporation method, as evidenced by a decrease in mean corpuscular hemoglobin 

(MCH) (see Table 1) and presence of a pinkish color after resealing.20  

It should be noted that aside from the principal activity of oxygen transport, RBCs 

also carry out other important biological functions, such as energy (ATP)-involved 

metabolic processes and scavenging of oxidative stressors.26  Hence, a loss of 

hemoglobin would not only impair the oxygen transport function of RBCs, but also affect 

their ability to manage oxidative stress.  Similarly, a loss of cytoskeleton from the RBCs 

would compromise it with a much weakened structural integrity, rendering it prone to 

destruction or recognition by the phagocytic system. Structural integrity of RBCs can be 
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evaluated by examining osmotic fragility of RBCs. As evidenced by osmotic fragility 

test, the RBCs that underwent hypo-osmotic dialysis procedure showed hemolysis at all 

osmotic pressures indicating existence of various cell populations, with the majority of 

hemolysis occurring at lower values of the osmotic fragility curve. On the other hand, 

normal RBCs displayed “sudden” hemolysis resulting in an osmotic fragility curve with a 

sigmoidal profile.27  

It is important to point out that in order to inherit the benefits of RBCs as a natural 

and long-lasting drug carrier, it is absolutely essential to retain both the structural and 

functional integrity of the cell.  Yet, all of the existing RBC encapsulation methods fail to 

recognize this critical point.  Therefore, there is a need of a method that would permit 

encapsulation of therapeutically active protein drugs into fully functional RBCs. 

 

PTD-Mediated Drug Loading 

Recently, a family of small but extraordinarily potent membrane permeable peptides, 

classified as “PTD” (protein transduction domain) peptides that include TAT28, ANTP29, 

VP2230, poly (arginine) peptides31, and the non-toxic, naturally occurring low molecular 

weight protamine (LMWP) developed in our laboratory32, 33 have been discovered. Both 

in vitro and in vivo studies revealed that, by covalently linking PTD to almost any type of 

molecular species including proteins (MW > 150 kDa; more than 60 different proteins 

have already been tested34), nano-carriers35, 36, and liposomes37, PTD was able to ferry the 

attached species across cell membranes.  

More specifically, when a fusion protein of TAT, the most widely studied PTD, and 

β-galactosidase was injected into mice by intraperitoneal injection, β-galactosidase 
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activity was observed in every organ and tissue, including kidney, heart, and even brain28. 

This finding suggests that intracellular protein uptake mediated by the PTD peptide is not 

receptor- or transporter-dependent as different types of cells cannot possess the same 

types of receptors and transporters. In addition, PTD-mediated cell internalization did not 

induce perturbation or alteration of the cell membrane.38 Based on this conclusion, in 

theory all cell types, including RBCs, should be transducible and PTD peptides could 

potentially be applied as a powerful tool to achieve non-invasive encapsulation of 

biologically active protein therapeutics into intact and fully functional cells. 

 

LMWP 

In order to encapsulate the therapeutic protein ASNase into RBCs, we propose the 

use of LMWP, one of the PTD peptides. LMWP is an arginine-rich peptide created by 

enzymatic digestion of protamine with thermolysin which results in 5 different fractions 

designated TDSP (thermolysin-digested segmented protamine). The fraction of the 

choice, TDSP-5, and now termed LMWP, has the sequence of VSRRRRRRGGRRRR 

and has molecular weight of 1880. Initially developed as a non-toxic antagonist to 

heparin and low molecular weight heparin (LMWH), the LMWP sequence bears close 

similarity to many of the arginine-rich PTD peptides, such as TAT, which has amino acid 

sequence of GRKKRRQRRRPPQ. When HeLa cells were incubated with LMWP labeled 

with FITC (fluorescein isothiocyanate), a commonly used fluorescence tag, LMWP 

displayed cellular uptake comparable to that of TAT44. 

LMWP has several unmatched advantages over other existing PTDS. First, unlike 

other PTDs that rely solely on chemical synthesis for their production, LMWP can be 
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manufactured in mass quantities using enzymatic hydrolysis and a single step purification 

system.  Second, unlike most other PTDs that are derived from viral sources and, thus, 

present health concerns, LMWP is obtained from digestion of native protamine, a FDA 

approved clinical drug.  Third, unlike all existing PTDs, the toxicology profile of LMWP 

has already been thoroughly established; the LMWP peptide is neither toxic nor 

immunogenic33, 39, 40, 41. Last but not least, since LMWP possesses only one single -NH2 

group at the N-terminus, its conjugation to a protein drug can be precisely regulated and 

easily carried out using our established N-succinimidyl-3-(2-pyridyldithio) propionate 

(SPDP) activation method.42 

 

Research Objectives 

In this thesis dissertation, PTD-mediated RBC encapsulation of ASNase for potential 

treatment of acute lymphoblastic leukemia is investigated. The main goals of the project 

were to: 1) successfully produce LMWP-conjugated ASNase with sufficient retention of 

enzyme activity; 2) verify encapsulation of LMWP-ASNase conjugate in RBCs, optimize 

the RBC loading process, and determine whether PTD-mediated loading procedure alters 

functionality and/or physical properties of RBCs; and finally 3) determine whether 

encapsulation of ASNase in RBCs will extend circulating half-life of ASNase as well as 

extend survival time of tumor-bearing mice. 
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Loading Method Electroporation Hypo-osmotic Dialysis 

Species Mouse Human 

Parameters Native RBCs Loaded RBCs Native RBCs Loaded RBCs 

MCV (fl) 52.1 ± 0.5 71.9 ± 0.9 94 ± 2 79 ± 1 

MCH (pg) 17.5 ± 0.4 15.1 ± 0.9 32.0 ± 0.8 25.6 ± 0.9 

MCHC (g/dl) 33.6 ± 0.7 21.1 ± 1.4 34.2 ± 1.1 33.1 ± 0.7 

n 11 4 16 16 

 

Table 1. (a) Hematological parameters for mouse RBCs encapsulated with alcohol 
dehydrogenase loaded by electroporation under optimal experimental conditions (420 V, 
four pulses of 1ms every 15 min. at 37°C; resealing for 1 hr at 37°C; n = number of 
experiments (means ± S.E.M.)) and (b) human RBCs encapsulated with xxx by dialysis 
bag method (45 min). The RBC suspensions were adjusted to 70% haematocrit and 4 
mg/mL of L-asparaginase (115 ± 4 units/mL) (means ± S.E.M.).
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Figure 1. Scanning electron micrographs of human RBCs before (A) and after (B) 
undergoing hypotonic preswelling method; mouse RBCs before (C) and after (D) 
loading by electroporation method (magnification 35000).
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Figure 2. Schematic of LMWP-mediated ASNase loading into intact RBCs. 
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Chapter 2 

LMWP-ASNase: Conjugation and Characterization 

Introduction 

Despite various methods used to encapsulate protein drugs into RBCs the circulating 

half-life as well as the structural and morphological integrity of RBCs show room for 

improvement. To this regard we proposed use of PTD-, more specifically LMWP-

mediated RBC encapsulation to resolve these issues. The bioconjugation of LMWP to 

ASNase was then necessary. Another consideration was the type of linkage used between 

LMWP and ASNase. In order to avoid the possibility of LMWP-mediated leaching of 

ASNase out of the RBCs use of a disulfide bond was proposed. These bonds have been 

known to break under reducing environment, in this case, cytosol of RBCs, and will 

allow ASNase to remain inside upon encapsulation. 

