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ABSTRACT

In this dissertation exact sclutions to the isotropic multigroup nevtron
transport equation for various half-space problems in plane-geometry are obtained.
These solutions are obtained by combining the techniques of Chandragekhar's
principle of invariance and Case's singular eigenfunctions expansion, and ex-
tending them to the multigroup case. The main advantage of the present method
over previous half-gpace techniques is that it 1s less complicated and numerical
evaluation, particularly for emergent distributions, 1s far simpler.

The albedo problem is found to be of fundamental importance for half-space
problems, since the solutions of all the other problems can be expressed in
~f the albedo solvtion., The albedo problem is solved in two distinct steps.
First the emergent distribution is calculated. By considering a singular eigen-
function expansion for the albedo problem, an inhomogeneous Fredholm equation
for this emergent distribubion is obtained. This equation is, however, diffi-
cult to evaluate numerically since it involves compubation of the N-group eigen-
functions. By using Chandrasekhar's invariance principle, a nonlinear integral
equation for the emergent distribution can be obtained. This equation is easily
solved by numerical iteration. Once this emergent distribution is known, the
known full range completeness and orthogonality relations of the eigenfunctions
are used to obtain the angular flux ingide the half-space.

From the albedo problem solution, the solutions of the other half-space
problems are obtained. As an example, a computer code has been developed which
gives the emergent distribution to the Milne problem and its extrapolation
length for any number of energy groups.

Finally for the special case of a symmetric transfer matrix (as is found
in thermal neutron transport problems, and certain radiative transfer cases)
it is shown how the results for a general transfer matrix can be greatly sim-
plified. For this case, uniqueness of solution of the Fredholm equation,
reality of the eigenvalues of the transport equation, and half-range complete-
ness of the eigenfunctions can be easily proven.

vii






CHAPTER I

INTRODUCTION

During the past three decades, much effort has been expended in investi-
gating the neutron transport equation. The interest and importance of the
properties of the transport equation are reflected by the vast number of
papers and many comprehensive books on the subject. Yet, despite all the
extensive research, exact solutions have been obtained only for specially
idealized situations. Even with the present generation of high-seed computers,
it has not been possible to solve numerically the neutron transport equation

in its full generality.

Very few realistic problems are described well by a version of the trans-
port equation which is sufficiently simplified to permit an exact analytical
solution. For instance, reactor design requires the solution of an energy-
dependent transport equation in amedium with often rapidly varying material
properties; on the other hand, exact solutions of the transport equation have
been obtained primarily for the one-speed approximation and physical situations
no more complicated than adjacent half-spaces. B

In the past few years the energy-dependent transport equation has begun
to recelve much attention. The present situation in the energy-dependent
theory, however, is far less satisfactory than in the one-speed case.

Analytic solutions have been obtained only for a very few idealized situations

and for grossly oversimplified physical models. Whenever these analytic
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methods are applied to realistic prcblems of practical technical interest,
they usually become untractable cr so time-consuming as to become worthless
as a practical computaticnal techniqueo5 As a result engineers have come to
rely upon very crude approximations tcgether with elaborate computational
schemes. For example, reactor designers use almost exclusively the multi-
group diffusion approximation for finding the neutron flux distribution in
fast and intermediate reactors.

However, investigaticn of the energy-dependent transport equation does
have some valid justification, aside from its cwn inherent beauty. The exact
solution of idealized problems serves as useful standards against which the
rougher methods used 1n engineering can be compared. Further, the analytic
study of the transport squation in a form which only roughly wmcdels some physical
situation, may give some previously unknown informabtion abcut the physics of
the actual problem. This is particularly true cf problems which traditionally
are ‘reated by techniques that "hide" *the inherent physics (e.g., computer
simulations, Monte Carlo calculations, ete. ). inally,there is always the
hope that one of the exact methods can in scme apprcximate way be extended to
an area of practical importance.

One of the most successful techniques in the monoenergetic treatment of
the transport equation is the singular eigenfunction expansion method of Case.
The generalization of this method to the continucus energy-dependent case in

. « .8 ) i .
plane gecmetry has been done by Bednarz and Mika, and while quite general, it

igs highly formalistic and limited tc infinite medium problems. To extend the



singular eigenfunction method to energy-dependent half-space problems, two dif-
ferent approximations have come into wide use.

The first maintains the continuous energy dependence in the transport
equation but assumes very special forms of the energy dependence of the cross
sectiong. Exact solutions have so far been limited to non-multiplying media

10
295 or to the constant cross section

with degenerate scattering kernels,5

11 . . . .
case. For these cases, with two exceptions, the analytic solutions and the
reduction of these solutions to numerics are highly non-trivial. These two

. . 11
special half-space problems are the constant cross section case, and the
completely seperable kernel model.” Both of these problems can be handled
is a manner similar to the one-speed case.

An alternative approach for solving half-space problems is to use the multi-
group formulation which splits the continuous energy range into N distinct
regions over which the cross sections are assumed constant. The eigenfunctions
to the N-group isotropic transport equation and their "full-range completeness”
property (whereby the solution of any infinite medium problem can be expanded
. . . . 15,16
uniquely in terms of these eigenfunctions) have been known for several years.
Recently their full-range ortiogonality relations and the solution of the infinite

. . . 17 1
medium Green's function have been obtained for the two-group  and N-group
cases. Until now, however, the solution of half-space problems has been limited
, . , 18,19

to special cases. Several two-group problems have been investigated. In
a paper on radiative transfer by Siewert and Zweifel full-range and "half-

range completeness" of the eigenfunctions (whereby the solution to any half-

space problem can be expanded uniquely in terms of only half of the eigenfuncticns)



for the N-group case were proved with the specific restriction that the

. . . . . 20 .
determinants of the transfer matrlx,’g, and all its minors vanished. Finally,
Leonard and Ferziger have shown that the N-term degenerate kernel for thermal
neutrons in a nonmultiplying medium can be reduced to the N-group transport

equation with a symmetric transfer matrix.”’

For this symmetric C case half-
range completeness can be proved and, in principle, closed form solutions to
half-range problems be obtained although thus far none have been.

The purpose of this work, therefore, is to consider half-space problems
of the N-group isotropic transport equation with a completely arbitrary *trans-
fer matrix. All previous energy-dependent half-space investigations have
depended fundamentally upon a half-range completeness theorem. Furthermore
this theorem has always been constructive in the sense that it explicitly
demonstrated how the expansion coefficients could be calculated from the given
boundary conditions. For energy-dependent problems, such constructive theorms
tend to be exceedingly complex. In view of this situation several authors
have tried various alternative schemes to avoid the half-range formalism.
Fuchs and Colla'tz21 and Zelazny22 have favoured an iteration scheme for slab
problems based on full-range rather than on half-range expansions. Case also
has developed a very general method which when applied to half-space problems,
completely avoids eigenfunction expansions altogether.25 In this method all
that is required is a knowledge of the infinite medium Green's function.

Recently a different approach has been used by Pahor to circumvent the

2L, 25

half-range expansion difficulties. By applying the invariance principles

26
of Ambarzumian  and Chandrasekhar27 to the singular eigenfunction of the thermal
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neutron degenerate kernel case, he derived the emergent angular distribution
for half-space problems from a nonlinear integral equation. Once the emergent
distribution is known, then the simpler full-range singular eignefunction
expansions can be used to obtain the complete solution. It is this approach
which here is extended to the general multigroup situation.

The plan of the present research is as follows: Chapter II reviews the
known results of the N-group infinite medium eigenfunctionsand the adjoint
eigenfunctions as developed byZelaznyl5 and Yoshimuraol6 The full-range
orthcgonality and completness properties of these eigenfunctions are then used
to solve the infinite medium Green's function problem.

The next two chapters deal with the emergent distribution of the albedo
probleme. Consideration of the N different albedo problems (one for source
neutrons belonging to each energy group) leads to a generalized_§5function.
This matrix function assumes the same important role in multigroup theory as
does the scalar Ambarzumian -Chandrasekhar §;function in the one=gpeed situation°27
Frcm use of the principle of invariance, a non-linear integral equation for the
S-matrix is derived. This equation demonstrates that the §-matrix, a function
of two variables, can be decomposed into a product of two other matrices, U and
V,each of which is a function of only one variable. The nonlinear integral
equations for these, U and V matrices, which are analogous to the\E—function in
{he one-speed case, are amenable to solution by numerical means. Once the U
and V matrices are known the emergent distribution for the albedo problem can

then easily be found.



An alternative approach to the albedo problem is then considered. From
a full-range eigenfunction expansion of the albedo problem and the adjoint
albedo problem, a pair of regular inhomogeneous Fredholm equations for the U
and V matrices are obtained. These Fredholm equations, along with associated
singular integral equations, have been solved analytically only for the one-
25 . . .
speed case. Nevertheless standard numerical techniques can be applied to

solve for [

Uand V. For a certain class of problems, namely for systems near

criticality, these equations can yield a good analytic approximation for

the U and V functions.
AL a~/

Chapter IV shows how for the special case of symmetric transfer, as is
found in certain thermal systems for example, the results of the previous
chapter are greatly simplified. In particular, the y:matrix becomes simply
the transpose of the [matrix. Hence only one nonlinear integral equation or
Fredholm equation need be solved. For symmetric 94 other very useful results
can be derived. It can be shown that all the eigenvalues are real (a require-
ment, which while physically necessary, had to be assumed for the general
case). The reality of the eigenvalues then permits one to prove the existence
and uniqueness of solution of the Fredholm equation for U, This uniqueness
property implies that the eigenvectors are half-range complete—a result
recently proved by Leonard and Ferziger in a much more complicated fashion.lo

In Chapter V it is demonstrated how the emergent distribution of other
half-space problems (Milne's and Green's function) can be expressed directly
in terms of the y;and_z;functions (or equivalently the generalizednﬁjfunction.)

Then once the emergent distributions have been calculated, the complete solutions



inside the half-space are readily obtained from application of the full-range
orthogonality and completeness of the eigenfunctions.

To demonstrate the usefulness of the U and V-matrices and the ease with
which they are computed from the nonlinear integral equations, Chapter VI
presents several numerical examples. The Milne problem is considered for
several different media and the emergent distributions and extrapolation
lengths are explicitly evaluated. To this end,a series of computer programs
for general N and arbitrary C have been written. The listings of these programs
are given in the Appendix.

To summarize, it is the purpose of this work to demonstrate how various
half-space problems encountered in multigroup theory can be solved without
recourse to a half-range completeness property of the infinite medium eigen-
functions. The overall approach has been to show that these problems may be
solvedin two distinct steps. First the emergent distribution can be expressed
with the help of two fundamental matrix functions; and then full-range expansionsg

can be used to generate the complete angular density.



CHAPTER ITI

MULTIGROUP TRANSPORT EQUATION EIGENFUNCTIONS

The time-independent multigroup neutron transport equation for isotopic
scattering in plane geometry can be written in the form
a 1
eyl Dabow = ) aw ylow) (2.1)
-1
The vector ¥(x,u) is an N-component vector (where N is the number of energy
groups), of which the ith component, Wi(x,u), is the angular flux of the ith
2

group. The components of the matrix, L, are given by Ui 643, Gi being the

total interaction cross section for the ith group. Finally, the elements, Cs s
' J
of the transfer matrix, C, describe the transfer of neutrons from the jth group

to the ith group. For an isotropically scattering and fissioning medium the

c..'s are given by
1J

1l s 1 f
c,, = T o .+ v, o. (2.2)
iJ 2 j»i 271§

where 0?»1 is the scattering cross section (both elastic and inelastic) for

the transfer of neutrons from the jth group to the ith group, 0§ is the fission
cross section for the jth group, Vj the number of fission neutrcns produced

by an incident jth group neutron, and Xi is the fission spectrum fraction of

the ith group.

It is always possible to order the groups such that (see Section L.1)

0, >0,> ... >0 (2.7)



and by dividing Eq. (2.1) by GN and measuring distance in units of the smallest
20 . . . . .
mean free path, l/oN, one may set o_ = 1. In the following discussion it will

N

be agsumed that the normalizing factor l/cN is included in the ci's and cij's.
In this chapter the infinite medium eigenfunctionsand eigenvectors to the

transport equation (2.1), and its adjoint, are reviewed. The orthogonality and

full-range completeness properties of these eigenvectors are then discussed.

Finally as an example of the application of these eigenvectors, the infinite

medium Green's function problem is solved.

2.1 INFINITE MEDIUM EIGENVECTORS AND ADJOINT EIGENVECTORS
. 1 . .
Using the analogy of the one-speed problem, a set of eigenfunctions

solutions, ¥(v,x,u) to Eq. (2.1) of the form
-x/v
1Y o(v,) (2.)

is sought. Substituting this ansatz into Eq. (2.1), the following equation

for the eigenvectors, ¢(v,u) is obtained:

- 5E) o(v,p) = Cf au' o(v,u') (2.5)

~
-1

where E 1s the unit matrix. Different but equivalent forms for these elgen-

16-18
vectors have been obtained by several authors. In this thesis the simple

_ 16
notation (with slight changes) and approach of Yoshimura ~ will be used.

The eigenvectors can be written in the form

Av) o, (2.6)

~~

olv,u) = PE(v,p) R(v) + Glv,p)
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where P indicates the Cauchy principal value. The matrices F and D are

defined as

‘:E(Z)H)]. .

i zZ - i
J Gi Ho1J

and

[E(Z;H>]. .

. S(Giz - ) d s (2.8)

1]
and the vector Efv), which has yet to be determined, satisfies

blv) = Sy;/l ap' o(v,n') = C alv) (2.9)

Substitution of Eq. (2.6) into Eq. (2.9) yields the following simultaneous

equation for the unknown vectors b(v) and A(v):

2(v) p(v) =f du Glv,1) Av) (2.10)
-1
where
alz) = ¢ - P,/ E(z,p) du . (2.11)

To solve for E(v) and\&(v) it is necessary to divide the eigenvalue spectrum

into two regions.

Region I: v ¢ (-1,1)--Discrete spectrum
On this region the eigenvalues are denoted by v, and Eq. (2.10)

immediately yields

‘Q(v ) Eﬂv ) = 0 . (2.12)
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For this equation to have a nontrivial solution, the following condition must

be satisfied:

det (v ) = O . (2.1%)

Equation (2.13) is the general N-group dispersion relation which gives an
even number, say 2M, of discrete eigenvalues. For simplicity it will be

assumed all these eigenvalues are distinct. For each root, v., the vector

[0k
‘Ejvo) is determined from Eq. (2.12) and a normalization condition LE!VO)l = 1.
Theji(vo) vector is completely arbitrary with the provisionit has a finite

norm. For convenience the null vector will be chosen for A(vy). Thus,in
P

component form,the discrete eigenvectors may be written as
0. (vosm) = P v I >1 . (2.14)

From Eq. (2.11) it is easily verified that if vy is an eigenvalue then

-vy and vp* (complex conjugate) are eigenvalues with

Rlv)) = bl-v ) = kx(v*) . (2.15)
For the special case of symmetric C, it can be proved (Chapter IV) that all
the eigenvalues are real or imaginary, and in Appendix A it is shown for any
subcritical system the eigenvalues are always real. For a general system,

on the other hand, there is no a priori reason to suspect that all the dis-
crete eigenvalues are necessarily real. However, from physical grounds, a
subcritical infinite medium must not have any imaginary discrete roots, and

the dominant root (defined as the root with the largest real part) must be

real. An eigenfunction expansion for a realistic problem which has imaginary
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eigenvalues or a complex dominant root would produce an oscillatory behavior
at large source distances and hence negative fluxes.
For the purposes of this thesis, it will be assumed that the medium is

subcritical, and that all the discrete eigenvalues are nonmultiple and finite.

Region II: ve(-1,1) Continuum Spectrum
This region is divided into N subintervals, vj, J =1 ~1N such that for

V€Vj, n .

1 < lv| < ny where 1, is defined as l/oj and n_ = 0. Without loss of
J

generality, one may consider only the jth subinterval. First decompose the

Q(v) matrix and b(v) and )\(v) vectors as shown below:
— —~

1 ] N
dJ 1 1
Q
Yv) = 5 RAv)= 5 Alv) =
,v5 ‘Qh
N N

The vectors by and ), are (3-1) component vectors, bp and Mo are (N-3+1)
component vectors, and Q) and Q4 are square matrices of size (3-1) and (N-j+1)
respectively. The matricesagz and’gs are rectangular of size (N-3+1) x (j-1)
and (j-1) x (N-j+1), respectively. With these definitions. Eq. (2.10) can

be written as

(v) 3,(v) + g, R(v) = 0, (2.16a)



85 b, (v) + 0,(v) b (v) = A (v) . (2.16b)

This system of N equations has (2N-j+1) unknowns [(N-j+1) A's and N b's].
Thus one must specify the values of (N-j+1) of these unknowns to obtain a
solution. Let these be the (N-j+1) components of the Vectorkyg(v). But there
are (N-j+1) linearly independent choices of bs(v) which satisfy Egs. (2.16a)
and (2.16b), and hence there is an (N-j+1) fold degeneracy in the eigenvectors

1
for the jth region. An obvious choice for the (N-j+1) bo's is
o (v) = S(moge1) 2 BTN (2.17)

where gi is an (N-j+1) dimensional vector all of whose components are zero,
except the ith which is equal to unity.
Corresponding to each vectorlhgm there igs a vector )xm(v)° From Egs.

(2.16a) and (2.16b) one obtains

ET(V) = =07 (v) ,,2}32 , (2.18)
and
m - m
2o(v) = 09, -9, 97 (v) 2.0 b, - (2.19)

-1 .
where it is assumed @ ~(v) exists for ve(-1,1). Sincehégkv) can be choosen
arbitrarily, it is set equal to the null vector. Then from Egs. (2.16a) and

(2.160), \"™(v) is determined completely from
AN

Av) = 2 By . (2.20)



1k

Thus for the jth subinterval, the eigenvectors, in compcnent form, may

be written as

i m
[0, (vyp)ly= P———=+ (ov - Wy SR (2.21)
i ,
j=1~N, m=]J~N,
where gm(v) and \"(v) are determined from Eqs. (2.18) and (2.20), respectively.

In passing, it should be noted that pm(v) and k?(v) are even functions of v

and hence the eigenvectors jjv,u) have the property
vs=u) = ol-v,p) (2.22)

Before discussing the orthogonality and completeness properties of the

infinite medium eigenfunctions, 1t is necessary to introduce the adjoint

16,1
eigenvectors. The adjoint equation of Eq. (2.1) is defined to be ’ f
o T ; T o ' 1ot 1
B C DD T AN SR du' ¥ (%, ') (2.23)

-1
where w1(x,u) is the adjoint angular flux and the tilde denotes the transpcse
matrix operator. As before, the adjcint eigenfunctions,\WT(V,X,u), are defined

as

+x/v \
ET(V)X)U) = € / ET(V:H) o (232)4)
The adjcint eigenvector equation becomes
Boyotiy oy = 5[5, 4t
(2-vE) 2w = ,gf du o' (v,u) (2.25)
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This eigenvector equation is precisely the same as Eq. (2.5) with G replaced
by C. The adjoint equation has exactly the same spectrum as that obtained

for the infinite medium direct eigenvalues. Thus one has

~

,3T(V)H)C> = fﬂvyuag) ) (2,26)

—~

i.e., the adjoint eigenvectors are obtained by simply replacing Cij by ¢.. in

Ji

the ordinary infinite medium eigenvectors.

