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ABSTRACT 
 

ISOTOPIC GEOCHEMISTRY OF MERCURY IN ACTIVE AND FOSSIL 
HYDROTHERMAL SYSTEMS 

 
by 
 

Christopher Nelson Smith 
 

Co-Chairs: Stephen E. Kesler and Joel D. Blum 
 
  

Presented here are the first studies of stable Hg isotope geochemistry in 

hydrothermal systems. A new analytical method for the determination of high precision 

Hg isotope ratios by cold-vapor multiple-collector inductively-coupled-plasma mass-

spectrometry (CV-MC-ICP-MS) was developed and the total range of Hg isotopic 

compositions measured in natural samples was found to be 5.8 ‰ δ202Hg (δ202Hg/198Hg; 

relative to NIST 3133) or greater than 72 times the analytical precision (± 0.08 ‰, 2 SD) 

of the method.  

 The Hg isotopic compositions of samples throughout the vertical extent of two 

fossil hydrothermal systems in Nevada can be grouped by mineralogy and 

position; δ202Hg values at the tops of the systems are lowest in cinnabar-rich sinter and 

distinct from the higher δ202Hg values of metacinnabar-rich sinter, deeper seated veins 

have δ202Hg values that are higher than cinnabar-rich sinter. Low δ202Hg values in 

cinnabar-rich sinter are most likely due to mass-dependent fractionation that occurred 



 

ix 
 

during boiling of the hydrothermal fluid, while the differences between cinnabar and 

metacinnabar are potentially due to kinetic effects associated with mineral precipitation.  

The Hg isotopic compositions of rocks, ore deposits, and active spring deposits 

from the California Coast Ranges were measured. Ore deposits have similar average Hg 

isotopic compositions that are indistinguishable from averages for the source rocks. This 

observation suggests that there is little or no isotopic fractionation (<±0.5‰) during 

release of Hg from source rocks into hydrothermal solutions. Isotopic fractionation does 

appear to take place during transport and concentration of Hg in deposits, however, 

especially in their uppermost parts, expressed on the surface as hot springs. Boiling of 

hydrothermal fluids, separation of a Hg-bearing CO2 vapor or reduction and volatilization 

of Hg0 in the near-surface environment are likely the most important processes causing 

the observed mass-dependent Hg isotope fractionation. This should result in the release 

of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal 

systems. Estimates of mass balance suggest that residual Hg reservoirs are not 

measurably enriched in heavy Hg isotopes as a result of this process because only a small 

amount of Hg (<4%) leaves actively ore-forming systems. 
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CHAPTER I. 
 

INTRODUCTION 
 
  

This thesis presents the first systematic attempt to utilize Hg isotopes to trace the 

source and fate of Hg in active and fossil hydrothermal systems. This study is important 

to a wide spectrum of geoscience disciplines because of the toxicity and mobility of Hg 

in the Earth. Direct isotopic analysis of Hg-bearing materials is the first step in 

developing studies that will examine the migration and accumulation of this volatile 

element. 

Stable isotopes have been essential tools in the exploration of geochemical cycles 

and processes. Our understanding of the subsurface processes occurring in hydrothermal 

systems, including active geothermal systems and their fossil analogues, preserved as ore 

deposits, have been advanced through the analysis of O, H, S, C, and N isotope ratios 

(Criss, 1999; Hoefs, 2004). These light stable isotopes provide information on the source 

of hydrothermal fluids and the dissolved and gaseous components in the fluid. Processes 

of isotopic exchange, boiling and mineral precipitation are recorded in the stable isotope 

compositions of the gas, solid and liquid phases of the fluid. However, the source of 

metals in these systems has remained elusive, and inferences as to their source have come 

from extrapolation based on associated light stable isotope signatures (e.g. the magmatic 

water box on a δD vs. δ18O plot).  



 2

Measurement of heavy stable isotope ratios would allow the source and cycling of 

heavy elements, such as metals, in the Earth to be assessed directly. Recent advances in 

instrumentation technology have enabled new investigation into heavy stable isotope 

ratios using multiple-collector inductively-coupled-plasma mass-spectrometry (MC-ICP-

MS) (see review by Halliday et al., 1995). This instrument combines the ionizing 

efficiency of a plasma source with the ability to measure multiple signals simultaneously, 

which is essential for obtaining high precision measurements.  

Recent investigations have found isotope ratios of Fe (Anbar et al., 2000; Bullen 

et al., 2001), Cr (Ellis et al., 2002), Cu (Marechal et al., 1999; Zhu et al., 2000), Zn 

(Marechal et al., 1999), Mo (Barling et al., 2001; Seibert et al., 2001) and Tl (Rehkamper 

and Halliday, 1999; Rehkamper et al., 2002) range over several per mil (‰) (reviewed by 

Johnson et al., 2004). Both biotic and abiotic processes have been shown to cause 

isotopic fractionation (Beard et al., 1999; Anbar et al., 2000). These new isotope systems 

have thus far been used to determine the extent of Cr6+ reduction in a contaminated 

aquifer (Ellis et al., 2002) and to provide constraints on the redox state of the Archean 

and Proterozoic oceans using Mo and Fe isotopes (Arnold et al., 2004; Rouxel et al., 

2005). Metal fluxes through seafloor hydrothermal vents have been investigated using Tl 

(Nielsen et al., 2006) and Zn isotopes (John et al., 2008). Graham et al. (2004) have used 

Fe and Cu isotope ratios to trace the source of metals in the Grasberg porphyry complex. 

Asael et al. (2007) used Cu isotopes to trace the source and redox state of the ore fluid in 

a sedimentary-hosted Cu deposit. Initial studies of Hg isotopes have proven to be 

similarly useful in the study of metal geochemistry.  
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Recent experimental studies of Hg isotope fractionation have shown that 

volatilization causes measurable changes in isotopic compositions by the preferential 

reduction and vaporization of lighter Hg isotopes (Zheng et al., 2007). This is significant 

in the study of ancient hydrothermal systems because it supports boiling and vapor 

separation in a near surface environment as a mechanism that causes the mass-dependent 

fractionation of Hg isotopes (Smith et al., 2005, 2008). Laboratory studies have also 

confirmed that biological reduction and abiotic photoreduction cause significant mass 

dependent fractionation of Hg isotopes in surficial environments (Bergquist and Blum, 

2007; Kritee et al., 2007; Biswas et al., 2008). In both biotic and abiotic reduction, lighter 

isotopes of Hg were preferentially reduced to the volatile Hg0 species, leaving 

isotopically heavier Hg in the remaining residue. These studies indicate that Hg isotopes 

might be useful in studies of ore deposits by: 1) providing insight on the physical 

conditions of the hydrothermal system during ore formation; 2) assessing the role of 

biological interactions in ore deposition; and 3) quantifying the role of ore deposits and 

active hydrothermal systems in the global cycling of Hg.  

In Chapter II a new and robust method for obtaining high precision measurements 

of Hg isotope ratios by cold vapor (CV) generation MC-ICP-MS from a variety of sample 

matrices is presented. A new method for extracting Hg from samples by sequential 

pyrolysis, combustion and liquid trapping is described. A significant range of Hg isotope 

ratios were found in several types of hydrothermal ore deposits and among organic and 

inorganic and organic standard reference materials. 

Variations in Hg isotopic compositions throughout the vertical extent of two fossil 

geothermal systems are explored in Chapter III (Smith et al., 2005). Boiling of the 
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hydrothermal fluids and gas phase separation appears to be a major mechanism of mass-

dependent Hg isotopic fractionation in these systems. Cinnabar deposited from gaseous 

Hg at the surface has a lighter isotopic composition than Hg hosted in sulfides in deeper-

seated veins. Metacinnabar deposited in sinter at the surface has distinctly heavier Hg 

isotopic compositions than cinnabar-rich sinter, and is trace metal-rich, suggesting 

deposition from deeper vein fluids. 

In Chapter IV (Smith et al., 2008), the first study of the isotopic composition of 

mercury in rocks, ore deposits, and active spring deposits from the California Coast 

Ranges, a part of Earth’s crust with unusually extensive evidence of mercury mobility 

and enrichment, is presented. The region hosts abundant Hg mineralization that began to 

form 2.3 Ma, coinciding with the inception of volcanic activity in the area (Rytuba, 

1995). There are two types of mercury deposits present in the area, hot-spring deposits 

that form at shallow depths (<300 m) and silica-carbonate deposits that extend to depths 

of 1000 m. Active springs and geothermal areas continue to precipitate Hg and Au and 

are analogues to the fossil hydrothermal systems preserved as ore deposits.  

Hot spring and silica carbonate ore deposits have similar mean Hg isotopic 

compositions to the potential source rocks, but there is more variability in the isotopic 

compositions of the ore deposits. Active hot springs in the region are fed by mixtures of 

meteoric and connate fluids, considered to be analogous to the ore-forming fluids in the 

district and can precipitate sulfidic mud that contains up to 4890 ppm Hg and 14 ppm Au 

(Peters, 1991; 1993). The Hg isotopic compositions of these precipitates are in, general, 

lighter than ore deposits and host rocks in the region.  
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Hg isotopic compositions from the California Coast Ranges suggest that processes 

that leach and transport Hg from source rocks cause very little isotopic fractionation (< ± 

0.5‰). Significant mass-dependent isotopic fractionation occurs in the near-surface 

zones of hydrothermal systems. Boiling of hydrothermal fluids or separation of a 

mercury-bearing CO2 vapor is likely the most important process causing of the observed 

Hg isotope fractionation. This should result in the release of mercury with low δ202Hg 

values into the atmosphere from the top of these hydrothermal systems. Estimates of 

mass balance indicate that only a small amount of Hg (< 3.5%) leaves active ore-forming 

systems and residual Hg reservoirs are not measurably enriched in heavy Hg isotopes as a 

result. 

The results of the studies presented in this thesis show that Hg isotope ratios can: 

1) provide information on Hg fluxes to the atmosphere and sedimentary record; 2) be 

used to calculate mass transfer between source, ore deposit and the surface; and 3) 

constrain the mineralizing environment of sulfides in active and fossil geothermal 

systems. These are important first steps in integrating Hg isotopes into studies of global 

Hg cycling and identifying anthropogenic and geogenic inputs to the Hg cycle. Given the 

relative abundance of lighter Hg isotopes in the upper levels of ore deposits and the 

contrasting Hg isotope ratios between bedrock and ore deposits, Hg isotopic 

compositions could be used to calculate the relative inputs from anthropogenic sources 

and from weathering of bedrock in a watershed where mining was extensive. Hg isotopes 

will also be useful in the study of ore deposits. 

Hg isotopic compositions might be used to explore for extremophile influences on 

mineralization in hydrothermal systems. Hg isotopic biosignatures might also identify 
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source rocks in sedimentary basin-hosted deposits, such as Mississippi Valley-type Pb-Zn 

deposits. Redox changes recorded in Hg isotopic compositions may prove similarly 

useful as Mo and Fe isotopes have been in the study of the evolution of the Earth’s early 

atmosphere and oceans. The distinctive isotopic composition of vaporized Hg could be 

used to identify zones of paleo-boiling in ore deposits and provide insight on the tectonic 

and thermal evolution of a mineralized district, such as the enigmatic Carlin Trend in 

northern Nevada. All of these avenues of study have significant impact on the geological 

sciences and the way in which we understand hydrothermal systems. 
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CHAPTER II. 
 

HIGH PRECISION ANALYSIS OF NATURAL MERCURY ISOTOPE 
VARIATIONS BY COLD VAPOR MULTIPLE-COLLECTOR INDUCTIVELY 

COUPLED PLASMA MASS SPECTROMETRY 
 

 

Abstract 

 This paper presents our analytical method for the determination of high precision 

Hg isotope ratios by cold-vapor multiple-collector inductively-coupled-plasma mass-

spectrometry (CV-MC-ICP-MS). Cold-vapor, or gaseous Hg0, generation with Sn2+ as 

the reducing reagent allows the fast and selective chemical separation of mercury from 

the sample matrix with an efficiency of >99.9%. Instrumental mass-bias is corrected 

using an internal thallium (Tl) spike (NIST 997) introduced as an aerosol to the sample 

gas flow as well as by sample-standard bracketing using a NIST 3133 solution matched 

in concentration and matrix to each sample. Data is presented in standard delta notation 

in permil relative to the NIST 3133 Hg standard. δ202Hg values are calculated as:   

δ202Hg = 1000*{[(202Hg/198Hg)sample]/[(202Hg/198Hg)NIST3133]-1}.   

A method for removing Hg from complex geological matrices has been developed 

incorporating a two-stage furnace that employs sequential pyrolysis, combustion and 

liquid trapping of Hg in an oxidizing solution of KMnO4. The oven method is  >99% 

efficient in removing Hg from sample powders and the total procedural blank for the 

method is <20 pg Hg. Elements that produce significant chemical interferences with cold 
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vapor generation, such as Se, I, Au, Ag, Pt, and Ni are completely separated from Hg, 

allowing many different sample types to be analyzed. Typical internal precision of 

±0.03‰ (2SE) was achieved for 202Hg/198Hg ratios on a daily basis. The results of 

repeated analysis of NIST 3133 and Almadèn elemental Hg show a long-term external 

precision for δ202Hg of better than ±0.08 ‰ (2SD, n=43). The external reproducibility of 

natural samples in a variety of geologic matrices is better than ±0.09 ‰ (2SD, n=60). 

High precision analyses were obtained with as little as 50 ng of Hg. Samples of a variety 

of ore deposit types analyzed show a range of fractionation greater than 5‰ in δ202Hg, or 

1.25‰ amu-1, which is similar to the variations observed in the Fe, Se, Zn, Sb and Tl 

isotopic systems. Such variation in Hg isotopic compositions may be exploited as a useful 

geological and biogeochemical tracer.  

 

1. Introduction 

 The study of Hg has wide ranging implications because of its bioaccumulation, 

toxicity and role as a global pollutant, as well as its extreme mobility during natural 

geologic processes, especially those involving hydrothermal systems. Of particular 

interest is the potential application of Hg isotopic variations to provide new insights into 

the processes that account for Hg mobility and the sources from which it is derived. 

Recent studies employing multiple-collector inductively-coupled-plasma mass-

spectrometry (MC-ICP-MS) have revealed important information on the isotopic 

composition of Hg in terrestrial systems (Klaue et al., 2000; Evans et al., 2001; 

Hintlemann and Lu, 2003; Jackson et al., 2004; Smith et al., 2005; Foucher and 



 12

Hintelmann, 2006; Kritee et al., 2007; Bergquist and Blum, 2007; Jackson et al., 2008), 

particularly in hydrothermal ore deposits.  

High precision measurements of transition metal stable isotope ratios have been 

made over the last 10 years following the development of MC-ICP-MS technology (see 

reviews by Halliday et al., 1998; Johnson et al., 2004).  Thermal ionization is extremely 

inefficient for elements with high first ionization potentials (e.g. Zn, Se, Hg) making 

isotope ratio measurements by TIMS difficult or impossible. This obstacle is overcome 

by the ionizing efficiency of the plasma source in MC-ICP-MS instruments.  

Recent investigations using this new generation of mass spectrometers have found 

variations that range over several per mil for the isotope ratios of Fe (Anbar et al., 2000; 

Bullen et al., 2001), Cr (Ellis et al., 2002), Cu (Marechal et al., 1999; Zhu et al., 2000), 

Mo (Barling et al., 2001; Seibert et al., 2001) and Tl (Rehkamper and Halliday, 1999; 

Rehkamper et al., 2002). Both biotic and abiotic processes have been shown to cause 

fractionation (Beard et al., 1999; Anbar et al., 2000; Bullen et al., 2001). These new 

isotope systems have thus far been used to determine the extent of Cr6+ reduction in a 

contaminated aquifer (Ellis et al., 2002) and to provide constraints on the redox state of 

the Archean and Proterozoic oceans using Mo and Fe isotopes (Arnold et al., 2004; 

Rouxel et al., 2005). Graham et al. (2004) used Fe and Cu isotope ratios to infer the 

source of metals in the Grasberg porphyry Cu-Au complex. Recent studies of Hg isotopes 

have proven the system to be a similarly useful tool in the geosciences (Bergquist and 

Blum, 2007; Jackson et al., 2008; Kritee et al., 2007; Smith et al., 2005, 2008; Xie et al., 

2005). 
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 Hg has seven naturally occurring stable isotopes, 196Hg, 198Hg, 199Hg, 200Hg, 

201Hg, 202Hg, and 204Hg with relative abundances of 0.15%, 10.04%, 16.94%, 23.14%, 

13.18%, 29.74% and 6.82% respectively (Blum and Bergquist, 2007).  This large span of 

masses among its stable isotopes (Δm/mavg = 4%), along with its high volatility, multiple 

redox states and ability to form bonds of a covalent nature, suggest that it may undergo 

isotopic fractionation in nature (Nier, 1950; O’Neil, 1986). In particular, the high 

volatility and multiple redox states of Hg should cause variations in Hg isotopic 

compositions in low temperature hydrothermal systems and in the environment (Smith et 

al., 2005, 2008).  

 The dominant forms of Hg in nature are as Hg0, ionic Hg2+ and methyl (CH3Hg+) 

and dimethyl Hg ((CH3)2Hg2+). In geothermal systems most Hg occurs as Hg0
aq or as 

Hg0
g where hydrothermal fluids have boiled and separated a gas phase (Varekamp and 

Buseck, 1984; Christenson and Mroczek, 2003). In S-rich fluids associated with ore-

forming hydrothermal systems, Hg is predominantly complexed with bisulfide ligands 

(Barnes and Seward, 1997), and in sedimentary basins Hg can be found complexed with 

organic species and dissolved in petroleum (Krupp, 1988; Fein and Williams-Jones, 

1997). In the environment, Hg is mobilized as Hg0 and deposited from the atmosphere as 

ionic Hg2+ or as particulate Hg (Fitzgerald, 1993). In biological systems, methyl Hg 

(CH3Hg+), a toxic form of Hg, is bioaccumulated in aquatic food webs (Barkay, 2000).  

Low temperature geochemical and biological processes have been shown to cause 

mass dependent fractionation of metal stable isotopes (see review by Johnson et al., 

2004). Redox reactions resulting from biotic and abiotic processes are important 

mechanisms in the fractionation of Fe (Anbar et al., 2000; Bullen et al., 2001; Wiesli et 
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al., 2003), Cr (Ellis et al., 2002), and Cu (Marechal et al., 1999). The geochemistry of Hg 

is unique in that the reduction process also induces a phase change: 

Hg2+
aq → Hg0

aq → Hg0
g. (1) 

In the near surface environment, the Hg0 species is strongly partitioned to the gas phase 

and significant mass-dependent fractionation is expected to occur with this phase change 

(Smith et al., 2005; Chapter III, IV). Photoreduction of Hg2+→ Hg0 has been shown to 

cause both mass-dependent and mass-independent fractionation of Hg isotopes in 

biogeochemical systems (Kritee et al., 2007; Bergquist and Blum, 2007). 

Few studies of Hg isotope ratios have been published thus far. Recent analyses of 

Hg isotopic compositions in a fossil hydrothermal system show mass dependent 

variations of up to 5 ‰ in δ202Hg/198Hg values that can be correlated with zones of 

boiling and Hg host mineralogy (Smith et al., 2005; Chapter III; Chapter IV). Similar Hg 

isotopic variations have been measured in other ore deposits (Klaue and Blum, 2000; 

Hintelmann and Lu, 2003; Smith et al., 2004, 2008), coal and coal flyash (Evans et al., 

2001), fish and sediment cores (Bergquist and Blum, 2007; Foucher and Hintelmann, 

2006; Jackson et al., 2008) and biological reference materials (Xie et al., 2005). 

Carbonaceous chondrites were found to have Hg isotopic compositions similar to 

terrestrial values (Lauretta et al., 2001). 

 One of the challenges to high precision Hg isotope analysis is the very low (sub-

ng) concentrations of Hg in many types of environmental samples such as natural waters 

and atmospheric aerosols. Recent studies have tried to obtain reproducible analyses for 

low Hg samples using transient signals derived from the thermal release of small amounts 

(~1 ng) of Hg (Evans et al., 2001; Xie et al., 2005). While this approach may potentially 
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produce high quality data as the pre-concentration step in the process is further refined, 

thus far no reproducible Hg isotope ratios from natural samples have been obtained by 

this method.  

The method described here focuses on deriving a steady state signal by cold vapor 

generation of natural samples in an analysis routine that typically consumes 50 to 100 ng 

of Hg. In this study, we report high precision analyses of Hg isotopic compositions from 

analyses of standard reference materials and ore deposits using CV-MC-ICP-MS.  The 

±0.09 ‰ (2SD) external precision of natural samples using our method is an order of 

magnitude lower than previously published studies of Hg isotope analysis (Evans et al., 

2001; Xie et al., 2005; Foucher and Hintelmann, 2006). Isotopic compositions that we 

have measured so far have a range that is more than 50 times the external reproducibility 

(2SD) of the measurements.  

The advantage of this technique over the transient signal approach is the 

robustness of the analysis in both the internal and external precision of the measurement. 

Using cold vapor generation, high precision analyses of solutions containing as little as 

10 ng Hg are possible. This then presents the possibility of analyzing even low level 

environmental samples with modest sample preparation techniques involving pre-

concentration of samples by transfer of Hg from gold traps into solution. 

A method for quantitative extraction of Hg from the matrix of ore and other 

complex samples rich in elements known to interfere with cold vapor generation is also 

presented. This method employs sequential pyrolysis, combustion and liquid trapping of 

Hg in an oxidizing solution of KMnO4. Isotopic data from standard reference materials 

are presented and the potential for the use of Hg isotopes as geologic tracers is discussed.  
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2. Analytical Methods 

2.1 Reagents 

 All standard, reagent and sample solutions were prepared with 18 MΩ double 

deionized water (DDI) (Millipore®). Glassware and Savillex® PFA vessels were cleaned 

with trace metal grade nitric acid, bromine monochloride and deionized water before use. 

High purity HCl and HNO3 (Seastar®) acids were used in sample digestions. Bromine 

monochloride 1% (w/v) was prepared with reagent grade potassium bromide (Baker®), 

potassium bromate (Baker®), and high purity HCl and used for sample dilution. 

Potassium permanganate 1% (w/v) was prepared daily from reagent grade potassium 

permanganate (Alfa Aesar®) and high purity H2SO4 (Seastar®). Hydroxylamine 

hydrochloride (Baker®) 1% (w/v) was prepared with DDI water. A reducing solution of 

stannous (II) chloride 2% (w/v) used in cold vapor generation was prepared as needed 

from reagent grade stannous chloride (Baker®) in 1M HCl (Fisher® trace metal grade) 

and purged with Ar for one hour before use. 

2.2 Sample Preparation 

2.2.1 Acid Dissolution 

 Samples were decomposed for analysis using either acid dissolution or 

combustion, depending on the concentration of Hg in the sample and the composition of 

the sample matrix. Cinnabar and most sulfide minerals containing high concentrations of 

Hg and low concentrations of Au, Ag, Cu, Se and I were digested in acids. Sample 

powders (~0.05 - 0.10 g) were weighed into 15 mL Teflon® (PFA) vessels and a 3:1 

mixture of concentrated HCl/HNO3 was added. The vessels were tightly capped and 
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placed on a hot plate at 90 °C overnight. The acidic solution was centrifuged and the 

supernatent was removed from the undissolved residues, which typically consisted of 

silicate and oxide minerals that contain negligible amounts of Hg. The digested samples 

were stored in borosilicate glass vials with PFA lined caps to retain Hg in solution. 

