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CHAPTER 1 
 

INTRODUCTION 
 

 

1.1 Research Overview 

Stiffened plates and/or cylindrical shells are frequently used as structural 

components for ground, underwater, and aerospace vehicles. In the construction of such 

structures, fiber reinforced composites have been widely used because of their inherent 

high ratio of stiffness and strength to weight. Especially, in commercial and military 

airframe structures the use of advanced composite materials has steadily increased since 

1970s. Although early applications of composites were limited to secondary structure, 

which were not critical to safety of flight, over time the applications expanded to include 

most structures on small airplanes and rotorcrafts, including wings and pressurized 

fuselage. Furthermore, future reusable launch vehicles for space applications also plan to 

use composite airframe structure [1,2]. These increased composite applications have 

justified the need for a good understanding of the vibro-acoustic response characteristics 

of composite structures subject to either high frequency vibrational or acoustical 

excitations.  

In the past, an Energy Finite Element Analysis (EFEA) formulation has been 

developed and successfully applied to many engineering problems of computing the 

vibro-acoustic responses of complex automobile, aircraft, and naval structures [3-7]. The 

previous EFEA developments, however, are focused on the structures composed of 

isotropic materials and thus their applications are limited mostly to metallic structures. 

The prediction of high frequency vibrations and their transmission through composite 

structures surely requires for the current EFEA formulation to include the following two 

important features. First, the EFEA governing differential equation should be 
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appropriately modified to incorporate the directional dependency of the wave intensity in 

anisotropic media as well as the through-thickness material variation in layered 

composite plates. Second, a computationally effective but accurate method for evaluating 

the wave energy transmission across various structural or material discontinuities is 

necessarily required such that the inherent characteristics of composite plates can be 

taken into account. 

The developments of EFEA governing differential equations for composite media 

usually require complicated and mathematically involved energy balance equations. Such 

differential equations for orthotropic or composite laminates can be found in the 

references [8] and [9], respectively. In her thesis, Yan [9] suggested an alternative energy 

balance equation for a composite plate by using the equivalent diffuse field group 

velocity and structural loss factor, both of which have been computed on the basis of 

angle averaging technique. In her work, Yan removed the directional dependence of 

group velocity by averaging it over the angle 0 to 2π, and showed that the energy density 

distribution computed from the averaging technique corresponds well with exact 

solutions for both orthotropic and composite laminate plates. Hence, Yan’s approach will 

be employed in this study to calculate the spatial distribution of energy densities inside a 

composite plate surrounded by structural discontinuities. However, the calculation of the 

averaged group velocity and structural loss factor is performed by using spectral finite 

element method (SFEM) which had been proven to be more suited for incorporating 

through-thickness material variation in composite plates [10,11]. 

Since elastic wave energies do not satisfy the continuity condition at the junction at 

which structural and/or material discontinuities exist, the wave propagation or reflection 

analysis is necessary in order to seek the relationship between wave energy densities of 

adjoining elements [12,13]. It is then followed by the assembly of EFEA element level 

matrices. Furthermore, the vibrational energy density variation within a homogeneous 

structural element is mostly not comparable with the rather abrupt change in vibrational 

energy density across such discontinuities [12]. Therefore, accurate wave transmission 

analyses at different types of structural joints should be regarded as being the most 

important procedure in a new EFEA formulation. 
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It is often found that an airplane or a rotorcraft fuselage consists of thin composite 

cylindrical shells with orthogonal stiffeners which are usually spaced at quite regular 

intervals in both the axial and circumferential directions. These structures are often 

considered to be spatially periodic in order to evaluate their dynamic properties. The 

spatial periodicity allows elastic waves to propagate in certain frequency ranges and does 

not permit wave propagation in other frequency ranges and these pass/stop bands are 

unique characteristic of periodic structures [14-16]. In this study, the wave propagation 

problem of this type is investigated by an analytical method using periodic structure 

theory in conjunction with classical lamination theory [17]. It is used for calculating 

propagation constants in axial and circumferential direction of the cylindrical shell 

subject to a given circumferential mode or axial half-wave number. The propagation 

constants corresponding to several different circumferential modes and/or half-wave 

numbers are combined to determine the vibrational energy ratios between adjacent basic 

structural elements of the two-dimensional periodic structure. In the end, the power 

transfer coefficients associated with an elastic wave propagating a periodic structure can 

be recovered from the vibrational energy ratios. This computation is accomplished by 

applying an iterative algorithm [18], which had been developed in the past for this 

purpose. 

Considered for the analysis of wave energy transmission through non-periodic 

composite structures are coupled composite plates such as an L- or T- shaped plate 

junction. The wave dynamic stiffness matrix method based on the first-order shear 

deformation theory (FSDT) is used for the solution of wave power transmission and/or 

reflection coefficients [19]. The wave dynamic equations of motion are derived in 

accordance with FSDT, which yields dispersion relation. For an incident wave, 

transmitted or reflected wave induced displacements at a junction are related to 

corresponding tractions through wave dynamics stiffness matrices. Then, the 

displacement continuity and equilibrium conditions are invoked at the common junction, 

from which the transmitted and reflected wave amplitudes are obtained for a given 

incident wave. The calculated wave amplitude ratio gives rise to the energy ratios of 

propagating waves to an incident wave, i.e. power transfer coefficients. In this analysis, 

the shear deformation effects of composite plates are taken into account in the context of 



4 
 

FSDT. Furthermore, since the wavenumber is angle-dependent due to anisotropic 

material properties of composite plates [20], the diffuse-field power transfer coefficients 

is computed such that the non-uniform or non-diffuse wave energy distribution can be 

fully accounted for. 

The aforementioned researches are concerned with the derivation of energy 

governing differential equation and the calculation of power transfer coefficients for 

composite structures. These respective contributions constitute the new EFEA 

formulation. The predetermined power transfer coefficients are employed in the joint 

matrices of EFEA formulation and the global EFEA matrices are thereby assembled. The 

joint matrix provides a relationship between energy flow and energy densities and can be 

computed from power transfer coefficients by considering energy flow at a junction 

[12,13]. The developed EFEA procedure is now capable of computing vibro-acoustic 

responses in composite structures. Therefore, a suite of the new EFEA formulation is 

validated by comparing to the vibration analysis results for coupled-plates systems and to 

experimental measurement data for a cylindrical composite rotorcraft-like structure [21]. 

Such observed good correlations prove that the new EFEA can be an efficient and 

reliable vibro-acoustic analysis tool for composite structures. 

 

 

1.2 Literature Review 

1.2.1 Vibro-acoustics Analysis Methods 

Conventional Finite Element Analysis (FEA) has been used to solve structural 

acoustics and fluid-structure interaction problems [22]. However, in the high frequency 

range, when the dimension of the structure is considerably large with respect to the 

wavelength, FEA requires a very large number of elements in order to properly capture 

the high frequency characteristics of a given structure [23], which consequently causes 

tremendously high computational costs and thus makes displacement-based FEA 

methods infeasible. On the other hand, EFEA can compute the vibro-acoustic response of 

such large scale structures at high frequencies within much less time because EFEA uses 
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space- and time-averaged wave energy density as primary variables [24,25] and thus 

requires very small number of finite elements.  

Meanwhile, Statistical Energy Analysis (SEA) is a mature and established analysis 

approach for predicting the average response of structural-acoustic systems at high 

frequency [26-29]. In SEA, a vibro-acoustic system is divided into subsystems of similar 

modes. The lumped averaged energy within each subsystem of similar modes comprises 

the primary SEA variable and the power transferred between subsystems is expressed in 

terms of coupling loss factors. The single energy level for each subsystem is the space 

averaged energy value. Although SEA models result in few equations and are easy to 

solve, they cannot be developed from CAD data, local damping cannot be accounted for, 

and the model development requires specialized knowledge.  

In contrast, EFEA offers an improved alternative formulation to the SEA for 

simulating the structural-acoustic behavior of built up structures. It is based on deriving 

governing differential equations in terms of energy density variables and employing a 

finite element approach for solving them numerically. There are several advantages 

offered by the EFEA, the generation of the numerical model based on geometry; spatial 

variation of the damping properties can be considered within a particular structural 

member; the excitation can be applied at discrete locations on the model, and the EFEA 

makes accessible the high frequency analysis to the large community of FEA users. 

These unique capabilities make the EFEA method a powerful simulation tool for design 

and analysis. 

 

1.2.2 Derivation of Energy Balance Equation Based on Equivalent Diffuse Wave Field 

 The previous EFEA method for isotropic materials is based on the basic assumption 

of the diffuse wave field, meaning that the flow of elastic wave energy is the same in all 

directions. For non-isotropic materials like composites, however, the wavenumber has 

angle dependence. This then affects the energy distribution and the direction of energy 

flow in anisotropic media and causes the wave field to be non-uniform and non-diffuse or 

at least non-uniform. Langley [30] and later Langley and Bercin [31] had studied to solve 

such non-diffuse wavefield problem by developing power balance equations at the angle 
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of wave propagation. The angle dependent energy density has been represented by 

Fourier series expansion with the total energy density being the Fourier coefficients. The 

total energy density is then obtained by applying the Galerkin procedure. Another 

research by Ichchou et. al. [32] had shown that the directional dependence of group wave 

velocity, i.e. the derivative of the frequency with respect to the wavenumber, affects the 

relationship between the energy flow and the energy density for one-dimensional mono- 

and multi-propagative wave motions. The relationship then resulted in different forms of 

energy balance equations in terms of total energy densities.  

Although the aforementioned literature has presented energy balance equations for 

diffuse wave field by assuming either isotropic wave energy distribution or unique 

propagative mode, such assumptions may not be applicable to composite plates or shells 

since their inherent material anisotropy gives rise to non-uniform and/or non-diffuse 

wave field. 

By representing composite plates as equivalent homogenized media by using the 

averaged group velocity and structural loss factor, Yan [9] used the same EFEA 

governing differential equations as those of diffuse-field elastic waves and showed good 

comparison results for both orthotropic and composite laminates. 

 

1.2.3 Wave Propagation Analysis for a Cylindrical Shell with Periodic Stiffeners 

Free and forced wave motions through periodically-stiffened cylinders have been 

studied extensively. Mead [33] has summarized a collection of state-of-the-art analytical 

and numerical wave-based methods among which two effective and widely used methods 

are mentioned herein.  

First, the transfer matrix method in conjunction with periodic structure theory was 

applied by Mead and Bardell [34,35] to the free wave propagation in an isotropic circular 

cylinder with periodic axial and circumferential stiffeners. In their work, a two-

dimensional periodic cylinder was reduced for analytical purposes to two separate one 

dimensional stiffened cylinders by assuming simply-supported boundary conditions 

either at ring frames or at axial stiffeners, and the pass/stop bands were identified in terms 

of propagation constants for each axial or circumferential mode number. Later, they also 
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used the hierarchical finite element method to find the propagation frequencies of elastic 

waves by computing phase constant surfaces for a number of different cylinder-stiffener 

configurations [36,37]. 

A different wave-based approach called space-harmonic method has also been 

employed due to its effectiveness in the analysis of sound radiation from a vibrating 

periodic structure [33]. Hodges et. al. [38] used the method to find the low order natural 

frequencies and modes of a ring-stiffened cylindrical shell. Since then, many researchers 

[39-41] have adopted the method of space harmonics to analyze the vibro-acoustic 

interactions of a periodic structure and fluid. For example, Yan et. al. [41] analyzed the 

vibro-acoustic power flow of an infinite fluid-filled isotropic cylindrical shell with 

periodic stiffeners.  

Although the aforementioned analytical methods are focused on quasi-one 

dimensional wave propagation problems where vibrational energy flows in one direction 

(e.g., along the length) with wave motion in the other direction (e.g., around the 

circumference) assumed to be spatially harmonic, they may be effectively utilized to 

compute the wave power transmission in two dimensional periodic cylinders. For 

example, Wang et. al. [5] used the transfer matrix method based on periodic structure 

theory to calculate transferred vibrational energy level in aircraft-like aluminum cylinder 

with periodic axial and circumferential stiffeners and obtained a good agreement with 

experimental data (see also reference [42]). The same method was also applied for the 

high frequency vibration analysis of cylindrical shells with periodic circumferential 

stiffeners immersed into heavy fluid and subjected to axisymmetric excitation. The 

corresponding results agreed well with a very fine axisymmetric structural-acoustic finite 

element model [43].  

All of the previous developments, however, are restricted to elastic waves 

propagating in uniform diffuse wave field, e.g., a flat isotropic plate and a cylinder made 

only of isotropic materials. Thus, these techniques need to be extended for the wave 

propagation analysis of periodic composite laminate cylindrical structures of interest to 

many engineering applications. Among recent works associated with the vibration 

analysis of composite cylinders with discrete stiffeners, Zhao et. al. [44] analyzed simply 

supported rotating cross-ply laminated cylindrical shells with different combination of 
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axial and circumferential stiffeners. The effects of the stiffeners on the natural 

frequencies of the structure were evaluated via a variational formulation with individual 

stiffeners treated as discrete elements. More recently, Wang and Lin [45] presented an 

analytical method to obtain the modal frequencies and mode shape functions of ring-

stiffened symmetric cross-ply laminated cylindrical shells. Both publications presented 

the formulation of governing equations for the vibration analysis of composite cylinders 

with periodic stiffeners based on either dynamic equations of motion or variational 

principle. Neither of the two publications addresses the evaluation of the wave 

propagation constants between adjacent periodic units using periodic structure theory. 

 

1.2.4 Wave Power Transmission Analysis for Coupled Composite Plates 

The derivation of wave power transmission coefficients for coupled plates has long 

been a subject of numerous researches. Classical works on the wave transmission 

coefficients for a number of types of structural junctions are well summarized in 

references [46] by Cremer and Heckl and [26] by Lyon. However, their examples were 

restricted to two orthogonal or coplanar plates with normal incidence or simple boundary 

conditions. Craven and Gibbs [47] expanded the wave transmission analysis by 

considering the effect of obliquely incident wave as well as in-plane waves, and 

investigated a right-angled junction of two, three, or four plates of various thickness, 

density, and loss factors. In each of these studies, the amplitudes of reflected and 

transmitted waves were computed by imposing displacement and force continuity 

conditions at structural junctions. Later, Langley and Heron [48] reformulated this 

approach to introduce “wave dynamic stiffness matrix”, which relates the elastic tractions 

due to incident and transmitted waves to displacements at the junction, and computed the 

wave transmission coefficients of a generic plate/beam junction. More recently, using the 

same approach, Craik et. al. [49] reported the wave transmission coefficients for various 

types of line junctions (some with a single connection point and some with finite-width 

strip plates).  

Since all of these analyses assumed the plates to be isotropic, thin and flat, a few 

recent studies have followed as a natural extension of them. For instance, Zalizniak et. al. 
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[50] described 3D joint model for calculating the wave transmission through isotropic 

plate and beam junctions. In their analysis, Mindlin’s plate theory was used along with 

the effect of three-dimensional deformation of a junction by assuming the joint element 

as an elastic block. However, they did not consider the rotational inertia effect so in-plane 

and out-of-plane wave coupling was simply ignored. Moreover, since they are focused 

only on the 3D joint model shear deformation effects of plate itself on the wave 

transmission characteristics were not investigated at all. Such thick plate effects as rotary 

inertia and shear deformation were studied by McCollum and Cuschieri [51] with an 

example of L-shaped thick isotropic plate structure. They used a mobility power flow 

approach to calculate the bending wave power transmission of right-angled finite plates. 

Since the displacements are described in terms of sin and cos functions, their analysis 

method cannot be reused for anisotropic media like composites. Regarding the structure-

borne sound transmission through anisotropic media, Bosmans et. al. [52] presented 

useful numerical results for bending wave transmission across an L-junction of thin 

orthotropic plates. They used thin plate theory ignoring both the coupling between in-

plane and out-of-plane motion and shear deformation effect.  

For an isotropic flat plate, the elastic wave field is diffuse, meaning that the flow of 

wave energy is the same in all directions. For a composite plate and even for an isotropic 

curved panel, however, the angle dependence of the wavenumber should be taken into 

account due to the non-isotropic wave energy distribution [53]. Therefore the diffuse-

field wave transmission coefficients are needed for the wave transmission analysis of 

structural junctions having a non-uniform and/or non-diffuse wave energy distribution 

among the various directions of propagation. Lyon [26] first suggested a mathematical 

equation for the wave energy distribution in a reverberant wave field by assuming that the 

wave energy should be proportional to the modal density. He derived the modal density 

by calculating the rate of change of the area enclosed by the dispersion curve on the 

wavenumber diagram with respect to frequency. His derivation, however, was for the 

case of uniform wave energy distribution where the wavenumber is constant and 

independent on the propagating direction. Later, Lyon’s approach has been extended by 

Langley [53] and Bosmans et. al. [20,52] for the calculation of diffuse-field wave 

transmission coefficients for non-isotropic elastic wave field. In each of their papers, 
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curved isotropic panels and orthotropic plates were considered to show that the angle-

dependent wavenumbers can be taken into account by referring to Lyon’s basic 

assumption of equipartition of modal energy. Thus, in this study, the diffuse-field power 

transmission coefficients are computed by applying the same expression as suggested in 

references [20] and [53] to the case of coupled anisotropic plates. 

 

 

1.3 Dissertation Contribution 

The primary contributions of this study can be summarized as follows: 

1. A simple and effective EFEA governing differential equation is introduced based 

on the angle-average of group speed and structural loss factor. The equivalent 

diffuse wave field quantities are calculated using SFEM to account for the 

through-thickness material variation and transverse shear deformation. The 

application of the proposed energy equation tremendously reduces the time 

required for the derivation of the energy differential equation of elastic waves in 

composite media. 

2. An analytical method is developed for the wave propagation analysis and 

calculation of propagation constants of a composite laminated cylindrical shell 

with periodic isotropic stiffeners. The method is the product of combining 

periodic structure theory with classical lamination theory (CLT). The effects of 

material anisotropy and spatial periodicity can be evaluated by using this 

analytical approach. Hence, the use of this analytical method enables the 

expedient and efficient vibrational and acoustic design of a periodic composite 

laminated cylindrical shell structure. 

3. The FSDT-based wave dynamic stiffness matrix method is developed for the 

calculation of wave transmission and reflection coefficients in coupled 

composite structure. Two coupled infinite plates made either of composite 

laminates or of composite sandwiches are considered to evaluate the change of 

wave power transmission coefficients over the vibration frequency or the angle 

between two plates. Through these numerical examples the shear deformation 
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effect is clearly demonstrated. The present analytical approach can be effectively 

used for the calculation of the wave transmission in junction structures of 

composite plates. 

4. A new EFEA procedure is formulated in order to compute the high frequency 

vibro-acoustic response of composite laminated and/or sandwich structures. The 

validity of the new EFEA formulation for composite structures is demonstrated 

through the comparison with FEA results for systems of coupled composite 

plates. Subsequently, the vibrational energy densities of structural components 

and the sound pressure level of interior acoustic medium are computed by the 

new EFEA procedure and compared to experimental data measured for the 

cylindrical composite rotorcraft-like structure. Fairly good correlations have 

been observed and such results may indicate that the new EFEA can be an 

efficient and reliable vibro-acoustics analysis tool for the computational design 

and simulation of composite structures.                           