In this work these adjoint eigenvectors are denoted by

¢i*(v,p) = —w—-—i,vx(-l,l), (2.27)

and

(o5 (vu)ly= P

1
g*(vo) = [ dp S’f(‘vo,u) (2.29a)
-1
T 1 +
Najm(V) = / dp ﬁjm(v,u) . (2.29b)

Finally, one can verify that these adjoint eigenvectors satisfy the relation-

ship
V:‘“) = Ef(‘V)H) . (2=29C)

2,2 FULL-RANGE COMPLETENESS

The eigenvectors,‘gjv,u), discussed in Section 2.1 have the very useful
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preperty that they are "full-range complete.' This property sy b= stabed in
the form of the following theorem.
Theorem. The set of functions gjv,u) for all ve to the eigenvalue

spectrum is complefe, in the sense that an arbitrary functicn V() derined for
S

pe[-1,1] can be expanded in the form

M M
. ! . 1
¢ = , - + O = U\
W = ) e s m e ) A elev
s=] s=1
N N
N T n m
+ } / dv } A.(V) ’CP,.(V;H) s (2“30)
d "V 3 J J
J=1 ] m=j
where a+b; a and A?(V) are uniquely determined expangicn coefficcrts.
50 =8 J

This thecorem has been proved in various forms by several aubhors.
_ 18 L . o R
Zelazny and Kuszell tried tec prove it by obtalning a st o1 Freaholm equa-
tiong for the expansion coefficients. However 1t was noft shown tha® the
solution of thege fredholm equabions existed or wag unique. Spoclul proofs
of completeness for particular cages of the transfer mabrix bave becu obtained—

G Y

.9 17 \ 20 e e met
e.g., symmetric C,” two-group case, and detzua = 0. A prest by Sne method

6 . ‘ .
of coustruchtion for peneral N-dimensional C has been recently cbtained b
or g = Y

-

: 16 . s iy cx s . , : 2 s
Yoshimura, and it is his proof, with some modification and coresction which

will be given here. First congider the vector v () defined as

M
VO = - ) e 2w A sy o) s (21)
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where M is the number of discrete pairs of roots. To prove this theorem it
is sufficient to show that the function ¥'(u) can be expanded solely in terms

of the continuum modes, i.e.,

N N
v = ) [ ad) ) Sy (2.32)
#1730 (e

If the coefficients A?(v) exist, then one can define the two vectors
J

n(v) and ¢(v) such that for vev,

d
hi
) =) ) B (2.53)
m=j
and
N
3 \' m m
) =) AT (2.34)
m=j
From Eq. (2.20) one has
)= 8 ) (2.35)

and using the explicit form of ¢?(v,u), Eq. (2.25) becomes

N -
1 — —-——-—-—-——V -
i = ) [ el o) e - w L0 L (236)
TV, i
. J=1 3
or equivalently
* v
O R e R CA R RAC) S G
-1 i
Replacement of u by o;u' in Eq. (2.36a) yields
* Py
splop) = [ e st o) L0 L ()
-1
1 1
- — <<=
o, ~H =5

1 1
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or in vector form

1
y
Ly'(on') = P/ de_H,MVW+HW) : (2.38)
-1 ~ ~
Now introduce the vector
1 T ydy
N = — 2.
I e O (2.39)
-1
. . 28
which has the following three properties:
(i) N(z) ¢ A in the complex plane cut from (-1,1), (2.50)
(i1) N(z) ~1/z as |z| » =, (2.h41)
(111) NH(p) = == P /‘l dy —— n(v) == ponp), -L<p< 1. (2.k2)
2ni T . V- U~ 2o - "=

-1
If one could solve for N(z), then the vector qﬂu) could be found from Eq.
(2.40), and the expansion for y'(u) would be determined. With this in mind

define the matrix

C
—~

RO RIS VS CRR (2.13)

(Note that Q'(z) differs from the Q(z) of Eq. (2.11) in which the inbegral is

2
a principle value.) Applying the Plemelj formulae 7 to 0'(z) cre finds

Q') = p') tim' B o, (-1, < op' < 1). (2.Lk)

e

Upon substitution from Egs. (2.40) and (2.42), Eq. (2.3%6) may now be reduced

to a Hilbert equation for the unknown vector N(z),



pt Xy (on') = 2N (k) M(w') - o7(p) Mo(w') . (2.45)

Ar oA A A~

Since the vector Q'(z)N(z) is analytic in the complex plane cut from
(-1,1) and is required to vanish like l/z as |z| + o, the Cauchy integral

theorem can be applied to prove that

1 -1 (1
_ - — 1 —_ 1
(z) 57 [9'(2)] Zj dp p F(z,p) v'(w) . (2.46)
-1
This function Jl\l( z) has the required behavior except for z = ivos’ s=1~M
-1
where [Q'(z)] = does not exist. One can write
[2(2)]7" = —=rr 8 (2) (2.47)
~ det]’%‘(z)| ~c

where %(z) is the matrix whose elements are the cofactors of Q'(z). Then

W) - - () | W Y, (288

~ oni z det|Q'(z)] ~

-1

and to remove the difficulty at #v =1 ~ M where detlQ'(z)I has single

os? °
zeroes, one requires that the numerator also vanish. In component form this

requirement is

1
/ dp uﬂ(ivos,u)}g(u) =0 ,i=1~N s=1~M (2.49)
L) i

Of course this condition is not true for an arbitrary/llg(u); however there
are 2M unspecified conditions on ¥'(p), namely the 2M aig, (s =1 ~M).

It can be verified, Eq. (2.L4L4) will be satisfied if one chooses
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B, = ) (2.50)

Hence_ﬁ(z) as given by Eq. (2.48) has all the required analytic properties.

Therefore q(u) exists and can be determined from Eq. (2.42).
2

2.3 ORTHOGONALITY AND NORMALIZATION OF EIGENVECTORS
The eigenvectors and adjoint eigenvectors are orthogonal to each other
in the sense
. ~t

u/‘ dp & (vom) o(v'i,m) = 0 , v £ v'. (2.51)

-1
This result immediately follows from Egs. (2.5) and (2.25). Multiply Eq.
(2.5) from the left by Hﬁ?(v,u) and the transpose of Eq. (2.25) from the
right by pg(v',p). Integrating these two scalar equations and subtracting

one obtains

11/t ~t
(V—, - ;)/ dp p o (vou) o(viyp) = 0, (2.52)
-1

from which Eq. (2.29) follows.

Since this orthogonality property of the eigenvectors is to be used
to determine the expansion coefficients in an eigenfunction expansion, one
must determine the normalization intergrals. For Region I, v#(-l,l), the

normalization is defined as
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1
d ¢ + 0} s = ! = ~ °
_/ o g (v sn) o(Ev o) N, 8 s',s 1~M . (2.53)

-1

Straightforward integration of Egs. (2.1L4) and (2.27) yields

N
Ot o.v ¢ 1 20, v
1
N o= 42 Z bl (v )| =2 F—208 Ly (v ) (2.5h)
ts 0S8 i’ os o.v + 1 o o i’ os
. 1 os o,V -1
i=1 i os
For Region II, vev, defining,
J
1 T 1
~'m m mm
j b g, (vyu) ;tj(V',u) = I (v) a(v - v') (2.55)

-1

and using the PoincaréBertrand formula,29 one obtains (after much algebra)

N?m,(v) = 758 ,EJTI;' j:}r;g + VE;I;'(V) kmg(v) s (2.56)
or:
~Tm' m
= vgjg %(V)ng , m',m=j ~N, (2.57)
where the (N-j+1) dimensional matrix is defined as
o) = 75TEe g () -8 2708 17 (2.58)

2 1
Thus for the jth subinterval there are (N-j+1)” gifferent NI;m (v) since the
(N-j+1) fold degenerate eigenvectors of the jth region are not mutually

orthogonal.
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It would be convenient for theoretical purposes if these degenerate eigen-
vectors could be made mutually orthogonal. It the (N-j+l) eigenvectors
of the matrix»M(v) had been chosen for the Bz‘s and bs's instead of those

given by Eq. (2.17), one would have

N (v) = N?a oo (2.59)

mm

For the remainder of this work, it will be assumed that the degenerate

m
"continuum" eigenvectors, 3j(v,p) are also orthogonal.

2.4 INFINITE MEDIUM GREEN'S FUNCTION

An immediate application of the full-range completeness and orthogonality
properties of the infinite medium eigenfufictions is to solve the infinite
medium Green's function problem. Consider a unit plane source at the origin
emitting qi ith group neutrons per unit area per unit time in the direction
Ho- The angular density'g?(o,uo+x,p) = ¢ (x,u) satisfies the homogeneous
transport equation (2.1) except at the origin where the source can be replaced

by the "jump condition"

0

0%, - £(0T,W) = el u) g - (2.60)

If the system is subcritical one has the boundary condition
}l{im AG/(x,u) = 0 . (2.61)

Expansion of the solution in terms of the eigenfunctions which satisfy

boundary condition (2.61), gives
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Application of Eq. (2.60) yields

M
8(n - p) o
Ly 27 Z {a,+s 'q‘)'(vos’“) TR j‘>’(_Vos’u)}
s=1
N N
+ f dv ZA?(v) ¢r§(v,u) , (2.63)
=17 (o=

which is simply a full-range expansion of (8(p-p,)/bmu)q. For simplicity,
it will be assumed the g?'s for m = j ~ N have been constructed such that
they are mutually orthogonal. Then the orthogonality results of the pre-

vious section immediately give for the expansion coefficients

~t
1 &(p - 1) o (v ,p)q
o = =g ——2 3 ) q = 0s’ 9 (2.6L)
+5 N+s . by 2\ 4 e N+S ?
—_ _l —
and
~mt
5(p - p ) o, (v,p )a
m 1 = o t ~j o'
A (5 = a o = 2.6
") = 2w o (2.65)



CHAPTER III

THE ALBEDO PROBLEM

In many problems in transport theory, only the angular flux at the sur-
face of a medium is needed. To this end, the half-space albedo problem will
be considered in this chapter, since the emergent distribution of this parti-
cular problem turns out to be of fundamental importance in determing the
emergent distributions of all other half-space problems. Once the emergent
fluxes have been found, the interior distributions, if desired, can be cb-
tained from these surface quantities by applying the full-range completeness
and orthogonality properties of the infinite medium eigenfunctions which
were obtained in Chapter IT.

The emergent distribution of the multigroup albedo problem can be
expressed directly in terms of a generalized S-function matrix. To determine
this S-function, two different approaches can be used to obtain equations
suitable for its evaluation.

The first method derives a nonsingular, nonlinear integral equation for
S by using Chandrasekhar's "principle of invariance"a27 This equation
demonstrates how the §-matrix, which is a function of two angular variables,
can be decomposed into & product of two matrices, U and ¥, each of which
ig a function of only one variable. The second technique obtains from an
eigenfunction expansion of the albedo problem, a Fredholm and a singular

integral equation for the §:matrix.

2k
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From the decomposition of the S-matrix and the inftroduction of the
adjoint albedo problem, Fredholm and nonlinear integral equations for the
E;and‘y’matrices are obtained. These U and V integral equations yield readily
to numerical solution and hence the emergent albedo distribution can easily

be obtained.

3.1 GENERALIZED S-FUNCTION

Consider an albedo problem for which the incident neutron beam belongs
to the ith energy group. The angular flux of this "ith albedo problem",
yi(o,uogx,u), is the solution of Eq. (2.1) with the boundary conditions,

(1) ¥, (osngs0,u) = &.8(u-ug)s 1w >0, uy > o, (3.1)
and

L.y Lim

(11) x> ¥ (ouy3,m) = 0 (3.2)

The N distinct albedo problems (one for each group) can be handled

collectively by introducing the "albedo matrix" ¥(o,u ;x,u) defined as
Yosugsx,m) = Dhlesugsx,n) Yalomysx,u) oov (o)) (3.3)
This matrix is the sclution of the transport equation

(uga}; E+ 1) ¥(o,ugix,u) = Q,[i dp ¥(0, g3, 1) (3.4)

with the boundary conditions

(1) ¥loyngzo,n) = EB(h = ng) , k>0, py >0 , (3.5)
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g
(11) ¥ ¥(o,ugsxm) = o . (3.6)

One can think of the albedo matrix as a type of Green's function for a delta-
like incident distribution. If the incident distribution is given as ¥ (u),
0<u<1l, then the angular flux, ¥(x,u), everywhere in the half-space is

simply

Ylou) = [ du ¥(o,n'sx,u) V) (3.7)

In particular if the generalized S-function is defined as

S(ugst) = u ¥(o,ug30,-0) , o0 < ppy <1, (3.8)

the reflected distribution at the interface is

mey . (3.9)

——

1
Wloy=p) = g [ au' s(uswy

In the one-speed case this §;matrix degenerates to the well known Ambarzumian-

: s 26, 27

Chandrasekhar(g;junctlon. (except for a normalization factor of 2).
With these definitions of the albedo matrix and the S-function, a non-

singular, nonlinear integral equation for this latter quantity will be derived.
s 13 . 3 . . 1127 . . .

By using the “principle of invariance, it is possible to express at some

point, x, inside the half-space, the outwardly moving flux vector in terms

of the inwardly directed flux vector and the albedo matrix.

The principle of invariance states that the reflected flux from a half-
space is unchanged by the addition (or subtraction) of layers of arbitrary
thickness to (or from) the medium. This means that at any point, x, inside

the half-space, neutrons moving in the positive x direction are reflected in
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the same manner as if they were incident upon the surface. If V(x,u) is the
flux at a distance x inside the half-space, the outwardly moving flux can then

be expressed in terms of the inward flux as

y(x,pu) = gl du'¥(o,u' 50, =) (x,u'). (%.10)

~ -

In particular, Eq. (3.10) gives for the ith albedo problem
1
V. (osugsxs-n) = [ du' ¥(o,u's0,-u) Y. (05ngsx,ut) | (3.11)

Finally if the N albedo problems are treated collectively, Eq. (3.11) yields

the following important relation for the albedo matrix
%O)UOEX)"U) = f; dp! Z(OJH,;O)_“) X(O)Ho;x:li'): p>o0 . (3.12)

From this equation and Eqs. (3.4)-(3.6) a nonlinear integral equation
for ¥(o,p';0,-p) can be obtained. Differentiation of Eq. (3.12) with respect

to x at x = o yields

)
gi— Youosxo-u)| = [T au’ ¥(o,u';0,-u) 3 Woskgexn)| _ . (3.13)

Using the transport equation (%.4) to evaluate these derivatives together

with the boundary condition (3.5), Eq. (3.13) becomes

Tl
{Q

1 1 1
T Loy ng30,-1) + i Mosugs0,-p) = T LT C Sy an¥o,ug05u')

1

d dp.’
+ fé ﬁ ¥(o,p'30,-p)C + fol O ¥(o,u'50,-u)C [rau" ¥(o,p 30, -u"),

(3.1k)
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Multiplication by u, and the use of the S-matrix definition, gives the result

= B+ [ S sue glE + [0S o)) (3.15)

Since each bracket on the right hand side of this equation is a function of

only one angular variable,Eq. (3.15) can be written as

::;L Z8(kosm) +ﬁ-;§(uo,u>3; = U(R)CV(u,) (3.16)
where
gp) = E+ (ff i# S(u',w) (3.17)
and
V(w) = E+ él %T“LNS(M,H‘) : (3.18)

For the special case when N = 1, Eq. (%.15) is just Chandrasekhar's S-equation,
. R 2
and both U and V become the well-known H-function.
Unfortunately 5 and S do not commute, and to obbaln an eguaticn more
amenable to numerical solution, the definition of a "matrix direct product”
is introduced. If D is the direct product (denoted by the symbol *) of A

and B, 1.e., D = A * B then in component form

Dij = AisBiy i,j =1~N. (3.19)
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This direct product operator has asscociaftive and distributive properties with

other direct operators. However, it 1s neither associative nor distributive

with the conventional product, e.g.,

(ﬁ B)xC # A(BxC)

“

Equation (%.15) can fhen be written as

1
R(pg,u) = [E+ M-é ap R, p)*A(u,ut)

1
(X) /g[E + HQ f d“,;@(“(),u')*%(u’,u())J;
P 0 r

where the matrix A is given by

| 1
[%(H;Hy)]ij = _’:_’—_' s
OIH OJ'

end the associated R-matrix is related to the S-matrix by

S(utyw) = wu'Alu,u')xB(p',u)

Further, the U and V matrices expressed in “erms of the R-matrix are
~— N~

Jlu) =

Q=

1
+ é dp'R(p', 1) %A(H,u")

and

1

V(w) = E+p g SR IQTRTADEYXQTRNTY

s

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

To obtain a system of equations equivalent to Eq. (3.21) involving only

U and V, take the direct product of Eq. (3.21) and uy Alp,n,), and integrate

with resgepct to p. The result is
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1
Wy, = E+ uo(f) du' AR, ko) % (YR )EV(ue) T - (3.26)

Similarly, by teking the direct product of Eg. (3.29) and p A(u,n,), and

integrating with respect to u,, an equation for U is obtained:

1

R = Bru [aw Al u )« [000)CY0)T (3.27)

Equations (3.26) and (3.27) are two simultaneous nonlinear integral
equations for the U and Y matrix functions. They corregpond fto Chandrasekhar's
. . . 27 .
one-speed nonlinear H-function equation. In fact, if one takes the one-
speed limit (N=1) and lets H(p) = U(un) = V(p), the nonlinear integral H-

function equation, which is so often used, is obtained; namely

b B
H(w) = 1 + cpH(p) J du’ “' . (3.28)
o) Ht

The equations for U and V, as they stand, can be gsolved numerically by
the method of successive iterations, which is commonly called the "power
method,”6 A computer code using this technigque has been written to solve these
equations (see Chapter 6). However, it is possible to cast tbﬁiﬁiandny_equations
into a ‘different form whose iterative solution converges fasfier than that of
Egs. (3.26) and (%.24). This modification is discussed in Section (%.3)%

From Eq. (3.16) a useful identity for the U and V matrices can be cbtained.
Integrating this equation over u from o to 1, and using the definition of

U(n), Eq. (3.17), one obtains

1

1
Z(V(pg)=E) + = (f) dpS(pysH)Z
(@)

I

[au B (kg - (3.29)

P
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Rearrangement of this equation gives

(£ - flduy(u)g]l’(uo) = [E- = fldu,%(uo,u)]z : (3.30)
o) Mo o ~

Finally, integrating this result over u_, rearranging and using Eq. (3.17),

the following relaftion is obtained:

1 1 1
2= [ AWz + 3 [ aollhg) - [ anIWg [ ausllke) - (3.31)
o 0

~ ~

This identity for U and y'is most useful in giving a measure of the con-
vergence of the iterated U and V equations. It can be easily and quickly
evaluated in any computer code which is used to obtain a numerical solution

for U and Yf

3,2 THE ADJOINT ALBEDO PROBLEM

Tn the previous section, it was found that the generalized g-function
could be decomposed into two matrices of a single variable, [ and V. However,
these matrices are not independent, but are related in a simple manner through
corresponding adjoint equations.

Consider now, the adjoint albedo matrix, Ef(o,uo;x,u), which is a

solution of the adjoint transport equation

i

H

a ~ 1 T
(- 0 5% B DY (0smngsxsn) C [ an'y (0;-phsx,n') (3.32)

with the adjoint boundary conditions

1.
(1) ¥ (0,-ng3xs-n) = E8(pi=p),  m, >0 k>0, (5:33)
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and

(11) Lim ¥ (0,-u'3x,m) = O . (5.34)
X0

The ith column of thne adjoint albedo matrix is simply the "ith adjoint
albedo problem solution’gz(o,-pégx,u), which is uniquely defined by taking
the ith column of the matrix equations (3.32)-(3%.34). A generalized’ﬁj—
function may be defined in an analogous manner as was thevﬁ;function,

namely,

5 (host) = Y (0,-1g30,1) - (3.35)

The adjoInt albedo matrix gives the response of an albedo adjoint trans-
port solution for a forced delta-like emergent distribution. In particular

if a solution of the adjoint equation has a forced emergent distribution,

tem

(-u), u >0, the resultant incident distribution must be
A~

tine
(

~

W = 1 awe (o, so,u) g (3.36)

.I_
or terms of the adjoint § -matrix

. 1 1 T
l‘{fflnc(“) - %é dpvﬁ'(“"“)i em(u') . (5'57)

To find the relationship between the emergent distribution of the albedo
matrix, X}o,uogo,—p), u >0, and the incident distribution of the adjoint
albedo matrix, Eﬂo,-uo;o,u), first multiply Eq. (3.4) from the left by
@i(o,-ué;x,p). Then multiply the transpose of Eg. (3.32) from the right by
gjo,uo;x,u). Subtraction of these two results and integration over p from

-1 to 1, and over x from 0 to «, yields the identity
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- -
1 ) 1 |
[, o] dx{g (05 -pl331) |1 = 201033 1) 32X(0, o33, 1) -C [ an"¥(0, o3, )|

I ot ~t
‘i‘“ 8; ¥ (O:'MéBX;U)fE (GJ_Hé;X)HEE
- \
1 ~t i { (5038)
- [ at (o, -nds )€Y (o, uesx,n) = 0
This immediately reduces to
1 ® o ot . } (
Il dp é dx u 8;‘&%,(O;“HQ)XJ“)EKO:“03X;U) = 0. (5°59)

Use of the boundary conditions of Egs. (3.5), (3.6), (3.3%3) and (3.34) and

integration by parts of the above equation gives

NT(

ot (0, -ud30,00) = pi¥(0s0550,-u00), Hoshl > 0 . (3.40)

T
Finally, from the definiticns of the $-function and the adjoint S -function
the above identity immediately shows the relationship between these two

functions, i.e.,

~T
§,<Hoﬁ“> = _§(“}MQ> . (5cul)

.1_
A nonlinear integral equation for §_(up,u) may be written by taking

the transpose of Eq. (%.15) and using the identity (3.38). The result:

t 1t t ot
28 (bgsH) * Eg'ﬁ,(uo;ulé = U (1)CV (

Mo) h) (BQME)

gl o

T T
where the adjoint U (u) and V (u) matrices are defined as

and
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+ l
V(e = E+ I ifug(u,u’) (3.44)
O

Finally from (3%.17), (%.18) and (3.41) the relationship between the U and

V matrices is obtained, namely

W= T vt = T . (3.45)

t T
These U and V -functions will be used later to derive a Fredholm equation
1- . . . .
for V (u), and therefore, in view of the above relation, a Fredholm equation
-

for U(w).