2.2.2 Thermal Release 

 Samples that contain Se and I at concentrations as low as 50 ppm can generate 

chemical interferences with cold vapor generation by Sn(II)Cl2 (Welz, 1985) and Hg 

must therefore be separated from these elements for efficient cold vapor generation. This 

separation was accomplished by sequential pyrolysis and combustion in a linear tube  

furnace apparatus (Fig. 2-1) using a step heating procedure.  

Powdered samples were weighed into glazed ceramic boats that were first baked 

in a muffle furnace at 800 °C to remove any Hg blank and loaded into the first segment 

of the linear furnace. The furnace consists of a 28 mm I.D. quartz glass tube of 1 mm 

thickness with two chambers connected by a 1.5 mm orifice. The two chambers were 

wrapped with approximately 10 cm and 15 cm of insulated 18 gauge Nichrome resistance 

wire and surrounded with Ni foil acting as a shield. A type K thermocouple was inserted 

into the interior of the shield of the first chamber and heating was controlled by a 

Barnant® temperature controller (London, Canada).  

The first segment was heated in an argon stream of 80 mL min-1 with a two-stage 

program, ramping to 500 °C in 5 min and holding for 5 min and then ramping to 800 °C 

in 5 min and holding for 5 min. Thermal release profiles show that most Hg is released 

during the heating to 500 °C. Heating to 800 °C further ensures complete release of Hg 
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from the sample as well as removing any potential Hg blank from the pyrolysis chamber 

prior to subsequent analyses. 

The Ar stream carrying the pyrolysis products was passed through a 1.5 mm heated 

orifice into the second segment of the furnace, which was kept at a constant 1000 °C. At 

the entrance to the second chamber a stream of oxygen was introduced at 100 mL min-1 

to provide complete oxidation of the pyrolysis products. The furnace gas was introduced 

to a 1% potassium permanganate trapping solution using a glass impinger in a tall, 

narrow flask that allowed gas bubbles to react thoroughly with the solution. Hg0 from the 

gas stream was efficiently trapped in the solution as non-volatile Hg2+. The trapping 

solution was then treated with hydroxylamine hydrochloride until manganese oxides are 

dissolved leaving a clear solution ready for dilution and analysis.  

Liquid trapping is a common method for sampling flue gases with relatively high 

concentrations of Hg in industrial settings (EPA 7470). The advantages of liquid trapping 

of Hg over other approaches were established by experimenting with the pyrolysis and 

combustion of a variety of geological and biological materials including coal, coal fly 

ash, dogfish muscle and ore deposit samples. The release of abundant gases and water 

vapor during the decomposition of samples, especially coal and biological samples, was 

found to foul cold trapping devices. Acidic trapping solutions alone are not effective 

when employed as a single trap. Other types of solutions capable of oxidizing gaseous 

Hg, such as bromine monochloride (BrCl), react quickly with the O2 in the combustion 

gases, degrading their oxidizing efficiency. Liquid trapping using a 1% potassium 

permanganate (KMnO4) solution acidified with 10% ultra pure H2SO4 was found to have 
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the lowest Hg blank (~ 20 pg) and highest trapping efficiency. Initial tests that employed 

multiple KMnO4 traps found that a single trap was > 99% effective. 

One of the drawbacks of the KMnO4 trapping solution is a suppression of the Hg 

signal relative to BrCl when analyzing Hg by cold-vapor MC-ICP-MS. While the 

trapping and release of Hg is still quantitative from the KMnO4, there is a ~30% 

reduction in sensitivity when analyzing Hg in a KMnO4 matrix. This reduction in signal 

intensity may be due to matrix effects associated with the hydroxylamine solution used to 

reduce the KMnO4 solutions prior to analysis. To avoid the possibility of matrix effects 

standards and samples were matched in either BrCl or KMnO4 matrices. The 

concentrations of Hg in standards and samples were also matched to within ± 5% because 

of the effects of analyte concentration on the precision of measured δ202Hg values. 

2.3 Standards and Spikes 

A Hg standard solution (NIST 3133) from the National Institute of Standards and 

Technology was selected for use as a reference standard for reporting Hg isotopic values. 

Additionally, a laboratory standard was prepared from elemental Hg produced at the 

Almadèn mine (Castilla La Mancha, Spain), to monitor long-term external precision of 

the isotopic composition relative to the NIST 3133 standard. Of the few geologic 

materials available that have certified Hg chemical abundances, we chose NIST SRM 

1633b trace elements in coal fly ash (141 ppb Hg) to calibrate the efficiency of our 

sample preparation procedures. 
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Figure 2-1. Furnace apparatus used in the pyrolysis and combustion of samples. Sample 
material is loaded into glazed ceramic boats and placed in the pyrolysis chamber. Step 
heating releases Hg0 into a flow of inert Ar that carries sample gases into the combustion 
chamber where gases are oxidized at 1000˚C. Combustion gases then flow into an 
oxidizing KMnO4-H2SO4 solution where Hg2+ is trapped and other gases are released to 
the atmosphere. 
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2.4 Mass Spectrometry 

2.4.1 Instrumentation 

Hg isotopic ratios were measured on a Nu Instruments (Wrexham, UK) Nu-

Plasma double focusing magnetic sector inductively-coupled-plasma mass-spectrometer 

equipped with 12 fixed faraday collectors (Belshaw, 1998). The instrument has a variable 

zoom ion optics system that optimizes peak shapes and coincidence on a fixed detector 

array allowing optimal mass dispersion. Normal operating conditions for the mass 

spectrometer are summarized in Table 2-1. The signals of Hg (196, 198, 200, 201, 202, 

and 204), Tl (203, 205) and Pb (206) were simultaneously monitored in static mode 

(Table 2-2).  

2.4.2 Cold-vapor introduction 

The continuous-flow, cold-vapor (CV) generation apparatus consists of a frosted-

tip liquid-gas separator modified from the design of Klaue and Blum (1999; Fig. 2-2). A 

solution of 2% Sn(II)Cl2 in 1 M HCl is used to reduce Hg2+ in the sample solution to Hg0. 

The sample solution and the reducing Sn2+ solution are mixed online and pumped into the 

gas-liquid separator. The Hg0 vapor separated from the liquid is then swept into the 

plasma source of the MC-ICP-MS by a continuous flow of argon. As this process is > 

99% quantitative, the Hg that is swept into the plasma is not measurably fractionated 

given the analytical uncertainty of the method (± 0.09 ‰).
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Table 2-1 Instrument operating conditions and  
signal measurement parameters. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
 
 
Table 2-2 Faraday collector assignment. 

 

 

RF power 1400 W 
Plasma gas flow rate 32 L/min 
Interface cones nickel 
Accelerating voltage 4 kV 
Ion lens setting Optimized for max. intensity 
Instrument resolution ~300 
Mass analyzer pressure 2 X 10-9 mbar 
Detector 12 Faraday collectors 
Nebulizer microconcentric 

Spray chamber temp. 110 ºC 
Desolvator temp. 160 ºC 
Sweep gas (argon) 3.7 L/min. optimized daily 

Sample uptake rate 0.7 mL/min. 
Typical sensitivity 200 V/ppm Hg 
Sampling time two repetitions of 200 s 
Background time 20 s 

H4 H3 H2 H1 Ax L1 L2 L3 L4 
206Pb 205Tl 204Hg 203Tl 202Hg 201Hg 200Hg 198Hg 196Hg
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Figure 2-2. Schematic illustration of the gas-liquid separator. Modified from the design of 
Klaue and Blum (1999).  
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One advantage of CV generation using Sn(II)Cl2 is that it does not cause the 

reduction of other metals typically present in geologic samples. However, Se and I have 

strong effects on the reduction reaction and as little as 50 ppm Se can result in inefficient 

generation of Hg0 vapor (Welz, 1985). An alternative reductant, sodium 

tetrahydridoborate, has the disadvantage that it can reduce metals such as Au, Ag, Cu and 

Ni, creating fine precipitates in the sample introduction tubing that may retain Hg 

(Anderson, 2000). These metals are also common in many ore deposits in quantities great 

enough to pose a significant analytical interference and therefore sodium 

tetrahydridoborate should be avoided as a reductant. Due to the common presence of Se, 

Au and Ag in epithermal precious metal vein deposits there is the possibility for 

inefficient Hg0 vapor generation using either type of reductant. In this study, samples that 

contain both Se and metals were processed by thermal release to separate the Hg from the 

complex sample matrix as described in section 2.2.2. 

2.4.3 Mass Interferences 

 Mass spectral interferences with 196Hg, 198Hg and 204Hg are possible from the 

isobars 196Pt, 198Pt, and 204Pb. Molecular interferences are possible for 198Hg, 199Hg, 

200Hg, 202Hg, and 204Hg from the oxides 182WO, 183WO, 184WO, 186WO and the hydride 

203TlH. The cold vapor generation process avoids these potential interferences, by 

separating Hg vapor from the sample solution in the gas-liquid separator (Fig. 2-2), 

leaving other metals and oxides in solution. The potential TlH interference from the Tl 

external standard is minimized by the use of a desolvation unit (Fig. 2-2). The level of 

any of the potential spectral interferences are very low relative to the Hg signal and in all 

cases, were below detection in the mass scan after CV sample introduction.   
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2.4.4 Mass Bias Correction 

 Instrumental mass fractionation was corrected using the NIST SRM 997 Isotopic 

Standard for Thallium as an internal standard.  This technique has been employed 

routinely in the analysis of Pb isotopes by ICP-MS (Walder and Furuta, 1993; Hirata, 

1996; Rehkamper and Halliday, 1998). The SRM 997 standard was diluted to 75 ppb in a 

5% HNO3 solution and introduced by free aspiration to a CETAC Airdus desolvation unit 

by a MCN-2 micro-concentric nebulizer (Omaha, Nebraska). The dry Tl aerosol was 

mixed with the sample stream in the gas-liquid separator (Fig. 2-2) and swept into the 

plasma.  

The measured Hg isotope ratios were corrected based on the measured Tl isotope 

ratios using a power law fractionation function (Hirata, 1996; Habfast, 1998; Rehkamper 

and Halliday, 1998; Marechal et al., 1999; White et al., 2000; Lauretta et al., 2001). The 

certified 205Tl/203Tl value for NIST 997 is 2.38714 and the fractionation factor used for 

correction based on this certified value is: 

f =  ln(205Tl/203Tl true/205Tl/203Tlobs)/ln(M205/M203), 

and Hg isotope ratios are corrected from this certified value according to: 

202Hg/198Hgtrue = (202Hg/198Hg)obs (M202/M198)f , 

where Mi is the atomic mass of the isotope of interest. Standard-sample bracketing alone 

compensates for mass bias by comparing the signal intensities of standard and sample 

under identical instrument operating conditions.  

The inter-element fractionation correction is mainly intended to improve the 

accuracy of MC-ICP-MS measurements. Deltas calculated from standard bracketed 

samples ensure that instrumental fraction effects are negligible under stable instrument 
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operating conditions. The Tl external correction is a well-established method for lead 

isotopic measurements, but even for the chemically and electronically similar elements Tl 

and Pb, the external correction yields absolute ratios that are slightly different from the 

certified values (Rehkaemper and Halliday, 1998). Addition of an isotopically enriched 

double-spike by the method of isotope dilution is necessary if the highest levels of 

accuracy for isotope ratios are required (Dodson, 1963). 

2.4.5 Data Acquisition and Presentation 

 The sample introduction system was operated by computer control of a Gilson 

autosampler (GL-222) (Middleton, Wisconsin) with standards, samples, blanks and 

washes automatically selected during batch runs. Blanks due to memory effects of the 

gas-liquid separator were typically below 1-10 mV on 202Hg after a 5 minute DDI water 

wash cycle between sample runs, depending on the previous sample concentration. 

Blanks were typically <0.1% of the total signal intensity. Data was acquired in 2 blocks 

of 20 measurements with 10 second integration times, and 30 second background 

measurements were made prior to each block. Internal precision of the measurement was 

typically better than ± 0.01 ‰ for 40 ratios measured. 

All samples were analyzed with standard runs bracketing two runs of the sample 

and a blank measurement was made after each bracketing run. The reported δ for each 

ratio is the mean of the two sample analyses, relative to the mean of the bracketing 

standards. Hg isotope ratios are reported in δ per mil notation relative to the NIST 3133 

standard : 

δ202Hg = 1000*{[(202Hg/198Hg)sample]/[(202Hg/198Hg)3133]-1}. 
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The 202Hg/198Hg ratio was selected to report Hg isotopic data because this ratio offers the 

best balance between precision, which decreases with increasing mass difference, and a 4 

amu mass difference, which accentuates the variation in isotopic composition. Other Hg 

isotope ratios would also be suitable for data reporting (e.g. 202Hg/200Hg), although 196Hg 

is of low abundance (0.15%) and 204-Hg suffers from a potential isobaric interference by 

204Pb, and should not be referenced in the reporting of Hg isotope ratios. The odd 

isotopes, 199Hg and 201Hg, are affected by mass-independent fractionation and are not 

suitable for reporting mass-dependent fractionation (Bergquist and Blum, 2007). 

 

3. Results 

3.1 Isotopic composition of Terrestrial Hg 

 This study demonstrates that the isotopic abundance of terrestrial Hg varies by as 

much as 5 ‰ (Table 2-3; Chapter III). Thus, there is no single terrestrial Hg isotopic 

composition. Results from this author’s recent studies of Hg isotopes indicate that 

isotopic fractionation occurs among natural reservoirs of Hg and the results listed in 

Table 2-3 should be viewed in light of this. The 202Hg/198Hg reported by Neir (1950) and 

Zadnik (1989) differ by 7.1 ‰, which is greater than observed magnitude of fractionation 

in natural samples as yet reported (Smith et al., 2005; Chapter III) and is likely due to a 

combination of analytical uncertainty and variations in the isotopic composition of 

terrestrial Hg measured by each study. Our isotopic abundances are closer to those of 

Neir (1950) than Zadnik (1989) and this may reflect the similarity of Almaden Hg with 

the Hg analyzed by Neir. The isotopic composition of Almaden Hg determined by this 

study is 0.9‰ heavier than previously determined by Lauretta et al. (2001) when both 
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results are considered relative to the NIST 3133 Hg standard (δ202HgNIST3133 = δ202HgAlm  

- 0.55 ‰). This difference is attributed to the more robust analytical method presented 

here as well as the demonstrated high external precision of the method compared to the 

much greater 0.2 to 0.5 ‰ external reproducibility of the results of Lauretta et al. (2001). 

 

3.2 Analysis of Standard Solutions 

 To investigate the long-term reproducibility of our Hg isotope ratio measurements 

by MC-ICP-MS, we analyzed the NIST 3133 Hg standard and Almadèn purified Hg 

product throughout our analytical sessions. The long-term reproducibility of isotopic ratio 

measurements by MC-ICP-MS are strongly affected by long and short-term variations in 

instrumental mass bias. Data reported as δ values is preferred as the relative difference 

between the two values shows much less variation than the individual ratios over time. 

The reproducibility of the δ 202Hg between the Almadèn and NIST 3133 standard 

solutions was –0.55 ±0.08‰ (2σ) based on 43 measurements over 5 months (Fig. 2-3). 

The internal precision of data blocks of 20 measurements is better than 0.05‰ (2SE) on 

all ratios except for 204Hg/196Hg, the ratio with the largest mass difference and lowest 

isotope abundances. Typical in-run precision of better than ±0.05‰ (2SD), based on the 

deviation between bracketing standard runs, can be achieved on a daily basis. In-run 

precision is an important measure of the quality of an individual measurement as poor in-

run precision can indicate problems with the cold vapor generation process. 
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Table 2-3 Terrestrial Hg Isotopic Abundances 
 
 IUPAC 1983a IUPAC 1989b Lauretta et al., 

2001c 
This studyd This studye

 
202Hg/196Hg 203.660 194.5525 192.9385 193.5615 193.6432 
202Hg/198Hg 2.9744 2.9958 2.965071 2.967906 2.968982 
202Hg/199Hg 1.7699 1.7699 1.756512 n.a.† n.a.†
202Hg/200Hg 1.2885 1.2930 1.285892 1.286367 1.286612 
202Hg/201Hg 2.2538 2.2655 2.258815 2.258296 2.258815 
204Hg/202Hg 0.2299 0.2299 0.229467 0.229422 0.22917 
abased on Neir (1950) 
bbased on Zadnik (1989) 
cAlmaden Hg product measured on a Fisons P54 MC-ICP-MS 
dAlmaden Hg product measured on a Nu Plasma MC-ICP-MS 
eNIST 3133 Hg standard measured on a Nu Plasma MC-ICP-MS 
† 199Hg is not routinely measured in our method due to the fixed collector  
configuration of the Nu Plasma (see Table 2-2) 
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 3.3 Reproducibility of Natural Samples 

 Repeated Hg isotope analyses of several cinnabar and native Hg ore samples were 

used as internal standards to characterize the external reproducibility of the analytical 

technique for natural samples. Each value reported is from a separate aliquot of dissolved 

sample analyzed over the period of this study. Sample SC-2 is Hg ore from the Silver 

Cloud Hg mine, Elko County, Nevada and is composed of microcrystalline silica sinter 

with cinnabar (HgS) mineralization. Sample NMNH 15107-2 is Hg ore from the New 

Almaden mine, Santa Clara County, California and contains cinnabar replacing 

sandstone. Sample NMNH 98616-3 is also from the New Almaden mine, and contains 

cinnabar associated with silica-carbonate alteration of serpentinite. The 2SD 

reproducibility of these three natural samples was ±0.06‰ (n = 8), ±0.09‰ (n = 26), and 

±0.09‰ (n = 26) respectively (Fig. 2-4)(Table 2-4). Therefore a conservative estimate of 

external precision for our method based on these replicate analyses is ±0.1‰ (2SD). 

When the 202Hg/198Hg and 202Hg/200Hg ratios for these data are plotted in a 3-isotope 

diagram, the analyses lie along a single mass fractionation line (r2 = 0.9994), 

demonstrating the mass dependency of Hg isotope fractionation in these hydrothermal 

ore deposit samples (Fig. 2-5). Instrumental mass bias in the mass range of Hg is on the 

order of 3%, favoring the extraction of heavier Hg and Tl ions from the plasma, and Tl-

corrected ratios are correspondingly lighter than the raw data (Fig. 2-6). The tighter 

cluster of values of the corrected ratios also shows that Tl-correction provides more 

accurate reported ratios. 
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Figure 2-3. External precision of the method. Demonstrated by the long-term 
reproducibility of the NIST 3133 Hg standard relative to the Michigan Almadèn standard 
(-0.55±0.08 ‰ (2SD) δ202Hg). 
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Figure 2-4. Long-term external reproducibility of natural ore deposit samples. Average 
δ202Hg and uncertainty expressed as 2 SD of the mean shown for each sample. 
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 Recent studies report mass independent fractionation (MIF) processes can affect 

the natural distribution of odd mass Hg isotopes (199Hg, 201Hg) (Bergquist and Blum, 

2007; Jackson et al., 2008). Photoreduction of aqueous Hg species has been shown to 

cause significant MIF excursions from the expected mass dependent fractionation (MDF) 

behavior. Physical and chemical processes known to be active in the formation of ore 

deposits are almost exclusively mass dependent in nature, and do not include 

photochemical reactions that can produce MIF, as a result, little MIF is expected in ore 

samples. The expected δ201Hg values for the three ore samples presented here show very 

little variation from the MDF line (Fig. 2-7). A quantification of MIF as Δ201Hg is 

calculated by the approximation: 

Δ201Hg = δ201Hg – (δ202Hg – 0.752) 

and shows virtually no significant excursions from the expected MDF values (Fig. 2-7). 

3.4 Analysis of Standard Reference Materials 

 Several standard reference materials that are widely available were analyzed to 

investigate Hg isotopic variations among organic and inorganic commercial products and 

to promote inter-laboratory correlation of Hg isotopic compositions (Table 2-5). Hg in 

coal (NIST 1630) is contained in sulfides as Hg2+ and coal fly ash (NIST 1633b) as Hg2+ 

in silicate mineral residues and amorphous glass. Dogfish muscle (NRCC DORM-2) 

contains 95% methyl-Hg. Values reported here for DORM-2 agree closely with those 

measured by Bergquist and Blum (2007).
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Figure 2-5. Three isotope diagram with raw data from Figure 2-4 plotted. All samples fall 
along a single mass-dependent fractionation line. 
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Figure 2-6. Tl-corrected ratios from Figure 2-5 plotted on a 3 isotope diagram. Corrected 
values are lighter because of the preferential extraction of heavy ions into the mass 
spectrometer. 
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Figure 2-7. Ore deposit samples fall along a mass dependent fraction line showing no 
significant mass independent fraction (MIF) related to the odd isotope 201Hg. Average 
Δ201Hg values are reported with 2SD of the mean values. External reproducibility (2SD) 
of natural samples is indicated with the dashed lines. Small Δ201Hg values are consistent 
with other inorganic samples (Bergquist and Blum, 2007). 
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Table 2-4. Ore sample δ-values.
δ202/196 δ202/198 δ202/200 δ202/201 δ204/202 δ201/198 Δ201

