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ABSTRACT

We study a distributed source coding problem with multiple encoders, a central

decoder and a joint distortion criterion. The encoders do not communicate with

each other. The encoders observe correlated sources which they quantize and com-

municate noiselessly to a central decoder which is interested in minimizing a joint

distortion criterion that depends on the sources and the reconstruction. We are

interested in characterizing an inner bound to the optimal rate-distortion region.

We first consider a special case where the sources are jointly Gaussian and the

decoder wants to reconstruct a linear function of the sources under mean square

error distortion. We demonstrate a coding scheme involving nested lattice codes that

reconstructs the linear function by encoding in such a fashion that the decoder is able

to reconstruct the function directly. For certain source distributions, this approach

yields a larger rate-distortion region compared to when the decoder reconstructs lossy

versions of the sources first and then estimates the function from them. We then

extend this approach to the case of reconstructing a linear function of an arbitrary

number of jointly Gaussian sources.

Next, we consider the general distributed source coding problem with discrete

sources. This formulation includes as a special case many famous distributed source

coding problems. We present a new achievable rate-distortion region for this prob-

lem based on “good” structured nested random codes built over abelian groups. We

demonstrate rate gains for this problem over traditional coding schemes using un-

structured random codes. For certain sources and distortion functions, the new rate

region is strictly bigger than the Berger-Tung rate region, which has been the best

xi



known achievable rate region for the problem till now. Further, there is no known

way of achieving these rate gains without exploiting the structure of the coding

scheme. Achievable performance limits for single-user source coding using abelian

group codes are also obtained as corollaries of the main coding theorem. Our results

also imply that nested linear codes achieve the Shannon rate-distortion bound in the

single-user setting. Finally, we conclude by outlining some future research directions.

xii



CHAPTER 1

Introduction

In this thesis, we consider a general distributed source coding problem involving

multiple sources, a central decoder and a joint distortion criterion. We first study a

special case of the problem when the sources are jointly Gaussian and the decoder

is interested in reconstructing a linear function of the sources under mean square

distortion criterion. We then consider the general problem for the case of discrete

sources and an arbitrary memoryless joint distortion criterion. Our approach for

both these problems involves the use of structured random codes which offer rate

gains otherwise unattainable using unstructured random codes.

In the following section, we explain the distributed source coding problem that

we study.

1.1 Distributed Source Coding

Since its inception in 1973 by Slepian and Wolf [1], the problem of distributed

source coding has been a source of inspiration for information/communication/data-

compression theory community because of its formidable nature (in its full generality)

and its wide scope of practical applications. In this problem, a collection of K

correlated information sources, with ith source having an alphabet Xi, is observed

separately by K encoders. Each encoder maps its observations into a finite-valued

1
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set. The indices from these sets are transmitted overK noiseless but rate-constrained

channels to a joint decoder. The decoder is interested in obtaining L reconstructions

with L fidelity criteria (one for each). The ith reconstruction has an alphabet Ŷi,

and the ith fidelity criterion is a mapping from the product of alphabets of a subset

of the sources and Ŷi to the set of nonnegative real numbers. The goal is to find

a computable performance limit for this communication problem. The performance

limit, also referred to as the optimal rate-distortion region, is expressed as the set

of all (K + L)-tuples of rates of the K indices transmitted by the encoders and

distortions of the L reconstructions of the decoder that can be achieved in the usual

Shannon sense. This problem is graphically illustrated in Figure 1.1.

Xn

1

Xn

2

Xn

K

f1(·)

f2(·)

fK(·)

R1

R2

RK

E(d1(X
K

1
, Ŷ1)) ≤ D1

E(d2(X
K

1
, Ŷ2)) ≤ D2

E(dL(XK

1
, ŶL)) ≤ DL

Ŷ n

1

Ŷ n

2

Ŷ n

L

Figure 1.1: A general distributed source coding problem
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One of the important motivating forces behind the study of distributed source

coding is the problem of information transmission in sensor networks. In a typical

application, a group of sensors observe an underlying stochastic field (such as tem-

perature in a locality) and transmit their observations to a central decoder. Since

transmission of this information costs battery power which in turn limits the lifetime

of the sensors, it is imperative that the sensors encode their observations to mini-

mize the rate of transmission while still meeting certain fidelity requirements at the

decoder. If we assume that the link between the sensors and the decoder is noiseless,

this problem is exactly modeled by Figure 1.1.

Toward the goal of obtaining the optimal rate-distortion region of the general

distributed source coding problem, progress has been made in a number of directions.

In the following we restrict our attention to the case of the collection of stationary

memoryless sources. In [1], a solution to the problem was given for the case when the

decoder wishes to reconstruct all the sources losslessly. In [3, 4], the case of lossless

“one-help-one” problem was resolved. Here the decoder wishes to reconstruct only

one of the sources1 losslessly (K = L + 1 = 2). In [5], the case of lossy “one-help-

one” problem was resolved for the case when the rate of the helper is greater than

its entropy (also referred to as the Wyner-Ziv problem). In [6, 7], an achievable

inner bound, and a converse outer bound (also known as the Berger-Tung inner and

outer bounds respectively) to the performance limit are given for the case where (a)

K = L = 2 and (b) the fidelity criterion of each source does not depend on the

other source (also referred to as independent fidelity criteria). In [8], an inner bound

to the performance limit is given for the case of lossy “one-help-one” problem. In

1The source which does not enter into any of the fidelity criteria is referred to as a helper. When the
rate at which the helper is transmitted is greater than its entropy, the helper is also referred to as side
information.
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[11], an inner bound to the performance limit is given for the case when the decoder

wishes to reconstruct a function of K sources losslessly. It was also shown that

this is optimal for the case when the sources are conditionally independent given

the function. In [12], the performance limit is given for reconstructing losslessly the

modulo-2 sum of two binary correlated sources, and was shown to be tight for the

symmetric case. This has been extended to several cases in [14] (see Problem 23

on page 400) and [16]. An improved inner bound was provided for this case in [17].

The key point to note is that the performance limits given in [12, 16, 17] are outside

the inner bound given in [11]. In [18], the performance limit is given for the case

where (a) K = L = 2, (b) one of the sources is reconstructed losslessly and the other

with an independent fidelity criterion. In [20] (also see [13, 19, 21, 22, 23, 46]), an

inner bound to the performance limit of the CEO problem 2 was given. The CEO

problem for the quadratic Gaussian case essentially boils down to reconstructing a

certain linear function of the sources with mean squared error fidelity criterion. It

was shown that this inner bound is tight for some cases in [27, 32]. For the vector

Gaussian CEO problem, inner and outer bounds were derived in [29, 30] and the

bounds were shown to be tight under some conditions. In [33], the performance limit

is given for the case of lossless reconstruction of a function of two sources with the

rate of one of the sources being greater than or equal to its entropy. The lossy version

is addressed in [34, 35]. Regarding the Berger-Tung inner bound, it was shown that

this is tight for (a) the high-resolution case with independent fidelity criteria in [46],

(b) the jointly Gaussian case K = 2, L = 1 and independent squared error fidelity

2This is a variant of the general distributed source coding problem mentioned above. This is closely
related to another class of distributed source coding problems known as remote source coding problems.
Here the encoders observe a noisy version of the sources. However it can be shown using the techniques
of [24, 25] that the remote source coding problems are equivalent to a class of general distributed source
coding problems mentioned above.
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criterion in [26], and (c) the jointly Gaussian case withK = 2, L = 2 and independent

squared error criteria in [37]. In [37], it was also shown that a Berger-Tung based

coding scheme is optimal for the case of reconstruction of certain linear functions of

two jointly Gaussian sources with squared error criterion. A general outer bound to

the performance limit of the general distributed source coding problem was given in

[31]. In [36], the performance limit was given for the lossy “one-help-many” problem

with independent fidelity criteria and the sources being conditionally independent

given the helper which is transmitted at a rate greater than its entropy. In [28], the

performance limit was given for the quadratic jointly Gaussian lossy “many-help-

one” problem with the condition that the helpers are conditionally independent given

the source. In [38], the performance limits were obtained for the case of quadratic

Gaussian “many-help-one” problem where the sources satisfy a “tree-structure”. In

[39], the performance limit is given for the case where one of the sources needs to

be reconstructed with an independent fidelity criterion and the rest of the sources

need to be reconstructed losslessly. In [40], infinite order descriptions (which consist

of mutual information terms between two infinite sets of random variables and are

thus not computable) were provided for the performance limits of the general case

of two terminal source coding problem (K = 2) with independent distortion criteria.

This was extended to the case of more than two sources in [41].

With regard to above set of results, we would like to make the following observa-

tions.

1. Most of the above approaches, except that of [12] and its extensions in [14, 16,

17], use random vector quantization followed by independent random binning

(see Chapter 14 of [15]) of the quantizer indices.

2. The four exceptions, which consider only lossless source coding problems, devi-
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ate from this norm, and instead use structured random binning based on linear

codes on finite fields. Further, the binning operation of the quantizers of the

sources are “correlated”. This incorporation of structure in binning appears

to give improvements in the rates especially for those cases that involve recon-

struction of a function of the sources. Moreover, it is still not known whether

it is possible to approach this performance without explicitly exploiting the

structure of the codebooks.

3. For some distributed source coding problems, whose performance limits were

derived using random coding and random binning, it is well-known that these

limits can also be approached using structured codes. For example structured

codes were considered for (a) the Slepian-Wolf problem in [42], (b) the Wyner-

Ziv problem for the binary case with Hamming distortion and for the quadratic

Gaussian case in [47], (c) the Berger-Tung inner bound for the two terminal

quadratic Gaussian problem with independent fidelity criteria in [47] and (d)

high-resolution distributed source coding problem with independent fidelity cri-

teria in [46].

1.2 Contributions

Motivated by the rate gain offered by structured codes over unstructured codes3for

certain problems, we adopt a similar approach to that of [12] for the general problem

of distributed source coding. In particular, we demonstrate the existence of good

nested structured codes whose components are “good” codes for source and channel

coding for certain appropriately defined notions of “goodness”. We consider two

3Generally speaking, structured codes are a subset of unstructured codes. However, for the purposes of
this thesis, unstructured codes will be taken to mean codes which explicitly lack the structure present in
structured codes.
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problems below - (a) reconstructing a linear function of jointly Gaussian sources

under mean square error distortion (Section 1.2.1), (b) discrete sources with a joint

distortion criterion (Section 1.2.2).

1.2.1 Linear Function of Gaussian Sources

We consider a lossy distributed source coding problem with K jointly Gaussian

sources with one reconstruction, i.e., L = 1. The fidelity criterion has the additional

structure that is given by the following. The decoder wishes to reconstruct a linear

function of the sources with squared error as the fidelity criterion. We consider a

coding scheme with the following structure: sources are quantized using structured

vector quantizers followed by “correlated” structured binning. That is, the binning

operations of the quantizers of the sources are not performed “independently”. The

structure used in this process is given by lattice codes using which we provide an inner

bound to the optimal rate-distortion region. We show that the proposed inner bound

is better for certain parameter values than an inner bound that can be obtained by

using a coding scheme that uses random vector quantizers following by independent

random binning. For this purpose we use the machinery developed by [43, 44, 47,

48, 49] for the Wyner-Ziv problem in the quadratic Gaussian case.

In Chapter 2, we first consider the case of two jointly Gaussian sources and a

decoder interested in reconstructing a linear combination of these sources to within

a certain mean squared error distortion. We provide the rate region of our lattice

based coding scheme for this case first and then generalize it to the case of arbitrary

number of jointly Gaussian sources. For comparison, we also present another inner

bound achieved by a scheme that first obtains a lossy reconstruction of the sources,

and then obtains a reconstruction of the linear function. The latter scheme is based

on the Berger-Tung inner bound. An overall achievable rate region can be obtained
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by combining these two schemes. An outer bound is also presented for the two source

case through which it is shown that for certain source distributions, the rate region of

the lattice based coding scheme is within 1 bit of the optimal rate distortion region.

We also provide motivation and intuition about the proposed lattice based coding

scheme in this section. We also demonstrate how the general solution simplifies in

certain special cases. We then provide a set of numerical results for the two-source

case that demonstrate the conditions under which the lattice based scheme performs

better than the Berger-Tung based scheme.

1.2.2 Discrete Sources with a Joint Distortion Criterion

In Chapter 3, we consider the distributed source coding problem of Figure 1.1 for

the case of discrete sources and arbitrary memoryless distortion criteria. We focus

on the case of two sources and one joint distortion criterion. The ideas presented

are easily generalizable for the case of any finite number of arbitrary memoryless

distortion criteria. For the two user case with one joint distortion criterion, we

present an approach based on structured random codes which is very similar in

spirit to the coding scheme of Korner and Marton [12] and the lattice based coding

scheme of Chapter 2. Our approach relies on the use of nested group codes for

encoding. The binning operation of the encoders is done in a “correlated” manner as

dictated by these structured codes. This use of “structured quantization followed by

correlated binning” is in contrast to the more prevalent “quantization using random

codes followed by independent binning” in distributed source coding. Our approach

unifies all the known results in distributed source coding such as the Slepian-Wolf

problem [1], Korner-Marton problem [12], Wyner-Ahlswede-Korner problem [3, 4],

Wyner-Ziv problem [5], Yeung-Berger problem [18] and Berger-Tung problem [7],

under a single framework while recovering their respective rate regions. Moreover,
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this approach performs strictly better than the standard Berger-Tung based approach

for certain source distributions and distortion criteria.

We first present known results for the problem based on the Berger-Tung inner

bound. We then motivate our coding scheme which involves the use of nested group

codes. We present an overview of the properties of abelian groups in general and

cyclic groups in particular that shall be exploited in the proofs. We then present our

coding scheme and present an achievable rate region for the problem of distributed

source coding involving discrete sources, a central decoder and a joint distortion

criterion. We then present various corollaries of our coding theorem. These in-

clude achievable rates for lossless and lossy source coding while using abelian group

codes. As a further corollary, we show that nested linear codes (built over Galois

fields of prime order) can be used to approach the Shannon rate-distortion bound

for arbitrary discrete sources and arbitrary distortion measures. This is the first

known completely linear encoding scheme that achieves the Shannon bound. We

also present achievable rates using group codes for the problem of function recon-

struction and present numerical examples for the lossless reconstruction of a linear

function of quaternary sources and the lossy reconstruction of the modulo-2 sum of

binary sources. By interpreting the problem of function reconstruction of a pair of

sources as a 3-user source coding problem with a joint distortion criterion, our re-

sults imply that the Berger-Tung inner bound is not tight for the general distributed

source coding problem.

1.3 Conclusions and Future Work

In Chapter 4, we summarize the contributions of the thesis and outline the pro-

posed future work. Most of the proofs are given in the appendices.



CHAPTER 2

Linear Function of Jointly Gaussian Sources

The problem of distributed source coding with multiple encoders, a central decoder

and a joint distortion criterion was described in the previous chapter motivated by

applications relating to sensor networks. In this chapter we consider a special case

of this general problem where the sources are jointly Gaussian and the distortion

criterion is such that the decoder is interested in reconstructing a linear function of

the sources to within a mean-square distortion of D.

The rest of the chapter is organized as follows. In Section 2.1, we give a concise

overview of the asymptotic properties of high-dimensional lattices that are known

in the literature and which are exploited in the coding theorem and its proof. In

Section 2.2, we define the problem formally for the case of two sources and present

an inner bound to the optimal rate-distortion region given by a coding structure

involving structured quantizers followed by “correlated” structured binning. Further,

we also present another inner bound achieved by a scheme that first obtains a lossy

reconstruction of the sources, and then obtains a reconstruction of the linear function.

The latter scheme is based on the Berger-Tung inner bound. An overall achievable

rate region can be obtained by combining these two schemes. Then we present our

lattice based coding scheme and prove achievability of the inner bound. We also

10
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provide motivation and intuition about the proposed coding scheme in this section.

Finally, we provide an outer bound to the optimal rate distortion region for the

two-user case and compare it to our inner bound. In Section 2.3, we consider a

generalization of the problem that involves reconstruction of a linear function of an

arbitrary finite number of sources. We also demonstrate how the general solution

simplifies in certain special cases. In Section 2.3.5, we compare the rate regions

of the Berger-Tung based coding scheme and the lattice based coding scheme for

low distortions and demonstrate conditions (on the source statistics and the linear

function being reconstructed) when the lattice based coding scheme outperforms the

Berger-Tung based scheme in this regime. Finally, in Section 2.4, we numerically

compare the rate regions of the Berger-Tung based coding scheme and the lattice

based coding scheme.

A word about the notation used in this chapter is in order. Let f(·) be an

arbitrary function that takes as input a scalar. Then the function fn(·) takes an

n-length vector as input and operates component-wise on the components of that

vector. This notation generalizes to functions of more than one variable as well.

Variables with superscript n denote an n-length random vector whose components

are mutually independent. However, random vectors whose components are not

independent are denoted without the use of the superscript. The dimension of such

random vectors will be clear from the context.

2.1 Preliminaries on high-dimensional Lattices

2.1.1 Overview of Lattice Codes

Lattice codes [57] play the same role in Euclidean space that linear codes play in

Hamming space. Introduction to lattices and to coding schemes that employ lattice
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codes can be found in [44, 47, 48, 55, 58]. Lattice codes have been used in other

related multiterminal source coding problems in the literature [59, 60, 61, 62, 63]. In

the rest of this section, we will briefly review some properties of lattice codes that

are relevant to our coding scheme. We start by defining various quantities of interest

associated with lattices. We use the same notation as in [47] for these quantities.

An n-dimensional lattice Λ is composed of all integer combinations of the columns

of an n× n matrix G called the generator matrix of the lattice.

Λ = {l ∈ Rn : l = G · i for some i ∈ Zn}(2.1)

Associated with every lattice Λ is a natural quantizer namely one that associates

with every point in Rn its nearest lattice point. This quantizer can be described by

the function

QΛ(x) , l ∈ Λ where ‖ x− l ‖≤‖ x− l̂ ‖ for all l̂ ∈ Λ.(2.2)

The quantization error associated with the quantizer QΛ(·) is defined by

x mod Λ = x−QΛ(x).(2.3)

The basic Voronoi region of a lattice Λ is the set of all points closer to the origin

than to any other lattice point, i.e.,

V0(Λ) = {x ∈ Rn : QΛ(x) = 0n}(2.4)

where 0n is the origin of Rn. The second moment of a lattice Λ is the expected value

per dimension of the norm of a random vector uniformly distributed over V0(Λ) and

is given by

σ2(Λ) =
1

n

∫
V0(Λ)

‖ x ‖2 dx∫
V0(Λ)

dx
(2.5)
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Let the normalized second moment be give by

(2.6) G(Λ) =
σ2(Λ)

V 2/n(Λ)

where V (Λ) =
∫
V0(Λ)

dx. When used as a channel code over an unconstrained AWGN

channel with noise Z having variance σ2
Z [64], let the probability of decoding error

be denoted by

(2.7) Pe(Λ, σ
2
Z) = Pr(Zn 6∈ V0)

where Zn is the random noise vector of length n.

The mod operation defined in equation (2.3) satisfies the following useful distrib-

utive property.

((x mod Λ) + y) mod Λ = (x+ y)mod Λ ∀x, y.(2.8)

It is known (see [44] [48]) that the quantization error of a lattice quantizer Λ can be

assumed to have a nearly uniform distribution over the fundamental Voronoi region

V0 of the quantizer. This assumption is completely accurate in the case of subtractive

dithered quantization where a vector uniformly distributed over V0 (called the dither)

is added at the encoder before quantization and subtracted at the decoder. It has

been shown in [44] that for an optimal lattice quantizer, this noise is wide-sense

stationary and white. Further, as the lattice dimension n → ∞, for optimal lattice

quantizers, the quantization noise approaches a white Gaussian noise process in the

Kullback-Leibler divergence sense.

Lattices have been studied extensively for efficient packing and covering. A sys-

tematic study of lattice packings was initiated by Minkowski in [51], where existence

of good lattice packings was shown. In low dimensions, the maximum lattice pack-

ing density have also been studied using Hermite constants (see [57], Chap. 1, page
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20). A formal study of lattice covering appears to have been initiated by Kershner

in [53]. See [54] for a thorough review of existence of efficient lattice packings and

coverings. Lattice codes have been employed in the point-to-point setting for quanti-

zation of Gaussian sources with squared error fidelity criterion and also in coding for

the AWGN channel with power constraint. In [47], the existence of high dimensional

lattices that are “good” for quantization and for coding is discussed. The criteria

used therein to define goodness are as follows:

• A sequence of lattices Λ(n) (indexed by the dimension n) is said to be a good

channel σ2
Z-code sequence if ∀ε > 0, there exists N(ε) such that for all n > N(ε)

the following conditions are satisfied:

(2.9) V (Λ(n)) < 2n( 1
2

log(2πeσ2
Z)+ε),

(2.10) Pe(Λ
(n), σ2

Z) < 2−nE(ε)

for some E(ε) > 0. The shape of the Voronoi regions of such a good channel

lattice code approaches that of an n-dimensional sphere of radius
√
nσ2

Z as

n→∞. This along with the error criterion implies that such codes achieve the

capacity per unit volume of the AWGN channel with additive noise Z [64].

• A sequence of lattices Λ(n) (indexed by the dimension n) is said to be a good

source D-code sequence if ∀ε > 0, there exists N(ε) such that for all n > N(ε)

the following conditions are satisfied:

(2.11) log(2πeG(Λ(n))) < ε

(2.12) σ2(Λ(n)) = D.

Such codes approach the rate-distortion function R(D) of the Gaussian source

under mean square error distortion criterion. The shape of the Voronoi regions
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of these codes approaches that of an n-dimensional sphere of radius
√
nD as

n→∞.

2.1.2 Nested Lattice Codes

For lossy coding problems involving side-information at the encoder/decoder, it

is natural to consider nested codes. Wyner proposed an algebraic binning approach

involving linear codes for the Slepian-Wolf problem [2]. Adapting this scheme to the

case of lossy coding, nested codes for the Wyner-Ziv problem were proposed in [45].

We review the properties of nested lattice codes briefly here. Further details can be

found in [47].

A pair of n-dimensional lattices (Λ1,Λ2) is nested, i.e., Λ2 ⊂ Λ1, if their corre-

sponding generating matrices G1, G2 satisfy

G2 = G1 · J(2.13)

where J is an n×n integer matrix with determinant greater than one. Λ1 is referred

to as the fine lattice while Λ2 is the coarse lattice. The points of the set

{Λ1 mod Λ2} , {Λ1 ∩ V0,2}(2.14)

are called the coset leaders of Λ2 relative to Λ1. The nesting ratio of this nested

lattice is defined as n
√
V2/V1 where Vi = V (Λi) is the volume of the Voronoi region

of lattice Λi, i = 1, 2.

In many applications of nested lattice codes, we require the lattices involved to be

a good source code and/or a good channel code. We term a nested lattice (Λ1,Λ2)

good if (a) the fine lattice Λ1 is both a good δ1-source code and a good δ1-channel code

and (b) the coarse lattice Λ2 is both a good δ2-source code and a δ2-channel code. For

such a nested lattice code (Λ1,Λ2), the number of coset leaders of Λ2 relative to Λ1 is
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about (δ2/δ1)
n/2. A code employing the coset leaders as codewords would thus have

a rate of 1
2
log(δ2/δ1). Equivalently, the rate of such a code is the logarithm of the

nesting ratio of the nested lattice (Λ1,Λ2). A typical encoding operation using such

a nested lattice would be as follows: first the source is quantized using the quantizer

QΛ1(·) to a fine lattice point in Λ1 and then, the coset leader of the quantizer output

relative to the coarse lattice Λ2 is transmitted to the decoder.

The existence of good lattice codes and good nested lattice codes (for various

notions of goodness) has been studied in [48, 49] which use the random coding method

of [52, 55]. In [49], it was shown that there exists lattices which are simultaneously

good in both the source and channel coding senses described above. In [48], the

existence of nested lattices where the coarse lattice is simultaneously good as a source

and channel code and the fine lattice is a good channel code was proved. In Section

2.2.2, we will describe the notions of goodness that the nested lattice codes used in

our coding scheme need to satisfy. We prove the existence of such good nested lattice

codes in Appendix A.2.

2.2 Distributed source coding for the two-source case

2.2.1 Problem Statement and Main Result

In this section we consider a distributed source coding problem for the case of

two sources X1 and X2. The function to be reconstructed at the decoder is assumed

to be the linear function Z , F (X1, X2) = X1 − cX2 unless otherwise specified.

Consideration of this function is enough to infer the behavior of any linear function

c1X1 + c2X2 and has the advantage of fewer variables. We consider the more general

case of F (X1, . . . , XK) =
∑K

i=1 ciXi in Section 2.3.

We define the coding problem formally below. Consider a pair of correlated
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jointly Gaussian sources (X1, X2) with a given joint distribution pX1X2(x1, x2). The

source sequence (Xn
1 , X

n
2 ) is independent over time and has the product distribu-

tion
∏n

i=1 pX1X2(x1i, x2i). Consider the following average squared error as the fidelity

criterion: d : Rn × Rn → R+ given by

d(xn, yn) =
1

n

n∑
i=1

(xi − yi)
2.(2.15)

Definition 2.1. Given such a jointly Gaussian distribution pX1X2 and a distortion

function d(·, ·) a transmission system with parameters (n, θ1, θ2,∆) is defined as the

set of mappings

fi : Rn → {1, 2, . . . , θi} for i = 1, 2(2.16)

g : {1, 2, . . . , θ1} × {1, 2, . . . , θ2} → Rn(2.17)

such that the following constraint is satisfied

E (d(F n(Xn
1 , X

n
2 ), g(f1(X

n
1 ), f2(X

n
2 )))) ≤ ∆.(2.18)

Here, fi(·) represent the source encoders that take as inputs n-length vectors from

Rn and compresses them to an index in the finite set {1, . . . , θi} for i = 1, 2. The

rates of the encoders are given by 1
n

log θi. g(·) represents the decoder mapping that

takes as input the indices from the two encoders and produces an estimate of the

function of the sources as the output. The expected distortion of this reconstruction

averaged over the source distribution is given by the LHS of equation (2.18). We

say that a tuple (R1, R2, D) is achievable if ∀ε > 0, ∃ for all sufficiently large n, a

transmission system with parameters (n, θ1, θ2,∆) such that

1

n
log θi ≤ Ri + ε for i = 1, 2

∆ ≤ D + ε.
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The performance limit is given by the rate-distortion region which is defined as the

set of all achievable tuples (R1, R2, D).

Without loss of generality, the sources can be assumed to have unit variance and

let the correlation coefficient ρ > 0. For the rest of this section, these assumptions

are made unless otherwise stated.

One possible coding scheme for this problem would be the following. The decoder

reconstructs lossy versions (W1,W2) of the sources (X1, X2) and uses the best esti-

mate of Z given (W1,W2) as the reconstruction Ẑ. The rate region for such a scheme

can be derived using the Berger-Tung inner bound [6, 7]. From here on, this rate

region will be referred to as the Berger-Tung based rate region and the associated

coding scheme that achieves this rate region will be called the Berger-Tung based

coding scheme. The Berger-Tung based rate region is presented in Theorem 2.

The main result in this chapter is to show that for certain parameter values, there

exists a better coding scheme that enables the decoder to reconstruct Ẑ directly

without resorting to reconstructions (W1,W2). This coding scheme involves the use

of lattice codes and shall be called the lattice based coding scheme from here on. We

present the rate region of this scheme below in Theorem 1.

Theorem 1. The set of all tuples of rates and distortion (R1, R2, D) that satisfy

2−2R1 + 2−2R2 ≤
(
σ2

Z

D

)−1

(2.19)

are achievable. Here, σ2
Z = 1 + c2 − 2ρc is the variance of the function Z to be

reconstructed.

Proof: See Section 2.2.2.

We also present another achievable rate region based on ideas similar to the

Berger-Tung coding scheme [6] [7]. From here on, we shall refer to this rate re-
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gion as the Berger-Tung based rate region and the scheme that achieves this as the

Berger-Tung based coding scheme.

Theorem 2. Let the region RDin be defined as follows.

RDin =
⋃

(q1,q2)∈R2
+

{
(R1, R2, D) : R1 ≥

1

2
log

(1 + q1)(1 + q2)− ρ2

q1(1 + q2)
,(2.20)

R2 ≥
1

2
log

(1 + q1)(1 + q2)− ρ2

q2(1 + q1)
, R1 +R2 ≥

1

2
log

(1 + q1)(1 + q2)− ρ2

q1q2
,

D ≥ q1α+ q2c
2α+ q1q2σ

2
Z

(1 + q1)(1 + q2)− ρ2

}
.

where α , 1− ρ2 and R+ is the set of positive reals. Then the rate distortion tuples

(R1, R2, D) which belong to RD∗
in are achievable where ∗ denotes convex closure.

Proof: Follows directly from the application of Berger-Tung inner bound with

the auxiliary random variables involved being Gaussian.

In many distributed source coding problems involving jointly Gaussian sources

([27, 32, 37]), the use of Gaussian auxiliary random variables results in the optimal

or largest known rate region. It was conjectured in [6, 7] that choosing the auxiliary

random variables to be Gaussian indeed results in the optimal rate distortion region

for the problem of reconstructing both sources with independent distortion criteria.

This was shown to be true in [37]. With this as motivation, we have used Gaussian

auxiliary random variables in Theorem 2 above to derive an inner bound to the

performance limit of this problem based on the Berger-Tung coding scheme.

We have the following lemma that gives the minimum sum rate of the Berger-

Tung based coding scheme which will be used in later sections for comparing the

performance limits given by Theorems 1 and 2.

Lemma 2.2. For a given distortion D, the minimum sum rate Rsum , R1 +R2 that

lies in the region RD∗
in of Theorem 2 is given by the lower convex envelope of the
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following region.

(2.21) Rsum ≥
1

2
log

4c(αc− ρD)

D2
D ≤ min

{
2αc

ρ+ c
,

2αc2

1 + ρc

}

(2.22) Rsum ≥
1

2
log

(
(1− ρc)2

D − αc2

)
σ2

Z > D >
2αc2

1 + ρc
, c ≤ 1

(2.23) Rsum ≥
1

2
log

(
(c− ρ)2

D − α

)
σ2

Z > D >
2αc

ρ+ c
, c > 1

(2.24) Rsum = 0 D ≥ σ2
Z

Proof: This derivation is detailed in Appendix A.1.

For certain values of ρ, c and D, the sum-rate given by Theorem 1 is better than

that given in Theorem 2. This implies that each rate region contains rate points

which are not contained in the other. Thus, an overall achievable rate region for

the coding problem can be obtained as the convex closure of the union of all rate

distortion tuples (R1, R2, D) given in Theorems 1 and 2. A further comparison of

the two schemes is presented in Section 2.4. Note that for c < 0, it has been shown

in [37] that the rate region given in Theorem 2 is tight.