3.3 REDUCTION OF THE NONLINEAR U AND V EQUATIONS

It is possible to put the nonlinear equations for the y;and.y;matrices,
Eqs. (3.26) and (3.27), into a form which does not involve the direct
matrix products. This modification yields a system of equations which not
only simplifies the computational schemes, but improves the iteration con-
vergence.

Let us consider first the V-equation (3.26),

1 -

Y = B+ au'A(u',w)x[P(R)CU(WT . (3.46)

Becasue of the direct product, the term E(u) cannot be factored cutside of
the integral in the above equation. Substituting explicitly forgé(uf,p), and
denoting summation by the repeated index notation (where a repeated lower

case Greek subscript signifies summation of the indexed quantity from 1 to N),

the integrand in Eq. (3..46) can be written in component form as
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U. (n')C., V .
[AG, )« (WG ]y = th¢§fﬁﬁm : (3.47)
K705

Now define the matrix yk(u) all of whose elements are zero except the kth

column which equals the kth column of the V(p) matrix, i.e.,

k
0 ... Ovlk 0...0
Vox
0O ... O VNk 0 0,
(3.18)
With this definition the integrand (3..47) becomes
' ! Il“
Do Uk )Y (1) * (3.149)
where the diagonal matrix Qk(p,u') is defined as
[Dy(hyn')] = 5. . (3.50)
v Al ij opto ' 1d
i k
Using thisnotation, Eq. (3.46) can be written in the form
a 1
Vv = Vs = E + du'D ! ! . Ol
v(w) iEJAWJ Erw] b D (it ) U ) ST (1) (3.51)
*For example with N = 2 the integrand is
clp}rolp' 0 Vll(l-l) 0 0_111%6-217' 0 0 Vla(“)
ge)g u(n')e
1
0 EE— Vzi(p) O 0 S S 0 Vaz(n)

ogptoip! oputogp’
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Similarly the transpose of the y;equation, Eq. (%.27), can be written

without the direct product. The equation for'ﬁ(u) is
~s 1 ~t N
Ule) = B+ dp'A(u, )+ [V(e) 001 (3.52)

By explicitly expanding the integrand this equation, it can be verified to

be equal to

D, (e )T T () (3.53)

~
where the matrix U]Kis defined by

0 .e OU O +vt O
Uko
i = (U 51y = ' ,
[wk(“)]lgj [w(“)];)l ik /'
. /
VO «ee Oy O ... O/ (3.54)
Eq. (3.52) becomes with this notation
4 N ~ 1 r ' .
U = 2 Gw o= B[ (et )i T (w . (3:99)
1= O

o

The two new matrix equations for U and V, Egs. (3.51) and (3.55), can be
reduced to systems of N vector equations. This is possible because of the
particularly simple forms of the matrices yk and Uk. If one defineg the vector

V. and ¥, as
1 1
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T () Usa(w) |
Vo (1) Us o( k)
vl = and () = (3:6)
'VNi( H) = L—U‘iN( H)_J
then Eqs. (3.51) and (%.55) beccme (for i = 1 ~ N)
1
vilp) = g *tu ({ dp' Dy (o) U(u")Crs (1) (3.57)
and
1 ~
us(p) = e *tu g dp' Dy (w1 ) V(") Cuy (n) - (3.58)

This set of vector equaticns is exactly equivalent te the U and_y;matrix
egquaticns which involved direc’ products (Egs. (3.26) and (%3.27)). The con-
vergence of an iterated sclution of Egs. (3.57) and (%.58) will be exactly
+he same as that of the Egqs. (3.26) and (3.27). So far nothing new has been
gained—save some practice in matrix manipulation. However thege vector
equations can yield a better iteration scheme, which should converge faster,
and require less sborage space in the computer.

Equations (3.57) and (3.58) may now be written, upcn factoring_xi(u) or

',%i(il)) as
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1
e; = [E-w [ dwDi(u,p)U(n')Clv; (1) (3.59)
(@]
and
e = [E-u [awD(me)T(w )8lusn) | (5.60)

Then solving for u. and v_, one obtains
~i i

e 5 (3.61)

P

and

-1

u; (k) = [G(w)] g5, 1=1~N, (%.62)

where the matrices F (u) and Gi(p) are defined as

Fi(w) = B-u [ dwDs(ue)u)e, (3.63)
and

C(k) = B - w [lawDy(upe T(ug (3.64)

A g @) o

Several three group cases for different values of the transfer matrix,
C, have been solved numerically for U(u) and V(u) both from the above equations
and from Egs. (3.26) and (3.27). In all instances not only was the time re-
quired for the convergence of U(u) and V(u) less for Egs. (3.61) and (3.6L4),
" HBO . . .

but the “convergence rate, defined as the negative of the logarithm of the
asymptotic reduction in error per iteration, was better by a factor of 3 or

L. These differences and the method of solution are discussed in detail in

Chapter VI.
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Finally, before ending this section, the gquestion of the uniqueness of
solution ¢f the nonlinear integral equatlicn for the S-function (and hence for
the U and Yffunctions) shculd be discussed. As previously mentioned Eq. (3.16)
for the generalized S-function corresponds to Chandrasekhar's cne-speed S-
function equaticn. Since this nonlinear equation fcr Chandrasekhar's S-function

, . Lo D1-32
does not have a unique solution,

one suspects that Eq. (3.16) (and its
associated [ and V equations) alsc may not have a unique sclution. I% is pos-
sible to give, however, a set of necessary conditions which the required S-
function must satisfy.
It S K o~ i o ( A _X/VOS - . . IR “
The discrete eigenfunciions Y e s =1 ~M, are sclutions %o
-~ os? ’ b
the transport equation; and since they tend to zero for large x, they are

solutions tc half-space albedc problems with incident disfributicns given by

gjv\ ,i), W > o. Thus from Eq. (3.9), the S-function must satisfy
08

I_J

l "
o(vogsmw) = § é dptS(u',me(vogk'), >0, 5= 1~M. (3.67)

—

Integrating this condition over p from O to 1 and using the definition of the

V-matrix, Eq. (3.18), one finds

[" au(vogh) * [ auslvegn) = [ du)zlvesn’), (5.68)
O

or from Eq. (2.23)

dp'V(p‘)ﬁfvos,u'> . (3.69)

—
Qu
-
—
<
o]
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-
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S
i

,a\:( VOS> =

O—
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Similarly, consideration of the discrete adjoint eigenfunctions o (-v )e X/VOS,

os’H
s =1 ~M, as half-space adjoint albedo problem solutions, Eq. (3.37) gives

.1.
as a necessary condition for the S -matrix

1
J du'NST(u',u)f(—vos,-u'), w>0, s=1~M. (3.70)

T 1
[0} -V = =
< ( os)l-l) wd

_I..
Using the relation between S and § , (Eq. (3.41)), the above condition becomes

of(voe) = F 7 awS(uu)el (-voen') - (3.71)

Integration over p from O to 1 together with definition (%.17) gives a condition

on U

[ awtvomn) = aT(-voe) = [al(w)e(voemn) o (3:72)

A

Equations (3.67) and (3.71) are 2M conditions which the generalized §-
function must satisfy. Equations (%.69) and (%.72) similarly place necessary
conditions on the U and V matrices. In the one-speed case Egs. (3.67) and
(%.71) become identical, and it has been proved that these equaticns are a
sufficient, condition to specify uniquely the real physical S-function of the

2L, 3l

nonlinear S-equation. Also for the degenerate kernel approximation,
Pahor, using a corresponding set of discrete eigenfunction conditions, proved
that these conditions were sufficient for uniquely specifying his generalized
. 25 . . .
s-function. Although it has not been possible to show that the discrete

root conditions for the multigroup case are a set of sufficient, conditions,

it is felt that they are a severe restriction on the possible soclutions (if
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indeed there be more than one solution),and in all likelihood they are sufficient.

3.4 FREDHOLM EQUATIONS FOR THE U AND V-FUNCTIONS

In this section Fredholm equations are derived for the S, U and V
furctions. These equabions, while no®t soluble in closed form, are of a type
which usually do nob suffer from the shortcomings of nonlinear inftegral equa-
wicns (e.g., possible nonuniqueness of solution).

A Fredholm eguatiocn fOF\§(M,HQ) can easily be cbrhained by considering an
eigenvechor expansion for the ith albedc problem. Since the eigervechors are
f.1ll-range cemplete, the sclubion to the ith albedo problem can be expanded in
torms of “he eigenfuncticns which satisfy the boundary condition at infinity,

E3. (3.2):

M v
}l\’r}i(o}uo;x)“> = SZ‘]— a(vos);‘i’(‘vos}pJe-X/vos
N N4 (N /v
0 [ vy Ioa(v)ei(von) ) e (3.73)
J=1 nyp N

Here i has been assumed that the half-space has such a compositiocn that all
the roots v, s =1 ~M, are finite and distinct. Setting x = 0 in Eq.

oS ? g
(3.73%) and using the full-range orthogonality relations plus boundary condition

{3.1), the expansion coefficients are:

My ot 1
a<Vos) = = (E (Voslpo)gi - %T—f dH@T(VOS;'H)Hi(O;HOSO:’H) 2 (3°7L(')
S s O
ars
Ho ~Tm 1 1. ~fm S
A%(v) = 0. (v .- Aupd s (v, -p) v, 50,-u) . (3.75
(V) W) (vim)ey Ngl(v) [7amg ; (vs-m)¥; (0yn030,-0) « (3.75)
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When these coefficients are substituted into Eq. (3.73), with x = 0, the fol-
lowing non-homogeneous Fredholm equation for the emergent distribution is ob-

tained:

1
¥;(o,u030,-1) = HOE(MO;H)Si'g dp'p'K(u'ym)¥s (0, pp30,-0"), 1 > 0.(3.76)

The matrices F(u.,u) and X(u',u) have been defined as:
— O’ — 2

Mo ot
E(Ho)“) = Sél'Ngg(Vos: w)e (VoS’HO)
o N N .
—r— ¢ (v,-u)o. " s
= Tfmdl Ly Ty by mgg ko) (3.77)
and
y +
Kp'yw) = 2 5 8(voer-w)¥ (vogs-n')
~ g=1 s
N nj i 1 m ~tm
+ L [Yav( X 05 (v, )8 (vy-pt ) (3.78)
j=1 7 m=j  M5(v) J

Both of these matrices can be verified to be continuous functions when their
arguments are positive.
It is also possible to obtain a singular integral equation for the emergent

distribution by considering the incident distribution as given by Egs. (3.73),

(3.74), and (3.75); explicitly

1
8(u-Mole: =  p F(Hos-mles - é au'u K, -p)¥; (0, 0030, -0"),  p > 0. (3:.79)
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Recently Case has proposed a new method for obtaining solutions to trans-
port problems,25 with which he derives the same pair of equations for the
emergent distribution expressed in terms of the infinite medium Green's func-
tion. When the explicit expression for the Green's function (Chapter II, Sec.
L) is substituted into his equations, Egs. (%3.76) and (3.79) are obtained.

In the one-speed case, the singular integral equation (%.79) and the
Fredholm equation (3.76) may be solved together in closed form.25 However,
for the multigroup situation no closed form solutions have been obtained, and
to determine the emergent distribution numerical procedures must be used.

Finally the N albedo problems may be treated collectively by using the

generalized §;function. From the definition of the\§;matrix, Eq. (%.8), the

Fredholm equation (%.76) yields

Tl

S(horn) = boE(posk) = [ ar'K(n',w)$(kosk'), brkg > O . (3.80)
@]

This equation may be solved numerically by standard techniques. However a
simpler set of Fredholm equations may be obtained by decomposing the_§;function
into the‘E and‘X functions.

The Fredholm equation for the g}function can be obtained from Eq. (3.80)
very readily. Multiply (3.80) by u/po, integrate over Mo from o to 1, and

use the definition of J, Eq. (3.17): the result is



M
1 + 1 ~t
Uw) - E = n 2 3 olvegr-w) Lf ducd (vogrbo) * [ du(ﬁ,(vos,-u%
s=1 *'s o ©
N M« "N
J 1 m 1
+ p L dvi\ L 7 05(vsmm) | duo¢+m(v,u0)
j=1 nN3-1 m=J j(V) o
=
+ g dp'e 5(v,-p') - [ap'K(p',w)u(u') (3.81)
0
Combining the terms in the square brackets, Eq. (3.81) becomes
1 1
Uw) = B+p [ awku',e) - Jrap'K(p',w)U(p') . (3.82)
-_— O A~ —

To find a corresponding Fredholm equation for M(p), the adjoint albedo
problem must be considered. We expand the ith adjoint albedo problem in terms

of the decaying adjoint eigenfunctions (which also are full-range complete) as

T -x/v
08/~ VosJ-l‘J‘)e / o8

|
™
Q
—+
—
<
~
©
—

1-
/‘Ei(oy'uosoy H)

+

N ) N
L [ dv{z Afmmsjm(v,-u)} S (5.83)
j‘—'l nj-l m=j J .

Proceding as before in the ordinary albedo problem, one solves for the expansion
coefficients, uses the boundary conditions (3.3%), and treats the N-adjoint
albedo problems collectively. The result expressed in terms of the adjoint

S -function is

r t Lot
S (Hosk) = HoE (Hosk) - g du'K(p,p')S

" -~

=l

(HOJH'); My Mg >0, (3.811\)

where



L5

A P

M
1 t ~
HOJH) = ) 'ﬁgi (Vos;'H)q)(Vos)Ho)

N s (N
Y orYav Y —— oM™y, -3y, :
o {] v L s (vy-p)es(y uo)} (5.85)

T
Multiplying by u/uo and integrating over u_ from O to 1 an equation for U ()

~T
is obtained. Since U (u) = V(u), this last result can be written as

V) = Etw [ awK(nu') - w [ anV(eO)Kew') . (3.86)

Equations (3.81) and (3.86) are a pair of nonsingular Fredholm integral
equations which could, in principle, be used to evaluate the U and V matrices
by the standard methods of Fredholm equations,55 However, the matrix E}u,p“)
involved in these equations isquite difficult to evaluate numerically since
all the eigenvectors must first be calculated. Although cnce evaluated, the
norm of K(u,u') is readily found; and the uniqueness of solution and the uniform
convergence of the Neumann series of successive approximaticns can be assured

55

by a check on the necessary convergence condition

¢ )
1<y max ‘Zl fd% Ky (o) |2

.8
22 Pl (3-87)

3.5 AN APPROXIMATE EQUATION FOR U AND V¥

In the previous section two Fredholm equations were derived for the\y(u)
and V(u) functions. From these equations a first order approximabion for U
and V can be obtained by considering only the asympbotic or dominant eigen-

function in the matrix gju’,u)n Eqs. (3.81) and (3.86) become upon retaining
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containing the largest eigenvalue, vy

only terms
. ~t 1 ~t
H(“) T E + 'l%z E)\,(V[”“)Aia; (Vf) - %I'g dp"g(vg:"“)f, (V[:'H')H_(H'):(B‘88)
and
' + 1 ~t
V(p) & E+ %—fi(vl)ﬁ (vys-n) - §—£ [7antV()e(vy,-n )8 (vy,-n). (3.89)

First consider Eq. (3.88). If the constant row vector, f is defined as

(3.90)

N 1 ot ! '
T g ap'® (v, -n")U(R')

multiplication of Eq. (3.88) from the left by‘E_(vl-u) and integration over p

from O to 1 yields for E

1 t M vt
- B w0 ’ - ]
(ves =) [E * 7 8(vp-)E (v)) (3.91)

[[an T
o]

N r
h =
ey

1 1 t
1+75; [ Al (v, )2 (v, -1)
Substituting this quantity into Eq. (3.88), collecting terms, and recalling

1 ~T 1 +
oy = ] awToue) [ atv,) (3.92)
one finds
1 ~t
. du'ed (v !
Ulp) = E+ oy ,-u) lé u';( ph) © (3.93)
N, + [ap'p'e (vy,-u')e(vy,-u') |
& -
However
1 1 'NT 1 1 1 du’ 1'&)‘1.( |)¢( v) ( )4)
N[ = f dp U,‘&(Vpu )i(vgju ) "g MR AV, =l )2 V-l ) 3.9

e}
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Thus Eq. (3.92) becomes

1 ~t
‘ ; dp'e (vysn')
g(“) = B+ UQ(VI:‘H) - é =F ! —
(j; dH'H"‘E (V[:H')E‘(Vpu')

(3.95)

By using a similar analysis on Eq. (3.89) a first order approximation for

V(u) is obtained:

1
[ awe(vpn) ~t

_ ¢ (vy,-n) . (3.96)
e du'u‘f(vz,u')g(ku')
Lo

V(p) = E+p

These approximations for U and V have been found to work well only for a very
large discrete eigenvalue (vl > 10). This is not surprising since if v, is
large enough the continuum, ve(-1,1), becomes "lost." These values of large

v, are thought to occur in media which are close to being critical—i.e.,

1
either the absorption is very weak (pure water) or the fission almost compensates
for the absorption. And it precisely for those systems characterized by large

descrete roots that the iterative solution of the nonlinear integral for U and

V is very slow in converging.* Thus it is important that the initial guess

for the starting iteration be a "good" one; and Egqs. (3.95) and (3.96) provide

such a starting point.

*¥Recall that in the one-speed case, the nonlinear integral equation was very
slow in converging for 2c (= os/ct) + 1. But taking the limit of Eq. (2.93)
as v, > o, yields for the one-speed case, H(u) = 1 + 2u. This approximate
expression has a maximum deviation from the correct value of the H-function
of less than 3%.



CHAPTER 1TV

SYMMETRIC TRANSFER

In this chapter, the case of a gymmetric transfer matrix is considered.
This particular form of gyis not so restrictive as it may appear at first
glance. For instance, all two-group problems may be transformed into such a
case. Also the N-group thermal neutron problem and the thermal N-term degenerate
kernel approximationlo for a nonmultiplying medium can be cast into a form with
a symmetric transfer matrix. This symmetric C also appears in the special
astrophysical situation of radiative transfer with local thermodynamic equilibrium,
the generalized picket fence model for the absorption coefficient, and isotropic

20

scattering.

A symmetric transfer matrix greatly simplifies the results of the pre-
ceeding chapter. 1In particular, all the equations for U and V becomes self-
adjoint, and thus there is no need to consider an associated adjoint problem.

It is possible also to show that for this case all the discrete eigenvalues are
either real or imaginary—never complex. Finally a proof is given in Section
L.3  that the solution of the resultant Fredholm equation for the 91“) (or
yju)) matrix exists and that this solution is unique. This uniqueness proof

in turn can be shown to imply the half-range completeness of the infinite

medium eigenvectors.

L8
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4.1 MULTIGROUP EQUATIONS FOR THERMAL NEUTRONS

Before discussing the properties of the multigroup transport equation, a
brief derivation of this equation for the case of thermal neutrons in a non-
multiplying medium will be given. Thermal neutron transport theory is usually
handled in two ways. The first method which is probably more familiar to the
reactor physicist, involves defining effective group constants and directly
reducing the energy dependent transport equation to a set of "multigroup”
equations without any explicit energy dependence,6 The second approcach involves
an expansion of the energy dependence of the flux into an N-term polynomial
expansion,B This equation in energy polynomials can then be cast into the form
of a multigroup equation with a symmetric transfer matrix.

For the case of plane geometry, and isotropic scattering, the source-
free energy-dependent Boltzmann equation can be written as follows:

1

(k %; + 74 (E) )¥(x,1,E) > [i au gw BT (E-E)u(x,n',E') (4.1)

where ZS(E'+E) is the scattering kernel for scattering from energy E' to E.