Conjugation of LMWP to ASNase via a disulfide bridge can be accomplished in 

three steps (see Figure 3) by use of two key reagents: Traut’s reagent (also known as 2-

iminiothiolane) and N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). 

Traut’s reagent, also known as 2-iminiothiolane, is a thiolating reagent used in the 

preparation of disulfide and thioether linked conjugates. It has a preference for primary 

amino groups and reacts at pH 7 - 10 to give amidine compounds that contain free 

sulhydryl groups. The amidine linkage preserves the original primary amine positive 

charge.43 SPDP is a heterobifunctional cleavable cross-linking agent. It contains one 

amine reactive N-hydroxysuccinimide (NHS) residue and one sulfhydryl reactive pyridyl 
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disulfide residue. The NHS-ester cross-linking reactions should be performed in buffers 

such as phosphate, bicarbonate/carbonate and borate buffers that do not contain primary 

amines. The optimum pH for this reaction is between 7 and 8. 

In the first step, ASNase is reacted with Traut’s reagent to create a free thiol group. 

In the second reaction, a 2-pyridyl-disulfide group is introduced into LMWP by the 

reaction between the primary amine group of the peptide and the N-hydroxysuccinimide 

ester side of SPDP. Finally sulfhydryl exchange occurs between the thiol group of 

ASNase and the 2-pyridyl-disulfide group of LMWP. Pyridine-2-thione is released and 

its concentration can be determined by measuring the absorbance at 343 nm. 

One of the important aspects of chemical modification of ASNase to keep in mind is 

its enzyme activity. Chemical modification of an enzyme drug has been known to alter its 

activity depending on the site of modification. When conjugating LMWP to ASNase it is 

necessary to control for the degree of conjugation while retaining sufficient specific 

enzyme activity to preserve its therapeutic effect. 

For the RBC-encapsulated ASNase to function properly in vivo, it is crucial for the 

enzyme to maintain its therapeutic activity during the encapsulation process as well as in 

circulation. In this chapter we describe: first, the chemical reaction and purification steps 

undertaken to conjugate LMWP to ASNase by a disulfide bond; second, the 

characterization of the final product MALDI-TOF MS method, followed by effect of the 

conjugation process on specific enzyme activity of ASNase; and last, the storage stability 

of the final product. 
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Materials and Methods 

LMWP-ASNase Preparation 

Low molecular weight protamine (LMWP) was produced in our lab according to the 

method previously described44. To activate LMWP, a five molar excess of SPDP (Sigma-

Aldrich, St. Louis, MO) was dissolved in DMSO and added drop-wise to LMWP (5 

mg/mL) dissolved in phosphate buffer (0.1 M, with 1mM EDTA, pH 8.0), and the 

mixture reacted at room temperature for 2 hours. Activated LMWP detectable at 214 nm 

was purified by HPLC on a heparin affinity column (Buffer A: 50 mM phosphate, 1 mM 

EDTA, pH 7.5; Buffer B: 50 mM phosphate, 1 mM EDTA, 2 M NaCl, pH 7.5) followed 

by concentration using an ultrafiltration cell with a 500 MWCO membrane (Spectrum 

Laboratories, Inc. Rancho Dominguez, CA). Degree of activation was determined by 

monitoring pyridine-2-thione generation, detectable at 343 nm, upon addition of DTT 

(dithiothreitol) to purified LMWP-PDP. 

ASNase (Elspar, Ovation Pharmaceuticals, Inc., Deerfield, IL) was dissolved in 0.1 

M HEPES buffer containing 5mM EDTA and reacted with a 10 fold excess (per 

monomer) Traut’s reagent (Sigma-Aldrich, St. Louis, MO) at room temperature for 1 

hour and purified by HPLC using two desalting columns in series (HiTrap, GE 

Healthcare, Piscataway, NJ; isocratic, Buffer A: 50 mM phosphate, 1 mM EDTA, pH 

7.5). Monitoring the fractions at wavelength of 254 nm allowed detection of both 

ASNase-SH and unreacted Traut’s reagent. Degree of thiolation was determined using 

Ellman’s Reagent (Sigma-Aldrich, St. Louis, MO), which reacts with free sulfhydryl 

groups. Finally, to the thiolated ASNase, 5 fold excess activated LMWP (relative to thiol) 
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was added to react at room temperature for 2 hours and the final product was purified by 

HPLC on a heparin affinity column (Buffer A: 50 mM phosphate, 1 mM EDTA, pH 7.5; 

Buffer B: 50 mM phosphate, 1 mM EDTA, 2 M NaCl, pH 7.5) and concentrated using an 

ultrafiltration cell with a 10,000 MWCO membrane (Spectrum Laboratories, Inc.). 

MALDI-TOF Analysis 

MALDI-TOF-MS method was used to determine actual degree of LMWP 

conjugation to each ASNase monomer. MALDI-TOF-MS analysis was run in linear 

mode on Waters Tofspec-2E, calibrated with bovine serum albumin. The data was 

acquired and processed using Masslynx 3.5 software. Sinnapinic acid was used as matrix.  

ASNase Activity Measurement 

ASNase activity was determined by direct nesslerization of produced ammonia.  In 

this reaction, ASNase is incubated with its substrate ASN at 37 °C, pH 8.6, for a 

specified time and generated ammonia is captured by Nessler’s reagent. More 

specifically, for each measurement, a microcentrifuge tube containing 850 uL of 60 mM 

ASN in Tris-HCl (50mM, pH 8.6) and 100 uL Tris-HCl (50mM, pH 8.6) was pre-

incubated at 37 °C for 5 minutes to achieve temperature equilibration. To this solution, 

50 uL of LMWP-ASNase or native ASNase solution was added and incubated for 10 

minutes before quenching the reaction with 100 uL of trichloroacetic acid (1.5 N, Sigma-

Aldrich, St. Louis, MO). The reaction mixture was centrifuged at 15000 rpm for 3 

minutes and 50 uL of the supernatant was added to a microcentrifuge tube containing 700 

uL of DI H2O and 100 uL of Nessler’s Reagent (Sigma-Aldrich, St. Louis, MO). The 

resulting solution was incubated for 15 minutes at room temperature before measuring 
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absorbance at 480 nm. Enzymatic activity unit is defined as µmol ammonia produced per 

minute.  Specific activity of native ASNase ranged from 206 to 259 units/mg of protein. 