 

 

1.4 Dissertation Overview 

The EFEA governing differential equations for elastic waves in a composite plate are 

derived in Chapter 2. First, the energy governing equation for a uniform diffuse wave 

field is presented to discuss necessary energy relationships and associated underlying 

assumptions. Then, such relationships for non-uniform and/or non-diffuse wave field are 

sought by introducing angle-averaged wave speed and structural loss factor. The use of 

SFEM for the computation of such averaged wave quantities will also be discussed. 

In Chapter 3, CLT-based periodic structure theory will be utilized for the calculation 

of the propagation constants of a cylindrical shell with periodic stiffeners. The periodic 

structure theory is briefly described. Vibration analyses of a dense finite element model 

will be performed and compared to the presented analytical approach. Additionally, the 

effects of shell material properties and the length of each periodic element on the wave 

propagation characteristics are examined based on the analytical approach. 
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In Chapter 4, FSDT-based wave dynamic stiffness matrix method will be proposed 

for the calculation of wave power transmission coefficients for coupled composite plates. 

The validity of the method is demonstrated through several analyses and comparison with 

published numerical results. The differences in power transmission coefficients due to 

transverse shear deformation will be discussed with numerical examples. Finally, a 

discussion will be presented on how much compliant joints affect the power transmission 

characteristics of two right-angled composite plates by modifying the FSDT-based wave 

dynamic stiffness matrix method with the joint compliances. 

In Chapter 5, the energy differential equations and the analytical methods of 

computing power transfer coefficients will be incorporated into a new EFEA formulation. 

The brief description of engaging power transfer coefficients into EFEA procedure will 

be given. Then, the new EFEA method is applied to coupled-plates systems and a 

rotorcraft-like cylindrical structure. The comparison of EFEA predictions with numerical 

results and experimental measurement data will be made for the validation of the new 

EFEA method. 

In Chapter 6, conclusions will be drawn from this study and recommendations will 

be presented for future developments of EFEA method for vibroacoustic analysis of 

composite structures. 
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CHAPTER 2 
 

DERIVATION OF EFEA GOVERNING DIFFERENTIAL 
EQUATION FOR COMPOSITE MEDIA 

 
 
 
In this chapter, an EFEA governing differential equation of elastic waves in 

composite media is derived in terms of vibrational energy density variables. In section 

2.1, necessary energy equations and associated underlying assumptions are identified by 

reviewing the whole derivation process of an energy balance equation for a uniform 

diffuse wave field. It is followed by the derivation of energy equations for a non-uniform 

and/or non-diffuse wave field. They can be sought by introducing equivalent diffuse 

wave field. The equivalent diffuse wave field is then obtained on the basis of the angle-

average of wave group velocities and structural loss factors. Sections 2.2 and 2.3 

formulate numerical methods of calculating such averaged wave quantities. They use 

SFEM to incorporate through-thickness material variations and account for transverse 

shear deformation. 

 

2.1 Derivation of Energy Balance Equation based on Equivalent Diffuse Wave Field 

The aim of the EFEA is to calculate vibrational energy level in a particular wave 

type, and this is done by formulating a set of power flow equations. The energy flow 

balance at the steady state over a differential control volume of the plate can be written as 

[46] 

ߘ  · ۄ۷ۃ ൅ ۄௗ௜௦௦ߨۃ ൌ ۄ௜௡ߨۃ (2.1) 
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where ߨௗ௜௦௦ and ߨ௜௡ are, respectively, the energy loss and input power density, and the 

divergence of the energy flow, ߘ · ۷, indicates the net power out. In the above equation, 

 .represents the time and local space averaged quantities ۄ·ۃ

The time and space averaged energy flow, ۄ۷ۃ and energy loss, ߨۃௗ௜௦௦ۄ may then be 

related to the time and space averaged energy density, ۄ݁ۃ . The hysteretic energy 

dissipation model [46] yields: 

ۄௗ௜௦௦ߨۃ  ൌ  (2.2) ۄ݁ۃ߱ߟ

where ߟ is the structural damping loss factor, ߱ is the circular frequency. Assuming the 

diffuse wave field where the group speed, ܿ௚  is uniform over all wave propagation 

directions, the energy transmission relation may be expressed as 

 
ۄ۷ۃ ൌ െ

ܿ௚ଶ

߱ߟ  (2.3) ۄ݁ۃߘ

Then, using equations (2.2) and (2.3) such terms as ۄ۷ۃ and ߨۃௗ௜௦௦ۄ can be eliminated 

from equation (2.1) to establish the EFEA governing differential equation in terms of a 

single variable, ۄ݁ۃ as 

 
െ
ܿ௚ଶ

߱ߟ ۄ݁ۃଶߘ ൅ ۄ݁ۃ߱ߟ ൌ  (2.4) ۄ௜௡ߨۃ

It should be noted that this development pivots on the fundamental assumption that 

the wave field is diffuse, meaning that the flow of wave energy is the same in all 

directions. In the case of non-isotropic materials like composites, there exist no such 

simple and analytic relations as equations (2.2) and (2.3) between the space- and tim-

averaged energy flow and dissipated energy and the space- and time-averaged energy 

density since the wavenumber has angle dependence in anisotropic media. The energy 

distribution and the direction of energy flow in anisotropic media are then affected by this 

angle dependence of the wavenumber.  

The directional dependency of the vibrational wavefield may be overcome simply by 

using averaged diffuse wave field group velocity, ܿ௚כ, and structural damping factor, כߟ, 

based on angle averaging over the full range of directions (e.g. 0 to 2π) as shown below 
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ܿ௚כ ൌ

׬ ௖೒ௗఏ౸

׬ ௗఏ౸

כߟ ; ൌ ׬ ఎௗఏ౸

׬ ௗఏ౸

 (2.5) 

where Θ denotes the range of wave propagation directions. The use of these equivalent 

diffuse wave properties allows us to use the same form of the relation between the space- 

and time-averaged quantities, as shown in equations (2.2) and (2.3). This then simplifies 

the form of governing energy equations for the non-diffuse wave field to be the same as 

for diffuse waves 

 
െ
ܿ௚כ

ଶ

߱כߟ ߘ
ଶۄ݁ۃ ൅ ۄ݁ۃ߱כߟ ൌ  (2.6) ۄ௜௡ߨۃ

where ܿ௚כ  and כߟ  are the angle averaged group velocity and angle averaged structural 

damping loss factor, the calculation of which will be explained in more detail in the next 

section. 

It may appear that the use of the averaged diffuse wave field quantities does not 

provide correct local information about the vibrational energy levels. For the purpose of 

the calculation of the power transmission between two structural elements, however, this 

approach may yield a good approximation of a global result for each sub-structure 

without complicated mathematical formulation of the EFEA governing equations. A 

couple of numerical examples for the comparison of this approach with exact solutions of 

the vibration analysis of orthotropic and composite laminates can be found in the PhD 

thesis of Yan [9]. In the literature, the spatial distribution of vibrational energy density 

based on the above-shown averaging technique was presented at the frequencies of 1000 

Hz and 5000 Hz, and the good agreement with the exact solutions was observed for both 

orthotropic plates and graphite epoxy laminates.  

In this study, the same approach is employed but with the improvement in the 

calculation of averaged diffuse field group velocity and structural loss factor, ܿ௚כ and כߟ. 

The reference [9] did not include the effects of shear deformation and the through-

thickness material property variation even though it showed reliable results pertinent to 

the calculation of energy density in single and multiple plied orthotropic plates made of 

graphite epoxy lamina. The non-shear deformation based calculation may give an 

appropriate approximation for very thin laminates, but the shear deformation effects must 
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be considered for most of the composite applications, especially for composite sandwich 

panels. Thus, in this paper, spectral finite element method (SFEM) [10,11] is adopted for 

the calculation of ܿ௚כ  and כߟ due to its proven effectiveness in taking into account the 

layer-wise shear deformation effects in composite plates. 

 

 

2.2 Calculation of Angle-averaged Damping Loss Factor for Composites 

In this section, the SFEM-based calculation procedure of the aforementioned angle 

averaged group velocity and structural damping loss factor is presented in its simplest 

form. Figure 2.1 shows a plane wave propagating in positive ݔ direction with frequency 

߱  and wavenumber ݇  in a multilayer composite plate. Then the through-thickness 

discretization in ݖ-axis along with the assumption of the harmonic wave motion in ݔ 

direction gives the following form of displacement field, ்ܝ ൌ ሾݑ, ,ݒ  ,ሿ at any pointݓ

ሺݔ, ,ݕ  .ሻ within the plateݖ

,ݔሺܝ  ,ݖ ሻݐ ൌ  ෝ݁୧ሺఠ௧ି௞௫ሻ (2.7)ܝሻݖሺۼ

where ۼሺݖሻ is a matrix of shape functions and ܝෝ  is a vector of the nodal degrees of 

freedom of the form: 

ෝܝ  ൌ ሾݑଵ, ,ଵݒ ଵݓ ,ଶݑ ,ଶݒ ଶݓ ڮ ,ே೐ାଵݑ ,ே೐ାଵݒ  ே೐ାଵሿ் (2.8)ݓ

where ௘ܰ is the total number of linear finite elements throughout the thickness. It is noted 

that any of the displacement components in ܝෝ may be complex numbers. 

The time-averaged total kinetic and potential energies, ۄܶۃ and ۄܸۃ are given by 

ۄܶۃ  ൌ ఠమ

ସ ׬ ΩΩ݀ܝுܝߩ ۄܸۃ ; ൌ ଵ
ସ ׬ ોுઽ݀ΩΩ  (2.9) 

where ·ு stands for the Hermitian transpose. Substitution of appropriate stress-strain and 

strain-displacement relations (see reference [54] for detailed expressions) and the 

assumed displacement field equation (2.7) into equation (2.9) gives 

ۄܶۃ  ൌ ۄܸۃ ;ෝܝۻෝு߱ଶܝ ൌ ෝ (2.10)ܝෝு۹ܝ
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where ۹ and ۻ are, respectively, the stiffness and mass matrices. The replacement of the 

spatial derivatives with respect to ݔ and ݖ by – i݇ and ݀ۼ ⁄ݖ݀  can yield the expressions 

for the stiffness and mass matrices, which may also be found in the reference [11].  

 
Figure 2.1  A plane wave propagating in a multilayer composite panel 

Invoking Hamilton’s principle, 

 ሾ۹ሺ݇ሻ െ ߱ଶۻሿܝෝ ൌ ૙ (2.11)

Since ۹ ൌ ۹ሺ݇ሻ, if the circular frequency, ߱ is specified, the equation (2.11), which 

is the canonical form of the eigenvalue problem, can be solved for eigenvalues ݇’s and 

eigenvectors ܝෝ’s. 

The hysteretic damping model, equation (2.2), can be applied to each layer and yield 

the following form of the total time-averaged energy loss associated with an arbitrary 

wave type. 

 
ۄௗ௜௦௦ߨۃ ൌ෍ߟ௟߱ۄ݁ۃ௟

ே೐

௟ୀଵ

 (2.12)

where ߟ௟ and ۄ݁ۃ௟ are, respectively, the structural loss factor and energy density of the ݈th 

layer of multi-layered composites. Since ۄ݁ۃ ൌ ۄܶۃ ൅ ۄܸۃ ൌ  the damping loss factor ,ۄܸۃ2

associated with each propagating wave can be expresses as 

ߟ  ൌ
∑ ෝே೐ܝෝு۹ሺ௟ሻܝ௟ߟ
௟ୀଵ
ෝܝෝு۹ܝ  (2.13)

Here, the distinction should be drawn such that ۹ሺ௟ሻ is the stiffness matrix of the ݈th 

layer and ۹ is the assembled global stiffness matrix of the total layers. Equation (2.13) is 
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given for each propagating wave with the incidence angle, ߠ௜, and thus the angle-average 

can be taken for the full range of wave propagation directions to define the angle 

averaged damping loss factor as follows: 

 
כߟ ൌ

׬ ௜஀ߠ௜ሻ݀ߠሺߟ

׬ ௜஀ߠ݀

 (2.14)

 

 

2.3 Calculation of Angle-averaged Group Speed of Composites 

The circular frequency for the wave number k can be written in terms of the Rayleigh 

quotient as 

 
߱ଶ ൌ

ෝܝෝு۹ሺ݇ሻܝ
ෝܝۻෝுܝ  (2.15)

Figure 2.2 shows the wavenumber of an arbitrary wave propagating in an anisotropic 

medium as a function of wave heading, ߠ௜. As mentioned in section 2.1, the distribution 

and the direction of energy flow in anisotropic media like composites have the directional 

dependence and thus the direction of energy flow, depicted as ߠ௘ in Figure 2.2, is usually 

different from the wave heading, ߠ௜.  

 
Figure 2.2  Wavenumber as a function of wave heading in the k (wave number) plane 
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Since the group speed in the direction of wave propagation, ܿ௚ఏ ൌ ݀߱ ݀݇⁄ , the 

differentiation of equation (2.15) with respect to the wavenumber, ݇, gives 

 
ܿ௚ఏ ൌ

ෝுሺ∂۹ሺ݇ሻܝ ߲݇⁄ ሻܝෝ
ෝܝۻෝுܝ2߱  (2.16)

Then, referring to Figure 2.2, it can readily be shown that 

 ܿ௚ ൌ
ܿ௚ఏ

cosሺߠ௜ െ ௘ሻߠ
 (2.17)

where the heading of group speed, ߠ௘ may be derived from the geometric interpretation 

of the wavenumber curve shown in Figure 2.2 

 
tanߠ௘ ൌ െ

∂݇௫ ⁄௜ߠ߲
∂݇௬ ⁄௜ߠ߲ ൌ െ

ሺ∂݇ሺߠ௜ሻ ⁄௜ߠ߲ ሻcosߠ௜ െ ݇ሺߠ௜ሻsinߠ௜
ሺ∂݇ሺߠ௜ሻ ⁄௜ߠ߲ ሻsinߠ௜ ൅ ݇ሺߠ௜ሻcosߠ௜

 (2.18)

Similarly, the angle-averaged group speed can be evaluated for the full range of 

wave propagation directions as follows: 

 
ܿ௚כ ൌ

׬ ܿ௚ሺߠ௜ሻ݀ߠ௜஀

׬ ௜஀ߠ݀

 (2.19)
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CHAPTER 3 
 

CALCULATION OF PROPAGATION CONSTANTS FOR A 
PERIODICALLY STIFFENED COMPOSITE CYLINDER 

 
 
 

This chapter describes an analytical method of combining periodic structure theory 

with classical lamination theory. The method is used to calculate propagation constants in 

axial and circumferential directions of a thin composite cylinder stiffened by periodically 

spaced metallic ring frames and axial stringers. The brief description of the periodic 

structure theory is given in section 3.1. The section 3.2 contains the detail explanation on 

the computation of propagation constants by applying periodic structure theory to 

dynamic equations of motion based on classical lamination theory. In section 3.3, some 

numerical examples will be used for the validation of the CLT-based periodic structure 

theory. In addition, the effects of shell material properties and the length of each periodic 

element on the wave propagation characteristics are examined based on the current 

analytical approach. 

 

 

3.1 Periodic Structure Theory 

When a harmonic wave with wavenumber k propagates along a periodic structure of 

infinite length in one-dimension, there is a phase difference kl  between the wave motions 

at corresponding points in any pair of adjacent units with a length of l. In addition, the 

elastic wave motion over the distance l from one bay to the other may have the 

logarithmic decay rate of δ l  which is zero for propagating waves and nonzero for 

evanescent waves in undamped periodic structures. The phase difference and logarithmic 
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decay rate are combined to have a complex propagation constant μ(=δ+ ik) so that edge 

displacements and the associated forces at one point in the jth element (܌௅
௝  and ۴௅

௝, say) 

are related to those at the corresponding point in the adjacent (j+1)th element (܌௅
௝ାଵ and 

۴௅
௝ାଵ, say) as follows: 

 ቊ
௅܌
௝

۴௅
௝ቋ ൌ ݁ఓ ቊ

௅܌
௝ାଵ

۴௅
௝ାଵቋ (3.1) 

where superscripts stand for the periodic element number and subscripts represent the 

specific location (left edge for this case) of the point in the element. Furthermore, the 

directions of displacements and forces are assumed to be collinear with the wave 

propagation direction. This transformation property of traveling waves in a periodic 

system is well known as Bloch's or Floquet's theorem [55]. Note here that the attenuation 

constant, the real part of the propagation constant, δ, represents the decay rate in the wave 

motion over the length of one bay in the wave propagation direction and the phase 

constant, the imaginary part, k, represents the phase change over the same length. 

Since the continuity of displacements and tractions at the junction between the 

adjacent two bays requires 

 
ቊ
௅܌
௝ାଵ

۴௅
௝ାଵቋ ൌ ቊ

ோ܌
௝

െ۴ோ
௝ቋ (3.2) 

Substitution of these into equation (3.1) yields 

 
ቊ
௅܌
௝

۴௅
௝ቋ ൌ ݁ఓ ቊ

ோ܌
௝

െ۴ோ
௝ቋ (3.3) 

This final relationship is a result known as periodic structure theory in structural 

vibro-acoustic analysis [46]. Since this relates the displacements and tractions acting on 

both edges of a periodic element and the propagation constant is computed from this 
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equation, the wave propagation of a periodic structure can be investigated by considering 

only a single element. 

 

 

3.2 Calculation of Propagation Constants 

If we regard the whole structure of an orthogonally stiffened thin cylindrical shell as 

an assembly of periodic units, then each unit consists of a bay of the shell, together with 

half-stiffeners attached at each edge as shown in Figure 3.1. The local coordinate system 

ሺݔ, ,ݕ ܝ ሻ and displacement componentsݖ ൌ ሺݑ, ,ݒ   .ሻ  are oriented as shownݓ

 

 
(a) 

 
(b) 

Figure 3.1  (a) A thin cylindrical shell with periodic stiffeners; (b) a periodic element with 
applied tractions and displacements 
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Due to the two-dimensional periodicity of the structure, the displacements, ܌ and the 

associated elastic tractions, ܜ at the left or bottom edge can be related to those at the right 

or top edge using periodic structure theory, as follows: 

 ൜܌௅ܜ௅
ൠ ൌ ݁ఓೣ ൜ ோܜோെ܌

ൠ (3.4) 

 ൜܌஻ܜ஻
ൠ ൌ ݁ఓ೤ ൜ ்ܜെ்܌

ൠ (3.5) 

where the structure is assumed to have a constant thickness, and ߤ௫  and ߤ௬  are the 

propagation constants in the axial and circumferential directions, respectively. It should 

be noted that the tractions ܜ௅ and ܜ஻ are defined to have the same direction as ܜோ and ்ܜ, 

respectively. For the present study, the assumptions of Mead and Bardell [34,35] will be 

employed such that the elastic wave is transmitted in the axial direction by using 

cylindrical symmetry of the shell motions in the circumferential direction and the wave 

propagation in the circumferential direction is subject to simply-supported boundary 

conditions at ring frames along axial direction. 