6,37

Using the usual multigroup technique, the energy variable is split into N
regions. Integration of Eq. (4.1) over the ith region, the ith multigroup

equation is obtained

N
(k %E *og)uy(on) = jgi °ij Ii R PIERE (4-2)

where the group parameters are defined as
\V'(X)“) = f dE ‘U(X)“)E) ) (1“3)

1
ME;
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1
o, = —=—— [ 4B 2 (E)v(x,1,E), (Lb.b)
i (x0)  AEg M g
Clg = ____l__._ f dEf dE'ZS(E'+E)\V(X,H,E'> . (b”5)

Q\lfi(x,p) AE; AE;
To make the multigroup constants oi, and cij independent of x and p it is usual
to assume that the energy dependence of the angular flux is separable. Further
for a system in thermal equilibrium a good first approximation is to assume

this energy dependence is Maxwellian with an effective temperature T. With

these assumptions the multigroup parameters are given by

cjy = a3 [ a8 [ AL (E-E)M(E',T) (4.6)
AE4 AEJ'
o, = a3 [dE Ly(E)M(E,T) , (L.7)
AE;
L - [ 4B ME,T) . (4.8)
Q3 AE5

The cross section ZS(E'+E) must obey the detailed balance relation:38

L (BE)M(E',T) = Lg(E-E')M(E,T) , (4.9)
or
1 1
aJ—. cij = &-:: Cji . (L.10)

Finally defining the symmetric matrix

(4, = é- i (4.11)

the transfer matrix can be written in the special form



C = AD (k.12)

where \]1 is a diagonal matrix with elements, oci.

To show that this form of the multigroup equation can be reduced to the
required form (i.e., ordered ématric and symmetric Q), congider the case
where the transfer matrix C is written as § = D1ADo where 21 and Do are diagonal
matrices with positive diagonal elements and;t\vis a symmetric matrix. Clearly
this is a slightly more general case than that for thermal neutrons derived
above.

The elements of the Z{matrix generally will not be ordered but will be

arranged as

o >0y > 0. 20, >0, 1>k 0...,m< N, (L4.13)

Plj_ = 6ik, 1 = lNN
le = Siz} 1 = 1~N
Pyp = By, 1= 17K (4.1k)

By multiplying Eq. (L4.2) from the left by f, one obtains

e+ I Gon = Dignl

dpy'(x,0') (4.15)

where
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Vxn) = Py(xn)
> = fZP'l

—~ b

A = PAP

D: = PD;P°Y, i=1,2 . (k.16)

. -l ~ N . ! . . .
Since E' = P, i1t follows by inspection that ; is diagonal with ordered elements,

cl>023...301'\1. (4.17)

Further, D, ' and Dy' are diagonal matrices with positive diagonal elements,

v s .
and A' is symmetric.

+
Now, define the diagonal matrice 2i~(l/2) as
/2, /2
-1/2_1/2

Multiplying Eq. (4.18) from the left by D Dz’ ", the desired form of the

transport equation is obtained:

[H%‘}EE"’/\Z’”](\Y"(X)H> = A” [i dHﬂ{,”(X)H') s ()4"19)
where
V(o) = i PE 2y ()
Zj = % (4.20)
A 1/2 /A,Dl/E 1/2 ;{n

Thus the thermal neutron problem can be put into a form with a symmetric trans-

fer matrix.
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If instead of using the multigroup approach, the energy dependence of

V(%,u,E) in Eq. (L4.1) is approximated by a finite sum of Laguerre polynomials

of order one, i.e.,

N
¥(x,1,B) & M(E,T) .Zl £3 (%, 1)L (B) (k.21)

a symmetric transfer matrix form of the multigroup equation can also be obtained.

Substitution of (L.21) in Eq. (L4.1) yields

o/

N -

1

~

iidp'fi(x,u') g” dE'ZS(E’+E)M(E',T)Li(E'”

Olueze)

n =

Explicit appearance of the energy variable is now removed by multiplying Eq.

(k.22) by Lj(E) and integrating the result over energy. Assuming the normaliza-

tion

(L.23)

the I'esult iS
LLE)] :] 'F + 13 ( H) - A] f a ! i ( ‘) = O ( )
} L) Vs = . X, 'j Hf X,M 2 L\Legh’

where

Vio = Vi o= J aB M(E)Z4(E)Li(E)Ly(E) (L4.25)

and
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00 00

-1 ‘
Aj; = 3 g ELs(E) [ dE'2(E'~E)M(E"' )L (E') . (h.26)
By virtue of detailed balance (which ZS(E'->E) is assumed to satisfy), Aij = A‘i'
d
Eq. (L.24) may be written in the matrix form
d 1o
H&E”ﬁ\[ﬁxm) = éfl dp' £(x, 1) (k.27)

where the matrices X and Ahave elements V, .

and A respectivel nd th
i3 i3 Sp ively, a e

vector f(x,p) has components fi(x,p). The real symmetric V-matrix can be
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diagonalized by an orthogonal transformation, O, as

g = L = " , (4.28)

where § is the transpose (and inverse) of 0, and o, are the eigenvalues of V.
. . 11 .

Since 24 (E) > O for all energy, it can be shown — that o, >0, i =1 ~ N, and

for finite N they are bounded from above because all the Vij are finite.

Multiplying Eq. (L.27) by O one then has

(u %; E + §> y(xw) = ¢ dwylxut) (4.29)
where
A\E(X) w) = §£(X) k) (4.30)

(4.31)

o

it
IO:Z
=
gOO

Il
o



55

Finally, the ci’s may be order in exactly the same manner as was done in Egs.
(4.13)-(4.17). Thus once again one has to solve a multigroup equation with a
symmetric transfer matrix.

Before ending this section, it is noted that any two group problem—even
those including fission— can always be reduced to the symmetric ¢ situation.

The similarity transformation

0 \[Clg
5 = (L.32)
N Coa 0
will symmetrize any strictly positive  and leave ;_diagonal, On the other

hand, if one or both off-diagonal elements of G are zero, the resultant multi-

group equations can be solved consecutively by applying one-speed theory.

4,2 DISCRETE EIGENVALUE SPECTRUM

Although it is suspected from physical requirements that all the discrete
eigenvalues, vgg, 8 =1 ~ M, of any subcritical medium must necessarily be
real, it has not been possible to prove mathematically that they are never
complex. However for the case of symmetric C, it can be shown that the dis-
crete eigenvalues are always real.

)5

To prove this result, multiply the eigenvector equation for gjvos,u

Eq. (2.5), by‘E}(vos,u) and integrate over u from O to 1. In this manner the

following equation involving v g ig obtained:
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1 1 ~ 1 ~
- f d—}‘l“?i*(vos) “)g(VOS) “) = Il d—“?*(vos) “‘)“_?\( VOS) “‘)

Vos -1

(L.33)

1 ~ 1
- [T aud* (vogom)C [Tdu'e(vogsk'), s = 1~M.
-1 -1

The right hand side Eq. (L4.33) is equal to

N N
1 1 1
RHS = [ldu 2 0,05 (Vogrt)®3(vogrn) " ?—1 Ildu¢§(VOSJH)CijildH'¢j(VOS:M')‘
S 3=
(4.34)
Using the fact cij = Cji’ Eq. (4.3L4) becomes upon decomposing the last term
1 N N 1 1
RHS = [1 du & Gi¢§(vos’p)¢i(VOS’“) - izi Il du¢§(vos,p)cii£l dp'os (vogsh')

1 * 1 ] 1Y) 4 1 * 1 . '
= cjj{i[l dud i (vogsb) Ildu ¢j(VOS’“ ) [ldp¢j(vgs,p)[ldu ¢i(VOS’“ .

Clearly every term in the above expansion must be real, regardless of v,

and hence the left hand side of Eq. (4.3%) must be real. The integral on the

left hand side of Eq. (4.33), which in veiw of Eq. (2.1k4) can be written as

by (V) B3 (vog) [ L
1 (vigo1 k) (Vogoi-n)
(4.56)

is also real since it is a sum of products of complex conjugate terms.

) * .
jOSVOS 1

™=
}_l

1 ~J
fl Aupd* (Vo s )8 (Vogs 1) _
- 1

If the integral of Eq. (4.3%6) is not zero, it follows then that the
eigenvalue, v 4, must be real! It will now be shown that this integral can
vanish only for purely imaginary eigenvalues.

Assume, for the sake of argument, that v is complex and Ref{v__} > 0.

os

It is easily verified that in this case
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0< (Vosoi'}-’-)(vésoi'“) < (Vosci+“>(vésci+u); >0, i=1~N. (Ll57)

Hence each integral in the sum on the right hand side of Eq. (L4.L5) is strictly
positive, and since at least one of the terms b;(v,g) bi*(vos) is also strictly
positive, the sum is strictly positive for Re{vos} > 0. Similarly it can be
proved that for Re{vos] < O the sum is strictly negative. Thus the integral
(4.36) never vanishes if Re(v .} # O.

However, if v__ is purely imaginary, one has

os

(Vosci'“)(vgsoi’“) = (Vogoitm) (Vggoi+u) (4.38)

and each integral in the right hand side of Eq. (L4.36) is zero.

Thus one concludes the discrete eigenvalues, v,g, s = 1 ~ M, lie solely
on the real or imaginary axis. However,in Appendix A it is proved that for a
finite medium to have a stationary solution (i.e., be subcritical) there can
be no imaginary eigenvalues. This result is apparent also from the following
physical argument.

A transport equation solution for an infinite subcritical medium with
some source (not at infinity) must physically tend towards zero at large source
distances. Since this solution could be expanded in terms of all the eigen-
functions, the imaginary roots would lead to modes which oscillate at large
source distances and in turn lead to negative fluxes. Thus it must be con-
cluded, for a subcritical infinite medium, the eigenvalues must be real. If

a particular value of C and ;’yields an imaginary (or infinite) eigenvalue,

Vo, then a stationary solution for a medium characterized by this C and 2, does

Cd
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not exist, i.e., the system must be critical or supercritical. For the re-

mainder of this chapter it will be assumed that any medium under considera-

tion has only real eigenvalues.

4.3 SIMPLIFICATION OF THE VILAND LEQUATIONS

It is not surprising that the results of the preceding chapters are
greatly simplified for the symmetric transfer case, since many of the equations
become self-adjoint. In particular the eigenvector equation, Eq. (2.5), be-

comes self-adjoint and from Eq. (2.27)

Tv,1) = o(v,n) ve(-1,1) or vyg, s =1~M . (4.39)

2

Using this simplification the Fredholm equation for the U-matrix, Eq. (3.81),

becomes
M) = E+up [l Ko(u',p)ap’ - p Cf)l 'K (ut,m)U(u') (L. 40)
where
Mo .
Eu'u) = Sél —N—;i(vos,-u)ﬂvosy-u')
J ~ \
+ 2 [ Tav { 2 ml lﬂm(v,-p)‘%?(v,-p')x . (4.41)
N I OO )

The transpose of the Fredholm equation for V(u), Eq. (3.86), becomes, for
symmetric ¢, identical to Egq. (L.40)! It will be shown in the next section
that the solution of Eq. (L4.L40) is unique, and hence from Eq. (3.45) the rela-

tion between the U and V matrices becomes quite direct, namely
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N/

u(p) = W(w) . (k.42)

This result demonstrates that for this symmetric case there is only one
fundamental matrix quantity, U(u), which need be computed to obtain the S-function.
Thus only one equation (either a Fredholm or a nonlinear integral equation for
the U-matrix) need be evaluated.

The generalized S-function, in view of Egs. (3.21)-(3.25), and (4.42) then
is given in component form as

[S(uoom)], ;= —“—*i——; 0(u)g Wo)1; 5 (1.13)

iHo™93
The effect on the S-function upon interchanging variables is easily determined

from Eq. (L4.43) as

N

Slugsr) = Sl - (L bh)

The symmetric ¢ approximation also greatly reduces the compubational work
for the solution of the nonlinear integral equation. From Eq. (3%.58) the non-

linear integral equation for U(u) becomes, employing the vectors uy of Eq.

(3.56),

ui() = g *u [ awDi(mu)Ue)E wi(n), i=1~N. (k.45)
¢}

As is expected, the nonlinear integral equation for V¥ i) becomes equal to the
transpose of Eq. (L4.L45), and once again there is only one equation to solve.
For the one-speed case, Eq. (L.4L) immediately yilelds the important result

that the S(po,u) function is symmetric with respect to the interchange of its
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arguments. Ambarzumian assumed this result in the original derivation of the

26
. This result was first proved

27

Lo
by Minnaert ~ using physical arguments and later by Chandrasekhar. This

S-equation (one-speed version of Eq. (3.15))

invariance result is important in decomposing the one-speed S-function into a

product of two identical functions (i.e., U > H and V ~ H).

4.4 UNIQUENESS OF SOLUTION OF THE U-EQUATICN
Tn this section it will be shown that the solution of the Fredholm
equation for U(w), Eq. (4. 40), exists and is unique. This uniqueness for
E(u) in turn implies that the eigenvectors are half-range complete.
Consider first, the homogeneous equation

U = e [ AU (k.16)

Assume for sake of argument, the above equation has a nontrivial solution.
Eq. (L.u46) can be written as a system of vector equations using the vector

ui(u) which is the ith column of the_g(u) matrix (see Eq. (3.50)), namely

-

us(p) = -p (f)l dp' K5, w)us(p'), 1= 1~N. (b.L7)

Define now, the vector_ﬁi(u) as gi(u):=~ﬂlﬂ5i(u), Mulbiplying Eq. (4. L47) by
~
xi*(p) and integrating over u, one obtains upon explicit substitution of

K5(u',n)
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M o~ 1
{)1 duﬁ(u)&(u) = - Sél t él duN i [8(vogr 1) (1)) ({ ap' N " T vogr-n')
N ; N R
(x) xs(n) = 2 J dv{Z [ a
() 3%(vrws ()] fldu'@”'%r?w,-mxi(m} , (4.48)
J w1 o ~j o

Since all the eigenvalues are real, all the eigenvectors ij,—u) are also real.
Hence both sides of Eq. (L4.48) are composed of terms which are products of
complex conjugates. Thus there is an apparent contradiction in that the right
hand side of Eq. (L4.48) must be real and negative, while the left hand side is
strictly positive. This result proves that‘ﬁi(u), i=1~N, must be identically
zero, or equivalently the homogeneous Eg. (L.47) has only the trivial null

vector as a solution.

The inhomogenous Eq. (4.40) for the\g(u)-matrix also can be written

as a vector equation for‘gi(u),

us(p) = ki(w) -nJ du’gﬁs(u',u)gi(u'), i= 1N, (4.49)

: s
where gi(u) is ith column of the matrix E + u It du' K (u',u). Such a vector
-1

Fredholm equation can be reduced to the usual scalar Fredholm equation5

(1) = glw) + 17 auK(u e . (1.50)
a

Consider the variables p and p' ranging over the interval (O,N). Then define
the scalar functions f(u), g(u), and K(u',u) in the new interval by the following

perscription:



f(w) = lgy(e-G-1W, (k.51)
g(v) = [gG-(-1M], (k.52)
K(p',n) = [K%(n'-)i-1)N,p-(2-1) 1y (k.53)
for p and u' in the intervals
(5-1)N < p < jN , (L4.54)
and
(£-1)N < p' < AN . (4.55)

Here the subscripts j and I refer to various components of the vectors Ei’ 51
and the matrix §F(p',u). With these definitions the vector equation, Eq. (4.49),
takes the form of the scalar equation, Eq. (4.50), with a = 0, and b = N.

One of the well known properties of Fredholm integral equations of the
form of Eq. (4.50) may be stated as follows: the inhomogeous equation for
any arbitrary g(p) has one and only one solution, f(u), whenever the correspond-
ing homogeneous equation (g(p) = 0) has only the trival f(u) =0 solution,J+l
Thus the solution of UY(u) from Eq. (4.LO) exists and is unique since, as was
shown in the previous section, the inhomogeneous equation has only a trivial
zero solution.

An immediate consequence of the uniqueness of solution of Eq. (Lyo) for

U(n) is that the coefficients of the ith albedo problem eigenvector expansion

in Eq. (3.73) are also uniquely determined. This in turn implies that the
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eigenvectors ¢(v,u), v > 0, are half-range complete in the sense of Case.
This half-range completeness has also recently been proved by Leonard and

Ferziger by using a more complicated technique.



CHAPTER V
VARIOUS HALF-SPACE PROBLEMS

One common technique for obtaining the complete solution of a particular
half-space problem is to expand the angular flux in terms of singular eigen-
functions.l Generally the emergent distribution of the half-space problem is
unknown, and to determine uniquely the expansion coefficients, half-range com-
pleteness of the eigenfunctions must be employed. For the degenerate kernel
approximation and the symmetric C case, such a half-range completeness proof,
which shows explicitly how to obtain the coefficients, has been obtained.ll
However application of such theorems to obtain closed formed solutions is
considerably more difficult than in the one speed-case,5 and to calculate explicit
numerical results is highly nontrivial.l9

To evade such half-range formalism, a different approach can be used.
The solution of any problem is obtained in two distinct steps. First the
emergent distribution at the interface is obtained. It will be shown that the
emergent distributions for all half-space problems can be expresgsed directly
in terms of the generalized S-function of the preceding chapters. Once the
emergent distribution is known, the use of full-range completeness and ortho-
gonality properties of the eigenvectors readily yield the coefficients of an
eigenfunction expansion of the flux.

In this chapter the complete solution to the half-space Milne, albedo,
and Green's function problems are obtained in terms of the_§:function or LL

and X matrices.

6k



65

5.1 THE MILNE PROBLEM

For every positive eigenvalue ve(0,1) or v=v_,, s =1 ~M, a Milne problem

SJ

can be defined. Denoting its solution bY'EV(X;H), it is defined as the solution

of the transport equation, Eq. (2.1), with the following boundary conditions:

(1) wy,(ouw) = 0, w>0, (5.1)
(1) nylow) = (v, v o, (5.2)
X0

where ¢(-v,u) may be any of the eigenvectors——regular or singular.
The first step in obtaining the solution is to find the emergent distribu-

tion, ¥ (o0,-p), u> 0. Consider a solution of the transport equation, V(x,u),
’:V [FN)

defined as

VGou) o=y, 00un) + oy, (x,u) (5.3)

where ya(x,u) is an albedo problem solution with the boundary conditions
(1) ¥alow) = o(-v,u), >0, (5.4)
(1) Lim y,(x,) = O . (5.5)
K00

Hence from Eq. (5.3), V(x,u) must have the boundary conditions :

-h

(1) w(oy-u) = g(-v,u), w>0 (5.6)

Xy

(ii) 1lim }IJ,(X;H) = A?(—V,}J.)G
K00
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Clearly the unique solution for y(x,u) is
(o) = elvme (5.8)
Equations (5.3) and (5.8) then yield for the emergent Milne distribution
(o) = 0(-v,-p) -y (o,-n), w>0. (5.9)

The emergent albedo distribution, E{{o,—u), can be expressed in terms of the

S-function. From Egs. (3.9) and (5.4)

1
Yoloy-p) = Eé ap'S(u',u)el-v,u') (5.10)
and hence the emergent Milne distribution in terms of the S-function is

Y (0,-n) = ¢(v,n) - 1 él du'S(u',p)e(-v,u') (5.11)

~

=

Once the S-function has been determined, this equation cculd be used to obtain
numerical values for the emergent Milne distribution. However in any computa-
tional scheme only the U and V-functions would be obtained, and thus this
emergent distribution should be expressed in termsg of these gingle variable
functions. This reduction of Eq. (5.11) leads to a far simpler equation for
numerical evaluation.

By comparing Egs. (3.17), (3.24), (3.51) and (3.53) it is seen that the

§jpo,u) matrix may be written in the form

S(u'sp) = ' Up(u)C V(u")D (ou') (5.12)

~ -~
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where the double index notation is again used to denote summation. Recall also
that the eigenvector, ¢(v,-p'), v >0, u' >0, in view of Egs. (2.6) and (2.9),

can be expressed as

a(v), v>0, u' >0. (5.13)

'

o(vy-p') = ,E(V;-H')Q
If the diagonal matrithk(v,u,po) is defined as
Mk(VJ“)H') = QK(H)H')E(V;‘H') ’ (5.14)

then the integrand of (5.11) is

= ke

Sutye(vs-p) = ()¢ (k)M (vsm,ut)g alv). (5.15)

This expression can be considerably simplified by considering the explicit
form ofyLK(v, Wwu'). Substitution of ¥ and D, from Egs. (2.7) and (3.50)

yields (in component form)

(e (vymon)], 0 = Y T (5.16)
J (oiv+u')(ogutopp')
The identity
1 _ 1 ok _ 1 (5.17)
(oguiogn')(ogvin')  OF Okvo [ogRtogn’  ogvi
may be written as
1 . _ P ok L _P 1 , (5.18)
(oip+0kp')(civ+p') 03 OpV-H Osptop’ 0y Opv-p ogviy!