15107-2 0.64 0.79 0.41 0.25 0.38 0.54 -0.05
15107-2 1.47 0.79 0.40 0.24 0.40 0.55 -0.05
15107-2 0.85 0.87 0.42 0.24 0.44 0.63 -0.02
15107-2 1.77 0.83 0.41 0.23 0.43 0.59 -0.03
15107-2 1.72 0.83 0.43 0.26 0.45 0.57 -0.05
15107-2 0.99 0.92 0.46 0.26 0.48 0.66 -0.03
15107-2 1.02 0.90 0.46 0.27 0.45 0.62 -0.05
15107-2 0.63 0.84 0.44 0.25 0.42 0.58 -0.05
15107-2 1.17 0.88 0.46 0.27 0.44 0.62 -0.05
15107-2 0.91 0.83 0.42 0.24 0.42 0.60 -0.03
15107-2 1.09 0.82 0.41 0.24 0.41 0.58 -0.04
15107-2 0.88 0.83 0.43 0.25 0.43 0.58 -0.04
15107-2 0.64 0.82 0.42 0.25 0.41 0.57 -0.05
15107-2 0.82 0.77 0.40 0.23 0.37 0.53 -0.04
15107-2 0.80 0.94 0.48 0.28 0.43 0.66 -0.05
15107-2 1.54 0.88 0.45 0.28 0.44 0.60 -0.06
15107-2 1.14 0.81 0.43 0.25 0.40 0.57 -0.05
15107-2 0.88 0.80 0.44 0.25 0.41 0.55 -0.05
15107-2 0.31 0.87 0.45 0.27 0.42 0.60 -0.05
15107-2 1.52 0.87 0.43 0.26 0.40 0.61 -0.04
15107-2 1.57 0.86 0.44 0.26 0.44 0.60 -0.04
15107-2 1.38 0.83 0.41 0.26 0.41 0.56 -0.06
15107-2 1.12 0.94 0.46 0.28 0.45 0.66 -0.04
15107-2 1.46 0.81 0.43 0.24 0.40 0.57 -0.04
15107-2 1.12 0.87 0.45 0.26 0.43 0.61 -0.05
15107-2 1.54 0.84 0.44 0.26 0.43 0.58 -0.05
98616-3 -2.60 -1.29 -0.66 -0.42 -0.63 -0.87 0.10
98616-3 -2.06 -1.27 -0.66 -0.41 -0.65 -0.86 0.09
98616-3 -1.76 -1.20 -0.63 -0.41 -0.61 -0.79 0.11
98616-3 -1.68 -1.16 -0.61 -0.41 -0.60 -0.75 0.12
98616-3 -1.83 -1.16 -0.61 -0.39 -0.60 -0.77 0.10
98616-3 -1.64 -1.22 -0.62 -0.40 -0.60 -0.82 0.10
98616-3 -1.59 -1.24 -0.64 -0.42 -0.63 -0.82 0.12
98616-3 -2.36 -1.24 -0.63 -0.42 -0.63 -0.82 0.11
98616-3 -2.07 -1.25 -0.63 -0.41 -0.64 -0.84 0.10
98616-3 -1.18 -1.18 -0.60 -0.40 -0.58 -0.77 0.11
98616-3 -2.43 -1.22 -0.63 -0.41 -0.61 -0.82 0.10
98616-3 -1.90 -1.27 -0.67 -0.44 -0.65 -0.84 0.12
98616-3 -1.59 -1.23 -0.62 -0.40 -0.64 -0.83 0.10
98616-3 -1.61 -1.30 -0.66 -0.43 -0.66 -0.87 0.11
98616-3 -2.07 -1.29 -0.66 -0.41 -0.67 -0.88 0.09
98616-3 -1.98 -1.27 -0.65 -0.39 -0.64 -0.88 0.08
98616-3 -2.12 -1.24 -0.64 -0.41 -0.62 -0.83 0.10
98616-3 -2.12 -1.16 -0.60 -0.41 -0.61 -0.75 0.12
98616-3 -2.00 -1.21 -0.63 -0.41 -0.65 -0.80 0.11
98616-3 -2.14 -1.19 -0.62 -0.42 -0.62 -0.78 0.12
98616-3 -2.14 -1.20 -0.63 -0.41 -0.62 -0.80 0.11
98616-3 -1.91 -1.18 -0.61 -0.40 -0.56 -0.77 0.11
98616-3 -2.14 -1.20 -0.63 -0.39 -0.64 -0.80 0.10
98616-3 -1.35 -1.23 -0.63 -0.42 -0.64 -0.81 0.11
98616-3 -0.93 -1.18 -0.61 -0.38 -0.59 -0.79 0.09
98616-3 -1.50 -1.27 -0.64 -0.42 -0.64 -0.85 0.11
SC-2 -0.08 -0.42 -0.20 -0.07 -0.19 -0.35 -0.03
SC-2 -0.83 -0.51 -0.24 -0.08 -0.23 -0.43 -0.04
SC-2 -0.63 -0.52 -0.26 -0.09 -0.27 -0.43 -0.04
SC-2 -1.12 -0.52 -0.25 -0.08 -0.26 -0.44 -0.05
SC-2 -1.38 -0.54 -0.25 -0.09 -0.27 -0.45 -0.05
SC-2 -1.24 -0.49 -0.23 -0.06 -0.23 -0.43 -0.06
SC-2 -0.77 -0.47 -0.24 -0.08 -0.23 -0.39 -0.04
SC-2 -0.62 -0.55 -0.29 -0.09 -0.30 -0.46 -0.05
SC-2 -1.05 -0.48 -0.25 -0.07 -0.25 -0.42 -0.05
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Table 2-5. Analytical results for laboratory and Standard Reference Materials 

 

aAverage of 43 analyses. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample Description Method δ202Hg Mean 
± 2σ δ202Hg 

NIST 1630 Trace Hg in Coal Acid digest -0.68 – 
     
NIST 1633 Hg in Coal Fly Ash Acid digest -0.32 – 
     
NIST 1641 Hg in Water Acid digest -0.03, -0.04 

0.02 
-0.02 ± 0.05 

     
NIST 3133 Hg Standard Solution Acid digest 0.00 0.00 
     
Alm Michigan Almadèn Hg0 standard Acid digest – -0.55a ± 0.08
     
J-M HgO Alfa Aesar Puratronic HgO Oven -0.48 -0.48 
     
DORM-2 Dogfish Muscle Acid digest 0.16, 0.19 0.18  
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4. Discussion 

4.1 Hg Isotope Variations in Ore Deposits   

 A wide range of Hg isotopic compositions is expected in ore deposits that formed 

under varying conditions of redox, fluid chemistry, temperatures and host rock type. The 

2.08 ‰ δ202Hg range in two samples from the massive New Almden mine indicates that 

ore-forming processes can significantly fractionate Hg isotopic compositions within the 

same hydrothermal system. Mass dependent processes appear to be the most important in 

the formation of ore deposits.  

Isotopic variations related to mineralogy and spatial position in hydrothermal 

systems have been documented in Nevada epithermal deposits (Smith et al., 2005; 

Chapter III) and active and fossil hot springs in the California Coast Ranges (Smith et al., 

2008; Chapter IV). Hg isotopic compositions were found to be heavier in deep veins and 

lighter in surface sinter deposits due to boiling and gas transport of Hg during ore 

formation . Spring precipitates from active hot springs in California were found to be on 

average >1 ‰ lower in δ202Hg than adjacent ore deposits due to similar conditions of 

boiling in the near surface. It is anticipated that further understanding of Hg fractionation 

factors will enhance future interpretations of Hg isotope variations in natural systems. 

 

5. Conclusions 

Techniques for the high-precision determination of Hg isotope ratios by MC-ICP-

MS have been developed. A novel method for the quantitative extraction of Hg by a 

combination of pyrolysis, combustion and liquid trapping was presented, allowing Hg to 
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be separated from sample matrices that prevent CV generation. The external precision of 

this method is better than ±0.10‰ (2SD) for a range of natural samples. High precision 

analyses are fundamental to further studies where expected fractionations could be on the 

order of 0.1-1.0 ‰. Routine measurement of Hg isotope ratios are now possible with the 

use of innovative sample preparation techniques, such as those presented here, and MC-

ICP-MS instrumentation.  
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CHAPTER III. 

MERCURY ISOTOPE FRACTIONATION IN FOSSIL HYDROTHERMAL 
SYSTEMS 

 

Abstract 

The Hg isotopic compositions of samples throughout the vertical extent of two 

fossil hydrothermal systems were analyzed by multicollector inductively coupled 

plasma–mass spectrometry (MC-ICP-MS). Results show greater than 5‰ (δ202Hg/198Hg; 

relative to NIST 3133) fractionation, more than 50 times greater than the 0.1‰ (2σ) 

external reproducibility of the analyses. Hg isotope compositions from both hydrothermal 

systems can be grouped by dominant mineralogy and position; δ202Hg/198Hg values at the 

tops of the systems are –3.5‰ to −0.4‰ in cinnabar-dominant sinter and −0.2‰ to 

+2.1‰ in metacinnabar-dominant sinter, and the underlying veins have δ202Hg/198Hg 

values of –1.4‰ to +1.3‰. These differences probably resulted from the combination of 

boiling of the hydrothermal fluid, oxidation near the surface, and kinetic effects 

associated with mineral precipitation. The natural variation in Hg isotopic compositions 

observed in this study is higher than that expected from the trend of decreasing mass-

dependent fractionation with increasing mass extrapolated from stable isotope systems up 

to Z = 26 (Fe), confirming that even the heaviest elements undergo significant stable 

isotope fractionation in hydrothermal systems. 

1. Introduction 
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Hydrothermal processes cause mass-dependent isotope fractionation in light 

stable elements (e.g., C, O, H, S) and should produce similar, but smaller, mass-

dependent variations in the isotopic composition of heavy elements such as Hg (see 

review by Johnson et al., 2004). Better information on the nature and magnitude of 

isotopic fractionation for Hg in hydrothermal systems is needed if isotope compositions 

are to be used to determine the source areas and migration processes of Hg in the crust. 

 

2. Analysis of Hg Isotopes 

Properties of Hg that could contribute to isotope fractionation include its high 

volatility, large mass range of stable isotopes (196, 198, 199, 200, 201, 202, 204 amu), 

multiple common redox states, and covalent bonding (O’Neil, 1986). Fractionation of Hg 

isotopes was produced in laboratory experiments by early investigators (Brönsted and 

von Hevesy, 1920), but analytical limitations delayed recognition of smaller natural 

variations (Nier, 1950). Later analyses using gas source mass spectrometry reported 

variations in isotopic compositions of Hg in cinnabar (Obolenskii and Doilnitsyn, 1976), 

but are of uncertain significance because of low analytical precision (Koval et al., 1977). 

Precise isotope ratio measurement of Hg is hindered by its volatility and high first 

ionization potential, which make it unsuitable for thermal ionization mass spectrometry. 

Recent studies, including this one, have employed multicollector inductively coupled 

plasma–mass spectrometry (MC-ICP-MS), which effectively ionizes Hg in an argon 

plasma source. Results show that Hg isotopic compositions are constant within analytical 

uncertainty in carbonaceous chondrites (Lauretta et al., 2001), but vary in terrestrial 
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geologic materials including hydrothermal ore deposits (Klaue et al., 2000; Hintelmann 

and Lu, 2003). 

 

3. Stable Isotope Fractionation in Hydrothermal Systems 

Growing evidence suggests that heavy stable isotopes undergo fractionation in 

hydrothermal systems. Larson et al. (2003) found fractionations of 1‰–2‰ (δ65Cu/63Cu) 

in hypogene sulfides from skarn and porphyry base metal deposits that formed at 350–

550 ºC. Graham et al. (2004) reported values of –3.0‰ to +1.6‰ (δ57Fe/54Fe) in pyrite 

and chalcopyrite from the Grasberg Igneous Complex and associated Cu-Au skarns, 

which also formed at these high temperatures. In a study of seafloor hydrothermal 

sulfides, Rouxel et al. (2004) reported δ57Fe/54Fe values as low as –3.2‰ in sulfides 

precipitated at ~200 °C, and compositions of ~0‰, near basaltic values, for sulfides 

precipitated at ~300 °C. 

Isotopic fractionation can be caused by redox, mineral precipitation, and boiling 

reactions, all of which are common in hydrothermal systems. Differences in bond 

strengths among sulfur compounds with different redox states, for example, cause 

fractionations of 20‰–35‰ (δ34S/ 32S) between aqueous H2S and SO4
2– at 200–350 ºC 

(Ohmoto and Rye, 1979). Sphalerite-galena pairs that precipitated together from 

hydrothermal fluids show temperature-dependent equilibrium fractionation of 1‰–4‰ 

between 150 and 350 ºC. In active geothermal systems at Wairakei, New Zealand, and 

The Geysers, California, condensation of steam rising from boiling deep reservoirs yields 

water with lighter O and H isotopic compositions than those in the reservoir (Giggenbach 

and Stewart, 1982). Native sulfur deposited from H2S gas issuing from fumaroles at 
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Yellowstone National Park, Wyoming, is as much as 5.5‰ (δ34S/ 32S) lighter than the 

deep fluid source composition (Schoen and Rye, 1970; Truesdell et al., 1978). Similar 

processes in submarine hydrothermal vent fluids have been suggested to cause 

fractionation of B isotopes (Leeman et al., 1992). 

 

4. Mercury in the Epithermal Environment of Hydrothermal Systems 

The greatest variety of hydrothermal processes that might fractionate isotopes, 

including boiling, is found in epithermal systems, which consist of aqueous fluids 

circulating in the upper 1-2 km of the crust at temperatures of 150–300 ºC (Cooke and 

Simmons, 2000). Many systems of this type are found in volcanic regions and are 

covered by sinter terraces and hot springs. Epithermal Au-Ag deposits, which are fossil 

analogues of these hydrothermal systems, consist of quartz veins with minor but 

economically important amounts of Au-Ag as electrum, along with small amounts of 

sulfides, selenides, and tellurides containing Au and Ag, as well as Cu, Zn, Pb, Hg, As, 

Sb, and Tl. These deposits are divided into high-sulfidation deposits that form from 

acidic, sulfur-rich fluids, and low-sulfidation deposits that form from near-neutral, sulfur-

poor fluids (Sillitoe and Hedenquist, 2003), which show abundant evidence of boiling, 

including vapor-rich fluid inclusions and bladed calcite pseudomorphed by quartz 

(Simmons and Christenson, 1994). 

In low-sulfidation deposits (Fig. 3-1A), which are the focus of this study, Hg can 

be sourced either from a magma or surrounding country rock. In the reduced, low-sulfur 

fluids typical of such deposits, Hg0
aq is more abundant than Hg2+

aq and behaves like a 

dissolved gas (Varekamp and Buseck, 1984). As the fluid ascends along open fractures it  
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Figure 3-1. Boiling-point curve for H2O under hydrostatic conditions. Figure shows 
processes (A–D) involved in formation of epithermal mineral deposits that may 
fractionate Hg isotopes (adapted from Haas, 1971).  
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cools and begins to boil (Fig. 3-1B), and Hg0
aq is partitioned into the vapor phase 

(Christenson and Mroczek, 2003). In the boiling fluid, diffusion of Hg between the liquid 

and the vapor bubbles may be expected to enrich the vapor in light isotopes. Loss of H2S 

to the vapor during boiling will cause reduction of Hg2+ in dissolved complex ions, such 

as: 

HgS(H2S)2
0 + H2

0 → Hg0
g + 3H2S(g), (1) 

forming more Hg0
g (Christenson and Mroczek, 2003); a step that may also favor lighter 

isotopic compositions in the vapor. These combined effects are postulated to produce a 

vapor containing isotopically light Hg and a residual liquid at depth containing 

isotopically heavy Hg. 

Hg-bearing minerals are precipitated in two parts of these hydrothermal systems. 

At depth, isotopically heavy Hg in the liquid is deposited in solid solution in electrum, 

sulfosalts, and sulfides. Near the surface, isotopically light Hg0 in the vapor can mix with 

oxygenated groundwater, where it is oxidized to Hg2+ and reacts with H2S in the vapor to 

precipitate cinnabar in the silica-rich sinter (Fig. 3-1C). If deep hydrothermal fluid 

escapes to the surface it can also react with H2S to form cinnabar or metacinnabar that 

may become enriched in heavy Hg isotopes (Fig. 3-1D). 

 

5. Geologic Setting of Fossil Hydrothermal Systems  

In order to test these predictions about the isotopic composition of Hg in 

epithermal systems, samples must be obtained from deposits that preserve both the sinter 

on the paleosurface and the underlying veins at depth. Most epithermal deposits consist 

of veins from which overlying sinter has been removed by erosion, and most sinter 
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deposits have not undergone enough erosion to expose any underlying veins. Two 

unusual epithermal mineral deposits in the National and Ivanhoe mining Districts of 

northern Nevada preserve both sinter and underlying vein material. 

In the National District (Fig. 3-2A), Hg-bearing siliceous sinter and epiclastic 

sediments at the summit of Buckskin Mountain are underlain by the Bell vein (Vikre, 

1985). The sinter consists of thin layers of chalcedony and opal with cinnabar and 

metacinnabar, and displays desiccation cracks indicative of deposition in shallow water at 

the paleosurface; the underlying vein contains fluid inclusions that preserve evidence of 

boiling (Vikre, 1985). Samples of the Bell vein collected 290 m below the sinter contain 

banded quartz with Ag-selenides, sulfosalts, base metal sulfides, and electrum; Hg is in 

solid solution in electrum, arsenopyrite, stibnite, and tetrahedrite in amounts of up to 1 

wt% (Table 3-1). In the sinter, Hg is found in red cinnabar that contains 2-3 wt% Cl, and 

in black metacinnabar, which has as much as 12 wt% Se (Appendix A). 

In the Ivanhoe District (Fig. 3-2B), the west-northwest–striking Clementine vein 

system cuts Paleozoic sedimentary and overlying silicified Tertiary volcaniclastic rocks, 

which are covered by a 3 km2 cap of Hg-mineralized silica sinter. Alternating quartz-

adularia layers, bladed calcite, and vapor-rich fluid inclusions indicate that the vein-

forming fluids boiled (Peppard, 2002). The paleosurface beneath which the veins formed, 

which forms the present surface, contains abundant silica sinter with desiccation cracks, 

cinnabar and metacinnabar. A vein sample from 275 m below the sinter consists of 

alternating quartz and adularia layers with Ag selenides, sulfosalts, base metal sulfides, 

and electrum (Table 3-1). Samples from the surface include a fracture-filling with froth- 
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Figure 3-2. Geologic cross sections through fossil hydrothermal systems with schematic 
locations of samples. A: Buckskin Mountain, National District (N), northern Nevada, 
showing relation between silica sinter and silicified epiclastic sediments at summit and in 
underlying Bell vein (modified from Vikre, 1985). B: Ivanhoe District (I), northern 
Nevada, showing relative positions of Clementine vein /fault and overlying sinters 
(modified from Peppard, 2002).  
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Table 3-1: Analytical Results For Epithermal Deposit Samples 
 

Note: All δ202Hg  values are reported relative to the NIST 3133 Hg standard. Errors on 
δ202Hg are ±0.1‰ (2σ) based on external reproducibility of natural ore samples. 
*MC = metacinnabar-bearing sinter, Cinn = cinnabar-bearing sinter 
†Access to drill core provided by R. Hatch. 
§Powdered splits provided by P.G. Vikre. 
 #Samples provided by B. Peppard. 
 
 
 
 
 
 
 
 
 
 

Sample 
Name 

Type* Description Method δ202Hg 

National     
BN-5 352† Vein Drusy quartz veinlet w/ stibnite  leach -0.1 
BM-9 MC Blk metacinnabar layers in sinter leach -0.2 
BM-10 Cinn Red cinnabar layers in sinter leach -2.3 
BM-11 Cinn Red cinn in sinter w/ mudcrack textures leach -3.0 
BM-12 Cinn Red cinn in sinter, taken from open cut at summit leach -1.4 
BM-13 Cinn Silicified, bedded epiclastic sediments w/ red cinn leach -0.4 
BM-14 Vein Banded qtz vein, elec, Ag-selenides, tetra, py leach 0.5 
BVPD03-1§ Vein Banded qtz vein, sulfides, selenides pyrolysis -1.4 
BVPD03-2§ Vein Banded qtz vein, sulfides, selenides pyrolysis 1.3 
BNMS-D§ Cinn Bedded sinter, red cinn bands w/ brown detritus pyrolysis -1.6 
BNMS-E§ Cinn Finely laminated sinter, red cinn bands pyrolysis -3.5 
BUCK02-1A1§ MC Chalcedonic sinter w/ clots, diss. of blk metacinn pyrolysis 0.4 
BUCK02-1A2§ MC Sinter w/ mixed blk metacinn and red cinn pyrolysis 2.1 
BUCK02-1A3§ MC Sinter w/blk metacinn bands,clots w/ red cinn clots pyrolysis 0.3 
BUCK02-5§ MC Blk porous metacinn bed in clastic sinter pyrolysis 1.9 
Ivanhoe     
IH76-902# Vein Qtz vein and qtz cemented bx, py, selenides leach -0.6 
VL-1 Cinn Frothy silica sinter replacing lithic tuff and seds leach -0.8 
VL-2 Cinn Alternating gry bands of silica and clastic layers leach -1.2 
VL-3 Cinn White silicified tuff leach -0.5 
VL-10# Cinn White silicified tuff leach -0.5 
BU-1 Cinn Sinter w/ red cinn, dessication cracks leach -0.9 
BU-2 Cinn Sinter w/ red cinn, open cut leach -0.9 
KA-2 Cinn Sinter w/ red cinn, dessication cracks leach -0.9 
CLEM-1# Fault Frothy silica, red cinn leach -0.4 
CLEM-2# Fault Frothy silica, silica cemented bx, red cinn leach -0.4 
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textured silica, clay and silica collected at the surface 200 m above the Clementine vein 

and sinter samples with cinnabar and minor metacinnabar in fractures and layers. 

 

6. Analytical Methods 

Approximately 100 mg of material was handpicked from each crushed and sieved 

sample. Samples were prepared by acid leaching in closed PFA beakers with aqua regia 

at ~90 °C for 24 h. For vein samples with high concentrations of elements known to 

produce chemical interferences with cold vapor (CV) generation (e.g., Se, Au, or Ag; 

Welz, 1985), Hg was isolated by pyrolysis of the samples at 800 ºC in Ar, followed by 

combustion of the pyrolysis gases in O2 at 1000 ºC, and liquid trapping of the combustion 

gases in an oxidizing KMnO4/H2SO4 solution (Liang et al., 2003; EPA methods 101A 

and 7473; Chapter II). 

The prepared samples were diluted to 40 ± 4 ppb Hg and introduced into a Nu 

Plasma MC-ICP-MS, using continuous-flow cold vapor generation with Sn(II)Cl2 as the 

reducing agent. For mass bias correction and internal standardization, an external Tl spike 

(NIST 997) was introduced into the cold vapor stream by a desolvating nebulizer 

(Lauretta et al., 2001). This method of sample introduction allows online, selective, and 

quantitative chemical separation of the Hg0 vapor from the sample matrix, thus 

eliminating matrix effects because only Hg, and minor amounts of H2O and HCl vapor 

enter the plasma (Chapter II). There is no variation in the compounds entering the 

plasma, thus fractionation effects due to the sample matrix are unlikely and could only be 

caused by nonquantitative reduction of the Hg2+. 
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Isotopic fractionation was measured relative to the NIST 3133 Hg standard, which 

was run before and after each sample. All of the Hg isotopes except for 199Hg were 

routinely measured and fractionation was observed to be mass-dependent. Data are 

presented as δ202Hg/198Hg (hereafter δ202Hg), because this ratio has the best balance 

between precision of measurement and mass difference. Typical in-run precision of better 

than ±0.05‰ (2σ), based on the deviation between bracketing standard runs, was 

achieved on a daily basis. The average δ202Hg value and external reproducibility of NIST 

3133 and our laboratory standard (elemental Hg from Almadèn, Spain) was –0.55 ± 

0.08‰ (2σ, n = 43), based on repeated measurements during this study. The 2σ 

reproducibility for multiple analyses of 3 natural ore specimens ranged between ±0.06 

and ±0.09‰ (n = 60) (Chapter II), and the maximum value was used as a conservative 

estimate of the external reproducibility for this study. Blanks and sample introduction 

memory effects were monitored after each standard and sample run. A calibrated 199Hg 

spike was used to test for quantitative Hg extraction by isotope dilution and to confirm 

the observed isotopic fractionation by introducing 2‰ isotopic shifts of the 202Hg/199Hg 

ratio of natural samples. 

 

7. Analytical Results  

The isotopic composition of Hg in samples from the National and Ivanhoe 

epithermal deposits range from –3.5‰ to +2.1‰ δ202Hg, a range 56 times greater than 

the 0.1‰ (2σ) external reproducibility of our measurements, and provide evidence for 

significant fractionation of Hg isotopes in hydrothermal systems (Fig. 3-3; Table 3-1). 

Fractionation is systematic with respect to position in the deposit and mineralogy. At  
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Figure 3-3. δ202Hg of samples from the National and Ivanhoe Districts. Variation in 
δ202Hg values (relative to NIST 3133 Hg standard) of vein/fault and sinter samples shown 
as a function of dominant mineralogy (Table 3-1).  
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National, δ202Hg values range from –3.5‰ to −0.4‰ in cinnabar-bearing sinter compared 

to −1.4‰ to +1.3‰ in the underlying veins. Sinter containing abundant metacinnabar has 

δ202Hg values that range from −0.2‰ to +2.1‰, overlapping most of the range of values 

observed for the veins. At Ivanhoe, δ202Hg values of sinter above the Clementine vein 

range from –1.2‰ to −0.5‰, compared to −0.6‰ to −0.4‰ for samples from the 

Clementine vein and a near-surface fault above it. 