 

3.2.1 Wave Propagation around Circumferential Direction 

In this analysis, a cylinder of radius ܴ and thickness  with 44 axial stringers of 

length ܮ is considered, as shown in Figure 3.2. For a thin circular cylindrical shell made 

of cross-ply laminates, based on Reissner-Naghdi shell theory [54], the dynamic 

equations of motion may be written in the form 

ܝۺ  ൌ ૙ (3.6) 

where ۺ is a linear differential operator which has the following entries: 

ଵଵܮ ൌ ଵଵ߲௫௫ܣ ൅ ଺଺߲௬௬ܣ െ  ,଴߲௧௧ܫ

ଵଶܮ ൌ ሾሺܣଵଶ ൅ ଺଺ሻܣ ൅ ሺܤଵଶ ൅ ଺଺ሻܤ ܴ⁄ ሿ߲௫௬, 

ଵଷܮ ൌ െܤଵଵ߲௫௫௫ െ ሺܤଵଶ ൅ ଺଺ሻ߲௫௬௬ܤ2 ൅ ሺܣଵଶ ܴ⁄ ሻ߲௫, 

ଶଶܮ ൌ ሺܣ଺଺ ൅ ଺଺ܤ2 ܴ⁄ ൅ ଺଺ܦ ܴଶ⁄ ሻ߲௫௫ ൅ ሺܣଶଶ ൅ ଶଶܤ2 ܴ⁄ ൅ ଶଶܦ ܴଶ⁄ ሻ߲௬௬ െ  ,଴߲௧௧ܫ

ଶଷܮ ൌ െሾሺܤଵଶ ൅ ଺଺ሻܤ2 ൅ ሺܦଵଶ ൅ ଺଺ሻܦ2 ܴ⁄ ሿ߲௫௫௬ െ ሺܤଶଶ ൅ ଶଶܦ ܴ⁄ ሻ߲௬௬௬ ൅
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 ሺܣଶଶ ܴ⁄ ൅ ଶଶܤ ܴଶ⁄ ሻ߲௬, 

ଷଷܮ ൌ ଵଵ߲௫௫௫௫ܦ ൅ 2ሺܦଵଶ ൅ ଺଺ሻ߲௫௫௬௬ܦ2 ൅ ଶଶ߲௬௬௬௬ܦ െ 2ൣሺܤଵଶ ܴ⁄ ሻ߲௫௫ ൅ ሺܤଶଶ ܴ⁄ ሻ߲௬௬൧ 

൅ܣଶଶ ܴଶ⁄ ൅    ,଴߲௧௧ܫ

ଵଶܮ ൌ ଵଷܮ          ,ଶଵܮ ൌ ଶଷܮ          ,ଷଵܮ ൌ   ଷଶܮ

Here ܣ௜௝ ௜௝ܤ , , and ܦ௜௝  ሺ݅, ݆ ൌ 1,2,6ሻ are extensional, coupling, and bending elastic 

constants of the shell material [56]. Furthermore, ߲௫ , ߲௬ , and ߲௧  represent partial 

differentiation with respect to spatial coordinates ሺݔ and ݕሻ and time ሺݐሻ. It is noted that, 

as discussed in [54], the first order shear deformation model becomes more accurate as 

ܴ ݄⁄  tends to be smaller values. However, in the present study the cylinder considered 

has ܴ ݄⁄ =500 for which the shell theory used here is more than adequate. 

 
Figure 3.2  A periodic unit for circumferential wave analysis 

The displacements, ܌௬ and the associated tractions, ܜ௬௦௛ at an edge in line with axial 

direction of the shell may be written in the forms 

௬܌  ൌ ۲௬(3.7) ܝ 

௬௦௛ܜ  ൌ  (3.8) ܝ௬௦௛܂

where ۲௬ and ܂௬௦௛ are 4 by 3 differential operators with the following non-zero entries: 

௬ଵଵܦ ൌ ௬ଶଶܦ ൌ ௬ଷଷܦ ൌ ௬ସଷܦ     ,1 ൌ ߲௬, 

௬ܶଵଵ
௦௛ ൌ ଺଺߲௬,     ௬ܶଵଶܣ

௦௛ ൌ ሺܣ଺଺ ൅ ଺଺ܤ ܴ⁄ ሻ߲௫,     ௬ܶଵଷ
௦௛ ൌ െ2ܤ଺଺߲௫௬, 
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௬ܶଶଵ
௦௛ ൌ ሺܣଵଶ ൅ ଵଶܤ ܴ⁄ ሻ߲௫,     ௬ܶଶଶ

௦௛ ൌ ሺܣଶଶ ൅ ଶଶܤ2 ܴ⁄ ൅ ଶଶܦ ܴଶ⁄ ሻ߲௬, 

௬ܶଶଷ
௦௛ ൌ െሺܤଵଶ ൅ ଵଶܦ ܴ⁄ ሻ߲௫௫ െ ሺܤଶଶ ൅ ଶଶܦ ܴ⁄ ሻ߲௬௬ ൅ ሺܣଶଶ ܴ⁄ ൅ ଶଶܤ ܴଶ⁄ ሻ, 

௬ܶଷଵ
௦௛ ൌ ሺܤଵଶ ൅ ଺଺ሻ߲௫௬,     ௬ܶଷଶܤ2

௦௛ ൌ 2ሺܤ଺଺ ൅ ଺଺ܦ ܴ⁄ ሻ߲௫௫ ൅ ሺܤଶଶ ൅ ଶଶܦ ܴ⁄ ሻ߲௬௬, 

௬ܶଷଷ
௦௛ ൌ െሺܦଵଶ ൅ ଺଺ሻ߲௫௫௬ܦ4 െ ଶଶ߲௬௬௬ܦ ൅ ሺܤଶଶ ܴ⁄ ሻ߲௬, 

௬ܶସଵ
௦௛ ൌ െܤଵଶ߲௫,     ௬ܶସଶ

௦௛ ൌ െሺܤଶଶ ൅ ଶଶܦ ܴ⁄ ሻ߲௬,     ௬ܶସଷ
௦௛ ൌ ଵଶ߲௫௫ܦ ൅ ଶଶ߲௬௬ܦ െ ଶଶܤ ܴ⁄  

According to Vlasov's theory of a beam with open cross-section [57], the ݕ ,ݔ, and ݖ 

components of the displacements have the form ݑ െ െ′ݓݖ ௫ᇱߠכݓെ′ݒݕ ݒ , െ ௫ߠݖ , and 

ݓ ൅  represents the כݓ and ݔ ௫ where prime indicates the differentiation with respect toߠݕ

warping of the cross-section. With the rotary inertia effect and the approximation of angle 

of twist of the stiffener as ߠ௫ ൌ  ௬, the differential equations governing the vibrations of,ݓ

the axial stiffeners may give rise to the following traction component 

௬௕௠ܜ  ൌ  (3.9) ܝ௬௕௠܂

where the entries of ܂௬௕௠ are as follows: 

௬ܶଵଵ
௕௠ ൌ െ߲ܣܧ௫௫ ൅ ௧௧,     ௬ܶଵଶ߲ܣߩ

௕௠ ൌ െݕு߲ܣܧ௫௫௫ ൅ ሺݕߩு߲ܣ௫ሻ߲௧௧, 

௬ܶଵଷ
௕௠ ൌ െݖு߲ܣܧ௫௫௫ ൅ ሺݖߩு߲ܣ௫ሻ߲௧௧, 

௬ܶଶଵ
௕௠ ൌ െ ௬ܶଵଶ

௕௠,     ௬ܶଶଶ
௕௠ ൌ ௭௭ு߲௫௫௫௫ܫܧ ൅ ܣሺߩ െ  ,௭௭ு߲௫௫ሻ߲௧௧ܫ

௬ܶଶଷ
௕௠ ൌ ௬௭ு߲௫௫௫௫ܫܧ ൅ ௬௭ு߲௫௫ܫ൫െߩ ൅  ,௬൯߲௧௧߲ܣுݖ

௬ܶଷଵ
௕௠ ൌ െ ௬ܶଵଷ

௕௠,     ௬ܶଷଶ
௕௠ ൌ ௬௭ு߲௫௫௫௫ܫܧ ൅  ,௬௭ு߲௫௫൯߲௧௧ܫ൫െߩ

௬ܶଷଷ
௕௠ ൌ ௬௬ு߲௫௫௫௫ܫܧ ൅ ܣ൫ߩ െ ௬௬ு߲௫௫ܫ െ  ,௬൯߲௧௧߲ܣுݕ

௬ܶସଵ
௕௠ ൌ 0,     ௬ܶସଶ

௕௠ ൌ  ,௧௧߲ܣுݖߩ

 ௬ܶସଷ
௕௠ ൌ ఠ߲௫௫௫௫௬ܫܧ െ ௫௫௬߲ܬܩ ൅ ߩ ቀ൫ܫ௬௬ு ൅ ௭௭ு൯߲௬ܫ െ  ቁ߲௧௧ܣுݕ

where ܧ  and ܩ  are the elastic moduli of the beam, ߩ  the mass density, ܣ  the cross-

sectional area,  ሺݕு,  with respect ܪ ,ுሻ the location of the beam-shell connecting pointݖ

to the beam centroid,  ܫ௬௬ு and ܫ௭௭ு the second moments of area in regard to the point ܪ, 

and ܫఠ and ܬ are the torsional coefficients of the beam cross section. 

 The above traction terms from both shell and beam are combined to yield the total 

tractions, ்ܜ and ܜ஻ at the top and bottom side of the periodic element as 
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ሺൌ்ܜ  ሻ்ܝ்܂ ൌ ൤ܜ௬௦௛ ൅
1
2 ௬ܜ

௕௠൨
்
ൌ ൤܂௬௦௛ ൅

1
௬܂2

௕௠൨
்
(3.10) ்ܝ

஻ሺൌܜ  ஻ሻܝ஻܂ ൌ ൤െܜ௬௦௛ ൅
1
2 ௬ܜ

௕௠൨
஻
ൌ ൤െ܂௬௦௛ ൅

1
௬܂2

௕௠൨
஻
஻ (3.11)ܝ

and the corresponding edge displacements, ்܌ and ܌஻ are easily shown to be 

ሺൌ்܌  ሻ்ܝ۲் ൌ ௬൧்܌ൣ ൌ ൣ۲௬൧்(3.12) ்ܝ

஻ሺൌ܌  ۲஻ܝ஻ሻ ൌ ௬൧஻܌ൣ ൌ ൣ۲௬൧஻ܝ஻ (3.13)

where ሾ·ሿ் and ሾ·ሿ஻ stands for the value of ሾ·ሿ evaluated at the top and bottom edges, and 

 ஻ are the displacements at top and bottom edges, respectively. Note that half theܝ and ்ܝ

stiffener is considered to be part of the total edge traction of one periodic element 

because the stiffener at a junction interconnects adjacent two shell elements and exerts 

equal amount of forces on each of them, and the negative sign is introduced to the shell 

traction component at the bottom edge because ܜ௬௦௛  was defined to be oriented in the 

positive coordinates.  

These equations, (3.10)-(3.13), along with the equations (3.7) and (3.8) are 

applicable to arbitrary motion of the shell element with two stiffeners. The specific 

concern here is with an elastic wave motion which is propagating along circumferential 

direction while satisfying the simply-supported boundary conditions at two ring locations. 

Hence, the elastic wave will be taken to have frequency ߱  and axial wavenumber 

݇௫ ൌ ߨ݊ ݈⁄  ሺ݊ ൌ ڮ,1,2,3 ሻ, so that the shell motion must take the form  

ܝ  ൌ ൝
ܷcos݇௫ݔ
ܸsin݇௫ݔ
ܹsin݇௫ݔ

ൡ ݁ఒ௬݁୧ఠ௧ (3.14)

Substitution of this expression into equation (3.6) yields 

܃܊  ൌ ૙ (3.15)

where the entries of ܊ may be deduced from those of ۺ and thus are a function of shell 

materials and a triad ሺ߱, ݇,  ,which ߣ is a bi-quartic in ܊ ሻ. The characteristic equation ofߣ

for the given ߱ and ݇, yields eight eigenvalues ߣ௠ ሺ݉ ൌ ڮ,1,2 ,8ሻ and eight associated 
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eigenvectors ܃௠ ൌ ሾܷ௠, ௠ܸ, ௠ܹሿ்  from which the shell motion with ݊  fixed may be 

obtained 

ܝ  ൌ ෍ ௠ܥ

଼

୫ୀଵ

൝
ܷ௠cos݇௫ݔ
௠ܸsin݇௫ݔ
௠ܹsin݇௫ݔ

ൡ ݁ఒ೘௬݁୧ఠ௧ (3.16)

where ܥ௠ is the amplitude of the ݉th wave and ܃௠ is normalized such that ௠ܹ=1. By 

combining this and equations (3.10)-(3.13), equation (3.5) will be written in the form 

 

ە
ۖ
۔

ۖ
෍ۓ ۲஻௠܃௠ܥ௠

଼

୫ୀଵ

 ෍ ௠ܥ௠܃஻௠܂

଼

୫ୀଵ ۙ
ۖ
ۘ

ۖ
ۗ

ൌ ݁ఓ೤

ە
ۖ
۔

ۖ
ۓ ෍ ۲்௠܃௠݁ఒ೘ோ஀ܥ௠

଼

୫ୀଵ

െ ෍ ௠ܥ௠݁ఒ೘ோ஀܃௠்܂

଼

୫ୀଵ ۙ
ۖ
ۘ

ۖ
ۗ

 (3.17)

where ۲஻௠ ൌ ۲஻ሺߣ௠ሻ, ۲்௠ ൌ ۲்ሺߣ௠ሻ, ܂஻௠ ൌ ௠்܂ ,௠ሻߣ஻ሺ܂ ൌ  ௠ሻ and ܴΘ is theߣሺ்܂

length of the periodic element along circumference. This can be written in more compact 

form 

 ۹஻۱ ൌ ݁ఓ೤۹்۱ (3.18)

or 

 ۹்
ିଵ۹஻۱ ൌ ݁ఓ೤۱ (3.19)

where ۱ ൌ ሾܥଵ, ڮ,ଶܥ ,  ሿT is the vector form of the wave amplitudes and ۹஻ and ۹் are଼ܥ

8 by 8 square matrices which are given as follows: 

 ۹் ൌ ቈ ۲்ଵ܃ଵ݁ఒభோ஀ ۲்ଶ܃ଶ݁ఒమோ஀ ڮ ఒఴோ஀଼݁܃۲଼்

െ்܂ଵ܃ଵ݁ఒభோ஀ െ்܂ଶ܃ଶ݁ఒమோ஀ ڮ െ଼݁܃଼்܂ఒఴோ஀
቉ (3.20)

 ۹஻ ൌ ൤۲஻ଵ܃ଵ ۲஻ଶ܃ଶ ڮ ۲஻଼଼܃
ଵ܃஻ଵ܂ ଶ܃஻ଶ܂ ڮ ଼܃஻଼܂

൨ (3.21)

Equations (3.18) and (3.19) are in canonical form for the determination of the 

eigenvalues ݁ఓ೤  from which the complex propagation constants ߤ௬ 's or the attenuation 

constants, real part of ߤ௬ 's, are obtained 
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3.2.2 Wave Propagation along Axial Direction 

In this analysis, a thin cross-ply cylinder of radius ܴ, thickness , and infinite length 

in axial direction is considered, as shown in Figure 3.3. 

Application of Reissner-Naghdi shell theory yields exactly the same dynamic 

equations of shell motion as equation (3.6), and edge displacements and tractions of the 

shell are shown to be 

௫܌  ൌ ۲௫(3.22) ܝ

௫௦௛ܜ  ൌ (3.23) ܝ௫௦௛܂

where the entries of ۲௫and ܂௫௦௛ are as follows: 

௫ଵଵܦ ൌ ௫ଶଶܦ ൌ ௫ଷଷܦ ൌ ௫ସଷܦ     ,1 ൌ ߲௫, 

௫ܶଵଵ
௦௛ ൌ ଵଵ߲௫,     ௫ܶଵଶܣ

௦௛ ൌ ሺܣଵଶ ൅ ଵଶܤ ܴ⁄ ሻ߲௬,     ௫ܶଵଷ
௦௛ ൌ െܤଵଵ߲௫௫ െ ଵଶ߲௬௬ܤ ൅ ଵଶܣ ܴ⁄ , 

௫ܶଶଵ
௦௛ ൌ ሺܣ଺଺ ൅ ଺଺ܤ ܴ⁄ ሻ߲௬,     ௫ܶଶଶ

௦௛ ൌ ሺܣ଺଺ ൅ ଺଺ܤ2 ܴ⁄ ൅ ଺଺ܦ ܴଶ⁄ ሻ߲௫, 

௫ܶଶଷ
௦௛ ൌ െ2ሺܤ଺଺ ൅ ଺଺ܦ ܴ⁄ ሻ߲௫௬, 

௫ܶଷଵ
௦௛ ൌ ଵଵ߲௫௫ܤ ൅ ଺଺߲௬௬,     ௫ܶଷଶܤ2

௦௛ ൌ ሺܤଵଶ ൅ ଺଺ܤ2 ൅ ሺܦଵଶ ൅ ଺଺ሻܦ2 ܴ⁄ ሻ߲௫௬, 

௫ܶଷଷ
௦௛ ൌ െܦଵଵ߲௫௫௫ െ ሺܦଵଶ ൅ ଺଺ሻ߲௫௬௬ܦ4 ൅ ሺܤଵଶ ܴ⁄ ሻ߲௫, 

௫ܶସଵ
௦௛ ൌ െܤଵଵ߲௫,     ௫ܶସଶ

௦௛ ൌ െሺܤଵଶ ൅ ଵଶܦ ܴ⁄ ሻ߲௬,     ௫ܶସଷ
௦௛ ൌ ଵଵ߲௫௫ܦ ൅ ଵଶ߲௬௬ܦ െ ଵଶܤ ܴ⁄  

 