This result transforms Eq. (5.16) to
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;0 1 ) |
(M (v,uu’)], . = L ’—K—L—aij = B5j ) 3 (5.19)
- 1J OkV—p, \Oi Oi“+ok“' Oi (jiv-i-u' 1
and since
u! - l l-]_ - b (g , (5520)
butdp' d butdu’

Eq. (5.19) yields

1 [1 1 v A
"M (v ], = N SN GRS S: .\ (5.01
K [Nk'( oMM )]lJ GKV"H {Oi 1J in‘*'O'kp.’ id 01 1d Giv-i—“r lJ) ’(5 )
or equivalently
1 v N
'[M ' = 5.. - ulD DA .2
bt (Vo) ]y okv-u{oivm' 15 7 HDklop )]ij] (5.22)
Substitution of this result into (5.15) and use of (5.13) gives
1
S8 melv,-pt) = B Tp(u)g V(v )
o_V-[
M
Puv
- Un(w)C V(u')DqC alv). (5.23)
O, V=l
n
Thug The emergent dlstribution is
volor ) = () BV w0 T e )p et
~y 7 o 4 G V-l le) ~% WA Agrt 7 ”
n
PI.LV 1
(e [an ¥ )Da(u,n')C alv). (5.24)
onv—u ~ 0 e

This last term may be further simplified by considering the nonlinear integral

equation for the U-function. The transpose of Eq. (3.55) is

O = B (nC [ Ay k) (5.25)
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or solely in terms Of,gk(“)

Ue(p) = B + wik(w)C él dp'V(k")Dk(ksn') (5.26)

E =5.08. .
where [“k]ij 13%5k

Hence the emergent distribution is

1
p(05-) = e(v,p) - = U (W [ ap Yut)e(v,-u')
- Gnv-p o]
b (g () Ey)E alv) (5.27)
Oy V=k *-
However from Eq. (2.6)
R(V)IJ-) = P,E(VJH),Q. ,%(V) +£(V)HL>;(V) p) (5.28)
or substituting for E(v,u)
olv,w) = X Eg alv) + Gv,uh(v), (5.29)
O V=i

Combining the last term in (5.27) with g(v,u) the emergent distribution simplifies

to

P
Y (0,-) = Glv,ur(v) + On:-u (g a(v)
Pv 1 1 1 1
- Un(Wg [ aw' V(w)e(v,-u'), (5.30)
G V-“ Padl O -— Vol

or from (5.28)




70

Finally writing this equation completely in terms of the matrix‘gju), the
emergent distribution of the generalized Milne problem is given by the very

simple equation

Uy(o,-p) = Glv,wa(v) + PE(v,)U(w)alv), v >0, u>0 (5.32)

where the constant vector h(v) is

AN Land

a(v) = c{g - dM'X(u')E(v,—u'),Q} a(v). (5.33)
0]

Now that the emergent distribution for the generalized Milne problem
has been obtained, the angular flux inside the half-space can be obtained.
The solution may be expanded in the eigenfunctions which satisfy boundary

condition (5.2) as

M

o) = M@ T alige(sgg e 08
S:
N N5 N e/t
v3 g dv{z A?wm?(v',m} A (5.54)
Jj=1 le_l =J

Full-range orthogonality immediately gives the expansion coefficients:

Avog) = -2 1" aul (vog, 1)y, (0, -h)
s O
= - [l (v (G M) + PR, W) U(k)v)) (5.35)
and
B = - o PauBn e un )+ )] - (5:36)

)
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Often the Milne problem of most interest is the one related to the largest
discrete eigenvalue, Ve The asymptotic behavior of this particular problem

for large x is

ﬁj(x’“) = i’i("’w“)ex/w +O‘(Vz)ﬁ(w,u)e_x/v" : (5.37)

A quantity of interest for this problem is the extrapolated end point, X5

defined such that

a(vf)exo/vf + a(vf)a(vl)e-xo/vf = 0 (5.38)

A A

1 as
pas(xo) = [l dH\UV]Z(XO:H)

Solving for x and substituting for o(v,) from Eq. (5.35), the extrapclated

end point is

N
3 vy 1 1 ~1 s\
Xog = - > M{N—lg dppd (V[)H>“£V (O;"HU ’ (559)
or in terms of the gﬁp) matrix
(
v 1 .1 A
X, = - miﬁ—l;(f) duug*(vz)gf(w;u)ﬂ(u)ﬁ(wﬂ : (5.40)

5.2 THE ALBEDO PROBLEM

In Chapter III the albedo problem was discussed, and the complete solution
obtained. For sake of completeness the general results briefly are reviewed.
The generalized §-function was defined in terms of the emergent digtributions
of the N albedo problems. From Egs. (3.1), (3.3), and (3.9), the emergent

distribution for the ith problem, wi(o,pogo,-u), is

=

E(O;Hoso;'}i) = ,\S,(HO)H)S;]_J n > 0. (5.41)
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The complete solution,kyi(o,u ;X, 1), can be expanded in an eigenfunction

expansion as was done in Eq. (3.7%).

M
}Ui(O;Ho;X,u) = Zl OC(VOS)?L(VOS,H)G—X/VOS
M -
N 0. N ) )
+ Y [ dv{ )3 A?(v)gm(v,u)$ e x/v . (5.42)
j:l T]J —l ‘\m:J J J

From Egs. (5.1) and (%.1) full-range orthogonality gives for these expansion

coefficients
Ho vt 1 1 At \ ,
alv.) = == (v_moles - = [T aw® (v ,-w)8(kgu)es s (5.43)
oS Nog ™ 0s? M0/l Nos o ~ ‘08 o’/
and
M ~ 1 ~t
A(v) = - ETm(VJH)ei - ml f d“ﬂjm(v;'ll)?\l(uo)u)fi . (5. 4k)
J N?(V) J ~ Nj(v) o

These results can be expressed more simply when the transfer matrix of
the problem becomes symmetric. In this case the expansion coefficients can be
expressed in terms of the emergent distribution of the generalized Milne pro-

blem. The transpose of this emergent distribution is, from Eq. (5.11),

T,(0,-0) = Blv,m) %: éldu"i(v,-p')g(u',u) , (5.45)
or in view of Eq. (L.53)
~ A/
T, (0,-n) = F(v,u) - i— I5 At (v, -t )S(ipt) (5.46)
-~ o]

Comparison of this equation with Egs. (5.43) and (5.44) shows that the expansion

coefficients can be wriften in the simple form



U
Aveg) = st ﬁvos(oy—uo)gi s (5.47)
and
M ~
A(v) = ° (0, -p)e. (5.48)
J Ngn(V) »Vj ’ o/ni

where ijm(x,u) is the generalized Milne problem solution asscciated with

I

3 -v,u). Finally using Egs. (5.%2) and (L.51), these

continuum eigenvector 3

coefficients in terms of the U(u) matrix are

N
Avyg) = %ﬁ‘;g(vos:“o)m“o)g{ﬂ‘ (f)ldu'E(u’)E(Vos:'u')Q}@,(Vos% (5.49)
and
A0) = = G, WEY) + e F(v, ) U CKE [rap U(ut)F Nelam
¥ By e N?(,,)u,uo%uou@-o Q) (ORI IR

(550)

For the nonsymmetric C situabion, the expansion coefficlents for the albedo
problem could be expressed in terms of a generalized adjoint Milne problem.
However since this latter problem has no immediate physical mearing this ap-

proach will not be pursued further.

5.3 HALF-SPACE GREEN'S FUNCTION

As a final example of the use of the generalized S-function Lechnique,
the half-space Green's function problem will be solved. This problem is the
most general half-gpace problem in the sense that all other half-space pro-
blems can, in principle, be generated from this functicn. The half-space
Green's function, with the source neutrons belonging sclely to the ith  energy

group, G

(% ,u 3%x,u), is defined by the equafion
21\ 202 Ho
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) 1
(b 5z E + 2)Gi(X0sm03%,1) = C [T du'Gs (%0, ke3x,0') + B(h-po)d(x-x )e;, x>0,

(5.51)
with the boundary conditions
(j-) gi(xo:HOSO:U) = 0, p>0, (552)
(i1) lim Gy(xg,kg3%,1) = 0 . (5.53)
Koo

The first step towards obtaining the solution, is to determine the emergent
distribution, gi(xo,uogo,-u), i > 0. Consider the Green's function to be com-

posed of two parts:

1 (Xoobosxsn) = Gy(xgrugsx,n) + ¥alx,m),  xo >0, (5.54)

where~gz(xo,uo;x,u) is the known infinite medium Green's function discussed
in Section 2.k4. The albedo problem solution, Wa(x,u), satisfies the homogeneous

transport equation with the boundary conditions

9]

(1) ygloom) = <Gi(x,ne50,u), >0,

(ii) 1lim ga(x,u) = 0. (5.55)

X—00
Clearly gi(xo,uo;x,u) defined by Eq. (5.54) satisfies Eq. (5.51) and has the
required boundary conditions.
The emergent distribution of the albedo solution,rga(o,-u), can be expressed
in terms of its incident distribution from Eq. (3.9). Hence from Eq. (5.5k)

the emergent distribution G, (x,,u,30,-u) is
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0

Ei(xo)uoso)'li) = Ej_(xo;M();O)‘H) -

=i~

[7 aw s )G Gegsuosont) e (5:56)

Since the angular flux for the half-gpace Green's functicn is now known at
x = 0, for all u, the complete solution can be found by using the rull range

completeness and orthogonality properties of the infinite medium eigenfunctions.

Explicitly
M
o} -X/V
G (%osHgsXo k) = Gi(xg Hosx,ou) * S§l alvyglelv,su)e [os
(5.57)
NN N Ny
D dv{z A?(V)gr?(v,m}e Y,
J=1 nj.1 m=j ! ’
where
1 + 1 \
1 ~ 00 1 N
alvgg) = - 4~ £ dupd (v s k) tﬁi(xo;uosoyu) - = £ du’ﬁ(u',u)gio(xmuo;o,u')j
S
(5.58)
and

= =

1 20
/ du'@(u';u)ﬁi(xmuoso,u’ﬁe
O

Aj(V) = - ﬁ];?j(‘_v_) él dHHﬁ;m(Vﬁu) {E?(XO;HOSO;H) -
(5.59)



CHAPTER VI

NUMERICAL RESULTS

In most analytical treatments of transport theory, the extension of results
to numerical evaluation is far from trivial. To obtain numerical values for
a particular half-space solution, the singular eigenfunction expansion coef-
ficients must be evaluated. This evaluation can be quite difficult since it
involves principle value integrals and functions which vary rapidly. Even to
calculate the emergent distribution (which often is all that is required),
methods based on half-range eigenfunction expansions still require evaluation

2,19

of the expansion coefficients. However, the emergent distributions are
readily evaluated from the present $-function formulation without recourse to
complicated numerical techniques.

When the solution is needed inside the half-space, the present method is
still thought to be superior to half-range methods even though expansion coef-
ficients must also be evaluated. The difference is that the‘imfunction method
uses a full-range expansion which allows the use of the known full-range
orthogonality relations, while half-space methods must use the more complicated
half-range orthogonality properties or constructive half-range completeness
theorems to obtain the coefficients.

To demonstrate the feasibility of solving multigroup problems in terms
of the generalized $-function, five different examples are congidered. The

first four are for light water thermal systems. The first case, Case I, is

for ordinary water and Cases II, IIT and IV are for borated water with con-

76
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centrationsof 1.025, 2.99 and 6.35 barns per hydrogen atom respectively. Three

broad energy groups were chosen and defined as

Group 1: 0 < E; < .0255 eV
Group 2: .025% < Ep < .5320 eV (6.1)

Group %: .5320 < Eg < 2.38 eV

The thermal spectra evaluation and cross section averaging to determine the group

constants were performed by the INCITE code,42 using the McMurry-RussellhB
H-0 kernel at room temperature (29%°K). The group constants for the four cases
are listed in Table T.

As a final example, Case V, a half-space of uranium-238 enriched with 2%
uranium-23%5 is considered. This case, which includes fission in the transfer
matrix, was broken into six energy groups. The group constants for this 2%
enriched case were calculated from the 6-group constant tables originally
37, 4L

developed for highly enriched pure uranium systems such as Godiva and Topsy.

The energy groups and the group constants for Case V are listed in Table II.

6.1 ITERATIVE SOLUTION FOR THE H'AND V-FUNCTIONS

In Chapter IIT twosets of nonlinear integral equations for the Q(p) and
V(u) matrices were derived. Both of these sets, Egs. (3.26) and (3.27) and
Eqs. (3.61) and (3.62), can be solved readily by numerical methods. In this
section the numerical procedures and results of the computational schemes for

both sets are discussed briefly.
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TABLE I

THREE-GROUP MACROSCOPIC CROSS SECTIONS FOR WATER (em™1)

CASE I: Pure Water

oy = 4.8824, oz = 3.23L45, o3 = 1.7467
3.8180 35242 .012285
oC = 1.0%26 2.8669 .65299

1.145x1077  .0002069  1.07789

CASE IT: Borated Water, 1.025 barns/hydrogen atom

g, = 4.9270, oz = 3.1692, oz = 1.7493
5.7953 .32387 012239
2¢ = 1.0345 2.8005 65012
1.143x10-9  .0005813  1.0763

CASE III: Borated Water, 2.99 barns/hydrogen atom

o1 = 5.0914, oz = 3.0720, oz = 1.7696

3,7659 27047 .01220L
2C = 1.0454 2.6828 64697
1.140x102  .001379  1.0796

CASE IV: Borated Water, 6.35 barns/hydrogen atom
o1 = 5.3220, 0z = 2.9760, o3 = 1.7853

3,7901 .21636 .012019
2C

1.0481 2.5541 .63509
1.1%2x1077  .002291  1.0737
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In any numerical scheme integration of some function f(u) over p, must
be approximated by some summation procedure. In all of the present work a 16

point Gaussquadrature technique wag employed, i.e.,

b 16
[oapf(u) = 2wl () (6.2)
a k=1

where y are the quadrature ordinates for the range (a,b), and w(uk) are the
. . L5
corresponding Christoffel numbers.

With this integration approximation, the iterative schemes for the set

of nonlinear integral equations, Eqgs. (3.26)=(3.27) can be written as:

(n41) s () o)
V) = By Towlig)ACg,m)* [0 (ST ()T, k= 116
= (6.3)
and
(n+l) 10 (n), . ..(n+1)
U ) = By Dow(ep)Alu,w)* [0 (e (k)] k= 116,
=1 (6.4)

where the superscripts on U(u) and X}u) are the iteration index. Similarly
the iteration scheme for the equations for Qﬂu) and yfu) without direct pro-

ducts, Egs. (3.61)-(%.6k4) can be represented as,

oy ), . ]*
+ P
Xgn l)(uk) = LE - by }EI Wiy )Dy (kg1 p) U (Hg)EJ e, k=1 16, (6.5)
. ~ 16 o -1 |
’fm%>=@wwimmmwmwmwgﬁ,kﬂ@%a

o 0
For both these schemes a good starting point is to take_g( )(u) = y( )(u) = E.
For a large number of groups, Egs. (6.5) and (6.7) as they stand, require

per iteration considerably more computation than Eqs. (6.3) and (6.4). This
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follows the fact that to evaluate the matrix inverse of Eg. (4.9) or Eq. (6.6)

involves finding NZ cofactors of an N x N matrix. A more efficient, but equiva-
0 46 e |

lent, technique would be to use Cramer's method. From Egs. (3.54) and (3.60)

one obtains

F
[V(nﬂ')(uk)]. - detl.‘](uk)l i (6.7)
o I det|E(m )|
and
t|Gs ey
[u(n+l)(“k)]‘ = Ef_lgaﬁﬂhll , j o= 1relN . (608)
* 37 Getlgl)]
where the N x Nmatrices F and G are given by
16 (n)
E(Hk) = E - H [Z‘]_ W(“f)(@i(“k;“!)ﬂ (uz)g 3 (6°9)
and
16 (n-!—l) .
Gl ) = E -y 2 w(pg)Dy (g, mg)V (ug)C - (6.10)
{=1

The matrices F°(“k) and G, (pk) are obtained by replacing the jth row by the
~J J :
vector L Because £ has a particularly simple form, evaluation of Egs. (6.7)
or (6.8) involves calculating only N cofactors of an N x N matvrix. For a large
number of groups this savings can be appreciable.
: Lt e

Two computer programs in the FORTRAN IV language have been written to

solve by iteration Egs. (6.3)-(6.4) and Eq. (6.7)-(6.8) for the U(u) and Y(u)

matrices. Thegse programs, called GENUV and MILNE respectively, are lisbed in

Appendix B. To investigate the properties of these two computaticnal schemes,
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the four three-group cases of water (discussed at the beginning of this chapter)

were solved for [J(u) and V(u) on The University of Michigan's IBM-360 system.
Instead of storing successive iterations of EKH) and V(u) to measure con-

vergence, identity (3.31) is used to a given measure of the error in U(u) and

yju)e Every five iterations the matrix

l]_6 - 16 N ‘
2,2 vl | W)L+ L) - 2ug i) (6.12)

is evaluated. The maximum deviation of the elements of (6.11) from the elements
of the known‘Z;matrix is then used as a measure of the error for each iteration.

(n), (n)

With this definition of the errorin U w) and V' '(u) at the nth iteration,
a plot of error versus iteration index can be made.

In Fig. 1 the iteration error versus the iteration index is given for both
iteration schemes for the four cases of water. It is quickly seen that as the
absorption decreases the convergence rate correspondingly decreases. This re-
sult is not too surprising for in the one speed case it is well known that
iteration of the nonlinear integral equation (%.28), for H(u), which is a
specialization of the U(n) and V(p) equations, converges extremely slowly as
c - 1/2 (the angular averaging factor of 2 has been absorbed into the present
definition of c).27’h8

However from Fig. 1, the convergence of the "Cramer's" scheme (Eqs. (6.7)-
(6.10)) is far superior to the direct scheme of Egs. (6.3) and (6.4). 1In fact,

the convergence rate of the Cramer's scheme is a factor of % to %-1/2 times

greater.
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From Fig. 1, it may appear that even this Cramer's method is slow to con-
verge. But it should be noted that the four cases presented as examples were
all for relatively weakly absorbing situations. The INCITE code which generated
the group parameters for these cases, also gave effective one group constants.
The effective one-speed multiplication factors, 2c, for Case I through IV are
.995, .98&, ,958, and .920, respectively. For other cases which have more ab-
sorption or are farther removed from criticality, the Cramer's iteration scheme
converges quite rapidly. In those situations, which are close to criticality,
the approximations of the Fredholm equations for J(u) and V(u), given by Egs.
(%.42) and (3.93),can be used to give a good initial starting point to the
iteration scheme. A program to calculate these Fredholm approximations, called
FRED, is listed in Appendix B.

Although the Cramer's scheme does converge relatively quickly, the com-
putational time required for a large number of groups is appreciable. For
example, the six-group calculation required approximately ten minutes on the
IBM-360 Model 70 computer. To improve the convergence rate when a large num-
ber of groups is involved, various well-known schemes for accelerating the
convergence could be used (e.g., successive overrelaxation, residual poly-

6,30

nomials, ete). ’

6.2 MILNE PROBLEM

To demonstrate the ease with which emergent distributions for half-space
problems can be numerically evaluated from the U(u) and V(u) functions, the
classical Milne problem (i.e., v = v,, largest of vogr S =1~ M) is considered

for the five multigroup cases previously mentioned. This particular problem
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first requires knowledge of the discrete eigenvalue spectrum, and a method by
which the discrete eigenvector, 3jvl,u), can be evaluated. Once these quantities
have been found, straight forward evaluation of Egs. (5.32) and (5.39) gives
the emergent flux and extrapolated endpoint. Unlike the computations done by
others for this problem, no difficult mathematical techniques such as principle
value integrals are encountered in the present technique. In this section the
computer programs used to evaluate this problem are briefly described, and the
results presented. These programs, written in FORTRAN IV for the IBM 360, are
all listed in Appendix B.