2.2.2 The Coding Scheme

In this section, we present a lattice based coding scheme for the problem of re-

constructing the above linear function of two jointly Gaussian sources whose perfor-

mance approaches the inner bound given in Theorem 1. In what follows, a nested

lattice code is taken to mean a sequence of nested lattice codes indexed by the lattice

dimension n.

We will require nested lattice codes (Λ11,Λ12,Λ2) where Λ2 ⊂ Λ11 and Λ2 ⊂ Λ12.

We need the fine lattices Λ11 and Λ12 to be good source codes (of appropriate second
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moment) and the coarse lattice Λ2 to be a good channel code. The proof of the

existence of such nested lattices is detailed in Appendix A.2 where we show the

existence of a nested lattice (Λ11,Λ12,Λ2) such that Λ2 ⊂ Λ11 ⊂ Λ12 or Λ2 ⊂ Λ12 ⊂

Λ11 and all three lattices are good source and channel codes simultaneously. The

parameters of the nested lattice are chosen to be

σ2(Λ11) = q1(2.25)

σ2(Λ12) =
Dσ2

Z

σ2
Z −D

− q1.(2.26)

σ2(Λ2) =
σ4

Z

σ2
Z −D

(2.27)

where 0 < q1 < Dσ2
Z/(σ

2
Z −D). The coding problem is non-trivial only for D < σ2

Z

and in this range, Dσ2
Z/(σ

2
Z − D) < σ2(Λ2) and therefore Λ2 ⊂ Λ11 and Λ2 ⊂ Λ12

indeed. Note that the order of nesting between the lattices Λ11 and Λ12 depends on

whether q1 > Dσ2
Z/2(σ2

Z −D) or not. However, this is irrelevant for the proof which

only requires Λ2 ⊂ Λ11 and Λ2 ⊂ Λ12.

Xn

1

cXn

2

U1

U2

QΛ1
(·) mod

mod

Λ2

Λ2

σ
2

Z
−D

σ2

Z

Ẑ
mod Λ2

+

−

−U1

−U2

S1

S2

QΛ1
(·)

Encoders Decoder

Figure 2.1: Distributed coding using lattice codes to reconstruct Z = X1 − cX2

Let U1 and U2 be random vectors (dithers) that are independent of each other and

of the source pair (X1, X2). Let Ui be uniformly distributed over the basic Voronoi

region V0,1i of the fine lattices Λ1i for i = 1, 2. The decoder is assumed to share
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this randomness with the encoders. The source encoders use these nested lattices to

quantize X1 and cX2 respectively according to equation

S1 = (QΛ11(X
n
1 + U1)) mod Λ2,(2.28)

S2 = (QΛ12(cX
n
2 + U2)) mod Λ2.(2.29)

Note that the second encoder scales the source X2 before encoding it. The decoder

receives the indices S1 and S2 and reconstructs

Ẑ =

(
σ2

Z −D

σ2
Z

)
([(S1 − U1)− (S2 − U2)] mod Λ2) .(2.30)

The decoder reconstruction can be intuitively understood as follows. In the low

distortion limit as D → 0, the quantization of the fine lattices can be ignored and

S1 ≈ X1 + U1, S2 ≈ cX2 + U2. Plugging these approximations (and D ≈ 0) into

equation (2.30) gives us Ẑ = Z mod Λ2. Correct decoding occurs if (Z mod Λ2) =

Z which happens with high probability since σ2(Λ2) > σ2
Z . A decoding error occurs

otherwise. Thus, with high probability, Ẑ = Z in the low distortion regime. We

present the analysis for the more general case of arbitrary distortion D below.

This coding scheme is illustrated in Fig. 2.1. The rates of the two encoders

are given by the logarithm of the nesting ratio of the nested lattices (Λ11,Λ2) and

(Λ12,Λ2). From equations (2.25)-(2.27), it follows that

(2.31) R1 =
1

2
log

σ4
Z

q1(σ2
Z −D)

(2.32) R2 =
1

2
log

σ4
Z

Dσ2
Z − q1(σ2

Z −D)

Clearly, for a fixed choice of q1 all rates greater than those given in equations

(2.31) and (2.32) are achievable. The union of all achievable rate-distortion tu-

ples (R1, R2, D) over all choices of q1 gives us an achievable region. Eliminating q1
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between the two rate equations gives us

(2.33) 22R2 ≥ 1
D
σ2

Z
− 2−2R1

which is the rate region claimed in Theorem 1. It remains to show that this scheme

indeed reconstructs the function Z to within a distortion D. We show this in the

following.

X
n
1

cX
n
2

eq1

eq2

+

−

1− D
σ2

Z

Ẑ
mod Λ2

Figure 2.2: Equivalent representation of Fig. 2.1

Using the distributive property of lattices described in equation (2.8), we can

reduce the coding scheme to a simpler equivalent scheme by eliminating the first mod-

Λ2 operation in both the signal paths. This results in an equivalent representation

of the coding scheme as shown in Fig. 2.2. The decoder can now be described by

the equation

Ẑ =

(
σ2

Z −D

σ2
Z

)
([(Xn

1 + eq1)− (cXn
2 + eq2)] mod Λ2)(2.34)

=

(
σ2

Z −D

σ2
Z

)
([Zn + eq1 − eq2 ] mod Λ2)(2.35)
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where eq1 and eq2 are dithered lattice quantization noises given by

eq1 = QΛ11(X
n
1 + U1)− (Xn

1 + U1),(2.36)

eq2 = QΛ12(cX
n
2 + U2)− (cXn

2 + U2).(2.37)

The subtractive dither quantization noise eqi
is independent of both sources X1

and X2 and has the same distribution as −Ui for i = 1, 2 [47]. Since the dithers U1

and U2 are independent and for a fixed choice of the nested lattice eqi
is a function

of Ui alone, eq1 and eq2 are independent as well.

Let eq = eq1 − eq2 be the effective dither quantization noise. The decoder recon-

struction in equation (2.35) can be simplified as

Ẑ =

(
σ2

Z −D

σ2
Z

)
([Zn + eq] mod Λ2)(2.38)

c.d
=

(
σ2

Z −D

σ2
Z

)
(Zn + eq)(2.39)

= Zn +

((
σ2

Z −D

σ2
Z

)
eq −

D

σ2
Z

Zn

)
(2.40)

, Zn +N.(2.41)

We declare a decoding error if the equality in equation (2.39) does not hold. The

c.d
= in equation (2.39) stands for equality under the assumption of correct decoding.

We show below that this definition of correct decoding is equivalent to the decoder

reconstruction Ẑ being within mean square error distortion D of Z = X1− cX2. Let

Pe be the probability of decoding error. Assuming correct decoding, the distortion

achieved by this scheme is the second moment per dimension1 of the random vector

N in equation (2.41). This can be expressed as

E ‖ N ‖2

n
=

(
σ2

Z −D

σ2
Z

)2 E ‖ eq ‖2

n
+

(
D

σ2
Z

)2 E ‖ Zn ‖2

n
(2.42)

1We refer to this quantity also as the normalized second moment of the random vector N . This should
not be confused with the normalized second moment of a lattice as defined in equation (2.6).
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where we have used the independence of eq1 and eq2 to each other and to the sources

X1 and X2 (and therefore to Z = X1 − cX2). Since eqi
has the same distribu-

tion as −Ui, their expected norm per dimension is just the second moment of the

corresponding lattice σ2(Λ1i). Thus the effective distortion achieved by the scheme

is

1

n
E‖Zn − Ẑ‖2 =

(
σ2

Z −D

σ2
Z

)2(
Dσ2

Z

σ2
Z −D

)
+
D2σ2

Z

σ4
Z

= D.(2.43)

Hence, the proposed scheme achieves the desired distortion provided correct decoding

occurs at equation (2.39). Let us now prove that equation (2.39) indeed holds with

high probability for an optimal choice of the nested lattice, i.e., there exists a nested

lattice code for which Pe → 0 as n→∞ where,

Pe = Pr ((Zn + eq) mod Λ2 6= (Zn + eq)) .(2.44)

To this end, let us first compute the normalized second moment of (Zn + eq).

E ‖ Zn + eq ‖2

n
=

E ‖ Zn ‖2

n
+

E ‖ −U1 − U2 ‖2

n
(2.45)

= σ2
Z + q1 +

σ2
ZD

σ2
Z −D

− q1(2.46)

=
σ4

Z

σ2
Z −D

= σ2(Λ2).(2.47)

It was shown in [44] that as n → ∞, the quantization noises eqi
tend to a white

Gaussian noise for an optimal choice of the nested lattice. The following lemma

states that eq also converges in the same way.

Lemma 2.3. If the two independent subtractive dither quantization noises eqi
tend to

a white Gaussian noise of the same variance as eqi
in the Kullback-Leibler divergence

sense, then eq = eq1 − eq2 also tends to a white Gaussian noise of the same variance

as eq in the divergence sense.
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Proof: The proof of convergence to Gaussianity of eq is detailed in Appendix

A.3.

We choose Λ2 to be an exponentially good channel code in the sense defined in

Section 2.1.1 (also see [47]). For such lattices, the probability of decoding error

Pe in equation (2.44) goes to 0 exponentially fast if (Zn + eq) is Gaussian. It can

be shown that if (Zn + eq) tends to a white Gaussian noise vector, the effect on

Pe of the deviation from Gaussianity is sub-exponential. Hence, the overall error

behavior is asymptotically the same as the behavior if (Zn + eq) were Gaussian, i.e.,

Pe → 0 exponentially as n → ∞. The proof is similar to the one presented in [48]

and is given in Appendix A.5. This implies that the reconstruction error Zn − Ẑ

tends in probability to the random vector N defined in equation (2.41). Since all

random vectors involved have finite normalized second moment, this convergence

in probability implies convergence in second moment as well. Thus the normalized

second moment of the reconstruction error tends to that of N which is shown to

be D in equation (2.43). Averaged over the random dithers U1 and U2, we have

shown that the appropriate distortion is achieved. Hence there must exist a pair

of deterministic dithers that also achieve the given distortion. Combining equations

(2.33) and (2.43), we have proved the claim of Theorem 1.

Remark: Instead of focussing on the entire rate region, if one is interested in

minimizing the sum rate of the encoders, then it can be checked that the optimal

choice of lattice parameters is σ2(Λ11) = σ2(Λ12) = 1
2

Dσ2
Z

σ2
Z−D

. In this case, we require

only one nested lattice (Λ1,Λ2) with both encoders using the same nested lattice for

encoding.
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2.2.3 Intuition about the Coding Scheme

In this section, we outline some arguments that justify our choice of lattice codes

and the scaling constants described in the previous subsection. Our use of lattice

codes is motivated by the following. Suppose there exists a centralized encoder that

has access to both sources X1 and X2. Clearly, the optimal encoding strategy then

would be to compute Z = X1 − cX2, quantize and bin it using an encoder, say f(·),

that achieves the optimal rate distortion function of a Gaussian source of variance

σ2
Z . Such a centralized coding scheme can be adapted to a distributed setting if

the binning operation f(·) distributes over the linear function X1 − cX2 in the sense

described by equation (2.48). For then, from the decoder’s perspective, there is no

distinction between the centralized and distributed coding scheme since

f(X1 − cX2) = f(X1)− f(cX2).(2.48)

A lattice code satisfies the functional form mentioned in equation (2.48) and is known

to achieve the optimal rate distortion function for Gaussian sources. Hence it is an

ideal candidate for use as the source encoder.

The parameters of the lattice code as given in equations (2.25) and (2.26) can

be justified as below. Without loss of generality, let the second source alone be

scaled by an arbitrary constant η. Let the fine lattices in the signal path of the two

sources have second moments qi , σ2(Λi,1) for i = 1, 2. For the case of optimal

lattices in high enough dimensions, one can think of quantization using the fine

lattices Λi,1, i = 1, 2 as simulating an AWGN channel of noise variance qi, i.e., the

subtractive dither quantization noises approach a white Gaussian noise of variance

qi. Such a statement can be made precise by analysis similar to the one carried out

in the previous subsection. Let Qi, i = 1, 2 be N (0, qi) random variables that are
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single-letter asymptotic equivalents of the subtractive dither quantization noises eqi

encountered in the previous subsection.

Referring to the equivalent coding scheme represented in Fig. 2.2, we see that it

suffices to choose the coarse lattice Λ2 to be a good AWGN channel code of second

moment equal to

σ2(Λ2) = Var(X1 +Q1 − (ηX2 +Q2))

= 1 + η2 − 2ηρ+ q1 + q2.(2.49)

Using the distributive property of lattices (equation (2.8)), this scheme can be con-

verted to the one represented by Fig. 2.1.

The rates achieved by this scheme are given by

Ri =
1

2
log

1 + η2 − 2ηρ+ q1 + q2
qi

for i = 1, 2(2.50)

This region can be optimized over all choices of η subject to an appropriate distortion

constraint. It turns out that the scaling chosen in Section 2.2.2 is the optimal choice.

The details are described (for the more general K user case) in Appendix A.4.

2.2.4 Outer Bounds

In this section, we present some outer bounds to the optimal rate distortion region

as defined in Definition 2.1. A simple cut-set bound for this problem can be derived

by lower bounding R1 assuming that the decoder has full knowledge of X2 and vice

versa. Such a bound is given by

RDCS =

{
(R1, R2, D) : R1 ≥

1

2
log+ 1− ρ2

D
,R2 ≥

1

2
log+ c2(1− ρ2)

D

}
(2.51)

where log+ x , max{log x, 0}. Another outer bound was presented in [50] for the

case when ρ ≤ c ≤ 1 which we reproduce below.
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Fact 1. Suppose that ρ ≤ c ≤ 1 and let θ be defined as

(2.52) θ =
1− ρc

σ2
Z

.

Then 0 ≤ θ ≤ 1 and

RDo =

{
(R1, R2, D) : θ2−2R1 + (1− θ)2−2R2 ≤ D

σ2
Z

}
(2.53)

is an outer bound to the optimal rate distortion region.

It is further established in [50] that the gap between the sum rates of the rate

regions presented in Theorem 1 and Fact 1 is at most −1
2
log θ(1− θ). In particular,

this implies that when c = 1, the sum rate given by Theorem 1 is within one bit of

the optimum sum rate for any distortion D.

2.3 Distributed source coding for the K source case

In this section, we consider the case of reconstructing a linear function of an

arbitrary number of sources. In the case of two sources, the two strategies used in

Theorems 1 and 2 were direct reconstruction of the function Z and estimating the

function from noisy versions of the sources respectively. Henceforth, we shall refer

to the coding scheme used to derive Theorem 1 as lattice binning and that used in

Theorem 2 as random binning.

In the presence of more than two sources, a host of strategies which are a com-

bination of these two strategies become available. For example, in the case of 3

sources, one possible strategy would be for all users to use the lattice binning while

another strategy would be for users 1 and 2 to use lattice binning and user 3 to

employ random binning. The union of the rate-distortion tuples achieved by all such

schemes gives an achievable rate region of the problem.
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When a combination of the two strategies are used among theK sources, the order

of decoding at the decoder becomes important. The indices which are decoded earlier

can be used as side information for the indices which are to be decoded later. Thus,

the order of decoding becomes significant with the sources being encoded later having

more side information available for their decoding. Also, this raises the question of

how to adapt the coding schemes of lattice binning to the case when side information

is present at the decoder. Consider an example when the decoder is interested in

reconstructing a linear function of 3 sources, i.e., Z =
∑3

i=1 ciXi. Suppose encoders

1 and 2 use an identical coarse lattice and encoder 3 uses a different coarse lattice

for encoding. If the source X3 is decoded first, it can be used as side information

for decoding c1X1 + c2X2. For ease of exposition and understanding in the following

section, we first describe a lattice coding strategy for the distributed source coding

problem involving two sources with the goal of reconstruction of their linear function

at the decoder and, in addition, the decoder has access to some side information.

We then use this to formally describe an achievable rate region for the problem of

reconstructing Z =
∑K

i=1 ciXi.

2.3.1 Lattice coding in presence of decoder side information

In this section, we consider the problem of distributed encoding of correlated

sources using lattices in the presence of side information at the decoder. As we will

see, this can be used as a building block in reconstructing a linear function of multiple

sources.

Assume that we have correlated Gaussian sources X1 and X2 and the decoder is

interested in reconstructing a linear function Z ,
∑2

i=1 ciXi. Suppose the decoder

also has available to it side information Y that is correlated with the sources X1, X2.

Y and X1, X2 are jointly Gaussian. Each source Xi is observed by an encoder which
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maps its outcomes to a finite set. The indices produced by the encoders are trans-

mitted to a joint decoder using two rate-constrained noiseless channels. The goal

is to find the optimal rate-distortion region which is the set of all achievable tuples

(R1, R2, D).

Note that, this reduces to the Wyner-Ziv problem when there is only one source

X at the encoder. For this problem, it is known that the conditional rate-distortion

bound is still achievable [5] despite the side information being available only at the

decoder. Also, if the decoder is interested in reconstructing only one of the sources

with mean square distortion, this problem reduces to the lossy jointly Gaussian “one-

help-one” problem considered in [8].

In this subsection we provide an inner bound to the optimal rate-distortion region

for this problem using a lattice-based “correlated” binning strategy. We use the

notation ẐY to denote the minimum mean-squared error (MMSE) estimate of Z

given Y , namely E(Z | Y ). The innovations random variable Z − ẐY is denoted by

ηZ|Y .

The lattice coding strategy in the presence of side information can be inferred by

considering what the strategy would be in the presence of a central encoder that has

access to all the sources X1, X2 and the side information Y . In that case, the central

encoder would first compute Z =
∑2

i=1 ciXi and then quantize and transmit only

the innovations random variable ηZ|Y . This can be accomplished with subtractive

dither lattice quantization using a nested lattice Λ2 ⊂ Λ1 of parameter

σ2(Λ1) =
Dσ2

η

σ2
η −D

(2.54)

σ2(Λ2) =
σ4

η

σ2
η −D

(2.55)

where σ2
η is the variance of the innovations random variable ηZ|Y and D is the
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desired distortion in the reconstruction of Z. The rate incurred in this system is

given by 1
2
log(σ2

η/D). The decoder would use this quantized innovations with the

side information to obtain a reconstruction that is within a distortion of D of Z.

The two assumptions in the setup above that deviate from our distributed coding

problem are that all sources are available to a central encoder and that side infor-

mation is available at the encoder. The first assumption can be gotten rid of by

employing the distributive property (equation (2.8)) of lattice codes. The second

assumption can be eliminated by using the linear nature of the forward test channel

for the case of Gaussian quantization. This linear nature enables one to move the

side information present at the encoder to the decoder thus obviating its necessity

at the encoder. Thus, we can convert the above centralized coding strategy to our

distributed setting to yield the following encoding scheme.

The source encoders are described by the equations

Si = (QΛ1i
(ciX

n
i + Ui)) mod Λ2 for i = 1, 2,(2.56)

where Uis are independent random dithers uniformly distributed over the funda-

mental Voronoi region V0,1i of the fine lattices Λ1is. As in Section 2.2, we require

Λ2 ⊂ Λ1i, i = 1, 2, the fine lattices Λ1i to be good source codes and the coarse lattice

Λ2 to be a good channel code. The second moments of the nested lattices are given

by

σ2(Λ11) = q1(2.57)

σ2(Λ12) =
Dσ2

η

σ2
η −D

− q1(2.58)

σ2(Λ2) = σ2
η + σ2(Λ11) + σ2(Λ12) =

σ4
η

σ2
η −D

(2.59)
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where q1 is chosen such that 0 < q1 <
Dσ2

η

σ2
η−D

. This gives a quantization rate of

R1 =
1

2
log

σ4
η

q1(σ2
η −D)

(2.60)

R2 =
1

2
log

σ4
η

Dσ2
η − q1(σ2

η −D)
(2.61)

Clearly, for a fixed choice of q1 all rates beyond that given above can be achieved.

Eliminating q1 between the two rates now gives us an expression of the overall achiev-

able region as

2−2R1 + 2−2R2 ≤
(
σ2

η

D

)−1

(2.62)

The decoder is given by the equation

Ẑ =

(
1− D

σ2
η

)([ 2∑
i=1

(Si − Ui)− Ẑn
Y

]
mod Λ2

)
+ Ẑn

Y(2.63)

The encoding operation given by equation (2.56) is similar to that used in Section

2.2.2. The decoding operation can be understood as follows. The decoder shifts the

origin of the nested lattice code to the point Ẑn
Y , decodes the innovations random

variable ηn
Z|Y and computes the best estimate of Z given Ẑn

Y and the decoded value

of ηn
Z|Y . By mimicking the analysis of Section 2.2.2, we can show that the first

part of the decoder operation, given by ([
∑2

i=1(Si − Ui)− Ẑn
Y ] mod Λ2) in equation

(2.63) which corresponds to shifting the origin to Ẑn
Y and decoding ηn

Z|Y , produces

with high probability ηn
Z|Y + N where N approaches a white Gaussian noise vector

with each element having variance σ2(Λ11) + σ2(Λ12) =
Dσ2

η

σ2
η−D

. The decoder then

obtains an estimate of the function Z based on ηZ|Y +N and the side information Y .

For an optimal choice of the nested lattices, in the limit as the dimension n → ∞,

the variables Ẑn
Y , η

n
Z|Y +N and Z become jointly Gaussian and the optimal MMSE

estimate of Z is a linear function of Ẑn
Y and ηn

Z|Y +N . It can be checked that equation
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(2.63) describes such an estimate and that this estimate indeed achieves the desired

distortion D. Thus, we have an achievable rate-distortion tuple given by equation

(2.62) for reconstructing a linear function in the presence of any side information.

The rationale for choosing the lattice parameters and scaling constants is very similar

to that given in Section 2.2.3.

2.3.2 Reconstructing a linear function of K sources

Previously, we considered the problem of reconstructing a linear function of two

sources. In this section, we generalize the problem to an arbitrary number of sources.

Let the sources be given by X1, X2, . . . , XK which are jointly Gaussian. The encoder

of Xi maps its outcome to a finite set. The output of the encoder is transmitted

over a noiseless but rate-constrained channel to a joint decoder. The rate of channel

i is given by Ri. The decoder wishes to reconstruct a linear function given by

Z =
∑K

i=1 ciXi with squared error fidelity criterion. The performance limit RD is

given by the set of all rate-distortion tuples (R1, R2, . . . , RK , D) that are achievable

in the sense defined in Section 2.2. In this section we provide an inner bound based

on “correlated” lattice-structured binning.

Note that, if the decoder is interested in reconstructing only one of the sources with

mean square distortion, this problem reduces to the lossy jointly Gaussian “many-

help-one” problem similar to the one studied in [28]. As indicated earlier, there are

several possible coding schemes based on each user’s choice of coding strategy and

also the choice of order of decoding. Before, we describe these coding schemes, we

introduce some relevant notation.

For any set A ⊂ {1, . . . , K}, let XA denote those sources whose indices are in A,

i.e., XA , {Xi : i ∈ A}. Let ZA be defined as
∑

i∈A ciXi. Let Θ be a partition of

{1, . . . , K} with θ = |Θ|. Let πΘ : Θ → {1, . . . , θ} be a permutation. One can think
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of πΘ as ordering the elements of Θ. Each set of sources XA, A ∈ Θ are decoded

simultaneously at the decoder with the objective of reconstructing ZA. The order of

decoding is given by πΘ(A) with the lower ranked sets of sources decoded earlier. Let

Q = (q1, . . . , qK) ∈ RK
+ be a tuple of positive reals. Let E(·) denote the expectation

operator.

For any partition Θ and ordering πΘ, let us define recursively a positive-valued

function σ2
Θ : Θ → R+ as follows:

(2.64) σ2
Θ(A) = E

[
(ZA − fA(SA))2

]
,

where

(2.65) fA(SA) = E(ZA|SA)

(2.66) SA = {ZB +QB : B ∈ Θ, πΘ(B) < πΘ(A)}

and {QA : A ∈ Θ} is a collection of |Θ| independent zero-mean Gaussian random

variables with variances given by qA = Var(QA) ,
∑

i∈A qi, and this collection is

independent of the sources. As will be seen later, QA can be thought of as approxi-

mating the sum of the subtractive dither lattice quantization noises that result from

the encoding of the sources XA. Let

(2.67) f({ZA +QA : A ∈ Θ}) , E (Z|{ZA +QA : A ∈ Θ}) .

Theorem 3. For a given tuple of sources X1, . . . , XK and tuple of real numbers

(c1, c2, . . . , cK), we have RD∗
in ⊂ RD, where

RDin =
⋃

Θ,πΘ,Q

{
(R1, . . . , RK , D) : Ri ≥

1

2
log

σ2
Θ(A) + qA

qi
for i ∈ A

(2.68) D ≥ E [(Z − f ({ZA +QA : A ∈ Θ}))2]
}
,

and ∗ denotes convex closure.
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Proof: We give a description of a lattice-based coding scheme that achieves the

inner bound. Fix Θ, πΘ and Q. For each A ∈ Θ, construct a family of good nested

lattices ΛA
1i and ΛA

2 such that ΛA
2 ⊂ ΛA

1i for i ∈ A. Existence of such good nested

lattices has been shown in Appendix A.2. The second moment of the fine lattice ΛA
1i

is chosen to be qi. The second moment of the coarse lattice is chosen based on the

amount of side information available to the decoder at the time of decoding the set

of sources XA which in turn depends on πΘ(A). The function σ2
Θ governs this choice.

More precisely, for i ∈ A and A ∈ Θ, the second moments of the lattices are given

by

σ2(ΛA
1i) = qi(2.69)

σ2(ΛA
2 ) = σ2

Θ(A) + qA(2.70)

Here, σ2
Θ(A) plays a role analogous to σ2

η in equations (2.57)-(2.59) and approximates

the variance of the innovations process when estimating ZA given the side information

SA.

Encoder: For each A ∈ Θ, the source Xi, i ∈ A is encoded using the nested lattice

ΛA
2 ⊂ ΛA

1i. The encoders can be described by the equations

Ti = (QΛA
1i
(ciX

n
i + Ui)) mod ΛA

2 for i ∈ A(2.71)

where Ui are independent random dithers uniformly distributed over the fundamental

Voronoi region VA
0,1i of the fine lattice ΛA

1i. This would give an encoding rate of

Ri =
1

2
log

σ2
Θ(A) + qA

qi
for i ∈ A(2.72)

Decoder: For A ∈ Θ, in order to decode ZA, the decoder has access to some side

information and its operation can be recursively described similar to equations (2.30)
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and (2.63) as

ẐA =

([∑
i∈A

(Ti − Ui)− fn
A(ŜA)

]
mod ΛA

2

)
+ fn

A(ŜA)(2.73)

where

(2.74) ŜA = {ẐB : B ∈ Θ, πΘ(B) < πΘ(A)}.

After decoding ẐA for all A ∈ Θ, the decoder obtains the reconstruction as a linear

function of {ẐA : A ∈ Θ} as

(2.75) Ẑ = fn({ẐA : A ∈ Θ}).

We now show that the above system achieves the inner bound given in Theorem 3.

From equation (2.72), it is clear that this scheme achieves the rate tuple claimed in

Theorem 3. It remains to prove that the claimed distortion is achieved. The crucial

observation is that while SA in equation (2.66) denotes the side information available

to decode ZA in test channels, ŜA in equation (2.74) denotes the side information

available to decode ẐA in the actual coding system. If we were to assume ŜA to

be Gaussian, then by definition of the functions fA(·) (equation (2.65)) and f(·)

(equation (2.67)), it is easy to see that the distortion given in Theorem 3 is achieved.

However such an assumption is not true for ŜA for any finite lattice dimension n.

Fortunately, loosely speaking, we can show that even though the assumption of

Gaussianity of ẐA is not strictly true, it becomes increasingly valid as the lattice

dimension n→∞. By analysis similar to that in Section 2.2.2, we can show that the

subtractive dither quantization noises tend to a white Gaussian of the same variance

(in the K-L divergence sense). This implies that as the lattice dimension n → ∞,

for an optimal choice of nested lattices, ẐA tends to Zn
A +Qn

A and hence ŜA tends to

Sn
A (in the K-L divergence sense). By virtue of the “goodness” of the nested lattices,
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this then implies that the probability of incorrect decoding goes to 0 exponentially

in the lattice dimension. Thus the reconstruction error (Zn− Ẑ) tends in probability

(and hence in normalized second moment) to N where N approaches a Gaussian

random vector with each component having variance D. Thus, the proposed lattice

scheme indeed achieves the claimed rate-distortion tuples and Theorem 3 is proved.

To show this formally using induction, we need some more notation. For each

A ∈ Θ and for each i ∈ A, let

(2.76) ei = QΛA
1i
(ciX

n
i + Ui)− ciX

n
i − Ui,

and

(2.77) eA ,
∑
i∈A

ei.

For each A ∈ Θ, let the linear function fA(·) be given by

(2.78) fA(SA) =
∑

B:πΘ(B)<πΘ(A)

αA(B)(ZB +QB).

By noting that ei are independent for i ∈ {1, 2, . . . , K}, we note that for all A ∈ Θ,

(2.79)
1

n
E‖eA‖2 = qA.

Let E ∈ Θ be such that πΘ(E) = 1. Thus ŜE = φ. Hence using the distributive

property, and noting the normalized second moments of ei for i ∈ E, we have with

high probability (i.e., under correct decoding)

(2.80) ẐE = Zn
E + eE.

For any 1 ≤ j < K, we assume correct decoding with high probability at the jth

stage and show correct decoding with high probability at the (j + 1)th stage. Let



39

C ∈ Θ be such that πΘ(C) = j + 1. Under the above assumption, we have, with

high probability, for all B ∈ Θ with πΘ ≤ j

(2.81) ẐB = Zn
B + eB.

Using this we have

ẐC =

Zn
C + eC −

∑
B:πΘ(B)≤j

αC(B)ẐB

mod ΛC
2 +

∑
B:πΘ(B)≤j

αC(B)ẐB(2.82)

c.d
=

Zn
C + eC −

∑
B:πΘ(B)≤j

αC(B)ẐB

+
∑

B:πΘ(B)≤j

αC(B)ẐB(2.83)

= Zn
C + eC ,(2.84)

where the second equality holds with high probability (correct decoding) because of

the following reasons. (a) The normalized second moment of the term inside the

mod operation satisfies the following equalities:

(2.85)

1

n
E

∥∥∥∥∥∥Zn
C + eC −

∑
B:πΘ(B)≤j

αC(B)ẐB

∥∥∥∥∥∥
2

=

=
1

n
E

∥∥∥∥∥∥Zn
C −

∑
B:πΘ(B)≤j

αC(B)Zn
B

∥∥∥∥∥∥
2

+ qC +
∑

B:πΘ(B)≤j

α2
C(B)qB(2.86)

= qC + E

ZC −
∑

B:πΘ(B)≤j

αC(B)(ZB +QB)

2

(2.87)

= σ2
Θ(C) + qC(2.88)

= σ2(ΛC
2 ).(2.89)

(b) Using the arguments of Section 2.2.2 (see Appendix A.3),

(2.90) lim
n→∞

h

Zn
C + eC −

∑
B:πΘ(B)≤j

αC(B)ẐB

 =
n

2
log 2πeσ2(ΛC

2 ).
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where h(·) denotes differential entropy. Hence we have for all A ∈ Θ, with high

probability,

(2.91) ẐA = Zn
A + eA.