 
Figure 3.3  A periodic unit for axial wave analysis 
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Vlasov's beam theory is again employed to obtain the ݕ ,ݔ, and ݖ components of the 

displacements, i.e. ݑ ൅ ௬ߠݖ ݒ , െ െ′ݑݔ െ′ݓሺݖ ݒ ܴ⁄ ሻ െ ௬ᇱߠ൫כݓ െ ′ݑ ܴ⁄ ൯ , and ݓ െ  ௬ߠݔ

where prime indicates the differentiation with respect to ݕ. This gives 

௫௕௠ܜ  ൌ (3.24) ܝ௫ୠ୫܂

where the entries of ܂௫ୠ୫ are 

௫ܶଵଵ
௕௠ ൌ ሺܫܧ௭௭ு ൅ ఠܫܧ ܴଶ⁄ ሻ߲௬௬௬௬ െ ሺܬܩ ܴଶ⁄ ሻ߲௬௬ ൅ ܣ൫ߩ െ  ,௭௭ு߲௬௬൯߲௧௧ܫ

௫ܶଵଶ
௕௠ ൌ ሺݔுܣܧ െ ௫௭ுܫܧ ܴ⁄ ሻ߲௬௬௬ െ ܣுݔሺߩ െ ௫௭ுܫ ܴ⁄ ሻ߲௬߲௧௧, 

௫ܶଵଷ
௕௠ ൌ ሺݔுܣܧ ܴ⁄ ሻ߲௬௬ ൅ ௫௭ு߲௬௬௬௬ܫܧ െ ሺܫܧ௭௭ு ܴ⁄ ൅ ܬܩ ܴ⁄ ሻ߲௫௬௬ ൅ ሺܫܧఠ ܴ⁄ ሻ߲௫௬௬௬௬ 

൅ߩ൫െܫ௫௭ு߲௬௬ ൅  ,௫൯߲௧௧߲ܣுݖ

௫ܶଶଵ
௕௠ ൌ െ ௫ܶଵଶ

௕௠, 

௫ܶଶଶ
௕௠ ൌ ሺെܣܧ ൅ 2 ܣܧுݖ ܴ⁄ െ ௫௫ுܫܧ ܴଶ⁄ ሻ߲௬௬ ൅ ܣሺߩ െ 2 ܣுݖ ܴ⁄ ൅ ௫௫ுܫ ܴଶ⁄ ሻ߲௧௧, 

௫ܶଶଷ
௕௠ ൌ ሺെܣܧ ܴ⁄ ൅ ܣܧுݖ ܴଶ⁄ ሻ߲௬ ൅ ሺെݖுܣܧ ൅ ௫௫ுܫܧ ܴ⁄ ሻ߲௬௬௬, 

            ൅ሺݔுܣܧ ܴ⁄ െ ௫௭ுܫܧ ܴଶ⁄ ሻ߲௫௬ ൅ ܣுݖሺߩ െ ௫௫ுܫ ܴ⁄ ሻ߲௬߲௧௧, 

௫ܶଷଵ
௕௠ ൌ ሺݔுܣܧ ܴ⁄ ሻ߲௬௬ ൅ ௫௭ு߲௬௬௬௬ܫܧ െ  ,௫௭ு߲௬௬൯߲௧௧ܫ൫ߩ

௫ܶଷଶ
௕௠ ൌ ሺܣܧ ܴ⁄ െ ܣܧுݖ ܴଶ⁄ ሻ߲௬ ൅ ሺݖுܣܧ െ ௫௫ுܫܧ ܴ⁄ ሻ߲௬௬௬ 

            ൅ߩሺെݖுܣ ൅ ௫௫ுܫ ܴ⁄ ሻ߲௬߲௧௧, 

௫ܶଷଷ
௕௠ ൌ ܣܧ ܴଶ⁄ ൅ ሺ2 ܣܧுݖ ܴ⁄ ሻ߲௬௬ ൅ ௫௫ு߲௬௬௬௬ܫܧ െ ൫ݔுܣܧ ܴଶ⁄ ൅ ሺܫܧ௫௭ு ܴ⁄ ሻ߲௬௬൯߲௫ 

൅ߩ൫ܣ െ ௫௫ு߲௬௬ܫ െ  ,௫൯߲௧௧߲ܣுݔ

௫ܶସଵ
௕௠ ൌ ሺെܫܧ௭௭ு ܴ⁄ െ ܬܩ ܴ⁄ ሻ߲௬௬ ൅ ሺܫܧఠ ܴ⁄ ሻ߲௬௬௬௬ ൅  ,௧௧߲ܣுݖߩ

௫ܶସଶ
௕௠ ൌ ሺെݔுܣܧ ܴ⁄ ൅ ௫௭ுܫܧ ܴଶ⁄ ሻ߲௬, 

௫ܶସଷ
௕௠ ൌ െݔுܣܧ ܴଶ⁄ െ ሺܫܧ௫௭ு ܴ⁄ ሻ߲௬௬ ൅ ൫ܫܧ௭௭ு ܴଶ⁄ ൅ ఠ߲௬௬௬௬ܫܧ െ  ௬௬൯߲௫߲ܬܩ

൅ߩሺെݔுܣ ൅ ሺܫ௫௫ு ൅  ௭௭ுሻ߲௫ሻ߲௧௧ܫ

where ሺݔு,  plane with respect ݖ-ݔ ுሻ the location of the beam-shell connecting point inݖ

to the beam centroid and ܫ௫௫ு and ܫ௭௭ு the second moments of area with in regard to the 

point, ܪ, of the beam cross section. 

Using the half stiffener method, the resulting edge displacements, ܌௅ and ܌ோ and the 

associated tractions, ܜ௅ and ܜோ at the left and right side of the periodic element as 
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௅ሺൌ܌  ۲௅ܝ௅ሻ ൌ ሾ܌௫ሿ௅ ൌ ሾ۲௫ሿ௅ܝ௅ (3.25)

ோሺൌ܌  ۲ோܝோሻ ൌ ሾ܌௫ሿோ ൌ ሾ۲௫ሿோܝோ (3.26)

௅ሺൌܜ  ௅ሻܝ௅܂ ൌ ൤െܜ௫௦௛ ൅
1
2 ௫ܜ

௕௠൨
௅
ൌ ൤െ܂௫௦௛ ൅

1
௫܂2

௕௠൨
௅
௅ (3.27)ܝ

ோሺൌܜ  ோሻܝோ܂ ൌ ൤ܜ௫௦௛ ൅
1
2 ௫ܜ

௕௠൨
ோ
ൌ ൤܂௫௦௛ ൅

1
௫܂2

௕௠൨
ோ
ோ (3.28)ܝ

where ܝ௅ and ܝோ are the displacements at left and right edges, respectively. 

Due to cylindrical symmetry where the radial displacement, ݓ  is always in 

quadrature with the other two components, ݑ  and ݒ , the components of the cylinder 

displacement are described by sinusoidal motion in ݕ and traveling wave motion in ݔ 

ܝ  ൌ ቐ
ܷcos݇௬ݕ
ܸsin݇௬ݕ
ܹcos݇௬ݕ

ቑ ݁ఒ௫݁୧ఠ௧ (3.29)

where ݇௬ ൌ ݉ ܴ⁄  ሺ݉ ൌ ڮ,0,1,2 ሻ is the circumferential wavenumber. 

Substituting this into equation (3.6) and solving the resulting characteristic equation 

as described in the previous section, eight eigenvalues ߣ௡  ሺ݊ ൌ ڮ,1,2 ,8ሻ and eight 

associated eigenvectors ܃௡ ൌ ሾܷ௡, ௡ܸ, ௡ܹሿ் may be obtained to yield the following shell 

motion 

ܝ  ൌ෍ܥ௡

଼

୬ୀଵ

ቐ
ܷ௡cos݇௬ݕ
௡ܸsin݇௬ݕ
௡ܹcos݇௬ݕ

ቑ ݁ఒ೙௫݁୧ఠ௧ (3.30)

where ܥ௡  is the amplitude of the ݊th wave and ܃௡  is normalized such that ௡ܹ=1. As 

before, by combining this and equations (3.25)-(3.28), equation (3.4) will be written in 

the form 

 ۹௅۱ ൌ ݁ఓೣ۹ோ۱ (3.31)

or 

 ۹ோ
ିଵ۹௅۱ ൌ ݁ఓೣ۱ (3.32)
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where ۱ ൌ ሾܥଵ, ڮ,ଶܥ ,  ሿT is the vector form of the wave amplitudes and ۹் and ۹஻ are଼ܥ

8 by 8 square matrices which are given as follows: 

 ۹௅ ൌ ൤۲௅ଵ܃ଵ ۲௅ଶ܃ଶ ڮ ۲௅଼଼܃
ଵ܃௅ଵ܂ ଶ܃௅ଶ܂ ڮ ଼܃௅଼܂

൨ (3.33)

 ۹ோ ൌ ቈ ۲ோଵ܃ଵ݁ఒభ௟ ۲ோଶ܃ଶ݁ఒమ௟ ڮ ۲ோ଼଼݁܃ఒఴ௟

െ܂ோଵ܃ଵ݁ఒభ௟ െ܂ோଶ܃ଶ݁ఒమ௟ ڮ െ܂ோ଼଼݁܃ఒఴ௟
቉ (3.34)

Here, ۲௅௡ ൌ ۲௅ሺߣ௡ሻ, ۲ோ௡ ൌ ۲ோሺߣ௡ሻ, ܂௅௡ ൌ ோ௡܂ ,௡ሻߣ௅ሺ܂ ൌ  ௡ሻ, and ݈ is the lengthߣோሺ܂

of the periodic element along axial direction. This eigenvalue problem can be solved for 

the complex propagation constants ߤ௫ 's or the attenuation constants, real part of ߤ௫ 's, as 

explained in the previous section. 

 

 

3.3 Numerical Examples 

3.3.1 Flexural Wave Propagation in Axial Direction 

Propagation constants for axisymmetric mode [58], the case of ݉=0 in section 3.2, 

have been computed over a certain frequency range for a thin cylinder of radius 

ܴ=0.381m and ring spacings ݈=0.135m with 10 uniformly spaced ring stiffeners. The 

cylindrical shell itself consists of 4 layers of carbon/epoxy laminates with 0.1905mm 

thickness of each lamina and 90/0/0/90 stacking sequence and the circumferential 

stiffeners are made of aluminum. The detailed material and physical properties of the 

shell and stiffeners are summarized in Table 3.1 and Table 3.2. Note that 1% structural 

damping loss factor (ߟ) is used for both shell and stiffeners. 

Displacement or velocity ratios between two adjacent bays, i.e. attenuation constants, 

are calculated for dense FE model of the same dimension using MSC/NASTRAN cyclic 

symmetry frequency response analysis [59, 60] for the comparison with analytic results. 

An 1.0 degree strip in circumferential direction is considered for finite element analysis 

and the finite element mesh density is chosen so as to satisfy the condition that at least 10 
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elements are included in one wavelength of deformation at the maximum frequency of 

interest which, in this case, is 7079 Hz. An axisymmetric excitation is applied at the far 

left end of the cylindrical shell (periodic unit 1). Analyses are performed between 3548 

Hz and 7079 Hz and these analyzed frequencies are above the ring frequency of the 

cylindrical shell (around 2973 Hz) such that the axisymmetric mode may be dominant in 

that frequency range. 

The attenuation constant of the flexural wave is first presented in Figure 3.4. It can 

be observed that adding ring stiffeners generates the stop bands to the thin cylinder and, 

in this particular case, there are four stop bands within the analyzed frequency range. 

 

Axial stiffeners 

ሺ݉ଶሻܣ 3.4 ൈ 10ିହ 
௬௬ሺ݉ସሻܫ 2.0353 ൈ 10ିଽ 
௭௭ሺ݉ସሻܫ 2.8883 ൈ 10ିଵ଴ 
ሺ݉ସሻܬ 1.1667 ൈ 10ିଵଵ 

Ring stiffeners 

ሺ݉ଶሻ 1.2ܣ ൈ 10ିହ 
௫௫ሺ݉ସሻ 1.44ܫ ൈ 10ିଵ଴ 
௭௭ሺ݉ସሻ 1.00ܫ ൈ 10ିଵଶ 
ሺ݉ସሻ 3.79ܬ ൈ 10ିଵଶ 

Table 3.1  Cross-sectional properties of stiffeners 

 

Aluminum 
(stiffeners) 

ሺܲܽሻܧ 7 ൈ 10ଵ଴ 
ߥ 0.3

ሺ݇݃ߩ ݉ଷ⁄ ሻ 2700 
ߟ 0.01

Carbon/Epoxy 
(cylindrical shell) 

ଵሺܲܽሻܧ 1.44 ൈ 10ଵଵ 
ଶሺܲܽሻ 9.38ܧ ൈ 10ଽ 
ଵଶߥ 0.325 

ଵଶሺܲܽሻ 5.39ܩ ൈ 10ଽ 
ሺ݇݃ߩ ݉ଷ⁄ ሻ 1525 

ߟ 0.01 
Table 3.2  Material properties of stiffeners and cylindrical shell 
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Figure 3.4  The flexural wave attenuation constant of axisymmetric mode of the 

90/0/0/90 carbon/epoxy laminated cylindrical shell with and without ring stiffeners 

The time averaged kinetic energy stored in the ݆ th periodic unit, ܧܭ௝ , may be 

expressed as 

௝ܧܭ  ൌ
1
4ቆන ௝หݒห݄ܴߨ2ߩ

ଶ௅

଴
ቇ (3.35)ݔ݀

where หݒ௝ห is the velocity amplitude of the axisymmetric response and ߩ, ܴ and  are, 

respectively, the mass density, radius and thickness of the cylindrical shell. 

Since the velocities at the two adjacent periodic units are related by the propagation 

constant, i.e., หݒ௝ାଵห ൌ ݁௥௘௔௟ሺఓሻหݒ௝ห, the energy ratio (ܴܧ) between two adjacent units is 

computed based on the periodic structure theory as 

ܴܧ  ൌ
௝ାଵܧܭ
௝ܧܭ

ൌ
׬ ௝ห൯ݒ൫݁௥௘௔௟ሺఓሻห݄ܴߨ2ߩ

ଶ௅
଴ ݔ݀

׬ ௝หݒห݄ܴߨ2ߩ
ଶ௅

଴ ݔ݀
ൌ ൫݁௥௘௔௟ሺఓሻ൯ଶ (3.36)

Here, the energy ratios of the bending wave between two adjacent bays are computed 

from the attenuation constants and compared with FEA results as shown in Figure 3.5. As 

shown in the figure, the stop/pass band characteristics due to ring stiffeners are accurately 

captured and thus the good correlation between finite element and analytical results has 
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been obtained. Notice that, as shown in Figure 3.5 and Figure 3.6, an additional finite 

element analysis has been performed with twice denser mesh in order to ensure that the 

FEA solution converged. It should also be noted that, as shown in Figure 3.5, there exist 

some disturbances in all propagation zones of the FEA results due to the finite number of 

periodic elements. They, however, are too small to affect the validity of the FEA solution 

to represent the overall pass and stop band characteristics of the periodic structure of 

interest. Hence, the FEA model can provide a reference solution to which the analytical 

results can be compared. 

In structural acoustics, the frequency and space averaged energy density is of 

primary importance and the energy level of a receiving periodic unit may be calculated 

from that of an exciting unit combined with the energy ratio. Thus, the energy ratio is 

averaged in frequency domain over each 1/3 octave band and is presented in Figure 3.6 

for the same frequency range of interest as before. Compared to FEA results, it is shown 

that the difference between analytical and finite element results is less than 1dB which is 

almost negligible in structural acoustics analysis. 

 

 
Figure 3.5  The energy ratio of the 90/0/0/90 carbon/epoxy laminated cylindrical shell 

with ring stiffeners subject to axisymmetric excitation 
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Figure 3.6  The frequency averaged energy ratio of the 90/0/0/90 carbon/epoxy laminated 

cylindrical shell with ring stiffeners under axisymmetric excitation 

 

3.3.2 Flexural Wave Propagation in Circumferential Direction 

Considered in this section is a cylindrical shell of the same dimension as that of the 

previous section, but in this case with axial stiffeners. The attenuation constants of 

bending waves propagating in circumferential direction through the 90/0/0/90 

carbon/epoxy laminated cylindrical shell with axial stiffeners are presented in Figure 3.7 

for the first three axial halfwave numbers . As shown in the figure, the flexural waves 

having one halfwave along axial direction start to propagate at around 1000Hz and have 

the first propagation zone from 1000-2000Hz, the second from 2300-2750Hz, the third 

from 3400-3550Hz, and the fourth 5350-5623Hz. In other words, in the frequency range 

between 178Hz and 5623Hz, flexural waves of ݊=1 have four discrete pass bands 

between which there are stop bands. Each stop band also has different values of 

attenuation constants which will determine how much of the flexural energy will be 

transmitted from a periodic unit to the next one. The flexural waves having two or three 

half sinusoidal waves in axial direction have pass/stop bands at different frequency zones. 
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Figure 3.7  The flexural wave attenuation constants of the 90/0/0/90 carbon/epoxy 

laminated cylindrical shell with axial stiffeners with respect to the number of halfwaves 
in axial direction 

 

 
Figure 3.8  The frequency averaged flexural energy ratio of the 90/0/0/90 carbon/epoxy 

laminated cylindrical shell with axial stiffeners 
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In order to calculate the energy ratio using MSC/NASTRAN, the frequency averaged 

energy density over each 1/3 octave band is computed over wide frequency range 

between 200Hz to 5000Hz and finally the space averaged energy density in each bay is 

obtained and used to evaluate the energy ratio between adjacent two periodic units. For 

the energy ratio computation by the analytical method, the propagation constants 

corresponding to different halfwave numbers along the length of the longitudinal bay are 

first calculated and those which undergo a pass band are selected as explained in the 

previous paragraph, and they are finally used to determine the total response of the 

structure, i.e. energy ratio between two consecutive bays. Much attention is given to the 

flexural wave motion of the periodic structure and thus the transverse velocity ratios 

corresponding to the flexural waves are calculated in this analysis as shown in Figure 3.8. 

As previously mentioned, the first wave propagation occurs around 1000Hz at which 

the given structure has its first natural frequency when there exists one sinusoidal half 

wave along longitudinal direction. Between 1000Hz and 5000Hz, pass/stop bands exist 

discretely for each flexural wave. However, since their pass bands are repeated over 

broad frequency range, if the first pass bands for flexural waves of ݊ =1,2,3 are combined, 

the first pass band for that combination becomes from 1000Hz to 3000Hz, the second 

pass band appears to be 3300-4050Hz and the third will be from 5350-5623Hz. Moreover, 

considerably small attenuation constants exist over the stop bands between pass bands. 

Therefore, the velocity attenuation over one periodic element is shown to be so small 

over the frequency range between 1000-5000Hz that flexural energy can be transmitted 

along the axial direction even in this frequency range. This may manifest itself that 

enormous numbers of vibration modes occur, densely populate the frequency range, and 

thus all waves having frequencies in this range may propagate with very small 

attenuation which is mainly due to the structural damping loss factor. 

 

3.3.3 Effects of Material Anisotropy and Spatial Periodicity 

In this section, the effects of shell material properties and spatial periodicity on the 

energy ratio of flexural waves between adjacent periodic elements will be examined 

based on the analytical approach presented in this paper. Shell bending stiffness and  
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Figure 3.9  The effect of bending stiffness ratio, 12ሺ1 െ ଵଵܦଶሻߥ ⁄ଷ݄ܧ , on flexural energy 

ratio of the laminated cylindrical shell with circumferential stiffeners 

periodic element length are chosen to vary, while other dimensions and material 

properties are held constant. Throughout the analysis, the principal material directions (1- 

and 2-axes) are assumed to coincide with the ݔ- and ݕ-axes of the shell coordinate system 

shown in Figure 3.2 and Figure 3.3. 