 

8. Discussion 

These results are in general agreement with our prediction that Hg in the upper 

part of epithermal hydrothermal systems should be isotopically light relative to that in the 

lower part. The significantly lighter δ202Hg values of cinnabar-sinter likely reflect the 

contribution of isotopically light Hg transported to the surface in the vapor phase. The 

difference between average isotopic compositions of cinnabar-sinter Hg and vein-fault 

Hg is much greater at National than at Ivanhoe. The National District contains a 

considerably larger ore resource than Ivanhoe (Vikre, 1985; Peppard, 2002) and was 

probably larger and longer-lived than the Ivanhoe system, a difference that could have 

produced larger degrees of fractionation in the National District.  

The high δ202Hg values in sinter containing metacinnabar from National, which 

do not agree with our prediction, probably reflect incursions of deep fluid into the 

shallow, sinter environment. Deep vein fluids reach the surface of epithermal 

hydrothermal systems intermittently and account for at least part of the trace metals that 

are deposited in sinter. Metacinnabar is enriched in Se which is not commonly 

transported by the vapor phase in epithermal systems, indicating that it probably had a 
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larger input of elements from deep vein fluids, including isotopically heavy Hg (Fig. 3-1, 

step D). The wide range of isotopic compositions in metacinnabar-bearing sinter probably 

reflects variable degrees of mixing between these two Hg reservoirs. 

Boiling of the hydrothermal fluid was probably the most important cause of the 

extensive fractionation observed in fossil epithermal deposits. Compared to the 5‰ range 

of δ202Hg values observed here for epithermal deposits, other low-temperature deposits in 

which boiling is not common have ranges of only +0.4‰ to –1.5‰ (Almadèn standard) 

(Klaue et al., 2000) and 0.0‰ to –1.3‰ (NIST SRM 1641d) (Hintelmann and Lu, 2003). 

The apparent importance of boiling to fractionation of Hg in epithermal systems is further 

supported by the relatively narrow (~0.8‰) range of δ202Hg values measured in 

sphalerite from Mississippi Valley–type deposits, which formed without boiling (Smith et 

al., 2004). 

8.1 Isotopic Fractionation of Hg Compared to that of Other Heavy Isotope Systems 

The large range of Hg isotope compositions in hydrothermal ore deposits is 

greater than might be expected for such a heavy element. The maximum natural stable 

isotope variation observed for each element that has been investigated in hydrothermal 

ore deposits is plotted in Figure 3-4. For elements up to Fe (Z = 26) the decrease in 

maximum isotopic variation decreases with increasing mass over three orders of 

magnitude. Extrapolation from these light elements predicts that mass-dependent 

fractionation would be below the analytical resolution of 0.01‰ amu–1 above Z ~ 50. 

Recent measurements of isotopic compositions in heavier isotope systems do not follow 

this predicted decrease however. Instead, isotopic fractionations in hydrothermal systems 

for elements ranging from Fe to Hg show a similar range ~1 ± 0.5‰ amu–1 (Fig. 3-4). 
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Figure 3-4. Plot of estimated maximum natural variation in isotope compositions (‰) 
normalized per amu of mass span of the ratio of interest. All data for heavier elements (Z 
≥ 26) are from hydrothermal ore deposits (Larson et al., 2003; Rouxel et al., 2003; 
Wieser and de Laeter, 2003; Anbar, 2004; Graham et al., 2004; Hoefs, 2004). Line is an 
exponential extrapolation of decrease in fractionation with increasing mass based on 
trend of light elements (Ζ ≤ 26). 
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The similar and larger magnitude of isotopic fractionation for the heavier 

elements may be due to a predominance of kinetic effects with increasing mass. For most 

transition elements, redox reactions are the major agents of fractionation (Anbar, 2004; 

Johnson et al., 2004). This is evident when contrasting the maximum fractionation of Cu, 

δ65Cu/63Cu ~ 1.2‰, which has two oxidation states, with Zn, δ66Zn/64Zn ~ 0.3‰, which 

has only one common oxidation state and lies below the extrapolated trend (Fig. 3-4) 

(Marechal et al., 1999). All of the elements between Fe and Hg that exhibit higher 

degrees of fractionation have multiple oxidation states, although the amount of data 

available for these systems is quite limited and the full extent of fractionation present in 

nature may not yet have been observed. Hg is the only metal to vaporize during boiling in 

low-temperature hydrothermal systems (Spycher and Reed, 1989). The position of Hg 

slightly above the trend of isotopic fractionation between Fe and Tl shown in Figure 3-4 

may be due to its susceptibility to fractionation by both redox and vaporization reactions, 

whereas only redox reactions are important fractionation mechanisms for most of the 

other transition metals. Consequently, the unique property of vapor transport at low 

temperatures appears to have a substantial effect on Hg isotopic composition in the 

geologic environment. Detailed field and experimental observations will be needed to 

determine whether boiling is the dominant cause of fractionation in Hg isotopes. If this is 

correct, the use of Hg isotopes as tracers will be most useful in hydrothermal systems that 

have not boiled. 
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CHAPTER IV. 

 
ISOTOPE GEOCHEMISTRY OF MERCURY IN SOURCE ROCKS,  

MINERAL DEPOSITS AND SPRING DEPOSITS 

 OF THE CALIFORNIA COAST RANGES, USA 

Abstract 

We present here the first study of the isotopic composition of Hg in rocks, ore 

deposits and spring precipitates in The Geysers-Clear Lake area of the northern 

California Coast Ranges, a region that is host to numerous fossil and active Hg-rich 

hydrothermal systems. Mineralization in the region is related to increased heat flow and 

volcanism caused by the migration of the Mendecino Triple Junction through the region 

beginning at 2.3 Ma. There are two types of mercury deposits present in the area, hot-

spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that 

extend to depths of 1000 m. Active springs and geothermal areas continue to precipitate 

Hg and Au and are analogues to the fossil hydrothermal systems preserved as ore 

deposits.  

The hydrothermal systems of The Geysers-Clear Lake area are mainly hosted by 

the Mesozoic Franciscan accretionary wedge and Great Valley Sequence forearc 

sedimentary rocks, which have median Hg concentrations of 51 and 64 ppb respectively. 

Mafic and felsic rocks of the latest Tertiary Clear Lake Volcanic Field, which erupted to 

cover and intruded into the Mesozoic basement rocks, have lower median Hg 

concentrations of 27 ppb. The mean Hg isotopic compositions of the rocks in the Great 
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Valley Sequence (-0.63‰ δ202Hg, n = 19), Franciscan Complex (-0.43‰ δ202Hg, n = 11) 

and Clear Lake Volcanic Field (-0.54‰ δ202Hg, n = 10) are similar (one way analysis of 

variance, p<0.05) although there is significant variance among δ202Hg values of the 

Franciscan Complex. Hot spring and silica carbonate ore deposits have similar mean Hg 

isotopic compositions to the potential source rocks, but there is more variability in the 

isotopic compositions of the ore deposits, which range from +0.55 to -3.88‰ δ202Hg. 

Active hot springs in the region precipitate sulfidic mud that contains up to 4890 ppm Hg 

and 14 ppm Au. The Hg isotopic compositions of these precipitates range from -0.21 to -

3.42‰ δ202Hg, and are in, general, lighter than ore deposits and host rocks in the region.  

Hg isotopic compositions presented here suggest that processes that leach and 

transport Hg from source rocks cause very little isotopic fractionation (< ± 0.5‰). 

Significant isotopic fractionation occurs in the near-surface zones of hydrothermal 

systems. Boiling of hydrothermal fluids or separation of a mercury-bearing CO2-rich 

vapor is likely the most important process causing the observed Hg isotope fractionation. 

This should result in the release of mercury with low δ202Hg values into the atmosphere 

from the top of these hydrothermal systems. Estimates of mass balance indicate that only 

a small amount of Hg (< 3.5%) leaves active ore-forming systems and residual Hg 

reservoirs are not measurably enriched in heavy Hg isotopes as a result. 

 

1. INTRODUCTION 

Presented here is the first study of Hg isotopes in the California Coast Ranges, an 

area with widespread evidence of Hg mobilization and mineralization. The goal of this 

work is to assess Hg isotope ratios as tracers of metal source, examine how low-



 68

temperature geochemical processes fractionate Hg isotopes, and gain insight into the 

biogeochemical cycling of this toxic element in areas of Hg enrichment and 

anthropogenic disturbance.  

The Geysers-Clear Lake area offers a unique natural environment for this study.  

The area is host to the northernmost of a chain of Hg and Au ore deposits that extends 

south along the San Andreas Fault for 400 km (Fig. 4-1). The largest ore deposits in the 

chain, New Almaden and New Idria, produced nearly 70 000 metric tons of Hg (2 million 

flasks, 1 flask = 76 lb), and are the fourth and fifth largest Hg deposits in the world 

(Rytuba, 2003). This belt of mineralization is related to the tectonic evolution of the 

North American Plate boundary from a subduction to transform margin after the 

impingement of the Mendecino Triple Junction on the North American plate at 29 Ma 

(Atwater, 1970). The northward migration of the Mendecino triple junction exposed the 

lower crust to the shallow aesthenosphere through a slab-less window along the southern 

edge of the northward moving Gorda plate (Dickinson and Snyder, 1978). This effect 

caused an increase in heat flow along the San Andreas transform boundary that resulted 

in widespread hydrothermal activity that formed the multitude of ore deposits along the 

California Coast Ranges (Benz, 1992; Rytuba, 1995). This transient heat flux is reflected 

in the ages of volcanic centers in the California Coast Ranges that decrease from 15 Ma 

in the south to 0.01 Ma in the Gyesers-Clear lake area (Fig. 4-1) (Fox et al., 1985; 

Wagner et al., 2005).  

The Geysers-Clear Lake area is well suited for a study of Hg isotope 

geochemistry because it is possible to sample in detail active and fossil hydrothermal 

systems that have continuously deposited Hg over the last 2.3 Ma. The area is host to  
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Figure 4-1. A. Regional geologic map of the California Coast Ranges showing the 
location of major lithologic units and mercury deposits. Inset shows location of map in 
1B B. Generalized geologic map of the Clear Lake district showing location of deposits 
and other features discussed in the text. 1 – Elgin, 2 – Blanc, Jones, Elbow, Manzanita, 
Wideawake, Wilbur, 3 – Abbott, Turkey Run, 4 –Baker, Harrison, Manhattan, Reed, 5 – 
Knoxville, McLaughlin, 6 – Aetna, Corona, Oat Hill, 7 – Contact, Culver-Baer, 8 – 
Anderson, Schwartz. The Geysers geothermal area is inside the dashed zone that includes 
points 6,7 and 8. 
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numerous Hg and Au-Hg ore deposits, some with clear links to volcanic activity 

including active hot springs precipitating Hg and Au minerals today, and others with a 

more enigmatic connection to local volcanic activity, which include the serpentinite-

hosted silica-carbonate type. This study also includes data from the massive Hg deposits 

at New Almaden and New Idria, which lie to the south of the main study area (Fig. 4-

1A), for purposes of comparison. Excellent surface exposures of possible source rocks for 

the abundant metals in the region include Mesozoic forearc and back arc assemblages of 

the Franciscan Complex, Coast Range Ophiolite and Great Valley sequence, as well as 

the Neogene volcanic rocks of the area. 

From field exposures of the Hg mineralization, source rock and geothermal 

systems throughout the Clear Lake region it is possible to obtain samples that test: 

1) The Hg isotopic signatures of possible source rocks.  

2) Magmatic (Sherlock, 2005) and amagmatic (Moiseyev, 1971) genetic models 

of Hg mineralization.  

3) Evolution of Hg isotopic compositions over a period of 2.3 Ma. 

4) The role of physical and chemical processes that formed the Hg 

mineralization. 

 

2. GEOLOGY OF THE GEYSERS-CLEAR LAKE AREA 

 The geology of northern California in the Geysers-Clear Lake area is 

characterized by a Mesozoic paleosubduction zone complex overlain by Tertiary and 

Quaternary volcanic and shallow marine sedimentary rocks. The paleosubduction zone is 

preserved in three tectonostratigraphic units; the Franciscan Complex accretionary 
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wedge, the overthrust Coast Range Ophiolite, and the time-equivalent forearc rocks of the 

Great Valley Sequence (Fig. 4-1). The Great Valley Sequence and Coast Range Ophiolite 

were thrust over the coeval Franciscan Complex during continental accretion and 

subsequently disssected by north- and northwest-, trending strike-slip, normal and reverse 

faults related to the San Andreas transform fault system. These rocks were later covered 

by the Sonoma and Clear Lake volcanic fields of late Tertiary to Holocene age.  

2.1 Country Rocks 

The Franciscan Complex is a classic fossil subduction-zone accretionary wedge 

(Bailey et al., 1964; Ernst, 1970; Wakabayashi, 1999). It is comprised of a volumetrically 

small percentage of 1-300 m tectonic blocks of eclogite, amphibolite and blueschist in a 

matrix of lower grade meta-sedimentary rock and serpentine. The matrix of the unit 

contains weakly metamorphosed sections of sandstone, mudstone, chert and mafic rock 

structurally interleaved with other sections that have been metamorphosed to a maximum 

grade of prehnite-pumpellyite facies (T~250˚C) (Ernst et al., 1970). The terrigenous 

sedimentary rocks are interpreted to be similar to those of the Great Valley Sequence (see 

below) and are likely derived, at least in part, from a similar source (Jayko and Blake, 

1984).  

 The Coast Range Ophiolite is exposed mainly in a narrow zone between the 

forearc rocks of the Great Valley Sequence to the east and the Franciscan mélange to the 

west and as tectonic slices within the Franciscan Complex (Fig. 4-1). The contact 

between these units has been modified by numerous episodes of faulting since accretion 

and the current high-angle fault boundary may have strike-slip as well as thrust 

components (Unruh, 1995). The rocks of the Coast Range Ophiolite consist of mafic lava 
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flows and serpentine, often in tectonic slivers (Shervais, 1990). This study sampled both 

large blocks of the ophiolite at the fault boundary and small slivers in the Franciscan. 

The Great Valley Sequence was deposited in a Cretaceous forearc basin in-board 

of the Franciscan accretionary wedge. The unit is composed of sandstone, mudstone and 

conglomerate that was shed off the Klamath-Sierra arc and has a maximum thickness of 

15 km.  The early Cretaceous depositional environment evolved from a slope setting to a 

broad bathyl forearc basin with extensive turbidite deposits as the basin widened in 

response to eastward migration of the arc and westward thickening of the accretionary 

prism (Ingersoll, 1979). Reports of the metamorphic grade of the Great Valley Sequence 

vary with thickness and location. In general the unit is weakly metamorphosed to zeolite 

facies (< 250 ˚C) (Blake et al., 1988) and oxygen isotope evidence suggests that a 

maximum temperature of 175 ˚C was attained (Sucheki and Land, 1983), corresponding 

to conditions of burial metamorphism.  

The Late Tertiary to Quaternary Sonoma and Clear Lake volcanic sequences 

intrude and overlie the Mesozoic units. These volcanic fields are the youngest and 

northernmost of a series of Cenozoic volcanic fields related to magmatism initiated by 

the northward migration of the Mendocino Triple Junction and the accompanying slab 

window (Dickinson and Snyder, 1979; Benz et al., 1992; Brady and Spotila, 2005). The 

Sonoma Volcanic field ranges in age from 8.2 to 2.5 Ma and the Clear Lake Volcanic 

field ranges from 2.1 Ma to 10 ka (Hearn et al., 1981; Donnelly-Nolan et al., 1981; 

Wagner et al., 2005). Geothermal activity at The Geysers and elsewhere in the Clear 

Lake region is related to this later phase of volcanic activity. 
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In the Clear Lake Volcanic field, early widespread flows of basaltic andesite were 

followed by more localized rhyodacite and dacite flows as the center of volcanism moved 

northward with time (Hearn et al., 1981). The presence of silicic intrusions in the Clear 

Lake area has been confirmed by drilling at The Geysers geothermal field, which lies 

above a 1.1-1.2 Ma (Dalrymple et al., 1999) composite intrusion of granite, granodiorite 

and microgranite porphyry referred to as The Geysers “felsite” (Hulen et al., 1993). The 

presence of other magma chambers in the area still in the process of crystallization has 

been inferred from high 3He/4He ratios in gases from the Northwest Geysers (Kennedy 

and Truesdell, 1996). Sr and Nd isotopic analyses suggest that silicic magmas of the 

Clear Lake Volcanic field (CLVF) are a mixture of mantle-derived basalt with as much as 

40% partial melting of the crust (Hammersley and DePaolo, 2006).  

2.2 Ore Deposits of the California Coast Ranges 

 The Geysers-Clear Lake area contains three types of ore deposits: hot spring Au-

Hg, hot spring Hg and silica-carbonate Hg (Rytuba, 1995) (Table 4-1)(Fig. 4-2). All 

deposits have been proposed to have formed from a similar connate fluid source (Peters, 

1990; 1991), but vary in deposit type and metal content according to host rock type, 

dilution of the ore fluid with meteoric water and local thermal gradient. In general, 

economic concentrations of Hg, but not Au, formed from cool (~50 to 150 ˚C) and often 

dilute mixtures of connate and meteoric waters (Barnes et al., 1973; Peters, 1993). Where 

these fluids reacted with serpentinite, silica-carbonate Hg deposits formed and where 

these fluids boiled near the surface, hot spring Hg deposits formed in the vapor-rich 

vadose zone. Au ore deposits formed in areas of high heat flow in structural settings that  
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Table 4-1. Ore deposit descriptions by district (Rytuba, 1995). 

Name Deposit Type Alteration Age (Ma) 
Maycamas District    
Culver-Baer Silica-Carbonate Hg Silica-Carbonate  
Contact Silica-Carbonate Hg Silica-Carbonate  
Socrates Silica-Carbonate Hg Silica-Carbonate  
Schwartz Silica-Carbonate Hg Kaolinite  
Big Chief Silica-Carbonate Hg Kaolinite  
Corona Silica-Carbonate Hg Silica-Carbonate  
Oat Hill Hot Spring Hg Kaolinite-Quartz  
Sulphur Bank Hot Spring Hg Alunite-Kaolinite <0.044 
Wilbur Springs District    
Turkey Run Silica-Carbonate Hg Silica-Carbonate  
Abbott Silica-Carbonate Hg Silica-Carbonate  
Wideawake Silica-Carbonate Hg Silica-Carbonate  
Elgin Silica-Carbonate Hg/ 

Hot Spring Hg (?) 
Silica-Carbonate/ 
Kaolinite-Quartz 

 

Manzanita Hot Spring Au-Hg Adularia  
In-Between Hot Spring Au-Hg Adularia  
Cherry Hill Hot Spring Au-Hg Adularia 0.56±0.14
Knoxville District    
McLaughlin Hot Spring Au Alunite 0.75 
Manhattan Hot Spring Hg Quartz-Chalcedony  
Knoxville Silica-Carbonate Hg Silica-Carbonate  
Reed Silica-Carbonate Hg Silica-Carbonate  
Soda Springs Prospect Silica-Carbonate Hg Silica-Carbonate  
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Figure 4-2. Schematic model for the formation of the different ore deposit types present 
in the California Coast Ranges. All deposits types are proposed to formed from similar 
hydrothermal fluids with a significant connate component, but vary according to host 
rock and local thermal gradient. Silica-carbonate Hg deposits form from cool (~150 ˚C), 
reduced fluids that reacted with serpentinite (Rytuba, 1995). Where similar fluids interact 
with sandstone, hot spring Hg deposits form. Hot spring Au-Hg deposits form from 
higher temperature (200 – 250 ˚C), H2S-rich fluids that deposit quartz and precious 
metals in veins at depth and Hg in silica sinter at the paleosurface (Sherlock et al., 1995). 
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focused connate fluids in narrow zones where the fluids boiled and deposited quartz and 

precious metals in veins at depth and that reached the surface locally to form silica sinter 

containing Hg (Sherlock et al., 1995). These deposits required higher temperatures (200 – 

250 ˚C) and less dilute connate fluids to form Au bisulfide complexes in economic 

concentrations.  

Silica-carbonate-type deposits consist of cinnabar and Hg0 associated with 

amorphous silica and Mg-carbonate minerals that replace serpentinite host rock. The 

largest examples of this class, New Almadèn (Bailey and Everheart, 1964) and New Idria 

(Linn, 1968), are associated with regional-scale antiformal structures that trapped ore-

forming fluids. The Geysers-Clear Lake area, where this study is centered, contains much 

more numerous, but smaller silica-carbonate type deposits, and is of greater interest 

because the deposits are spatially associated with active hot springs. These deposits 

formed from low temperature (<120 ˚C) CO2-CH4-H2S-rich fluids similar in composition 

to oil and gas field brines along fault contacts with serpentinite blocks and many of these 

deposits contain liquid and solid hydrocarbons (e.g. Peters, 1991; Peabody and Einaudi, 

1992; Sherlock et al., 1993).  

Hot spring Hg deposits consist largely of disseminated cinnabar in a shallow zone 

of acid sulfate-type alteration of wallrock consisting of kaolinite and alunite or in silica 

sinter. A few of these systems such as the Sulphur Bank Hg deposit, which began to form 

as recently as 44 k.y. ago (Fig. 4-1B, site 9), are still actively depositing Hg sulfides from 

hydrothermal fluids at the surface (White and Roberson, 1962). These deposits preserve 

evidence of shallow depths of formation that include cinnabar “paint” along fractures, a 
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feature that formed from condensed Hg-rich vapor above a boiling hydrothermal system 

(e.g. Rytuba and Heropolous, 1992).    

A few hot spring-type deposits in The Geysers-Clear Lake area also contain Au in 

veins that formed 100’s of m below the paleosurface. The largest of these is McLaughlin 

(Fig. 4-1, site 5), which consists of electrum (Au-Ag alloy) and sulfides in quartz veins 

and Hg in silica sinter that was deposited at the paleosurface (Sherlock et al., 1995). In 

the Wilbur Springs District (Fig. 4-1, site 2), electrum, sulfides and hydrocarbons were 

deposited in quartz-carbonate-adularia (K-feldspar) veins at the Cherry Hill and 

Manzanita mines, associated with argillic alteration of the Great Valley Sequence host 

rock (Pearcy and Petersen, 1990). Evidence from fluid inclusions indicates that these 

formed at moderate temperatures (185-260 ˚C) from low salinity (<2.4 wt% NaCl eq.) 

hydrothermal fluids (Pearcy and Petersen, 1990; Sherlock et al., 1995) consisting of a 

mixture of connate water from the Great Valley Sequence diluted with meteoric and 

possibly magmatic waters (Peters, 1991).  

It is not clear from field relations and geochemical evidence whether the low 

temperature silica-carbonate deposits represent an earlier, cooler stage of regional heating 

and the hot springs deposits a later period of higher heat flow (cf. Rytuba, 1995) or are 

more representative of a spatial relation to volcanic centers and the specific alteration 

types associated with the host rocks in the area. The magnesite-chalcedony alteration 

assemblage that identifies silica-carbonate type deposits will only form in serpentinite 

host rock (Sherlock et al., 1993). Hot spring deposits are restricted to sedimentary and 

volcanic rock hosts that contain feldspars, which are altered to an assemblage of 

kaolinite, alunite and silica at shallow depths (Yates and Hilpert, 1946; White and  
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Roberson, 1962). In the Knoxville District, silica-carbonate Hg deposits surround the 

McLaughlin hot spring Au-Hg deposit. Within the McLaughlin deposit higher 

temperatures are recorded in fluid inclusions in deeper vein samples and cooler 

temperatures are observed in shallow samples, near the Hg-rich sinter that lies on the top 

of the deposit (Sherlock et al., 1995). This relation of deeper, hotter and distal, cooler 

zones may also be reflected in the distribution of silica-carbonate type Hg deposits that 

surround McLaughlin. 