LMWP-ASNase Thermal Stability 

Solution of LMWP-ASNase at a concentration of 50 ug/mL was prepared. Three 

aliquots of this solution was stored at 4°C and another three at 37°C. At specific time 

points, 50 µL from each vial were collected and measured for enzyme activity by direct 

nesslerization. 

LMWP-ASNase Storage Stability 

Two hundred microliter aliquots of LMWP conjugated- or native- ASNase solutions 

(~1 mg/mL each) were prepared in reversed Hank’s balanced salt solution (R-HBSS; KCl 

10.18 g/L, KH2PO4 0.1 g/L, NaHCO3 1.273 g/L, NaCl 0.316 g/L, Na2HPO4 0.08 g/L, 

glucose 2.0 g/L; pH adjusted to 7.4 with H3PO4, 85 % w/v)45 and stored at 4, -20, and -80 

°C. At specified time points, one vial was removed from each storage location and 

diluted to 50 ug/mL before analysis by direct nesslerization. 

 

Results and Discussion 

LMWP-ASNase Conjugation and Characterization 

With the use of heterobifunctional linker SPDP and Traut’s reagent, LMWP-ASNase 

linked by disulfide bond was synthesized. The SPDP activated LMWP is easily separated 

from the biproducts and excess SPDP with use of a heparin affinity column, as seen by 

FPLC chromatogram in Figure 4. With Traut’s reagent and ASNase both absorbing at 

254 nm, the ASNase and excess Traut’s reagent fractions were sufficiently separated 
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when two desalting columns were used in series with the thiolated ASNase eluting at 

approximately 2.6 minutes (Figure 5). 

LMWP-ASNase conjugation products were purified by FPLC on a heparin affinity 

column. The elution profile shown in chromatogram (Figure 6) in conjunction with 

MALDI-TOF analysis of separated fractions verified that ASNase fractions eluted in 

order of increasing degree of LMWP conjugation, positive charge from LMWP 

contributing to increased affinity to heparin. 

The initial RBC loading experiment indicated that the amount of ASNase 

encapsulated was higher for the fraction with greater degree of LMWP-modification. 

When the ASNase fractions eluting at 0.6 M and 1.2 M NaCl were compared for RBC 

encapsulation, the fraction at 1.2 M showed significantly higher loading as seen in Figure 

7. The MALDI-TOF MS analysis also verified that the fraction at 1.2 M had a higher 

degree of LMWP conjugation per ASNase tetramer than the fraction at 0.6 M (data not 

shown). 

With the base peaks at m/z 34526, m/z 36639, m/z 38761, and m/z 40828 

corresponding to ASNase monomer, monomer with one LMWP, two LMWPs, and three 

LMWPs, respectively, MALDI-TOF-MS results indicated that up to 3 LMWP peptides 

could be conjugated to each ASNase monomer, or up to 12 LMWP peptides per ASNase 

tetramer, the active form. At the end of conjugation and purification process, 55 - 60 % of 

the original specific enzyme activity was retained. 

LMWP-ASNase was found to have Vmax and KM values of 627.7 and 0.031, 

respectively, while corresponding values for native ASNase were 339.8 and 0.016. 

Although these Michael-Menton kinetic parameters differed for two ASNase forms, their 
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catalytic efficiency, the ratio between Vmax and KM, was comparable at 2.12 x 104 and 

2.02 x 104, indicating that in terms of depleting systemic ASN level the two forms should 

be  on par with each other. 

In order to verify that the LMWP-ASNase conjugate will remain stable/active during 

storage before the loading process, storage stability test was performed at 4, -20, and -80 

°C. Results indicated that while storage at 4 °C results in loss of slightly over 10 % of 

original activity over 25 days, the enzyme activity is well preserved when stored frozen at 

-20 and -80 °C shown in Figure 9. 

One of the requirements for the RBC loading process is that the protein drug of 

interest remains active during the loading procedure and also during circulation in vivo. 

To test this issue, the conjugate stability at 4 and 37 °C was tested. While a slight 

decrease in enzyme activity was observed for LMWP-ASNase stored at 4 °C, the enzyme 

activity remained more or less constant when incubated at 37 °C for up to 72 hrs (Figure 

10). 
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Figure 3. Schematic of LMWP to ASNase conjugation procedure. A disulfide bridge 
between ASNase and LMWP is created by activation of LMWP with SPDP and 
thiolation of ASNase with Traut’s reagent. 
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Figure 4. FPLC chromatogram of purification of SPDP activation of LMWP 
reaction product.
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Figure 5. Purification of ASNase thiolation with Traut's reagent reaction by FPLC 
with two desalting columns in series. (Isocratic; Buffer A: 50 mM phosphate, 1mM 
EDTA, pH 7.5) 
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Figure 6. FPLC chromatogram of LMWP-ASNase conjugation mixture. (Buffer A: 
50 mM phosphate, 1 mM EDTA, pH 7.5; Buffer B: 50 mM phosphate, 1 mM EDTA, 
2 M NaCl, pH 7.5)
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Figure 7. Fraction eluting at higher salt concentration shows higher loading 
efficiency compared to fraction eluting at lower salt concentration. 
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Figure 8. MALDI-TOF mass spectra of LMWP-ASNase conjugates prepared by 
coupling SPDP activated LMWP to the thiolated ASNase. Up to three LMWP 
peptides were found to be conjugated to each ASNase monomer. 
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Paramter Native ASNase LMWP-ASNase 

Vmax 339.8 627.7 

KM 0.016 0.031 

Vmax/KM (catalytic efficiency) 2.12 x 104 2.02 x 104 

 
 
Table 2. Michaelis-Menten kinetics parameters for native and LMWP-conjugated  

ASNase. 
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Figure 9. Storage stability comparison of LMWP-ASNase to native ASNase. Two 
forms of ASNase were stored at 4 (A), -20 (B), and -80 (C) °C and enzyme activity 
was measured at specified time points using direct nesslerization method (: 
LMWP-ASNase, : ASNase). 
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Figure 10. LMWP-ASNase stability at 4 and 37 °C. LMWP-ASNase conjugate was 
incubated at specified temperatures and an aliquot was removed at each time point 
to determine enzyme activity by direct nesslerization.



 29 

Chapter 3 

PTD-Mediated RBC Encapsulation of L-Asparaginase 

Introduction 

Active research on use of RBC as a drug carrier has been going on since the 1980s. 

However, the encapsulation methods used with these therapeutic protein drugs was 

shown to compromise structural and functional integrity of RBCs. In order to take most 

advantage of the long life span of RBCs, it is necessary to preserve its major function as 

an oxygen carrier as well as its morphology and structural integrity. With the use of 

LMWP as a PTD peptide, these issues can be overcome, extending the circulating life 

span of RBCs, which in, turn will extend the circulating half-life of encapsulated protein 

drug. 