If flexural waves propagate along the cylinder with the axisymmetric standing wave 

pattern in circumferential direction, the change in the onset frequency of the 

axisymmetric mode will result in translation in the frequency axis of the attenuation 

constant or energy ratio curve. Since axisymmetric modes are initiated by the ring 

frequency of the cylindrical shell, ߱௥௜௡௚ ൌ ඥܣଶଶ ⁄ଶܴ݄ߩ , it is apparent that the elastic 

modulus, ܣଶଶ may cause such shift over the frequency. If ܣଶଶ is held constant, then it is 

the bending stiffness ratio of shell to ring frame, 12ሺ1 െ ଵଵܦଶሻߥ ⁄ଷ݄ܧ , that needs to be 

given a special attention among other elastic constants. The attenuation constant curves 

are shown in Figure 3.9 for the three different values of bending stiffness ratios. The 

number of pass and stop bands is seen to decrease as the bending stiffness ratio increases. 

This would be attributed to the bandwidth of each propagation zone, ∆߱ , being 

proportional to ܦଵଵ and thus the increased bandwidth yields fewer propagation zones in 

the same frequency range of interest. Such relationship between ∆߱ and ܦଵଵ may be  
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Figure 3.10  The effect of length ratio, ݈ ܴΘ⁄ , on flexural energy ratio of the laminated 

cylindrical shell with circumferential stiffeners 

deduced from the references [14] and [15] in that the lower and upper bounding 

frequencies of each propagation zone in symmetric periodic systems are proved to 

coincide with natural frequencies of a single periodic element with free or fixed 

boundaries. It is also observed in Figure 3.9 that the higher bending stiffness ratio enables 

the more wave energy to propagate with the less reflection. As would be expected, this is 

due to the fact that the more compliant stiffener tends to lose its ability to block the 

flexural wave energy of shell across stiffeners and vice versa. 

The axial length of each periodic element, ݈, has also influence on the flexural wave 

propagation along the cylinder. In order to show the effect of the length, ݈, with respect to 

the circumferential length of the same bay, ܴΘ, the length ratio, ݈ ܴΘ⁄ , is considered here 

with ܴΘ being fixed. Figure 3.10 shows that the larger length yields the more frequent 

pass/stop bands. Since the difference between the bounding frequencies, ∆߱, is inversely 

proportional to ݈, the increased length ratio may result in more frequent repetition of 

propagation and attenuation zones. The lower propagated energy level for a higher length 

ratio may need the explanation detailed in what follows. As an elastic wave propagates, it 

may experience attenuation arising from either the structural damping or the structural 

discontinuity. The amount of wave amplitude attenuation due to the structural damping is 
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proportional to the distance over which a wave propagates. Moreover, according to 

periodic structure theory, the wave amplitude will be attenuated across a circumferential 

stiffener by ݁Rୣୟ୪ሺఓሻ௟ . Both of the wave attenuation mechanism give rise to the wave 

energy loss proportional to the length, ݈. Hence, the longer length results in the smaller 

energy being propagated over one periodic length. 

In the case of the flexural wave propagating along the circumference, the first 

propagation zone begins (and the first attenuation zone ends) at the first natural frequency 

of the stiffened cylinder subject to a sinusoidal half wave in the longitudinal direction 

(This phenomenon has been shown in section 3.3.2 and the detailed theoretical proof can 

also be found in the literature [14] and [15]). Therefore, the changes in bending stiffness 

in the circumferential direction, ܦଶଶ and/or the number of axial stringers may result in the 

change in the frequency. Such effect has been shown in Figure 3.8 as the steep increase in 

energy ratio across 1000 Hz, the first natural frequency of the stiffened cylinder 

considered in section 3.3.2. For the evaluation of wave propagation characteristics in 

higher frequencies, however, the frequency range of 1413Hz to 7079Hz is used and 

thereby the first attenuation zone is not shown in the following figures.  

 
Figure 3.11  The effect of bending stiffness ratio, 12ሺ1 െ ଶଶܦଶሻߥ ⁄ଷ݄ܧ , on flexural 

energy ratio of the laminated cylindrical shell with axial stiffeners 
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If the bending stiffness ratio, 12ሺ1 െ ଶଶܦଶሻߥ ⁄ଷ݄ܧ , and the number of axial stiffeners 

are chosen to vary, they are expected to affect the pass/stop band characteristics of the 

flexural waves with different sinusoidal half waves. For instance, the location of each 

pass or stop band may change depending on the value of bending stiffness ratio and the 

number of axial stiffeners. However, when several half-waves are combined to yield 

space- and frequency-averaged energy ratios, the changes in the location of pass and stop 

bands are likely to be smeared out to give almost same energy ratios in lower frequency 

regions as shown, respectively, in Figure 3.11 (up to 2500Hz) and Figure 3.12 (up to 

4000Hz). In higher frequency range, however, it is still observed that the greater the 

bending stiffness ratio is and the more the axial stiffeners are used, the more energy may 

transfer from one periodic element to another. Since the number of axial stiffeners can be 

expressed as 2ߨ Θ⁄  and thus is inversely proportional to the circumferential length of 

each periodic element, ܴΘ, the flexural wave energy propagation with respect to the 

bending stiffness ratio and the number of axial stiffeners can be explained in the same 

manner as for the case of flexural wave propagating in axial direction. 

 

 
Figure 3.12  The effect of the number of axial stiffeners on flexural energy ratio of the 

laminated cylindrical shell with axial stiffeners 
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CHAPTER 4 
 

CALCULATION OF WAVE POWER TRANSMISSION 
COEFFICIENTS FOR COUPLED COMPOSITE PLATES 

 
 
 

Wave power transmission coefficients for coupled composite plates are computed in 

this chapter. The power transfer coefficients are calculated by using the FSDT-based 

wave dynamic stiffness matrix method, which is described in more detail in section 4.1. 

Combining wave dynamic stiffness matrix approach with FSDT-based dynamic 

equations of motion, shear deformation and rotary inertia effects are taken into account. 

The validity of the presented analytical method is demonstrated through several analyses 

and comparison with published numerical results. For this purpose, several right-angled 

structural junctions of composite laminated or composite sandwich panels are considered 

to present the numerical results of wave transmission coefficients in section 4.2. These 

numerical examples clearly demonstrate the discrepancy between computations with and 

without shear deformation effect.  

 

4.1 Wave Power Transmission Coefficients 

4.1.1 Derivation of Wave Dynamic Stiffness Matrix for a Single Composite Panel 

Consider a structural junction consisting of N semi-infinite composite plates, as 

shown schematically in Figure 4.1(a). The plates are assumed to be directly connected 

along a rigid and lossless line. The global coordinate system, ሺݔ௚, ,௚ݕ  ௚ሻ is assumed to beݖ

fixed in space and have ݔ௚-axis along the connection line. The local coordinate system, 

ሺݔ, ,ݕ  ,axis parallel to the connection line-ݔ ሻ is assumed to be attached to each plate withݖ

 y plane lying on each plate, asݔ axis outward normal to the connected edge, and-ݕ
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depicted in Figure 4.1(b).  

 

 
Figure 4.1  (a) A general N-plate junction and global coordinate system; (b) local 

coordinate system and displacements for plate n 

With such defined coordinate systems, it is easily found that the nth plate is 

positioned by the angle ߰௡ with respect to ݕ௚, which is the same as the angle measured 

clockwise by rotating ݕz plane with respect to ݕ௚ݖ௚plane. The plate motions, i.e., mid-

surface translational displacements, ሺݑ, ,ݒ ,ሺ߮௫ ,ݕ and ݔ ሻ and rotations aroundݓ ߮௬ሻ are 

also shown in Figure 4.1(b). Then, for a symmetrically laminated or sandwich composite 

plate for which ܤ௜௝ ൌ 0, the dynamic equations of motion can be written in the form 

ܝۺ  ൌ ૙ (4.1) 

where ܝ ൌ ,ݑൣ ,ݒ ,ݓ ߮௫, ߮௬൧
்
and ۺ is a linear differential operator which, according to the 

FSDT, has the following entries: 

ଵଵܮ ൌ ଵଵ߲௫௫ܣ ൅ ଺଺߲௬௬ܣ ൅ ଵ଺߲௫௬ܣ2 െ  ,଴߲௧௧ܫ
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ଵଶܮ ൌ ሺܣଵଶ ൅ ଺଺ሻ߲௫௬ܣ ൅ ଵ଺߲௫௫ܣ ൅ ଵସܮ          ,ଶ଺߲௬௬ܣ ൌ െܫଵ߲௧௧, 

ଶଵܮ ൌ ଶଶܮ          ,ଵଶܮ ൌ ଺଺߲௫௫ܣ ൅ ଶଶ߲௬௬ܣ ൅ ଶ଺߲௫௬ܣ2 െ ଶହܮ          ,଴߲௧௧ܫ ൌ െܫଵ߲௧௧, 

ଷଷܮ ൌ ହହ߲௫௫ܣ ൅ ସସ߲௬௬ܣ ൅ ସହ߲௫௬ܣ2 െ    ,଴߲௧௧ܫ

ଷସܮ ൌ ହହ߲௫ܣ ൅ ଷହܮ          ,ସହ߲௬ܣ ൌ ସହ߲௫ܣ ൅  ,ସସ߲௬ܣ

ସଵܮ ൌ ସଷܮ          ,ଵସܮ ൌ െܮଷସ,          ܮସସ ൌ ଵଵ߲௫௫ܦ ൅ ଺଺߲௬௬ܦ ൅ ଵ଺߲௫௬ܦ2 െ ହହܣ െ   , ଶ߲௧௧ܫ

ସହܮ ൌ ሺܦଵଶ ൅ ଺଺ሻ߲௫௬ܦ ൅ ଵ଺߲௫௫ܦ ൅ ଶ଺߲௬௬ܦ െ ହଶܮ          ,ସହܣ ൌ  ,ଶହܮ

ହଷܮ ൌ െܮଷହ,          ܮହସ ൌ ହହܮ          ,ସହܮ ൌ ଺଺߲௫௫ܦ ൅ ଶଶ߲௬௬ܦ ൅ ଶ଺߲௫௬ܦ2 െ ସସܣ െ   ଶ߲௧௧ܫ

Here ܣ௜௝ and ܦ௜௝ ሺ݅, ݆ ൌ 1,2,6ሻ are extensional and bending elastic constants and ܣ௣௤ 

ሺ݌, ݍ ൌ 4,5ሻ  shear elastic constants, and ܫఈ  ሺߙ ൌ 0,1,2ሻ  inertial properties, which can 

arise from the piecewise integration over the thickness and may be found in the reference 

[54]. Additionally, ߲௫ , ߲௬ , and ߲௧  represent partial differentiation with respect to space 

coordinates (ݔ and ݕ) and time (ݐ), respectively.  

With the predefined displacement field, the translational displacement components ݑ, 

 the rotational displacement components ߮௫ and ߮௬ at the junction should be ,ݓ and ,ݒ

taken as coupling edge displacements linking all the plates connected to the common 

junction. The boundary condition at the connected edge, which is along the line at ݕ ൌ 0, 

requires the compatibility of these five coupling displacements, say ܌୷  and the five 

associated elastic tractions, say ܜ୷. These may be written in the forms 

୷܌  ൌ ۲୷(4.2) ܝ 
୷ܜ  ൌ  (4.3) ܝ୷܂

where ۲୷ and ܂୷ are 5 by 5 differential operators defined as 

۲୷ ൌ ۷ (4.4) 

୷܂ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵ଺ܣ ௫߲ ൅ ଺଺߲௬ܣ ଺଺ܣ ௫߲ ൅ ଶ଺߲௬ܣ 0 0 0

ଵଶܣ ௫߲ ൅ ଶ଺߲௬ܣ ଶ଺ܣ ௫߲ ൅ ଶଶ߲௬ܣ 0 0 0

0 0 ସହܣ ௫߲ ൅ ସସ߲௬ܣ ସହܣ ସସܣ
0 0 0 ଵ଺ܦ ௫߲ ൅ ଺଺߲௬ܦ ଺଺ܦ ௫߲ ൅ ଶ଺߲௬ܦ
0 0 0 ଵଶܦ ௫߲ ൅ ଶ଺߲௬ܦ ଶ଺ܦ ௫߲ ൅ ےଶଶ߲௬ܦ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

(4.5) 
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where ۷  denotes 5 by 5 identity matrix. Note that the equations (4.1)-(4.3) can be 

applicable to arbitrary motion of any composite plates. If an incident wave is assumed to 

have the wavenumber in ݔ direction, which is in line with the structural junction, ݇௫, then 

the waveforms of reflected or propagating waves may be expressed in the following form 

ܝ  ൌ  ෝ݁ି௜௞ೣ௫ାఒ௬ା௜ఠ௧ (4.6)ܝ

Substitution into the equations of motion, equation (4.1) and replacement of ߲௫, ߲௬, 

and ߲௧ by ሺെ݅݇௫ሻ, ߣ, and ݅߱ yield 

 ሺߣଶ܊ଶ ൅ ଵ܊ߣ ൅ ෝܝ଴ሻ܊ ൌ 0 (4.7) 

where ܊଴ ଵ܊ , , and ܊ଶ are expressed in terms of material properties, ݔ  component of 

wavenumber and frequency as follows:
 

ଶ܊ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
଺଺ܣ ଶ଺ܣ 0 0 0

ଶ଺ܣ ଶଶܣ 0 0 0

0 0 ସସܣ 0 0

0 0 0 ଺଺ܦ ଶ଺ܦ
0 0 0 ଶ଺ܦ ےଶଶܦ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (4.8) 

ଵ܊ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଵ଺ሺെ݅݇௫ሻܣ2 ሺܣଵଶ ൅ ଺଺ሻሺെ݅݇௫ሻܣ 0 0 0

ሺܣଵଶ ൅ ଺଺ሻሺെ݅݇௫ሻܣ ଶ଺ሺെ݅݇௫ሻܣ2 0 0 0

0 0 ସହሺെ݅݇௫ሻܣ2 ସହܣ ସସܣ
0 0 െܣସହ ଵ଺ሺെ݅݇௫ሻܦ2 ሺܦଵଶ ൅ ଺଺ሻሺെ݅݇௫ሻܦ

0 0 െܣସସ ሺܦଵଶ ൅ ଺଺ሻሺെ݅݇௫ሻܦ ଶ଺ሺെ݅݇௫ሻܦ2 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (4.9) 

଴܊ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
଴߱ܫۍ

ଶ ൅ ଵଵሺെ݇௫ଶሻܣ ଵ଺ሺെ݇௫ଶሻܣ 0 ଵ߱ଶܫ 0

ଵ଺ሺെ݇௫ଶሻܣ ଴߱ଶܫ ൅ ଺଺ሺെ݇௫ଶሻܣ 0 0 ଵ߱ଶܫ

0 0 ଴߱ଶܫ ൅ ହହሺെ݇௫ଶሻܣ ହହሺെ݅݇௫ሻܣ ସହሺെ݅݇௫ሻܣ

ଵ߱ଶܫ 0 െܣହହሺെ݅݇௫ሻ
ଶ߱ଶܫ ൅ ଵଵሺെ݇௫ଶሻܦ

െܣହହ
ଵ଺ሺെ݇௫ଶሻܦ െ ସହܣ

0 ଵ߱ଶܫ െܣସହሺെ݅݇௫ሻ ଵ଺ሺെ݇௫ଶሻܦ െ ସହܣ
ଶ߱ଶܫ ൅ ଺଺ሺെ݇௫ଶሻܦ

െܣସସ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (4.10)

By introducing ܝ෥ ൌ  ෝ, the quadratic eigenvalue problem, as expressed in equationܝߣ

(4.7), can be transformed into a linear eigenvalue problem as shown below 

 
ቈ
૙ ۷

െ܊଴ ૙
቉ ቊ
ෝܝ

෥ܝ
ቋ െ ߣ ቈ

۷ ૙

ଵ܊ ଶ܊
቉ ቊ
ෝܝ

෥ܝ
ቋ ൌ ቊ

૙

૙
ቋ (4.11)
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Equation (4.11) is in canonical form of a linear algebraic eigenvalue problem. Since 

 component of wavenumber ݇௫ and ݔ ,ଶ are functions of material properties܊ ଵ, and܊ ,଴܊

frequency ߱, equation (4.11) may be solved to yield five pairs of ߣ’s and five pairs of 

corresponding eigenvectors ܝෝ’s for given values of ݇௫ and ߱.  For the case of isotropic 

plates, only the careful examination of signs and real and imaginary part of the complex 

eigenvalues ߣ’s is sufficient for the process of separating the computed eigenvalues into 

those of propagating and evanescent waves. However, since the direction of energy 

propagation may be different from that of wave propagation due to the material 

anisotropy, the evaluation of the wave energy flow is necessarily required and thus shown 

in what follows. Solution of the eigenvalue problem from equation (4.11) may be used to 

yield the following expression for the ݕ-directional energy flow associated with the ith 

wave solution. 

௬ܫ  ൌ
1
ܡ܌୷ܜ൛݅߱܍܀2

ൟ (4.12)כ

where כܡ܌  is the complex conjugate of ܌୷  and ܜ୷  and ܌୷  are obtained from the ith 

eigenvalue ߣ௜ and the corresponding eigenvector ܝෝ௜ by substituting ܝෝ௜ in place of ܝ and 

replacing ߲௫  and ߲௬  by ሺെ݅݇௫ሻ  and ߣ௜  in equations (4.2) and (4.3). Since this wave 

analysis is based on the fundamental assumption of each plate being semi-infinite, valid 

solutions (reflected waves in incident wave bearing plate and transmitted waves in others) 

are those having the motion which decays as move away from the junction (evanescent 

waves) or induces ܫ௬, which is shown as above, being positive (propagating waves). It is 

noted that for the given displacement fields there exist five different waves indicating the 

total number of valid solutions will be no more than five. 

By using such identified reflected and transmitted waves, the edge displacements of 

each plate can be expressed in terms of the reflected or transmitted wave amplitudes 

܋ ൌ ሾܿଵ, ܿଶ, ܿଷ, ܿସ, ܿହሿ܂with the incident wave amplitude ܿ଴ as follows 

୷܌  ൌ ሾ܌୷ଵ ୷ଶ܌ ڮ ܋୷ହሿ܌ ൅ ୷଴ܿ଴ (4.13)܌

where ܌୷௜ ൌ ۲୷௜ܝෝ௜ (i=1,2,…,5) are edge displacements for valid reflected or transmitted 

wave solutions that can be computed from appropriate ܝෝ’s and ۲୷’s and ܌୷଴ ൌ ۲୷଴ܝෝ଴ is 

edge displacement due to the incident wave. In the similar way, the corresponding elastic 

tractions may be written as 
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୷ܜ  ൌ ሾܜ୷ଵ ୷ଶܜ ڮ ܋୷ହሿܜ ൅ ୷଴ܿ଴ (4.14)ܜ

where  ܜ୷௜ ൌ ෝ௜ܝ୷௜܂  (i=1,2,…,5) and ܜ୷଴ ൌ ෝ଴ܝ୷଴܂ , representing elastic tractions due to 

transmitted or reflected waves and incident waves, respectively. It should be noted that 

the non-zero incident wave amplitude ܿ଴ exists only in the incident wave bearing plate 

and thus the terms involving ܿ଴ should be removed from equations (4.13) and (4.14) in 

other plates. 