2.3 Active Springs 

 Active hydrothermal systems are discharging moderately saline, isotopically 

modified waters at springs throughout The Geysers-Clear Lake area that have been 

interpreted to be mixtures of meteoric and connate fluids analogous to the ore fluids that 

formed the Hg and Au-Hg deposits of the region (Barnes, 1970; Barnes et al., 1973; 

White et al., 1973; Peters, 1991, 1993). There is a large body of geochemical evidence in 

the literature that supports the involvement of connate fluids from and water-rock 

interaction with the Great Valley Sequence in the active and fossil hydrothermal systems 

of the California Coast Ranges (Barnes, 1970; White et al., 1973; Peters, 1991, 1993; 

Donnelly-Nolan et al., 1993; Rytuba, 1993; Sherlock, 1995, 2005). The nature of this 

connate fluid has been a matter of debate with various compositions proposed from 

trapped Cretaceous seawater in pore fluids based on 129I and 36Cl isotopes (Fehn et al., 

1992) to highly exchanged meteoric water with Great Valley Sequence rock based on 

evidence from O isotopes (Sherlock, 2005). Peters (1993) proposed a mixing model 

based on the stable isotope geochemistry of active springs where hot connate fluids were 
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progressively diluted with cooler meteoric fluids. All of these scenarios require the 

interaction of the hydrothermal fluid with the Great Valley Sequence. 

Springs in the area can be grouped into: 1) cooler, and more dilute mineral springs 

transporting minor amounts of Hg and no Au, 2). hot springs that are precipitating 

significant amounts of Au and Hg. The springs range in temperature from about 28 to 

99ºC and in pH from about 6.2 to 8.4 and both variables show a strong positive 

correlation with the mercury content of these waters (Figure 4-3). Mineral springs 

discharge cool (< 30 ˚C), gas-rich (CO2, CH4) fluids and have lower Hg contents and no 

Au (Peters, 1993). Baker Soda Springs is a cool, mineral spring that discharges from a 

travertine terrace immediately adjacent to the Baker silica-carbonate Hg mine. Grayish 

precipitates from the springs contain Hg and the chloride content of the spring water 

(2985 ppm) is similar to other minerals springs in the region that are fed by a mixture of 

meteoric water and saline, connate fluids derived from the Great Valley sequence (Peters, 

1993). Mineral springs discharging from the Turkey Run mine are relatively low in Hg 

and have salinity similar to that of Baker Soda Springs. Precipitates sampled from a 

groundwater monitoring well at the McLaughlin mine, southeast of Baker Soda Springs, 

contain up to 261 ppm Hg and the water has a low salinity typical of meteoric derived 

fluids. 

Hot springs of the Wilbur Springs district in the Sulfur Creek basin are spatially 

related to several hot spring-type Au-Hg deposits, and unlike the cooler mineral springs, 

are currently precipitating significant Hg and economic amounts of Au (Fig. 4-1, site 2). 

The spring fluids are geochemically distinct from the cooler springs and contain less 

metoric component and a greater connate fluid signature with heavier δ18O and higher  
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Figure 4-3. Concentrations of Hg in spring precipitates correlates positively with a) pH 
and c) temperature of the discharging spring waters confirming that Hg0

aq solubility is 
enhanced by higher pH and temperature (Varekamp and Buseck, 1984). Water pH 
decreases as: 1) springs lose CO2 to the atmosphere and/or 2) precipitate carbonates, 
which is consistent with the correlation between temperature and pH (b). Lower 
temperature waters indicate dilution with cool, near neutral meteoric water and/or 
conductive cooling and degassing of deep fluids near the surface. Data reported in Table 
4-4. 
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chlorinity. Elbow Springs (Fig. 4-1, site 2) discharges at about 70 ˚C, is chloride-rich 

(12,000 ppm) and precipitates in the spring contain cinnabar and native Au. Less than 

200 m away, Jones’ Fountain of Life discharges CO2 and CH4-rich water at about 60 ˚C 

and spring precipitates there also contain cinnabar and Au as do light gray precipitates 

from nearby Blanck Springs. Four kilometers northwest of the Au-Hg depositing springs 

of Sulfur Creek, Elgin Spring discharges fluids similar in temperature, chloride and 

sulfate content (Fig. 4-1, site 1; Table 4-4). Here the active spring precipitates black 

sulfidic mud that contains microcrystalline cinnabar and native Au and is associated with 

hot spring-type Hg mineralization that has over-printed earlier silica-carbonate alteration.  

 Hot springs depositing Hg, but not Au, are associated with The Geysers steam 

field, which is one of the largest vapor-dominated geothermal reservoirs in the world 

(Fig. 4-1); it produced 2000 MW at its peak in the 1960’s and currently produces about 

1000 MW. The reservoir is hosted in a series of imbricated thrust sheets comprised of 

Franciscan greenstone, greywacke and serpentinite that are cut by high-angle faults that 

compartmentalize the reservoir (Thompson, 1992). Underlying the field is The Geysers 

“felsite”, a large concealed silicic intrusive body. The felsite has metamorphosed adjacent 

sedimentary rocks to biotite-tourmaline hornfels and produced weak base metal 

mineralization (Hulen et al., 1993). High 3He/4He ratios in well samples from the 

Northwest Geysers indicate that a younger, crystallizing intrusion in the northwest 

Geysers area supplies heat and some chemical components to the current steam reservoir 

(Kennedy and Truesdell, 1996).  

 The Geysers steam field is thought to have begun as a liquid-dominated reservoir 

that persisted from 1 Ma to 0.25 Ma and to have undergone a catastrophic 
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depressurization event followed by boiling that created the present day vapor-dominated 

reservoir (Hulen et al., 1997). Studies of fluid inclusions and oxygen isotopes have shown 

that fluid in the reservoir is largely connate in origin, diluted to various extents with 

slightly exchanged meteoric water, much like the other thermal springs in the region 

(Moore and Gunderson, 1995). Steam escaping from the vapor reservoir has caused 

regional argillic alteration of the host rock and manifestations at the surface include areas 

of steaming ground, native S mounds and mudpots. Escaping steam deposits Hg and 

hydrocarbons at the present surface in The Geysers geothermal system. Along the 

margins of the steam reservoir are the Culver-Baer, Socrates, Anderson and other slica-

carbonate Hg ore deposits of the Western Maycamas District (Fig. 4-1).  

 

3. ANALYTICAL METHODS 

3.1 Sample Preparation 

 Ore and rock (from mine workings and outcrop) and hot and mineral spring 

precipitates were collected during the 2002 and 2005 field seasons. Additional samples 

were provided from the extensive collections of E.H. Bailey and J.J. Rytuba of the U.S. 

Geological Survey and the National Museum of Natural History (NMNH). For 

geochemical analyses, rock samples were broken with a steel hammer and fresh pieces 

were crushed to a powder in a stainless steel disc mill and stored in plastic bags. Ore 

mineral (cinnabar) separates were hand-picked under a binocular microscope for most 

samples, with the exception of very fine-grained samples that were crushed in a steel 

mortar and analyzed in bulk. Spring precipitates were collected with spring water in pre-

cleaned borosilicate glass jars with PFA lined lids (I-Chem®) and stored at 4 ˚C. In 
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preparation for digestion, spring precipitates were dried on filter paper in a HEPA filtered 

laminar flow hood and stored in plastic bags. 

 Samples were decomposed for analysis using either acid dissolution or pyrolysis, 

depending on the matrix composition and concentration of Hg in the sample. Mineral 

separates and spring precipitates (~0.05 - 0.30 g) were weighed into 15 mL PFA vessels 

and 4 mL of a 3:1 mixture of concentrated ultrapure HCl/HNO3 was added (Lechler et 

al., 1997). The vessels were capped tightly and placed on a 90 °C hot plate overnight, and 

then opened and diluted with DDI water. The acidic solution was centrifuged and the 

supernatant was removed from the insoluble residues, which typically consisted of 

silicate and oxide minerals. The digested samples were stored in borosilicate glass vials 

with PFA lined caps to retain the Hg in solution. 

 Rock powders (~1-2 g) were weighed into glazed ceramic boats and loaded into a 

two-stage pyrolysis-combustion apparatus described in Chapter II and Smith et al. 

(2005). The samples were step-heated to 750 ˚C under a flow of Ar for 17 minutes, which 

released all Hg from the samples. The Ar stream flowed into a second chamber, held at 

1000 ˚C, and combusted with a stream of O2. The gas flow was then bubbled through an 

impinger into an oxidizing solution of 1% KMnO4 (w/v) where Hg was effectively 

trapped in solution as Hg2+. Procedural blanks and sample recoveries were determined for 

samples and standards. The 1% KMnO4 solution was reduced with hydroxylamine 

hydrochloride to dissolve any precipitated MnO2 solids resulting in a clear solution ready 

for dilution and analysis. This technique of liquid trapping is a common method for 

sampling flue gases with relatively high concentrations of Hg in industrial settings (EPA 

7470). 
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3.2 Hg Elemental and Isotopic Compositions 

All Hg elemental and isotopic analyses were performed on a Nu Plasma multi-

colector inductively-coupled-plasma mass-spectrometer (MC-ICP-MS) at the University 

of Michigan, Ann Arbor. The Hg concentration of each sample was determined by MC-

ICP-MS detection employing a standard calibration curve (Yoshinaga and Morita, 1997). 

Relative error of the Hg concentrations is estimated to be ±5% (1σ). 

Samples were analyzed for Hg isotopic composition using the analytical 

procedures described in Smith et al. (2005) and Chapter II. For samples with Hg 

concentrations above ~1 ppm, digests were diluted to 20 ± 1 ppb Hg. Samples processed 

by pyrolysis typically produced solutions with concentrations ranging from 2-10 ppb and 

were matched to standards with similar (±5%) concentrations. The sample was 

introduced into the MC-ICP-MS, using continuous-flow, cold-vapor generation in a gas-

liquid separator with Sn(II)Cl2 as the reducing agent. Instrumental mass-bias was 

corrected using: 1) an internal thallium (Tl) spike (NIST 997) introduced as an aerosol to 

the gas flow by a Cetac Technologies Airdus desolvator employing a MCN-2 

microconcentric nebulizer and 2) sample-standard bracketing using a NIST 3133 solution 

matched in concentration and matrix to each sample (Smith et al., 2005; Chapter 2). Cold 

vapor generation allows quantitative chemical separation of the Hg0 vapor from the 

sample matrix, thus eliminating matrix effects because only Hg and minor amounts of 

H2O and HCl vapor enter the plasma. Chemical purification by cold-vapor generation is 

quantitative and much simpler than chromatographic methods where the possibility of 

fractionation during separation of the element of interest is much greater. 
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Isotopic fractionation was measured relative to the NIST 3133 Hg standard, which was 

analyzed before and after each sample. All of the Hg isotopes except for 199Hg were 

measured routinely and fractionation was observed to be mass-dependent. Hg isotope 

compositions are reported in delta notation as δ202Hg in permil (‰), referenced to NIST 

3133, because this ratio has the best balance between precision of measurement and mass 

difference.  δ202Hg values are calculated as:   

δ202Hg = 1000*{[(202Hg/198Hg)sample]/[(202Hg/198Hg)3133]-1}.   

Typical internal precision was better than ±0.05‰ (2SE) on a daily basis. The 

average δ202Hg value and external reproducibility of NIST 3133 and our laboratory 

standard (elemental Hg from Almadèn, Spain) was –0.55 ± 0.08‰ (2σ, n = 43), based on 

repeated measurements during this study. The 2σ reproducibility for multiple analyses of 

3 natural ore specimens ranged between ±0.06 and ±0.09‰ (n = 60), and ±0.1 ‰ was 

used as a conservative estimate of the external reproducibility for this study. Blanks and 

sample introduction memory effects were monitored after each standard and sample run 

and were < 1% of the total signal. 

4. RESULTS 

4.1 Hg Concentrations  

4.1.1 California Coast Range Rocks 

 Hg concentrations for samples from the Clear Lake Volcanic suite range from 16 

to 288 ppb by weight ( x = 66, M = 25 ppb) (Fig. 4-4) (Table 4-2). In the rocks of the 

Franciscan Complex and Coast Range Ophiolite, Hg concentrations range from 21 to 88 

ppb ( x = 52, M = 51 ppb) (Fig. 4-4). Sedimentary rocks from the Great Valley Sequence 

range from 32 to 154 ppb Hg ( x = 71, M = 64 ppb) (Fig. 4-4). Mercury concentrations 
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are highest in Franciscan and Great Valley sedimentary rocks, especially fine-grained 

varieties, and lowest in igneous and metamorphic rocks, with all but 4 samples have <100 

ppb Hg. These total concentrations and general abundances by rock type are comparable 

to literature values (see reviews by Wedepohl, 1995 and Rytuba, 2005). None of the rock 

types has sufficient Hg enrichment to dominate the Hg geochemistry of the study area or 

be considered an enriched Hg source.  

The Great Valley mudstones have higher Hg concentrations than the sandstone 

samples, and form distinct groups (p = 0.04) according to Hg content by lithology, 

similar to analyses of these rock types reported in the literature (e.g. McNeal and Rose, 

1974; Peck, 1975) (Table 4-3). The Hg content of the mudstones does not appear to 

correlate to the organic content of the rock (R2 = 0.01). The relationship between organic 

matter and Hg content is obscured in the smaller sandstone sample population due the 

low total organic carbon (TOC) content of the sandstones and the resolution of the TOC 

analyses (± 0.17 wt%, 1SE). 
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Table 4-2. Analytical results for The Geysers-Clear Lake area rock samples. 

Sample No. Description δ202Hg Hg (ppb) TOC (wt%) 87Sr/86Sra εNda

98HCL11 GV sandstone collected near Loch Lomond -0.53 40.8 0.10 0.70702 -2.64
GVBC-1 Fe-Ox stained mudstone -0.85 85.0 1.24
GVBC-2 mudstone, near base of Knoxville Fm -0.93 69.2 1.91
GVBC-6 thinly bedded mudstone -0.50 63.1 0.36
GVBC-7 mudstone -0.27 121.9 1.15
GVSC-1 shale at intersection of Hwy 20 and Bear Cr. Rd. -0.81 50.6 0.08
GVSC-2 silty mudstone -0.68 154.2 0.10
GVSC-3 mudstone w/ black organic-rich layers -0.59 83.9 0.58
GVSC-5 sandstone -0.57 48.4 0.10
GVSC-6 silty mudstone -0.63 37.9 0.83
GVSC-7 sandstone w/ black plant hash -0.34 41.7 0.08
GVSC-8 thinly bedded mudstone, near mouth of canyon -0.17 64.1 0.10
GVSC-9 Fe-Ox stained mudstone -0.68 109.9 0.10
KF-1 cg poorly sorted sandstone near Reed Mine -0.91 31.5 0.09
KF-2 fg sandstone and mudstone -0.93 65.0 0.35

98HCL17 Mt. Konocti sequence dacite of Wright Peak (dwp) -0.25 21.7
98HCL12 Cobb Mtn sequence - rhyodacite of Cobb Mtn - dcf -0.69 86.8 0.70437 2.43
97HCL8 Dacite of Konocti Bay - dkb -0.74 92.2 0.70352 1.94
SB-16 Early basaltic andesite - cinder cone on Hwy 20 - beu -1.20 287.7 0.70470 0.12
98HCL4 Early basaltic andesite flow - Schoolteacher Hill - beu -0.60 16.7 0.70470 0.11
98HCL14 Ford Flat Road - rhyodacite of Alder Creek - raf -0.56 25.3
98HCL2 High Valley basaltic andesite - bhvf1 -0.57 17.2 0.70390 0.10
98HCL13 Cobb Mtn sequence - dacite of Cobb Valley - dcv -0.49 16.5 0.70518 -0.04
01HCL01 Roundtop mountain basalt - brp -0.46 28.2 0.70369 0.26

CR-1 metabasalt of Coast Range ophiolite, Geysers rd. near cold Spr. -0.65 21.3 0.08
F1 serpentine, Hwy 29 near Lake County line -0.71 24.3 0.09
F2 lt. brown sandstone (greywacke) -1.21 88.0 0.09
F3 blueschist, Geysers Rd. -0.11 50.9 0.08
F4 Greywacke of Sulphur Cr. Unit -0.43 86.3 0.08
F5 cherty mudstone, silica veining -0.32 68.1 0.09
F6 greywacke -0.88 61.0 0.10
F7 Blueschist, intersection of Clear Cr. Rd. and Cinnabar Rd. 0.20 35.4 0.09
SB-1 Greywacke near Borax lake 1.61 60.0 0.08
SB-2 Greywacke 0.75 mi. SSE Sulphur bank pit -0.58 40.0 0.09
Serp. Reiff Rd. Serpentine outcrop at Yolo County line -1.70 33.3 0.09
a From Hammersley and dePaolo, 2006
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The Hg concentrations of the Great Valley sandstone samples average 46 ppb Hg, 

within the range of sandstones analyzed by Peck (1975) and Mc Neal and Rose (1974). 

The Hg concentrations of Great Valley Sequence mudstones average 84 ppb Hg, very 

close to the concentrations reported for the USGS Sco-1 Cody shale standard (Table 4-3) 

and the shales analyzed by Peck (1975) and Mc Neal and Rose (1974). Samples of the 

Great Valley Sequence with abundant Fe-oxide staining have Hg concentrations slightly 

greater than the mean (Table 4-2). The low TOC of both Great Valley sandstone and 

mudstone most likely indicates that sulfides, and possibly clays, rather than organic 

matter, are important Hg hosts in both rock types. 

In the Franciscan, greywacke sandstone samples range from 40 to 88 ppb Hg, 

while tectonic blocks of blueschist contain between 35 and 51 ppb Hg. Serpentinite and 

metabasalt of the Franciscan and CRO have between 21 and 33 ppb Hg, similar to the 

mafic rocks of the Clear Lake Volcanic field. The metamorphosed sandstones of the 

Franciscan average 67 ppb Hg, slightly higher than the sandstone of the Great 

ValleySequence. Both the serpentinite of the CRO and metabasalt of the Franciscan have 

concentrations slightly higher than the concentrations reported for ultramafic rocks, 

typically < 7 ppb, but within the range reported for basalts  
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Figure 4-4. Hg concentrations of rock samples from the Franciscan Complex, Coast 
Range Ophiolite and Great Valley sequence by lithology. 
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Table 4-3. Hg concentrations for geostandards. 
 

All samples analyzed by CV-AAS. 1Tershima (1994) 2Govindaraju (1994) 
3Imai (1995) 4Ando et al. (1989) 5Elrick and Horowitz (1986)  
6Chan and Bina (1989) 7Peck (1975) 
 

Rock Type Sample Name Hg (ppb) Description 
Igneous, Mafic    
Basalt JB-1 301, 282, 29.93  
Andesite JA-1 151, 11.73  
 JA-2 1.81, 1.83  
 DVA 171  
 DVB1 151 Basltic andesite 
Peridotite JP-1 6.51, 5.33  
 PCC-1 9.77,   
Gabbro JGb-1 6.81, 4.23, 2.12  
 GPMA203 1.51 Gabbronorite 
Dunite DTS-1 72, 7.77 Dunite 
   
Igneous, Felsic   
Dacite DVD 151  
Rhyolite JR-1 2.21, 84, 3.43  
 JR-2 0.91, 0.93  
Granodiorite JG-1 191, 16.53  
 JG-1a 3.51, 4.13  
Granite JG-2 3.31, 3.33  
 GPMA401 2.41 Alaskite granite 
 G-2 512, 405, 427  
 GPMA402 2.71 Biotitic granite 
 GPMA403 3.81  
 GPMA404 1.91 Plagiogranite 
    
Sedimentary    
Sandstone GSR-4 8.42  
Shale Sco-1 731, 705, 71.56 Cody shale 
 SGR-1 3051, 3132 Green River oil shale 
 SDO-1 1902 Ohio shale 
Limestone JLs-1 5.61  
 GSR-6 162  
Chert JCh-1 5.3  
Marine Mud MAG-1 591, 56.66  
Marine Sediment MESS-2 922 Beaufort Sea 
Silt OOPE201 221 Volcanoclastic 
 OOPE402 121 Siliceous 
Clay OOPE101 2641 Terrigenous 
 OOPE501 931 Red Clay 
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. Blueschist samples are well within the broad range of values reported for metamorphic 

rocks and close to the values of a typical sandstone protolith (Mc Neal and Rose, 1974). 

Heating during metamorphism has been shown to mobilize and redistribute Hg in 

metamorphic rocks (Pitcairn et al., 2003), although the low grade metamorphosed rocks 

of the Franciscan and CRO have Hg contents very similar to that expected for their 

protolith. 

The mafic and felsic volcanic rocks of the CLVF fall within the ranges reported 

for mafic igneous and felsic intrusive rocks world wide, typically between 3 to 30 ppb, 

(Table 4-3). Most of the Clear Lake Volcanic rock samples have Hg concentrations 

similar to those of other igneous rocks (Table 4-3). One CLVF sample, SB-16, has an 

anomalously high Hg content in comparison to all rock types (288 ppb), suggesting 

possible contamination of the sample by hydrothermal or anthropogenic Hg sources. 

Although there was widespread hydrothermal activity in the area (Donnelly-Nolan et al., 

1993), the sample appears fresh and unaltered. It is possible that airborne particulates rich 

in Hg from the Sulphur Bank mine superfund site < 2km southwest contaminated the 

sample. Therefore, with few exceptions, the Hg concentrations of the rocks of the study 

area do not appear to be anomalous above the background expected.  

4.1.2 Precipitates from Active Springs 

 Hg concentrations of mineral and hot springs in the study area range from 0.3 to 

489 ppm, far greater than the country rock of the region (Table 4-4). Precipitates from the 

cool, mineral springs discharging from the Turkey Run Hg mine adit contain 0.3 ppm Hg,  
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Table 4-4. Geochemical and isotopic data from mineral springs and hot springs. 