In this chapter we will show LMWP-mediated cell uptake of protein into RBCs 

followed by steps taken to optimize LMWP-mediated RBC loading process. In addition, 

we demonstrate that these enzyme-encapsulated RBCs retain their natural morphology 

and their major function as oxygen carriers. 

 

Materials and Methods 

Blood Collection 

Mice were anesthetized with ketamine/xylazine and blood collected by cardiac 

puncture was immediately transferred into microcentrifuge tube containing EDTA as an 
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anticoagulant. Blood was centrifuged to remove serum and separated RBCs were washed 

three times with R-HBSS before use. 

RBC Uptake of Fluorescence-Labeled LMWP-Ovalbumin Conjugates 

Commercial Alexa Fluor-488-labeled ovalbumin (Invitrogen, Carlsbad, CA) was 

activated using SPDP and then conjugated to LMWP. For uptake experiments, fresh 

sheep RBCs (MP Biomedicals, Solon, OH) were suspended in Hank's balanced salt 

solution (HBSS) at a density of 5 x 108
 cells/ml, and were then incubated with a 0.5 

mg/ml solution of the LMWP-ovalbumin conjugates for 30 min at room temperature 

under gentle shaking. RBCs were then washed with HBSS, fixed with 2% 

paraformaldehyde for 20 min, mounted on glass chamber slides, and uptake was 

examined using a confocal laser scanning microscope (LSM 510 META, Carl Zeiss, 

Jena, Germany). 

Effect of Temperature on Loading 

RBCs were incubated in LMWP-ASNase in R-HBSS (20 uL PCV RBC/ 75 IU 

ASNase/ mL) for 1 hour at 4°C or 37°C. RBCs were then washed and lysed to measure 

for enzyme activity. 

Loading Kinetics Experiment 

Washed RBCs were added to R-HBSS containing LMWP conjugated-, free-, or no 

ASNase and incubated in shaking water bath at 37 °C. An aliquot of 1 mL was removed 

from each vial at previously specified time points, centrifuged, washed 3 times with R-

HBSS. Washed RBCs were lysed with DI H2O and analyzed for enzyme activity. 

Twenty microliters of packed cell volume (PCV) RBCs were added to vials 

containing 1 mL of ASNase-LMWP at 20 IU/mL and incubated in a shaking water bath 
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at 37°C. At specified time points, vials were removed and centrifuged to collect RBCs, 

which were subsequently washed three times with R-HBSS before lysing to analyze for 

enzyme activity. For each time point, RBCs incubated in R-HBSS only were used as 

control. 

RBC Encapsulation 

Washed RBCs, 100 uL PCV (packed cell volume), were added to pre-warmed vial 

containing ASNase in R-HBSS (100 U/mL). The RBC-suspended ASNase solutions were 

then incubated in a shaking water bath at 37°C for 30 minutes. The loaded RBCs were 

then washed three times with R-HBSS and measured for ASNase activity. 

Hematological Parameters 

To determine the mean corpuscular volume (MCV), mean corpuscular hemoglobin 

(MCH), mean corpuscular hemoglobin content (MCHC), and relative distribution width 

(% RDW), RBCs resuspended in R-HBSS at 50% hematocrit were analyzed using a 

commercially available veterinary hematology system (Drew Scientific, Dallas, TX). 

Oxygen Dissociation Measurement 

A 10% solution of ASNase-loaded RBCs in Hank’s Buffered Salt Solution (HBSS) 

was washed three times and lysed with distilled water. The resulting hemolysate was 

centrifuged and the supernatant was diluted to 5 ml with a 1:1 mixture of HBSS and 

distilled water.   Dissolved oxygen was measured using a Clark electrode (World 

Precision Instruments, Sarasota, FL) connected to a data acquisition system described by 

Frost et al.46 Oxyhemoglobin was measured using a 37°C thermostated 

spectrophotometer (UV 2501PC, Shimadzu, Columbia, MD) at 540 nm, and change in 
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oxyhemoglobin content of the hemolysate due to decreases in oxygen concentration was 

monitored.   

Scanning Electron Microscopy 

LMWP-ASNase-loaded and sham-loaded (control) RBCs were fixed in 2.5% 

glutaraldehyde in R-HBSS for 1 hour at 4°C and washed three times with R-HBSS. Cells 

underwent dehydration in graded ethanol starting from 50% and finally in absolute 

ethanol. Dehydrated RBCs were washed four times with HMDS (hexamethyldisilazane) 

and air dried over night. After gold sputtering (Polaron E5100) cells were examined by 

scanning electron microscope (1910 Field Emission Scanning Electron Microscope, 

Amray). 

Osmotic Fragility 

LMWP-ASNase- and sham-loaded RBCs were resuspended to 50% hematocrit, and 

20 µl of the RBC suspension was added to 1.0 ml NaCl solutions with osmolality ranging 

from 0 to 300 mOsm/Kg. The solutions were incubated at 37°C for 30 min, centrifuged, 

and the absorbance of each supernatant measured at 540 nm.  The absorbance for 0 

mOsm/Kg solution was taken as 100% hemolysis. The osmolality of each solution was 

measured using a vapor pressure osmometer (Wescor, Logan, UT). 

Statistical Analysis 

All data are expressed as mean ± S.D.  A two-tailed t-test was used in assessing the 

hematological parameters.  A p-value of less than 0.05 was considered significant. 
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Results 

LMWP-Mediated Encapsulation of Proteins into RBC Carriers 

In order to provide physical evidence of the ability of LMWP to transduce proteins 

into RBCs, LMWP was first activated by introducing a thiol moiety to its N-terminus, 

followed by conjugation to a commercial ovalbumin already labeled with the fluorescent 

dye, Alexa Fluor 488. While control native RBCs showed weak autofluorescence from 

hemoglobin excitation (Figure 11A), RBCs incubated with the Alexa Fluor 488-labeled 

ovalbumin also displayed only weak fluorescence on the cell surface, with no observable 

uptake of the labeled protein within the interior of the RBCs (Figure 11B). However, 

after conjugation of labeled ovalbumin with LMWP, significant intracellular fluorescence 

was detected in the cytosol of RBC carriers Figure 11C). 