According to wave dynamic stiffness matrix approach [48], equations (4.13) and 

(4.14) can be combined to yield  

୷ܜ  ൌ ୷܌۹ െ ୷଴ (4.15)܎

where ۹ ൌ ሾ܌୷ଵ ୷ଶ܌ ڮ ୷ଵܜ୷ହሿିଵሾ܌ ୷ଶܜ ڮ ୷ହሿܜ  is wave dynamic stiffness matrix 

which relates edge displacements ܌୷ to edge tractions ܜ୷ as shown in equation (4.15) and 

୷଴܎ ൌ ୷଴܌۹ െ ୷଴܎ ,୷଴ is the force due to the incident wave. As mentioned aboveܜ ൌ ૙ in 

the plates where no incident wave exists. 

For the simplicity the subscript  is omitted without causing any confusion to yield 

the relation applied to the edge displacements and tractions of nth plate as 

୬ܜ  ൌ ۹୬܌୬ െ ୬ (4.16)܎

All the terms should be understood by referring to the above shown equation (4.15). 

For the junction of N plates as shown in Figure 4.1(a), there exist N such vector equations 

for 2N unknowns, i.e., N edge displacement vectors and N edge traction vectors. Thus, in 

what follows, the compatibility of displacements and force equilibrium at the connected 

edge will be invoked to solve equation (4.16). 

 

4.1.2 Computation of Power Transmission Coefficients 

Since displacements at and elastic tractions acting on the edge of each plate are 

defined with respect to the local coordinate system of its own as shown in Figure 4.1(b), 

it is necessary to make a coordinate transformation from the local to the global coordinate 

system as follows: 

୬܌  ൌ ௃ (4.17)܌୬܀
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௃ܜ  ൌ ୬܀
୬ (4.18)ܜ܂

where ܌୬ and ܜ୬ are edge displacements and their associated edge tractions of each plate 

defined with respect to the local coordinate system, ܌௃ and ܜ௃ are those at the common 

junction defined with respect to the global coordinate system, and ܀୬  is a simple 

coordinate transformation matrix consisting of cos and sin functions of the angle ߰௡. 

Invoking the force equilibrium equation for the ܰ  plates connected through a 

structural joint, which is the simple summation of N such equations as equation (4.18) 

from each of N plates, the following equation arises 

 
෍܀௡

௡ܜ܂

N

୬ୀଵ

ൌ ૙ (4.19)

Substitution of equation (4.17) into equation (4.16) gives the expression of ܜ୬  in 

terms of ܌௃ as follows 

୬ܜ  ൌ ۹୬܀୬܌௃ െ ୬ (4.20)܎

Then replacement of ܜ୬ in equation (4.19) using equation (4.20) yields 

 

൥෍܀୬
୬܀۹୬܂

N

୬ୀଵ

൩ ௃܌ ൌ ൥෍܀୬
୬܎܂

N

୬ୀଵ

൩ (4.21)

This is the result of combining edge displacement and edge traction relation 

(equation (4.16)) with displacement and force continuity equations (4.17) and (4.19). 

From equation (4.21) the junction degree of freedom ܌௃ can be evaluated and, in turn, ܌୬ 

is calculated from equation (4.17). Equation (4.13) can be cast into the following form for 

reflected and transmitted wave amplitudes to be recovered.  

܋  ൌ ሾ܌୷ଵ ୷ଶ܌ ڮ ୷܌୷ହሿିଵ൫܌ െ ୷଴ܿ଴൯ (4.22)܌

Given the amplitudes of incident, reflected and transmitted waves, power 

transmission coefficients can be readily calculated from the following equations 

 
߬௜௝ሺ߱, ሻߠ ൌ

ห ௝ܿห
ଶ

|ܿ଴௜|ଶ
 (4.23)

where ௝ܿ is the amplitude of a reflected or transmitted wave type ݆ for the given ܿ଴௜ , the 

amplitude of  an incident wave type ݅ with frequency ߱ and an incidence angle of ߠ. It is 
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noted that the angle of incidence ߠ is measured counter-clockwise with respect to the 

local x-axis.  

 

4.1.3 Diffuse-field Power Transmission Coefficients 

The above computed transmission coefficients, as in equation (4.23), are highly 

dependent on the angle of incidence, ߠ  for anisotropic media including composite 

laminates and composite sandwich panels. For a diffuse elastic wave field, the angle 

dependence of the wavenumber should be taken into account. In this regard, references 

[53] and [20] provide a useful expression for the calculation of the diffuse-field wave 

transmission coefficients. In reference [53], Langley’s approach was based on the 

assumption of equipartition of modal energy. On the other hand, Bosmans et. al. [20] 

have utilized a weighting function for describing the distribution of the vibrational energy 

in a reverberant wave field. Although they used different approaches, the expression for 

the diffuse-field wave transmission coefficients is identical. In this context, it may be 

used to compute the diffuse-field wave transmission coefficients for the present study by 

extending the same expression as suggested in references [20] and [53] to the case of 

coupled anisotropic plates. Even though they considered the angle dependence of elastic 

wave fields to derive an expression for the diffuse-field wave transmission coefficients, 

the effects of shear deformation and rotary inertia were still ignored in their derivations. 

Then based on the assumption of equipartition of modal energy, the diffuse field 

transmission coefficients may be obtained from the following averaging of the power 

transmission coefficients for the case of diffuse incident waves 

 
ۄ௜௝߬ۃ ൌ න

߬௜௝ሺߠሻܿ௚௬ሺߠሻ
ܿሺߠሻܿ௚ఏሺߠሻ

ߠ݀
௵

න
ܿ௚௬ሺߠሻ

ܿሺߠሻܿ௚ఏሺߠሻ
ߠ݀

௵

൙  (4.24)

Such calculation must be performed for any combination of two plates among ܰ 

plates to compute the diffuse-field power transmission coefficients. 
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4.2 Numerical Examples and Discussion 

In what follows is considered the system of two directly coupled composite 

laminated or sandwiched plates. In each of the examples, two plates are taken to be 

identical so that they are composed of multiple plies of the same stacking angles and 

material properties. The material properties used throughout this section are shown in 

Table 4.1. 

Material 
properties 

Orthotropic plate  
(used in reference [20]) 

Graphite/Epoxy 
(IM7/8552) 

Nomex core 

Elastic modulus 
40GPa (Eଵଵ) 
20GPa (Eଶଶ) 

144GPa (Eଵଵ) 
9.38GPa (Eଶଶ) 

0.01MPa (Eଵଵ) 
0.01MPa (Eଶଶ) 

Shear modulus  11.54GPa (Gଵଶ) 
5.39GPa (Gଵଶ) 
3.05GPa (Gଶଷ) 

22.5MPa (Gଵଶ) 
22.5MPa (Gଶଷ) 

Poisson’s ratio 0.3 (νଵଶ) 0.325 (νଵଶ) 0.01 (νଵଶ) 
Mass density 2500 kg/m3 1525 kg/m3 32 kg/m3 
Table 4.1  Material properties of an orthotropic plate, graphite/epoxy ply, and Nomex 

core 

The effects of the angle of incident waves and the angle between the two plates are 

investigated at a given frequency. The effects of the transverse shear deformation of 

plates on the power transmission and reflection coefficients are also evaluated by 

comparing to the results of non-shear deformation based calculation. In addition, for 

every computation presented in this section, the following self-consistency checks are 

internally performed to ensure the integrity of the present analytical calculations. One 

way of checking the validity of the calculation procedure is to see if the law of the energy 

conservation is satisfied. The energy conservation law states that the input wave energy 

in plate 1 into the common edge is the same as the sum of the output energies of all the 

generated waves carried by plate 2 out of the edge. Another way is to check if the 

computed transmission coefficients meet the reciprocity conditions. One such condition 

is that the wave power transmission along any single path is the same in each direction so 

that ߬௜௝ሺߠ௜ሻ ൌ ௝߬௜൫ߠ௝൯, where ߠ௜  and ߠ௝  are an angle of incidence of wave type i and j, 

respectively. The other reciprocity condition is also applied to the angular-averaged 

transmission coefficients such that ݇௜߬ۃ௜௝ۄ ൌ ௝݇ۃ ௝߬௜ۄ, in which ݇௜ and ௝݇ are wavenumbers 

of wave type i and j, respectively. 
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4.2.1 Two Coupled Orthotropic Plates 

In this section the bending wave transmission loss, ܴ஻, of a rigid L-junction of two 

identical orthotropic plates is considered. Two plates are taken to be semi-infinite and 0.1 

m thick and have the same material properties of the orthotropic plate as used in 

reference [20], which is also shown in Table 4.1. Four different combinations of plate 

orientations, described in Table 4.2, are given as numerical examples. The orientation of 

major principal direction in each plate is measured with respect to the local coordinate 

system (see Figure 4.1(a) and (b)). 

Analysis 
cases 

Orientation of major principal direction 
Plate 1 Plate 2 

Case I 90° 90° 
Case II 0° 90° 
Case III 90° 0° 
Case IV 0° 0° 

Table 4.2  Four different combinations of orthotropic plates 

Given an incident bending wave in plate 1, the bending wave transmission 

coefficient, ߬஻஻, is computed over the center frequencies of each one-third octave band. 

The computed transmission coefficient is then transformed into the transmission loss, 

ܴ஻ ൌ ݃݋10݈ 1 ߬஻஻⁄  for the comparison with the results reported by Bosmans et. al. [20]. 

Since their analysis ignored the transverse shear deformation, the calculation in the 

present paper has been done by assuming the transverse shear moduli to be much greater 

than the in-plane shear modulus. In Figure 4.2 are shown the bending wave transmission 

loss as functions of the incident vibration frequency. The calculations of transmission 

loss were carried out and averaged over one-third octave bands and the results are plotted 

for each center frequency from 200 Hz to 4000 Hz, as shown in Figure 4.2. Comparing to 

the work due to Bosmans et. al., it is concluded that Figure 4.2, which have been 

obtained by using the present procedure, is in good agreement with the Figure 8(a) of 

reference [20], showing approximately 1 dB difference among all cases over the 

frequency range of interest.  
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Figure 4.2  Transmission loss for an L-junction of two semi-infinite orthotropic plates:  

case I ( ); case II ( ); case III ( ); case IV ( )   

 

4.2.2 Two Coupled Composite Laminates 

A rigid L-shaped junction of two identical composite laminates is considered. The 

composite laminates are composed of eight graphite/epoxy laminae with the stacking 

angle of 0/90/0/90/90/0/90/0, the total thickness of 1.524mm (0.1905mm each) and the 

material properties of each graphite/epoxy lamina are the same as shown in Table 4.1.  

First, the coupling effect of the plate junction is evaluated with respect to the angle 

between two plates, ߰. The computation is performed for the case of an incident bending 

wave in plate 1 at a single frequency of 6300 Hz. In Figure 4.3 are shown the angular-

averaged power transmission coefficients, ۄ߬ۃ஻஻ ஻ௌۄ߬ۃ , , and ۄ߬ۃ஻௅  as functions of the 

angle of two coupled composite laminates, ߰. Here, for ۄ߬ۃ௜௝, the subscript i denotes the 

incident wave type in plate 1 and j indicates the generated wave type in plate 2. In Figure 

4.3 lines without any marker corresponds to the angular-averaged transmission 

coefficients computed by non-shear deformation theory and line with ‘x’ marker stands 

for those calculated by considering shear deformation.  
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Figure 4.3  Angular-averaged bending wave transmission coefficient according to the 
angle between two composite laminates: ࡮࡮ۄ࣎ۃ( ) ࡿ࡮ۄ࣎ۃ ,( ) ࡸ࡮ۄ࣎ۃ ,( ) 
with shear deformation and rotary inertia; ࡮࡮ۄ࣎ۃ( ) ࡿ࡮ۄ࣎ۃ ,( ) ࡸ࡮ۄ࣎ۃ ,( ) 

without shear deformation and rotary inertia 

Regarding the results shown in Figure 4.3, several important observations can be 

made as follows. First, as would be expected, there is almost no discernable difference in 

transmission coefficients between two calculations over the whole range of angle ߰ , 

except small difference only in ۄ߬ۃ஻஻  around ߰=90°. This is due to the fact that each 

composite laminate is 1.524 mm thick so that the effects of shear deformation and rotary 

inertia can be ignored. Second, since the ratio of the longitudinal wave number to the 

bending wavenumber, ݇௅ ݇஻⁄  is approximately 0.05 at this frequency such that the in-

plane transmission coefficients ۄ߬ۃ஻ௌ and ۄ߬ۃ஻௅ are low enough to be negligible, as seen 

in Figure 4.3. Third, for the validation purposes, ۄ߬ۃ஻஻ =1 and ۄ߬ۃ஻ௌ=ۄ߬ۃ஻௅=0 at ߰=180°, 

meaning the bending wave in plate 1 is fully transmitted to plate 2 when two plates form 

a single flat plate. The situation where ۄ߬ۃ஻ௌ=ۄ߬ۃ஻௅=0 occurred once more at ߰=0°, as 

would be readily expected.  

In Figure 4.4 are shown the wave power transmission coefficients, ߬௜௝ and reflection 

coefficients, ݎ௜௝  when a bending wave is incident in plate 1 for the L-junction of two 

composite laminates. Figure 4.4(a) and (b) show the respective numerical results 

calculated without and with considering shear deformation and rotary inertia effects. As 

mentioned above, for this case of thin composite laminates, both computations yield 
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nearly the same numerical results. In addition, since the ratio ݇௅ ݇஻⁄  is small, the critical 

angles for either longitudinal or shear waves occur near 100°=ߠ, meaning such waves 

may be generated only for nearly normally incident bending wave.  

(a)  (b) 

Figure 4.4  Bending wave power transmission and reflection coefficients for the L-
junction of two composite sandwich panels: ࣎࡮࡮( ) ࡿ࡮࣎ ,( ) ࡸ࡮࣎ ,( )࡮࡮࢘ ;( ), 
) ࡿ࡮࢘ ) ࡸ࡮࢘ ,( ) without shear deformation and rotary inertia, (a) and with shear 

deformation and rotary inertia, (b)  

As shown in the figure, the critical angle of shear and longitudinal waves are, 

respectively, 100°=ߠ and 93°=ߠ and, beyond this angle, no such waves exist in the form 

of propagating waves. Moreover, for the range where shear or longitudinal waves are 

generated, the amplitude of which is very small. This may indicate that, when angular-

averaged over the whole range, the amplitude of such types is not considerable and thus 

the sum of the angular-averaged reflection and transmission coefficients equals to one. 

Figure 4.5 shows the angular-averaged power transmission and reflection coefficients as 

functions of the frequency of incident wave for the L-junction of two composite 

laminates. The angular-averaged power transmission coefficients were computed at each 

center frequencies of one-third octave bands from 630 Hz to 6300 Hz. Although the 

discrepancy between the calculations with and without shear deformation and rotary 

inertia is increasing as the frequency increases, such a difference is small enough to be 

negligible. As mentioned before, since the ratio ݇௅ ݇஻⁄  is very small, meaning there is no 

considerable wave transmission into shear and longitudinal waves, i.e., ۄ߬ۃ஻ௌ and ۄ߬ۃ஻௅ 

are negligible, the summation of the bending wave transmission and reflection 
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coefficients is almost 1, which manifest itself this calculation satisfies the law of energy 

conservation.  

 

 
Figure 4.5  Angular-averaged bending wave transmission and reflection coefficients with 
respect to the frequency of incident wave for the L-junction of two composite laminates: 
transmission coefficient ( ), reflection coefficient ( ) with shear deformation 

and rotary inertia; transmission coefficient ( ), reflection coefficient ( ) without 
shear deformation and rotary inertia 

 

Material Orientation Thickness 

Upper 
skin 

IM7/8552 +0 

0.762mm 
in total 

0.1905mm  
IM7/8552 +90 0.1905mm  
IM7/8552 +0 0.1905mm 
IM7/8552 +90 0.1905mm 

Core NOMEX  12.7mm 

 
Lower 
skin 

IM7/8552 +0 

0.762mm 
in total 

0.1905mm  
IM7/8552 +90 0.1905mm 
IM7/8552 +0 0.1905mm 
IM7/8552 +90 0.1905mm 

Table 4.3  Skin and core material and thickness of composite sandwich panel 
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4.2.3 Two Coupled Composite Sandwich Panels 

In this section, a rigid L-junction of two identical composite sandwich panels is 

considered. The sandwich panel has the following skin and core thickness and 

configurations, as shown in Table 4.3. The material properties of each graphite/epoxy 

lamina are the same as shown in Table 4.1. 

As before, the coupling effect of the plate junction is evaluated with respect to the 

angle between two plates, ߰. The computation is performed for the case of an incident 

bending wave in plate 1 at a single frequency 6300Hz. 

Unlike the case of composite laminates, the consideration of shear deformation and 

rotary inertia makes noticeable differences, especially for bending wave transmission 

coefficient. For ߰ greater than 135°, ࡮࡮ۄ࣎ۃ does not have much discrepancy, regardless of 

using FSDT. However, below ߰=135°, it is apparent that FSDT should always be used to 

calculate ߬஻஻ . Otherwise, non-shear deformation based calculation causes enormous 

errors in numerical values of ۄ߬ۃ஻஻. Also, since the ratio ݇௅ ݇஻⁄  is approximately 0.17 at 

6300 Hz, which is greater compared to the previous case with composite laminates, the 

in-plane transmission coefficients ۄ߬ۃ஻ௌ  and ۄ߬ۃ஻௅  are not negligible, but should be 

considered as seen in Figure 4.6. 