To find the discrete eigenvalues of the dispersion relation, Eq. (2.13),
a gseries of three gsubprograms were written, DISP, MINV, and ROOT. The first
evaluates the matrix Q(1/y) for any y e(o,1), and MINV then evaluates the
determinant. The program ROOT then searches for the values Vs for which
dettgfl/yo)] = 0. This search is accomplished by calculating the quantity
det[Q(l/y)] for successively decreasing values of y and watching for a change
in sign in detlQ(l/y)]. The use of increasingly finer grids whenever a change
of sign is encountered, allows the zero to be evaluated as accurately as de-
sired. In the present case all zeros were calculated to within an accuracy
of one part in 107, although ROOT allows accuracy to within one part in 1016.
The only major limitations on the above procedure is that it will not always
find successfully multiple zeros, or if the initial search grid is too coarse
it may pass over zeros which are very closely spaced. This latter restriction

is easily circumvented for a difficult situation by making the search grid finer
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For all five cases, two discrete roots were found. The first four cases
for water were also investigated recently by Metcalf, who used two group con-
19 .
stants for the same four cases. The results for all five cases are tabulated

below along with Metcalf's two-group results. For the classical Milne problem

Vl = Vol-
TABLE III
DISCRETE EIGENVALUES
Two Group Resultl9
Case Vol(cm) V02 (Cm) Vo (cm)
I Pure Water 2.22151 .638781 2.2221
II borated Water 1.31951 .636656 1.3190
IIT borated Water 847391 .625854 .8L53L
IV borated Water 659514 .610169 65105
V 2% enriched 12.379% 5.21725
Uranium

The evaluation of the discrete eigenvector‘ﬁjvz,u) and its normalization
a(v,) is calculated by the subprogram AVEC. From Egs. (2.9), (2.11) and (2.12)

the normalization vector 1s given by

)Sa(v,) = 0 , (6.12)

E-T(v
(-2,

where T(vz) is the diagonal matrix

[Z(vp)].. = 2v, tanh'l<:]'.> (6.13)
Oivl .

Equation (6.12) is readily solved by matrix inversion (MINV) by using only

the first N-lequations in (6.12) and setting ay(v,) = 1. The subroutine entry
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EIGEN of this subroutine allows calculation of Qf(vl,p) or 9(vy,u) for the

positive Gaussian integration ordinates, Hyes k =1 ~16 for an input parameter
o~

of C or C respectively. From these evaluations of the discrete eigenvectors,

the full-range orthogonality normalization, N,, is readily calculated by

16

_ 1 1 ~
Nl = '[]_ d;@:(vl,p)&(vl,p) 2 ka(“k)[S;(Vl’“k)i(vl’uk>
- k=1
.1.
(

o”-

NG LICINTORP (6.1k)

Once the quantities v, and Qﬁvl), together with the U(u) and V(p) matrices
have been calculated, the emergent Milne problem distribution ¥ (o,-u) is
)

readily evaluated from Eq. (5.32) for v = vy i.e.,

g, (0rm) = D(vpuUWE(E - [° awI(w)E(vy, - )E)alvy) (6.15)
e}

The above calculation is performed by the main program MILNE which used
Cramer's scheme for finding U(u) and y(u). This program is listed in Appendix
B.

Since the vector\g(vf) was arbitrarily ncrmalized in the gubroutine AVEC
such that aN(Vg) =1, it is not possible to directly compare results for dif-
ferent g:s and VI'S° To aid comparison the program MAIN also gives the emergent
distribution normalized to unit densifty; namely,

N N
R [”auly, (0wl = z [*aulyy (om0 = 1. (6:16)
In Fig. 6.2 to 6.5 the emergent distributions for the Milne problem cor-

responding to the largest discrete eigenvalues for the four three-group water

cases. Fig. 6.6 is a polar plect of the normalized emergent Milne distribution
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for the six-group uranium case, Case V. In this latter figure only half the
emergent distribution is plotted since the distribution is symmetric about p = 0.
In the four cases for pure and borated water, two interesting results are
noted. For pure water (a system close to criticality) the emergent distribution
is almost linear with the cosine of the emergent angle, i.e., -u. Then as
absorption is increased the emergent flux becomes increasingly more anisotropic.
This result was also noted by Metcalf.l9
As a final numerical example for these five cases, the extrapolation
length was calculated (performed by the MILNE program). This quantity is
calculated by straightforward evaluation of Eq. (3.59). The results for

the five casges are shown in Tab! 2 IV, and as before the four water cases are

compared with the results Metcalf obtained using a two group analysis.

TABLE IV

EXTRAPOLATION LENGTHS

Extrapolation Length (cm)

Case calculated by MIINE Calculated by Metcalf
I pure water -.205947 -.2058
II borated water -.214407 -.2140
III borated water -.23394) -.2319
IV borated water -.294657 -.2560
V 2% enriched -2,21798

These three-group calculations agree quite well with the two group
results in the first three cases. However there is an appreciable difference
for the most heavily borated water case. This is at first surprising since
the discrete eigenvalues for this case agreed reasonably well. To investigate

this discrepancy all the two group calculations were performed by the MILNE
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program, and Metcalf's results were confirmed. Hence one is led to believe
that the introduction of the third high energy group has become quite signifi-
cant. In fact from Figs. 6.2 and 6.5 it is seen that the flux at the interface
for the third group is one hundred times larger for Case IV than for the pure
water situation.

As a fiﬁal check on the accuracy of the emergent distribution, MILNE
calculates the ccefficient of the asymptotically increasing mode. This quantity
should be unity. From Eq. (5.3L) this coefficient is

Lo @ vy, (o) = 2 T w8 vy, (0, (6:17)
N, © — Vg Ny k-1 K kA A TR Ly, k

In all cases the difference from unity was less than 10 °.



CHAPTER VII

CONCLUSIONS

In this work the solutions of varigus half-space N-group transport pro-
blems in plane geometry were found. These solutions were obtained by combining
the techniques of Chandrasekhar's principle of invariance and Case's singular
eigenfunction expansions, and extending them to the multigroup case. In parti-
cular, i*t was shown that the e&pansion coefficients of a multigroup eigenfunction
expansion for any given problem could be expressed directly in terms of a
"generalized §:function.”

To obtain equations for this generalized S-function, which is closely
related to the emergent distribution of the half-space albedo problem, two dif-
ferent approaches were used. The first, obtained from Chandrasekhar's principle
of invariance a nonsingular, nonlirneur integral equation for this function.
Furthermore, this method demonstrated that the S-function, which has twe angular
arguments, could be decomposed info two auxiliary functicns, U and V, each of
which depends on only a single variable. Although it was not possible to solve
analytically the nonlinear integral equation for the S-function (or the cor-
responding nonlinear integral equations for the\g_andiy,functions), numerical
soclution by iteration was found to be quite straightforward. However this
approach does appear to have one defficiency. From analogy to the one speed
equations, it is suspected that the nonlinear integral equations may not have

a unique solution. As a result, a set of necessary conditions for

95
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§‘(and for U and V) were derived; and, again from the one-gspeed analogy, it
is expected that these necessary conditions may indeed be sufficient. However,

a proof of sufficiency is still lacking.

The second approach obtained, from an eigenfunction expansion of the albedo
and adjoint albedo problems, Fredholm equations for the functions S, U, and V.
These equations also could not be solved analytically; and although they generally
do not have the short-comings of the nonlinear integral equations (i.e., pos-
sible nonuniqueness), their solution by numerical techniques, while also straight-
forward, is more difficult since all the infinite medium eigenfunctions must
first be evaluated to calculate the Fredholm kernel. In the specific situation
of a near-critical system, the Fredholm equations gave a good approximate analytic
expression for the U and V functions by neglecting all but the dominant mode

entirely.

Throughout this research great emphasis was placed on techniques amenable
to numerical evaluation. This reduction, of analytic results to numerics has,
until quite recently, been decidedly neglected for energy-dependent problems.
This work demonstrated how emergent distributions for any half-space problem
are readily calculated. Although evaluation of the eigenfunction expansion co-
efficients (from which the iterior distribution may be calculated) is still a
difficult problem because the explicit forms of the eigenfunctions must first
be calculated, the method described here is still felt to be superior to other
half-space methods. The simplification arises from the fact that full-range

expansions can be employed rather than the more difficult half-range techniques.



97

As an example of the ease with which the nonlinear integral equations for the
U and V functions can be computed, a series of computer codes were written in
the widely-used FORTRAN IV language to solve for the emergent distribution of
the general N-group Milne problem. These programs are designed for any number
of groups and arbitrary cross section data (with the proviso the data represent
a subcritical system).

Finally for the special case of symmetric transfer (as is found in thermal
neutron transport problems) it was shown how the results for a general trans-
fer matrix are greatly simplified. For this case many interesting results can
be proved: uniqueness of solution of the Fredholm equations, reality of the
eigenvalues, and half-range completeness of the infinite medium eigenfunctions
can be demonstrated.

As in any research of this nature, many related extensions and areas of
further investigation suggest themselves. Among those areas which deserve
further attention are the nonlinear integral equations for the U and V functions.
Although these equations are readily evaluated numerically for the U and V
functions, the determination of their uniqueness (or sufficient conditions

for uniqueness) would put the present theory on a much firmer mathematical

basis.

For the symmetric transfer case it was shown that subcritical systems must
have real eigenvalues. In the general case, however, this was not possible,
and an investigation of the relation between the group parameters, subcriticality

and the eigenvalues would be quite interesting.
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It is felt thal the present method for solving multigroup half-space
problems with isotropic scattering can be readily extended to other transport
problems. In particular,the anisotropic scattering situation seems quite amenable
to the generalized S-function approach. More useful perhaps—would be an ex-
tension to slab problems. Again using the analogy of the one-gpeed case, it
should be possible tc derive nonlinear matrix integral equations for the reflected
and transmitted flux. Thus while the main effort of this work has been to multi-
group, isotropic, half-space trangport problems, it is expected that the techniques
explored and developed here will be found useful in exploring both the numerical

and analytic treatments of other energy dependent transport problems.



APPENDIX A

DISCRETE EIGENVALUES FOR SYMMETRIC TRANSFER

In Chapter VI, the eigenvalues, ivos’ s =1 ~M for symmetric transfer
were shown to be either purely real or purely imaginary. From physical argu-

ments, it was then demonstrated that for subcritical systems,v,gq could not be

49

imaginary. This appendix will present a more rigorous derivation of *his fact.
Consider a half-space which at time, t = O, has some arbitrary angular flux

distribution, V(x,u,0). The resultant flux for t > 0, V(x,u,t), is given by

A ———

the time-dependent multigroup equation

(5 + b5 +2) W(x,m,t) = C[fdutw(xut,t) (A.1)

—n— - P

If the system is "subcritical”, this flux must tend to zero after a long time,

Lim V(x,u,t) = 0. This requirement will be shown fo imply that the

i.e.
’ t_)OO A

discrete eigenvalues, v_., cannot be imaginary.

oS

Taking the Laplace Transform of Eq. (A.1) one obtains

z) ¥ (X;U«)X) = C fl du' v (X)U-'JS> + W‘(qu;o); (A'Q)

g + yu— +
( U'ax oy ""l w_l wf —

where

00 -st
yxus) = fas e uxut) (8.3)

y) ——

Then taking the Fourier Transform of (A.2) one has

(s + ikp + Z) ﬁf(k;u:s) =

o~

C h(k; S) + (kJ H:O) P (AL")

e -

99
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where
) 00 -ikx
}ff(kyuy b) = IOO dx e Jf}l(x’ M S) s (A5)
\ co -ikx
wk,mp0) = [ dx e T y(x,p0) (A.6)
W =00 -
and
plks) = [Tt v(outs) (A7)

Integration of Eg. (A.4) with respect to y, yields for h(k,s)

nlks) = [E- Mk s)] ¢ xkwo) . (4.8)
The matrix A(k,s) is defined by
Miys) = [Dap'(s ¥ it v D)7 C (4.9)

~1

AY

From Eq. (A.4) and (A.8) the Fourier transformed flux, fl.{f(k" Uy 8, LS

Vo(kous) = (stikutd) T (IE-AK, 8) ] HEYC Txllu,0) o (A.10)

wf - -

This equation may be simplified by noting

([E- Ak, )] +B) = [E- Alks)] (2B - Alys))
M (k, s)

= (2E - alk,8)) ,  (A.11)
de‘t|§_—£\_(k,s)f

where M'(k,s) is the matrix formed by the cofactors of the mabrix [E - Alk,s)].

If another matrix M(k,s) is defined as



101

M(k,s) = M'(k,s)(2E - Ak,8)} (A.12)

A

then Eq. (A.10) becomes

v (k,u,s)

1 , - -
~f det|B-Alk, 5)] (s + iku +2) * C M(k,8)C * X(k,u0).

(A.13)

To obtain the Laplace transform of the flux, ¥ (x,u,s), the inverse

i

Fourier transform of Eq. (A.13) is taken.

1 00 ikx
gz(x,p,s) = 5 ioo dk e y‘f(k,u,s)
1 00 ikx 1 . - -
- 5; Im dk e det'E—A(k,s)|(s +oipk +'ED %9 ~<k)5lg %5jk,u,0)

(A.1L)

From this quantity the asymptotic time behaviour of the angular flux may be

!

determined by application of the "final value theorem," of Laplace transforms.

This theorem states

lim 1lim

t.%oi(x)“:t) = g+ S:I'II(X,LL,S) . (A-l5)

Hence from Eq. (A.1L) the asymptotic flux is

1im 1im kx

. 00 1
oo Womst) = o [ ke '

(k, 1, 0) ;
L5 et E-Ak, 5]

(A.16)

(dut2) ¢ M(k,0)C

For k belonging to the real axis, the matrix ﬁ(k,o) never vanishes; and hence
the subcriticality requirement that the asymptotic flux be zero depends on

whether the following quantity vanishes:
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lim S
570 det|E-A(k,s)| °

k e(-0,0) . (A.16)

To find the behaviour of this quantity for small s,consider the time
independent transport equation, Eq. (2.1), and look for solutions of the form
ikx . . . .
e 9(k,u). These solutions are identical to the eigenvectors of Chapter II,
¢(v,u) with v replaced by 1/ik. The dispersion relation for the discrete

eigenvalues, Eq. (2.13), in terms of the k parameter (dencted by ko),

Vos?

becomes in view of Eq. (A.9)
det|E- Alko,0)| = o, kj A(-i,1) . (A.17)

Further from Chapter IV, these discrete eigenvalues, k,, are either real or
imaginary.
Since the root Vo (and hence ko) was assumed nonmultiple, a Taylor series

expansion for det|E - A(ky,s)| for small s gives
det|E - Mkg,s)| ~ s + ap 5% + ... (A.18)

where 3, Os,... are constants independent of s. Thus if kos is real (or
Vog imaginary) the quantity (A.16) does not vanish as s > o and the asymptotic

flux does not decay to zero. Therefore for imaginary eigenvalues, v the

os’
system cannot be subcritical. If onthe other hand, the ko's are confined to

the imaginary axis (v 4 on the real axis), Eq. (A.16) goes to zero as required

for subecritiality.



APPENDIX B

COMPUTER CODE LISTINGS

In this appendix several programs which were used to calculate the U
and V functions and the emergent Milne problem distribution are listed. All
these codes were written in the FORTRAN IV language for the IBM-360 computer.
In listing these codes, attempts have been made to organize the programs and
to include pertinent "comment" cards so that the program flow is readily ap-
parent. It is not expected that anyone familiar with FORTRAN will have dif-
ficulty in understanding these cocdes.

Throughout these codes, "double precision" length variables have been
used (which allow accuracies of up to sixteen significant figures). Finally
each listing is prefaced by a brief description of the program's purpose and

restrictions and by a list of the principal symbols.

B.1 PROGRAM MILNE
Purpose

This main program calculates first the U and E’matrices from the Cramer's
scheme for given C andgg matrices. Then after all the discrete roots, vgg,
s = 1~M, are found, the emergent distribution for the Milne problem cor-
responding to the largest discrete eigenvalue is evaluated. Finally the ex-
trapolation length is calculated, and the emergent distribution normalized

to unit density.

10%
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Restrictions
(i) This program calls the subroutines GAUX, RCOT, DIS, MINV, AVEC,
PRT, and these must be supplied.
(ii) The dimension statements 3-7 must be changed for problems with

different number of groups.

Iist of Principal Symbols

Program Symbol Definition

IG N (number of groups)

IPR Printing parameter for ouput every 5 iteraticns.
EE(IG,IG) E (unit matrix)

X(16) b k = 1~16 (Gaussian ordinates)

SIG(T) 03

C(I1,J) cij

RT(IG) Holds discrete eigenvalues, Vv,q, in descending size.
MU, IMUP Counter used to specify integration crdinate.
U(16,1G,1G) U(w)

V(16,1G,1G) V(w)

ITER iteration counter

IEQ Denotes subscript of us(p) and y;(u).

SMAX Maximum deviation of Eq. (3.31) from thelzfmatrix
NUO v, (largest discrete eigenvalue)

EIG(K,I) 0 (Vo)

EIGN(K,T) 3i(v7,-pk)

ADETG(K, T) o (v, )

ADEIGN(K,I) ﬁ( Voo "“k>

NPLUS Nbl

EXTRAP Extrapolation length.
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C THIS PROGRAM SOLVES THE U AND V EQUATIONS BY CRAMMER'S METHOD AND THEN
C SOLVES FOR THE EMERGENT MILNE DISTRIBUTION USING SIMPLE APPROACH
C NO DISCRETE CONDITONS ARE USED-- SOLVES ONLY THE GENERAL EQUATIGNS
a0y IMPLICIT REALX8{A~H,M~Z)
nnnY _» COMMON/GAU/X(16)
C  THE FOLLOWING FIVE (5) CARDS ARE TO BE CHANGED WHEN THE NUMBER OF
C  GROUPS ARE CHANGED
nnng REAL*8 AA(1693,3)98(343),SIG(3)4C{(353),U(1643,3),V{1643,3)
anng REAL*8 EE(343)/9%0.0D0/4ASCR(3) yBSCR(3)4S5{1641643,3),VET(16,3)
nnne REAL*8 D(3,3)4DSCR(3,3),RT(3)
anne CREAL*8 EIG(1643), ELﬁN!lé,B).ADEI&(16.3),ADEIGN(1693),VEC(16)
aoNT DIMENSION LLL(3),LLLL(3)
nNNg EXTERNAL DIS
. C CALCULATION OF THE MU ORDINATES FOR INTEGRATIGN FROM 2 TO 1
nNOg SUM=GAUX(0.0D0,1.D0)
rorn 5 FORMAT(*OTHE ORDINATES FOR THE MU INTEGRATION ARE'/(' *,8G15.7))
11 WRITE(6,45) (X{I),1=1,16)
T C READ IN THE INPUT DATA
~n12 1 FORMAT(I2)
~n13 35 READ(5,1) 16
Sl A IF {1G.EQ.0) RETURN
N1 5 DO 8 J=1,I6
onle 8 EE(Jyd)=1.00
nny7 ‘ T IPR=1
~N1R 2 FORMAT(BG10.7)
019 READ{542) (SIG(J)yd=1,1G)
N0 READ(542) ({(C(JyK) 9sK=141G) 9d=1,1G)
ma21 WRITE(6,311)
nnp2 311 FORMAT(*INOW NORMALIZE THE SIGMA AND C MATRICES')
anp3 N0 9 J=1,1G
“N4 DO T K=1,I6
025 CLJyKI=C{J oK)/ (2.D0%SIGIIG))
nnog 7 BUJK)I=C(Jd,yK)
an2T 9 SIG(L)=SIG(J)/SIGIIG)
€ PRINT THE INPUT DATA
sh¥E: 3 FORMAT('OTHE SIGMA MATRIX IS'/(' *,8G615.7))
1029 WRITE(643) {(SIG(J),4J=1,IG)
ShER 4 FORMAT('OTHE C MATRIX IS'/(' v,8G15.7))
nn3Y WRITE(6494) ((C{JsK)yK=141G)yJd=1,1G)
C. CALCULATE THE DISCRETE ROOT
o3 N0 33 J=1,16
nn33 33 2T7(J)=1.00
2134 DELX=.1D?2
nn3s DO 34 J=1,16
nIH36 IF (J-1) 36,39,30
0037 30 Jd=J4-1
nn3g  XST=1.D0/RT(JJ) +.1D-7
039 IF ((XST+.1D~7).67.1.D0) GO TO 38
nngn DEL=1.D0-{1.DO/RT(JJI))
NGl IF (DEL.LE..1D?) DELX=DEL/2.D0
ang 2 GO TO 34
043 39 XS$T=.1D-5
CO0%4 34 RT{J)=1.00/RO0T(DIS,CySIGyIGsXST,1.D0,DELXy+10-74DSCRyBSCR)
nN45 38 WRITE(6436) (RT(J) 1J=1,16)

0046 36 FORMAT({'OTHE DISCRETE ROOTS FOR THE ABOVE C AND SIGMA MATRICES ARE



c47
nn4g
~n49

R
nnsy
n9s52

ang3y
rn54
?'\HES

nnse
“ng7
a’"‘,f“ss
nnsg
Angn
Angl
“n62
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1'/(6G15.8))
C START WITH APPROXIMATION ONLY FOR U NAMELY U=EE
DO 6 IMU=1,16
DO 6 J4=1,I16
D0 6 K=1,16_
6 ULIMUy JoK)I=EE(J4K)
WRITE(6411)
1 FORMAT(*1THE ZERO-TH APPROXIMATION FOR THE U AND V MATRICES IS THE
1 UNIT MATRIX")
C ITFRATE THE V EQUATION FIRST--—-INVOLVES ONLY THE U MATRIX
~ ITER=1
17 DO 17 IMU=1,16
AMU=X{IMU)
C CALCULATE U.C=S5(1,1IMUyJyK)
DO 12 IMUP=1,416
DO 12 J=1,1G
DO 12 K=1,1IG6
SUM=",0D0
DO 13 L=1,16G
13 SUM=SUM+U(IMUP,J L) *C(LyK)
12 S{1,1MUP,J,,K)=SUM