Optimization of PTD-Mediated ASNase Loading into RBCs 

Results in Figure 11 already provided physical evidence that LMWP was able to 

transport protein molecules into RBCs. By following the similar protocol, we conjugated 

ASNase with LMWP via disulfide linkages as described in Chapter 1. When RBCs were 

incubated with LMWP-ASNase solutions for varying times to determine the kinetics of 

RBC loading, no statistically significant difference was noted within a 10 to 90 minute 

period (see Figure 12). The age of RBCs did not significantly affect ASNase loading as 

long as RBCs were kept in original serum (see Figure 13). When RBCs were incubated 

with LMWP-ASNase conjugates at a total enzyme concentration of 100 IU/mL, a loading 

efficiency of 19.7 ± 3.63 % was observed, with a loading capacity of 19.7 IU of ASNase 

per 100 uL packed cell volume (PCV) of RBCs. 
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RBC Functionality after Encapsulation of LMWP-ASNase 

Since preservation of morphology and physical properties of the RBC through drug 

loading are important, we utilized the SEM method to examine the morphology of the 

ASNase-loaded RBCs obtained by LMWP-mediated encapsulation process. While the 

ASNase-loaded RBCs created using the conventional osmotic rupture-resealing technique 

showed distinctive changes in morphology, RBCs treated with LMWP-ASNase displayed 

morphology identical to that of the control RBCs, with full preservation of the customary 

biconcave shape and no observable deformities (data not shown). In addition when the 

SEM image of ASNase-loaded mouse RBCs prepared by the LMWP-mediated method 

was compared to that of control RBCs, retention of their original biconcave shape made 

them almost indistinguishable from each other (see  Figure 14). 

Also of great significance was that when RBCs loaded with LMWP-ASNase were 

incubated in solutions of decreasing osmolality, the displayed osmotic fragility curve was 

virtually identical to the result of control RBCs. As shown in Figure 15, these RBCs 

displayed “sudden” hemolysis, or a sigmoidal curve, characteristic of normal RBCs. On 

the other hand, had their structure been compromised the resulting osmotic fragility curve 

would have indicated hemolysis of RBCs at all osmolality values, an indicator for a 

heterogeneous population of RBCs as mentioned with glutamate dehydrogease and 

alcohol dehydrogenase encapsulated human (and sheep) RBCs by hypotonic 

dialysis/isotonic resealing method.47 

In addition to confirming the structural integrity of the LMWP-ASNase loaded 

RBCs, we also examined their oxygen transport functionality. As noted with 

conventional methods for protein encapsulation, the loss of intracellular components 

during pore formation or osmotic swelling could result in changes to the normal oxygen-
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binding capabilities of the drug-loaded RBCs. When subjected to varying oxygen 

concentrations, we found that the hemoglobin of the LMWP-ASNase loaded RBCs 

exhibited the characteristic sigmoidal profile indicative of cooperative binding. The Hill 

coefficient and pO50 values for the LMWP-ASNase loaded RBCs were equivalent to 

those of the control RBCs or the previously established values for sheep RBCs (Table 4), 

confirming the presence of the same level of fully functional hemoglobin.  

Additionally, MCV, MCH, MCHC, and RDW showed no statistically significant 

difference between normal and LMWP-ASNase loaded RBCs (Table 3). Comparable 

MCV values further supported results from SEM indicating preservation of RBC 

morphology while MCH values indicated retention of hemoglobin inside RBCs since no 

large pores were created, as observed with electroporation and hypotonic RBC loading 

methods. Furthermore the distribution width (RDW), which is a measure for distribution 

of RBCs with varying sizes, was comparable between two RBC groups suggesting 

homogeneous population of RBCs in terms of size. The onset of hemolysis for majority 

of RBCs at 150 mOsm in osmotic fragility curve also verifies this result. In comparison 

the RDW is wider for hypo-osmotically loaded RBCs. These data demonstrated that cells 

loaded with ASNase using LMWP were virtually identical to normal RBCs with regard 

to both structural and functional properties. 

 

Discussion 

Specific substrate selectivity and unparalleled reaction efficiency bestow proteins 

with the promise of being potent therapeutic agents. Yet, clinical applications of protein 

drugs face two major hurdles; one is their premature degradation and inactivation by 
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endogenous proteases as well as elimination by the reticuloendothelial system (RES), and 

the other is the manifestation of immunological responses and toxic side effects by the 

host immune system towards foreign protein compounds. To overcome such problems, 

the most widely employed strategy is encapsulation of the protein into a soluble and 

biocompatible drug carrier; which can either be a synthetic polymer (e.g. PLGA) or a 

multi-component particulate structure such as liposomes or cells. Among all of these 

carrier systems, RBCs feature a number of distinctive advantages. Not only are RBCs the 

most abundant cells in human body and thus affordable for use in drug encapsulation, but 

they are also completely biocompatible and biodegradable, particularly when autologus 

RBCs are used. In addition, the biconcave disk shape of RBCs endows them with the 

highest surface to volume ratio (1.9 x 104 cm/g) usable for drug encapsulation. Most 

importantly, RBCs possess a lifespan in circulation of approximately 120 days, which is 

significantly longer than any of the currently existing carriers. 

ASNase represents a typical example of these protein therapeutics. Despite its wide 

use in treating ALL, clinical application of ASNase is hindered by the short plasma half-

life and high potential for inducing allergic responses. Hence, ASNase has been 

attempted in almost every method involved in RBC encapsulation. We, therefore, 

selected ASNase to examine the PTD-mediated RBC encapsulation technology, not only 

because of the clinical significance of ASNase, but also a direct comparison of the 

benefits of the new method over existing techniques could be readily attained and 

justified. We also chose the LMWP peptide developed in our laboratory as the 

representative PTD, simply because it possessed similar membrane-translocating activity 

to the most widely studied TAT and yet was proven in animal studies to be neither toxic 
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nor immunogenic.44 Furthermore, to provide direct physical evidence of the utility of the 

new method, we decided to study the LMWP-mediated cell uptake examined via 

confocal fluorescence microscopy, utilizing the Alexa 488 fluorescent dye-labeled 

ovalbumin as the protein marker. As demonstrated in Figure 11, despite a significant 

overlap between the emission wavelengths of Alexa 488 and absorption wavelengths of 

hemoglobin, the green fluorescence from the LMWP-ovalbumin conjugates inside the 

cells were nevertheless quite evident. The horizontal sections along the z-axis (z sections) 

were also taken to ensure that the conjugates were indeed inside the RBCs (data not 

shown). In contrast, without the aid of LMWP, the dye-labeled ovalbumin could not enter 

the cells and only weak fluorescence was observed on the surfaces of RBCs. Based on 

these findings, we were convinced that LMWP would be able to translocate other 

attached proteins such as ASNase into living RBCs. Indeed, by utilizing an optimized 

encapsulation protocol, our results showed that a reasonable ASNase loading efficiency 

(~4%) a RBC loading capacity (8 IU of ASNase per 100 µL of packed RBCs) was 

achieved. Clinically, the dose of ASNase as a sole induction agent in the treatment of 

ALL is about 200 IU/kg body weight.48 Hence, even based on our currently established 

loading protocol, this clinical dosing regimen, which can be translated into a dose of 2.5 

mL of ASNase-loaded RBCs per kg of body weight, is obviously quite achievable. 