Now regarding the final estimation, an argument similar to the above can be given

that shows that a distortion given in the theorem is achieved asymptotically. The

rationale for the specific choice of scaling constants is explained in detail in Appendix

A.4.

Remark: An important point worth noting before proceeding further is that the

nesting relations we need the lattices to satisfy is ΛA
2 ⊂ ΛA

1i for i ∈ A. But, for

A,B ∈ Θ, we don’t need the lattice families (ΛA
1i,Λ

A
2 ) and (ΛB

1j,Λ
B
2 ) to be related in

any way for A 6= B. Also, just as in the two user case, if we are interested only in

minimizing the sum rate of this encoding scheme, then for all encoders in a given

set A ∈ Θ, the second moment of their respective fine lattices are equal. This means

that all encoders in a given set A ∈ Θ can use the same nested lattice ΛA
2 ⊂ ΛA

1 for

encoding.

2.3.3 An illustration of Theorem 3

For clarity, an illustration of the coding scheme of Theorem 3 for the case of

6 users and specific choices of Θ and πΘ is described below. Let us choose Θ =

{{1, 2, 3}, {4, 5}, {6}}. Let πΘ be the identity permutation so that πΘ({1, 2, 3}) =

1, πΘ({4, 5}) = 2, πΘ({6}) = 3. This means that the decoder decodes Z{1,2,3} =∑3
i=1 ciXi first which is then used as side information for decoding Z{4,5} and so on.

Let us also fix Q = {q1, . . . , q6} where qi are all positive. We use A,B,C to denote

the sets {1, 2, 3}, {4, 5} and {6} respectively.
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The fine lattice of the encoder of source Xi has second moment qi as given in equa-

tion (2.69). Encoders for the sources X1, X2, X3 use nested lattices where the second

moment of the coarse lattices are given by equation (2.70). The decoder decodes

ẐA according to equation (2.73). To decode ẐA, the decoder does not have access

to any side information. Encoders for X4, X5 use nested lattices whose parameters

depend on the function σ2
Θ(B) which in turn is determined by the fact that ẐA has

been decoded earlier. The decoder then decodes ẐB from T4, T5 and the functional

value fn
B(·) of the side information ŜB = ẐA. Similarly, to decode ẐC , the decoder

has side information ŜC = {ẐA, ẐB} along with the index T6. After having decoded

ẐA, ẐB, ẐC , the decoder uses the function fn(·) of equation (2.67) to estimate Z.

This is illustrated in Fig. 2.3. Notice the correspondence between this coding strat-

egy and the schematic of the general distributed source coding problem as shown in

Figure 1.1.
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Figure 2.3: Illustration of the coding scheme of Theorem 3



42

2.3.4 A Few Special Cases

In this section, we consider a few special cases of the general coding problem

treated above. In particular, we examine the rate distortion region derived above

for specific choices of the partition Θ. First, we demonstrate that we can recover

the two user rate region of Theorems 1 and 2 from the more general K-user rate

region described above. Then, we illustrate a scheme for the case where the decoder

estimates the function directly, i.e., Θ = {{1, 2, . . . , K}}.

Berger Tung coding for the two user case

In this section, we rederive the result of Theorem 2 using the more general frame-

work of Theorem 3. Let the function to be reconstructed be Z = X1 − cX2 as in

Section 2.2. Individual reconstruction of the sources corresponds to the partition

Θ = {{1}, {2}}. There are two possible choices of πΘ corresponding to which source

is decoded first. Let us choose πΘ to be the identity permutation. Thus Z{1} = X1

is decoded first and used as side information to decode Z{2} = −cX2.

Let Q = (q1, q2) where qi are positive for i = 1, 2. For ease of notation, we drop

the set notation in the subscripts below. In what follows, S1 is taken to mean S{1}

and so on. Equations (2.64) to (2.66) simplify in this case to

(2.92) S1 = φ

(2.93) f1(S1) = E(Z1) = 0

(2.94) σ2
Θ({1}) = E(Z2

1) = 1

(2.95) S2 = {X1 +Q1}
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(2.96) f2(S2) = E(Z2 | S2) = E(−cX2 | X1 +Q1) =
−ρc

1 + q1
S2

(2.97) σ2
Θ({2}) = E

(
Z2 +

ρc

1 + q1
S2

)2

= c2 + q2 −
ρ2c2

1 + q1
.

Since the random variables Z,Z1 +Q1, Z2 +Q2 are jointly Gaussian, the optimal

MMSE estimator of Z given Z1+Q1 and Z2+Q2 is a linear function of Z1+Q1, Z2+Q2

and is given by f(Z1 +Q1, Z2 +Q2) = a(Z1 +Q1) + b(Z2 +Q2) where the constants

a, b are given by

[ a b ] =

[
αc2+q2(1−ρc)

(1+q1)(c2+q2)−ρ2c2
c(αc+q1(c−ρ))

(1+q1)(c2+q2)−ρ2c2

]
(2.98)

where α , 1− ρ2.

As stated in Theorem 3, qi have to satisfy the distortion constraint of equation

(2.68) which in this case simplifies to

D ≥ q1c
2α+ q2c

2α+ q1q2σ
2
Z

(1 + q1)(c2 + q2)− ρ2c2
(2.99)

The parameters of the nested lattices are given by equations (2.69) and (2.70) to be

σ2(Λ
{1}
1 ) = q1(2.100)

σ2(Λ
{1}
2 ) = 1 + q1(2.101)

σ2(Λ
{2}
1 ) = q2(2.102)

σ2(Λ
{2}
2 ) = c2 + q2 −

ρ2c2

1 + q1
.(2.103)

This gives the following rates.

R1 =
1

2
log

1 + q1
q1

(2.104)

R2 =
1

2
log

(c2 + q2)(1 + q1)− ρ2c2

q2(1 + q1)
(2.105)
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where Q = (q1, q2) is subject to the distortion constraint of equation (2.99). It can

be checked that these equations parameterize one of the corner points of the rate

region of Theorem 2. Reversing the roles of the two sources (equivalently, choosing

πΘ({1}) = 2, πΘ({2}) = 1), we can achieve the other end point of the rate region.

Time sharing between these two points achieves the entire rate region of Theorem 2.

Note that the inner bound of Theorem 2 is derived using the Berger-Tung inner

bound [6, 7] which employs random quantization followed by random binning. Here,

we have rederived this result using lattice quantization followed by lattice-structured

binning.

Lattice coding for the K user case

In this section, we derive an achievable rate region for the K user case when

all the users encode in such a way that the decoder estimates the function directly

without reconstructing any intermediate variables. This corresponds to the case

where Θ = {{1, . . . , K}}. πΘ is trivial in this case. Let Q = {q1, . . . , qK} ∈ RK
+ . Let

A denote the set {1, . . . , K}. Then qA =
∑K

i=1 qi

Equations (2.64) to (2.66) simplify in this case to

(2.106) SA = φ

(2.107) fA(SA) = E(Z) = 0

(2.108) σ2
Θ(A) = E(Z2) = σ2

Z .

The function f(·) of equation (2.67) is given by

f(Z +Q) = E(Z | Z +Q)

=
σ2

Z

σ2
Z + qA

(Z +Q)(2.109)
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and thus distortion constraint of equation (2.68) fixes the value of qA to be
σ2

ZD

σ2
Z−D

.

The encoders use the nested lattices (Λ1i,Λ2), i = 1, . . . , K for encoding. The

parameters of the nested lattices are given by

σ2(Λ1i) = qi(2.110)

σ2(Λ2) = σ2
Z + qA =

σ4
Z

σ2
Z −D

(2.111)

This gives an encoding rate of

Ri =
1

2
log

σ4
Z

qi(σ2
Z −D)

(2.112)

This corresponds to the rate region

K∑
i=1

2−2Ri ≤
(
σ2

Z

D

)−1

(2.113)

For K = 2, this recovers the rate region of Theorem 1.

2.3.5 Comparison of the Sum Rates for Low Distortions

In this section, we compare the Berger-Tung based coding scheme and the lat-

tice based coding scheme for the general K-user case. Specifically, we compare the

sum rates of the following encoding schemes in the low distortion regime - (a) all

encoders use the same coarse lattice and encode in such a way that the decoder recon-

structs the function directly (Θ = {{1, . . . , K}}) and (b) the encoders use different

coarse lattices and the decoder estimates the function from lossy reconstruction of

the sources (Θ = {{1}, . . . , {K}}). While the minimum sum rate required by the

lattice based coding scheme to achieve a distortion D is easily derived from equation

(2.113) for any D, a similar analysis is analytically intractable for the Berger-Tung

based coding scheme except for low values of distortion D.

Let the decoder be interested in reconstructing the function Z =
∑K

i=1 ciXi to

within a mean square distortion of D. Let the covariance matrix of the jointly
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Gaussian random variables X1, . . . , XK be the K × K matrix Σ. Let the column

vector be defined as c̄ , [c1 . . . cK ]T . It is easy to see that the minimum sum rate∑K
i=1Ri is achieved in equation (2.112) when q1 = · · · = qK =

σ2
ZD

K(σ2
Z−D)

and the

minimum sum rate is given by

Rlatsum ,
K

2
log

Kσ2
Z

D

=
K

2
log

K

D
c̄T Σ c̄(2.114)

An approximate expression for the sum rate RBTsum of the Berger-Tung based

coding scheme can be derived in the low distortion regime as shown below. An achiev-

able sum rate-distortion region for this problem can be derived using the Berger-Tung

based coding scheme with the auxiliary random variables being Gaussian.

Lemma 2.4. Define the region RDBTsum as

RDBTsum ,
⋃

q1,...,qK∈RK
+

{
RBTsum ≥ 1

2
log

|ΣU |∏K
i=1 qi

, D ≥ σ2
Z − (Σc̄)T Σ−1

U (Σc̄)

}(2.115)

where ΣU , Σ + ΛQ and ΛQ is a K × K diagonal matrix with diagonal entries

q1, . . . , qK. |ΣU | is the determinant of the matrix ΣU . Then, there exists an achievable

rate-distortion tuple (R1, . . . , RK , D) such that (
∑K

i=1Ri, D) ∈ RD∗
BTsum where ∗

denotes convex closure.

Proof: Follows directly from the application of Berger-Tung inner bound for the

K user case with the auxiliary random variables involved being Gaussian.

If the function Z is not directly related to a source Xi, i.e., if ci = 0 for some

1 ≤ i ≤ K, then the optimal strategy that minimizes the sum rate for a given

distortion would involve not transmitting that source at all. Thus, we can assume

without loss of generality that ci 6= 0 for all i = 1, . . . , K. This assumption is made
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throughout this section. When the distortion D → 0, it follows that ΣU → Σ,

i.e., qi → 0 for i = 1, . . . , K. Under these conditions, the expressions for sum rate

and distortion in Lemma 2.4 can be considerably simplified by expanding them in a

Taylor series and retaining only the first order terms. We detail this approximation

below.

We define some quantities that we use in the derivations below. Let Λ
(i)
Q be the

diagonal matrix with the jth diagonal entry equal to qj for j 6= i and the ith diagonal

entry set to 0. Let Σ
(i)
U , Σ + Λ

(i)
Q . Let ei denote the K-length column vector with

a 1 in the ith position and 0 elsewhere.

In the limit as D → 0, we can write

D = D{q1=0,...,qK=0} +
K∑

i=1

qi

(
∂D

∂qi

)
{q1=0,...,qK=0}

+O(q2
i )(2.116)

=
K∑

i=1

qi

(
∂D

∂qi

)
{q1=0,...,qK=0}

+O(q2
i )(2.117)

The partial derivatives can be evaluated as follows. From the Sherman-Morrison

formula, it follows that for an invertible matrix Σ and the product uvT of two column

vectors u, v, we have

(Σ + uvT )−1 = Σ−1 − Σ−1uvT Σ−1

1 + vT Σ−1u
(2.118)

|Σ + uvT | =
(
1 + vT Σ−1u

)
|Σ|(2.119)

In order to evaluate the partial derivative of the distortion D with respect to qi,
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set u = qiei and v = ei and qj = 0 for j 6= i. Then,

D = σ2
Z − c̄T ΣT (Σ

(i)
U + uiv

T
i )−1Σc̄(2.120)

= σ2
Z − c̄T ΣT

(
Σ

(i)
U

−1
− Σ

(i)
U

−1
qieie

T
i Σ

(i)
U

−1

1 + qieT
i Σ

(i)
U

−1
ei

)
Σc̄(2.121)

= σ2
Z − c̄T ΣT Σ

(i)
U

−1
Σc̄+ qi

c̄T ΣT Σ
(i)
U

−1
eie

T
i Σ

(i)
U

−1
Σc̄

1 + qieT
i Σ

(i)
U

−1
ei

(2.122)

= K +
qiα

1 + qiβ
(2.123)

where K,α, β are independent of qi. Taking the partial derivative with respect to qi

and setting qi = 0 for 1 ≤ i ≤ K, we get(
∂D

∂qi

)
{q1=0,...,qK=0}

= (α){q1=0,...,qK=0}(2.124)

= c2i(2.125)

Therefore, in the low distortion regime, we have

(2.126) D =
K∑

i=1

c2i qi.

The sum rate RBTsum can be written as

RBTsum =
1

2

|Σ|∏K
i=1 qi

+
1

2
log

|ΣU |
|Σ|

(2.127)

A good approximation can be obtained for the sum rate in the low distortion regime

by expanding T , 1
2
log |ΣU |

|Σ| using Taylor series and retaining only the first order

terms. We can write T as

(2.128) T =
1

2
log

|ΣU |
|Σ|

=
1

2
log

|Σ(i)
U |
|Σ|

+
1

2
log(1 + qie

T
i Σ

(i)
U

−1
ei)

Taking the partial derivative of T with respect to qi and setting qi = 0 for 1 ≤ i ≤ K,

we get (
∂T

∂qi

)
{q1=0,...,qK=0}

=
eT

i Σ−1ei

2
=

Σ−1
ii

2
(2.129)
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where Σ−1
ii is the ith diagonal element of Σ−1. Therefore, the sum rate RBTsum can

be approximated as

RBTsum =
1

2
log

|Σ|∏K
i=1 qi

+
1

2

K∑
i=1

qiΣ
−1
ii(2.130)

Since, in the low distortion regime, qi → 0, the sum rate RBTsum is dominated by

the first term and we get

(2.131) RBTsum =
1

2
log

|Σ|∏K
i=1 qi

.

From equations (2.126) and (2.131), it is easy to see that for a given distortion D,

the sum rate is minimized when qi = D
Kc2i

for i = 1, . . . , K and the minimum sum

rate is

(2.132) RminBTsum =
K

2
log

K

D

(
|Σ|

K∏
i=1

c2i

)1/K

Comparing equation (2.132) to equation (2.114) we find that in the low distortion

regime,

RminBTsum −Rlatsum =
K

2
log

K

D

(
|Σ|

K∏
i=1

c2i

)1/K

− K

2
log

K

D
c̄T Σc̄(2.133)

=
K

2
log |Σ|1/K

(∏K
i=1 c

2
i

)1/K

c̄T Σc̄
(2.134)

For the symmetric two user case considered in Section 2.2, the difference in min-

imum sum rates as given by equation (2.134) can be evaluated exactly. When the

function to be reconstructed is Z = X1 − cX2, i.e., c̄ = [1− c]T , it evaluates to

(2.135) RminBTsum −Rlatsum = log
|c|
√

1− ρ2

1 + c2 − 2ρc

It is easy to verify that this difference in sum rate is always negative for any ρ >

0 if c < 0. Thus, in this regime, the Berger-Tung based coding scheme always
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outperforms the lattice based coding scheme. Indeed, it has been shown in [37] that

the Berger-Tung based coding scheme is optimal in this regime.

Also, the difference in sum rates is maximum when c = 1, i.e., Z = X1 −X2 and

in this case, the difference in minimum sum rate is

(2.136) RminBTsum −Rlatsum = log
1

2

√
1 + ρ

1− ρ

which tends to ∞ as ρ→ 1. Thus, the lattice based coding scheme gives arbitrarily

large rate gains over the Berger-Tung based coding scheme in this regime.

For the generalK-user case, given aK×K covariance matrix Σ, a natural question

to ask is which choice of the vector c̄ does the lattice coding scheme offer maximum

rate gains for? Observe that the difference in minimum sum rates given by equation

(2.134) can be bounded as follows.

RminBTsum −Rlatsum =
K

2
log |Σ|1/K

(∏K
i=1 c

2
i

)1/K

cT Σc
(2.137)

≤ K

2
log

|Σ|1/K

Kλmin

(∏K
i=1 c

2
i

)1/K

cT c/K
(2.138)

≤ K

2
log

|Σ|1/K

Kλmin

(2.139)

=
K

2
log

1

K

(
K∏

i=1

λi

λmin

)1/K

(2.140)

where the first inequality follows from the well known inequality that cT Σc ≥ λminc
T c

and the second from the arithmetic-geometric mean inequality. Here λmin is the

smallest eigenvalue of the covariance matrix Σ. Equality is achieved if c̄ = νmin, the

eigenvector corresponding to the smallest eigenvalue λmin and all components of νmin

have equal magnitude. This is the case for the two user symmetric case considered in

Section 2.2 where the covariance matrix Σ has eigenvalues (1+ρ) and (1−ρ) with the

corresponding eigenvectors [1, 1]T and [1, −1]T respectively. Thus, in this case, the
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lattice coding scheme offers maximum rate gains over the Berger-Tung based scheme

when the function to be reconstructed is Z = X1 − X2 whereas the Berger-Tung

based scheme outperforms the lattice coding scheme when Z = X1 +X2.

For the general case of an arbitrary K × K covariance matrix Σ, the rate gains

offered by the lattice based coding scheme over the Berger-Tung based scheme in-

creases as the function vector c becomes more closely aligned with the eigenvector

corresponding to the smallest eigenvalue of A. Equation (2.140) also offers some

necessary conditions for the lattice coding scheme to outperform the Berger-Tung

based scheme. One such condition is that

(2.141)

(
K∏

i=1

λi

λmin

)1/K

≥ K

For the symmetric two user case of Section 2.2, this implies that a necessary condition

for lattice coding scheme to outperform the Berger-Tung based coding scheme is

ρ ≥ 0.6. We shall see that this is indeed the case in Section 2.4.

2.4 Comparison of the Rate Regions

In this section, we compare the rate regions of the lattice based coding scheme

given in Theorem 1 and the Berger-Tung based coding scheme given in Theorem 2

for the case of two users. The function under consideration is Z = X1 − cX2. We

would like to emphasize that we have assumed that the sources have unit variance

and that ρ > 0. To demonstrate the performance of the lattice binning scheme, we

choose the sum rate of the two encoders as the performance metric.

Fig. 2.4 shows the sum rate of the lattice based scheme for different values of c and

distortion D. In Fig. 2.5 and Fig. 2.6, we compare the sum-rates of the two schemes

for varying values of ρ while fixing c = 1. From these figures, it can be seen that as

ρ → 1, the rate gain offered by the lattice based coding scheme increases especially
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in the low distortion regime. This agrees with the analysis of Section 2.3.5. These

figures also demonstrate that the rate region of Theorem 1 contains points outside

that of the rate region of Theorem 2. The opposite is also true since for D = σ2
Z , the

region in Theorem 2 contains the rate point (0, 0) while the one in Theorem 1 does

not.

Figure 2.4: Lattice based scheme’s sum-rate vs c and distortion D for ρ = 0.8

We observe that the lattice based scheme performs better than the Berger-Tung

based scheme for small distortions provided ρ is sufficiently high and c lies in a

certain interval. Fig. 2.7 and 2.8 are contour plots that illustrate this phenomenon

in detail. The contour labeled R encloses that region in which the pair (ρ, c) should

lie for the lattice binning scheme to achieve a sum rate that is at least R units less
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than the sum rate of the Berger-Tung scheme at the distortion D. Observe that we

get improvements in the limit as D → 0 only when ρ > 0.6 as predicted by equation

(2.141). In Fig. 2.7, the contour labeled R encloses those values of (ρ, c) for which

the RHS of equation (2.135) exceeds R and can be analytically calculated. Also,

the region where (ρ, c) can lie shrinks as the target distortion D increases suggesting

that the rate gains offered by the lattice coding scheme decreases as the distortion

D increases.
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Figure 2.7: Range of (ρ, c) where the lattice scheme performs better than the Berger Tung scheme
for D → 0
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CHAPTER 3

Distributed Source Coding with Abelian Group Codes

3.1 Introduction

In Chapter 2, we studied a distributed source coding problem when the sources

are jointly Gaussian. In this chapter, we turn our attention to the case of arbitrary

discrete valued sources when the decoder is interested in minimizing a joint distortion

criterion including the sources and the reconstruction. We develop a structured

coding framework for this problem along the same lines as the lattice coding solution

of Chapter 2. The role played by nested lattice codes there will here by played by

nested group codes built over abelian groups.

This approach is developed using the following two new ideas. First, we use

the fact that any abelian group is isomorphic to the direct sum of primary cyclic

groups to enable the decomposition of the source into its constituent “digits” which

are then encoded sequentially. Second, we show that, although group codes may

not approach the Shannon rate-distortion function in a single source point-to-point

setting, it is possible to construct non-trivial group codes which contain a code that

approaches it. Using these two ideas, we provide an all-group-code solution to the

problem and characterize an inner bound to the performance limit using single-letter

information quantities. We also demonstrate the superiority of this approach over

57
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the conventional coding approach based on unstructured random codes using some

examples.

3.2 Survey of Group Codes Literature

We now present a brief survey of known results in group codes. Good codes over

groups have been studied extensively in the literature when the order (size) of the

group is a prime which enables the group to have a field structure. Such codes

over Galois fields have been studied for the purpose of packing and covering (see

[72, 57] and the references therein). Two kinds of packing problems have received

attention in the literature: a) combinatorial rigid packing where the spheres are not

allowed to intersect with each other at all and b) probabilistic soft packing where

the spheres can have intersections of infinitesimally small measure with one another.

Probabilistic soft packing is equivalent to the problem of achieving the capacity of

symmetric channels. Similarly, covering problems have been studied in two ways:

a) combinatorial complete covering where the entire space needs to be completely

covered and (b) probabilistic almost covering where a space of infinitesimally small

measure can be left uncovered. Probabilistic soft covering is equivalent to the prob-

lem of achieving the rate-distortion function of symmetric sources with Hamming

distortion. Some of the salient features of these two approaches have been studied

in [55]. In the following we give a sample of works in the direction of probabilistic

packing and covering. Elias [65] showed that linear codes can achieve the capacity

of binary symmetric channels. A reformulation of this result can be used to show

[12] that linear codes can be used to losslessly compress any discrete source down

to its entropy. Dobrushin [67] showed that linear codes achieve the random coding

error exponent while Forney and Barg [9] showed that linear codes also achieve the
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expurgated error exponent. Further, these results have been shown to be true for

almost all linear codes. Gallager [68] shows that binary linear codes succeeded by a

nonlinear mapping can approach the capacity of any discrete memoryless channel.

It follows from Goblick’s work [66, 73, 74] on the covering radius of linear codes that

linear codes can be used to achieve the rate distortion bound for binary sources with

Hamming distortion. Blinovskii [75] derived upper and lower bounds on the covering

radius of linear codes and also showed that almost all linear codes (satisfying rate

constraints) are good source codes for binary sources with Hamming distortion. If

the size of the finite field is sufficiently large, it was shown that in [76] that linear

codes followed by a nonlinear mapping can achieve the rate distortion bound of a

discrete memoryless source with arbitrary distortion measure. Wyner [2] derived an

algebraic binning approach to provide a simple derivation of the Slepian-Wolf [1] rate

region for the case of correlated binary sources. Csiszar [42] showed the existence

of universal linear encoders which attain the best known error exponents for the

Slepian-Wolf problem derived earlier using nonlinear codes. In [45, 47], nested linear

codes were used for approaching the Wyner-Ziv rate-distortion function for the case

of doubly symmetric binary source and side information with Hamming distortion.

Random structured codes have been used in other related multiterminal communi-

cation problems [10, 77, 102] to get performance that is superior to that obtained by

random unstructured codes. In [71], a coding scheme based on sparse matrices and

ML decoding was presented that achieves the known rate regions for the Slepian-Wolf

problem, Wyner-Ziv problem and the problem of lossless source coding with partial

side information.

Codes over general cyclic groups were first studied by Slepian [78] in the context

of signal sets for the Gaussian channel. Forney [79] formalized the concept of geo-
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metrically uniform codes and showed that many known classes of good signal space

codes were geometrically uniform. Biglieri and Elia [80] addressed the problem of

existence of group codes for the Gaussian channel as defined by Slepian. Forney

and Loeliger [81, 82] studied the state space representation of group codes and de-

rived trellis representations which were used to build convolutional codes over abelian

groups. An efficient algorithm for building such minimal trellises was presented in

[83]. Loeliger [84] extended the concept of the M -PSK signal set matched to the

M -ary cyclic group to the case of matching general signal sets with arbitrary groups.

Building codes over abelian groups with good error correcting properties was studied

in [85]. The distance properties of group codes have also been extensively studied.

In [86, 87, 88], bounds were derived on the minimum distance of group codes and

it was also shown that codes built over nonabelian groups have asymptotically bad

minimum distance behavior. Group codes have also been used to build LDPC codes

with good distance properties [89]. The information theoretic performance limits of

group codes when used as channel codes over symmetric channels was studied in [90].

Similar analysis for the case of turbo codes and geometrically uniform constellations

was carried out in [91]. In [92], Ahlswede established the achievable capacity using

group codes for several classes of channels and showed that in general, group codes

do not achieve the capacity of a general discrete memoryless channel. Sharper results

were obtained for the group codes capacity and their upper bounds in [93, 94].

3.3 Problem Definition and Known Results

Consider a pair of discrete random variables (X, Y ) with joint distribution pXY (·, ·).

Let the alphabets of the random variables X and Y be X and Y respectively. The

source sequence (Xn, Y n) is independent over time and has the product distribution
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Pr((Xn, Y n) = (xn, yn)) =
∏n

i=1 pXY (xi, yi). We consider the following distributed

source coding problem. The two components of the source are observed by two en-

coders which do not communicate with each other. Each encoder communicates a

compressed version of its input through a noiseless channel to a joint decoder. The

decoder is interested in reconstructing the sources with respect to a general fidelity

criterion. Let Ẑ denote the reconstruction alphabet, and the fidelity criterion is

characterized by a mapping: d : X × Y × Ẑ → R+. We restrict our attention to

additive distortion measures, i.e., the distortion among three n-length sequences xn,

yn and ẑn is given by

d̂(xn, yn, ẑn) ,
1

n

n∑
i=1

d(xi, yi, ẑi).(3.1)

In this chapter, we will concentrate on the above distributed source coding prob-

lem (with one distortion constraint), and provide an information-theoretic inner

bound to the optimal rate-distortion region.

Definition 3.1. Given a discrete source with joint distribution pXY (x, y) and a

distortion function d(·, ·, ·), a transmission system with parameters (n, θ1, θ2,∆) is

defined by the set of mappings

(3.2) f1 : X n → {1, . . . , θ1}, f2 : Yn → {1, . . . , θ2}

(3.3) g : {1, . . . , θ1} × {1, . . . , θ2} → Ẑn

such that the following constraint is satisfied.

E(d̂(Xn, Y n, g(f1(X
n), f2(Y

n)))) ≤ ∆.(3.4)

Here fi(·) are the encoders and g(·) is the decoder mapping. d̂(Xn, Y n, g(f1(X
n), f2(Y

n)))

is the distortion incurred in the reconstruction.
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Definition 3.2. We say that a tuple (R1, R2, D) is achievable if ∀ε > 0, ∃ for all

sufficiently large n a transmission system with parameters (n, θ1, θ2,∆) such that the

encoder rates 1
n

log θi satisfy

(3.5)
1

n
log θi ≤ Ri + ε for i = 1, 2 ∆ ≤ D + ε.

The performance limit is given by the optimal rate-distortion region RD which is

defined as the set of all achievable tuples (R1, R2, D).

Note the similarities between these definitions and Definition 2.1. While the latter

definition presumes Gaussian sources, the above definitions are suitable for arbitrary

discrete valued sources. We remark that this problem formulation is very general.

For example, defining the joint distortion measure d(X,Y, Ẑ) as d1(F (X, Y ), Ẑ) en-

ables us to consider the problem of lossy reconstruction of a function of the sources as

a special case. Though we only consider a single distortion measure in this chapter,

it will become apparent that the results presented here are easily generalizable to the

case of multiple distortion criteria. This implies that the problem of reconstructing

the sources subject to two independent distortion criteria (the Berger-Tung prob-

lem [7]) can be subsumed in this formulation with multiple distortion criteria. The

Slepian-Wolf [1] problem, the Wyner-Ziv problem [5], the Yeung-Berger problem [18]

and the problem of coding with partial side information [3, 4] can also be subsumed

by this formulation since they all are special cases of the Berger-Tung problem. The

problem of remote distributed source coding [19, 23], where the encoders observe the

sources through noisy channels, can also be subsumed in this formulation using the

techniques of [24, 25]. We shall see that our coding theorem has implications on the

tightness of the Berger-Tung inner bound [7]. The two-user function computation

problem of lossy reconstruction of Z = F (X, Y ) can also be viewed as a special case
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of three-user Berger-Tung problem of encoding the correlated sources (X, Y, Z) with

three independent distortion criteria, where the rate of the third encoder is set to

zero and the distortions of the first two sources are set to their maximum values. We

shall see in Section 3.9.2 that for this problem, our rate region indeed yields points

outside the Berger-Tung rate region thus demonstrating that the Berger-Tung inner

bound is not tight for the case of three or more sources.

An achievable rate region for the problem defined in Definitions 3.1 and 3.2 can be

obtained based on the Berger-Tung coding scheme [7] as follows. Let P denote the

family of pair of conditional probabilities (PU |X , PV |Y ) defined on X ×U and Y ×V ,

where U and V are finite sets. For any (PU |X , PV |Y ) ∈ P , let the induced joint distri-

bution be PXY UV = PXY PU |XPV |Y . U, V play the role of auxiliary random variables.

Define G : U × V → Ẑ as that function of U, V that gives the optimal reconstruc-

tion Ẑ with respect to the distortion measure d(·, ·, ·). With these definitions, an

achievable rate region for this problem is presented below.

Fact 2. For a given source (X, Y ) and distortion d(·, ·, ·) define the region RDBT as

RDBT ,
⋃

(PU|X ,PV |Y )∈P

{
R1 ≥ I(X;U |V ), R2 ≥ I(Y ;V |U), R1 +R2 ≥ I(XY ;UV ),

D ≥ Ed(X, Y,G(U, V ))

}
(3.6)

Then any (R1, R2, D) ∈ RD∗
BT is achievable where ∗ denotes convex closure1.