Sample Location δ202Hg Hg 
(ppm)

Au 
(ppm)

T 
(˚C) 

pH Flow 
(l/min) 

Sulfate Chloride

BSS-1 Baker Soda 
Spring 

-2.11 2.2 0.001 25 6.8 1 0.25 2985 

TRS-1 Turkey Run 
adit 

-1.37 0.34 b.d. 28 6.8 57 5310 1145 

ELB-1 Elbow -1.60 225.2 12.10 72 8.0 0.5 200 11390 
WS-1 Elbow -1.20        
WS-1 Elbow -1.39        
Jones’ 
Ftn.-1 

Jones -1.50 364.3 3.70 58 7.7 0-95 220 11860 

Blanck-1 Blanck -2.04 15.2 2.75 44 7.0 12 292 8510 
WS-3 Wilbur 

Springs 
-0.95 8.2 4.35 54 7.3 7 187 10910 

ELG-1 Elgin -3.03  0.82 67 7.4 22.4 262 11480 
ELG-2 Elgin -3.42 113.3       
99MPS02 McLaughlin 

monitoring 
well 

-0.48 81.9       

99MPS02b McLaughlin 
monitoring 
well 

-0.21 261.4       

Geysers-1 The 
Geysers 

-1.18 15.0       

Geysers-2 The 
Geysers 

-0.70 66.5       

99SM1s Schwartz 
Mine adit 

-0.85 7.5  22 6.2    

AHS-1 Anderson 
Hot Springs 

-1.56 141.3  68 7.1    

AHS-2 Anderson 
Hot Springs 

-1.02 163.8  84.9 7.1    

AHS-5 Anderson 
Hot Springs 

-0.98 489.5  99.5 8.4    
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the lowest concentration of the spring precipitates sampled. Baker Soda Springs is also a 

cool, mineral spring immediately adjacent to the Baker silica-carbonate Hg mine. Grayish 

precipitates from the springs contain 2 ppm Hg. Precipitates sampled from a groundwater 

monitoring well at the McLaughlin mine contain up to 261 ppm Hg, which is probably 

related to the presence of Au-Hg mineralization at the mine. 

In the Sulfur Creek basin, springs are spatially related to several hot spring-type 

Au-deposits, and unlike the cooler mineral springs, are currently precipitating significant 

Hg and economic amounts of Au from saline waters (Fig. 4-1, site 15). Spring 

temperature and the Hg content of the spring precipitates vary considerably in the small 

(< 1 km2) basin. Elbow springs precipitates contain 225 ppm Hg and 12.1 ppm Au and 

less than 200 m away, Jones’ Fountain of Life spring precipitates contain 364 ppm Hg 

and 3.7 ppm Au. Blanck’s spring is approx. 450 m SW from Jones’ and is considerably 

lower in Hg concentration (15.2 ppm) as is Wilbur Springs (8.2 ppm), approx. 350 m NE 

from Elbow. Elbow and Jones’ have much higher Hg concentrations than Blanck and 

Wilbur, although all springs contain considerable Au. Wilbur Springs is located in a 

streambed and is potentially diluted with groundwater during periods of increased runoff.  

Elgin spring discharges fluids similar in temperature, chloride and sulfate content 

to the Sulfur Creek springs located 4 km SE (Fig. 4-1, site 14; Table 4-4). Here the spring 

is overprinting silica-carbonate alteration with hot spring-type Hg mineralization. The 

spring precipitates black sulfidic mud that contains 113 ppm Hg and 1.1 ppm Au.  

 Springs in and adjacent to The Geysers steam field discharge fluids derived from 

interaction of the vapor reservoir with local groundwater (Janik et al., 1999). Fluids from 

the North Central and Northwest Geysers have higher steam fractions (Y = 0.1-1.0) than  
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Fig. 4-5. The Geysers sample locations (modified from Lowenstern et al., 2003). 
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the Southeast Geysers (Y = 0.01–0.05) (D’Amore and Truesdell, 1985) and enriched δ18O 

and δD isotopic values that indicate a greater component of connate fluid (Fig. 4-5). 

Boiling mudpots in the North Central Geysers area precipitate mud with a Hg content of 

66 ppm. Precipitates sampled from a small thermal spring and associated steaming 

ground contained 15 ppm Hg. In the Southeast Geysers at Anderson Hot Springs a new 

spring has formed in 1998, possibly due to steam extraction in the Southeast Geysers 

(Janik et al., 1999).  The main historically active spring at Anderson continues to 

precipitate black mud that contains 141 ppm Hg and grey mud from a neighboring 

fumarole contains 163 ppm Hg. Precipitates from the new spring contain 489 ppm Hg, 

the highest Hg content for a spring precipitate measured in this study. Gases from the 

new spring are higher in H2S and NH3 than the older springs at the site (Janik et al., 

2000). Fluid temperatures close to 100 ˚C at the new spring indicate that these fluids 

boiled within a few meters of the surface. Spring precipitates in fluids issuing from the 

neighboring Schwartz Hg mine adit contain 7 ppm Hg.  

4.2 Hg Isotopic Compositions  

4.2.1 California Coast Range Rocks 

The Hg isotopic compositions of California Coast Range rocks are summarized in 

Table 4-3. The δ202Hg values of the Great Valley Sequence sedimentary rocks vary from 

-0.17 to -0.93‰, tightly clustered about a mean value of -0.63‰ (Fig. 4-6). The δ202Hg 

values of the Clear Lake Volcanic rocks also fall within a range between -0.25 and 

1.20‰ with a mean of -0.62‰. More variation in isotopic composition is found in the 

rocks of the Franciscan Complex, where δ202Hg ranges from 1.61 to -1.71‰ with a mean 

of -0.43‰.  
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Figure 4-6. δ202Hg values for Clear Lake Volcanic sequence, Great Valley sequence and 
Franciscan Complex/Coast Range Ophiolite rock samples by lithology. Error bars (2σ) 
are smaller than the histogram bins. 
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The differences among the mean isotopic compositions of the three groups are not 

statistically significant (one way analysis of variance, p < 0.05), but the variance of the 

values within the Franciscan Complex compared to the other two groups is significant. 

As noted above, the Franciscan sample group is more heterogeneous in terms of lithology 

than the other groups and has been metamorphosed, and the observed variability probably 

reflects these factors.  

In the Franciscan Complex/Coast Range Ophiolite and the Clear Lake Volcanics, 

there appears to be a correlation between increased Hg concentration and isotopic 

composition for several of the lowest δ202Hg samples. In the Franciscan group this is 

apparent for the sample of serpentinite at the Reiff Rd. location, where there is a strong 

possibility of hydrothermal Hg contamination as the sample site lies on the boundary of 

the highly mineralized Knoxville mining district and near the extensive mine dumps and 

open pit at the McLaughlin mine. The Reiff Rd. sample also has an elevated Hg content 

(33.3 ppb), several times higher than expected for an ultramafic rock. The highest δ202Hg 

value in the Franciscan (1.61 ‰) shows no unexpected Hg enrichment relative to the 

metasedimentary group and may represent a primary isotopic signature (Fig. 4-7).  In the 

Clear Lake Volcanics one mafic and two felsic rocks with relatively high mercury 

contents and low δ202Hg values fall along a trend towards lower δ202Hg with increasing 

Hg content (Fig. 4-7). The lightest sample has a Hg content > 260 ppb higher than 

expected for a mafic rock and as discussed earlier, may be contaminated with isotopically 

light hydrothermal Hg from the open pit and mine dumps at the neighboring Sulphur 

Bank mine. If so, original Clear Lake rocks likely had δ202Hg values between about -0.2 

and -0.6 ‰, and between 0.2 and –1.2 ‰ in the Franciscan/Coast Range Ophiolite as  
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Figure 4-7. Plots of Hg concentration vs. δ202Hg to illustrate potential contamination by 
addition of low δ202Hg hydrothermal Hg. Franciscan/Coast Range Ophiolite (top) 
samples show enrichment trends for serpentinite samples and to a lesser extent, 
metasedimantary rocks. Clear Lake Volcanic samples (bottom) show potential 
contamination in one mafic sample. 
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shown by the shaded zone in Figure 4-6. The lowest δ202Hg values appear to reflect 

contamination by hydrothermal activity and possibly anthropogenic disturbance related to 

mining activities. 

Samples from the Great Valley sequence show a relatively small spread of δ202Hg 

values with no systematic difference in isotopic composition of mudstones and 

sandstones, and no relation between mercury contents and δ202Hg values (R2 = 0.01).  

4.2.2 Precipitates from Active Springs 

 The δ202Hg values for all precipitates from mineral springs and hot springs range 

from -0.21 to -3.42‰, a far greater span of values than that of the surrounding rocks. The 

δ202Hg values of precipitates from The Geysers and adjacent Anderson Hot Springs vary 

over a narrower range from -0.70 to -1.56‰ (Table 4-4). Precipitates at the North Central 

Geysers have δ202Hg values within the range of Franciscan reservoir rocks, -0.7 to –

1.18‰, which is also reflected in the gas chemistry from wells in this area (Lowenstern et 

al., 1999). Precipitates at the Anderson Springs in Southeast Geysers have δ202Hg values 

that are lower (-0.98 to –1.56‰) and similar in range to the ore deposit related Wilbur 

Springs precipitates. Spring precipitates in the Wilbur Springs and Knoxville Districts to 

the east of The Geysers have isotopic compositions that vary over the entire range noted 

above (-0.21 to -3.42‰) (Fig. 4-1). In the Wilbur Springs District, spring precipitates 

from the Elgin Hg mine are much lighter than the majority of springs in the district (4 km 

south of Elgin), which, cluster between -1.20 to -2.04‰ (Table 4-4).  Samples from the 

cool, mineral springs at Turkey Run (-1.37‰) and Baker Soda Springs (-2.11‰) have 

relatively low δ202Hg values, possibly influenced by detrital mineralization at the 

sampling site. Precipitates from a groundwater monitoring well at the McLaughlin mine 
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in the Knoxville District are isotopically heavier than all other mineral or hot spring 

precipitates, and almost identical to the mean δ202Hg value of Great Valley Sequence 

rocks. 

4.2.3 Ore deposits 

 The Hg isotopic compositions of ore deposits in the Geysers-Clear Lake area are 

similar among the various mining districts and deposit types (Table 4-5). The mean 

δ202Hg values of samples from the Wilbur Springs, Maycamas, Knoxville Districts and 

the Sulphur Bank mine, -0.45, -0.50, -0.77, and -0.65 respectively, do not differ 

significantly (p < 0.05). These values are close to the isotopic compositions of the Great 

Valley sequence (-0.63 ‰), Franciscan and Coast Range Ophiolite (-0.43 ‰), and Clear 

Lake Volcanic Field rocks (-0.54 ‰), which host these deposits.  

The δ202Hg values range from 0.55 to -3.88‰ in the Maycamas District, from 

0.07 to -2.53‰ in the Knoxville District, and from 0.21 to -1.78‰ in the Wilbur Springs 

District (Fig. 4-9). Ore deposits adjacent to The Geysers steam field are isotopically 

heavier compared to deposits further to the east away from The Geysers. δ202Hg values 

greater than 0 are observed mainly in silica-carbonate deposits of the Western Maycamas 

district as well as New Almaden and New Idria. The Franciscan, which hosts these 

deposits, is the only potential source rock to have δ202Hg values significantly greater than 

0.  

The isotopic compositions of Hg in the Elgin Hg ore deposit and Elgin hot spring 

precipitates are much lighter than that other ore deposits in the Wilbur Springs District, 

and the other districts of the region. The δ202Hg values of the Sulphur Bank deposit, one  
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Table 4-5. Analytical results from ore deposit samples in The Geysers-Clear Lake area.

Sample No. Location Description δ202Hg
USGS-ABT-1 Abbott Mine -0.21
CS0505 Manzanita (In-Between) -0.34
CS0503 Turkey Run Mine -1.12
CS0504 Wideawake Mine petroliferous -0.01
MZ-1 Manzanita Mine cinnabar in gouge -1.12
MZ-2 Manzanita Mine cinnabar on fractures in silicified mudstone 0.04
MZ-3 Manzanita Mine cinnabar in bleached mudstone -0.13
MZ-5 Manzanita Mine cinnabar in veinlet w/ powdery white selvage -0.06
MZ-6 Manzanita Mine cinnabar in fracture, disseminated in sandstone -1.78
MZ-7 Manzanita Mine quartz after calcite vein w/ cinn 0.21
MZ-8 Manzanita Mine cinnabar in white powdery altn -0.47
USGS-MAN-4 Manhattan Mine cinnabar in brecciated sinter 0.00
USGS-MAN-5 Manhattan Mine cinnabar layers in white sinter w/ punky bands -0.65
USGS-MAN-6 Manhattan Mine punky altered green bx, cinn? -0.78
USGS-MAN-8 Manhattan Mine cinnabar in black sinter -0.28
USGS-MAN-1 Manhattan Mine cinnabar paint on fracture surfaces 0.07
USGS-MAN-9 Manhattan Mine -0.25
USGS-MAN-7 Manhattan Mine silica-carb bx with cinn -0.90
USGS-BAK-1 Baker Mine gray acid sulphate altn, diss cinn in mudstone -1.05
USGS-HAR-1 Harrison Mine cinnabar concentrate from ore -0.46
USGS-HAR-2 Harrison Mine native S and cinnabar -0.22
CS0514 McLaughlin travertine terrace w/ sulfosalts -0.36
CS0513 McLaughlin travertine terrace w/ sulfosalts -1.58
KM-1 Knoxville Mine -0.42
KM-2 Knoxville Mine -1.32
KM-3 Knoxville Mine -0.68
KM-4 Knoxville Mine -0.35
KM-5 Knoxville Mine -0.42
KM-6 Knoxville Mine -1.18
RM-10 Reed Mine Andalusia pit -1.63
RM-4 Reed Mine cinn filling voids in silica-carb ore -0.93
RM-5 Reed Mine silica-carb alteration -1.30
RM-7 Reed Mine -1.16
RM-8 Reed Mine -0.66
RM-9 Reed Mine -0.22
SS-3 Reed Mine small prospect on road to Reed from McL pit -2.53
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Table 4-5 continued. Analytical results from ore deposits.
Sample No. Location Description δ202Hg
CS0507 Elgin Mine diss cinn in silica carb -2.34
CS0508 Elgin Mine py>cinn in silica-carb -0.55
CS0509 Elgin Mine fg cinn in acid sulphate altered host -3.69
CS0510 Elgin Mine cinnabar diss in silica-carb -3.54
CS0511 Elgin Mine cinn w/ botroydal silica in blk silica carb -0.75
USGS-BC-1 Big Chief Mine cinnabar>native Hg 0.55
USGS-BC-2 Big Chief Mine cinn in gray altd rock -0.33
USGS-SCHTZ-2 Schwartz (Anderson) 0.38
USGS-SCHTZ-1 Schwartz (Anderson) 0.09
USGS-AET-1 Aetna Mine -0.51
USGS-AET-2 Aetna Mine -1.00
USGS-CB-2 Culver-Baer Mine -0.31
CB-3 Culver-Baer Mine -0.91
CB-4 Culver-Baer Mine -0.45
CB-5 Culver-Baer Mine -0.75
CB-6 Culver-Baer Mine -0.68
CM-1 Corona Mine -0.37
CM-3 Corona Mine -0.80
CM-4 Corona Mine -0.77
CTC-1 Contact Mine 0.65
CTC-2 Contact Mine 0.67
OH-1 Oat Hill Mine -1.02
OH-2 Oat Hill Mine -0.27
OH-4 Oat Hill Mine -3.88
OH-6 Oat Hill Mine -0.31
SB-4 Sulphur Bank Fe-oxide+cinn vein -0.51
SB-5 Sulphur Bank Purplish metacinn? In clay altn -1.19
SB-6 Sulphur Bank Cinn-limonite in clay altn -0.70
SB-7 Sulphur Bank Cinn-limonite in clay altn -0.79
SB-10 Sulphur Bank Cinn-limonite in clay altn -0.96
SB-12 Sulphur Bank -0.53
SB-13 Sulphur Bank -0.21
USGS-SB-1 Sulphur Bank Cinn surrounding clasts of GV congl w/ gyp(?) -0.18
CS0516 Sulphur Bank Native S and cinn in wht bleached andesite -0.59
CS0517 Sulphur Bank Wht kaol-native S-cinn vein in bleached andesite -0.88
NMNH-98582-2 New Idria -1.44
NMNH-98582 New Idria -1.26
NMNH-98583-5 New Idria 0.18
NMNH-66782 New Idria -0.33
NMNH-66783 New Idria -0.31
NMNH-66784 New Idria -0.12
NMNH-98579-2 New Idria -0.19
NMNH-98583-2 New Idria -0.55
NMNH-15107-1 New Almaden -1.19
NMNH-15107-2 New Almaden -1.27
NMNH-51621-3 New Almaden -0.01
NMNH-51621-4 New Almaden -0.11
NMNH-51621-5 New Almaden -0.06
NMNH-51621-7 New Almaden -0.12
NMNH-66441 cinnNew Almaden Cinnabar 0.79
NMNH-66441 nat HNew Almaden Native Hg 0.47
NMNH-66444 New Almaden -0.57
NMNH-98616-3 New Almaden 0.87
NMNH-98616-2 New Almaden -0.92
NMNH-98617-1 New Almaden -0.30
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of the few deposits hosted in volcanic rocks, vary over a relatively narrow range from -

0.18 to -1.19‰, similar in distribution to the CLVF and Great Valley Sequence rocks.  

In general, the isotopic compositions of the ore deposits are similar to the 

surrounding country rock, but heavier than the spring precipitates deposited from active 

hydrothermal systems. Vein samples from Manzanita and In-between are heavier than the 

adjacent springs at Jones’ Fountain of Life, Blanck, Elbow and Wilbur Springs.  

5. DISCUSSION 

5.1 Hg Isotopes as a Tracer of Source 

The δ202Hg values of the Franciscan, Clear Lake Volcanic and Great Valley units 

exposed in The Geysers-Clear Lake area are clustered about a similar mean Hg isotopic 

composition although samples from the Franciscan Complex have a wider range of 

values (Fig. 4-8). Ore deposits have a similar mean δ202Hg value compared with the 

potential source rocks, but with a greater range of δ202Hg values. Hot spring and mineral 

spring precipitates have much lower δ202Hg values than the ore deposits and host rocks of 

the region.  

Given the relatively uniformity of Hg isotopic compositions of the host rocks in 

the Clear Lake area, variability of δ202Hg in ore deposits and hot springs must be caused 

by processes that occurred during hydrothermal transport and ore-formation. Smith et al 

(2005) summarized the chemical and physical processes in hydrothermal systems that 

might lead to mercury isotope fractionation in systems of this type, including: 1) 

liberation of Hg2+ from country rock and solution as Hg0
aq, 2) partitioning of Hg0 into the 

vapor phase either by direct boiling or separation of a CO2 phase, and 3) oxidation of 

Hg0
v by surface waters and reaction with H2S to form cinnabar precipitates. The presence  
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Figure 4-8. Summary of δ202Hg values for ore deposits, springs, well and geothermal area 
precipitates. Data from Nevada epithermal deposits presented for purposes of 
comparison. Note the wide range of δ202Hg values measured in shallow, sinter deposits 
compared with deeper vein samples (Smith et al., 2005). 
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of hydrocarbons in the rocks, ore deposits, and active hydrothermal systems of the study 

region will also be important to Hg geochemistry. 

The metallogenesis of Hg ore deposits has been related to these environments of 

formation: 1) direct input of Hg from a magmatic source; and 2) release of Hg from 

sedimentary basins during regional heating (Moiseyev, 1971; Peabody and Einaudi, 

1992). The similar average isotopic composition of Hg among the possible sedimentary 

and igneous source rock units and the ore deposits does not allow us to evaluate this 

hypothesis directly, but it does indicate that large fractionation (>±0.5‰) in the isotopic 

composition of Hg during its liberation from any of the possible source rocks is unlikely. 

Franciscan and Great Valley sedimentary rocks are the most likely sources rocks for the 

deposits because of their higher average Hg contents (Varekamp and Buseck, 1984). 

5.2 Mechanisms of Fractionation in the Release, Transport and Deposition of Hg 

 In the sedimentary and meta-sedimentary rocks of the Great Valley Sequence and 

the Franciscan Complex, Hg can be present in sulfide minerals; adsorbed onto clays, 

micas and organic matter; dissolved in hydrocarbon fluids; and combined with organic 

matter to form Hg complexes such as methyl-Hg. Hg begins to be released from clay 

particles and organic matter at temperatures as low as 60 ˚C, primarily in the form of Hg0, 

and continues to be released until about 150 ˚C (McNerney and Buseck, 1973). 

Hydrocarbons also form in this temperature range and under the reducing conditions 

buffered by these hydrocarbon-forming reactions Hg is present as Hg0
. Evidence for these 

organic reactions related to thermal maturation of sedimentary rocks in The Geyser-Clear 

Lake area come from NH3 and B found in gases at The Geysers and in neighboring hot 

springs (Donnelly-Nolan et al., 1993). Under these conditions mercury would be liberated 
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as Hg0 species in fluids with even moderate levels of S (< 10-2 m) (Varekamp and 

Buseck, 1984).  

 The limited fractionation (< ±0.5‰) observed in the source region within 

sedimentary basins may occur from several mechanisms related to the processes detailed 

above including: 1) Hg-organic complex→Hg0; 2) Hg2+
sulfide→Hg0; 3) Hg-

hydrocarbon→Hg0. Of these reactions, the release of Hg from sulfides and organic 

compounds probably accounts for most of the Hg reduction and any accompanying 

isotopic fractionation. The magnitude of fractionation between sulfide and elemental Hg 

is expected to be minor, as evidenced by the 0.2-0.3 ‰ fractionation between co-existing 

cinnabar and native Hg measured from Hg ore deposits (cf. Chapter 2). Fractionation 

between Hg-organic compounds and Hg0 may also be negligible if the breakdown of 

organic compounds is quantitative or nearly quantitative, which it is assumed to be the 

case at temperatures above 200 ˚C. A similar case can be argued for the release of Hg 

from petroleum, although this process may not be quantitative at temperatures below 175 

˚C. Therefore, Hg release from the various forms in the host rock may not significantly 

fractionate the isotopic composition of the rock reservoir.  

Most fractionation probably occurs during deposition of Hg in shallow 

hydrothermal systems. In the shallow crust (<~300 m), the physical and chemical 

environment of the hydrothermal system differs greatly from at depth. At depth, Hg is 

transported by H2O-CO2-H2S-CH4 bearing reduced fluids as Hg0
aq, Hg(HS)2 or other 

bisulfide complexes. Convection of the hydrothermal fluid along a thermal gradient 

transports Hg from depth to the shallow crust where ore deposits form and hot springs 

discharge at the surface. Hg is favored to be in solution at temperatures above 150 ˚C and  
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Figure 4-9. Top: Elgin Hg deposit with acid sulfate alteration superimposed on silica-
carbonate alteration. Hot springs actively precipitating Au and Hg in the foreground. 
Bottom: Cinnabar “paint” along fracture surfaces in silica-carbonate ore from Elgin.  
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Figure 4-10. Top: BSE image of microcrystalline cinnabar (circled) in an amorphous Na-
Si-Al-Fe-S-K phase (Janik et al., 1994) from Blanck springs. Bottom: Black, sulfidic mud 
containing Au and cinnabar precipitates at Elgin with native S crust. 
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(Krupp, 1988), it is not adsorbed onto organic residues at this temperature. Also, Hg is 

heat labile above 150 ˚C and condensation of Hg0 from the transported Hg reservoir is 

not possible, although Hg would be incorporated in any sulfides that were precipitated 

(Moore et al., 1982; Christenson and Mroczek, 2003). At shallower depths, the confining 

pressure decreases and the ascending hydrothermal fluids boil and separate a gas phase. 

Addition of shallow groundwater also oxidizes the fluid. Thus, once in solution above 

150 ˚C, Hg is highly mobile and not likely to fractionate during transport, until boiling 

and sulfide precipitation, oxidation or other ore-forming process occurs. 