C IF 1EQ=1 WE DO THE I-TH EQUATION
N0 17 1EQ=1,I16
C NOW EVALUATE D(MU,MUP)=F(IEQ) .U.C==AA(IMUP,J,K)
DO 14 IMUP=1,16
AMUP=X(TMUP)
DO 14 J=1,16
DO 14 K=1,16
14 AA(IMUP3J+K)=S{14IMUP,J,K)XAMU/ (STG(J) *¥AMU+SIGLIEQ)*AMUP)
C DO INTEGRAL OF FUIEQ).U.C OVER MUP, AND CALCULATE (EE-INTEGRAL)
SUM=GAUMAT(AA,DSCR, [G)
DO 15 J=1,16
DO 15 K=1,16
15 DSCR{JyKI=EE(JyK)-DSCR{JyK)
NCW CALCULATE DETERMINANT OF DSCR, AND SOLVE THE V EQUATIONS
SOLVE THE V EQUATIONS
CALL MINV(DSCR,IG,yDETDyLLLyLLLL,IG)
[F (DETD) 19,416,419
16 WRITE(6,18) ITER
] GO TO 35 S o
18 FORMAT (*NA SINGULAR MATRIX HAS BEEN ENCOUNTERED AT ITERATION®',I5)
19 00 17 J=1,1G
17 V(IMU,JyIEQ)=DSCR(J,1EQ)

[aNeN

C
CTHE BEGINNING OF THE U EQUATION CALCULATION
20 D0 27 IMU=1,16
AMU=X( IMU)
C FIRST CALCULATE S(2,IMUP,J,K)=(TRANS V(MUP}).(TRANS C)
DO 22 IMUP=1,16
DO 22 J=1,16
DO 22 K=1,16
. SUM=0.0D0
DO 23 L=1,16
23 SUM=SUM+V(IMUP,L,J)*C(K,L)
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nngs 22 SU(2,IMUP,J,K)=SUM
c
CIF 1EQ=I, WE DO THE I-TH U EQUATION
N089 D0 27 1EQ=1,16
_____ - C_ NOW CALCULATE D(MU,MUP)}=F(IEQ).(TRANS U).(TRANS C)
n09" DO 24 IMUP=1,16
3091 AMUP=X { IMUP)
~092 DO 24 J=1,16
~093 DO 24 K=1,16
"094 24 AACIMUP,JoK)=S (20 IMUP,J oK) *AMU/ (STG(J)*AMU+S IG(IEQ)*AMUP)
o C_DO_INTEGRAL QF D(MU,MUP) OVER MUP
7035 SUM=GAUMAT (AA,DSCR, IG)
N96 D0 25 J=1,16
"ng7 DO 25 K=1,16
SLLT 25 DSCR(J4K)=EE(JyKI-DSCR{J4K)

C NOW CALCULATE DETERMINANT OF DSCR, AND SOULVE FOR THE U EQUATIONS
C_ SOLVE THE U EQUATICNS

ANgg CALL MINV(DSCRyIGyDETDsLLLyLLLL,1G)
0197 IF (DETD) 29426429
niny 26 WRITE(6,18) ITER
n1n2 GO TO 35
nin3 29 DO 27 J=1,16
n1n4 27 U(IMU,1EQ,J)=DSCR{J,IEQ)
YA 77 IF (1PR=5) 32,31,32
"6 31 WRITE(6,77) ITER
N7 77 FORMAT{'OWE HAVE JUST FINISHED ITERATIUN NUMBER *',15)
A1N8 IPR=0
C
o C TEST ON U AND V )
109 UINT=GAUMAT(V,B,IG)
a1in VINT=GAUMAT(U,D, IG)
111 D0 71 J4=1,16
112 DO 71 K=1,16
1113 DSCR(J,K)=0.0D0
D114 .. DD 71 L=1,16
115 T1 DSCR{JyKI=CSCRUJKI+C (I L) *B(L,K)
116 DO T2 J=1,16
~117 N0 72 K=1,16
n118 VET(J4K)=0.0D0
n119 DO 72 L=1,I6G
_nlz2e T2 VET{J4KI=VET(JsKI+D{JyL)*DSCRILyK)
n121 DO T4 J=1,16
122 DO 74 K=1,I16
123 B{JyK)=SIG(JI%B(JyK)
124 , DUJyK)I=SIGIKI*D{JyK)
n125 T4 B{JyK)=o5D0%(BIJsKI+D(JyKI-VET(JyK) )
n126 . WRITE(6975) ((BUJsK)sK=141G)9d=1,16) ]
0127 75 FORMAT (' CHECK ON U AND V*'/(* ',8G15.7))
C CONVERGENCE TEST
0128 SMAX=0.0D0
M29 DO 62 J=1,16
n13n DO 63 K=1,I6
”13] 63 DSCR{JyK)=0.0DD
132 DSCR{J2J)=SIG(J)

n133 DO 62 K=1,1G
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n134 DEV=DABS(DSCR(JyK}=-B(JyK))
7135 IF (DEV.GT.SMAX) SMAX=DEV
N13é 62 CONTINUE
0137 WRITE(6467) SMAX
"138 67 FORMAT(*OMAXIMUM DEVIATION FRUM THE SIGMA MATRIX IS*',G15.7)
1135 IF (SMAX.LT..1D-8) GO TO 490

C CHECK ON THE NUMBER OF ITERATIONS--IF GREATER THAN 50 IT DOES NOT
C CONVERGE. THUS GO ON THE NEXT DATA SET

0140 32 1PR=1IPR+1

"141 IF (ITER.EQ.75) GO TO 64

142 ITER=ITER+]

“143 60 TO 19

rl44 64 WRITE(6465)

~145 65 FORMAT(*2U AND V HAVE NOT CUNVERGED AFTER 75 ITERATIUONS-THUS GO ON
1 TO THE NEXT DATA SET!)

"l46 66 GO 1O 35

C

C CALCULATON OF THE EMERGENT DISTRIBUTIUN FUR MILNE PRGBLEM USING SIMPLE

C TECHNIQUE
147 40 NUO=RT(1)

148 CALL PRT(UyV,IG,ITER)

n149 WRITE(6467) SMAX

150 WRITE(6,97) NUC

2151 97 FORMAT('1THE LARGEST DISCRETE ROOT I1S',615.8)

C CALCULATE THE INTEGRAL OF THE DISCRETE EIGENFUNCTICN JECTOR A
n1s5? CALL AVEC(ASCRyNUOsCySIGsIGyDSCRyBSCRyLLLyLLLL)
~153 WRITE(6428) (ASCR(J)yJ=1,106)

"154 28 FORMAT(*ONINTEGRAL UF DISCRETE EIGENVECTOR FOR LARGEST NUG*'/
(' *48615.7))

C

C CALCULATE THE CONSTANT VECTOR 8
158 N0 81 J=1,16
1156 BSCR(J)=0.ND"
n157 DO 81 L=1,16
n1s58 81 BSCR{JI=BSCR{J)+C{J,LI*ASCR(L)

7159 DO 84 JMUP=1,16

nyisn DC 83 J=1,416

"6l DO 83 K=1,I16

162 83 AA(JUMUP 3 Jy K )=V JMUP 4 JyK) /{SIGIK)ENUO+X{JIMUP))
163 DO 84 J=1,16

"164 VET(JMUP,4J)=",.0D2

165 DO 84 L=1,16

166 84 VETLJMUP,J)=AATJIMUP,JyL)*BSCRILI+VET(IMUP,J)
n1s67 VINT=GAUVEC(VET,ASCR,IG)

1168 nNQ 82 J=1,1¢

0165 0{(1,J)=0.700

A A DO 89 L=1,1I6

M71 89 D(1,J)=D{1lyJ)+CUJyL)*ASCR(L])

“172 82 BSCR(J)I=(BSCR{J)-NUG%D(1,J))*NUO

n173 WRITE(6,85) (BSCR(J)4J4=1,1G)

H174 85 FORMAT ('NCONSTANT VECTOR B8 IS',(4G15.7))

C CALCULATED THE EMERGENT DISTRIBUTION
n175 DO 88 JMU=1,16
n76 DO 88 J=1,16

o177 VET(JMU,J)=0.0D0
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178 00 87 t=1,16
2179 87 VET(JMUyJ)=VET (JMU,J)+U(JIMU,JsL )*BSCRIL)
0180 88 VET(JMU, J)=VET (JMU,J) /(ST (J)ENUG-X(JMU))
C PRINT OUT THE UNNORMALIZED EMERGENT DISTRIBUTION
0181 . WRITE(6445) B B
7182 45 FORMAT(*OTHE UNNORMALIZED MILNE EMERGENT DISTRIBUTION,PSI(0,~MU),
o 1 FOR ASCENDING MU 15'/)
0183 DO 47 J=1,16
0184 . WRITE(6,46) J
n185 47 WRITE(6448) (VET(JIMU,J)sJMU=1,16)
n186 46 FORMAT ('OGROUP NUMBER IS',I3)
n187 48 FORMAT (' *,8G15.7)
c
C CALCULATION OF THE DISCRETE EIGENFUNCTIONS
n18s ~ CALL AVEC(ASCRyNUO,C+SIG+IGsDSCR,BSCRyLLL,LLLL)
n189 CALL EIGEN(EIG,NUD,IG)
0190 CALL EIGEN(EIGN,-NUO,IG)
6191 00 117 J=1,16
0192 DO 117 K=1,16
n193 117 D(J,K)I=C(KyJ)
n194 ~ CALL AVEC(ASCR,NUO,Ds»SIG,I1GyDSCRyBSCRyLLL,LLLL)
n19% CALL EIGEN(ADEIG,NUO,IG)
0196 CALL EIGEN{ADEIGN,~-NUO,1G)
A197 WRITE(6,100)
n198 WRITE(645102) ((ETIG(JIMU,J) »JMU=1416)4J=1,1G)
n199 WRITE(64102) ((EIGN(JIMUyJ)y JMU=1,16) 4J=1,16)
0201  WRITE(6,102) ((ADEIG(JMU,yJ) yJMU=1,16),4=1,1G)
n2m WRITE(64102)( (ADEIGN(JMU,J) 4 JMU=1,16) yJ=1,1G)
n2n2 100 FORMAT('1THE EIGENFUNCTIONS FOR ASCENDING MU ARE®)
0213 102 FORMAT (2(% 7,8615.7/1/2(% ¢,8615.7/)/)
- C CALCULATION OF THE NORMALIZATION BY INTEGRATION
A214 DO 105 JMU=1,16
0225 . FST=0.0D0
n216 DO 104 J=1,16
_n207 104 FST=FST4+EIG(JMU, J) *ADEIG(JIMU,J)
a2n8 105 VECTJMUI=X(JMU) *FST
_n209 EST=GAUS(VEC,IG)
2210 DO 106 JMU=1,16
n211 , TST=0,0D00
n212 DO 107 J=1,16
n213 107 TST=TST+ADEIGN(JMU,JI*EIGN (MU, J)
n214 106 VEC(JMU)=X({JMU)*TST
_n215 TST=GAUSIVEC, 1G)
n216 NPLUS=FST-TST
L ... WRITE(6,109) NPLUS =
A218 109 FORMAT (*ONPLUS BY DIRECT INTEGRATION IS ',615.7)
- C CALCULATION OF ASYMPTOTIC COEFFICIENT
0219 DO 110 JMU=1,16
_h22n ... 85=0.000
n221 00 111 J=1,16
0222 111 SS=SS+VET(JMU,J)*ADEIG(JMU,J)
n223 110 VECUJMU)=X(JMU) *SS
n224 SS=GAUS(VEC  IG)/NPLUS
n225 WRITE(6,112) SS

h226 112 FORMAT{®OASYMPTOTIC COEFFICIENT IN MILNE PROBLEM EIGENVECTOR EXPAN
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ISIGN IS (SHOULD BE UNITY)',G15.8)
C CALCULATION OF THE EXTRAPOLATION L ENGTH

n227 DO 113 JMU=1,16

n2?28 $S=0.2D0

1229 DO 114 J=1,416

n23n 114 SS=SS+VET(JIMU,JI*ADEIGNIJIMU,J)

n231 113 VEC(JMU)I=SS*X{JMU)

n232 EXTRAP==GAUS(VEC,IG)/NPLUS

n233 EXTRAP=.500%NUO*DLGG(-EXTRAP)

n234 WRITE(6,4115) EXTRAP

"235 115 FORMAT (*GEXTRAPOLATION LENGTH IS'4G15.7)
C NOW NORMALIZE EMERGENT DISTRIBUTION TO UNIT DENSITY

N23¢ VINT=GAUVEC(VETBSCR, IG)

n2317 WRITE(6448) (BSCR(J)yJ=1,1G)

n238 NORM=0,0D0

N239 D0 116 J=1,416G

n240 116 NORM=NORM+BSCR(J)

241 DO 51 J=1,1G

247 DO 51 JMuU=1,16

N243 51 VET{JIMU,JI=VET(JIMU,J)/NORM
€ PRINT OUT NORMALIZED FLUX

N244 WRITE(6452)

N245 52 FORMAT(*1THF EMERGENT DISTRIBUTIUNJNORMALIZED TC UNIT DENSITY AT T

IHE INTERFACE,1S*/)

Y246 DG 53 J=1,16

n247 WRITE(64946) J

nN248 53 WRITE(6,48) (VET(JIMU,J),JMU=1,16)

1249 GO TO 35

n2sn 999 FCRMAT(1HO)

r2s51 END
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B.2 PROGRAM GENUV
Purpose

This main program iterates Egs. (6.3) and (6.4) for U(u) and V(u) for
arbitrary C andAZ matrices. This method has previously been called the

"direct iteration" scheme (see Section 6.1).

Restrictions

(i) This program calls the subroutines PRT and GAUX, and they must be
supplied.

(ii) The dimension statements3-5 must be changed if the number of groups

is changed.

List of Principal Symbols

Program Symbol Definition
1G N (number of groups)
IPR Printing iteration counter
EE(IG, IG) E (unit matrix)
SIG(I) 0y
c(1,J) Cij
V(L,J,K) [Wy)),,
U(1,J,X) Lg(“i)jjk
VINT é Yauv(p)
UINT (f) ldug( W)
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£ THIS PROUGRAM CALCULATES VARIOUS TWO GROUP PROBLEMS
T NO DTSURETE CUNDITION 1S USED—SOLVES ONLY THE GENERAL EQUATIONS

£001 INPLICIT REAL*8(A~HsM-1)
TR0Z T T COMMON/ZGAUZXLLG)
C THt FOLLOWING CARD IS TO BE CHANGED WHEN THE NUMBER OF GROUPS IS CHANGED
TR003 e REAL¥8 AA(169242):B1292)5S1G{2)+C(2+2)9U(169292)9V(1642+2)
L2004 REAL*8 EE(242)/4%0. ODO/. ASCR(Z). BSCR(Z), S(1641642, 2). VET(16,2)
TROU5 REAL¥E D1Z2,2)
C READ IN THE INPUT DATA
~0LLE” T U FORMAT(L2)
£0017 35 READL541) 16
ouge IR IIGLEQL D) RETURN
4CES IPR=1
LUL0 DU 8 J=1.106
Q011 8 EEdJedi=1.00
o012 T2 FORMAT(8G10.7)
0043 READL5+2) (S51G(J)+Jd=1,16G)
0014 T READAS92) LIC{J9K) 9K=1916)9J=1,1G)
£ PRINT THE INPUT DATA
OIS T 3T EGRMAT(YITHE SIGMA MATRIX IS'/(' '48G15.7))
QCdo WRITEL6+3) (SIGUJ)+J=1416)
o1t i 4 FORMAT('OTHE C MATRIX IS*'/(* *,8G15.7))
£048 WRITE(644) (L(C(JeK)1K=1316) 9Jd=1+1G)
B ’ € CALCULATION OF THE MU ORDINATES FOR INTEGRATION FROM 0 TO 1
CCi9 SUM=6AUX(0.000,1.00)
L0200 ’ © 5 FORMAT{'OTHE ORDINATES FOR THE MU INTEGRATION ARE'/(* ',8615.7)}
0021 WRITE(645) (X(I)yI=1416)
R £ INITIALIZE U AND V TO THE UNIT MATRIX
0022 DO 6 IMU=1,16
0023 DG 6 J=1416
£024 DG 6 K=1,16
i T VAIMU e K =EBUJeK)
Cg26 6 U(IMU.J:K)=€2(J.K)
T € ITERATE THE U AND V EQUATIONS
00217 ITERF1
£0z28 10 DG 17 1MU=1,16
60as AMU=X{ TMU)
T " C THE V EQUATION-—-FIRST CALCULATE C.ViMU)
4030 D0 12 J4=1.16
TLe31 DO 12 K=1,16
€032 SUM=0.000
0033 ' 00713 L=1s16
0034 13 SUM=SUM+ CUJsLI*V(INU,L,K)
TRO35 712 Bl «K)I=SUM
C NOW CALCULATE AA(MUPRINE) B.U(HUPRIME).C VIMU)
0036 CO 15 1MUP=1416 o
GC37 AMUP=X{ INUP)
0038 DOT15 J=1el6
£C38 00 15 K=1,16
TA0e0 T SUM=0,000 T
0041 DO 1% L=1,16
DY T 714 SUMSSUNH ULIMUP+JdsLI*BIL¥K)
0043 15 AALIMUP 3 J 5 K)=SUMKANU/(SIG (J)*ANU+SIGIK)*AMUP)

C NOW INTEGRATE OVER NMUPRIME AND GET VIMU)
0C44 SUM=GAUMAT(AA»B+1G)
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DO 17 J=1,16
DO 1T =116
17 VGINUJdoK)=BLJWKI+EE(JsK)
LT DD THE U EQUATION-— FIRST CALCULATE UlMU).C
00 30 IMu=1,16
AMU=X{IMUY
DO 22 J=1,16
D0 22 K=1L, 16
SUM=0,0DC
" DO 23 L=1,16
23 SUM=SUM+ U{IMUsJdsL)*C(LsK)
- 22 BlJK)}=SUN
C NUW CALCULATE A UIMU).C.VIMUPRIME)
T DO 25T TMUP=L .16
AMUP=X{ IMUP)
o D0 25 J=1,1G
DO 25 K=1,1G
'SUM=0.0D0
00 24 L=1,1G
T 24 SUNM=BUM+ B{JsL)*VIIMUP,sLK)
25 AALLINUP 3 JsK)=SUMRAMU/(SIG{J)*AMUP+SIG(K)*AMU)
C  NOW INTEGRATE UVER MUPRIME AND GET U(MU)
SUM=GAUMAT(AA,B,LG)
DO 27 J=1,16
D0 27 K=1,16
727 UUTINU»J 9oK)=BLJsK)+EE(J,K)
30 CONTINUE
T IF {IPR-5) 32,431,32
31 CALL PRTLUSVrIGHITER)
1PR=0
C TEST ON U AND V
T T VINTAGAUMAT (V0B IG)
UINT=GAUMAT{U,D,1G)
WRITE(6+8LM{{BlJyK)sK=142)9J=1,2)
KRITE(6+81)(LD(J1K)eK=192)9Jd=1y2)
DO 74 J=1+16
D0 71 K=1,16
AAl1l9J9K)}=0.0D0
DO 71 L=1,16
T1 AALLsJdsKI=AALL 9 doK)+CUJsLI¥BILyK)
DO 713 J=1,16
DO 73 K=1,1G6
VET(J4K)=0.000
O 73 =1,1I6
T3 VET Lo KI=VETLJI 1 KI+D oL ) XAALLS LK)
TUTRRITETG s BITUIVETLJ oK) 9K=1492) 9d=192)
81 FORMAT (%0',4615.7)
DU TR KELLIG T
DO 74 J=1,16
BTKsldT= STGIKI¥BIK )
DiKyJd)= SIGLIIRDIK,J)
T4 BUK TS JoD0R{BIKy J)+DIKy J)I-VET{K»J))
HRITEM,.‘IS) (‘B‘K'J, 'J=111G‘ 'K=11 i6)
T U5 FORMAT (Y CHECK GON U AND V'/{* *,8G15.7))
32 IPR={PR+1

C THERE (S NO GUNVERGENCE TEST--JUST WHETHER U AND V HAVE BEEN
“CITERATED TEN TIMES
IF (dTER.EQ.100) GO TO 35
TTITERFITER¥1
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B.3 SUBROUTINE: AVEC(A,NUO,C,SIG,IG,AA,AX,LLL,LLLL)

Purpose

This subroutine calculates the normalization of a discrete eigenvector,

a(vy) = fi dud (v, ,u) by evaluating Eg. (6.12).