Proof: Follows from the analysis of the Berger-Tung problem [7] in a straightforward

way.

This rate region is entirely analogous to the rate region presented in Theorem 2

for the case of reconstructing a linear function of jointly Gaussian sources.

1The cardinalities of U and V can be bounded using Caratheodary theorem [14].
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3.4 Groups - An Introduction

In this section, we present an overview of some properties of groups that are used

later. We refer the reader to [96] for more details. It is assumed that the reader has

some basic familiarity with the concept of groups. We shall deal exclusively with

abelian groups and hence the additive notation will be used for the group operation.

The group operation of the group G is denoted by +G. Similarly, the identity element

of group G is denoted by eG. The additive inverse of a ∈ G is denoted by −a. The

subscripts are omitted when the group in question is clear from the context. A subset

H of a group G is called a subgroup if H is a group by itself under the same group

operation +G. This is denoted by H < G. The direct sum of two groups G1 and G2

is denoted by G1 ⊕ G2. The direct sum of a group G with itself n times is denoted

by Gn.

An important tool in studying the structure of groups is the concept of group

homomorphisms.

Definition 3.3. Let G,H be groups. A function φ : G → H is called a homomor-

phism if for any a, b ∈ G

(3.7) φ(a+G b) = φ(a) +H φ(b).

A bijective homomorphism is called an isomorphism. If G and H are isomorphic, it

is denoted as G ∼= H.

A homomorphism φ(·) has the following properties: φ(eG) = eH and φ(−a) =

−φ(a). The kernel ker(φ) of a homomorphism is defined as ker(φ) , {x ∈ G : φ(x) =

eH}. An important property of homomorphisms is that they preserve the subgroup

structure. Let φ : G → H be a homomorphism. Let A < G and B < H. Then

φ−1(B) < G and φ(A) < H. In particular, taking B = {eH}, we get that ker(φ) < G.
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One can define a congruence result analogous to number theory using subgroups

of a group. Let H < G and let a ∈ G. Consider the set H + a = {h + a : h ∈ H}.

The members of this set form an equivalence class under the equivalence relation

a ∼ b if a − b ∈ H. This equivalence class is called the right coset of H in G with

a as the coset leader. The left coset of H in G is similarly defined. Since we deal

exclusively with abelian groups, we shall not distinguish cosets as being left or right.

All cosets are of the same size as H and two different cosets are either distinct or

identical. Thus, the set of all distinct cosets of H in G form a partition of G. These

properties shall be used in our coding scheme.

It is known that a finite cyclic group of order n is isomorphic to the group Zn which

is the set of integers {0, . . . , n− 1} with the group operation as addition modulo-n.

A cyclic group whose order is the power of a prime is called a primary cyclic group.

The following fact demonstrates the role of primary cyclic groups as the building

blocks of all finite abelian groups.

Fact 3. Let G be a finite abelian group of order n > 1 and let the unique factorization

of n into distinct prime powers be n =
∏k

i=1 p
ei
i . Then,

(3.8) G ∼= A1 ⊕ A2 · · · ⊕ Ak where |Ai| = pei
i

Further, for each Ai, 1 ≤ i ≤ k with |Ai| = pei
i , we have

(3.9) Ai
∼= Z

p
h1
i
⊕ Z

p
h2
i
· · · ⊕ Z

p
ht
i

where h1 ≥ h2 · · · ≥ ht > 0 are integers determined by Ai and
∑t

j=1 hj = ei. This

decomposition of Ai into direct sum of primary cyclic groups is called the invariant

factor decomposition of Ai. Putting equations (3.8) and (3.9) together, we get a

decomposition of an arbitrary abelian group G into a direct sum of possibly repeated

primary cyclic groups. Further, this two step decomposition of G into Ais and then
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the decomposition of Ais into Zhi
pi

s is unique, i.e., if G ∼= B1⊕· · ·⊕Bk with |Bi| = pei
i

for all i, then Bi
∼= Ai and Bi and Ai have the same invariant factors.

Proof: See [96], Section 5.2, Theorem 5.

For example, Fact 3 implies that a given abelian groupG of order 8 is isomorphic to

either Z8 or Z4⊕Z2 or to Z2⊕Z2⊕Z2 where⊕ denotes the direct sum of groups. Thus,

we first consider the coding theorems only for the primary cyclic groups Zpr . Results

obtained for such groups are then extended to hold for arbitrary abelian groups

through this decomposition. Suppose G has a decomposition G ∼= Zp
e1
1
⊕ · · · ⊕ Zper

r

where p1 ≥ · · · ≥ pr are primes. A random variable X taking values in G can be

thought of as a vector valued random variable X = (X1, . . . , Xr) with Xi taking

values in the cyclic group Zp
ei
i
, 1 ≤ i ≤ r. Xi are called the digits of X.

We now present some properties of primary cyclic groups that we shall use in

our proofs. The group Zm is a commutative ring with the addition operation being

addition modulo-m and the multiplication operation being multiplication modulo-m.

This multiplicative structure is also exploited in the proofs. The group operation in

Zn
m is denoted by un

1 + un
2 . Addition of un

1 with itself k times is denoted by kun
1 .

The multiplication operation between elements x and y of the underlying ring Zm is

denoted by xy. We shall say that x ∈ Zm is invertible if there exists y ∈ Zm such that

xy = 1 where 1 is the multiplicative identity of Zm. The multiplicative inverse of

x ∈ Zm, if it exists, is denoted by x−1. The additive inverse of un
1 ∈ Zn

m which always

exists is denoted by −un
1 . The group operation in the group Zm is often explicitly

denoted by ⊕m.

We shall build our codebooks as kernels of homomorphisms from Zn
pr to Zk

pr ,

i.e., every sequence in Zn
pr that gets mapped to the identity element of Zk

pr under
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a given homomorphism φ(·) is considered a codeword and the collection of all such

codewords is defined as the codebook corresponding to that homomorphism φ(·).

Justification for restricting the domain of our homomorphisms to Zn
pr comes from

the decomposition result of Fact 3. The reason for restricting the image of the

homomorphisms to Zk
pr shall be made clear later on (see the proof of Lemma B.1).

We need the following lemma on the structure of homomorphisms from Zn
pr to Zk

pr .

Fact 4. Let Hom(Zn
pr ,Zk

pr) be the set of all homomorphisms from the group Zn
pr to Zk

pr

and M(k, n,Zpr) be the set of all k×n matrices whose elements take values from the

group Zpr . Then, there exists a bijection between Hom(Zn
pr ,Zk

pr) and M(k, n,Zpr)

given by the invertible mapping f : Hom(Zn
pr ,Zk

pr) →M(k, n,Zpr) defined as f(φ) =

Φ such that φ(xn) = Φ · xn for all xn ∈ Zn
pr . Here, the multiplication and addition

operations involved in the matrix multiplication are carried out modulo-pr.

Proof: See [97], Section VI.

3.5 Motivation of the Coding Scheme

In this section, we present a sketch of the ideas involved in our coding scheme by

demonstrating them for the simple case when the sources are binary. The emphasis

in this section is on providing an overview of the main ideas and the exposition is

kept informal. Formal definitions and theorems follow in subsequent sections. We

first review the linear coding strategy of [12] to reconstruct losslessly the modulo-2

sum of Z = X ⊕2 Y of the binary sources X and Y . We then demonstrate that

the Slepian-Wolf problem can be solved by a similar coding strategy. We generalize

this coding strategy for the case when the fidelity criterion is such that the decoder

needs to losslessly reconstruct a function F (X, Y ) of the sources. This shall motivate

the problem of building “good” channel codes over abelian groups. We then turn



68

our attention to the lossy version of the problem where the sources X and Y are

quantized to U and V respectively first. For this purpose, we need to build “good”

source codes over abelian groups. Then, encoding is done in such a way that the

decoder can reconstruct G(U, V ) which is the optimal reconstruction of the sources

with respect to the fidelity criterion d(·, ·, ·) given U, V . This shall necessitate the

need for “good” nested group codes where the coarse code is a good channel code

and the fine code is a good source code. These concepts shall be made precise later

on in Sections 3.6 and 3.7.

3.5.1 Lossless Reconstruction of the Modulo-2 Sum of the Sources

This problem was studied in [12] where an ingenious coding scheme involving

linear codes was presented. This coding scheme can be understood as follows. It is

well known [2] that linear codes can be used to losslessly compress a source down to

its entropy. Formally, for any binary memoryless source Z with distribution pZ(z)

and any ε > 0, there exists a k×n binary matrix A with k
n
≤ H(Z)+ε and a function

ψ such that

(3.10) P (ψ(Azn) 6= zn) < ε

for all sufficiently large n. This binary matrix A is the parity check matrix of a

linear code that achieves the symmetric channel capacity of a additive noise channel

with the noise being independent of channel input and having distribution pZ(z).

Since the encoder transmits the k bit sequence Azn, the rate of the lossless source is

k
n
≤ H(Z) + ε.

Now, let Z = X ⊕2 Y be the modulo-2 sum of the binary sources X and Y . Let

the matrix A satisfy equation (3.10). The encoders of X and Y transmit s1 = Axn

and s2 = Ayn respectively at rates (H(Z), H(Z)). The decoder, upon receiving s1
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and s2, computes ψ(s1 ⊕2 s2) = ψ(Axn ⊕2 Ay
n) = ψ(Azn). Since the A matrix

was chosen in accordance with equation (3.10), the decoder output equals zn with

high probability. Thus, the rate pair (H(Z), H(Z)) is achievable. If the source

statistics is such that H(Z) > H(X), then clearly it is better to compress X at a

rate H(X). Thus, the Korner-Marton coding scheme achieves the rate pair (R1, R2)

with R1 ≥ min{H(X), H(Z)} and R2 ≥ min{H(Y ), H(Z)}. This coding strategy

shall be referred to as the Korner-Marton coding scheme from here on.

The crucial part played by linear codes in this coding scheme is noteworthy. Had

there been a centralized encoder with access to xn and yn, the coding scheme would

be to compute zn = xn ⊕2 y
n first and then compress it using any method known to

achieve the entropy bound. Because the encoding is linear, it enables the decoder to

use the distributive nature of the linear code over the modulo-2 operation to compute

s1⊕2 s2 = Azn. Thus, from the decoder’s perspective, there is no distinction between

this distributed coding scheme and a centralized scheme involving a linear code. Also,

in contrast to the usual norm in information theory, there is no other known coding

scheme that approaches the performance of this linear coding scheme. This critical

role played by linear codes in this example is completely analogous to the role played

by lattice codes in Chapter 2 and indeed the intuition for using linear codes described

above is the same as that described in Section 2.2.3 for using lattice codes.

More generally, in the case of a prime q, a sum rate of 2H(X ⊕q Y ) can be

achieved [16] for the reconstruction of the sum of the two q-ary sources Z = X ⊕q Y

in any prime field Zq. Abstractly, the Korner-Marton scheme can be thought of as

a structured coding scheme with codes built over groups that enable the decoder to

reconstruct the group operation losslessly. It turns out that extending the scheme

would involve building “good” channel codes over arbitrary abelian groups. It is
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known (see Fact 3) that primary cyclic groups Zpr are the building blocks of all

abelian groups and hence it suffices to build “good” channel codes over the cyclic

groups Zpr .

3.5.2 Lossless Reconstruction of the Sources

The classical result of Slepian and Wolf [1] states that it is possible to reconstruct

the sourcesX and Y noiselessly at the decoder with a sum rate of R1+R2 = H(X, Y ).

As was shown in [42], the Slepian-Wolf bound is achievable using linear codes. Here,

we present an interpretation of this linear coding scheme and connect it to the one

in the previous subsection. We begin by making the observation that reconstructing

the function Z = (X, Y ) for binary sources can be thought of as reconstructing a

linear function in the field Z2⊕Z2. This equivalence is demonstrated below. Let the

elements of Z2⊕Z2 be {00, 01, 10, 11}. Denote the addition operation of Z2⊕Z2 by

⊕K
2.

Define the mappings

X̃ =

 00 if X = 0

01 if X = 1

(3.11)

Ỹ =

 00 if Y = 0

10 if Y = 1

(3.12)

Clearly, reconstructing (X, Y ) losslessly is equivalent to reconstructing the func-

tion Z̃ = X̃⊕K Ỹ losslessly. The next observation is that elements in Z2⊕Z2 can be

represented as two dimensional vectors whose components are in Z2. Further, addi-

tion in Z2 ⊕ Z2 is simply vector addition with the components of the vector added

in Z2. Let the first and second bits of X̃ be denoted by X̃1 and X̃2 respectively. The

2The subscript K derives from the Z2 ⊕ Z2 group being also known as the Klein-4 group
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same notation holds for Ỹ and Z̃ as well. Then, we have the decomposition of the

vector function Z̃ as Z̃i = X̃i ⊕2 Ỹi for i = 1, 2.

Encoding the vector function Z̃ directly using the Korner-Marton coding scheme

would entail a sum rate of R1+R2 = min{H(X, Y ), H(X)}+min{H(X, Y ), H(Y )} =

H(X)+H(Y ) which is more than the sum rate dictated by the Slepian-Wolf bound.

Instead, we encode the scalar components of the function Z̃ sequentially using the

Korner-Marton scheme. Suppose the first digit Z̃1 is encoded first. Assuming that

it gets decoded correctly at the decoder, it is available as side information for the

encoding of the second digit Z̃2. Clearly, the Korner-Marton scheme can be used to

encode the first digit Z̃1. The rate pair (R11, R21) achieved by the scheme is given

by

R11 ≥ min{H(Z̃1), H(X̃1)} = H(X̃1) = 0(3.13)

R21 ≥ min{H(Z̃1), H(Ỹ1)} = H(Z̃1)(3.14)

It is straightforward to extend the Korner-Marton coding scheme to the case

where decoder has available to it some side information. Since Z̃1 is available as side

information at the decoder, the rates needed to encode the second digit Z̃2 are

R12 ≥ min{H(Z̃2 | Z̃1), H(X̃2 | Z̃1)} = H(Z̃2 | Z̃1)(3.15)

R22 ≥ min{H(Z̃2 | Z̃1), H(Ỹ2 | Z̃1)} = H(Ỹ2 | Z̃1) = 0(3.16)

Thus, the overall rate pair needed to reconstruct the sources losslessly is

R1 = R11 +R12 ≥ H(Z̃2 | Z̃1) = H(X̃2 | Ỹ1)(3.17)

R2 = R21 +R22 ≥ H(Z̃1) = H(Ỹ1).(3.18)

The sum rate for this scheme is R1 + R2 = H(X̃2, Ỹ1) = H(X,Y ) thus equaling the

Slepian-Wolf bound.
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3.5.3 Lossless Reconstruction of an Arbitrary Function F (X, Y )

While there are more straightforward ways of achieving the Slepian-Wolf bound

than the method outlined in Section 3.5.2, our encoding scheme has the advantage

of putting the Korner-Marton coding scheme and the Slepian-Wolf coding scheme

under the same framework. The ideas used in these two examples can be abstracted

and generalized for the problem when the decoder needs to losslessly reconstruct

some function F (X, Y ) in order to satisfy the fidelity criterion.

Let us assume that the cardinality of X and Y are respectively α and β. The steps

involved in such an encoding scheme can be described as follows. We first represent

the function as equivalent to the group operation in some abelian group A. This is

referred to as “embedding” the function in A. This abelian group is then decomposed

into its constituent cyclic groups and the embedded function is sequentially encoded

using the Korner-Marton scheme outlined in Section 3.5.1. Encoding is done keeping

in mind that, to decode a digit, the decoder has as available side information all

previously decoded digits.

It suffices to restrict attention to abelian groups A such that |F| ≤ |A| ≤ αβ

where F is the alphabet over which the output of the function F (·, ·) takes values.

Clearly, if the function F1(X, Y ) , (X,Y ) can be embedded in a certain abelian

group, then any function F (X, Y ) can be reconstructed in that abelian group. This

is because the decoder can proceed by reconstructing the sources (X, Y ) and then

computing the function F (X, Y ). It can be shown (see Appendix B.6) that the

function F1(X, Y ) , (X, Y ) can be reconstructed in the group Zα ⊕ Zβ which is

of size αβ. Clearly, |A| ≥ |Z| is a necessary condition for the reconstruction of

Z = F (X, Y ).
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3.5.4 Lossy Reconstruction

We now turn our attention to the case when the decoder wishes to obtain a

reconstruction Ẑ with respect to a fidelity criterion. The coding strategy is as follows:

Quantize the sources X and Y to auxiliary variables U and V . Given the quantized

sources U and V , let G(U, V ) be the optimal reconstruction with respect to the

distortion measure d(·, ·, ·). Reconstruct the function G(U, V ) losslessly using the

coding scheme outlined in Section 3.5.3.

Just like we used nested lattice codes in Chapter 2, we shall use nested group

codes to effect this quantization. Nested group codes arise naturally in the area of

distributed source coding and require that the fine code be a “good” source code and

the coarse code be a “good” channel code for appropriate notions of goodness. We

have already seen that to effect lossless compression, the channel code operates at

the digit level. It follows then that we must use a series of nested group codes, one for

each digit, over appropriate cyclic groups. For instance, if the first digit of G(U, V )

is over the cyclic group Zp
e1
1

, then we need nested group codes over Zp
e1
1

that encode

the sources X and Y to Ũ1 and Ṽ1 respectively. The quantization operation is also

carried out sequentially, i.e., the digits Ũ2 and Ṽ2 are encoded given the knowledge

that either Z̃1 or (Ũ1, Ṽ1) is available at the decoder and so on. The existence of

“good” nested group codes over arbitrary cyclic groups is shown later.

The steps involved in the overall coding scheme can be detailed as follows:

• Let U, V be discrete random variables over the alphabet U ,V respectively. Fur-

ther suppose that |U| = α, |V| = β. Choose the joint density PX,Y,U,V =

PX,Y PU |XPV |Y satisfying the Markov chain U −X − Y − V .

• Let G(U, V ) be the optimal reconstruction function with respect to d(·, ·, ·) given
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U, V .

• Embed the function G(U, V ) in an abelian group A, |G| ≤ |A| ≤ αβ.

• Decompose G(U, V ) into its constituent digits. Fix the order in which the digits

are to be sequentially encoded.

• Suppose the bth digit is the cyclic group Zp
eb
b

. Quantize the sources (Xn, Y n)

into digits (Ũb, Ṽb) using the digits already available at the decoder as side

information. The details of the quantization procedure are detailed later.

• Encode Z̃b = Ũb ⊕p
eb
b
Ṽb using group codes.

3.6 Definitions

When a random variable X takes value over the group Zpr , we need to ensure

that it doesn’t just take values in some proper subgroup of Zpr . This leads us to the

concept of a non-redundant distribution over a group.

Definition 3.4. A random variable X with alphabet X = Zpr and its distribution

PX are said to be non-redundant if PX(x) > 0 for at least one symbol x ∈ Zpr\pZpr .

It follows from this definition that a sequence xn belonging to the typical set

An
ε (X) contains at least one x ∈ Zpr\pZpr if X is non-redundant. Such sequences

are called non-redundant sequences. A redundant random variable taking values

over Zpr can be made non-redundant by a suitable relabeling of the symbols. Also,

note that a redundant random variable over Zpr is non-redundant when viewed as

taking values over Zpr−i for some 0 < i ≤ r. Our coding scheme involves good nested

group codes for source and channel coding and the notion of embedding the optimal

reconstruction function in a suitable abelian group. These concepts are made precise

in the following series of definitions.
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Definition 3.5. A bivariate function G : U ×V → G is said to be embeddable in an

abelian group A with respect to the distribution pUV (u, v) on U × V if there exists

injective functions S
(A)
U : U → A, S

(A)
V : V → A and a surjective function S

(A)
G : A→ G

such that

(3.19) S
(A)
G (S

(A)
U (u) +A S

(A)
V (v)) = G(u, v) ∀(u, v) ∈ U × V with pUV (u, v) > 0

If G(U, V ) is indeed embeddable in the abelian group A, it is denoted as G(U, V ) ⊂ A

with respect to the distribution pUV (u, v). Define the mapped random variables

Ū = S
(A)
U (U) and V̄ = S

(A)
V (V ). For the remainder of this chapter, the dependence of

Ũ and Ṽ on A is suppressed and the group in question will be clear from the context.

Suppose the function G(U, V ) ⊂ A with respect to pUV . We encode the function

G(U, V ) sequentially by treating the sources as vector valued over the cyclic groups

whose direct sum is isomorphic to A. This alternative representation of the sources

is made precise in the following definition.

Definition 3.6. Suppose the function G(U, V ) ⊂ A with respect to pUV . Let A be

isomorphic to ⊕k
i=1Zp

ei
i

where p1 ≤ · · · ≤ pk are primes and ei are positive integers.

Then, it follows from Fact 3 that there exists a bijection SA : A → Zp
e1
1
× . . .Zp

ek
k

.

Let Ũ = SA(Ū), Ṽ = SA(V̄ ). Let Ũ = (Ũ1, . . . , Ũk) be the vector representation of Ũ .

The random variables Ũi are called the digits of Ũ . A similar decomposition holds for

Ṽ . Define Z̃ = (Z̃1, . . . , Z̃k) where Z̃i , Ũi⊕p
ei
i
Ṽi. It follows that S−1

A (Z̃) = Ū +A V̄ .

Our coding operation proceeds thus: we reconstruct the function G(U, V ) by

first embedding it in some abelian group A and then reconstructing Ū +A V̄ which

we accomplish sequentially by reconstructing Ũi ⊕p
ei
i
Ṽi one digit at a time. While

reconstructing the ith digit, the decoder has as side information the previously re-

constructed (i− 1) digits. This digit decomposition approach requires that we build
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codes over the primary cyclic groups Zpr which are “good” for various coding pur-

poses. We define the concepts of group codes and what it means for group codes to

be “good” in the following series of definitions.

Definition 3.7. Let A be a finite abelian group. A group code C of blocklength n

over the group A is a subset of An which is closed under the group addition operation,

i.e., C ⊂ An is such that if cn1 , c
n
2 ∈ C, then so does cn1 +An cn2 .

Recall that the kernel ker(φ) of a homomorphism φ : An → Ak is a subgroup of

An. We use this fact to build group codes. As mentioned earlier, we build codes over

the primary cyclic group Zpr . In this case, every group code C ⊂ Zn
pr has associated

with it a k×n matrix H with entries in Zpr which completely defines the group code

as

(3.20) C , {xn ∈ Zn
pr : Hxn = 0k}.

Here, the multiplication and addition are carried out modulo-pr. H is called the

parity-check matrix of the code C. We employ nested group codes in our coding

scheme. In distributed source coding problems, we often need one of the components

of a nested code to be a good source code while the other one to be a good channel

code. We shall now define nested group codes and the notions of “goodness” used

to classify a group code as a good source or channel code.

Definition 3.8. A nested group code (C1, C2) is a pair of group codes such that every

codeword in the codebook C2 is also a codeword in C1, i.e., C2 < C1. Their associated

parity check matrices are the k1 × n matrix H1 and the k2 × n matrix H2. They are

related to each other as H1 = J ·H2 for some k1 × k2 matrix J . One way to enforce



77

this relation between H1 and H2 would be to let

(3.21) H2 =

 H1

∆H


where ∆H is a (k2 − k1)× n matrix over Zpr .

The code C1 is called the fine group code while C2 is called the coarse group code.

When nested group codes are used in distributed source coding, typically the coset

leaders of C2 in C1 are employed as codewords. In such a case, the rate of the nested

group code would be n−1(k2 − k1) log pr bits.

We define the notion of “goodness” associated with a group code below. To

be precise, these notions are defined for a family of group codes indexed by the

blocklength n. However, for the sake of notational convenience, this indexing is not

made explicit.

Definition 3.9. Let PXU be a distribution over X ×U such that the marginal PU is

a non-redundant distribution over Zpr for some prime power pr. For a given group

code C over U and a given ε > 0, let the set Aε(C) be defined as

(3.22) Aε(C) , {xn : ∃un ∈ C such that (xn, un) ∈ A(n)
ε (X,U)}.

The group code C over U is called a good source code for the triple (X ,U , PXU) if

we have ∀ε > 0,

(3.23) P n
X(Aε(C)) ≥ 1− ε

for all sufficiently large n.

Note that, a group code which is a good source code in this sense may not be a

good source code in the usual Shannon sense. Rather, such a group code contains



78

a subset which is a good source code in the Shannon sense for the source PX with

forward test channel PU |X .

Definition 3.10. Let PZS be a distribution over Z × S such that the marginal PZ

is a non-redundant distribution over Zpr for some prime power pr. For a given group

code C over Z and a given ε > 0, define the set Bε(C) as follows:

(3.24) Bε(C) , {(zn, sn) : ∃z̃n such that (z̃n, sn) ∈ A(n)
ε (Z, S) and Hz̃n = Hzn}.

Here, H is the k(n)× n parity check matrix associated with the group code C. The

group code C is called a good channel code for the triple (Z,S, PZS) if we have

∀ε > 0,

(3.25) P n
ZS(Bε(C)) ≤ ε

for all sufficiently large n. Associated with such a good group channel code would

be a decoding function ψ : Zk
pr × Sn → Zn

pr such that

(3.26) P (ψ(Hzn, sn) = zn) ≥ 1− ε.

Note that, as before, a group code which is a good channel code in this sense may

not a good channel code in the usual Shannon sense. Rather, every coset of such a

group code contains a subset which is a good channel code in the Shannon sense for

the channel PS|Z with input distribution PZ . This interpretation is valid only when

S is a non-trivial random variable.

Lemma 3.11. For any triple (Z,S, PZS) of two finite sets and a distribution, with

|Z| = pr a prime power and PZ non-redundant, there exists a sequence of group codes

C that is a good channel code for the triple (Z,S, PZS) such that the dimensions of

their associated k(n)× n parity check matrices satisfy

(3.27) lim
n→∞

k(n)

n
log pr = max

0≤i<r

(
r

r − i

)
(H(Z|S)−H([Z]i|S))
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where [Z]i is a random variable taking values over the set of all distinct cosets of piZpr

in Zpr . For example, if Z = Z8, then [Z]2 is a 4-ary random variable with symbol

probabilities (pZ(0) + pZ(4)), (pZ(1) + pZ(5)), (pZ(2) + pZ(6)) and (pZ(3) + pZ(7)).

Proof: See Appendix B.1.

Note that [Z]0 is a constant and [Z]r = Z. When building codes over groups, each

proper subgroup of the group contributes a term to the maximization in equation

(3.27). Since the smaller the right hand side of equation (3.27), the better the

channel code is, we incur a penalty by building codes over groups with large number

of subgroups.

Lemma 3.12. For any triple (X ,U , PXU) of two finite sets and a distribution, with

|U| = pr a prime power and PU non-redundant, there exists a sequence of group codes

C that is a good source code for the triple (X ,U , PXU) such that the dimensions of

their associated k(n)× n parity check matrices satisfy

(3.28) lim
n→∞

k(n)

n
log pr = r|H(U |X)− log pr−1|+

where |x|+ = max(x, 0).

Proof: See Appendix B.2.

Putting r = 1 in equations (3.27) and (3.28), we recover the known results of

performance limits obtainable while using linear codes built over Galois fields.

Lemma 3.13. Let X, Y, S, U, V be five random variables where U and V take value

over the group Zpr for some prime power pr. Let Z = U⊕prV . Let U → X → Y → V

form a Markov chain, and let S → (X,Y ) → (U, V ) form a Markov chain. From the

Markov chains, it follows that H(U |X) ≤ H(Z|S), H(V |Y ) ≤ H(Z|S). Without loss
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of generality, let H(U |X) ≤ H(V |Y ) ≤ H(Z|S). Then, there exists a pair of nested

group codes (C11, C2) and (C12, C2) such that

• C11 is a good group source code for the triple (X ,U , PXU) with

(3.29) lim
n→∞

k11(n)

n
log pr = r|H(U |X)− log pr−1|+

• C12 is a good group source code for the triple (Y ,V , PY V ) with

(3.30) lim
n→∞

k12(n)

n
log pr = r|H(V |Y )− log pr−1|+

• C2 is a good group channel code for the triple (Z,S, PZS) with

(3.31) lim
n→∞

k2(n)

n
log pr = max

0≤i<r

(
r

r − i

)
(H(Z|S)−H([Z]i|S))

Proof: See Appendix B.3

Note that while choosing the codebooks C11, C12 and C2, the perturbation parame-

ters ε in Definitions 3.9 and 3.10 need to be chosen appropriately relative to each other

so that the n-length sequences (Xn, Y n, Sn, Un, V n, Zn) are jointly typical with high

probability. Due to the Markov chains U → X → Y → V and S → (X, Y ) → (U, V ),

it follows from Markov lemma [6] that if (Xn, Y n, Sn) is generated according to PXY S

and if Un is generated jointly typical with Xn and V n is generated jointly typical

with Y n, then (Xn, Y n, Sn, Un, V n, Zn) is jointly strongly typical (for an appropriate

choice of ε) with high probability.

3.7 The Coding Theorem

We are given discrete random variables X and Y which are jointly distributed

according to PXY . Let P denote the family of pair of conditional probabilities

(PU |X , PV |Y ) defined on X × U and Y × V , where U and V are finite sets, |U| =
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α, |V| = β. For any (PU |X , PV |Y ) ∈ P , let the induced joint distribution be PXY UV =

PXY PU |XPV |Y . U, V play the role of auxiliary random variables. Define G : U ×V →

Ẑ as that function of U, V that gives the optimal reconstruction Ẑ with respect

to the distortion measure d(·, ·, ·). Let G denote the image of G(U, V ). Let T =

{A : A is abelian, |G| ≤ |A| ≤ αβ, G(U, V ) ⊂ A with respect to PUV }. It is shown

in Appendix B.6 that the set T is non-empty, i.e., there always exists an abelian

group A ∈ T in which any function G(U, V ) can be embedded. For any A ∈ T , let

A be isomorphic to ⊕k
i=1Zp

ei
i
. Let Ũ = SA(S

(A)
U (U)) and Ṽ = SA(S

(A)
V (V )) where

the mappings are as defined in Definitions 3.5 and 3.6. Define Z̃ = (Z̃1, . . . , Z̃k)

where Z̃i = Ũi ⊕ Ṽi and the addition is done in the group to which the digits Ũi, Ṽi

belong. Assume without loss of generality that the digits Ũi, Ṽi, Z̃i, 1 ≤ i ≤ k are all

non-redundant. If they are not, they can be made so by suitable relabeling of the

symbols. Recall the definition of [Z]i from Lemma 3.11. The encoding operation of

the X and Y encoders proceed in k steps with each step producing one digit of Ũ and

Ṽ respectively. Let πA : {1, . . . , k} → {1, . . . , k} be a permutation. The permutation

πA can be thought of as determining the order in which the digits get encoded and

decoded. Let the set ΠA(b), 1 ≤ b ≤ k be defined as ΠA(b) = {l : πA(l) < b}. The set

ΠA(b) contains the indices of all the digits that get encoded before the bth stage. At

the bth stage, let the digits ŨπA(b), ṼπA(b) take values over the group Zrb
pb

. With these

definitions, an achievable rate region for the problem is presented below.
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Theorem 4. For a given source (X,Y ), define the region RDin as

RDin ,
⋃

(PU|X,PV |Y )∈P

A∈T ,πA

{
(R1, R2, D) : R1 ≥

k∑
b=1

min
(
R

(1)
1b , R

(2)
1b

)
,(3.32)

R2 ≥
k∑

b=1

min
(
R

(1)
2b , R

(2)
2b

)
,

D ≥ Ed(X, Y,G(U, V ))

}

where

R
(1)
1b >

[
max

0≤i<rb

(
rb

rb − i

)(
H(Z̃πA(b) | Z̃ΠA(b))−H([Z̃πA(b)]i|Z̃ΠA(b))

)]
− rb(|H(ŨπA(b) | X, ŨΠA(b))− log prb−1

b |+)(3.33)

and

R
(2)
1b >

[
max

0≤i<rb

(
rb

rb − i

)(
H(ŨπA(b) | Z̃ΠA(b))−H([ŨπA(b)]i | Z̃ΠA(b))

)]
− rb(|H(ŨπA(b) | X, ŨΠA(b))− log prb−1

b |+)(3.34)

The quantities R
(1)
2b and R

(2)
2b are similarly defined with (X,U) replaced by (Y, V ).