Fractionation could occur by several mechanisms during ore formation including: 

oxidation, precipitation of minerals that incorporate Hg, and Hg-organic reactions, but 

boiling accompanied by the release of Hg0
g will likely be the dominate process (Smith et 

al., 2005). In hot spring-type Au systems, phase separation and boiling occurs at depths 

between 1000 to 300 m as evidenced by quartz pseudomorphing platy calcite and fluid 

inclusions in hydrothermal minerals with variable liquid:vapor ratios (Simmons and 

Christenson, 1994). Hot spring Hg deposits display characteristics of formation at very 

shallow depths (<300m) (Rytuba, 1993), which include: widespread acid-sulfate 

alteration caused by acidic vapors that formed from the oxidation of H2S near the surface 

(Figs. 4-9,-10) and active thermal springs precipitating Hg at the surface today. Ore 

textures including cinnabar “paint” on fractures (Fig. 4-9) (Yates and Hilpert, 1946) as 

well as chemically pure cinnabar from these deposits (Peabody and Einaudi, 1992; 

Rytuba and Heropolous, 1992) suggest they were precipitated from Hg0
g reacting with 

H2S in shallow groundwater.  
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In hydrothermal systems above 200 ˚C, Hg0
aq can be abundant relative to other 

Hg species. Increasing pH and temperature and decreasing total S and pO2 caused by 

boiling can enhance the stability of the Hg0
aq species (Varekamp and Buseck, 1984). 

Experimental calculations show that upon boiling aqueous Hg0 strongly partitions to the 

vapor phase (Spycher and Reed, 1989) and Hg0
g has been reported in steam emissions 

from The Geysers (Robertson et al., 1977). Under these conditions, separation of a 

mercury-bearing vapor phase should deposit mercury with anomalously low δ202Hg 

values in the uppermost, gas-rich parts of the deposits. This process has been proposed to 

cause the ~4‰ difference between δ202Hg values of Hg in veins at depth and sinter near 

the surface at Buckskin Mountain, Nevada (Smith et al., 2005; Chapter III). A similar 

process probably accounts for the much lower δ202Hg values in the Elgin and Oat Hill hot 

spring Hg deposits, which differ by up to ~3‰ δ202Hg compared to the inferred source 

rock δ202Hg.  

 Active springs in the Coast Ranges have been described as cooler, more dilute, 

examples of the hydrothermal systems that formed the Hg and Au deposits of the region 

(Barnes et al., 1973; White, 1981; Pearcy, 1989; Peters, 1991, 1993; Sherlock, 1995, 

2005). The springs display characteristics of both vapor- and liquid-dominated systems 

(White et al., 1971). The tops of many mercury deposits have been removed by erosion 

but the active springs represent this environment. Under these conditions, Hg isotopic 

fractionation related to boiling should be a significant fractionation mechanism. The near 

surface environment of hot springs is gas-rich and commonly enriched in isotopically 

light, vapor-transported Hg isotopes (cf. Smith et al., 2005; Chapter III). The near surface 

is also much cooler than the deeper ore-forming environments allowing Hg0 to condense 
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by conductive cooling (Christenson and Mroczek, 2003), a process that should preserve 

low δ202Hg values. A comparison of the δ202Hg values active springs to hot spring- and 

silica-carbonate-type δ202Hg values reveals that spring precipitates have lower δ202Hg 

values than hot spring-type deposits, which are in turn, are lower in general than δ202Hg 

values for silica-carbonate-type deposits (Fig. 4-8). 

Ore deposits that form at depth typically show a lesser range of δ202Hg values 

similar to the limited fractionation of isotopes that occurred during the leaching and 

transport of Hg at depth (Smith et al., 2005). Silica-carbonate type Hg deposits typically 

form at depths of 200 to 1000 m, while hot spring-type Hg deposits form at or very near 

the surface (0 to 300 m) and active springs precipitate Hg at the surface (Peabody and 

Einaudi, 1992; Sherlock et al., 1995) (Fig. 4-2). This vertical zonation is clearly 

illustrated in a comparison of δ202Hg values among the deposit types (Fig. 4-8). 

5.3 Estimates of Mass Balance  

Boiling hydrothermal systems may lose sufficient light Hg isotopes such that an 

isotopically heavy reservoir is left behind. This investigation does not find evidence for 

an isotopically heavy reservoir among the source rocks, ore deposits and active 

hydrothermal systems of The Geysers-Clear Lake area, nor was such a reservoir found in 

the epithermal deposits of Nevada (Smith et al., 2005). It is possible to have a scenario in 

which only a small fraction of the total Hg exits the system as vapor, in which case the 

escaping fraction would vary greatly from the reservoir composition, but the reservoir 

composition would not be affected by the small amount of mass lost from the system 

(Criss, 1999). 
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Where estimates of mass balance can be made, vaporized mercury does appear to 

have made up a relatively small fraction of the total mercury endowment of the deposit. 

At Sulphur Bank there is an estimated Hg flux to the atmosphere from hydrothermal 

fluids of about 7-8 kg y-1 (Nacht et al., 2004). The age at Sulphur Bank is well 

constrained by 14C dating of wood fragments directly beneath the andesite host of the 

deposit, with activity beginning at 44.5 ka and cinnabar deposition continuing today 

(White and Roberson, 1962; Varekamp and Waibel, 1987). Total mercury emissions to 

the atmosphere for this time would be about 3.12 x 105 kg. There is an estimated Hg 

production at SB of 8.9 x 106 kg and this number sets a lower limit for the size of the 

subsurface accumulation. White and Roberson (1962) estimated the total Hg deposition at 

Sulphur Bank to be 1.4 x 107 kg. Thus, only between 2.2 and 3.5% of the Hg was lost to 

the atmosphere during the period of ore formation. The resulting shift in the isotopic 

composition of the remaining Hg pool would be less than the analytical resolution (< 0.10 

‰) of our method given the αgas-liquid determined by Zheng et al. (2007). 

5.4 Relationship Between Hg Sources and Active Hydrothermal Systems 

 In The Geysers reservoir there is a geographic difference in the two reservoir 

composition end members present: 1) gas-rich, high steam fraction (Y = 0.1 to 1.0), water 

poor fluids related to the high temperature reservoir in the center and north of the field; 2) 

low gas, condensed water-rich (Y = 0.01 to 0.05) fluids associated with natural recharge 

and re-injection wells in the southeast field and Anderson Springs (Fig. 4-5)(Janik et al., 

2000). Fluids from the North Central and Northwest Geysers, where Geysers-1 and-2 

were sampled, have enriched δ18O and δD isotopic values that indicate a greater exchange 

with Franciscan reservoir rocks and higher CH4, NH3 and N2/Ar derived from the thermal 
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decomposition of organic matter in the Franciscan (Lowenstern and Janik., 2003). 

Thermal waters at Anderson Springs and the Schwartz Mine drainage are largely surface 

meteoric water with a small fraction of non-condensable gas from the steam reservoir 

including enrichment in NH3 (Lowenstern and Janik, 2003). 

 Although significant differences are observed in the chemical and isotopic 

composition of compartmentalized fluids within The Geysers, there does not appear to be 

a similar grouping reflected in the Hg isotopic composition of the spring precipitates. The 

δ202Hg values of the three sites sampled at Anderson Springs do not vary considerably 

from the two sites sampled in the North Central Geysers. The least fractionated samples 

of the two groups are nearly identical within analytical resolution. The enrichment in NH3 

in gases from both sites is consistent with derivation from the Franciscan reservoir rocks 

and the Hg isotopic compositions from both sites are also in agreement for the range of 

δ202Hg values measured in the Franciscan. Hg vapor and NH3, N2, and CH4 are removed 

from the Franciscan reservoir and transported to the surface in either gas-rich or 

condensed water-rich fluids without significant fractionation of Hg isotopes in the 

subsurface. Hg isotopic compositions of surface manifestations from the Southeast and 

North Central Geysers appear to reflect a common source region and are not affected by 

the different transport fluid compositions present at the two sites. 

  

6. CONCLUSIONS 

The results of this study show that significant mass dependent fractionation of Hg 

isotopes occurs in the near-surface zones of hydrothermal systems. This fractionation 

probably results largely from vaporization either by boiling or separation of a vapor 
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phase from the migrating hydrothermal solution. Processes that leach Hg from source 

rocks and transport Hg to the surface appear to cause minimal fractionation (< ±0.5‰). 

The similar range of δ202Hg values measured in potential igneous and sedimentary source 

rocks of The Geysers-Clear Lake area does not allow direct determination of the Hg 

source(s) to the region. The higher average Hg content of the sedimentary Great Valley 

and Franciscan rocks as well as Hg isotope and supporting chemical evidence presented 

from The Geysers geothermal reservoir suggests that Hg in the region was supplied by 

sedimentary rocks.  

Springs at the top of active hydrothermal systems release some Hg to the 

atmosphere, but retain some Hg in near-surface spring precipitates and the majority in the 

subsurface reservoir. Estimates of Hg flux from the recently formed Sulphur Bank Hg 

deposit indicate that the release of Hg is small relative to the overall reservoir and 

measurable isotopic enrichment of the residual Hg is not expected given the α for Hgliq-

Hgvap determined experimentally by Zheng et al (2007). The overall effect of this process 

will be enrichment through geologic time of isotopically light mercury in spring deposits, 

sedimentary rocks and other surficial deposits that accumulate Hg from the atmosphere. 
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CHAPTER V. 
 

CONCLUSIONS 
 

 In this study, a novel method for measuring Hg isotope ratios in a variety of 

sample matrices was presented with the goal of measuring natural variations in Hg 

isotopes in terrestrial reservoirs. The data presented show that Hg isotopes can yield 

insight into the source and cycling of Hg in much the same way as other stable isotope 

systems.  

A new method for obtaining high precision analyses of Hg isotopic compositions 

was developed by combining cold vapor (Hg0) generation in a gas-liquid separator with 

new multiple collector inductively coupled plasma mass spectrometer technology (CV-

MC-ICP-MS). Instrumental mass bias is corrected for by standard-sample bracketing  and 

with the online addition of a Tl (NIST 997) aerosol as an external inter-element spike. 

The results of repeated analysis of NIST 3133 Hg standard and our laboratory standard, 

Almadèn elemental Hg show an external precision of better than ±0.08 ‰ δ202Hg/198Hg 

can be achieved (δ202Hg; relative to NIST 3133) (2σ, n=43). The external reproducibility 

of natural samples in a variety of inorganic and organic matrices is better than ±0.10 ‰ 

(2σ, n=64). Ore deposit samples from a variety of different deposits were analyzed and 

show a > 5 ‰ δ202Hg range. Low temperature, inorganic geochemical processes can 

affect Hg isotope ratios within individual ore deposits as demonstrated by the isotopic 

variations within single deposits. 
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To test whether the unique volatility of Hg would be a factor in the fractionation 

of Hg isotopes, two fossil geothermal systems were selected for study where boiling and 

separation of Hg0 vapor are known to have occurred. Modern geothermal systems 

discharge significant amounts of Hg to the atmosphere (Robertson, 1977; Coolbaugh et 

al., 2002). The Hg isotopic compositions of samples throughout the vertical extent of two 

fossil hydrothermal systems at the National and Ivanhoe mining districts in northern 

Nevada show greater than 5 ‰ δ202Hg fractionation, more than 50 times greater than the 

0.1‰ (2σ) external reproducibility of the analyses. Hg isotope compositions from both 

hydrothermal systems can be grouped by dominant mineralogy and position; δ202Hg 

values at the tops of the systems are –3.5‰ to −0.4‰ in cinnabar-dominant sinter and 

−0.2‰ to +2.1‰ in metacinnabar-dominant sinter, and the underlying veins have δ202Hg 

values of –1.4‰ to +1.3‰. These differences are attributed to a combination of boiling 

of the hydrothermal fluid, oxidation near the surface, and kinetic effects associated with 

mineral precipitation. 

 The Geysers-Clear Lake area was selected to study the migration of Hg in the 

Earth’s crust on a regional scale. The region hosts numerous Hg and Au-Hg ore deposits 

that have formed from 2.3 Ma, coinciding with the inception of volcanic activity in the 

area, until as recently as 44 ka, and continue today in hot springs actively precipitating 

Hg and Au. The region also contains The Geysers steam field, the largest actively 

producing geothermal area in North America, where Hg concentrations up to 12 ppm in 

steam emissions have been reported (Robertson et al., 1977) and numerous Hg deposits 

border on the geothermal area. The large number of Hg deposits in the region have 

formed from processes including boiling, gas transport, fluid mixing, cooling and 
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condensation in the shallow crust under varying redox conditions, temperatures and 

depths (Rytuba, 1996). Hot springs of the area also allow the analysis of Hg isotopes 

from active hydrothermal systems, thought to be analogous to the fossil hydrothermal 

systems preserved as ore deposits (White, 1981).  

The concentration of Hg in fresh samples of the various rock types of the region 

was undertaken to determine if anomalously high or low Hg concentrations were present. 

The Mesozoic Franciscan Complex accretionary wedge and Great Valley Sequence 

forearc rocks which comprise the bedrock of the area contain similar clastic sedimentary 

rock types with similar concentrations of Hg (median values of 51 and 64 ppm 

respectively). Rocks of the Clear Lake Volcanic Field, which erupted to cover the 

Mesozoic basement, have lower Hg abundances (median of 27 ppm). These values are 

consistent with Hg concentration reported for these rock types in the literature. 

The mean Hg isotopic compositions of the rocks of the Mesozoic Great Valley 

Sequence (-0.63‰ δ202Hg, n = 19), and Franciscan Complex (-0.43‰ δ202Hg, n = 11) and 

the Neogene Clear Lake Volcanic Field (-0.54‰ δ202Hg, n = 10) units are not statistically 

different (one way analysis of variance, p<0.05) suggesting a common source.  

The Franciscan Complex and Great Valley Sequence contain clastic sedimentary 

rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake 

Volcanic Field. Mean mercury isotope compositions for all three rock units are similar, 

although the range of values in Franciscan Complex rocks is greater than in either Great 

Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have 

similar average mercury isotopic compositions that are indistinguishable from averages 

for the three rock units, although δ202Hg values for the mercury deposits have a greater 
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variance than the country rocks. Precipitates from spring and geothermal waters in the 

area have similarly large variance and a mean δ202Hg value that is significantly lower 

than the ore deposits and rocks.  

These observations indicate that there is little or no isotopic fractionation during 

release of mercury from its source rocks into hydrothermal solutions. Isotopic 

fractionation does appear to take place during transport and concentration of mercury in 

deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids or 

separation of a mercury-bearing CO2 vapor is likely the most important process causing 

of the observed Hg isotope fractionation. This should result in the release of mercury 

with low δ202Hg values into the atmosphere from the top of these hydrothermal systems. 

Preliminary estimates suggest that this process does not remove enough mercury to cause 

underlying deposits and crust to become enriched in isotopically heavy mercury. 

 The results of this study show that mass dependent fractionation of mercury 

isotopes reaches significant levels in the uppermost parts of geologic-hydrothermal 

systems that transfer mercury to the surface. This fractionation probably results largely 

from vaporization either by boiling or separation of a vapor phase from the migrating 

hydrothermal solution. Active springs at the top of these systems release some of this 

mercury to the atmosphere and retain some in near-surface spring precipitates. The 

overall effect of this process will be an enrichment through geologic time of isotopically 

light mercury in spring deposits, sedimentary rocks and other surficial deposits that 

accumulate Hg from the atmosphere. 
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APPENDIX A. 

 Hg IN EPITHERMAL MINERAL DEPOSITS 

 

Occurrence of Hg in Sinters 

 Silica sinters form from geothermal fluids supersaturated with silica that reach the 

surface and precipitate amorphous silica from the cooling fluid. Sinters are variably 

enriched in Hg, As, Sb, Tl and may also contain Au and Ag such as at Rotokawa, New 

Zealand (Krupp and Seward, 1990). These metals are transported to the surface from the 

depths of the hydrothermal system. In the sinter, Hg occurs in cinnabar (HgS), the HgS 

polymorph, metacinnabar and to a lesser extent, as tiemannite (HgSe), and corderoite 

(Hg3S2Cl2).  

Metacinnabar is formed metastably at temperatures below 374 ˚C at 1 atm 

(Dickson and Tunnell, 1958), possibly stabilized by the addition of trace impurities in its 

structure (Boctor et al., 1987). Metacinnabar shares the crystal structure of sphalerite 

(cubic) and like sphalerite, metacinnabar can accommodate an abundance of impurities. 

In the sinter deposits at Buckskin Mountain, National District, Nevada (Chapter III), the 

black internal reflections in metacinnabar are optically distinct from the red internal 

reflections of cinnabar when viewed in transmitted light (Figs.A-1-3). The two 

polymorphs are also compositionally distinct; metacinnabar contains up to 12 wt% Se 

whereas cinnabar contains no detectable 
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Se, but has Cl contents ranging from 2 to 3 wt% (Table A-1; Fig. A-4). Rare tiemannite 

(HgSe) was also detected in one sample (BM-9; Fig. A-3). 

Sinters may contain variable amounts of trace metal enrichment, determined by 

the relative input of geothermal fluid from depth. Those that form far above the water 

table contain only vapor transported contributions from the deeper hydrothermal system, 

typically Hg, Cl and S, forming relatively pure cinnabar as well as corderoite (Hg3S2Cl2) 

and native S crusts at gas vents (Rytuba and Heropoulos, 1992). The sinter at Buckskin 

Mountain displays characteristics of both liquid and vapor contributions from the deep 

hydrothermal system, possibly originating from a fluctuating water table when the sinter 

formed. Red cinnabar is often chemically pure, interpreted by Rytuba and Heropoulos 

(1992) to indicate vapor deposition, wheras metacinnabar contains abundant Se, an 

element that is not transported in the vapor phase of epithermal fluids and must reflect the 

contribution of deep fluids. 

Trace element analyses of the sinters at Buckskin Mountain reveal the presence of 

several elements, including Zn, Se, Sb and Sn, were transported to the sinter by 

hydrothermal fluid (Table A-2). The presence of both chemically pure cinnabar and trace 

metal-rich metacinnabar in close proximity on the same thin section suggests a 

complicated process of formation. These textures may be the result of a fluctuating water 

table and variable mixing of hydrothermal fluid and vapor with the groundwater table. 
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Table A-1. Se contnet of mineral grains in BM-9 d
Point# Mineral Se (wt%) Error (1SE)
A1 Metacinnabar 4.1 0.2
A2 Cinnabar 0.3 0.1
A3 Cinnabar 0.9 0.2
A4 Tiemannite? 19.6 0.8

B1 Metacinnabar 0.1 0.1
B2 Metacinnabar 9.0 0.5
B3 Cinnabar 1.3 0.2
N Metacinnabar 12.6 0.6
O Metacinnabar 0.4 0.1

C1 Metacinnabar 0.9 0.2
C2 Metacinnabar 0.3 0.1
C3 Metacinnabar 0.3 0.1
C4 Metacinnabar 2.3 0.2
C5 Cinnabar 0.1 0.1
C6 Metacinnabar 2.1 0.2
C7 Cinnabar 0.1 0.1
C8 Cinnabar 0.2 0.1
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Occurrence of Hg in Epithermal Veins 

 Epithermal vein systems are the fossil analogue of the feeder zone in an active 

geothermal system. The veins are structurally controlled fluid conduits that were filled  

with quartz, carbonates, sulfides, selenides and tellurides during repeated boiling events 

(Cooke and Simmons, 2000). These veins systems typically formed at depths of 500-

1500 m at temperatures ranging from 200-350 ˚C. In the vein Hg occurs chiefly in solid 

solution within the native elements, sulfides and selenides precipitated in the vein. The 

results of an investigation of the vein mineralogy of the Bell Vein, National District, 

Nevada, by petrographic microscope and SEM-EDS, are reported below.  

BM-14a 

 This sample from the Bell vein dumps consists of alternating bands of quartz and 

sulfides+selenides.  The sulfides and selenides occur in diffuse bands and in saginitic 

clots.  Quartz bands alternate between finer and coarser grain size with minor sericite 

clots dispersed within.  A small amount of bladed adularia (?) was observed in a coarse-

grained quartz band.  Naumannite-aguilarite (Ag2Se-Ag2SeS) solid solutions are common 

selenide phases present with most compositions averaging Ag2Se0.7S0.3.  A tetrahedrite 

group mineral with the approximate formula (AgZnCu)0.47(AsSb)0.15(SeS)0.35 (giraudite ?) 

was observed in apparent equilibrium with naumannite-aguilarite (Figs.A-7, A-9, A-10).  

Galena with up to 19 atomic % Se (selenian galena) was often observed in equilibrium 

with naumannite-aguilarite in composite grains (Figs.A-5, A-7).  Rare electrum occurs 

with the selenides and sulfides (Fig. A-6).  Pyrite is the most common  
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sulfide and is found associated with Ag selenides and selenian galena, often with 

inclusions of selenides suggesting co-precipitation (Fig. A-5).  Trace pyrargarite 

(Ag3SbS3) was also observed.  No Hg was detected in any of the minerals observed in 

this sample.  Textures and mineralogy are similar to stage 2b of Vikre (1985), the main 

stage of gold ore deposition in the Bell vein. 

 

BM-14b 

 This sample from the Hatch-Halcyon level dump consists of banded quartz vein.  

Sulfides, selenides and sulfosalts occur as anhedral masses in wide bands.  Minor sericite 

clots are found in the quartz bands.  Rare chlorite in a thin veinlet cutting type 2b textures 

and minor clay alteration (after sericite?) suggests late stage supergene effects.  Electrum 

(Au40-50Ag50-60) is common (Fig. A-11) and often has Au-rich rims (Au70Ag30) (Fig. A-

13).  Electrum can contain between 0-3 at.% Hg.  Gold also occurs in a Ag-Au-Se-S 

phase intermediate to fischesserite (Ag3AuSe2) and uytenbogaardatite (Ag3AuS2) 

containing 0.2-1.5 at.% Hg (Fig. A-14).  Silver minerals throughout the naumannite-

aguilarite-acanthite series are also common.  Tetrahedrite (Ag>>Cu, Fe, Zn) with several 

atomic % Se substituting for S (possibly giraudite) is present with Hg contents of 0.5-1.0 

atomic %.  Several grains with compositions close to pyrargarite (Ag3SbS3) with minor 

Se substitution were also analyzed (Fig. A-13). Textures and mineralogy correspond to 

stage 2b of Vikre (1985). 
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BM-15 

 This Bell vein sample taken from the Hatch-Halcyon level dump consists of 

bladed and banded quartz, silicates and banded sulfides and selenides.  Silver minerals in 

aguilarite-acanthite series are common with compositions varying between the end 

members.  A selenian silver-germanium mineral, selenian argyrodite (Ag8Ge(Se,S)6) was 

analyzed (Fig. A-16).  This mineral was first reported by Botova et al. (1983) and 

occurred in near-surface quartz-adularia veins hosted in rhyolitic volcanic rock similar to 

the environment at Buckskin Mountain.  Supergene (?) chlorargyrite (AgCl) after 

naumannite was analyzed (Fig. A-15).  A few grains of pyrargarite(?) were observed.  

Electrum was absent from this thin section.  The textures and mineralogy are similar to 

stage 2b of Vikre (1985). 

BM-16 

This vein sample from the Bell vein dumps has a vuggy, euhedral massive sulfide 

assemblage similar to stage 3 of Vikre (1985).  More than 50% of the sample is euhedral 

marcasite and pyrite, some of which exhibit a bladed texture.  Smaller, euhedral 

arsenopyrite grains coat the fringes of the larger Fe-sulfide grains (Fig. A-17).  Late 

anhedral stibnite fills vugs in the quartz (Fig. A-18).  Arsenopyrite and stibnite have low 

levels of Hg (0.1-0.3 at.%).  Dark gray chalcedonic silica fills vugs and voids. 
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APPENDIX B. 
 