In vitro characterization showed there was no leaching or activity decay of the RBC-

encapsulated ASNase over a 3-day incubation period; under which the RBCs remained 

visibly intact. Since LMWP was linked to ASNase via disulfide linkages, it was 

speculated that detachment of LMWP from ASNase via degradation of such bonds by the 

elevated glutathione activity in the cytosol caused the membrane-impermeable ASNase to 



 38 

be trapped inside of the RBC. In addition, it has so far not been established that the PTD-

mediated cell entry is a reversible process. Hence, the permanent entrapment of the 

protein drug inside RBCs could also result from this irreversible translocation 

mechanism. Overall, the absence of leaching and activity decay of the entrapped ASNase 

fulfills one of the essential requirements for the ASNase-loaded RBCs to eventually be 

useful clinically. 

Evidence gathered from our experimental results all point towards the same 

direction; i.e. RBCs after processing by the new encapsulation method remain both 

structurally and functionally intact. The morphology of treated RBCs were indistinctive 

from the untreated cells (see  Figure 14) whereas all of the important cellular parameters 

including MCV, MCH, MCHC, and RDW were all statistically indistinguishable from 

that of untreated RBCs (see Table 3). The most convincing evidence came from the 

oxygen transport capability of the treated RBCs, as ASNase-loaded RBCs displayed 

virtually statistically indistinguishable oxygen transport characteristics, such as the 

measured Hill coefficients and pO50 values, from the untreated, normal RBCs (see Table 

4). 

It should be noted that RBCs treated by any of the existing encapsulation methods, 

either by electroporation or hypotonic dilution, may result in a loss of cellular 

components such as hemoglobin. Several investigators reported that under a carefully 

managed process of hypotonic dialysis and with the aid of a rejuvenating agent during the 

resealing procedure, drug-loaded RBCs could preserve an intact structure and initial 

chemical balance similar to those of native RBCs.49, 50 Nevertheless, in this hypo-osmotic 

drug-loading method, a pore-opening and a resealing step, both involving dialysis, were 
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required. Thus far, the largest protein being encapsulated in RBCs by using this method 

was alcohol oxidase from Pichea pastoria51, which has a molecular weight (675 kDa) 10-

fold larger than that of hemoglobin (65 kDa), the major component of an RBC. Since 

dialysis is an equilibrium process and with such large pores being created on the cell 

membrane, in theory and practice, it is inevitable that some constituents in the cytosol 

such as hemoglobin, glutathione, or cytoskeleton would be leaked out of the RBC. 

Indeed, loss of hemoglobin was observed in RBCs treated with the hypo-osmotic dialysis 

method, as evidenced by a decrease in MCH after resealing.Error! Bookmark not 

defined. As known, aside from the principal activity in oxygen transport, RBCs also 

carry out other important biological functions including energy (ATP)-involved 

metabolic processes as well as scavenging of oxidative stress52. Hence, a loss of 

hemoglobin would not only impair the oxygen transport function of RBCs, but also affect 

their ability to manage oxidative stress. On the other hand, a loss of the cytoskeletal 

constituents would compromise the structural integrity of RBCs, making them prone to 

destruction or recognition by cells in the phagocytic system. 

Osmotic fragility of the treated RBCs has been widely adopted as a measure or 

revealing sign of the membrane integrity after undergoing a drug loading process. 

Numerous reports in the literature indicate changes in osmotic fragility curves after 

loading RBCs with the hypotonic methods.Error! Bookmark not defined.53 Chiarantini 

et al. reported that after hypotonic dialysis followed by hypotonic or isotonic washing, 

RBCs exhibited distinctly different osmotic fragility profiles as well as earlier onset of 

rupture compared to the normal RBCs.53 These findings support the assumption that the 

RBC membranes were considerably weakened during these loading processes. In sharp 
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contrast, our results demonstrated that RBCs being processed through the LMWP-

mediated encapsulation method display a nearly superimposed osmotic fragility profile 

when compared to that of normal RBCs, with both samples showing an identical onset of 

at about 150 mOsm/Kg (see Figure 15). 

These findings further confirm our hypothesis that the PTD-mediated protein 

translocation is minimally invasive with no apparent compromise of the RBC membrane. 
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Figure 11. Confocal microscopy images of control RBCs (row A), RBCs incubated 
with Alexa Fluor 488-labeled ovalbumin (OVA-488; row B), and LMWP-ovalbumin 
(LMWP-OVA-488; row C). First column: fluorescence mode; second column: DIC 
mode; third column: superimposition. Scale bar = 5 µm. (Microscope: Carl Zeiss, 
Jena Germany, LSM 510 META. Objective: 63x, 1.2N. A., Water immersion, Zeiss 
cat. no. 440668. Temperature: 20 °C. Mounting medium: ProLong Gold, Invitrogen, 
Carlsbad, CA. Acquisition software: LSM 510 Release Version 4.2 Service Pack 1).
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Figure 12. Loading kinetics of LMWP-ASNase into mouse RBCs. LMWP-ASNase 
solutions at concentration of 100 U/mL was prepared and loading kinetics into 
mouse RBCs monitored over 90 min period. Statistical analysis indicated no 
significant difference among values for different time points. 
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Figure 13. Effect of mouse RBC age on loading. Comparison of ASNase loading into 
freshly collected RBCs vs. 2-day old RBCs stored as whole blood, or 2-day old but 
stored washed. (* p < 0.05) 
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Parameter Control Loaded 

MCV (fL) 58.3 ± 0.4 57.8 ± 0.4 

MCH (pg) 17.3 ± 0.4 16.6 ± 0.3 

MCHC (g/dL) 29.6 ± 0.4 28.7 ± 0.6 

RDW (%) 17.7 ± 0.2 17.4 ± 0.3 
 

Table 3. Hematological parameters of control (sham loaded) and LMWP-ASNase 
loaded mice RBCs. MCV = mean corpuscular volume, MCH = mean corpuscular 
hemoglobin, MCHC = mean cell hemoglobin content, RDW = red cell distribution 
width.
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 Figure 14. SEM images of control (sham loaded) and LMWP-ASNase loaded mouse 
RBCs. RBCs were fixed in 2.5% glutaraldehyde in R-HBSS for 1 hour at 4°C. 
Washed cells underwent dehydration in graded ethanol from 50% to absolute 
ethanol. Dehydrated RBCs were washed four times with HMDS 
(hexamethyldisilazane) and air dried overnight. After gold sputtering (Polaron 
E5100) cells were examined by scanning electron microscope (1910 Field Emission 
Scanning Electron Microscope, Amray). 
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Figure 15. Osmotic fragility curves of control (sham loaded) and LMWP-ASNase 
loaded sheep RBCs. 
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 Oxygen Dissociation Parameters 
 Control RBCs Loaded RBCs Reference54 
Hill Coefficient 3.15 ± 0.32 3.07 ± 0.34 3.14 ± 0.12 
pO50 (mmHg) 37.44 ± 0.03 38.64 ± 0.02 40.0 ± 1.0 

 

Table 4. Oxygen dissociation parameters of control (sham loaded) and LMWP-
ASNase loaded sheep RBCs are compared to literature values. 
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Chapter 4 

Pharmacokinetics and Therapeutic Efficacy of RBC-Loaded ASNase 

Introduction 

In previous chapters we showed successful encapsulation of LMWP-ASNase into 

RBCs and confirmed that these RBCs are still functionally viable as well as structurally 

comparable to normal RBCs. The ultimate goal of encapsulating LMWP-ASNase into 

RBCs is to improve upon pharmacokinetic properties of ASNase, by maintaining original 

properties of RBCs, and thereby, the therapeutic effect of ASNase. Therefore, additional 

experiments were undertaken to test therapeutic viability and applicability of 

encapsulated ASNase. 