Then any (R1, R2, D) ∈ RD∗
in is achievable where ∗ denotes convex closure.

Proof: Since the encoders don’t communicate with each other, we impose the Markov

chain V − Y − X − U on the joint distribution PXY UV . The family P contains all

distributions that satisfy this Markov chain. Fix such a joint distribution. Fix

A ∈ T and the permutation πA : {1, . . . , k} → {1, . . . , k}. The encoding proceeds in

k stages with the bth stage encoding the digits ŨπA(b), ṼπA(b) in order to produce the

digit Z̃πA(b). For this, the decoder has side information Z̃ΠA(b).

Let ŨπA(b), ṼπA(b) take values over the group Zrb

pb . The encoders have two encoding

options available at the bth stage. They can either encode the digits ŨπA(b) and
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ṼπA(b) directly or encode in such a way that the decoder is able to reconstruct Z̃πA(b)

directly. We present a coding scheme to achieve the latter first.

We shall use a pair of nested group codes (C11b, C2b) and (C12b, C2b) to encode

Z̃πA(b). Let the corresponding parity check matrices of these codes be H11b, H12b and

H2b respectively. Let the dimensionality of these matrices be k11b × n, k12b × n and

k2b × n respectively. These codebooks are all over the group Zrb

pb . We need C11b to

be a good source code for the triple (X × ŨΠA(b), ŨπA(b), PXŨΠA(b)ŨπA(b)
), C12b to be a

good source code for the triple (Y×ṼΠA(b), ṼπA(b), PY ṼΠA(b)ṼπA(b)
) and C2b to be a good

channel code for the triple (Z̃πA(b), Z̃ΠA(b), PZ̃πA(b)Z̃ΠA(b)
).

The encoding scheme used by the X-encoder to encode the bth digit, 1 ≤ b ≤ k is

detailed below. The X-encoder looks for a typical sequence Ũn
πA(b) ∈ C11b such that it

is jointly typical with the source sequence Xn and the previous encoder output digits

Ũn
ΠA(b). If it finds at least one such sequence, it chooses one of these sequences and

transmits the syndrome Sxb , H2bŨ
n
πA(b) to the decoder. If it finds no such sequence,

it declares an encoding error. The operation of the Y -encoder is similar.

Let ψb(·, ·) be the decoder corresponding to the good channel code C2b. The

decoder action is described by the following series of equations. The decoder receives

the syndromes Sxb and Syb.

ˆ̃ZπA(b) = ψb

(
Sxb ⊕pb

rb Syb, Z̃
n
ΠA(b)

)
= ψb

(
H2bŨ

n
πA(b) ⊕pb

rb H2bṼ
n
πA(b), Z̃

n
ΠA(b)

)
= ψb

(
H2b

(
Ũn

πA(b) ⊕pb
rb Ṽ n

πA(b)

)
, Z̃n

ΠA(b)

)
= ψb

(
H2bZ̃

n
πA(b), Z̃

n
ΠA(b)

)
(a)
= Z̃n

πA(b) with high probability(3.35)

where (a) follows from the fact that C2b is a good channel code for the triple
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(Z̃πA(b), Z̃ΠA(b), PZ̃πA(b)Z̃ΠA(b)
).

The rate expended by the X-encoder at the bth stage can be calculated as follows.

Since C11b is a good source code for the triple (X × ŨΠA(b), ŨπA(b), PXŨΠA(b)ŨπA(b)
), we

have from equation (3.28) that the dimensions of the parity check matrix H11b satisfy

(3.36)
k11b

n
log prb

b ≤ rb(|H(ŨπA(b) | X, ŨΠA(b))− log prb−1
b |+)− ε1

Since C2b is a good channel code for the triple (Z̃πA(b), Z̃ΠA(b), PZ̃πA(b)Z̃ΠA(b)
), the di-

mensions of the parity check matrix H2b satisfy

(3.37)
k2b

n
log prb

b ≥ max
0≤i<rb

(
rb

rb − i

)(
H(Z̃πA(b) | Z̃ΠA(b))−H([Z̃πA(b)]i|Z̃ΠA(b))

)
+ ε2

The rate of the nested group code in bits would be R1 = n−1(k2b − k11b) log prb
b .

Therefore,

R
(1)
1b ≥

[
max

0≤i<rb

(
rb

rb − i

)(
H(Z̃πA(b) | Z̃ΠA(b))−H([Z̃πA(b)]i|Z̃ΠA(b))

)]
− rb(|H(ŨπA(b) | X, ŨΠA(b))− log prb−1

b |+) + ε1 + ε2(3.38)

The other option that the encoders have is to directly encode the digits ŨπA(b)

and ṼπA(b). This can also be accomplished using nested group codes as follows. The

X encoder uses the nested group code (C11b, C21b) such that the fine group code C11b

is a good source code for the triple (X × ŨΠA(b), ŨπA(b), PXŨΠA(b)ŨπA(b)
) and C21b is a

good channel code for the triple (ŨπA(b), Z̃ΠA(b), PŨπA(b)Z̃ΠA(b)
). The Y encoder uses

the nested group code (C12b, C22b) such that the fine group code C12b is a good source

code for the triple (Y × ṼΠA(b), ṼπA(b), PY ṼΠA(b)ṼπA(b)
) and C22b is a good channel code

for the triple (ṼπA(b), Z̃ΠA(b), PṼπA(b)Z̃ΠA(b)
). The encoding operation is similar to that

described earlier and it is easy to verify its correctness.

The rate of this nested group code in bits would be R1 = n−1(k2b − k11b) log prb
b .
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Therefore,

R
(2)
1b ≥

[
max

0≤i<rb

(
rb

rb − i

)(
H(ŨπA(b) | Z̃ΠA(b))−H([ŨπA(b)]i | Z̃ΠA(b))

)]
− rb(|H(ŨπA(b) | X, ŨΠA(b))− log prb−1

b |+) + ε1 + ε2(3.39)

Combining equations (3.38) and (3.39), we have proved Theorem 4.

Remark 1: The design of the channel code used in the above derivation assumes that

the side information available to the decoder at the bth stage is Z̃ΠA(b). However, it is

possible that at some stage 1 ≤ i ≤ k, the encoding was done in such a way that the

decoder could decode (ŨπA(i), ṼπA(i)) and not just Z̃πA(b). Taking such considerations

into account while designing the channel code for the bth stage would lead to a

possible improvement of the rate region in Theorem 4.

Remark 2: In the above derivation, if the encoders choose to encode the sources

ŨπA(b), ṼπA(b) directly instead of encoding the function Z̃πA(b), further rate gains are

possible when one encoder encodes its source conditional on the other source in

addition to the side information already available at the decoder. Such improvements

are omitted for the sake of clarity of the expressions constituting the definition of

the achievable rate region.

Remark 3: The above coding theorem can be extended to the case of multiple

distortion constraints in a straightforward fashion.

3.8 Special cases

In this section, we consider the various special cases of the rate region presented

in Theorem 4.
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3.8.1 Lossless Source Coding using Group Codes

We start by demonstrating the achievable rates using codes over groups for the

problem of lossless source coding with one encoder and one decoder. A good group

channel code C for the triple (X , 0, PX) as defined in Definition 3.10 can be used

to achieve lossless source coding of the source X. The source encoder outputs Hxn

where H is the k × n parity check matrix of C. The decoder uses the associated

decoding function ψ(·, ·) to recover ψ(Hxn, 0) = xn with high probability. From

equation (3.27), it follows that the dimensions of the parity check matrix satisfy

(3.40)
k

n
log pr ≥ max

0≤i<r

(
r

r − i

)
(H(X)−H([X]i))

Recognizing the term in the left as the rate of the coding scheme, we get that there

exists a group based coding scheme that achieves a rate equalling the RHS of equation

(3.40). A sufficient condition for the existence of group codes that attain the entropy

bound is that

(3.41) H([X]i) ≥
i

r
H(X) for 0 < i < r

In Appendix B.4, we show that given a random variable X taking values in X = Zpr ,

it is always possible to relabel the symbols in X such that the sufficient condition of

equation (3.41) is met. Thus, we get the following corollary to Theorem 4.

Corollary 1. Suppose X is a non redundant random variable over the group Zpr

and the decoder wants to reconstruct X losslessly. Then, there exists a group based

coding scheme (possibly involving relabeling of the elements of X ) that can encode

the source X at rates arbitrarily close to H(X), the entropy of X.
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3.8.2 Lossy Source Coding using Group Codes

We next consider the case of lossy point to point source coding using codes built

over the group Zpr . Consider a memoryless source X with distribution PX . The

decoder attempts to reconstruct U that is within distortion D of X as specified by

some additive distortion measure d : X × U → R+. Suppose U takes its values from

the group Zpr . A good group source code C for the triple (X ,U , PXU) as defined

in Definition 3.9 can be used to achieve lossy coding of the source X provided the

joint distribution PXU is such that E(d(X,U)) ≤ D and U is non-redundant. The

source encoder outputs un ∈ C that is jointly typical with the source sequence xn.

An encoding error is declared if no such un is found. The decoder uses un as its

reconstruction of the source xn. From equation (3.28), it follows that the dimensions

of the parity check matrix associated with C satisfy

(3.42)
k

n
log pr ≤ r|H(U |X)− log pr−1|+

The rate of this encoding scheme is R =
(
1− k

n

)
log pr. Thus, we get the following

corollary to Theorem 4.

Corollary 2. Let X be a discrete memoryless source and U be the reconstruction

alphabet. Suppose U = Zpr and the decoder wants to reconstruct the source to

within distortion D as measured by the fidelity criterion d(·, ·). Without loss of

generality, assume that U is non-redundant. Then, there exists a group based coding

scheme that achieves the rate

(3.43) R ≥ min
PU|X

Ed(X,U)≤D

log pr − r|H(U |X)− log pr−1|+.

If U takes values in a general abelian group of order n that is not necessarily a

primary cyclic group, then a decomposition based approach similar to the one used
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in the proof of Theorem 4 can be used. When H(U |X) < log pr−1, equation (3.43)

suggests that there are no good group codes in the ensemble that we have considered.

When H(U |X) > log pr−1, the equation (3.43) can be simplified to read

(3.44) R ≥ min
PU|X

Ed(X,U)≤D

r (log pr −H(U |X))

When r = 1, this can be viewed as providing an achievable rate-distortion pair for

lossy source coding using linear codes built over Galois fields. Note that it is possible

to construct codebooks with rate R = H(U) − H(U |X) by choosing codewords

independently and uniformly from the set An
ε (U). By imposing the group structure

on the codebook, we incur a rate loss of (log p − H(U)) bits per sample. This rate

loss is strictly positive unless the random variable U is uniformly distributed over

U = Zp.

When r > 1, the multiplicative factor of r in equation (3.44) implies that the rate

loss incurred by using group codes over Zpr increases as the number of subgroups

of the underlying group over which the code is built increases. Unlike the case of

lossless source coding where group codes can be used to achieve the Shannon entropy

bound, group codes always incur a strictly positive rate loss (except in the trivial

case when (H(U |X) = log |U|) compared to the Shannon rate-distortion bound.

3.8.3 Nested Linear Codes

We specialize the rate region of Theorem 4 to the case when the nested group

codes are built over cyclic groups of prime order, i.e., over Galois fields of prime

order. In this case, group codes over Zpr reduce to the well known linear codes over

prime fields. It was already shown in Sections 3.8.1 and 3.8.2 that Lemmas 3.11

and 3.12 imply that linear codes achieve the entropy bound and incur a rate loss

while used in lossy source coding. In this section, we demonstrate the implications
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of Theorem 4 when specialized to the case of nested linear codes, i.e., when r is set

to 1.

Shannon Rate-Distortion Function

We remark that Theorem 4 shows the existence of nested linear codes that can

be used to approach the rate-distortion bound in the single-user setting for arbitrary

discrete sources and arbitrary distortion measures.

Corollary 3. Let X be a discrete memoryless source with distribution PX and let X̂

be the reconstruction alphabet. Let the fidelity criterion be given by d : X×X̂ → R+.

Then, there exists a nested linear code (C1, C2) that achieves the rate-distortion bound

(3.45) R(D) = min
P

X̂|X
Ed(X,X̂)≤D

I(X; X̂)

Proof: Let the optimal forward test channel that achieves the bound be given by

PX̂|X . Suppose q is a prime such that X̂ ⊂ Zq and X̂ is non-redundant3. The rate

bound, given by I(X; X̂) can be approached using a nested linear code (C1, C2) built

over the group Zq. Here C1 is a good source code for the triple (X , X̂ , PX,X̂) and C2 is

a good channel code for the triple (X̂ ,S, PX̂S) where S = {0} and S is a degenerate

random variable with PS(0) = 1. It follows from Lemmas 3.12 and 3.11 that the

dimensions of the parity check matrices associated with C1 and C2 satisfy

lim
n→∞

k1(n)

n
log q = H(X̂|X)(3.46)

lim
n→∞

k2(n)

n
log q = H(X̂)(3.47)

Thus, the rate achieved by this scheme is given by n−1(k2(n)−k1(n)) log q = I(X; X̂).

3Here, we assume without loss of generality that X̂ ⊂ Zq. For a random variable X̂ that takes values in
an arbitrary set X̂ , we can justify this assumption by choosing a prime q > |X̂ | and defining a one-to-one
mapping π : X̂ → Zq such that the random variable π(X̂) is non-redundant.
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This can be intuitively interpreted as follows. For a code to approach the opti-

mal rate-distortion function, the “Voronoi” region (under an appropriate encoding

rule) of most of the codewords should have a certain shape (say, shape A), and a

high-probability set of codewords should be bounded in a region that has a certain

shape (say, shape B). We choose C1 such that the “Voronoi” region (under the joint

typicality encoding operation with respect to pX̂,X) of each codeword has shape A. C2

is chosen such that its “Voronoi” region has shape B. Hence the set of “coset leaders”

of C1 in C2 forms a code that can approach the optimal rate-distortion function. This

reminds us of a similar phenomenon first observed in the case of Gaussian sources

with mean squared error criterion in [101], where the performance of a quantizer is

measured by so-called granular gain and boundary gain. Granular gain measures

how closely the Voronoi regions of the codewords approach a sphere, and boundary

gain measures how closely the boundary region approaches a sphere.

Berger-Tung Rate Region

We now show that Theorem 4 implies that nested linear codes built over prime

fields can achieve the rate region of the Berger-Tung based coding scheme presented

in Lemma 2.

Corollary 4. Suppose we have a pair of correlated discrete sources (X, Y ) and the

decoder is interested in reconstructing Ẑ to within distortion D as measured by a

fidelity criterion d : X × Y × Ẑ → R+. For this problem, an achievable rate region

using nested linear codes is given by

RDBT =
⋃

(PU|X ,PV |Y )∈P

{(R1, R2) : R1 ≥ I(X;U |Y ),

R2 ≥ I(Y ;V |X), R1 +R2 ≥ I(X;U) + I(Y ;V )− I(U ;V )}(3.48)
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where P is the family of all joint distributions PXY UV that satisfy the Markov chain

U−X−Y −V such that the distortion criterion Ed(X, Y, Ẑ(U, V )) ≤ D is met. Here

Ẑ(U, V ) is the optimal reconstruction of Ẑ with respect to the distortion criterion

given U and V .

Proof: We proceed by first reconstructing the function G(U, V ) = (U, V ) at the

decoder and then computing the function Ẑ(U, V ). For ease of exposition, assume

that U = V = Zq for some prime q. If they are not, a decomposition based approach

can be used and the proof is similar to the one presented below. Clearly, G(U, V )

can be embedded in the abelian group A , Zq ⊕ Zq. The associated mappings are

given by Ũ = (U, 0) and Ṽ = (0, V ) where 0 is the identity element in Zq. Thus,

Z̃1 = U + 0 = U and Z̃2 = 0 + V = V . Encoding is done in two stages. Let

the permutation πA(·) be the identity permutation. Substituting this into equations

(3.38) and (3.39) gives us

R11 ≥ min{H(Z̃1), H(Ũ1)} −H(Ũ1|X) = I(X; Ũ1) = I(X;U),

R21 ≥ min{H(Z̃1), H(Ṽ1)} −H(Ṽ1|Y ) = 0,

R12 ≥ min{H(Z̃2 | Z̃1), H(Ũ2 | Ũ1)} −H(Ũ2 | X, Ũ1) = 0,

R22 ≥ min{H(Z̃2 | Z̃1), H(Ṽ2 | Ṽ1)} −H(Ṽ2 | Y, Ṽ1)

= H(Z̃2 | Z̃1)−H(Ṽ2 | Y, Ṽ1) = H(V |U)−H(V |Y )

= I(Y ;V |U)(3.49)

This is one of the corner points of the rate region given in equation (3.48). Choosing

the permutation πA(·) to be the derangement gives us the other corner point and

time sharing between the two points yields the entire rate region of equation (3.48).

The rate needed to reconstruct U, V at the decoder coincides with the Berger-Tung

rate region [6, 7].
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We note that this implies that our theorem recovers the rate regions of the prob-

lems considered by Wyner and Ziv [5], Ahlswede-Korner-Wyner [4, 3], Berger and

Yeung [18] and Slepian and Wolf [1] since the Berger-Tung problem encompasses all

these problems as special cases.

3.8.4 Lossless Reconstruction of Modulo-2 Sum of Binary Sources

In this section, we show that Theorem 4 recovers the rate region derived by

Korner and Marton [12] for the reconstruction of the modulo-2 sum of two binary

sources. Let X, Y be correlated binary sources. Let the decoder be interested in

reconstructing the function F (X, Y ) = X ⊕2 Y losslessly. In this case, the auxiliary

random variables can be chosen as U = X,V = Y . Clearly, this function can be

embedded in the groups Z2,Z3,Z4 and Z2⊕Z2. For embedding in Z2, the rate region

of Theorem 4 reduces to

(3.50) R1 ≥ min(H(X), H(X ⊕2 Y )), R2 ≥ min(H(Y ), H(X ⊕2 Y ))

It can be verified that embedding in Z3 or Z4 always gives a worse rate than embed-

ding in Z2. Embedding in Z2⊕Z2 results in the Slepian-Wolf rate region. Combining

these rate regions, we see that a sum rate of R1 +R2 = min(2H(X ⊕2 Y ), H(X, Y ))

is achievable using our coding scheme. This recovers the Korner-Marton rate region

for this problem [12, 14]. Moreover, one can also show that this approach can recover

the Ahlswede-Han rate region [17] for this problem, which is an improvement over

the Korner-Marton region.

3.9 Examples

In this section, we consider examples of the coding theorem (Theorem 4). First we

consider the problem of losslessly reconstructing a function of correlated quaternary
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sources. We then derive an achievable rate region for the case when the decoder is

interested in the modulo-2 sum of two binary sources to within a Hamming distortion

of D.

3.9.1 Lossless Encoding of a Quaternary Function

Consider the following distributed source coding problem. Let (X, Y ) be corre-

lated random variables both taking values in Z4. Let X,Z be independent random

variables taking values in Z4 according to the distributions PX and PZ respectively.

Define pi , PX(i), qi , PZ(i) for i = 0, . . . , 3. Assume further that the random

variable Z is non-redundant, i.e., q1 + q3 > 0. Define the random variable Y as

Y = X ⊕4 Z. Suppose X and Y are observed by two separate encoders which com-

municate their quantized observations to a central decoder. The decoder is interested

in reconstructing the function Z = (X − Y ) mod 4 losslessly.

Since we are interested in lossless reconstruction, we can choose the auxiliary

random variables U, V to be U = X,V = Y . The function G(U, V ) then reduces to

F (X, Y ) , (X − Y ) mod 4. This function can be embedded in several groups with

order less than or equal to 16. We claim that this function F (X, Y ) can be embedded

in the groups Z4,Z7,Z2⊕Z2⊕Z2 and Z4⊕Z4 with nontrivial performance. For each

of these groups, we compute the achievable rate as given by Theorem 4 below. For

simplicity, we restrict ourselves to the rate regions given by equation (3.38) alone.

Lets consider the group Z4 first. Define the mappings x̃ , S
(Z4)
X (x) = x for all x ∈

Z4, ỹ , S
(Z4)
Y (y) = −y for all y ∈ Z4 and S

(Z4)
F (z) = z for all z ∈ Z4. With these

mappings, it follows from Definition 3.5 that F (X, Y ) is embeddable in Z4 with

respect to the distribution PXY . From Theorem 4, it follows that an achievable rate
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region using this embedding is given by

R1 ≥ max{H(Z), 2(H(Z)−H([Z]1))}

= max{h(q0, q1, q2, q3), 2(h(q0, q1, q2, q3)− h(q0 + q2, q1 + q3))}(3.51)

R2 ≥ max{H(Z), 2(H(Z)−H([Z]1))}

= max{h(q0, q1, q2, q3), 2(h(q0, q1, q2, q3)− h(q0 + q2, q1 + q3))}(3.52)

giving a sum rate of

(3.53) RZ4 , R1+R2 ≥ 2 max{h(q0, q1, q2, q3), 2(h(q0, q1, q2, q3)−h(q0+q2, q1+q3))}

It can be verified that F (X, Y ) can’t be embedded in Z5 or Z6. It can be embedded

in Z7 with the following mappings. Define x̃ , S
(Z7)
X (x) = x for all x ∈ Z4, ỹ ,

S
(Z7)
Y (y) = −y for all y ∈ Z4 where −y is the additive inverse of y in Z7 and S

(Z7)
F (0) =

0, S
(Z7)
F (1) = S

(Z7)
F (4) = 1, S

(Z7)
F (2) = S

(Z7)
F (5) = 2, S

(Z7)
F (3) = S

(Z7)
F (6) = 3. Let

Z = X̃ ⊕7 Ỹ . From Theorem 4, it follows that an achievable rate region using this

embedding is given by

R1 ≥ H(Z) = h(q0, (1− p0)q3, (1− p0 − p1)q2, p3q1, p0q3, (p0 + p1)q2, (1− p3)q1)

(3.54)

R2 ≥ H(Z) = h(q0, (1− p0)q3, (1− p0 − p1)q2, p3q1, p0q3, (p0 + p1)q2, (1− p3)q1)

(3.55)

giving a sum rate of

(3.56)

RZ7 , R1 +R2 ≥ 2h(q0, (1− p0)q3, (1− p0 − p1)q2, p3q1, p0q3, (p0 + p1)q2, (1− p3)q1)

Of the three abelian groups of order 8, it can be verified that embedding F (X, Y )

in Z8 results in the same rate region as given by equations (3.54) and (3.55) and
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(a) SX(·)

X X̃
0 000
1 001
2 100
3 101

(b) SY (·)

Y Ỹ
0 000
1 010
2 100
3 110

(c) SF (·)
z SF (z)

000,011 0
001,110 1
100,111 2
010,101 3

Table 3.1: Mappings for embedding F (X, Y ) in Z2 ⊕ Z2 ⊕ Z2

embedding F (X,Y ) in Z2⊕Z4 results in the same rate region as given by equations

(3.51) and (3.52). So, we consider embedding F (X, Y ) in Z2 ⊕ Z2 ⊕ Z2. Recall that

elements of the abelian group Z2 ⊕ Z2 ⊕ Z2 can be treated as 3 bit vectors over Z2.

The mappings S
(Z2⊕Z2⊕Z2)
X (·), S(Z2⊕Z2⊕Z2)

Y (·) and S
(Z2⊕Z2⊕Z2)
F (·) are as given in Table

3.1.

Define the random variable Z̃ = Ũ ⊕ Ṽ where ⊕ is addition in Z2⊕Z2⊕Z2. With

these mappings, an achievable rate region can be derived using Theorem 4 as below.

Choose the permutation πZ2⊕Z2⊕Z2(·) as π(1) = 2, π(2) = 3, π(3) = 1. Encoding is

carried out in 3 stages with the corresponding rates being

R11 = 0, R21 = H(Z̃2)(3.57)

R12 = H(Z̃3 | Z̃2), R22 = 0(3.58)

R13 = H(Z̃1 | Z̃2, Z̃3), R23 = H(Z̃1 | Z̃2, Z̃3).(3.59)

Summing over the 3 stages of encoding, we get an achievable sum rate of R1+R2 ≥

H(Z) + H(Z̃1 | Z̃2, Z̃3) = 2H(Z) − H(Z̃2, Z̃3). In terms of pi, qi, this sum rate can

be expressed as

RZ2⊕Z2⊕Z2 , R1 +R2 ≥ 2h(p02q0, p13q3, p02q1, p13q0, p02q2, p13q1, p02q3, p13q2)(3.60)

− h(p02q02, p13q13, p02q13, p13q02)

where p02 , p0 + p2, p13 , p1 + p3, q02 , q0 + q2 and q13 , q1 + q3.

Embedding F (X, Y ) in groups of order 9 to 15 result in rate regions which are
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PX PZ RZ4 RZ7 RZ2⊕Z2⊕Z2 RZ4⊕Z4

[ 14
1
4

1
4

1
4 ] [ 12 0 1

4
1
4 ] 3 3.9056 3.1887 3.5

[ 3
10

6
10

1
10 0] [0 4

5
1
20

3
20 ] 2.3911 2.0797 2.4529 2.1796

[ 13
1
10

1
2

1
15 ] [ 37

1
7

1
7

2
7 ] 3.6847 4.5925 3.3495 3.4633

[ 9
10

1
30

1
30

1
30 ] [ 3

20
3
4

1
20

1
20 ] 2.308 2.7065 1.9395 1.7815

Table 3.2: Example distributions for which embedding in a given group gives the lowest sum rate.

worse than the ones already derived. We next present an achievable rate region

when F (X, Y ) is embedded in Z4 ⊕ Z4. We use the mappings S
(Z4⊕Z4)
X (x) = x0

for all x ∈ Z4, S
(Z4⊕Z4)
Y (y) = 0y for all y ∈ Z4 and S

(Z4⊕Z4)
F (xy) = (x, y) for all

(x, y) ∈ Z2
4. This embedding corresponds to reconstructing the sources X and Y

losslessly and the rate region coincides with the Slepian-Wolf rate region.

(3.61)

RZ4⊕Z4 , R1 +R2 ≥ H(X, Y ) = H(X) +H(Z) = h(p0, p1, p2, p3) + h(q0, q1, q2, q3)

Combining equations (3.53), (3.56), (3.60) and (3.61) gives us an achievable rate

region for this problem. Each of these achievable rate regions outperform the others

for certain values of PX and PZ . This is illustrated in Table 3.2.

3.9.2 Lossy Reconstruction of the Modulo-2 Sum of Binary Sources

This example concerns the reconstruction of the binary XOR function with the

Hamming distortion criterion. The rate region of Theorem 4 is very cumbersome to

calculate analytically in the general case. So, we restrict our attention to the case

of symmetric source distribution and additive test channels in the derivation below

where the intention is to demonstrate the analytical evaluation of the rate region

of Theorem 4. We then present plots where the entire sum rate-distortion region is

computed without any restrictive assumptions.

Consider a binary correlated source (X, Y ) with symmetric joint distribution
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PXY (0, 0) = PXY (1, 1) = q/2 and PXY (1, 0) = PXY (0, 1) = p/2. Suppose we are

interested in reconstructing F (X, Y ) = X ⊕2 Y within Hamming distortion D. We

present an achievable rate pair for this problem based on Theorem 4 and compare

it to the achievable rate region presented in Lemma 2. It was shown in [99] that it

suffices to restrict the cardinalities of the auxiliary random variables U and V to the

cardinalities of their respective source alphabets in order to compute the Berger-Tung

rate region. Since the scheme presented in Lemma 2 is based on the Berger-Tung

coding scheme, the rate region RDBT for this problem can be computed by using

binary auxiliary random variables.

Let us now evaluate the rate region provided by Theorem 4 for this problem.

The auxiliary random variables U and V are binary and suppose the test channel

PXY PU |XPV |Y is fixed. The function G(U, V ) which is the optimal reconstruction of

X ⊕2 Y given U and V can then be computed. In general, this function can take

any of the 16 possible values depending upon the test channel PXY PU |XPV |Y .

Let us choose the auxiliary random variables U and V to be binary and for

ease of exposition, let them be defined as U = X ⊕2 Q1 and V = Y ⊕2 Q2. Here

Q1, Q2 are independent binary random variables with P (Qi = 0) = qi, i = 1, 2.

Let pi = 1 − qi, i = 1, 2. Define α = q1q2 + p1p2 and β = 1 − α. Once the test

channel PXY PU |XPV |Y is thus fixed, the optimal reconstruction function G(U, V )

that minimizes the probability P (F (X, Y ) 6= G(U, V )) can be computed. It can be

showed that

G(U, V ) =



0 α > p, α < q

U ⊕2 V α > p, α > q

U ⊕2 V α < p, α < q

1 α < p, α > q

(3.62)
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where a denotes the complement of the bit a. The corresponding distortion for these

reconstructions can be calculated as

D(α) =



p α > p, α < q

β α > p, α > q

α α < p, α < q

q α < p, α > q

(3.63)

Clearly, no rate need be expended if the function to be reconstructed is G(U, V ) =

0 or G(U, V ) = 1. It is also easy to see that the rates needed would be the same

for both G(U, V ) = U ⊕2 V and G(U, V ) = U ⊕2 V . Let us therefore consider only

reconstructingG(U, V ) = U⊕2V . It can be shown that this function is embeddable in

the groups Z2,Z3,Z4 and Z2⊕Z2. Let us consider the group A , Z2. The associated

mappings S
(A)
U (·), S(A)

V (·) and S
(A)
G (·) are all identity mappings. In this case, we have

only one digit to encode. Further, note that P (Z1 = 0) = P (U1⊕2V1 = 0) = qα+pβ.