Dummy Variables

Program Symbol Definiticn
A(IG) Vector where a(v.,) is stored.
NUC Discrete eigenvalue, Voo
c(IG,IG) C matrix
SIG(IG) Stores matrix elements o, .
IG Number of groups.
AA(IG,IG),AX(IG),LLL(IG),LLLL(IG) Temporary stcrage for quantities

generated by the subroutine.

ENTRY EIGEN (EIG,NUO,IG)

Purpose

This entry calculates the discrete eigenvectors ¢(v.,p,g)s 1 > 0, for

the Gaussian ordinates, ., k = 1~16.

Dummy Variables

Program Symbol Definition
EIG(K, 1) 25(vori, Q)
NUO v,
IG Number of groups.

Restrictions

(1) |VO[ must be greater than unity.



(i1)
(1ii)

(iv)
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AVEC must be called before EIGEN is used.

The subroutine MINV must be supplied.

The external function GAUX must be called before using AVEC to

generate the correct Gaussian ordinates.

0Nt
02
ANNna
nOnS
anne
ANNT
“NNg
NG
ok
8|
nn12
1013
aN14
nrl1s
N6
N7
2018
016
N2
1021
22
'!i’\?B
nn24
ANn2s
nn2e
nn27
28
029
nn3n
nn31
An32
2Nn33
N34

12

13

14

16
17

19

AVEC

SUBROUTINE AVEC(ANUC,C,SIG,IGsAA,AXsLLL,LLLL)
ITMPLICIT REAL*8(A-HM-2)

REAL*8 A(1),NUC,C(IG,1G),SIG(]1)
REAL%*8 AA(IG,IG)AX(1)

OIMENSION LLL(1)LLLL(Y)
TIX)=DLOG({1.00+X4NUC)/(X:NUO—~1.L0))=%*NUD
IN=[G-1

NDC 13 J=1,4IN

SG=SIG{J)

SG=T{SG)

DC 12 K=1,IN

AA(JyK)=CUJsK)%SC
AA(JyJ)=AA(J,J)-1.0D
AX(J)I=ClJyIG)*SE

CALL MINV{(AA,INJCETAX, LLLyLLLL,IG)
NG 14 J=141IN

A{J)=C.NDC

DG 14 L=1,IN
A(J)=A(Jd)=-AA0J,L)%RAX(L)

A(IG)=1.0D"

RETURN

ENTRY EIGEN(EIG,NUC,IG)

REAL*¥8 EIG(16,41G)

COMMON/GAU/X(16)

N6 16 J=1,16

AX{J)=0.0DD

DG 16 L=1,16

AX{J)= AX(J)I+CLI,L)%A{L)

NDC 19 JMU=1,16

AMU=X({ ML)

DO 19 J=1,1G

FIG{JIMUy J)=NUORAX(J)/(SIG(J)ENUG—-AMU)
RETURN

END
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B.4 SUBROUTINE: ROOT(FN,C,SIG,IG,XST,XEND,EPS],EPS2,DSCR,BSCR)
Purpose

This subroutine finds the simple zero, Xy, of an arbitrary function
f(x), in the interval x; to x-. The method of calculation used in this sub-

routine is discussed in detail in Section 6.2.

Dummy Variables

Program Symbol Definition

FN f(x)

C(IG,IG) C

SIG(IG) N

1G N (number of groups)

X8T X1

XEND Xo

EPS1 Rough grid size.

EPS2 Allowable error in xg.

DSCR, BSCR Are scratchfiles used for temporary storage.
Restrictions

(i) There must be only one zero between XST and SEND.
(ii) |XST+EPS1| must be less than |XEND|.
(iii) EPS1 and EPS2 have the same sign.

(iv) An external function, FN, is required.
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REAL FUNCTION ROCT*B{FNyCySIGsIG+XSTHXENDsEPS1,EPS2)
IMPLICIT REAL%8(A-H,M-Z)

REAL*8 FNyXSToXENDSEPS1+EPS2,C{IG,1IG),»SIGLIG)
EP=EPS1

S=DABS(EP)/EP

Y=XST

Y1=FN{(C,SIG+IG,Y)

Y2=FN{(C,SICG,1G,Y+EP)

IF (Y1*Y2) 12415,14

IF (S*(Y+2.CO0%EP).GE.XEND%*S) GO T0O 12

Y=Y+EP

Y1l=Y2

GO 10 11

I1F (S*EP.LT.EPS2%S) GO TO 13

EP=EP/10.LC

GO TO 11

IF (Y2.EQ.0Q0.0D0) Y=Y+EP

ROOT=Y

RETURN

END
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B.5 EXTERNAL FUNCTION: DIS(C,SIG,IG,Y,A,TN)
Purpose

This subroutine calculates the determinant of the dispersion matrix for

any value of the argument.

Dummy Variables

Program Symbols Definition
c( 16, IG) C
SIG(IG) .E
1G N (number of groups).
Y 1/v (argument of dispersion matrix).
A(IG,IG) Q(v) (dispersion matrix).
TN(IG) Scratch vector used temporary storage.
DIS det |Q(v) ]
Restriction

(i) The subroutine MINV is called and must be supplied.

DIS
N1 REAL FUNCTION DIS*8(CySIGy IGsYsA,TN)
A2 IMPLICIT REAL*8 (A-H,M-7)
013 REAL*8 Y,CUlIG41G),SIGIIGIoA(LIGy1G)sTNLIG)
o C CHANGE THE FCLLOWING CARD WHEN THE NUMBER OF GROUPS IS CHANGED
NG DIMENSION LLL(3),LLLL(3)
T C CONSTRUCT THE DISPERSION MATRIX
nnns D0 11 J=1,16
n0N6 TN(J)=0LOGI(SIG(J)+Y)/(SIG(JI=-Y]))
2037 N0 11 K=1,I16
0N8 11 A(JyK)I=CUJyKIRTN(J) 7Y
anng DO 12 J=1,16
AN 12 A(Jsd)=A(Jed)~1.D0
ANt CALL MINV(A,IGyDETD,LLLyLLLL,IG)
1012 NIS=DETD
nn13 RETURN

nn14 END
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B.6 SUBROUTINE: PRT(U,V,IG,ITER)

Purpose

This subroutine points out the value of the U and V matrices.

Dummy Variables

Program Symbol Definition
U(K, 1,J) [EKHK)]'~
1J
V(K) I:J) [V(Hk)]. .
IG N (number of groups).
ITER Iteration index for U and V,
S ~
PRT
NNl SUBROUTINE PRT(U,V,1G,ITER)
aon2 IMPLICIY REAL*8(A-HsM-2)
2003 REAL*8 U(1641Gy1G)y VI(164+1G,IG)
noN4 10 FORMAT(®*1AT ITERATICN NUMBER®,14,*VALUES OF V(MUyJsK)AND U(MUsJ+K}

1 ARE LISTED BELOW'/)

0095 WRITE(6,10) ITER

0006 11 FORMAT(8G15.7)

0007 12 FORMAT('OU(MU® 412,%,%,12,') FOR ASCENDING VALUES OF MU*)
none 13 FORMAT(' V{MU',12,%4%,12,") FOR ASCENDING VALUES OF MU')
0009 DO 20 J=1,16

no1o DO 20 K=1,16

o1l ) WRITE(6,12) JsK

ant2 WRITE(6411) (UCI,JsK),I=1,16)

0013 WRITE(6,13) JoK

0014 20 WRITE(6911) (VIIeJdeK)yI=1,16)

0015 RETURN

0016 END



120

B.7 EXTERNAL FUNCTION: GAUX(AA,BB)

Purpose
This initial entry calculates the sixteen Gaussian integration ordinates,
The resultant ordinates are stored

g, k = 1~16, for the interval (AA,BB).
The following entry points then

in the COMMON storage |GAU|-vector X(16).
integrate matrix functions, vector functions, and scalar functions.

Entries
GAUMAT (A,B,IG)
Definition

(1)
[~(“k)}i" k = 1~16 (A(u) is some arbitrary matrix

Program Symbol

A(X,I,J)
function.

BB 16
[ oaula(w)]; = 2wl LAl )

B(I,J)
AA
1G N (dimension of A and B)
(2) GAUVEC (AV,BV,IG)
Definition

Program Symbol
[ﬁﬁjuk)],, k = 1~16, (AV(p) is some arbitrary vector

AV(I,J)
function).
- 16
BV(I) 77 aplar(u)], 5 2wl [AV(m) 1,
AA k=1
IG N (dimension of vectors AV and BV).
(3) GAUS (AS,IG)
Program Symbol Definition
AS(K) f(py) where f(p) is an arbitrary scalar function.
BR . 16
GAUS [dpf(u) = 2wl )f(ug)
A ST

IG Any integer.



121

Restriction

(1) GAUS must be called before any of the entry points are called.

GAUX
nonl REAL FUNCTION GAUX*8(AA,BB)
non2 IMPLICIT REAL#*B(A-H,M-1)
onn3 REAL*8 AA,BB
nOYG COMMON/GAU/XI(16)
N0925 REAL*8 Z1(8)/.09501250984.2816035508y 4580167777y 6178762444,

1 7554044084, .8656312024y .$445150231, .9894009350/,
2WT(8)/.1894506105, »1826034150, .1691565194y .1495955888,
3 .1246289713, .0951585117, .0622535239, .0271524594/

nons C=.5D0%(BB-AA)
n0oT D=.500%(BEB+AA)
0008 DO 9 J=1,8
n0ng K=9-4
no1e 9 XI(J)=-CHZI(K)}+D
ne1l DO 8 J=9,16
5012 K=J-8
nn13 8 XI(J)=C*Z1(K)+D
9014 GAUX=XT(1)
0015 RETURN
c
2016 ENTRY GAUMAT(A4B,IG)
po17 REAL*8 A(16,1G,1G)s BIIG4IG)
nn18 DO 20 K=1,16
0019 DO 20 J=1,16
nozn SUM=0.0D0
nn21 DO 21 I=1,8
0n22 L=9-1
n023 21 SUM=SUM+ A(L,JyK)*WT(I)
0024 DO 22 1=9,16
0025 L=1-8
nn26 22 SUM=SUM+ A(1,JyK)*WT(L)
27 20 B(JsK)=SUMIC
an2s GAUMAT=1.C0
0029 RETURN
c
nn3n ENTRY GAUVEC(AV,BV4IG)
n031 REAL*8 AV(1641G)4BV(1)
0032 D0 30 K=1,16
nn33 SUM=0.000
0034 DO 31 I=1,8
35 L=9-1
0036 31 SUM=SUM+AV(LsK)*WT(I)
0037 DO 32 1=9,16
0038 L=1-8
1039 32 SUM=SUM+AV (I, K)*WT(L)
no4n 30 BVIK)=SUM*C
onal GAUVEC=1.D0
0042 RETURN
c
0043 ENTRY GAUS(AS,IG)
0044 REAL*BAS(16)
0045 GAUS=0.000
0046 DC 41 I=1,8
0047 L=9-1
0048 41 GAUS=GAUS#+AS(L)*WT(I)
n049 DO 42 1=9,16
nose L=1-8
0051 42 GAUS=GAUS+AS(I)*WT(L)
0052 GAUS=GAUS*C
nos53 RETURN

nns4 END
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B.8 SUBROUTINE: MINV(A,N,D,L,M,NC)

Purpose

This subroutine calculates the determinant and inverse of an arbitrary

square matrix.

Dummy Variables

Program Symbols

A(N,N)

L,M
NC

Arbitrary square matrix which is replaced by its
inverse.

Dimension of matrix A.
Determinant of A.
Scratch vectors used in calculating the inverse.

An integer which allow evaluation of the determinant
of a minor of A. For example if NC = N-1 the in-
verse and determinant of the minor of element

[é]ll is calculated.
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MINV

SUBROUTINE MINV(A,NsDyLeMyNC)
DIMENSION A(1),L(1)M(1)
DOUBLE PRECISION A,D,BIGA,HOLD

SPECIAL CASE FOR A DEGENERATE MATRIX N=1
IF (N.GT.1) GO TO 11
D=A(1)
A(l1)=1.D0/0
RETURN

INITIALIZATION

ICOUNT=0
D=1.D0
DO 10 I=1,N
L(1)=1
K=1

SEARCH FOR (,ARGEST ELEMENT IN THE RESIDUAL MATRIX
BIGA=0.0
DO 30 J=K,yN
T1JBASE=NC*(L(J)-1)
DO 30 I=K,N
1J=1JBASE+L (1)
IF (DABS(BIGA)-DABS(A(IJ))) 20,30,30
BIGA=A(IJ)
IzZ=1L(1)
Jz=LJ)
KSuB=J
CONTINUE
IF {(BIGA) 50,40,50
D=0,0
RETURN

PERFORM ROW INTERCHANGE AND MODIFY RESIDUAL SUBSCRIPTS
L{KSUB)=L(K)
IF (1Z2-JZ) 60,480,460
ICOUNT=ICCUNT+1
LUICOUNT)=1Z
M{ICCUNT }=JZ
00 70 J=14N
HOLD=A(1IZ)
A(IZ)=A(JZ)
A(JZ)=HOLD
1Z=1Z+NC
JI=JI+NC
JZ=M{ICOUNT)
D=-D

REPLACE PIVOT BY RECIPROCAL AND DIVIDE PIVOT ROW

1Z=NC*(J4Z-1)
A(IZ+4JdZ)=1.0
I1=J7 -

D0 90 J=1,N

AC1)=A(T)/BIGA
I=I+NC
RECUCE THE MATRIX
DO 110 I=1,N .
IF (I-JZ) 100,11¢,4100

HOLD=-A(1Z+1)

A(1Z+1)=0.
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MINV

IJ=1

KSuB=J2

DO 110 J=14N
A(TIJ)=ALTIJ)+HCLD*A(KSUB)
[J=1J+NC

KSUB=KSUB+NC

CCNTINUE

D=D*BIGA

K=K+1

IF (N-K) 120,15,15
PERFORM COMPENSATIOG COLUMN INTERCHANGES

IF (ICOUNT) 15C,150,130

IZ=NC*(L(ICOUNT)-1)

JZ=NC*(M(ICGUNT)-1)

DO 140 I=1,4N

12=1Z+1

J1=J1+1

HOLD=A(1Z)

ACIZ)=A(JZ)

A(JZ)=HOLD

ICOUNT=ICCUNT-1

G0 TO 120

RETURN
END
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B.9 PROGRAM FRED
Purpose

This program evaluates the analytic approximations Egqs. (3.95) and (3.96)
for the‘y'andlx function. The program symbols are the same as those in MILNE

and hence will not be repeated here.
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FRED

C THIS PROGRAM TESTS THE FREDHOLM EQUATION APPROXIMATION

80N1 IMPLICIT REAL*B{A-H,M=7)
non?2 COMMON/GAU/X(16)
C WHEN PUTTING INTO MAIN MUST INCLUDE NEWLY DEFINED MATRICES ESCR,CSRC
n0N3 REAL*8 U(1692+23yV{1642+2)9AA(164242) 4EE(242)/4%0,0D0/
nong REAL*8 EIG(1642)+ADEIG(1642)+EIGN(16,2),ADEIGN(1642)
nons  REAL*8 VEC{16),ESCR(2)4ASCR(2),BSCR(2)yC(2+2)4D(242)4DSCR(2,2)
nnns REAL*8 SIG(2),CSCR(2)
nnnt o _DIMENSION LLL(2),LLLL(2)
C CALCULATE THE M) ORDINATES AND READ IN INPUT DATA
anng SUM=GAUX{N.0DN,1.DN)
nnng 5 FORMAT ('ATHE ORNDINATES FOR THE MU INTEGRATION ARE', /(' ',8G15.7))
apyn WRITE{6,5) (X{I),I=1,16)
anl s FORMAT(I?,C18 8)
0012 6 REAR(S,4) IG,NUC
RS EN 7 FORMAT (BG17.7)
nntg READ(5,2) (SIG(J),J=1,1G6)
nn1s IF (SIG(1).FQ.N.ADA) RETURN
nnle  READ(5,2) ((C{J4K)4K=1,16) 44=141G)
N7 NG 8 J=1,1¢C
noie - _FE(JyJI=1.00
an1g N0 8 K=1,1¢C
anz2n 8 D{JsKI=C(K,yJ)
C
nn2y 3 FORMAT ('INEXT SET OF DATAY)
onz2 T U HRITE(A,3)
C
- "C CALCULATION NF THE EIGENFUNCTION NORMALIZATION--VECTOR A
nn23 CALL AVEC{ASCRyNUT,CySIG,1G,DSCR,BSCRyLLL,LLLL)
N4 WRITE(6,271) (ASCR{J),J=1,1G)
nnrs _2N1 FORMAT{' INTEGRAL OF DISCRETE EIGENFUNCTION IS'y(' ',5G15.8))
nnze6 T CALL EIGEN(F1G,NUO,IG)
27 i CALL EIGEN(EIGN,-NUO,IG)
nn28 CALL AVEC(BSCReNUN,D,SIG,16,DSCR4CSCRyLLLyLLLL)
nn2g WRITE(6,2n2) (BSCR{J)yJ=1,16)
RGER 202 FDRMAT(' INTEGRAL OF ADJOINT EIGENFUNCTION IS',(' *,5G15.8))
nna1 _ CALL EIGEN(ADEIGsNUQ,IG)
BREY CALL EIGEN{ADEIGN,-NUO,IG)
nn33 WRITE(6,172) ((EIGIIMU,J)y JMU=1416)49J=141G)
nn3s WRITE(6,102) ((EIGN{JMUyJ) ,JMU=1,161,J=1,1G)
anis WRITE(6,172) ((ADEIG(JIMU,J )y JMU=1,16),J=1,16)
nn3e6 WRITE(6,172) ({ADEIGN{JMU, J),JMU=1,16),J=1,10G)
nn37 102 FORMAT (2(* ',8615.7/)/2(' *48G15.7/)/)
€ CALCULATION OF THE DISCRETE EIGENFUNCTION NORMALTZATION--NPLUS
nn3g DO 105 JMU=1,16
an3g ~ FST=0,000
nnNgn NO 104 J=1,16
BOYA | 104 FST=FST+EIG(JMU,J)*ADEIG(JMU,J)
0042 105 VEC{JMU)=X(JMU)*FST
N43 FST=GAUS(VEC,1G)
Ang4 N0 106 JMU=1,16
nN45 TST=0.7D0
n046 DO 107 J=1,16
0047 107 1ST= TST+ADEIGN(JMU'J)*FIGN(JMUvJ)
nn4A 106 VEC{JMUI=X{JMU)*TST
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FRED

TST=GAUSIVEC,IG)

NPLUS=FST-TST
WRITE(6,179) NPLUS

109 FORMAT('2NPLUS BY DIREC

C

INTEGRATION 15¢,615.8)

€ CALCULATE U AND V APPROXIMAYIONS
C CALCULATE THE SCALAR DIVISOR

211

DO 212 JMU=1,16
Syjﬁizﬂ « DN

D0 211 4=1,16
SUM=SUM+ACFIG(JMU, JVXEIG (JMU,J)

212

213

217

VEC (JMUT=SUM*X (JMU)
SCALAR=GAUS(VEC,IG6)

WRITE(6,213)
FORMAT (*OTHE SCALAR INTEGRAND AND THE RESULTANTINTEGRAL ARE')

WRITF(6,217) (VEC(J),J=1,16)

FORMAT (' *',RGl15.7)

218

214

WRITE(6,218) SCALAR

FORMAT(Gl6.8) .

CALL GAUVEC(FIG,ESCR,IG)

CALL GAUVEC(ADEIG,CSCR,IG) .
WRITE(6,214) (CSCRUJ) yJ=1,1G)+{ESCR(J) yJ=1,1G)
FORMAT(®*OINTEGRALS OF EIGN AND ADEIGN ARE', (' *,2G15.7))

C CALCULATE U AND V

216

DO 215 JMU=1,16
NO 215 J=1,16 =
N9 216 K=1,16
UCJIMU, JoK) = (XTIMUYRETGN(JMU, J ) *CSCR(K) 1 /SCALAR
VMU, JoK) = (X (JMU) X*ESCR(J) *ADEIGN( JMU, K) ) /SCALAR

215

U(JIMU 3 J9dV=U(JMUy J5d) +#1.00
VMU Jy J)=VIJIMU,Jsd) +1.D7

CALL PRT(U,V,1G,N)
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