When considering pharmacokinetic properties of ASNase, it is important to keep in 

mind that the circulating half-life of native ASNase is 2.4 - 3.3 (± 0.8) hrs in mice49 

which should significantly increase upon encapsulation into RBCs. At the same time 

when leukemic mice are treated with ASNase-encapsulated RBCs, the life span should 

significantly increase compared to those treated with free- or hypotonically loaded- 

RBCs.  

In order to compare the efficacy of RBC-loaded and native ASNase against leukemia 

it was necessary to come up with a mouse strain and corresponding cell line that will 

respond to ASNase treatment. Horowitz et al mention several murine cell lines that are 

ASNase-sensitive and express low asparagine synthetase activity along with their origin 
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of mouse strain.55 Among those listed the DBA/2 mouse strain with L5178Y cell line was 

chosen for its wide spread application in examining efficacy of various forms of ASNase. 

 

Materials and Methods 

All animal experiments were performed in accordance with the Guide for Laboratory 

Animal Facilities and Care (NIH publication 85-23, revised 1985) and the guidelines of 

the Institutional Animal Care and Use Committee (IACUC) at the University of Utah or 

the University Committee on Use and Care of Animals (UCUCA) at the University of 

Michigan. 

Pharmacokinetics of ASNase Encapsulated in RBCs 

RBCs collected from 6 weeks old DBA/2 mice (Harlan, Indianapolis, IN) were 

treated with LMWP-ASNase conjugates by procedures previously discussed in Chapter 

3. The plasma half-life based on enzymatic activity was calculated after intravenous 

injection of the ASNase-loaded RBCs into the DBA/2 mice. As a control, ASNase was 

encapsulated into RBCs using the conventional hypotonic rupture / resealing method, 

according to a previously established procedure20. In both groups, each individual mouse 

was given 8 units of RBC-encapsulated ASNase (n = 4 per group). Total ASNase activity 

from recipient blood was measured by direct nesslerization. 

Determination of Cytotoxicity in Murine L5178Y Lymphoma Cells by MTT Assay  

Antiproliferative in vitro screening was performed on the murine L5178Y murine 

lymphoma cells (American Type Culture Collection, ATCC; Manassas, VA). 

Cytotoxicity was assessed by MTT assay. The L5178Y cells were suspended into 96-well 

plates at a density of 1 x 10 5 cells/mL in RPMI 1640 (Gibco, Grand Island, NY) 
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supplemented with 10 % FBS. Cells were grown for 24 hrs at 37 °C, 5% CO2, 

humidified, before ASNase treatments. After 72 hours of incubation with ASNase 

formulations, cells were incubated with MTT for an additional 4 hrs. Purple formazan 

product was dissolved in 200 uL DMSO and the corresponding absorbance at 560 nm 

was measured using a microplate reader. The concentrations required in order to inhibit 

cell growth by 50% (IC50) were calculated. 

Optimal ASNase Treatment Time for Tumor Bearing DBA/2 Mice 

L5178Y cells were cultured in RPMI 1640 supplemented with 10% FBS at 37 °C in 

a humidified 5% CO2
 environment. Each DBA/2 mouse was given 1 x 106

 L5178Y cells 

in 0.2 ml RPMI-1640 media by intraperitoneal injection. On day 1, 2, 3, 4, and 5 after 

tumor implantation a group of mice was selected to receive ASNase (20 U/mouse in 0.1 

mL) by intraperitoneal injection and their survival times recorded. 

Survival of tumor-bearing mice after administration of LMWP-ASNase-loaded 

RBCs 

L5178Y cells were cultured as described above. DBA/2 mice were then given 

intraperitoneal injections of 7 x 105
 cells in 0.1 ml HBSS. Five days after tumor 

implantation, mice with narrow bodyweight range were selected and divided into two 

groups: 1) control groups given saline only and 2) RBCs loaded with LMWP-ASNase (n 

= 5 each). Each mouse in group 2 received intravenous injection (tail vein) of LMWP-

ASNase loaded RBCs equivalent to 8 units of free ASNase. The subsequent survival of 

the tumor-bearing mice was monitored. 
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Statistical Analysis 

 All data are expressed as mean ± S.D. The log-rank test was used in the survival 

study of the tumor-bearing mice. A p-value of less than 0.05 was considered significant. 

 

Results 

Prolonged Circulation Half-Life of ASNase Encapsulated in RBCs 

Since RBCs loaded with LMWP-ASNase closely resembled normal RBCs in 

functionality and retained physical properties, we hypothesized that encapsulated ASNase 

would inherit the same, extended circulation half-life of normal RBCs. To test this 

hypothesis, we injected DBA/2 mice with LWMP-ASNase loaded RBCs by tail vein, and 

the circulation half-life of ASNase was determined from the linear portion of the 

elimination phase. For comparison, we also prepared ASNase-loaded RBCs with 

equivalent enzyme concentrations using the conventional hypo-osmotic rupture/resealing 

technique. While both types of RBCs showed a biphasic disappearance of enzymatic 

activity over time, ASNase loaded into the RBCs by LMWP-mediated procedure 

displayed a significantly longer circulation half-life (4.5 ± 0.5 days) than that of ASNase 

loaded  into RBCs by hypo‐osmotic rupture / resealing method (2.4 + 0.7 days), as 

depicted  in Figure 16,  or  the  free ASNase which had  circulating half‐life of 3.3 hrs 

(data not shown). 

Verification of Murine L5178Y Leukemia Cell Line Sensitivity to ASNase 

Prior to initiating an efficacy study of ASNase in mice model, we wanted to verify 

that the leukemia cell line to be used, L5178Y, was indeed sensitive to ASNase treatment 

as this cell line has been known to become insensitive to ASNase treatment.56 When 
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these cells were incubated with comparable dose of either native or LMWP-conjugated 

ASNase for 72 hrs, and cell viability measured by MTT assay, the IC50 was determined to 

be 9.74 IU/mL for native and 1.95 IU/mL for LMWP-conjugated ASNase (see Figure 17) 

indicating not only that these cells were sensitive to ASNase treatment but also that the 

conjugation of LMWP increased cytotoxicity of ASNase. 