The rates of the encoders are given by equations (3.38) and (3.39) to be

R11 = min{H(U1), H(Z1)} −H(U1 | X)

= min{1, h(qα+ pβ)} − h(q1)

= h(qα+ pβ)− h(q1)(3.64)

R21 = min{H(V1), H(Z1)} −H(V1 | Y )

= min{1, h(qα+ pβ)} − h(q2)

= h(qα+ pβ)− h(q2)(3.65)

where h(·) is the binary entropy function. Thus, an achievable rate region for this
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problem is

R =
⋃

0≤q1,q2≤1

{(R1, R2, D) : R1 ≥ h(qα+ pβ)− h(q1), R2 ≥ h(qα+ pβ)− h(q2),

(3.66)

D ≥ D(α)}

where D(α) is given in equation (3.63). Rate points achieved by embedding the func-

tion in the abelian groups Z3,Z4 are strictly worse than that achieved by embedding

the function in Z2 while embedding in Z2⊕Z2 gives the Slepian-Wolf rate region for

the lossless reconstruction of (X, Y ).

We now plot the entire sum rate-distortion region for the case of a general source

distribution and general test channels PU |X , PV |Y and compare it with the Berger-

Tung rate region RDBT of Fact 2.

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

Distortion D

S
um

 r
at

e 
 R

1 +
 R

2

Comparison of sum rate−distortion regions of the two coding schemes

 

 

Berger−Tung based coding scheme

Group code based coding scheme

Figure 3.1: Sum rate-distortion region for the distribution given in Table 3.3

Figures 3.1 and 3.2 demonstrate that the sum rate-distortion regions of Theorem

4 and Fact 2. Theorem 4 offers improvements over the rate region of Fact 2 for low

distortions as shown more clearly in Figure 3.3. The joint distribution of the sources

used in this example is given in Table 3.3.
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Figure 3.2: Lower Convex envelope of the sum rate-distortion region
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Figure 3.3: Zoomed versions of Figures 3.1 and 3.2
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PXY 0 1
0 0.3381 0.1494
1 0.2291 0.2834

Table 3.3: Joint distribution used for example in Figures 3.1 and 3.2

Motivation of choosing this example is as follows. Evaluation of the Berger-

tung rate region is a computationally intensive operation since it involves solving a

nonconvex optimization problem. The only procedure that we are aware of for this is

using linear programming followed by quantizing the probability space and searching

for optimum values [99]. The computational complexity increases dramatically as the

size of the alphabet of the sources goes beyond two. Hence we chose the simplest

nontrivial lossy example to make the point. This forces us to operate with abelian

groups of order less than or equal to 4 of which there are only 3. One of the three

groups corresponds to the Berger-Tung bound. We would like to remark that even

for this simple example, the Berger-Tung bound is not tight. We expect the gains

afforded by Theorem 4 over the rate region of Lemma 2 would increase as we increase

the cardinality of the source alphabets and more abelian groups become available for

embedding.



CHAPTER 4

Conclusions and Future Work

4.1 Summary

In this thesis, a fairly general distributed source coding problem with multiple

encoders, a central decoder and a joint distortion criterion is studied. Two variants

of the problem are studied - (a) jointly Gaussian sources and a decoder interested

in reconstructing a linear function of the sources and (b) arbitrary discrete valued

sources and a decoder interested in minimizing a joint distortion criterion.

In Chapter 2, a formal definition of the problem where multiple encoders observe

components of a jointly Gaussian source is presented. A central decoder is interested

in reconstructing a linear function of the sources to within a certain mean square

error distortion. Two coding strategies for a special case of this problem involving

two encoders are presented - one which involved lossy reconstruction of the sources at

the decoder first and estimation of the linear function later and our approach which

involved direct reconstruction of the function at the decoder. The use of nested

lattice codes in our coding scheme is motivated and justified. An inner bound to the

optimal rate-distortion region is obtained using both schemes. An outer bound is

alo presented and its gap from the inner bound is investigated. It is shown that for

certain source statistics, our inner bound is within 1 bit of the optimal rate-distortion

102



103

region. A general coding scheme for an arbitrary number of sources is then presented

which is a combination of both coding strategies discussed above. Certain special

cases of this general case are discussed. The two different coding strategies are then

analytically compared in the low distortion regime which yielded insights into the

scenarios when one scheme outperforms another. To conclude the chapter, some

numerical calculations were presented that corroborated the analysis of the previous

sections. Appendix A contains many of the proofs for this chapter including a proof

of the existence of “good” nested lattice codes for the notions of goodness needed in

our coding scheme.

In Chapter 3, the problem of distributed source coding with discrete sources and

a joint distortion criterion is discussed. A survey of known results most of which

followed the common paradigm of “independent quantization followed by indepen-

dent binning” is first presented. Just as nested lattice codes were used in the coding

problem of Chapter 2, the need for nested group codes over abelian groups is mo-

tivated and justified. A quick survey of the properties of abelian groups and their

associated homomorphisms that are relevant to our coding scheme is then given. An

overview of the coding scheme is then given through illustrative examples. Existence

results for “good” group source and channel codes along with the associated notions

of goodness are then given before the main coding theorem is presented. As a spe-

cial case of this coding theorem, several important corollaries are derived including

the achievable rates for lossless and lossy source coding using group codes and the

achievability of the Shannon rate-distortion bound using nested linear codes. Finally,

two examples are presented that demonstrate the use of the main coding theorem in

lossless and lossy distributed source coding.
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4.2 Future Work

In the course of this research, we have encountered several interesting problems

that merit further study. Some of them are listed below.

• Use of structured codes in multi-terminal channel coding The focus

of this thesis has been on the application of structured codes (lattice/group

codes) for the distributed source coding problem. As has been observed, struc-

tured codes offer performance gains for many problems in this domain. The

duality between source and channel coding in information theory suggests that

there must exist problems in multi-terminal channel coding where existing ca-

pacity results can be improved using structured codes. In particular, broadcast

channels are a direct dual to the distributed source coding problem and their

capacity region is not fully known. It is an area where structured codes might

offer improvement over the capacity regions of existing coding schemes.

• Nested lattice codes for arbitrary continuous sources In Chapter 2, we

used nested lattice codes for the case when the sources were jointly Gaussian.

However, the coding scheme presented in Chapter 3 while being similar in spirit

to the lattice based coding scheme of Chapter 2 works for arbitrary discrete

sources and arbitrary additive distortion measures. This strongly suggests that

the theory of nested lattice codes is powerful enough to deal with arbitrary

continuous sources rather than just Gaussian sources. In this general case,

lattice quantization will no longer be based on the “nearest neighbor” rule but

rather on joint typicality. The notions of goodness presented in Section 2.1.1

are tailored towards Gaussian sources and channels and need to be suitably

generalized.
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• Practical lattice/group code construction A significant advantage that

structured codes offer over unstructured random codes is their ease of imple-

mentation. Over the past decade, great strides have been made towards imple-

mentation of capacity achieving codes which have efficient encoding and decod-

ing operations. In view of our result that nested linear codes can achieve the

known rate regions for many distributed coding problems, it is an interesting

and practically relevant problem to build practical codes that approach their

theoretical counterparts in performance. The machinery of low density parity

check (LDPC) codes and low density generator matrix (LDGM) codes can be

used for this purpose.

• Good group codes over non-abelian groups In Chapter 3, we demonstrated

the existence of good codes over abelian groups. A natural extension of this

problem is to build good codes over non-abelian groups. Apart from being

an interesting problem in its own right, such non-abelian group codes, if they

exist, have the potential to further improve the rate gains structured codes

offer for the distributed source coding problem. While abelian groups have a

reasonably simple classification as the direct sum of primary cyclic groups (a

fact we used in our proofs), non-abelian groups have no such classification. Even

if such a classification were to exist, it would likely be of little practical value.

A promising strategy for building codes over non-abelian groups would be to

restrict attention to a well-studied and well-understood class of non-abelian

groups (such as nilpotent groups) rather than attempting to build codes over a

general non-abelian group. Mimicking the strategy of Chapter 3 and allowing

the codebooks to be kernels of homomorphisms from Gn to Gk turns out to be

too restrictive when G is non-abelian. This is because such kernels are always
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normal subgroups of Gn and the ensemble of normal subgroups of Gn does

not contain good codes when G is non-abelian. Analytically tractable ways of

dealing with ensembles of subgroups of Gn need to be developed and this would

likely involve more sophisticated tools from group theory than what was needed

for the case of constructing good codes over abelian groups.
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APPENDIX A

Proofs for Chapter 2

A.1 Derivation of Berger-Tung based scheme’s sum rate

In this section, we derive the sum-rate of the Berger-Tung based scheme given in

equations (2.21)-(2.23). The sum-rate of the Berger-Tung based coding scheme is

given by

R1 +R2 ≥
1

2
log

(1 + q1)(1 + q2)− ρ2

q1q2
(A.1)

where (q1, q2) ∈ R2
+ should satisfy the distortion constraint

D ≥ q1α+ q2c
2α+ q1q2σ

2
Z

(1 + q1)(1 + q2)− ρ2
(A.2)

where R+ is the set of positive reals and α = 1− ρ2.

To minimize the sum-rate, we need to minimize the quantity given by equation

(A.1). Using the fact that the log function is monotone and that (q1, q2) must satisfy

the distortion constraint in equation (A.2), the minimization problem is equivalent

to minimizing

(1 + q1)(1 + q2)− ρ2

q1q2
=
q1α+ q2c

2α+ q1q2σ
2
Z

Dq1q2
(A.3)

and this is equivalent to minimizing

1

q2
+
c2

q1
(A.4)
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subject to the constraint in equation (A.2).

Assuming that (q1, q2) satisfy the distortion constraint with equality, one can solve

for q2 in terms of q1 to give

q2 =
αD − q1(α−D)

(c2α−D) + q1(σ2
Z −D)

.(A.5)

Substituting this in equation (A.4) gives the function to be minimized as a function

of q1 alone. The optimal choice of q1 is then

q∗1 = argmin
q2
1(σ

2
Z −D) + q1D(c2 − 1) + αDc2

−q2
1(α−D) + αDq1

.(A.6)

Differentiating with respect to q1 and setting the derivative to 0 gives us a quadratic

in q1 whose roots are

q∗1 =
αc

ρ− c
or

αcD

2αc− (ρ+ c)D
(A.7)

The second root given above is where the minima occurs. The q2 value corresponding

to this value of q1 is

q∗2 =
αD

2αc2 − (1 + ρc)D
.(A.8)

Note that these optimal values of q1 and q2 are positive only for distortions in the

range

D ≤ min

{
2αc

ρ+ c
,

2αc2

1 + ρc

}
.(A.9)

For values of D outside this range, the optimal strategy is to let q1 or q2 go to ∞

which effectively means that we encode and transmit only one source.

For D in the range given in equation (A.9), the sum rate Rsum = R1 +R2 is found

by substituting q∗1 and q∗2 in equation (A.1) to get

Rsum ≥ 1

2
log

4c(αc− ρD)

D2
D ≤ min

{
2αc

ρ+ c
,

2αc2

1 + ρc

}
.(A.10)
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ForD outside the range given in equation (A.9), the minimum sum rate is attained by

setting either q1 or q2 as ∞. Which quantity goes to ∞ depends on which argument

of the min function in equation (A.9) is smaller; equivalently on whether c > 1 or

not. It is easy to see that if c < 1, q2 = ∞ and

Rsum =
1

2
log

(1− ρc)2

D − αc2
for D >

2αc2

1 + ρc
,(A.11)

and if c > 1, q1 = ∞ and

Rsum =
1

2
log

(c− ρ)2

D − α
for D >

2αc

ρ+ c
.(A.12)

Combining equations (A.10), (A.11) and (A.12) and taking the convex closure of the

resulting region, the complete rate region for the Berger-Tung based scheme can be

found.

A.2 Existence of good nested lattices

We show the existence of a sequence of nested lattices (Λ
(n)
1 ,Λ(n)) with Λ(n) ⊂ Λ

(n)
1

such that both lattices are “good” for appropriately defined notions of goodness.

The sequence is indexed by the lattice dimension n. The goodness notions used

are Rogers-goodness (for source coding) and Poltyrev-goodness (for channel coding).

These notions are defined precisely below. The existence of a sequence of lattices

Λ(n) which are good in both senses has been shown earlier [49]. Also, the existence

of nested lattices where the coarse lattice is good in both senses and the fine lattice

is Poltyrev-good has also been shown [48]. We show that the same construction as

used in [48] results in a fine lattice that in addition to being Poltyrev-good is also

Rogers-good. Our proof is essentially identical to the one given in [49]. For a more

complete version of the proof, we refer the reader to [95].
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We describe the construction of the nested lattice first. We start with a coarse

lattice Λ (the superscript is dropped from here on) which is both Rogers and Poltyrev-

good. Let V be the Voronoi region of Λ and σ2(V) be the second moment per

dimension of Λ [47]. Let the generator matrix of Λ be GΛ, i.e., Λ = GΛ · Zn.

Formally, Λ satisfies

• (Rogers-good) Let Ru and Rl be the covering and effective radius of the lattice

Λ. Λ (more precisely, a sequence of such lattices) is called Rogers-good if its

covering efficiency ρcov(Λ) → 1.

• (Poltyrev-good) For any σ2 < σ2(V), let N be a Gaussian random vector whose

components are i.i.d N (0, σ2). Then, Λ (more precisely, a sequence of such

lattices) is called Poltyrev-good if

(A.13) Pr(N /∈ V) < exp{−n[Ep(µ)− on(1)]}

where µ = σ2(V)/σ2 is the VNR (volume to noise ratio) of the lattice Λ relative

to N (0, σ2) and Ep(µ) is the Poltyrev exponent [49].

We now construct the fine lattice Λ1 using Loeliger’s type-A construction [55].

Let k, n, p be integers such that k ≤ n and p is prime. Their precise magnitudes

are described later. Let G be a k × n generating matrix with its elements chosen

uniformly from Zp = {0, 1, . . . , p − 1}. The construction of the fine lattice is now

described by the following steps:

1. Define the discrete codebook C = {x : x = y ·G for some y ∈ Zk
p}

2. Lift C to Rn to form Λ
′
1 = p−1C + Zn, (c) Λ1 , GΛ · Λ

′
1 is the fine lattice.

Note that, by construction, Λ ⊂ Λ1. We now show that a randomly chosen member

from this ensemble of nested lattices is such that Λ1 is both Rogers and Poltyrev-

good. The fact that such random selection results in a fine lattice which is with high
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probability Poltyrev-good has already been shown [48]. We now show that a similar

selection results in Rogers-good fine lattices as well. By union bound then, we will

have proved our claim.

To show Rogers-goodness, we show that a random fine lattice (with high prob-

ability) covers all the points inside the Voronoi region V of the coarse lattice with

a covering efficiency that asymptotically reaches unity. We do this by first show-

ing that almost every point in V is covered with high probability by a subset of

the fine lattice points. We then show that increasing the number of points in the

fine lattice decreases the number of uncovered points at a certain rate till no points

remain uncovered. We then show that the covering efficiency of this construction

asymptotically approaches unity.

Number the points of the fine lattice Λ1 that lie inside V . Let Λ1(i) be the ith

such point for i = 0, 1, . . . , pk−1. Since the whole space is tiled by regions congruent

to V , we restrict attention to only V . Let A∗ then denote A mod V for any set A.

It can be shown that (see [56]) the random ensemble described above satisfies the

following properties:

1. Λ1(0) = 0 deterministically

2. Λ1(i) is equally likely to be any of the points in p−1Λ ∩ V

3. For any i 6= j, (Λ1(i)− Λ1(j))
∗ is uniformly distributed over p−1Λ ∩ V .

If we use the lattice points Λ1 ∩ V as codewords, then the effective rate of such

a code would be R = k
n

log p. In what follows, we will be interested in keeping this

code rate fixed as n → ∞. Thus pk → ∞ as n → ∞. We also remark that the

following proof works for any R > 0.

Part I: Almost complete covering

Fix an r > 0 to be chosen later. Fix an arbitrary x ∈ V . Let S1(x) be the
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set of all points in p−1Λ ∩ V that are within a distance (r − d) of x, i.e., S1(x) =

(p−1Λ∩ (x+ (r− d)B))∗. Here, B denotes a ball of unit radius and d is the covering

radius of Voronoi region of the lattice p−1Λ. The probability that x is covered by

the ith point of the fine lattice Λ1 is given by

(A.14) Pr(x ∈ (Λ1(i) + (r − d)B)∗) =
|S1(x)|
pn

It can be shown that the above probability can be lower bounded as (see [56] for

details)

(A.15) Pr(x ∈ (Λ1(i) + (r − d)B)∗) ≥ VB(r − 2d)

|V|
for i = 1, . . . , pk − 1

Note that we exclude i = 0 from consideration since Λ1(0) = 0 deterministically. Let

ηi be the indicator random variable that indicates whether x is covered by Λ1(i) for

i = 1, . . . , pk − 1. Let χ be the total number of points in Λ1 ∩ V that cover x. Then

it can be shown that

(A.16) E(χ) ≥ cn
VB(r − 2d)

|V1|
= cn

(
r − 2d

rΛ1

)n

, Var(χ) ≤ E(χ)

where rΛ1 is the effective radius of the Voronoi region V1 of the fine lattice Λ1 and

cn = 1− e−nR → 1. Let µ(ν) , E(χ)− 2ν
√

E(χ). From Chebyshev’s inequality, for

any ν > 0, we have Pr(χ < µ(ν)) ≤ 4−ν . If µ(ν) > 1, then 4−ν also bounds the

probability that none of the points of p−1Λ cover x.

Call x ∈ V remote from a set A if none of the points in A are within distance

(r − d) from x. Then, χ(x) < 1 is the same as saying x is remote from Λ1. Let

Q be the set of points x ∈ V that are remote from Λ1 and let q , |Q|/|V|. Then,

|Q| =
∫
V 1(χ(x)<1)dx ≤

∫
V 1(χ(x)<µ(ν))dx if µ(ν) ≥ 1. Using the previously obtained

bound, we then have E(q) ≤ 4−ν . From Markov’s inequality, it then follows that

Pr(q > 2νE(q)) < 2−ν and thus

(A.17) Pr(q > 2−ν) < 2−ν
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If we let ν →∞ while still keeping µ(ν) ≥ 1, we can let this probability decay to 0.

This can be achieved by letting ν = o(log n) and E(χ) > nλ for some λ > 0. But, we

have E(χ) ≥ (pk − 1)VB(r − 2d)/|V|. Thus, it is enough to choose r such that

(A.18) log

(
r − 2d

rΛ1

)
≥ λ

n
log n

With such a choice of parameters, for most lattices in the ensemble, almost all

points of the region V are (r − d) covered by points of the randomly chosen lattice

Λ1 with high probability. Note that, it suffices to choose k = 1 even to reach this

conclusion (in which case, p needs to grow exponentially). In what follows, we will

restrict attention to covering only the points of the grid p−1Λ ∩ V . We note that

the bound obtained in equation (A.17) holds when q is interpreted as the fraction of

uncovered points in p−1Λ ∩ V as well.

Part II: Complete covering

We now extend the analysis to provide complete covering of V . The main idea

is as follows. Any point x ∈ V is within a distance d from a point in p−1Λ ∩ V .

This simply follows from the definition of d as the covering radius of p−1Λ. Thus,

an (r − d) covering of the points of p−1Λ will automatically result in an r covering

of V . Thus, we restrict our attention to the lattice p−1Λ ∩ V and attempt to cover

only these lattice points in what follows. Correspondingly, we define Q(A) to be

the set of all lattice points p−1Λ ∩ V that are remote from the set A. Also, let xi,

i = 0, . . . , pn − 1 denote the ith point of the constellation p−1Λ ∩ V .

Let Λ1[k1] be the fine lattice obtained using the Loeliger construction while using

only the first k1 rows of the random matrix G. We saw in the previous section that

any such k1 would suffice to get an almost complete covering of V . We will now

demonstrate that the fraction of uncovered points squares when we go from Λ1[k1]

to Λ1[k1 + 1] and thus when sufficient number of rows are added, the fraction of
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uncovered points becomes less than p−n with high probability. Since there are only

pn points in p−1Λ, this means that every point is covered.

Fix k1 which grows faster than (log n)2. Let xj be the jth lattice point. Again,

we exclude j = 0 from consideration. Let Qi be the set of lattice points that remain

uncovered by the lattice Λ1[k1 + i], i = 0, 1, . . . , k2 = k− k1. Correspondingly, define

qi = |Qi|/pn. Consider the set S = (Λ1[k1] ∪ (Λ1[k1] + p−1gk1+1))
∗ where gi is the

ith row of the random matrix G. Note that S ⊂ Λ1[k1 + 1]. This implies that

Q(Λ1[k1 +1]) ⊂ Q(S) and q1 ≤ |Q(S)|/pn. Since Λ1[k1]+p−1gk1+1 is an independent

shift of Λ1[k1], the probability that xj is remote from Λ1[k1] + p−1gk1+1 is the same

as the probability that xj is remote from Λ1[k1]. Also note that, given a Λ1[k1], q0 is

a deterministic function of Λ1[k1]. These considerations give us the following.

(A.19) E
(
|Q(S)|
pn

∣∣∣∣ Λ1[k1]

)
=
q0
pn

pn−1∑
j=1

1(xj ∈ Q(Λ1[k1]) | Λ1[k1]) = q2
0

where the last equality follows from the definition of q0. Since q0 is a deterministic

function of Λ1[k1], we have

(A.20) E
(
|Q(S)|
pn

∣∣∣∣ q0) = q2
0

This in turn implies that E(q1 | q0) ≤ q2
0. Appealing to Markov inequality gives us

(for any γ > 0)

(A.21) Pr(q1 > 2γE(q1 | q0) | q0) ≤ 2−γ

Combining this with the bound on E(q1 | q0), we get Pr(q1 ≤ 2γ−2ν | q0 ≤ 2−ν) ≥

1 − 2−γ. By Bayes’ rule, we finally arrive at Pr(q1 ≤ 2γ−2ν) ≥ (1 − 2−γ)(1 − 2−ν).

Iterating this procedure k2 times gives us

(A.22) Pr(qk2 ≤ 22k2 (γ−ν)−γ) ≥ (1− 2−ν)(1− 2−γ)k2
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It can be verified that this probability can be made to go to 1 by choosing the

following rates of growth for the different quantities: k grows as fast as (log n)2, k2

grows at least as fast as dlog n + log log pe and ν is chosen to be ν = 2 log(log n +

log log p) and γ = ν − 1. From standard random coding arguments, it then follows

that there exists a deterministic nested lattice (Λ,Λ1) such that the lattice points Λ1

r-cover Rn for the following choices of the parameters.

The covering efficiency of the fine lattice can now be bounded as

r

rΛ1

= n

√
VB(r)

VB(r − 2d)
nλpk2(A.23)

≤
(

r

r − 2d

)
· n

λ
n · 2(log p log n+log p log log p+log p)/n(A.24)

As n → ∞, the right hand side should go to 1. It is easy to verify that the last 2

terms do indeed tend to 1. To show that the first term goes to 1, we need to show that

d→ 0 as n→∞ for our choice of parameters. Since Λ is Rogers-good (which implies

p−1Λ is Rogers-good as well), it has a covering efficiency asymptotically approaching

1. Thus the covering radius d of p−1Λ approaches p−1rΛ as the lattice dimension

n→∞. From the nesting ratio, we get

(A.25)
|V|
|V1|

=

(
rΛ
rΛ1

)n

= pk = 2nR

and hence d approaches p−12RrΛ1 . We know that (since k grows as log n + log log p

and pk = 2nR) p grows as o(n/ log n) and thus to ensure d→ 0, we need rΛ1 to go to

∞ slower than p. Once could even take rΛ1 to be constant in the above proof. Thus,

we have shown that Λ1 is an efficient covering lattice.

A lattice that is good for covering is necessarily good for quantization. This can

be inferred from the following relation. For any lattice Λ

(A.26) G(Λ) ≤ G∗
n ·

n+ 2

n
· (ρcov(Λ))2
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where G(Λ) is the normalized second moment of the lattice Λ, G∗
n is the normalized

second moment of the n-dimensional sphere and ρcov(Λ) is the covering efficiency of

Λ. Since, we have shown that ρcov(Λ1) → 1 as n→∞ with high probability, it also

follows that the fine lattice is good for MSE quantization with high probability.

Thus, we have proved the existence of nested lattices (Λ1,Λ), Λ ⊂ Λ1, such that

both lattices both Rogers and Poltyrev-good. By iterating this construction process,

we can show the existence of good nested lattices with any finite level of nesting.

More precisely, for any finite m > 0, one can show the existence of a nested lattice

(Λ1,Λ2, . . . ,Λm), Λm ⊂ · · · ⊂ Λ1 such that all the lattices Λi, i = 1, . . . ,m are both

Rogers-good and Poltyrev-good. Further, such nested lattices exist for any choice of

the nesting ratios. By virtue of being Rogers-good, such lattices are also good for

MSE quantization.

A.3 Proof of convergence to Gaussianity of eq

In this section, we prove the claim that eq = eq1 − eq2 tends to a white Gaussian

noise in the Kullback-Leibler divergence sense where eqi
, i = 1, 2 are two independent

subtractive dither quantization noises. Note that the lattices Λ1i, i = 1, 2 associated

with eqi
, i = 1, 2 are good source codes.

We use the following properties of subtractive dither quantization noise and the

associated optimal lattice quantizers [44].

• The subtractive dither quantization noise eqi
is uniformly distributed over the

basic Voronoi region V0,1i of the fine lattice Λ1i for i = 1, 2. It follows from

equation (2.5) that

E ‖ eqi
‖2= nσ2(Λ1i) for i = 1, 2.(A.27)
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• For optimal lattice quantizers, the components of eqi
, i = 1, 2 are uncorrelated

and have the same power,i.e., their correlation matrices Σeqi
can be written as

Σeqi
= σ2(Λ1i)In×n for i = 1, 2.(A.28)

• For optimal lattice quantizers, as the lattice dimension n→∞, the distribution

of eqi
, i = 1, 2 tends to a white Gaussian vector of same covariance in the

Kullback-Leibler divergence sense. Taking into account equation (A.27), this

can be written as

1

n
D
(
eqi
‖ N (0, σ2(Λ1i)In×n)

)
→ 0 for i = 1, 2(A.29)

in terms of the Kullback-Leibler divergence D(. ‖ .) or equivalently,

h(eqi
) → n

2
log 2πeσ2(Λ1i) for i = 1, 2(A.30)

in terms of differential entropy h(·).

To show the convergence of eq to a white Gaussian random vector, we use the

entropy power inequality and the fact that for a given covariance matrix, the Gaussian

distribution maximizes differential entropy.

The entropy power inequality [15] states that for two independent n-dimensional

random vectors X and Y (having densities),

2
2
n

h(X+Y ) ≥ 2
2
n

h(X) + 2
2
n

h(Y ).(A.31)

This inequality applied to the subtractive dither quantization noises gives

2
2
n

h(eq1−eq2 ) ≥ 2
2
n

h(eq1 ) + 2
2
n

h(eq2 ).(A.32)

As n → ∞, by equation (A.30), the right hand side of equation (A.32) tends to

2πe(σ2(Λ11) + σ2(Λ12)). So, we have the following lower bound on the limit of the
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differential entropy of eq.

lim
n→∞

h(eq) ≥
n

2
log 2πe(σ2(Λ11) + σ2(Λ12)).(A.33)

To prove the inequality in the other direction, note that equation (A.28) implies

that the covariance matrix of eq is (σ2(Λ11) + σ2(Λ12))In×n. Since the Gaussian

distribution maximizes differential entropy for a given covariance matrix, we have

h(eq) ≤
n

2
log 2πe(σ2(Λ11) + σ2(Λ12))(A.34)

Combining equations (A.33) and (A.34), we have the desired result that (if optimal

lattice quantizers are used)

lim
n→∞

h(eq) =
n

2
log 2πe(σ2(Λ11) + σ2(Λ12)).(A.35)

In words, eq tends in the Kullback-Leibler divergence sense to a white Gaussian

random vector with covariance matrix (σ2(Λ11) + σ2(Λ12))In×n.

A.4 Derivation of optimal Lattice parameters

In the coding schemes of both Section 2.2 and Section 2.3, we scale the sources

before encoding them. Here, we briefly outline a justification for the specific scaling

constants used. We restrict ourselves to the case where all the K users encode their

sources using lattice binning. In the notation of Section 2.3.2, this corresponds to

Θ = {1, . . . , K}.

Let the function to be reconstructed be Z =
∑K

i=1 ciXi = cXn. Here c is a row

vector with its ith component as ci and Xn is a column vector of the sources Xi. Σ is

the covariance matrix of the random vector Xn. Let the ith encoder scale its input by

an arbitrary constant ηi. Let η , [η1, . . . , ηK ]. Choose a tuple Q = (q1, . . . , qK) ∈ RK
+

just as in Section 2.3.4.
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It can be shown from analysis similar to the ones in Section 2.2.2 and 2.3.2 that

the decoder can, with high probability, reconstruct the function ηXn + Q where Q

approaches a white Gaussian noise of variance q =
∑K

i=1 qi. From equation (2.67), it

follows that the function f used for decoding is

Ẑ =

(
cΣηT

ηΣηT + q

)
(ηXn +Q)(A.36)

and the corresponding distortion is

D = σ2
Z −

(cΣηT )2

ηΣηT + q
.(A.37)

This fixes the value of q. The second moment of the channel code used is σ2(Λ2) =

Var(
∑

i ηiXi + qi) = ηΣηT + q. This gives us the rate tuple

Ri =
1

2
log

ηΣηT + q

qi
for i = 1, . . . , K(A.38)

Eliminating qi using q =
∑

i qi gives us the rate region

K∑
i=1

2−2Ri ≤ 1− (σ2
Z −D)

ηΣηT

(cΣηT )2
.(A.39)

This rate region is largest when the RHS is maximum. Maximizing the RHS as a

function of η results in η = ξ · c as the only solutions for any value of the constant ξ.

However, all constants ξ result in the same rate region.

A.5 Proof of Error Probability

We outline a proof that the probability of error of the lattice based coding scheme

indeed approaches zero for an optimal choice of lattices as the lattice dimension

n→∞. Recall that the probability of error is given by

Pe = Pr((Zn + eq) mod Λ2 6= (Zn + eq))

= Pr((Zn + eq) /∈ V2)(A.40)
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where eq = eq1 − eq2 and eqi
are the subtractive dither quantization noises which

are uniformly distributed over the respective Voronoi regions V1i for i = 1, 2. This

notion of decoding and decoding error probability is closely related to the notion of

decoding in the presence of “self-noise” for the AWGN channel described in [47, 48].