Figure 4.7(a) and (b) show the wave transmission/reflection coefficients, ߬௜௝ and ݎ௜௝ 

for the case of right-angled two coupled composite sandwich panels with an incident 

bending wave. Looking at ߬஻஻ of Figure 4.7(a) and (b), it can be easily found that ߬஻஻ 

without shear deformation and rotary inertia is much greater than ߬஻஻with such effects 

and this finding accounts for the discrepancy between two numerical results at ߰=90° 

shown in Figure 4.7. For the large ratio ݇௅ ݇஻⁄  compared to the case of composite 

laminates, the critical angles for shear waves occur approximately 132°=ߠ for non-shear 

deformation theory and ߠ =126° for shear deformation theory. ߠ =101° and ߠ =100° 

correspond to those for longitudinal waves.  
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Figure 4.6  Angular-averaged wave transmission coefficients according to the angle 

between two composite sandwich panels: ( ),  ( ),  ( ) 
with shear deformation and rotary inertia; ( ),  ( ),  ( ) 

without shear deformation and rotary inertia 

(a)  (b) 

Figure 4.7  Bending wave power transmission and reflection coefficients for the L-
junction of two composite sandwich panels: ( ),  ( ),  ( ); ( ), 

 ( ),  ( ) without shear deformation and rotary inertia, (a) and with shear 
deformation and rotary inertia, (b)  

The aforementioned differences due to shear deformation can often be observed 

when computing wave transmission coefficients for engineering structures consisting of 

composite sandwich panels. Hence, it needs to further investigate the shear deformation 

effect of core material on  in terms of the transverse shear modulus of core,  
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relative to that of skin, ܩ௦ as well as the thickness ratio of core to skin, ݄௖ ݄௦⁄ . First, the 

angle-averaged bending wave transmission coefficients, ۄ߬ۃ஻஻ for the same configuration 

had been calculated based on FSDT for six different transverse shear modulus ratios, 

௖ܩ ⁄௦ܩ  and plotted as a function of plate angle ߰ as shown in Figure 4.8. As seen in the 

figure, ۄ߬ۃ஻஻ does not show appreciable change with respect to ܩ௖ ⁄௦ܩ  for ߰ ≥135° but, 

for ߰ ≤135°, ۄ߬ۃ஻஻ varies in such a way that it increases as ܩ௖ ⁄௦ܩ  decreases for ߰ ≤45° 

and decreases for 45°≤ ߰ ≤135°. The amount of change in ۄ߬ۃ஻஻is inconsiderable when 

 ஻஻ is observedۄ߬ۃ ௦. In contrast, a dramatic change inܩ ௖ is comparable to or greater thanܩ

as the transverse shear modulus of core material becomes smaller compared to that of 

skin material. This clearly shows that the shear deformation of the core material starts to 

significantly affect ۄ߬ۃ஻஻ for ܩ௖ ⁄௦ܩ ≤1 into which most of the composite sandwich panels 

fit. Hence, it is justified that the calculation of wave transmission characteristics of this 

type of structures should take into account the shear deformation.  

 

 
Figure 4.8  Angular-averaged bending wave transmission coefficient over the plate angle, 

߰ with respect to various transverse shear modulus ratios, ܩ௖ ⁄௦ܩ  
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Figure 4.9  Difference of bending wave transmission coefficient over the plate angle, ߰ 

with respect to various thickness ratios of core to skin, ݄௖ ݄௦⁄  

The thickness ratio of core to skin, ݄௖ ݄௦⁄  can also affect the wave transmission 

characteristics of composite sandwich panels. Such effect is shown in Figure 4.9 where 

the difference between bending wave transmission coefficients with and without shear 

deformation is plotted with respect to ߰ . Positive values indicate ۄ߬ۃ஻஻ ,which is 

calculated considering shear deformation, is greater than that from non-shear deformation 

based calculation, and vice versa for negative values. As would be expected, the shear 

deformation effect of the core material is too small to be noticed when its thickness is 

comparable to that of the stiff skin. As the ratio, ݄௖ ݄௦⁄  increases, the difference becomes 

noticeable, indicating that the computed wave transmission coefficients with shear 

deformation considered gradually deviates from those calculated based on non-shear 

deformation theory. 

In Figure 4.10 are shown the angular-averaged power transmission and reflection 

coefficients as functions of the frequency of incident wave for the L-junction of two 

composite sandwich panels. As seen in the figure, the discrepancy between the 

calculations with and without shear deformation and rotary inertia is not only increasing 

as the frequency increases, but also is noticeable at the low frequency of 630 Hz.  
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Figure 4.10  Angular-averaged bending wave transmission and reflection coefficients 
with respect to the frequency of incident wave for the L-junction of two composite 

sandwich panels: transmission coefficient ( ), reflection coefficient ( ) with 
shear deformation and rotary inertia; transmission coefficient ( ), reflection 

coefficient ( ) without shear deformation and rotary inertia 

 

 

4.3 Wave Propagation Through a Joint with Rotational Compliance 

The analytical method presented in section 4.1 was based on the fundamental 

assumption that plates are connected together by a rigid joint. However, it is more 

practical to consider a non-rigid joint since it is not uncommon in many engineering 

applications, especially with composite plates. Shown in Figure 4.11 is a typical T-

junction structure of two composite honeycomb panels joined by L-shaped multilayered 

composite laminates. Since the supporting composite laminates are presumed to be 

compliant to some extent, especially in rotational direction at the joint, the rigid joint 

assumption would be a too extreme case, at least for the analysis of flexural wave energy 

transmission. Such observation can justify the necessity of the investigation of the 

flexural wave transmission through a joint with rotational compliance. 
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Figure 4.11  T-junction structure of two composite sandwich panels connected by L-

shaped composite laminate support 

As would be expected, if the rigid joint assumption is relaxed so that a common 

junction connecting the arbitrary number of plates is allowed to have compliance, then 

transmission and reflection characteristics of a flexural wave may be influenced by the 

joint stiffness as well as all the parameters discussed in section 4.2. Thus, this section is 

devoted for the analysis of the attenuation of a flexural wave through a right-angled 

junction with the rotational stiffness only. It is still assumed that the junction is lossless 

and thus damping is not given any attention at the junction. In addition, the composite 

laminated and sandwich panels are assumed to have the same ply materials and stacking 

order as in section 4.2. In the analysis, wave power transmission/reflection coefficients 

are computed with respect to varying joint stiffness in order to quantitatively evaluate the 

effects of the joint compliance. At the end of the next section, the possible extension of 

the current approach toward the wave transmission analysis through a general joint with 

stiffness in all junction degrees of freedom will be briefly presented. 

 

 

 

 

Composite laminate support

Composite sandwich panel 
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4.3.1 Calculation of Power Transmission Coefficients under the Influence of a Compliant 

Joint 

Consider a system of plates joined with a line junction as shown in Figure 4.12 and 

assume that the nth and (n+1)th plates are connected through a joint with compliance in 

rotation only, while other plates are rigidly assembled together. For rigid joints, when 

assembling wave dynamic stiffness matrix, it was implicitly assumed that the rotation of 

the nth plate, ߠ௡  equals that of the (n+1)th plate, ߠ௡ାଵ  to ensure the displacement 

continuity at the rigid junction. For compliant joints, however, such angular equality is 

not satisfied at the common junction and thus ߠ௡ ്  ௡ାଵ. Therefore, even though theߠ

relation between elastic tractions and associated displacements, equation (4.16), and the 

tractions continuity at the junction, equation (4.19), are still applicable, the junction 

degrees of freedom, ܌௃ , cannot simply be defined as a rigid rotation of the displacements 

in the nth plate, ܌௡ meaning that the equation (4.17) needs to change. As a result, the 

elastic tractions, ܜ௡, cannot be expressed in terms of ܌௃ as equation (4.20), which disables 

the assembled equation (4.12) to be used for the solution of ܌௃. 

 
Figure 4.12  A system of the arbitrary number of plates with rotational compliant joint 

Nonetheless, this problem can be solved by defining ߠ௃ ൌ ௡ߠ  and calculating the 

relative angular movement at the junction between nth and (n+1)th plates. First, due to 

the choice of ߠ௃ ൌ  ௡ andܜ ௡, equation (4.20) may be used to yield the relation betweenߠ

௃܌ . The unknown expression of ܜ௡ାଵ  in terms of ܌௃  can be found by applying the 

following boundary condition at the junction: 
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൜ ௡ܯ
௡ାଵܯ

ൠ ൌ ݇ఏ ቂ
1 െ1
െ1 1 ቃ ൜

௡ߠ
௡ାଵߠ

ൠ (4.25)

where ݇ఏ is the rotational stiffness between the nth and (n+1)th plates. 

The equation can be rewritten in simpler form using the angular difference, ∆ߠ௡ ൌ

௡ାଵߠ െ  ௡, between two arbitrary plates asߠ

 
௡ାଵܯ ൌ െܯ௡ ൌ ݇ఏ∆ߠ௡ (4.26)

By definition, 

 
௡ܯ ൌ ெ்܍ ௡ (4.27)ܜ

where the vector, ܍ெ் ൌ ሾ0 0 0 1 0ሿ. 

Combination of equation (4.27) with equations (4.16) and (4.26) gives 

 
௡ߠ∆ ൌ െ

1
݇ఏ
ெ்܍ ሺ۹୬܌௡ െ ୬ሻ (4.28)܎

It can be readily shown that ∆ߠ௡ ൌ 0 , i.e., ߠ௡ ൌ ௡ାଵߠ  when ݇ఏ ՜ ∞  (rigid joint 

assumption). Since ܌௡ ൌ  ௃ as܌ ௡ can also be related toߠ∆ ,௃܌௡܀

 
௡ߠ∆ ൌ െ

1
݇ఏ
ெ்܍ ሺ۹୬܀௡܌௃ െ ୬ሻ (4.29)܎

Meanwhile, the choice of ߠ௃ ൌ  ,௡ entails the displacement vector in the (n+1)th plateߠ

 ௡ାଵ, being written in the form܌

 
௡ାଵ܌ ൌ ௃܌௡ାଵ܀ ൅ ௡ (4.30)ߠ∆ெ܍

Compared to equation (4.17), it should be noted that the relation between ܌௡ାଵ and 

 .௡, which represents the effect of the compliant jointߠ∆ெ܍ ,௃ contains an additional term܌

Substitution of equation (4.29) into equation (4.30) yields 

 
௡ାଵ܌ ൌ ൬܀௡ାଵ െ

1
݇ఏ
ெ்܍ெ܍ ۹୬܀௡൰ ௃܌ ൅

1
݇ఏ
ெ்܍ெ܍ ୬ (4.31)܎

Since ܜ୬ାଵ ൌ ۹୬ାଵ܌௡ାଵ െ  ୬ାଵ, the use of equation (4.31) results in the following܎

form of equation which relates ܜ୬ାଵ with ܌௃ 
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୬ାଵܜ ൌ ۹୬ାଵ܀෡௡ାଵ܌௃ െ መ୬ାଵ (4.32)܎

where ܀෡௡ାଵ ൌ ௡ାଵ܀ െ
ଵ
௞ഇ
ெ்܍ெ܍ ۹୬܀௡ and ܎መ୬ାଵ ൌ ୬ାଵ܎ െ

ଵ
௞ഇ
۹୬ାଵ܍ெ܍ெ்  ୬. For the rigid܎

joint (݇ఏ ՜ ∞), it is easily shown that ܀෡௡ାଵ ൌ መ୬ାଵ܎ ௡ାଵ and܀ ൌ  ୬ାଵ. Then, equation܎

(4.32) turns out to be the same as equation (4.20). 

With equation (4.32), the same assembled equation as equation (4.21) is used to 

solve for ܌௃ . Then, ܌௡ାଵ  can be recovered using equation (4.31). The recovery of ܌௡ 

from ܌௃ is done through equation (4.17). 

The current analytical approach can be extended with relative ease to the general 

joint with both translational and rotational stiffness. Such extension is possible by using 

the boundary equation at the joint and modifying the vector, ܍ெ. For instance, if there is 

translational compliance in x-axis. The constitutive relation between x-directional force, 

 ௡, will have theݑ∆ ,௡, and relative translational motion between nth and (n+1)th platesܨ

form ܨ௡ ൌ െ݇௫∆ݑ௡ , which is the same as equation (4.26). By introducing ܍ெ் ൌ

ሾ1 0 0 0 0ሿ, the expression of ∆ݑ௡ can be found in the same matrix-vector form as 

shown in equation (4.29). The rest of the procedure is the same as explained before. 

 

4.3.2 Computation of Flexural Wave Transmission Coefficients of a Right-angled Plates 

with a Compliant Joint in Rotation 

The transmission and reflection coefficients of a flexural incident wave are plotted in 

Figure 4.13 for the L-junction of two composite laminates and Figure 4.14 for that of two 

composite sandwich panels. The materials and stacking sequence of the composite 

laminate and sandwich panels are the same as in section 4.2.2 and 4.2.3. It is found that 

the more compliant joint in rotation allows the less wave energy to transmit through the 

L-junction. It should be noted that since the rotational stiffness of the composite 

sandwich panel has several order higher than that of the composite laminated plate, the 

same joint stiffness, ݇ఏ=104Nm/rad say, gives rise to much different effects on the wave 

power propagation characteristics. The results clearly show that the amount of flexural 
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wave energy transmission through the junction is governed by the rotational stiffness of 

the junction. 

 
Figure 4.13  Transmission coefficients (lines with circular marker) and reflection 

coefficients (lines without any marker) of two perpendicular composite laminates with a 
rotational compliant joint:  and , ݇ఏ=∞;  and , ݇ఏ=104

 Nm/rad; 
 and , ݇ఏ=103

 Nm/rad;  and  , ݇ఏ=102
 Nm/rad; 

 

 
Figure 4.14  Transmission coefficients (lines with circular marker) and reflection 

coefficients (lines without any marker) of two perpendicular composite sandwich panels 
with a rotational compliant joint:  and , ݇ఏ=∞;  and , ݇ఏ=106

 

Nm/rad;  and , ݇ఏ=105
 Nm/rad;  and  , ݇ఏ=104

 Nm/rad;
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CHAPTER 5 
 

A NEW EFEA FORMULATION FOR COMPOSITE 
STRUCTURES 

 
 
 

This chapter is devoted for the formulation of the EFEA method and its application 

to the vibroacoustic analysis of a rotorcraft-like composite structure. To that end, the 

energy differential equations and the analytical methods of computing power transfer 

coefficients is incorporated into a new EFEA formulation in section 5.1. Focus of the 

section is to present how the power transfer coefficients are used to form joint matrices 

and how the element level EFEA matrices are assembled into the global matrix equation 

of the EFEA procedure. The new EFEA method is validated through the comparison with 

FEA analysis results in section 5.2. Systems of coupled composite plates are considered 

for the analysis in the section. Shear deformation effects are given a consideration and 

thus CLT- and FSDT-based EFEA formulations are compared each other. In section 5.3, 

the explanation of the vibroacoustic tests performed on a composite rotorcraft-like 

structure is given and a comparison with EFEA results is made in terms of vibrational 

energy density and sound pressure level.  

 

5.1 New EFEA Formulation for Composite Structures 

A finite element formulation is employed for solving EFEA governing differential 

equation, equation (2.6) numerically. The element level system of equations is 

 ሾܧ௘ሿሼ݁௘ሽ ൌ ሼܨ௘ሽ ൅ ሼܳ௘ሽ (5.1) 

where superscript ݁ indicates element-based quantities, ሼ݁௘ሽ is the vector of nodal values 

of the energy density at the nodes of a finite element, ሾܧ௘ሿ is the element level system 
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matrix, ሼܨ௘ሽ is the vector of external input power at the nodal locations of the element, 

and ሼܳ௘ሽ is the vector of the internal power flow across the element boundary which 

provides the mechanism for assembling the global system of equations for adjacent 

elements and for connecting elements across discontinuities. At the boundaries of the 

plates between discontinuities, the energy density is discontinuous and the coupling in the 

global system of equations is achieved by accounting for continuity in the power flow. 

The vector of internal power flow ሼܳሽ is expressed as a product between the joint matrix 

and the nodal values of the energy density. The joint matrix represents the power 

transmission mechanism across the discontinuity: 

 

ە
ۖ
۔

ۖ
ۓ ܳ௡௜

ܳ௡ାଵ௜

ܳ௠
௝

ܳ௠ାଵ
௝ ۙ

ۖ
ۘ

ۖ
ۗ
ൌ ሾܬሿ௝௜

ە
ۖ
۔

ۖ
ۓ ݁௡௜

݁௡ାଵ௜

݁௠
௝

݁௠ାଵ
௝ ۙ

ۖ
ۘ

ۖ
ۗ

 (5.2) 

where ݅  and ݆  refer to the two elements connected at the discontinuity, ݊  and ݊ ൅ 1 

indicate the two nodes of the ݅ element at the joint, ݉ and ݉൅ 1 indicate the two nodes 

of the ݆ element at the joint, ሾܬሿ௝௜  is the joint matrix which captures the mechanism of 

power transfer between elements ݅ and ݆ across the discontinuity. In this paper, the joint 

matrix is computed based on the theoretical developments shown in section 3.1. 

Introducing equation (5.2) into equation (5.1) results in 

 
ቆቈ
ሾܧ௘ሿ௜

ሾܧ௘ሿ௝
቉ ൅ ሾܬሿ௝௜ ቇ ቊ

൛݁௜ൟ
൛݁௝ൟ

ቋ ൌ ൜
ሼܨ௘ሽ௜
ሼܨ௘ሽ௝

ൠ (5.3) 

where ሾܧ௘ሿ௜ and ሾܧ௘ሿ௝ are the element matrices for the ݅th and ݆th element, ൛݁௜ൟ and ൛݁௝ൟ 

are vectors containing all the nodal degrees of freedom for element ݅ and ݆, respectively. 

ሾܬሿ௝௜  is a coupling matrix comprised by the coefficients of ሾܬሿ௝௜  positioned in the 

appropriate locations. The assembly of the element matrices between elements with no 

discontinuities is performed in the conventional finite element manner without any 

coupling matrices since in this case, the energy density is continuous at the nodes 

between elements. The final system of EFEA equations is 
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ቈሾܧሿ ൅෍ሾܬሿ቉ ሼۄ݁ۃሽ ൌ ሼ݂ሽ (5.4) 

where ∑· indicates the summation of all the coupling matrices that correspond to all the 

discontinuities in the model. 

The power transfer coefficients are utilized in the computation of the joint matrix 

 
ሾܬሿ௝௜ ൌ ൫ሾܫሿ െ ሾ߬ሿ௝௜ ൯൫ሾܫሿ ൅ ሾ߬ሿ௝௜ ൯

ିଵ න ߶௜߶௝݀ܤ
஻

 (5.5) 

where ߶௜ and ߶௝are Lagrangian basis functions, ܤ is the boundary area between elements 

݅ and ݆ at the joint, and ሾ߬ሿ௝௜  is a matrix comprised by the power transfer coefficients. 

 

 

5.2 High-frequency Vibration Analysis of Two Coupled Composite Plates 

In this section, the newly developed EFEA procedure is applied for the high-

frequency vibration analysis of two identical panels. Vibratory energy densities in the 

excited and received plates are computed by both EFEA and conventional FEA analyses. 

For the proper representation of high-frequency vibrational displacements, very dense 

finite element models will be used for the FEA analysis. For the validation of the new 

EFEA formulation, computed EFEA results will be compared with those of FEA analyses. 

Moreover, in order to demonstrate the shear deformation effects of composite panels two 

types of EFEA analyses, one with CLT-based transmission coefficient calculation and 

another with FSDT-based transmission coefficient calculation, will be conducted for 

orthotropic, composite laminated, and composite sandwiched panels. 

Considered in this analysis are a system of two identical plates whose dimensions 

and reference coordinate systems are as shown in Figure 5.1(a). The panel thickness 

varies depending on each analysis case as shown in Table 5.1. Material properties and 

stacking sequence of composite laminated or composite sandwiched panels can be found 

in Tables 5.2-5.4. Focus is given on the calculation of vibratory energy densities in each 

plate and the resulting energy ratio of the L-junction of two plates. However, the system 



69 
 

of two plates connected with 150 degree angle is additionally considered to explain the 

effect of the plate angle in relation to section 4.2.  