Hg ISOTOPE SIGNATURES OF MISSISSIPPI VALLEY, CARLIN AND 
ALMADÉN-TYPE ORE DEPOSITS 

 

Introduction 

 Recent experimental studies of Hg isotope fractionation have confirmed field 

observations that volatilization causes measurable changes in Hg isotopic compositions 

by the preferential reduction and vaporization of lighter Hg isotopes (Zheng et al., 2007). 

This is significant in the study of ancient hydrothermal systems because it supports other 

lines of evidence (e.g. fluid inclusions and vein textures) for boiling and vapor separation 

in a near surface environment (Smith et al., 2005, 2008). Laboratory studies have also 

confirmed that biological reduction and abiotic photoreduction cause significant mass 

dependent fractionation of Hg isotopes in surficial environments (Bergquist and Blum, 

2007; Kritee et al., 2007). In both biotic and abiotic reduction, lighter isotopes of Hg 

were preferentially reduced to the volatile Hg0 species, leaving isotopically heavier Hg in 

the remaining residue. These studies indicate that Hg isotopes might be useful in studies 

of ore deposits by: 1) providing insight on the physical conditions of the hydrothermal 

system during ore formation; 2) assessing the role of biological interactions in ore 

deposition; and 3) quantifying the role of ore deposits and active hydrothermal systems in 

the global cycling of Hg.  
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In an effort to evaluate these possibilities, reconnaissance isotopic analyses were 

carried out on mercury from three different types of ore deposits. The following sections 

describe these ore deposits, explain the problem to which mercury isotope analyses might 

provide insight, and summarize the results. 

 

 

Ore Deposit Geology 

Mississippi Valley-type Zn-Pb deposits 

Mississippi Valley-type (MVT) Zn-Pb deposits form in carbonate host rocks from 

metal-rich brines (10 to 30 wt% NaCl) circulating in sedimentary basins at temperatures 

between 75 and 200 ˚C (Leach and Sangster, 1993). Most Hg in these deposits is in solid 

solution in sphalerite ((Zn,Hg)S) (Schwartz, 1997). Fluids that formed MVT deposits 

interacted with large volumes of rock and deposited ore largely by mixing two fluids, one 

S-bearing brine and the other metal-rich (c.f. Kesler et al., 1997). Most MVT fluids are 

not considered to have undergone large-scale boiling or vapor separation. 

Leaching and fluid transport of Hg was shown to cause only very small amounts 

of isotopic fractionation in the Hg deposits of the California Coast Ranges (Smith et al., 

2008; Chapter IV) and the greatest amount of fractionation was associated with boiling 

and de-gassing of fluids in the near-surface (Smith et al., 2005, 2008). It is therefore 

expected that MVT deposits will not show the same range of isotope ratios as epithermal 

and hot-spring type Hg-Au deposits and may preserve the Hg isotopic signature of the 

source rocks from which the Hg was derived. Low-temperature MVT ore deposition 

might also involve sulfur that has been reduced by bacterial activity (Druschel et al., 
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2002), and isotopic compositions characteristic of these processes might also be observed 

in Hg in the ores. 

Carlin-type Au deposits 

Carlin-type Au deposits located in northeastern Nevada are examples of basin-

hosted ore deposits that formed from fluids in large, almost regional, scale hydrothermal 

systems. The fluids that formed these ore deposits are characterized by low salinity (~ 2-3 

wt% NaCl), high Au/Ag and Au/base metals ratios, reduced, hydrocarbon-rich 

compositions at moderately low temperatures (180 – 240 ˚C) that replaced the silty 

carbonate host rocks with silica along structural zones and permeable strata (Hofstra and 

Cline, 2000; Cline et al., 2005). Hg is found in Au-rich arsenian pyrite rims and in late 

stage orpiment, realgar and cinnabar (Cline, 2001; Reich et al., 2005). The Carlin district 

is host to numerous Au deposits that range in size from <1 M to > 20 M oz Au.  

Key questions remain unanswered as to the origin of the heat, fluids and metals 

that formed these deposits and their possible link to magmatic activity and/or regional 

heating events (recently summarized by Ressel and Henry, 2006). Comparisons have 

been drawn between Carlin-type deposits and other large Au-only deposits, such as 

orogenic lode Au deposits, and it is hypothesized that these deposits formed from a 

uniform ore fluid derived from a large, relatively homogenous source (Phillips & Powell, 

1993; Muntean et al., 2007).  

Hg isotopes may provide insight into these questions. The Hg isotopic signatures 

of ores formed from large-volume, homogeneous fluids derived from crustal-scale 

processes should have a limited range of δ202Hg values that reflect the Hg isotopic 

composition of the source region, similar to the expectations for Mississippi-Valley-type 
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deposits. This narrow range of δ202Hg values should be distinct from ores derived from 

near-surface hydrothermal activity, which typically display a much broader range of 

δ202Hg values currently known to range from δ202Hg values of –1 to –3.4 (Chapter IV, 

Smith et al., 2008). 

Almadén-type Hg deposits 

 The mines at Almadén, Spain, access the largest Hg ore deposits on Earth. The 

ore consists of replacements of cinnabar and native Hg in quartzite or chlorite-carbonate 

altered volcanic rock and black shale (Saupe, 1990; Hernandez, 1999). Two types of 

mineralization have been described by Hernandez (1999): stratabound deposits, which 

includes the giant Almadén deposit, which is hosted mainly in the lower Silurian 

Criadero Quartzite; and fully discordant ore bodies, which includes several of the satellite 

deposits to the main ore body, such as the Las Cuevas, which is hosted by mafic 

volcanoclastic rocks. Both are deposit types have a close spatial association with 

Silurian-Devonian Frailesca volcanic breccias (Higueras et al., 1999).  

The size of the ore deposits at Almadén, carbonate-dominant alteration 

assemblages and the links to regional heating are similar to the largest silica-carbonate-

type Hg deposits of the California Coast Ranges, New Almaden and New Idria. Both the 

Almadén and California examples have abundant Hg-rich sedimentary source rocks 

adjacent to the districts and both are related in some way to volcanic activity. At 

Almadén, potential source rocks include thick quartzite sequences, inter-bedded black 

shales with TOC contents up to almost 8 wt%, basaltic lavas and Frailesca-type breccia 

pipes (Saupe, 1990; Higueras et al., 1999).  
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Initial measurement of Hg isotope ratios from the Almadén deposit indicated 

surprising homogeneity among the ores and refined mill product, although these early 

analyses have a poor level of external reproducibility (Klaue and Blum, 2000; Lauretta et 

al., 2001). New data were needed to determine if there were significant variations in Hg 

isotopic compositions and whether they could help determine whether the source of Hg 

for the Almadén-type deposits was sedimentary or volcanic. 

 

Materials and Methods 

 North American MVT ore samples were obtained from the collection of S.E. 

Kesler of the Department of Geological Sciences at the University of Michigan. B. 

Ahlers of the Doe Run Mining Company provided samples from the Bushy Park MVT 

deposit. M. Reich of the Departamento de Geología, Facultad to Ciencias Físicas y 

Matemáticas, Universidad de Chile and Kesler collected the Carlin-type ore samples that 

were used in this study. Ores from the Almadén and Las Cuevas mines were collected 

from the mine site and core collections of the Minas de Almadén y Arrayanes SA by the 

author. Additional Almadén and Las Cuevas samples (Alm-8, LC-1b) were collected by 

Kesler. 

Unless otherwise indicated in Table B-1, samples were mineral separates that 

were hand-picked from the ore specimens and crushed in a boron-carbide mortar. Bulk 

ore and jasperoid samples were hand crushed in an agate mortar. Small aliquots (10-20 

mg) of powdered samples were leached in aqua regia. The leachates were then diluted 

and analyzed for Hg isotopic composition by the method described in Smith et al. (2005, 

2008) and Chapter II. 



 151

Results 

MVT Deposits 

Samples of sphalerite were selected from a variety of MVT deposits in different 

mining districts to examine the isotopic compositions of Hg in ores formed from basin-

scale diagenetic processes (Table B-1, Fig. B-1). The δ 202Hg values for the sphalerite 

samples analyzed range from +0.2 to –1.0 ‰ δ202Hg. Samples from Bushy Park and 

Nanisivik have a relatively narrow range of δ202Hg values, close to the analytical 

resolution of the method, while samples from the Central Tennessee District range cover 

a larger span. It is noteworthy that 4 of the 5 samples from Bushy Park are > 0 ‰. Two 

samples from Nanisivik are clustered at the low end of the range of δ202Hg values. 

Samples from the Central Tennessee district show a much larger range than can be 

attributed to the precision of the analyses. In general, MVT ores have higher δ 202Hg 

values than the Carlin-type deposits and fall in a similar range as Almadén-type deposits. 

Carlin-type 

The δ 202Hg values for Carlin-type ore and mineral samples range from -1.6 to -

0.3 ‰ (Table B-1). The isotopic compositions of a pyrite sample from the Meikle deposit 

and pyrite and pyrite-bearing ore from the adjacent Rodeo deposit are virtually identical 

within the external precision of the measurements (±0.1 ‰)(Fig. B-1). Late-stage ore 

minerals from Rodeo, galkhaite and cinnabar, have low δ 202Hg values, with the galkhaite 

having the lowest δ 202Hg value measured for this deposit type. Jasperoid material, which 

may have been deposited as paleosurface sinter, has a similar low δ 202Hg value. 
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Table B-1 Summary of ore deposit analyses  

 
 

aAll samples prepared by acid digestion. 

Samplea Locality Mineral δ202Hg
    
MVT    
CT-1 Central Tennessee District Sphalerite -0.2 
CT-3 Central Tennessee District Sphalerite 0.0 
CT-4 Central Tennessee District Sphalerite -0.1 
CT-7 Central Tennessee District Sphalerite -0.7 
CT-8 Central Tennessee District Sphalerite -0.4 
TS-WC-1 Tri-State District Sphalerite -1.0 
Ark 9 Northern Arkansas District Sphalerite -0.4 
Webb City Viburnum Trend, SE Missouri Sphalerite -0.1 
SP4310 Nanisivik, Canada Sphalerite -0.6 
SP4315 Nanisivik, Canada  Sphalerite -0.8 
BP-1 Bushy Park, South Africa Sphalerite 0.1 
BP-2 Bushy Park, South Africa Sphalerite -0.4 
BP-3 Bushy Park, South Africa Sphalerite 0.2 
BP-4 Bushy Park, South Africa Sphalerite 0.0 
BP-9 Bushy Park, South Africa Sphalerite 0.2 
    
Carlin-type    
GS-03-03 Goldstrike, Nevada Pyrite -0.5 
M-03-03 Meikle, Nevada Pyrite -1.1 
R-03-03 Rodeo, Nevada Pyrite -0.9 
R-03-05 Rodeo, Nevada Ore -0.8 
R-11-151M-02 Rodeo, Nevada Galkhaite -1.6 
Surface sinter Rodeo, Nevada Jasperoid -1.3 
SEK UG cinnabar Rodeo, Nevada Cinnabar -1.1 
S-03-03 Screamer (Post-Betze), Nevada Ore -1.5 
DP-03-03 Deep Post (Post-Betze), 

Nevada 
Realgar 

-0.3 
Almadèn-type    
Alm-8 Almadèn deposit, Spain Cinnabar -0.5 
CS04AL56 Almadèn deposit, Spain Cinnabar -0.1 
LC-1b Las Cuevas deposit, Spain Cinnabar -0.5 
CS04AL28 Las Cuevas deposit, Spain Cinnabar 0.0 
CS04AL28 Las Cuevas deposit, Spain Native Hg -0.9 
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Figure B-1. Histograms of δ202Hg values by deposit type. 
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 Late-stage realgar from Deep Post has the highest δ 202Hg value at –0.3 ‰, while ore 

from the neighboring Screamer deposit is at the low end of δ 202Hg values at –1.5 ‰. The 

range of δ 202Hg values is greater than for the Almadén- and MVT deposits, and extends 

to much lower δ 202Hg values than these deposit types. 

Almadén 

The δ 202Hg values of the cinnabar from the Almadén and Las Cuevas ore bodies 

range from -0.9 to 0.0‰ (Table B-1). The different δ 202Hg values of co-existing cinnabar 

(0.0 ‰) and native Hg (-0.9 ‰) from the same sample (CS04AL28) may be the result of 

mineral-specific isotope fractionation effects that occurred during the reduction of Hg2+ 

in cinnabar to liquid Hg0. Abiotic and bacterially-mediated Hg reduction were found to 

produce reduced Hg0 with a lower δ 202Hg value than the precursor in laboratory 

experiments (Kritee et al., 2007; Bergquist and Blum, 2007). The δ 202Hg values of 

cinnabar from the sedimentary-rock hosted Almadén and Frailesca breccia-hosted Las 

Cuevas deposits span a narrow range of 0.5 ‰ (Fig. B-1). 

 

Discussion 

MVT 

The isotopic compositions of the two MVT deposits from which multiple samples 

were analyzed, Bushy Park and Nanisivik, appear to be largely uniform. This is in 

contrast to, for example, the Maycamas Hg deposit district, where the range of isotopic 

compositions in individual deposits is the same as that in the entire district. This suggests 

a common source of Hg for the ore forming fluid in these MVT deposits, with little or no 

subsequent fractionation caused by processes such as boiling or vapor separation. The 
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various MVT deposits that comprise the Central Tennessee District show a greater range 

of δ202Hg values than the individual deposits, possibly suggesting larger-scale 

heterogeneities in Hg sources district-wide. Little fractionation (< ±0.5 ‰) is expected 

during leaching and transport of Hg from source to ore deposit based on similarities in 

δ202Hg values among deep ore deposits and source rocks in the California Coast Ranges 

(Smith et al., 2008; Chapter IV). The average δ202Hg value of the small population of 

Bushy Park sphalerites, 0.0 ± 0.4 ‰ (2 SD, n = 5), suggests that this might also be true 

for at least some MVT deposits as well (Fig. B-1). 

Bushy Park is located in the world’s oldest MVT district, which is hosted in the 

late Archean-early Proterozoic Transvaal Basin. Ar-Ar analyses of illite interpreted to 

accompany ore deposition at Bushy Park yield an age of 2.145 ± 0.007 Ga (Schaefer, 

2002). It is notable that 4 of the 5 Bushy Park δ202Hg values are > 0 ‰. These values are 

at the high end of the range of δ202Hg values for all the MVT samples analyzed (Fig. B-1) 

as well as most other ore deposits (Chapter III; Chapter IV). The other MVT samples are 

from deposits that formed in the Mesoproterozoic (Nanisivik) and the Phanerozoic 

(Central Tennessee, Viburnum Trend, Northern Arkansas, and Tri-State), after the Great 

Oxidation Event, and during a time when seawater sulfate concentrations were much 

closer to present values (see review by Kesler and Reich, 2006). It is possible that the 

high δ202Hg values of the Bushy Park deposit reflect different processes of sulfate 

concentration and ore formation during a time when seawater sulfate levels are thought to 

be <1%, possibly up to ~25%, of modern values (Kah et al., 2004; Ohmoto, 2004). 

Few processes are currently known to produce high δ202Hg values. Reduction of 

Hg by bacteria produces gaseous Hg0 that is lighter than the Hg that remains in the 
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sediment, enriching it in heavier Hg isotopes (Bergquist and Blum, 2007; Kritee et al., 

2007). Trace metal utilization by cyanobacteria has been an important process in the 

global cycling of metals as far back as 3.2 Ga, and it is possible that bacterial Hg 

reduction also occurred during the Proterozoic (cf. Saito et al., 2003). Burial and 

subsequent diagenesis of sediments enriched in heavy Hg isotopes could have formed a 

source rock with a high δ202Hg value. 

Bacterially mediated methylation of Hg may be another process that could 

concentrate heavier Hg isotopes in the sediment. Analyses of the dogfish muscle certified 

reference material DORM-2, in which 96% of the contained Hg is in the methylated 

form, are isotopically heavy at +0.18 ‰ (Chapter II; Bergquist and Blum, 2007). 

Bacterially-mediated sulfate reduction was recently linked to ZnS precipitation in 

biofilms and might be involved in some MVT and SEDEX deposits (Druschel et al., 

2002). Processes such as these may form a reservoir of heavy Hg isotopic compositions 

(>0 ‰ δ202Hg) in organic-rich sedimentary rocks and MVT ore deposits that form from 

fluids that contain Hg derived from this reservoir may record that heavier Hg isotopic 

signature.  

Carlin-type 

Carlin-type deposits have a range of δ202Hg values that is larger and distinctly 

lower than MVT and Almadén-type deposits. Within the Rodeo deposit δ202Hg values 

range from –0.8 to –1.6 ‰ (Fig. B-1). While mineral-specific fraction effects might be 

the cause of this variation, these effects are probably much less than for the effect 

observed between cinnabar and Hg0 at Almadén, because Hg is in the same redox state in 

all the Rodeo mineral samples analyzed (Hg2+). The δ202Hg values of ores from Rodeo 
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and Screamer differ by 0.7 ‰ and these deposits are < 1.5 km apart. Pyrite from Meikle, 

Rodeo and Goldstrike range from –0.5 to –1.1 ‰ δ202Hg and these locations are 

separated by < 5km. These variations are not consistent with the interpretation that these 

ore deposits formed from a uniform fluid composition derived from a large homogenous 

source region. 

The range of δ202Hg values and low δ202Hg values, averaging -1.0 ± 0.8 ‰(2SD, n 

= 9), of the Carlin-type deposits suggests several possibilities: 1) the Hg in the deposits 

was derived from a source rock(s) with a δ202Hg value lower than values measured in the 

source rocks of the California Coast Ranges; 2) rather than a uniform ore fluid, 

mineralizing fluids were heterogeneous mixtures (metamorphic, magmatic, exchanged 

meteoric) with different Hg isotopic compositions; 3) Hg isotopes were fractionated by 

boiling and the generation of isotopically light Hg vapor during formation of these 

deposits in a process similar to that observed in the epithermal ore deposits and hot 

springs systems described in Chapter III and IV., or 4) Hg isotopes were fractionated by 

an as yet unrecognized process. 

It is certainly possible that there are source rocks with δ202Hg values less than 

those measured for the bulk of the rocks in the California Coast ranges. Two samples of 

metamorphic rocks of the Franciscan Complex had similarly low values (Chapter IV). 

Deep crustal melting and involvement of basement structures have been proposed as 

metal sources for Carlin-type deposits and these materials have not been analyzed for Hg 

isotopic compositions (Cline et al., 2005).  

Most studies of the stable isotopic composition of Carlin-type deposits conclude 

that meteoric water was the dominant component, although Cline and Hofstra (2000) 
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present evidence for the involvement of metamorphic or magmatic fluids in the formation 

of the Getchell and Deep Post deposits. In the California Coast Ranges, connate fluids 

derived from the Great Valley Sequence formed the mineralizing fluid and dilution with 

meteoric water produced fluids with much lower Hg concentrations, but similar δ202Hg 

values (Smith et al., 2008, Chapter IV). To form significant variations in ore minerals, the 

mixing fluids would be required to be Hg rich and have distinctive δ202Hg values. 

In the Carlin-type sample suite, some of the late-stage minerals (cinnabar and 

galkhaite) and jasperoid deposited at or near the paleosurface are isotopically lighter than 

the bulk of the ore mineral samples (Table B-1). It is possible that these minerals were 

deposited by an epithermal-like hydrothermal system either during the main stage of 

Carlin-type ore deposition or at some later time.  

Given the limited amount of data currently available on the Hg isotope 

systematics of ore deposits, as yet unrecognized fractionation might be associated with a 

well known ore depositing mechanism. For instance, sulfidation of reactive Fe in the host 

rock and precipitation of As-pyrite are known to be important mechanisms for ore 

formation, but the isotopic effects of incorporating Hg into pyrite rims and onto pyrite 

surfaces in unknown (Kesler et al., 2003; Reich et al., 2005). 

Almadén-type 

Samples from the Almadén district show much less variation in δ202Hg values 

than the Carlin-type deposits, and are similar in range to MVTs and silica-carbonate type 

Hg deposits from the California Coast Ranges (Fig. B-1; Chapter IV). The largest 

variation in the Almadén deposits might be attributed to mineral-specific isotopic 

fractionation between cinnabar and co-existing native Hg. The reduced form (native Hg) 
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has a δ202Hg value that is 0.9 ‰ lower than that of the co-existing cinnabar, a 

fractionation that is similar in magnitude and favoring lighter isotopes as determined in 

laboratory experiments (Bergquist and Blum, 2007; Kritee et al., 2007). 

Evidence from ore deposits in the California Coast Ranges suggests that only 

small fractionations (< ±0.5 ‰) occur during transport and deep deposition (> 1000 m) of 

Hg (Smith et al., 2008; Chapter IV). The δ202Hg values of the Almadén cinnabar samples 

analyzed range from 0 to –0.5 ‰, with an average –0.3 ± 0.5 ‰ (2SD, n = 4). It is 

conceivable that with the uncertain external precision of the P54 instrument used in the 

earlier analyses and analytical methods used by Lauretta et al. (2001), all the samples 

from Almadén previously analyzed could appear to have homogeneous Hg isotopic 

compositions. 

Small differences between the two deposits analyzed in the Almadén district 

suggest that the isotopic signature of the source may be preserved in the deposits. Pb 

isotope data from cinnabar suggests a mixed sedimentary source for the Hg in the 

Almaden district (Higueras et al., 2005). These authors propose that hydrothermal 

leaching of organic matter in sedimentary rocks and Hg transport as organic complexes 

was the main processes that concentrated Hg and formed the ore deposits of the district. 

The Hg isotope data presented here are in agreement with this model of formation. 

 

Future Work 

 More extensive studies of individual MVT deposits are needed to confirm if the 

limited range of δ202Hg values measured in Bushy Park is a characteristic of MVTs in 

general. Further comparisons of the Hg isotopic compositions of Paleoproterzoic MVTs 
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with deposits that formed after the Great Oxidation Event may also be useful in 

unraveling the history of the evolution of the Earth’s oceans and atmosphere. Detailed 

studies of potential Hg source rocks in MVT basins might fingerprint metal sources if 

limited fractionation is shown to occur during leaching, transport and MVT ore 

deposition. The role of organic matter in the formation of MVT deposits needs further 

exploration. Hg will no doubt be involved because of the effects of bioaccumulation. An 

examination of Hg isotope ratios in both organic-rich and organic-poor MVT deposits 

may be of use in this respect.  

A comprehensive study of source and host rock types available from the Carlin 

District would provide insight on the Hg isotopic composition of the rocks of the region. 

The presence of an epithermal system overprinting or operating during main stage ore 

deposition in Carlin-type deposits is a controversial idea. Detailed studies that focused on 

early and late mineralization, different modes of occurrence (stratabound, fault/fold 

controlled and breccia hosted) and paragenetic mineral sequences from individual mines 

might be useful for determining the evolution of Hg isotopic compositions in Carlin-type 

deposits.  

 The source of the Hg for the supergiant Almadén deposit, while made somewhat 

clearer by recent Pb isotope studies (Jébrak et al., 2002; Higueras, 2005) and this Hg 

isotope study, is still a question open for future research. Hg isotopes combined with 

other studies of provenance (e.g. Pb) may shed new evidence on the metalogensis of the 

district. A study of the Hg isotopic composition of the volcanic and sedimentary source 

rocks of the district may be able to distinguish a Hg source, although there is evidence for 

significant Hg re-mobilization in the district since the Paleozoic. 
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