We proceed as follows. We first demonstrate how eqi
can be well-approximated

by a Gaussian random variable Ni. This approximation becomes progressively more

exact as the lattice dimension increases. Thus, Zn + eq can be well approximated by

W n where W , Z + N1 − N2. It will then be shown that σ2
W ≤ σ2(Λ2) + ε where

ε → 0 as n → ∞. Since Λ2 is a good channel σ2(Λ2)-code, it will then follow that

the probability of error goes to zero exponentially with the exponent given by the

Poltyrev bound.

Lemma A.1. Suppose the fine lattices Λ1i are both Rogers-good with effective and

covering radius Rli and Rui respectively. The subtractive dithered quantization noise

eqi
can be well-approximated by a Gaussian noise Ni ∼ N (0, σ2

i I
n) in the sense that

for any ε > 0, we have for sufficiently large n

(A.41)
1

n
log

feqi
(x)

fNi
(x)

≤ ε ∀x ∈ V1i, i = 1, 2

The variance σ2
i is related to the second moment of the corresponding lattices through

the inequalities

(A.42)
n

n+ 2
σ2(Λ1i) ≤ σ2

i ≤
(
Rui

Rli

)2

σ2(Λ1i) i = 1, 2

Proof: We prove the lemma for the dithered quantization noise eq1 . For notational

convenience, the subscript is omitted from the quantities Ru1, Rl1 and σ2
1. It is known

that eq1 ∼ Unif(V11). The approximation proceeds in two stages - (1) a random vector

uniformly distributed over the Voronoi region is approximated by a random vector
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uniformly distributed over a sphere in n-dimensions, (2) the random vector uniformly

distributed over the sphere is approximated by a Gaussian random vector.

Denote by B(Ru) a ball of radius Ru and let σ2 be the second moment per dimen-

sion of B(Ru). It can be shown (see [44] for instance) that

(A.43) σ2 =
R2

u

n+ 2

Since σ2 is the second moment of a ball containing V11, it follows that σ2(Λ11) < σ2.

Let B ∼ Unif(B(Ru)) and let Rl be such that Vol(B(Rl)) = Vol(V11). Since a ball

has the smallest normalized second moment of all shapes of a given volume, we have

1

n
E ‖ eq1 ‖2

(a)

≥ 1

n
E ‖ B · Rl

Ru

‖2(A.44)

=

(
Rl

Ru

)2

σ2(A.45)

where (a) follows from the fact that B· Rl

Ru
∼ Unif(B(Rl)). From the above inequality,

it follows that

σ2 ≤
(
Ru

Rl

)2
1

n
E ‖ eq1 ‖2(A.46)

=

(
Ru

Rl

)2

σ2(Λ11).(A.47)

On the other hand, we have

(A.48)
1

n
E ‖ eq1 ‖2≤ 1

n
R2

u =
n+ 2

n
σ2.

Putting these inequalities together, we get

(A.49)
n

n+ 2
σ2(Λ11) ≤ σ2 ≤

(
Ru

Rl

)2

σ2(Λ11)

We now turn our attention to the density function of the vector B. Since B and

eq1 are uniformly distributed over B(Ru) and V11 respectively, we have

(A.50)
feq1

(x)

fB(x)
=

Vol(B(Ru))

Vol(V11)
=

(
Ru

Rl

)n

∀x ∈ V11
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Let N1 be a n-dimensional Gaussian random variable with independent components

of variance σ2. We approximate the density function of B with that of N1. It is well

known that

(A.51) − 1

n
log fN1(x) =

1

2
log 2πσ2 +

‖ x ‖2

2nσ2

It is also easy to see that, for ‖ x ‖≤ Ru,

− 1

n
log fB(x) =

1

n
log Vol(B(Ru))(A.52)

=
1

2
log

σ2

G∗
n

(A.53)

=
1

2
log 2πσ2 − 1

2
log 2πG∗

n(A.54)

where G∗
n is the normalized second moment of the n-dimensional sphere. Subtracting

the expressions, we get for ‖ x ‖≤ Ru

1

n
log

fB(x)

fN1(x)
=

1

2
log 2πG∗

n +
‖ x ‖2

2nσ2
(A.55)

(a)

≤ 1

2
log 2πG∗

n +
R2

u

2nσ2
(A.56)

=
1

2
log 2πG∗

n +
n+ 2

2n
(A.57)

=
1

2
log 2πeG∗

n +
1

n
(A.58)

where (a) follows from the monotonically decreasing nature of the Gaussian density

function. Combining this with equation (A.50), we get

(A.59)
1

n
log

feq1
(x)

fN1(x)
≤ 1

2
log 2πeG∗

n +
1

n
+ log

Ru

Rl

∀x ∈ V11

The right hand side of the inequality can be made arbitrarily small as n→∞ if the

lattice Λ11 is Rogers-good. This proves the claim of the lemma.

With a slight abuse of notation, denote by Ni the Gaussian random variable

Ni ∼ N (0, σ2
i ). Define the Gaussian random variable W , Z + N1 − N2. Then,
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σ2(W ) = σ2(Z) + σ2
1 + σ2

2 and this can be bounded as

(A.60)

(
n

n+ 2

)
σ4

Z

σ2
Z −D

≤ σ2
W ≤ η2 σ4

Z

σ2
Z −D

where η , max{Ru1

Rl1
, Ru2

Rl2
}. Since both Λ11,Λ12 are Rogers-good, it follows that η ↘ 1

as n→∞. Let us choose σ2(Λ2) =
σ4

Z

σ2
Z−D

(1+ δ) for some fixed δ > 0. It then follows

that for sufficiently large n, we shall have σ2
W < σ2(Λ2) for any δ > 0.

Let us now bound the probability that Zn + eq falls outside the Voronoi region

V2. To this end, define the quantity

(A.61) ε1(Λ) , log

(
Ru(Λ)

Rl(Λ)

)
+

1

2
log 2πeG∗

n +
1

n

associated with a lattice Λ. Recall that if Λ is Rogers-good, ε1(Λ) → 0 as n → ∞.

It is then clear that

(A.62) feq(x) ≤ en(ε1(Λ11)+ε1(Λ12))fN1−N2(x)

Therefore, we have

Pe = Pr(Zn + eq /∈ V2)(A.63)

≤ en(ε1(Λ11)+ε1(Λ12))Pr(W n /∈ V2)(A.64)

≤ e−n(EP (µ)−(ε1(Λ11)+ε1(Λ12)))(A.65)

where µ = σ2(Λ2)

σ2
W

≥ 1+δ
η2 and EP (·) is the Poltyrev error exponent. To show that the

error indeed decays to zero, fix 0 < δ < 1 and let the dimension n be sufficiently large

that η2 ≤ 1+ δ
2
. Then, we have µ ≥ 1+ δ

3
and it can be shown that EP (µ) ≥ δ2

108
. As

has already been mentioned, since Λ11 and Λ12 are Rogers-good, (ε1(Λ11) + ε1(Λ12))

can be made arbitrarily small as the dimension n → ∞. Thus, the probability of

decoding error in equation (2.44) goes to 0 exponentially.
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Since δ can be chosen to be arbitrarily small, it follows that all rate points

(R1, R2, D) that satisfy

(A.66) 2−2R1 + 2−2R2 ≤
(
σ2

Z

D

)−1

are achievable.
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APPENDIX B

Proofs for Chapter 3

B.1 Good Group Channel Codes

We prove the existence of channel codes built over the space Zn
pr which are good

for the triple (Z,S, PZS) according to Definition 3.10. Recall that the group Zpr has

(r − 1) non-trivial subgroups, namely piZpr , 1 ≤ i ≤ r − 1. Let the random variable

Z take values from the group Zpr , i.e., Z = Zpr and further let it be non-redundant.

Let Hom(Zn
pr ,Zk

pr) be the set of all homomorphisms from Zn
pr to Zk

pr . Let φ(·) be a

homomorphism picked at random with uniform probability from Hom(Zn
pr ,Zk

pr).

We start by proving a couple of lemmas.

Lemma B.1. For a homomorphism φ(·) randomly chosen from Hom(Zn
pr ,Zk

pr), the

probability that a given sequence zn belongs to ker(φ) in Zn
pr depends on which sub-

group of Zpr the sequence zn belongs to. Specifically

(B.1) P (φ(zn) = 0k) =

 p−(r−i)k if zn ∈ piZn
pr\ pi+1Zn

pr , 0 ≤ i < r

1 if zn ∈ prZn
pr

Proof: Clearly, zn ∈ prZn
pr implies zn = 0n 1. In this case, the probability of the

event {φ(zn) = 0} is 1.

1If we consider homomorphisms from Zn
pr to Zk

m for an arbitrary integer m, all such homomorphisms
have dZn

pr as their kernel where d = (pr, m) is the greatest common divisor of pr and m. Unless d = pr,
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Let the k × n matrix Φ be the matrix representation of the homomorphism φ(·).

Let the first row of Φ be (α1, . . . , αn). Consider φ1 : Zn
pr → Zpr , the homomorphism

corresponding to the first row of Φ. The total number of possibilities for φ1(·) is

(pr)n.

Let us consider the case where zn ∈ Zn
pr\pZn

pr . In this case, zn contains at least one

element, say zi which is invertible in Zpr . Let us count the number of homomorphisms

φ(·) that map such a sequence zn to a given c ∈ Zk
pr . We need to choose the k

homomorphisms φi(·), 1 ≤ i ≤ k such that φi(z
n) = ci for 1 ≤ i ≤ k. Let us count

the number of homomorphisms φ1(·) that map zn to c1. In this case, we can choose

αj, j 6= i to be arbitrary and fix αi as

(B.2) αi = z−1
i

c1 − n∑
j=1

j 6=i

αjzj


Thus the number of favorable homomorphisms φ1(·) is (pr)(n−1). Thus the probability

that a randomly chosen homomorphism φ1(·) maps zn to c1 is p−r. Since each of the

k homomorphisms φi can be chosen independently, we have

(B.3) P (φ(zn) = c) = p−rk if zn ∈ Zn
pr\pZn

pr

Putting c = 0k in equation (B.3), we see that the claim in Lemma B.1 is valid for

zn ∈ Zn
pr\pZn

pr . Now, consider zn ∈ piZn
pr\pi+1Zn

pr for a general 0 < i < r. Any such

zn can be written as piz̃n for z̃n ∈ Zn
pr\pZn

pr . Thus, the event {φ(zn) = 0} will be

there would be exponentially many zn for which P (φ(zn) = 0) = 1 for all φ ∈ Hom(Zn
pr , Zk

m) and this
results in bad channel codes (see equation (B.38)). Thus, pr has to divide m and all such m give identical
performances as m = pr.
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true if and only if {φ(z̃n) = t} for some t ∈ pr−iZk
pr . Hence,

P (φ(zn) = 0) = P

 ⋃
t∈pr−iZk

pr

(φ(z̃n) = t)

(B.4)

=
∑

t∈pr−iZk
pr

P (φ(z̃n) = t)(B.5)

= |pr−iZk
pr |p−rk(B.6)

= p−(r−i)k(B.7)

This proves the claim of Lemma B.1.

We now estimate the size of the intersection of the conditionally typical set An
ε (sn)

with cosets of piZn
pr in Zn

pr .

Lemma B.2. For a given zn ∈ An
ε (sn), consider (zn + piZn

pr), the coset of piZn
pr in

Zn
pr . Define the set Si,ε(z

n, sn) as Si,ε(z
n, sn) , (zn + piZn

pr) ∩ An
ε (sn). A uniform

bound on the cardinality of this set is given by

(B.8)
1

n
log |Si,ε| ≤ H(Z|S)−H([Z]i|S) + δ(ε) for 0 ≤ i ≤ r

where δ(ε) → 0 as ε → 0. The random variable [Z]i is defined in the following

manner: It takes values from the set of all distinct cosets of piZpr in Zpr . The

probability that [Z]i takes a particular coset as its value is equal to the sum of the

probabilities of the elements forming that coset.

(B.9) P ([Z]i = a+ piZpr | S = s) =
∑

z∈a+piZpr

PZ|S(z | s) ∀s ∈ S.

We have the nesting relation Si+1,ε(z
n, sn) ⊂ Si,ε(z

n, sn) for 0 ≤ i ≤ r− 1. However,

each nested set is exponentially smaller in size since H([Z]i) increases monotonically

with i. Thus, with the same definitions as above, we also have that

(B.10)

1

n
log (|Si,ε(z

n, sn)| − |Si+1,ε(z
n, sn)|) ≤ H(Z|S)−H([Z]i|S)+δ1(ε) for 0 ≤ i ≤ r−1
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where δ1(ε) → 0 as ε→ 0.

Proof: The set Si,ε(z
n, sn) can be thought of as all those sequences z̃n ∈ An

ε (sn)

such that the difference wn , z̃n − zn ∈ piZpr . Let W be a random variable taking

values in piZpr and jointly distributed with (Z, S) according to PW |ZS. Define the

random variable Z̃ , Z + W . Let PW |ZS be such that PZ̃S = PZS. Then, for a

given distribution PW |ZS, every sequence z̃n that belongs to the set of condition-

ally typical sequences given (zn, sn) will belong to the set Si,ε(z
n, sn). Conversely,

following the type counting lemma and the continuity of entropy as a function of

probability distributions [14], every sequence z̃n ∈ Si,ε(z
n, sn) belongs to the set of

conditionally typical sequences given (zn, sn) for some such joint distribution PW |ZS.

Thus estimating the size of the set Si,ε(z
n, sn) reduces to estimating the maximum of

H(Z̃ | Z, S), or equivalently the maximum of H(Z,W | S) over all joint distributions

PZSW such that P(Z+W ),S = PZS.

We formulate this problem as a convex optimization problem in the following

manner. Recall that the alphabet of Z is the group Zpr . Hence, H(Z,W | S) is

a concave function of the |Z||S||piZpr | variables PZSW (Z = z, S = s,W = w), z ∈

Z, S ∈ S, w ∈ piZpr and maximizing this conditional entropy is a convex minimiza-

tion problem. Since the distribution PZS is fixed, these variables satisfy the marginal

constraint

(B.11)
∑

w∈piZpr

PZW |S(Z = z,W = w | S = s) = PZ|S(z | s) ∀z ∈ Z, s ∈ S

The other constraint to be satisfied is that the random variable Z̃ = Z+W is jointly

distributed with S in the same way as Z, i.e., PZ̃S = PZS. This can be expressed as

(B.12)
∑

w∈piZpr

PZW |S(Z = z − w,W = w | S = s) = PZ|S(z | s) ∀z ∈ Z, s ∈ S.
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Thus the convex optimization problem can be stated as

minimize −H(Z,W | S)

subject to
∑

w∈piZpr

PZW |S(z, w | s) = PZ|S(z | s) ∀z ∈ Z, s ∈ S,

∑
w∈piZpr

PZW |S(z − w,w | s) = PZ|S(z | s) ∀z ∈ Z, s ∈ S.(B.13)

Note that the objective function to be minimized is convex and the constraints of

equations (B.11) and (B.12) on PZW |S(Z = z,W = w | S = s) are affine. Thus,

the Karush-Kuhn-Tucker (KKT) conditions [100] are necessary and sufficient for the

points to be primal and dual optimal. We now derive the KKT conditions for this

problem. We formulate the dual problem as

D(PZW |S) = −
∑
s∈S

PS(s)

 ∑
z∈Z,w∈piZpr

PZW |S(z, w | s) log
1

PZW |S(z, w | s)


+

∑
z∈Z,s∈S

λz,s

 ∑
w∈piZpr

PZW |S(z − w,w | s)− PZ|S(z | s)


+

∑
z∈Z,s∈S

γz,s

 ∑
w∈piZpr

PZW |S(z, w | s)− PZ|S(z | s)

(B.14)

where {λz,s}, {γz,s} are the Lagrange multipliers. Differentiating with respect to

PZW |S(Z = z,W = w | S = s) and setting the derivative to 0, we get

∂D(PZW |S)

∂PZW |S(z, w | s)
= PS(s)(1 + logPZW |S(z, w | s)) + λ(z+w),s + γz,s = 0

(B.15)

=⇒ λ(z+w),s + γz,s = −PS(s)(1 + logPZW |S(z, w | s)) ∀z ∈ Z, s ∈ S, w ∈ piZpr .

(B.16)

Summing over all z ∈ piZpr for a given s ∈ S, we see that for all w ∈ piZpr , the
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summation
∑

z∈piZpr

(
λ(z+w),s + γz,s

)
is the same. This implies that

(B.17)
∏

z∈piZpr

PZW |S(z, w | s) = constant ∀w ∈ piZpr , ∀s ∈ S.

These |S|pr−i equations form the KKT equations and any solution that satisfies equa-

tions (B.11), (B.12) and (B.17) is the optimal solution to the optimization problem

(B.13). We claim that the solution to this system of equations is given by

(B.18) PZW |S(z, w | s) =
PZ|S(z | s)PZ|S(z + w | s)

PZ|S(z + piZpr | s)

For this choice of PZW |S(z, w | s), we now show that equation (B.11) is satisfied.

∑
w∈piZpr

PZW |S(z, w | s) =
∑

w∈piZpr

PZ|S(z | s)PZ|S(z + w | s)
PZ|S(z + piZpr | s)

(B.19)

=
PZ|S(z | s)

PZ|S(z + piZpr | s)
∑

w∈piZpr

PZ|S(z + w | s)(B.20)

= PZ|S(z | s) ∀z ∈ Z, s ∈ S.(B.21)

Next, lets show that the choice of PZW |S(z, w | s) in equation (B.18) satisfies equation

(B.12).

∑
w∈piZpr

PZW |S(Z = z − w,W = w | S = s) =
∑

w∈piZpr

PZ|S(z − w | s)PZ|S(z | s)
PZ|S(z − w + piZpr | s)

(B.22)

= PZ|S(z | s)
∑

w∈piZpr

PZ|S(z − w | s)
PZ(z + piZpr | s)

(B.23)

= PZ|S(z | s) ∀z ∈ Z, s ∈ S.(B.24)

Finally, we show that this choice of PZW |S(z, w | s) satisfies the KKT conditions
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given by equation (B.17).

∏
z∈piZpr

PZW |S(z, w | s) =
∏

z∈piZpr

PZ|S(z | s)PZ|S(z + w | s)
PZ|S(z + piZpr | s)

(B.25)

=

(
1

PZ|S(piZpr | s)

)pr−i ∏
z∈piZpr

P 2
Z|S(z | s)(B.26)

which is independent of w and is the same for any w ∈ piZpr . Thus, equation (B.18)

indeed is the solution to the optimization problem described by equation (B.13). Let

us now compute the maximum value that the entropy H(W | Z, S) takes for this

choice of the conditional distribution PZW |S.

H(W | Z, S) =
∑
s∈S

∑
z∈Z

PZS(z, s)

 ∑
w∈piZpr

PW |ZS(w | z, s) log
1

PW |ZS(w | z, s)


(B.27)

=
∑
s∈S

∑
z∈Z

PZS(z, s)

 ∑
w∈piZpr

PZ|S(z + w | s)
PZ|S(z + piZpr | s)

log
PZ|S(z + piZpr | s)
PZ|S(z + w | s)

(B.28)

Let DC be the set of all distinct cosets of piZpr in Zpr and let DC(z) be the unique

set in DC that contains z. Let us evaluate the summation in the brackets of equation

(B.28) first.

(B.29)
∑

w∈piZpr

PZ|S(z + w | s)
PZ|S(z + piZpr | s)

log
PZ|S(z + piZpr | s)
PZ|S(z + w | s)

=

=
∑

w∈piZpr

PZ|S(z + w | s)
PZ|S(DC(z) | s)

log
PZ|S(DC(z) | s)
PZ|S(z + w | s)

= logPZ|S(DC(z) | s) +

∑
z′∈DC(z) PZ|S(z

′ | s) log 1
PZ|S(z′ |s)

PZ|S(DC(z) | s)

This sum is dependent on z only through the coset DC(z) to which z belongs. Thus,

the sum is the same for any two z that belong to the same coset of piZpr in Zpr .
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Thus, we have H(W | Z, S) given by the expression

∑
s∈S

PS(s)
∑

T∈DC

∑
z∈T

PZ|S(z | s)

logPZ|S(T | s) +

∑
z′∈T PZ|S(z

′ | s) log 1
PZ|S(z′ |s)

PZ|S(T | s)


(B.30)

=
∑
s∈S

∑
T∈DC

PZ|S(T | s)

logPZ|S(T | s) +

∑
z′∈T PZ|S(z

′ | s) log 1
PZ|S(z′ |s)

PZ|S(T | s)


(B.31)

=
∑
s∈S

∑
z′∈Z

PZ|S(z
′ | s) log

1

PZ|S(z′ | s)
+
∑
s∈S

PZ|S(T | s) log
1

PZ|S(T | s)

(B.32)

= H(Z | S)−H([Z]i | S)

(B.33)

where [Z]i is as defined in Lemma B.2.

We are now ready to prove the existence of good group channel codes. Let Z take

values in the group Zpr and further be non-redundant. Coding is done in blocks of

length n. We show the existence of a good channel code by averaging the probability

of a decoding error over all possible choices of the homomorphism φ(·) from the

family Hom(Zn
pr ,Zk

pr). Let H be the parity check matrix and C be the kernel of a

randomly chosen homomorphism φ(·).

The probability of the set Bε(C) can be written as

PZS(Bε(C)) =
∑

(zn,sn)

PZS(zn, sn)I

 ⋃
(z̃n,sn)∈An

ε (Z,S)

z̃n 6=zn

(φ(z̃n) = φ(zn))

(B.34)

where I(E) is the indicator of the event E. Taking the expectation of this probability,
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we get

E(PZS(Bε(C))) =
∑

(zn,sn)

PZS(zn, sn)P

 ⋃
(z̃n,sn)∈An

ε (Z,S)

z̃n 6=zn

(φ(z̃n) = φ(zn))


(B.35)

≤
∑

(zn,sn)∈An
ε (Z,S)

PZS(zn, sn)P

 ⋃
(z̃n,sn)∈An

ε (Z,S)

z̃n 6=zn

(φ(z̃n) = φ(zn))

(B.36)

+
∑

(zn,sn)/∈An
ε (Z,S)

PZS(zn, sn)

≤
∑

(zn,sn)∈An
ε (Z,S)

PZS(zn, sn)P

 ⋃
(z̃n,sn)∈An

ε (Z,S)

z̃n 6=zn

(φ(z̃n − zn) = 0k)

 + δ1(B.37)

where δ1 → 0 as n→∞.

We now derive a uniform bound for the probability that for a given (zn, sn) ∈

An
ε (Z, S), a randomly chosen homomorphism maps z̃n to the same syndrome as zn

for some z̃n such that (z̃n, sn) ∈ An
ε (Z, S). From Lemma B.1 and B.2, we see that

this probability depends on which of the sets Si,ε(z
n, sn), 0 ≤ i < r the sequence z̃n

belongs to.

(B.38) P

 ⋃
(z̃n,sn)∈An

ε (Z,S)

z̃n 6=zn

φ(z̃n − zn) = 0k

 ≤
∑

(z̃n,sn)∈An
ε (Z,S)

z̃n 6=zn

P (φ(z̃n − zn) = 0k)

=
r−1∑
i=0

∑
z̃n∈Si,ε(zn,sn)\Si+1,ε(zn,sn)

P (φ(z̃n − zn) = 0k)(B.39)

(a)
=

r−1∑
i=0

|Si,ε(z
n, sn)| − |Si+1,ε(z

n, sn)|
p(r−i)k

(B.40)

(b)

≤
r−1∑
i=0

exp2

(
n

[
H(Z|S)−H([Z]i|S)− k

n
(r − i) log p+ δ2(ε)

])
(B.41)
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where (a) follows from Lemma B.1 and (b) follows from Lemma B.2. If this sum-

mation were to go to zero with block length, it would follow from equation (B.37)

that the expected probability of the set Bε(C) also goes to zero. This implies the

existence of at least one homomorphism φ(·) such that the associated codebook C

satisfies for a given ε > 0, PZS(Bε(C)) ≤ ε for sufficiently large block length.

The summation in equation (B.41) goes to zero if each of the terms goes to zero.

This happens if

(B.42)
k

n

r − i

r
log pr ≥ H(Z|S)−H([Z]i|S) + δ2(ε) for i = 0, . . . , r − 1

or equivalently

(B.43)
k(n)

n
log pr > max

0≤i<r

(
r

r − i

)
(H(Z|S)−H([Z]i|S)) + δ2(ε)

It is clear that in the limit as n→∞, good group channel codes exist such that the

dimensions of the associated parity check matrices satisfy equation (3.27). When C

is a good channel code, define the decoding function ψ : Zk
pr × Sn → Zn

pr for a given

(zn, sn) as the unique member of the set {ẑn : Hẑn = Hzn, (ẑn, sn) ∈ An
ε (Z, S)}.

B.2 Good Group Source Codes

We prove the existence of source codes built over the space Zn
pr which are good

for the triple (X ,U , PXU) according to Definition 3.9. Let the random variable U

take values from the group Zpr , i.e., U = Zpr and let U be non-redundant. Let

φ : Zn
pr → Zk

pr be a homomorphism for some k to be fixed later. The codebook

C is the kernel ker(φ) of this homomorphism. Note that ker(φ) < Zn
pr and hence

the codebook has a group structure. We show the existence of a good code C by

averaging the probability of error over all possible choices of φ(·) from the family of

all homomorphisms Hom(Zn
pr ,Zk

pr).
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Recall the definition of the set Aε(C) from equation (3.22). The probability of this

set can be written as

P (Aε(C)) =
∑
xn

PX(xn)I

( ⋃
un∈C

(xn, un) ∈ An
ε (X,U)

)
(B.44)

The expected value of this probability is

E(P (Aε(C))) =
∑
xn

PX(xn)P

( ⋃
un∈C

(xn, un) ∈ An
ε (X,U)

)
(B.45)

≥
∑

xn∈An
ε (X)

PX(xn)P

( ⋃
un∈C

(xn, un) ∈ An
ε (X,U)

)
(B.46)

For a typical xn, let us compute the probability that there exists no un ∈ C jointly

typical with the source sequence xn. Define the random variable Θ(xn) as

(B.47) Θ(xn) =
∑

un∈An
ε (xn)

1{un∈C}.

Θ(xn) counts the number of un sequences in the codebook C that are jointly typical

with xn. The error event E given that the source sequence is xn is equivalent to

the event {Θ(xn) = 0}. Thus, we need to evaluate the probability of this event.

Note that Θ(xn) is a sum of indicator random variables some of which might be

dependent. This dependence arises from the structural constraint on the codebook

C. For example, un
1 ∈ C implies that kun

1 ∈ C as well for any k ∈ Zpr . We use Suen’s

inequality [98] to bound this probability.

In order to use Suen’s inequality, we need to form the dependency graph between

these indicator random variables. We do this in a series of lemmas. We first evaluate

the probability that a given typical sequence belongs to the kernel of a randomly

chosen homomorphism. Since U is assumed to be non-redundant, by Lemma B.1,

we have

(B.48) P (un ∈ C) = p−rk
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We now turn our attention to pairwise relations between the indicator random

variables. For two n-length sequences un
1 , u

n
2 , define the matrices Mk,l(u

n
1 , u

n
2 ), 1 ≤

k, l ≤ n and k 6= l as

(B.49) Mk,l(u
n
1 , u

n
2 ) =

 u1k u1l

u2k u2l


Let mk,l(u

n
1 , u

n
2 ) be the determinant of the matrix Mk,l(u

n
1 , u

n
2 ). Define the set

(B.50) M(un
1 , u

n
2 ) , {mk,l(u

n
1 , u

n
2 ) : u−1

1k exists}

Note that the set M(un
1 , u

n
2 ) is non-empty since un

1 is assumed to be a non-redundant

sequence. Let D(un
1 , u

n
2 ) be the smallest subgroup of Zpr that contains the set

M(un
1 , u

n
2 ). As will be shown, the probability that both un

1 and un
2 belong to the

kernel of a randomly chosen homomorphism depends on D(un
1 , u

n
2 ). For ease of no-

tation, we suppress the dependence of the various quantities on the sequences un
1 , u

n
2

in what follows.

Lemma B.3. For two non-redundant sequences un
1 , u

n
2 , the probability that a random

homomorphism φ : Zn
pr → Zk

pr maps the sequences to 0k is

(B.51) P (φ(un
1 ) = φ(un

2 ) = 0k) = p−(2r−i)k if D(un
1 , u

n
2 ) = piZpr , 0 ≤ i ≤ r

Proof: Let the homomorphism φ(·) be decomposed as φi : Zn
pr → Zpr , 1 ≤ i ≤ k.

We first count the number of homomorphisms φ1(·) that map both un
1 and un

2 to 0.

Recall that φ1(u
n
1 ) can be expressed as the linear combination φ1(u

n
1 ) =

∑n
j=1 αju1j

for αj ∈ Zpr , 1 ≤ j ≤ n. Thus, we need to find the number of solutions {αj}n
j=1 that

simultaneously satisfy the equations

n∑
j=1

αju1j = 0(B.52)

n∑
j=1

αju2j = 0(B.53)
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If D(un
1 , u

n
2 ) = piZpr , then there exists some 1 ≤ k ≤ n such that u−1

1k exists and

mk,j∗ ∈ piZpr\pi+1Zpr for some 1 ≤ j∗ ≤ n, j∗ 6= k. Fix such a k. Then, any solution

to the equation (B.52) must be of the form αj, j 6= k arbitrary, αk = −u−1
1k

∑
j 6=k αju1j

for some k such that u−1
1k exists. Thus, the total number of solutions to equation

(B.52) is pr(n−1). Substituting one such solution into equation (B.53), we get

n∑
j=1

αju2j =
∑
j 6=k

αju2j − u−1
1k u2k

(∑
j 6=k

αju1j

)
(B.54)

= u−1
1k

(∑
j 6=k

αj(u1ku2j − u2ku1j)

)
(B.55)

= u−1
1k

∑
j 6=k

αjmk,j(B.56)

Of the pr(n−1) choices for {αi}n
i=1, we need to find those that satisfy

∑
j 6=k αjmk,j =

0. We allow αj to be arbitrary for j 6= k, j∗ and solve the equation αj∗mk,j∗ =

−
∑

j 6=k,j∗ αjmk,j. It is clear that the summation in the right hand side yields a

sum that belongs to piZpr . Since k, j∗ are chosen such that mk,j∗ ∈ piZpr\pi+1Zpr ,

it follows from Lemma B.6 in Appendix B.5 that this equation has pi solutions for

αj∗ for each of the pr(n−2) choices of αj, j 6= k, j∗. Once αj, j 6= k is fixed, αk is

automatically fixed at αk = −u−1
1k

∑
j 6=k αju1j. Thus, the total number of solutions

that simultaneously satisfy equations (B.52) and (B.53) is pipr(n−2).