 
(a) 

(b) (c) 
 

Figure 5.1  Geometric, FE, and EFEA models of two coupled plates; coordinate system 
and dimensions (a), dense finite element model (b), simple EFEA model (c) 

Also shown in Figure 5.1(b) and (c) are dense FEA model and simple EFEA model, 

and the five different locations of sinusoidal excitations applied. The FEA model is 

constructed with numerous quadrilateral elements whose element length was determined 

such that there are at least 6-7 elements over one wavelength. For example, when a plate 

made of carbon/epoxy lamina, is excited at 6300Hz, 120 elements has been used along 

each edge so as to give enough number of elements over one wavelength at the frequency 

of interest. In contrast, EFEA model only has 32 quadrilateral elements plus 4 joint 
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elements. Since the number of elements has been chosen to represent five excitation 

locations, without such requirements, the number of elements can be further reduced. It 

should also be noted that 1% structural damping has been applied for all the analysis 

cases. 
 

Analysis 
cases 

Excited plate Receiving plate Angle between 
two plates Material Thickness Material Thickness 

Case I S2/8552 1mm S2/8552 1mm 90° 
Case II IM7/8552 1mm IM7/8552 1mm 90° 
Case III Laminate 1.143mm Laminate 1.143mm 90° 
Case IV Sandwich 13.8mm Sandwich 13.8mm 90° 
Case V Sandwich 13.8mm Sandwich 13.8mm 150° 

Table 5.1  High-frequency vibration analysis cases of two coupled composite plates 

 

Material properties IM7/8552 
(Carbon/Epoxy) 

S2/8552 
(Glass/Epoxy) 

Elastic moduli (GPa) 
144 (E11) 49.2 (E11) 
9.38 (E22) 16 (E22) 

Shear moduli (GPa) 
5.39 (G12) 6.24 (G12) 
3.05 (G23) 5.43 (G23) 

Poisson’s ratio 
0.325 (ν12) 0.299 (ν12) 
0.536 (ν23) 0.475 (ν23) 

Mass density (kg/m3) 1525 1896 
Table 5.2  Material properties of carbon/epoxy and glass/epoxy lamina 

 

Material Angle Thickness 
IM7/8552 +45 

1.143mm 
in total 

0.1905mm 
IM7/8552 +0 0.1905mm 
IM7/8552 +45 0.1905mm 
IM7/8552 +45 0.1905mm 
IM7/8552 +0 0.1905mm 
IM7/8552 +45 0.1905mm 

Table 5.3  Materials and stacking sequence of composite laminated panel 
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Material Angle Thickness 

Upper 
skin 

IM7/8552 +45 
0.5715mm 

in total 

0.1905mm 
IM7/8552 +0 0.1905mm 
IM7/8552 +45 0.1905mm 

Core NOMEX  12.7mm 

Lower 
skin 

IM7/8552 +45 
0.5715mm 

in total 

0.1905mm 
IM7/8552 +0 0.1905mm 
IM7/8552 +45 0.1905mm 

Table 5.4  Materials and stacking sequence of composite sandwich panel 

The resulting energy densities in each plate and corresponding energy ratio between 

excited and receiving plates are plotted in Figures 5.2-5.6. It is observed that EFEA 

analysis results show good correspondence compared to FEA solutions. This proves that 

the new EFEA procedure presented in this thesis is able to represent the power flow 

across structural discontinuity and space-averaged vibrational energy inside a plate so as 

to capture the exact dynamics of plate structures subject to high-frequency vibration. As 

discussed in section 4.2, since the shear deformation effects are noticeable only for 

composite sandwich panels, the EFEA analysis results with FSDT and CLT are compared 

in Figure 5.5 for a right-angled plate system and Figure 5.6 for two coupled plates with 

150 degree angle. The comparison results indicate that FSDT-based EFEA formulation 

should be employed to properly account for the shear deformation inherent in composite 

sandwich panels with soft core materials. It should be noted that the difference between 

CLT- and FSDT-based calculations is even more evident for the right-angled plates than 

those with 150 degree angle. This is due in part to the power transmission coefficients 

being dependent on the angle between two plates. The dependence can be found by 

referring to Figure 4.6. 
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(a) 

(b) 

Figure 5.2  Energy densities of and energy ratio between two perpendicular glass/epoxy 
plates: (a) energy densities of excited and receiving plates; (b) energy ratio between two 

plates 
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(a) 

(b) 

Figure 5.3  Energy densities of and energy ratio between two perpendicular carbon/epoxy 
plates: (a) energy densities of excited and receiving plates; (b) energy ratio between two 

plates 
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(a) 

(b) 

Figure 5.4  Energy densities of and energy ratio between two perpendicular composite 
laminate plates: (a) energy densities of excited and receiving plates; (b) energy ratio 

between two plates 
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(a) 

(b) 

Figure 5.5  Energy densities of and energy ratio between two perpendicular composite 
sandwich plates: (a) energy densities of excited and receiving plates; (b) energy ratio 

between two plates 
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(a) 

(b) 

Figure 5.6  Energy densities of and energy ratio between two composite sandwich plates 
with 150 degree angle: (a) energy densities of excited and receiving plates; (b) energy 

ratio between two plates 
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5.3 Comparison with Test Data 

A NASA Langley composite test structure, as shown in Figure 5.7, is considered for 

the validation of the new EFEA for composite structures.  

 
(a) 

 
(b) 

Figure 5.7  Exterior(a) and interior(b) of the stiffened composite cylinder 

The test structure is 1.676 m in diameter and 3.658 m long. The 1.7 mm thick shell is 

made of carbon fiber filaments embedded in an epoxy resin, the mechanical properties of 

which is shown in Table 5.5. Specifically, the shell is made of a 9-ply composite layup 

with a ply sequence of ±45, ±32, 90,  The shell is reinforced by orthogonal .45ט ,32

supports, referred to as ring frames and stringers, that are riveted and bonded to the skin. 

10 J-section ring frames and 22 hat section stringers segment the cylinder into 198 

rectangular bays with nominal dimensions of 0.203 m by 0.381 m. A 0.0127 m thick 
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plywood floor is installed 0.544 m above the bottom of the cylinder. The entire structure 

is supported by two 0.0889 m thick particle board end caps. 

Material Name  E11 
[GPa]

E22 
[GPa] 

G12 
[GPa] 

ρ 
[kg/m3] 

ν 

CFRP  151.0 8.96 5.14 1590 0.30 
Plywood  12.4 12.4 0.466 711 0.33 

Table 5.5  Mechanical material properties of CFRP and Plywood 

Vibro-acoustic responses of the test structure are measured and used for the 

comparison with EFEA results. The measurements include normal shell velocity and 

acoustic pressure inside the cylinder. The structure was excited by a single shaker 

attached at 19 different input locations as shown in Figure 5.8. It is noted that input 

powers from 1-4 and 17-20 are applied on the shell and input powers 6 and 15 are located 

at axial stiffeners. For input power 1-4 and 17-20, four different locations inside a single 

bay of shell have been chosen for point force inputs. In contrast, input power 6a-6d and 

15a-15c represent the different number of experiments with input power being applied at 

the same location. Also depicted in Figure 5.8 is velocity measurement area on the 

cylindrical shell which is consisted of 12 bays (3 bays in circumferential direction and 4 

bays in longitudinal direction). There are 3×4 measurement points in each bay. The time 

averaged energy density at each measured point is calculated from the test results. The 

frequency averaged energy density over each 1/3 octave band is computed between 

500Hz to 4000Hz, which is chosen to be the frequency range of interest in this analysis. 

Finally the space averaged energy density in each bay is obtained and compared to the 

EFEA results.  

EFEA model, which is shown in Figure 5.9, is comprised of 10561 quadrilateral 

elements for structural components including ring frames, axial stringers, floor, and 

cylindrical shell and 12570 hexagonal elements for acoustic medium. 12448 plate-plate 

joint and 2338 plate-acoustic joint elements are used for the vibrational energy 

transmission between plates and structure acoustic interaction in terms of energy 

densities. The plate-plate joint matrices are computed from transmission coefficients by 

following the calculation procedure, as shown in sections 3 and 4. For the plate-acoustic 

joint matrices, the concept of radiation efficiency is utilized as described in the reference 

[43].  
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Figure 5.8  Input power locations and velocity measurement area 

 
Figure 5.9  EFEA model without acoustic elements and endcaps 

In order to facilitate the comparison between EFEA results and experiment, and 

show the responses per unit input power, both the EFEA analysis results and 

measurement data are normalized with respect to the input power, ߨ௜௡. The normalized 

vibrational energy densities, ۄ݁ۃ௡௢௥௠, are given as follows 

௡௢௥௠ۄ݁ۃ  ൌ 10logൣۄ݁ۃ/൫ߨۃߩ௜௡ۄ൯൧ (5.6) 
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Note here that the velocity outputs, ۄݒۃ ൌ ߩ/ۄ݁ۃ , are used for this normalization 

instead of ۄ݁ۃ . In the similar manner, the response of acoustic medium, i.e. sound 

pressure level (SPL), is also normalized with respect to the input power as follows: 

 
௡௢௥௠ܮܲܵ ൌ 10log ൥ܿߩଶ෍݁ۃ௜ۄ

௡

௜

/൫0.00002ଶ · ݊ ·  ௜௡൯൩ (5.7)ߨ

where ݊ denotes the input power locations or the number of experiments. The use of 

these normalized quantities indicates that the presented results in what follows can be 

regarded as energy density or sound pressure level for a given unit input power. 

Shown in Figure 5.10-Figure 5.13 are the normalized vibrational energy densities 

over the frequency range of interest when the stiffened composite cylinder is subjected to 

the power input at the different locations. Two cases (input power 1-4 and input power 6) 

stand for a scenario where input power is applied either a shell element or a stiffener 

close to the measurement area. The other two cases represent the situation where the 

applied input power is located far from the area of interest. As would be expected, the 

first two cases generate higher energy densities in the measurement area than the other 

two cases. For most of the cases, good correlations exist between EFEA results and 

measurement data. Comparing Figure 5.10 to Figure 5.11 and Figure 5.12 to Figure 5.13, 

the energy level at the receiving structural bays is proportional to the distance from the 

location of those receiving bays to the excitation location. On the other hand, excitations 

at a shell or axial stiffener do not give much difference. Overall, good correlation is 

observed between the EFEA method and experiment. 

The normalized energy densities of both the test and analysis for all 12 bays are 

presented in the Appendix. The results are given at each 1/3 octave band from 500Hz up 

to 4,000Hz. The energy density difference between corresponding bays at a certain 

frequency can be evaluated. Theses also show that EFEA prediction is close to the 

measured energy density of composite shell and/or acoustic pressure level inside the shell.  

Finally shown in are the EFEA results compared to averaged SPL in upper cavity. 

The upper cavity is part of the interior acoustic medium surrounded by floor and 

cylindrical shell, as shown in Figure 5.9. It can be observed that EFEA can estimate SPL  

close enough to the test data. 
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Figure 5.10  Normalized energy densities for the input power 1-4 

Figure 5.11  Normalized energy densities for the input power 6 
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Figure 5.12  Normalized energy densities for the input power 15 

Figure 5.13  Normalized energy densities for the input power 17-20 
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(a) (b) 

(c) (d) 
 

Figure 5.14  Averaged SPL in upper cavity 
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500 Hz 630 Hz 800 Hz 

 

1000 Hz 1250 Hz 1600 Hz 

 

2000 Hz 2500 Hz 3150 Hz 

 

  

4000 Hz   

 
Figure 5.15  Difference (dB) of normalized energy densities between test and EFEA at 

different frequencies for the input power location 1-4  
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500 Hz 630 Hz 800 Hz 

 

1000 Hz 1250 Hz 1600 Hz 

 

2000 Hz 2500 Hz 3150 Hz 

 

  

4000 Hz   

 
Figure 5.16  Difference (dB) of normalized energy densities between test and EFEA at 

different frequencies for the input power location 6  
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500 Hz 630 Hz 800 Hz 

1000 Hz 1250 Hz 1600 Hz 

2000 Hz 2500 Hz 3150 Hz 

  

4000 Hz   

 
Figure 5.17  Difference (dB) of normalized energy densities between test and EFEA at 

different frequencies for the input power location 15 
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500 Hz 630 Hz 800 Hz 

 

1000 Hz 1250 Hz 1600 Hz 

 

2000 Hz 2500 Hz 3150 Hz 

 

  

4000 Hz   

 
Figure 5.18  Difference (dB) of normalized energy densities between test and EFEA at 

different frequencies for the input power location 17-20  
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CHAPTER 6 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 

 

6.1 Conclusions 

The periodic structure theory is utilized for calculating propagation constants of a 

composite cylindrical shell stiffened periodically by metallic circumferential stiffeners 

and axial stringers, which is of particular significance in vibro-acoustic analysis of 

periodic structures. Since the two-dimensional periodic structures do not normally exhibit 

a single pass or stop band at a particular frequency as is the case for one-dimensional 

periodic structures, the propagation constants corresponding to several different 

circumferential modes or/and several different halfwave numbers along the length of the 

cylinder should be calculated in order to identify the pass band characteristics when a 

circumferentially and axially stiffened cylinder is analyzed. The propagation constants 

corresponding to these circumferential modes (for ring stiffeners) or halfwave numbers 

(for axial stringers) are combined to determine the energy ratios of this kind of structure. 

The validation through some vibration analyses in the previous section demonstrates that 

the analytical method shown in this paper captures well the periodic characteristics for a 

thin composite cylinder with the axial stringers and ring stiffeners. 

Based on the current analytical approach, the effects of shell material properties and 

spatial periodicity on the wave propagation characteristics have been evaluated in terms 

of energy transferred between adjacent two periodic elements. Among others, the 

bending stiffness and the length of a single periodic element in axial and circumferential 

direction are chosen for this parametric study. It has been shown that the more flexural 

wave energy can transmit from one periodic element to another in the axial direction as 

the ratio of the bending stiffness of shell element to that of beam stiffeners increases and 
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the length of one periodic element decreases. And the flexural energy propagation in 

circumferential direction tends to be triggered by the first natural frequency so that the 

shell material properties and the number of axial stiffeners can be used as control 

variables for the wave energy propagation in higher frequency region as well as the onset 

frequency of the first wave propagation. Hence, the material anisotropy (the different 

material properties in axial and circumferential direction) can be properly exploited in the 

context of the elastic wave propagation and attenuation control by applying the proposed 

method of combining periodic structure theory and laminate theory. 

The present analysis provides a valuable extension of wave dynamic stiffness matrix 

approach in order to calculate power transmission and reflection coefficients through a 

line junction of an arbitrary number of semi-infinite composite plates. Although only the 

symmetric composite panels are considered for the sake of simplicity, the same process 

can be applied to any anisotropic plates such as asymmetric composite laminates or 

composite sandwich panels. This calculation procedure can be effectively applied to any 

coupled plates in which material anisotropy as well as the shear deformation and rotary 

inertia effects cannot be ignored.  

The angular-averaged transmission coefficients were calculated based on the 

consideration of wave energy flow. Different combinations of orthotropic plates are 

considered for the validation of the present analytical approach. In addition, the law of 

energy conservation and the reciprocity conditions are utilized as self-consistency checks. 

Two coupled infinite plates made either of composite laminates or of composite 

sandwiches are considered to evaluate the change of wave power transmission 

coefficients over the vibration frequency or the angle between two plates. The effects of 

the shear deformation and rotary inertia on the calculation of the transmission coefficients 

have been demonstrated in various aspects by such numerical examples.  

The high frequency vibration analysis of composite structures requires the new 

EFEA method be formulated such that the directional dependency of the wave intensity 

and the effects of shear deformation are correctly incorporated.  

To that end, the EFEA governing differential equation for a composite plate has been 

set up in its simplest form without complicated and lengthy mathematical manipulation. 

The development of energy balance equation for non-diffuse wave field was based on the 
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equivalent diffuse field group velocity and structural loss factor, both of which have been 

computed by angle averaging technique. The use of such equivalent diffuse wave 

properties removed the directional dependence of group velocity by averaging it over the 

full angle of wave propagation. In particular, since this approach assures the form of the 

element level EFEA equation remain unchanged, the previously developed element level 

EFEA equation can be used for composite plates with the wave group velocity and 

damping loss factor being replaced by the equivalent diffuse wave properties. 

Due to the discontinuity of energy density across structural joints, the joint matrix is 

used in EFEA when assembling the element level EFEA equations into the global system 

of equations. This joint matrix is theoretically related to the matrix of power transmission 

coefficients. In the new EFEA formulation, the calculation of power transmission 

coefficients has taken into account the shear deformation effects, which is not negligible 

in the high frequency vibration analysis, especially for composite structures. 

Coupled composite plates are analyzed and compared to EFEA results for the 

validation of the new EFEA formulation. EFEA are also applied for the vibroacoustic 

analysis of a rotorcraft-like composite cylinder stiffened regularly in axial and 

circumferential directions. The direct comparison between EFEA numerical results and 

the measurement data has been made to demonstrate that the EFEA is a viable finite 

element based method for computing the high frequency vibration of engineering 

composite structures. 

 

 

6.2 Recommendations 

Further research could be conducted to improve the capability of EFEA for the high 

frequency structural acoustics analysis of composite structures. Thus the following 

recommendations may be served for suggesting some future work in the right directions: 

1. Since the classical lamination theory has been used for the wave propagation 

analysis in periodic composite structures, the application of the current analytical 

method for the vibro-acoustical problem of such type may be limited to thin 

composite laminates. Moreover, two dimensional periodic structure has been 
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subdivided into two separate one dimensional problems. This may imply that 

there exist room for the two dimensional treatment of the given problem, and it 

would be of interest to compare with the vibrational response of either dense 

finite elements or real structure via experiment. However, it should be noted again 

that the current approach showed a good correspondence with both dense finite 

element results and experimental data, as explained in the section 3. 

2. The present analytical method for the calculation of power transmission 

coefficients in coupled composite plates may also be improved by introducing 

discrete lamination theory [61] or such numerical approach as SFEM. The 

discrete lamination theory is nothing but applying FSDT to each lamina and 

enforcing displacement and traction continuity at the interface of two laminae 

stacked on top of each other. However, consideration should be given to the trade-

off between accurateness and computational time. Because the discrete lamination 

theory or SFEM usually requires the computation time several orders higher than 

FSDT does. Thus if a great number of structural joints are given in EFEA, which 

is usually the case for real engineering structures, the computation cost could be 

enormous. 

3. Regarding the development of a simple EFEA governing differential equation, it 

may be improved such that more elastic wave related parameters can be used. The 

EFEA equation used in this analysis has the same form as that of an isotropic 

plate and requires only a single equivalent group speed. Although the current 

approach proved its capability of predicting vibration energy levels in both 

composite laminate and sandwich panels, it may be more improved by using more 

than one group speed, especially in higher frequency range, as shown in the 

reference [62]. The literature was concerned with the derivation of energy balance 

equation for Mindlin plate in which three different group speeds had been 

considered for representing out-of-plane shear and shear dominant flexural wave 

as well as bending dominant flexural wave. 
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