Therapeutic efficacy of RBC-encapsulated ASNase 

Upon verification of sensitivity of L5178Y cells to ASNase, the therapeutic efficacy 

was examined. We injected RBCs loaded with LMWP-ASNase into L5178Y lymphoma-

bearing DBA/2 mice to examine the therapeutic efficacy of the encapsulated enzyme. On 

day five after tumor injection and when symptoms became apparent, 8 IU of RBC-loaded 

ASNase were intravenously injected. Compared to control animals which received saline 

injections, the animals treated with LMWP-ASNase loaded RBCs showed a significant 

increase in mean survival time, almost a 44% increase, from 10.0 ± 1.4 days to 14.4 ± 2.3 

days, as shown in Figure 18. 

 

Discussion 

One of the proofs of the benefits of the LMWP-mediated cell encapsulation method 

stemmed from the in vivo pharmacokinetic study of the plasma half-life of the ASNase-

loaded RBCs. For comparison, RBCs loaded with ASNase via a hypotonic method were 

used as a control. Consistent with the findings by other investigators23, 21, 49 the hypotonic 

method resulted in changes in morphology and surface structures of many of the treated 

RBCs and, as a consequence, significantly shortened the circulating half-lives of such 

cells. An overall half-life of approximately 2.4 days was found for RBCs treated with the 
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hypotonic method whereas, in contrast, RBCs treated with the LMWP mediated method 

exhibited significantly prolonged plasma half-life of 4.5 days; almost double the value for 

the hypotonic treated RBCs (see Figure 16). However, we believe that there is room for 

improvement because biological carriers like RBCs require more strict measures of 

handling precautions57, as evidenced by the fact that the reported half-lives of 

manipulated RBC in rodents show variable results19, 20, Error! Bookmark not defined., 

58. Therefore, upon optimization of the RBC encapsulation method via PTD peptide, it is 

expected that the half-life of enzyme-loaded RBCs will increase compared to the results 

we have obtained from our preliminary study. 

For the ASNase-loaded RBCs to function desirably, another essential requirement is 

that the entrapped drug must be able to retain its original therapeutic capability. To 

validate this criterion, we tested the therapeutic functions of the ASNase-loaded RBCs 

against a L5178Y lymphoma tumor-bearing DBA/2 mouse model. As can be seen in 

Figure 18, administration of ASNase-loaded RBCs was able to considerably increase the 

median survival time of the mice (14.4 days), when compared to the median survival time 

of 10 days observed from the saline-injected control group; an enhancement of the 

survival time by 44%. It should be quite easy to assess the prowess of the proposed RBC-

encapsulation technology in ASNase therapy, after comparing our results with findings 

by others under similar in vivo conditions. As reported, a nearly 16.7% enhancement in 

survival time over the control was observed by other investigators following intravenous 

injection of 8 IU of free ASNase to L5178Y tumor bearing mice.59 Previously, TAT-

ASNase was investigated for potential application for targeted therapy of ALL60,61. The 

same tumor model (L5178Y/ DBA/2) showed that the mean survival time of L5178Y cell 
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implanted DBA/2 mice treated with free ASNase showed no improvement with respect to 

an untreated control group61. It is also noteworthy that Alpar and Lewis investigated 

ASNase-loaded in RBCs, which reports impressively longer survival in treated animals.62 

However, in that work, different tumor cell lines and animal models (6C3HED cell lines, 

C3H mice) were used. The median survival time of the mice in the untreated control 

group was about 18 days whereas L5178Y implanted DBA/2 mice in our study as well as 

previous studies61 showed only 10 days, suggesting the tumor burden in DBA/2 strikes 

animals more quickly and severely than the C3H mice. The difference is further 

evidenced by in vitro doubling time of the two cell lines — L5178Y divides more rapidly 

than 6C3HED cells (data not shown). A more extensive animal investigation designed to 

further demonstrate the long-term benefits of this new approach in ASNase therapy, such 

as the alleviation of ASNase-induced toxic and immunologic responses, is currently in 

progress in our laboratory. 
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Figure 16. Time profile of ASNase activity in blood in DBA/2 mice (n=4). LMWP-
ASNase loaded RBCs (8 IU ASNase per mouse; blue diamond) and ASNase-loaded 
RBC ghosts (8 IU ASNase per mouse; red square) were given via intravenous 
injection through tail vein. ASNase activities in whole blood specimens were 
measured by direct nesslerization. 
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Figure 17. Cytotoxicity of native ASNase and LMWP-ASNase. L5178Y cells were 
incubated with native or LMWP-conjugated ASNase for 72 hrs before MTT assay. 
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Figure 18. Kaplan-Meier survival curve for DBA/2mice bearing L5178Y lymphoma 
cells. RBC encapsulated LMWP-ASNase (8 IU ASNase per mouse; solid line) or 
saline (dotted line) were given on day 5 after tumor implantation when symptom 
from tumor burden was apparent (n = 5, ⁎p < 0.05). 
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Chapter 5 

Conclusions 

In conclusion, an innovative method for encapsulation of therapeutically active 

ASNase into functionally intact RBCs was developed toward enhanced ASNase therapy 

for ALL. Because of the non-invasive nature of PTD-mediated cell entry, our results 

showed that the structural and functional integrity of both the loaded ASNase and 

processed RBCs were completely reserved. RBCs treated by this encapsulation method 

not only exhibited a long circulating half-life similar to that of untreated RBCs, but also 

displayed enhanced therapeutic effects of the entrapped protein drug, presumably via 

protection of the drug by RBCs from possible proteolytic degradation and phagocytic 

clearance. It should be noted that full preservation of both structure and function of the 

treated RBCs is of great clinical significance because theoretically this would provide the 

flexibility of replacing an unrestrictive amount of blood (or RBCs) from the patient with 

drug-loaded RBCs, should situations warrant such for clinical management. 

Furthermore, for second remission treatment of ALL the pegaspargase did not show 

advantage over native ASNase. However, with RBC encapsulated ASNase, with the RBC 

membrane acting as a shield to mask the enzyme from the circulation, we can expect a 

reduced immunogenic effect, which would allow use of ASNase in patients with 

sensitivity to the enzyme. 

Based on this simple encapsulation method, a plasmapheresis-type of blood auto-

transfusion system is currently being designed in our lab in which RBCs are separated 
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from whole blood, processed through the LMWP-ASNase loading process, merged back 

with other blood components, and finally returned to the patient for in situ drug therapy 

for ALL. 

Overall, this universal method of encapsulation may also be applied to several other 

protein drugs. Applications of this technology for the treatment of cocaine overdose, 

oxidative stress, and various types of cancers are currently being pursued in our 

laboratory.
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