It follows that the probability of a randomly chosen homomorphism φ1(·) mapping

both un
1 , u

n
2 to 0 is given by pi/p2r. Since each of the k homomorphisms φi, 1 ≤ i ≤ k

can be chosen independently, we have

(B.57) P (φ(un
1 ) = φ(un

2 ) = 0) = p−(2r−i)k

when D(un
1 , u

n
2 ) = piZpr for some 0 ≤ i ≤ r. This proves the claim of Lemma

B.3.
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Suppose un
1 and un

2 are non-redundant sequences. It follows from Lemmas B.1

and B.3 that the events 1{un
1∈C} and 1{un

2∈C} are independent when D(un
1 , u

n
2 ) =

Zpr . In order to infer the dependency graph of the indicator random variables in

equation (B.47), we need to count the number of sequences un
2 for a given un

1 such

that D(un
1 , u

n
2 ) = piZpr for a given 1 ≤ i ≤ r. This is the content of the next lemma.

Lemma B.4. Let un
1 be a non-redundant sequence. Let Di(u

n
1 ), 0 ≤ i ≤ r be the set

of all un
2 sequences such that D(un

1 , u
n
2 ) = piZpr . The size of the set Di(u

n
1 ) is given

by

(B.58) |Di(u
n
1 )| =

 pr
(
p(r−i)(n−1) − p(r−i−1)(n−1)

)
0 ≤ i < r

pr − 1 i = r

Proof: We start by estimating the size of Dr(u
n
1 ), i.e., the set of un

2 sequences such

thatD(un
1 , u

n
2 ) = 0. SinceD(un

1 , u
n
2 ) = 0, un

2 must be such that there exists 1 ≤ k ≤ n

such that u−1
1k exists and mk,j = 0 for all j 6= k. This implies that u1ku2j = u2ku1j for

all j 6= k. Define η = u−1
1k u2k. It then follows that u2j = ηu1j for all 1 ≤ j ≤ n which

implies that un
2 = ηun

1 for some η ∈ Zpr . Since it is assumed that un
2 6= un

1 , there are

pr − 1 distinct values of η. Since the sequence un
1 is non-redundant, it follows that

each value of η results in a distinct value of un
2 . Thus, |Dr(u

n
1 )| = pr − 1 as claimed

in the Lemma.

Consider the case when D(un
1 , u

n
2 ) = piZpr for some 0 ≤ i < r. We count the

number of un
2 for a given un

1 such that piZpr is the smallest subgroup containing all the

set M(un
1 , u

n
2 ). Since D(un

1 , u
n
2 ) = piZpr , un

2 must be such that there exists 1 ≤ k ≤ n

such that u−1
1k exists and mk,j∗ ∈ piZpr\pi+1Zpr for some 1 ≤ j∗ ≤ n, j∗ 6= k. Consider

the matrices Mk,l(u
n
1 , u

n
2 ), 1 ≤ l ≤ n, l 6= k. Let ∆k,l ∈ piZpr , 1 ≤ l ≤ n, l 6= k. Fixing

the values of the determinants mk,l(u
n
1 , u

n
2 ) to be ∆k,l, we can solve for the entire

sequence un
2 . Thus, Di(u

n
1 ) contains the union over all permissible values of {∆k,l}l 6=k
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of those sequences un
2 such that mk,l(u

n
1 , u

n
2 ) = ∆k,l for all 1 ≤ l ≤ n, l 6= k.

For a given {∆k,l}l 6=k, let us investigate the number of un
2 sequences such that

mk,l(u
n
1 , u

n
2 ) = ∆k,l for all 1 ≤ l ≤ n, l 6= k. Consider first the equation mk,l∗ = ∆k,l∗

for some l∗ 6= k. Since u1k is invertible, there are pr possible solutions in (u2k, u2l∗)

for this equation. Now consider the equations mk,l, 1 ≤ l ≤ n, l 6= k, l∗. Since u2k

is already fixed and u1k is invertible, there is precisely one solution to u2l in these

equations. Solving these (n− 1) equations fixes the sequence un
2 . Thus, the number

of solutions to un
2 for a given un

1 and {∆k,l}l 6=k is pr. The number of ∆k,l such that

{∆k,l}l 6=k ∈ piZn−1
pr is clearly p(r−i)(n−1). For D(un

1 , u
n
2 ) = piZpr , there must exist

at least one ∆k,l ∈ piZpr\pi+1Zpr . The total number of such {∆k,l}l 6=k is clearly

p(r−i)(n−1) − p(r−i−1)(n−1). Putting these arguments together, we get that the size of

Di(u
n
1 ) is pr(p(r−i)(n−1) − p(r−i−1)(n−1)). This proves the claim of Lemma B.4.

We are now ready to infer the dependency graph of the indicator random variables

in equation (B.47). The number of nodes in the dependency graph is |An
ε (xn)|. Let

Ii be the indicator of the event {un
i ∈ C} and let Ii correspond to the ith vertex of

the graph. From Lemma B.3, it follows that vertices i and j are connected (denoted

by i ∼ j) if D(un
i , u

n
j ) 6= Zpr . Using Lemma B.4, the degree of the ith vertex can be

bounded by prn− |D0(u
n
1 )| − 1 = pr+(r−1)(n−1)− 1. Note that this is an upper bound

since not all un
2 sequences counted in Lemma B.4 need belong to An

ε (xn).

One version of Suen’s inequality can be stated as follows. Let Ii ∈ Be(pi), i ∈ I

be a family of Bernoulli random variables having a dependency graph L with vertex

set I and edge set E(L). Let X =
∑

i Ii and λ = E(X) =
∑

i pi. Write i ∼ j if

(i, j) ∈ E(L) and let ∆ = 1
2

∑
i

∑
j∼i E(IiIj) and δ = maxi

∑
k∼i pk. Then

(B.59) P (X = 0) ≤ exp

{
−min

(
λ2

8∆
,
λ

2
,
λ

6δ

)}
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Let us estimate the quantities λ,∆ and δ for our problem. It follows from equation

(B.48) that λ = E(Θ(xn)) = |An
ε (xn)|p−rk. Uniform upper and lower bounds [14]

exist for the size of the set An
ε (xn). An upper bound to ∆ can be established via

Lemmas B.3 and B.4 as below.

∆ =
1

2

∑
i

∑
j∼i

E(IiIj)

(B.60)

=
1

2

∑
i

∑
j∼i

P (φ(un
i ) = φ(un

j ) = 0)

(B.61)

=
1

2

∑
un

i ∈An
ε (xn)

r∑
m=1

∑
uj∈An

ε (xn)∩Dm(un
1 )

P (φ(un
i ) = φ(un

j ) = 0)

(B.62)

(a)
=

1

2

∑
un

i ∈An
ε (xn)

r∑
m=1

|An
ε (xn) ∩Dm(un

1 )|
(
pm

p2r

)k

(B.63)

(b)

≤ 1

2

∑
un

i ∈An
ε (xn)

(
(pr − 1)

(
1

pr

)k

+
r−1∑
m=1

pr
(
p(r−m)(n−1) − p(r−m−1)(n−1)

)(pm

p2r

)k
)(B.64)

=
1

2
|An

ε (xn)|

(
(pr − 1)

(
1

pr

)k

+
r−1∑
m=1

pr
(
p(r−m)(n−1) − p(r−m−1)(n−1)

)(pm

p2r

)k
)(B.65)

where (a) follows from Lemma B.3 and (b) follows from Lemma B.4. This expression

can be further simplified by noting that f(m) , |Dm(un
1 )|p−k(2r−m) is a decreasing

function of m. Thus, the summation in the parentheses of equation (B.65) can be
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upper bounded by (r − 1)f(1) = (r − 1)|D1(u
n
1 )|p−k(2r−1). Thus,

∆ ≤ 1

2
|An

ε (xn)|
(
pr−rk + (r − 1)pnr+k+1−n−2rk

(
1− 1

pn−1

))
(B.66)

≤ 1

2
|An

ε (xn)|pr−rk
(
1 + (r − 1)p(r−1)(n−k−1)

)
(B.67)

We now bound the quantity δ.

δ = max
i

∑
j∼i

E(Ij)(B.68)

= max
un

i ∈An
ε (xn)

r∑
m=1

∑
un

j ∈Dm(un
i )

P (φ(un
j ) = 0)(B.69)

(a)

≤ max
un

i ∈An
ε (xn)

(
pr+(r−1)(n−1) − 1

)
p−rk(B.70)

≤ pr(n−k)−(n−1)(B.71)

where (a) follows from equation (B.48) and the fact the PU |X is a non-redundant

distribution. Using these bounds, we can bound the terms involved in equation

(B.59).

λ2

8∆
≥

|An
ε (xn)|2p−2rk

4|An
ε (xn)|pr−rk (1 + (r − 1)p(r−1)(n−k−1))

(B.72)

≥
|An

ε (xn)|p−r(k+1)

4(1 + rp(r−1)(n−k−1))
(B.73)

≥
|An

ε (xn)|
8r

p−(n(r−1)+k+1)(B.74)

where the last inequality holds for sufficiently large n. The third term in the exponent

in equation (B.59) can be bounded as

(B.75)
λ

6δ
≥
|An

ε (xn)|
6

p−(n(r−1)+1)

Combining equations (B.74) and (B.75), we get that the probability of the event

{Θ(xn) = 0} is upper bounded by

exp

{
−min

(
|An

ε (xn)|
2

p−rk,
|An

ε (xn)|
8r

p−(n(r−1)+k+1),
|An

ε (xn)|
6

p−(n(r−1)+1)

)}
(B.76)
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As long as each of the terms in the minimizations goes to ∞ as n → ∞, the prob-

ability of not finding a jointly typical sequence with xn in the codebook C goes to

0. Let xn ∈ An
ε (X) be a typical sequence. It is well known [14] that for sufficiently

large n, the size of the set An
ε (xn) is lower bounded as

(B.77) |An
ε (xn)| ≥ 2n(H(U |X)−ε1(ε))

where ε1(ε) → 0 as ε→ 0. Therefore,

|An
ε (xn)|
2

p−rk ≥ 1

2
exp2

(
n

[
H(U |X)− rk

n
log p− ε1

])
(B.78)

|An
ε (xn)|
8r

p−(n(r−1)+k+1) ≥ 1

8r
exp2

(
n

[
H(U |X)−

(
(r − 1) +

k + 1

n

)
log p− ε1

])(B.79)

|An
ε (xn)|
6

p−(n(r−1)+1) ≥ 1

6
exp2

(
n

[
H(U |X)−

(
(r − 1) +

1

n

)
log p− ε1

])(B.80)

For the probability in equation (B.76) to decay to 0, we need the exponents of these

three terms to be positive. Equation (B.78) gives us the condition

(B.81)
k

n
log pr < H(U |X)

while equations (B.79) and (B.80) together give us the condition

(B.82) 0 <
k

n
log pr < r(H(U |X)− log pr−1)

Of these two bounds for k
n

log pr, it is easy to see that the dominating bound is

equation (B.82) since H(U |X) ≤ H(U) ≤ log pr. Thus, the dimensionality of the

parity check matrix satisfies the asymptotic condition

(B.83) lim
n→∞

k(n)

n
log pr = r|H(U |X)− log pr−1|+
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where |x|+ = max(x, 0). Combining these results, we see that provided equation

(B.83) is satisfied, P (Θ(xn) = 0) goes to 0 double exponentially. We now show that

there exists at least one codebook C such that the set Aε(C) has high probability.

We do this by calculating the ensemble average of P (Aε(C)) over all codebooks C. It

follows from equation (B.46) that

E(PX(Aε(C))) ≥
∑

xn∈An
ε (X)

PX(xn)P (Θ(xn 6= 0))(B.84)

≥ (1− ε2)(1− P (Θ(xn) = 0))(B.85)

where ε2 → 0 as n→∞. Thus, as long as equation (B.83) is satisfied, the expected

value of P n
X(Aε(C)) can be made arbitrarily close to 1. This implies that there exists

at least one homomorphism such that its kernel is a good source code for the triple

(X ,U , PXU).

B.3 Good Nested Group Codes

We now show the existence of good nested group codes satisfying Lemma 3.13.

As was remarked in Definition 3.8, one way to construct a nested group code is to

add rows to the parity check matrix of the fine code to get the parity check matrix

of the coarse code. Let the random variables X,Y, U, V, S be as given in Lemma

3.13. Let the parity check matrices of the codes C11, C12 and C2 be H11, H12 and

H2 respectively. Let their corresponding dimensions be k11 × n, k12 × n and k2 × n

respectively. In order to ensure nesting, impose the following structural constraints

on these matrices.

(B.86) H12 =

 H11

∆H1

 , H2 =

 H12

∆H2


Let the dimensions k11, k12 and k2 satisfy equations (3.29) - (3.31).
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Generate random H2, H12 matrices by constructing the matrices H11,∆H1,∆H2

independently by picking entries uniformly and independently from the group Zpr .

From the proofs in Appendices B.1 and B.2, it follows that the codes C11, C12 and

C2 are with high probability good source and channel codes respectively for the

appropriate triples. By union bound, it follows then that there exists a choice of

H11,∆H1 and ∆H2 such that the codebook C2 is a good channel code and the nested

codes C11 and C12 are simultaneously good source codes for their respective triples.

This proves the existence of good nested group codes as claimed in Lemma 3.13.

B.4 Group Codes Achieve Shannon Entropy Bound

We prove that, when used as lossless source codes, group codes can achieve the

Shannon entropy bound and thus incur no loss in first order performance. As shown

in 3.8.1, a good group channel code C for the triple (X , 0, PX) can be used to achieve

a source coding rate of

(B.87) R ≥ max
0≤i<r

(
r

r − i

)
(H(X)−H([X]i))

The term corresponding to i = 0 in the above expression equals the entropy of the

source. The maximization suggests that the minimum achievable rate using group

codes could be larger than H(X). However, if the sufficient condition of equation

(3.41) is met, group codes can attain the entropy bound. We now show that there

always exists a bijection π : X → X such that Xπ , π(X) satisfies the sufficient

condition of (3.41). Since lossless reconstruction of Xπ is equivalent to the lossless

reconstruction of X, Corollary 1 would follow.

Lemma B.5. Given a random variable X taking values in the set X with |X | = pr,
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there exists a bijective mapping π : X → {0, 1, . . . , pr − 1} such that

(B.88) H([Xπ]i) ≥
i

r
H(Xπ) 0 ≤ i ≤ r

with Xπ , π(X).

Proof: We start by numbering the elements of X using the labels {0, 1, . . . , pr − 1}

in some arbitrary order. Let this numbering be denoted by the permutation π̃ : X →

{0, 1, . . . , pr − 1} and denote by X̃r the pr-ary random variable π̃(X). We write

down the r-digit expansion of the numbers 0, 1, . . . , pr−1 in base p. Define the p-ary

random variables (D1, . . . , Dr) as follows: Dk takes values in the set {0, 1, . . . , p− 1}

and its probability mass function is given by

(B.89) P (Dk(i)) = P (x ∈ X : kth digit of π̃(x) = i) 0 ≤ i ≤ p− 1

The proof proceeds in two steps. We first create from X̃r a sequence of random

variables X̃r−1, . . . , X̃1 where X̃i is a pi-ary random variable. These random variables

are created in such a way that they obey the inequality

(B.90) H(X̃i) ≥
(

i

i+ 1

)
H(X̃i+1)

Further, the pi-ary random variable X̃i is created by grouping the symbols of the

pi+1-ary random variable X̃i+1. The second step is as follows: Once the r random

variables X̃r, . . . , X̃1 are created thus, we use them to create the permutation π(·)

mentioned in Lemma B.5. The labeling π(·) is done such that the elements of X̃i are

identified with the subgroup piZpr . Finally, we will show how these two steps taken

together imply equation (B.88) thus completing the proof.

We start by demonstrating the creation of X̃r−1 from X̃r = X̃. To do so, we

use the following inequality on the entropy rates of subsets (see [15], Section 17.6).
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Suppose we have a collection of n random variables (W1, . . . ,Wn). Define for every

S ⊂ {1, . . . , n}, the random variable W (S) as W (S) , {Wi : i ∈ S}. Let

(B.91) h
(n)
k ,

1(
n
k

) ∑
S : |S|=k

h(W (S))

k

Then, we have h
(n)
1 ≥ h

(n)
2 ≥ · · · ≥ h

(n)
n .

Let us apply this inequality to all subsets of the random variables (D1, . . . , Dr) of

cardinality (r − 1). We then have

(B.92) h
(r)
(r−1) =

1

r

∑
S : |S|=r−1

h(D(S))

r − 1

The inequality h
(r)
(r−1) ≥ h

(r)
r gives us

(B.93)
1

r

∑
S : |S|=r−1

h(D(S))

r − 1
≥ h(D1, . . . , Dr)

r

or equivalently

(B.94)
∑

S : |S|=r−1

h(D(S)) ≥ (r − 1)H(X̃r)

since the collection of random variables (D1, . . . , Dr) is the same as the random

variable X̃r = X̃.

This inequality implies that among the r sets S ⊂ {1, . . . , r} of cardinality (r−1),

there exists at least one, say S∗r−1 such that

(B.95) h(D(S∗)) ≥
(
r − 1

r

)
H(X̃r)

Given the set S∗r−1 ⊂ {1, . . . , r} (whose cardinality is (r − 1)), we create the

random variable X̃r−1 by grouping together all the p symbols of π̃(X ) whose p-ary

expansion agrees in all the indices of S∗. Clearly, X̃r−1 is a pr−1-ary random variable.

To make this formal, define the ith element (0 ≤ i < pr−1) of the set Xr−1 as

(B.96) Xr−1(i) = {x ∈ Xr : π(X )(S∗r−1) = ci}
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where ci is the (r− 1) length p-ary expansion of i and Xr is identified with X . Then,

X̃r−1 takes values in the set {0, . . . , pr−1 − 1} and has a probability mass function

(B.97) P (X̃r−1(i)) = P (Xr−1(i))

To create X̃r−2, we repeat the above proof with X̃r−1 in place of X̃r. Repeated

application of this gives us the sequence of random variables X̃r, . . . , X̃1 and also their

corresponding alphabets Xr, . . . ,X1 and the optimal choice of subsets S∗r−1, . . . , S
∗
1 .

We now turn to creating the permutation π(·) that ensures that [Xπ]i obey equa-

tion (B.88). We do this by granting each symbol x ∈ X , a p-ary label of length r.

To do this, we construct a p-ary tree as follows: The tree has (r + 1) levels with the

ith level containing the pi elements of the set Xi for 1 ≤ i ≤ r. The root of the tree

(0th level) is a singleton set containing all the elements of X . A node Xi(j) at the

ith level has as a child a node Xi+1(k) at the (i + 1)th level if and only if Xi+1(k)

was grouped with other elements of Xi+1 to form the symbol Xi(j). It follows that

each node has exactly p children (except the leaves of the tree). For each node at the

ith level (i < r), we label the edges emanating from that node to its children in the

(i+1)th level using the labels (0, . . . , p−1) in any arbitrary order. We are now ready

to define the permutation π(·). For each x ∈ X , we start from its corresponding leaf

node at level r and trace the (unique) path to the root of the tree reading the labels

of the traversed edges along the way. The resulting p-ary label of length r is then

converted to an integer in the range {0, . . . , pr − 1} which is then set as the value of

π(x).

It is easy to verify that the above tree labeling procedure effectively identifies the

random variables [Xπ]i with the random variablesD(S∗i ) at each stage i for 1 ≤ i ≤ r.
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Thus it follows that the family of random variables [Xπ]i satisfy

(B.98) H([Xπ]i) ≥
(

i

i+ 1

)
H([Xπ]i+1) 1 ≤ i < r

Successive application of this inequality yields

H([Xπ]i) ≥
(

i

i+ 1

)
H([Xπ]i+1)(B.99)

≥
(

i

i+ 1

)(
i+ 1

i+ 2

)
H([Xπ]i+2)

...

≥
(
i

r

)
H([Xπ]r)

≥
(
i

r

)
H(X)(B.100)

thus establishing the claim of Lemma B.5. This in turn establishes the existence

of good group codes that achieve the entropy bound while used for lossless source

coding.

B.5 Linear Equations in Groups

We now present a lemma on the number of solutions over the group Zpr for a

linear equation in one variable.

Lemma B.6. Let a ∈ piZpr\pi+1Zpr for some 0 ≤ i < r. Then, the linear equation

ax = b has a solution in x if and only if b ∈ piZpr . In that case, there are pi distinct

solutions for x over the group Zpr .

Proof: It is clear that the equation ax = b cannot have a solution if b /∈ piZpr . The

rest of the proof proceeds in two stages. We first show that if there exists at least

one solution to the equation ax = b, then there exists pi distinct solutions. We then

show that at least one solution exists for every b ∈ piZpr . Together, these imply

Lemma B.6.
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Suppose there exists at least one solution x1 to the equation ax = b. Then, for any

t ∈ pr−iZpr , x1 + t is also a solution and all such solutions are distinct. Conversely,

if x1, x2 are both solutions, then x1 − x2 ∈ pr−iZpr . Thus, existence of at least one

solution implies the existence of exactly pi solutions. Now consider the number of

distinct values of the set {ax : x ∈ Zpr}. Since every distinct value repeats itself

exactly pi times and there are pr elements in this set, it follows that the number of

distinct values is pr−i. This is exactly the size of the subgroup piZpr which implies

that ax = b has exactly pi solutions for every element b ∈ piZpr .

B.6 T is non-empty

Recall the definition of T from Section 3.7 as T = {A : A is abelian, |G| ≤ |A| ≤

αβ, G(U, V ) ⊂ A with respect to PUV }. Let |U| = α, |V| = β. We now show that

the function G(U, V ) can always be embedded in some abelian group belonging to

T . Consider the function G1(U, V ) = (U, V ). Clearly, G1(U, V ) ⊂ Zα ⊕ Zβ with

respect to PUV for any distribution PUV . Since there is an obvious surjective mapping

between the functions G1(U, V ) and G(U, V ), it follows from Definition 3.5 that

G(U, V ) ⊂ Zα ⊕ Zβ with respect to PUV . Since |Zα ⊕ Zβ| = αβ, it follows that this

group belongs to the set T and hence T is always non-empty.
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[51] H. Minkowski, “Dichteste gitterförmige Lagerung kongruenter Körper,” Nachr. Ges. Wiss.
Göttingen, pp. 311–355, 1904.

[52] E. Hlawka, “Zur Geometrie der Zahlen,” Math.Z., vol. 49, pp. 285–312, 1944.

[53] R. Kershner, “The number of circles covering a set,” Amer. Jour. Math., vol. 61, pp. 665–671,
1939.

[54] C. A. Rogers, Packing and Covering. Cambridge University Press, Cambridge, 1964.



155

[55] H. A. Loeliger, “Averaging bounds for lattices and linear codes,” IEEE Trans. Inform. Theory,
vol. IT- 43, pp. 1767–1773, November 1997.

[56] D. Krithivasan and S.S. Pradhan, “A proof of the existence of good nested lattices,”
http://www.eecs.umich.edu/techreports/systems/cspl/cspl-384.pdf.

[57] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. Springer, 1992.

[58] A. Kirac and P. Vaidyanathan, “Results on lattice vector quantization with dithering,” IEEE
Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, pp. 811–826,
December 1996.

[59] V. A. Vaishampayan, N. J. A. Sloane and S. D. Servetto, “Multiple-description vector quanti-
zation with lattice codebooks: design and analysis,” IEEE Trans. Inform. Theory, vol. IT-47,
pp. 1718–1734, July 2001.

[60] Y. Frank-Dayan and R. Zamir, “Dithered lattice-based quantizers for multiple descriptions,”
IEEE Trans. Inform. Theory, vol. IT-48, pp. 192–204, January 2002.

[61] V. K. Goyal, J. A. Kelner and J. Kovacevic, “Multiple description vector quantization with a
coarse lattice,” IEEE Trans. Inform. Theory, vol. IT-48, pp. 781–788, March 2002.

[62] S. N. Diggavi, N. J. A. Sloane and V. A. Vaishampayan, “Asymmetric multiple description
lattice vector quantizers,” IEEE Trans. Inform. Theory, vol. IT-48, pp. 174–191, January 2002.

[63] J. Ostergaard, Multiple-description lattice vector quantization. PhD thesis, Delft University of
Technology, Netherlands, June 2007.

[64] G. Poltyrev, “On coding without restrictions for the AWGN channel,” IEEE Trans. on Inform.
Theory, vol. 40, pp. 409–417, March 1994.

[65] P. Elias, “Coding for noisy channels”, IRE Conv. Record, part. 4, pp. 37-46, 1955.

[66] T. J. Goblick, Jr., “Coding for a discrete information source with a distortion measure”, Ph.D.
dissertation, Dept. Electr. Eng., MIT , Cambridge, MA, 1962

[67] R. L. Dobrushin, “Asymptotic optimality of group and systematic codes for some channels”,
Theor. Probab. Appl., vol. 8, pp. 52–66, 1963.

[68] R. G. Gallager, Information Theory and Reliable Communication. John Wiley and Sons, Inc.,
1968.

[69] N. Ma and P. Ishwar, “Two-terminal distributed source coding with alternating messages
for function computation”, Proc. IEEE Interational Symposium on Inform. Theory, Toronto,
Canada, 2008.

[70] A. Giridhar and P. R. Kumar, “Computing and communication functions over sensor net-
works”, IEEE Journal on selected areas in communications, vol. 23, no. 4, pp. 755–764, April
2005.

[71] J. Muramatsu and S. Miyake, “Hash property and coding theorems for sparse matrices
and maximum-likelihood coding”, Proc. IEEE International Symposium on Inform. Theory,
Toronto, Canada, 2008.

[72] G. Cohen, I. Honkala, S. Lytsyn and A. Lobstein, Covering Codes. North Holland-Elsevier,
1997

[73] P. Delsarte and P. M. Piret, “Do most linear codes achieve the Goblick bound on the covering
radius?”, IEEE Trnas. Inform. Theory, vol. IT-32, no. 6, pp. 826–828, November 1986.



156

[74] G. D. Cohen, “A nonconstructive upper bound on covering radius”, IEEE Trans. Inform.
Theory, vol. IT-29, no. 3, pp. 352–353, May 1983.

[75] V. M.. Blinovskii, “A lower bound on the number of words of a linear code in an arbitrary
sphere with given radius in Fn

q ” (in Russian), Probl. Pered. Inform. (Prob. Inf. Transm.),
vol. 23, no. 2, pp. 50–53, 1987.

[76] J. Chen, Da-Ke He, A. Jugmohan, “Achieving the rate-distortion bound with linear codes”,
IEEE Inform. Theory Workshop 2007, pp. 662–667, Lake Tahoe, California.

[77] T. Philosof, A. Kishty, U. Erez and R. Zamir, “Lattice Strategies for the Dirty Multiple Access
Channel”, Proceedings of IEEE International Symposium on Information Theory, July 2007,
Nice, France.

[78] D. Slepian, “Group codes for the Gaussian channel”, Bell Syst. Tech. Journal, 1968.

[79] G. D. Forney, Jr., “Geometrically uniform codes”, IEEE Trans. Inform. Theory, vol. 37, no. 5,
pp. 1241–1260, September 1991.

[80] E. Biglieri and M. Elia, “On the existence of group codes for the Gaussian channel”, IEEE
Trans. Inform. Theory, vol. 18, no. 3, pp. 399–402, May 1972.

[81] G. D. Forney, Jr. and M. D. Trott, “The dynamics of group codes: State spaces, Trellis
diagrams, and Canonical encoders”, IEEE Trans. Inform. Theory, vol. 39, no. 9, pp. 1491–
1513, September 1993.

[82] H. A. Loeliger and T. Mittelholzer, “Convolutional codes over groups”, IEEE Trans. Inform.
Theory,vol. 42, no. 6, pp. 1660–1686, November 1996.

[83] V. V. Vazirani, H. Saran and B. S. Rajan, “An efficient algorithm for constructing minimal
trellises for codes over finite abelian groups”, IEEE Trans. Inform. Theory, vol. 42, no. 6,
pp. 1839–1854, November 1996.

[84] H. A. Loeliger, “Signal sets matched to groups”, IEEE Trans. Inform. Theory, vol. 37, no. 6,
pp. 1675–1682, November 1991.

[85] S. D. Berman, “On the theory of group codes”, Kibernetika, vol. 3, no. 1, pp. 31–39, 1967.

[86] G. D. Forney, Jr., “On the Hamming distance properties of group codes”, IEEE Trans. Inform.
Theory, vol. 38, no. 6, pp. 1797–1801, November 1992.

[87] E. Biglieri and M. Elia, “Construction of linear block codes over groups”, Proc. IEEE Intera-
tional Symposium on Inform. Theory, San Antonio, TX, 1993.

[88] J. C. Interlando, R. Palazzo and M. Elia, “Group block codes over nonabelian groups are
asymptotically bad”, IEEE Trans. Inform. Theory, vol. 42, no. 4, pp. ‘1277–1280, July 1996.

[89] R. M. Tanner, D. Sridhara and T. Fuja, “A class of group structured LDPC codes”, Proc. of
ISCTA, Ambleside, 2001.

[90] G. Como and F. Fagnani, “The capacity of abelian group codes over symmetric channels”,
Submitted for publication.

[91] F. Garin and F. Fagnani, “Analysis of serial turbo codes over abelian groups for geometrically
uniform constellations”, Submitted for publication.

[92] R. Ahlswede, “Group codes do not achieve Shannon’s channel capacity for general discrete
channels”, The Annals of Mathematical Statistics, vol. 42, no. 1, pp. 224–240, February 1971.

[93] R. Ahlswede and J. Gemma, “ Bounds on algebraic code capacities for noisy channels I”,
Information and Control, pp. 124–145, 1971.



157

[94] R. Ahlswede and J. Gemma, “Bounds on algebraic code capacities for noisy channels II”,
Information and Control, pp. 146–158, 1971.

[95] D. Krithivasan and S. S. Pradhan, “Lattices for distributed source coding: Jointly Gaussian
Sources and Reconstruction of a linear function,” IEEE Trans. Inform. Theory, vol. 55,
pp. 5628–5651, Dec. 2009.

[96] D. S. Dummit and R. M. Foote, Abstract Algebra. John Wiley & sons Inc., 2004.

[97] A. G. Kurosh, The Theory of Groups. Chelsea publishing company, 1960.

[98] S. Janson, “New versions of Suen’s correlation inequality,” Random Structures Algorithms,
vol. 13, pp, 467–483, 1998.

[99] W. Gu, S. Jana and M. Effros, “On approximating the rate regions for lossy source coding
with coded and uncoded side information”, Proc. IEEE International Symposium on Inform.
Theory, Toronto, Canada, 2008.

[100] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[101] M. V. Eyuboglu and G. D. Forney, “Lattice and trellis quantization with lattice and trellis-
bounded codebooks-High rate theory for memoryless sources,” IEEE Trans. Inform. Theory,
vol. 39, pp. 46–59, Jan. 1993.

[102] T. Philosof and R. Zamir, “The rate loss of single-letter characterization: The “Dirty” multiple
access channel,” Available at arXiv:0803.1120v3


