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ABSTRACT 

 

 A single bout of exercise leads to an increase in insulin-independent and insulin-

dependent increase in glucose transport (GT).  Phosphorylation of two members of the 

TBC1 (tre-2/USP6, BUB2, cdc16) domain family of proteins, Akt substrate of 160 kDa 

(AS160, also known as TBC1D4) and TBC1D1, has been suggested to regulate the 

increase in GT.  The purpose of the studies in this dissertation was to provide insights 

into the roles that AS160 or TBC1D1 phosphorylation play in the insulin-independent 

and insulin-dependent increases in GT after in vivo exercise or in vitro contraction using 

rat epitrochlearis muscle.  Immediately after in vivo exercise or in vitro contraction, the 

insulin-independent GT was elevated concomitant with increases in the phosphorylation 

of AS160 and TBC1D1.  However, in experiments using pharmacological inhibitors, 

wortmannin (inhibits phosphatidylinositol 3-kinase) or Compound C (inhibits AMP-

activated protein kinase), the increased AS160 phosphorylation after in vitro contraction 

was uncoupled from increased GT, whereas TBC1D1 phosphorylation and insulin-

independent GT consistently tracked together.  Furthermore, TBC1D1 phosphorylation 

and GT returned to resting values 3 h post-exercise, whereas AS160 phosphorylation 

remained elevated.  In contrast, the prolonged increase in AS160 phosphorylation, but not 

TBC1D1 phosphorylation, at 3 and 27 h after in vivo exercise coincided with enhanced 

insulin-stimulated GT.  Additionally, AS160 phosphorylation and insulin-stimulated GT 

both reversed to resting levels in rats fed carbohydrate-rich chow for 3 h post-exercise.  

xxi 
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In another set of experiments, doubling the amount of exercise (from 1 to 2 h) or 

electrical stimulation in serum (from 5 to 10 tetani) did not further elevate insulin-

stimulated GT.  In contrast, the combination of prior exercise (2 h) and electrical 

stimulation (10 tetani) had an additive effect on the subsequent increase in insulin-

stimulated GT, suggesting that exercise and electrical stimulation may amplify insulin 

sensitivity through distinct mechanisms.  These results suggest that:  1) TBC1D1 

phosphorylation, but not AS160 phosphorylation, may be important for insulin-

independent increase in skeletal muscle GT immediately after in vivo exercise or in vitro 

contraction; and 2) AS160 phosphorylation, but not TBC1D1 phosphorylation, may be 

important for insulin-dependent increase in skeletal muscle GT several hours after in vivo 

exercise, but not after in vitro contraction.   



 

 

 
CHAPTER I 

 

INTRODUCTION 

 

The molecular mechanisms by which contractile activity or exercise leads to 

increases in insulin-independent and insulin-dependent glucose transport in skeletal 

muscle are not fully understood (7, 21, 22, 24, 34).  Two members of the TBC1 (tre-

2/USP6, BUB2, cdc16) domain family of proteins, Akt substrate of 160kDa (AS160, also 

known as TBC1D4) and TBC1D1, have been suggested to potentially regulate the 

increase in GLUT4 translocation that is essential for increasing glucose transport (7, 8, 25, 

29, 33, 37, 38).  AS160 and TBC1D1 each contain a Rab GTPase-activating protein 

(RabGAP) domain that appears to have an inhibitory effect toward the Rab proteins that 

are implicated for GLUT4 vesicle trafficking (25, 33).  Phosphorylation of AS160 or 

TBC1D1 is believed to inactivate RabGAP activity, which in turn may allow activation 

of Rab proteins and initiate GLUT4 translocation (8, 25, 33, 38).  In skeletal muscle, 

insulin or contraction can result in increased phosphorylation of AS160 and TBC1D1 (1, 

2, 5, 26, 45), suggesting that these proteins may also be involved in insulin- or 

contraction-stimulated increase in glucose transport in this tissue (5, 7, 27, 37).  The 

primary goals of the research described in this dissertation were:  1) to elucidate 

mechanisms whereby in vivo exercise or in vitro contractile activity regulates the 
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phosphorylation of skeletal muscle AS160 and TBC1D1; and 2) to gain insights into the 

roles that AS160 and TBC1D1 phosphorylation may play in the increased skeletal muscle 

glucose transport after exercise or contractile activity. 

A single bout of exercise or in vitro contractile activity results in an increase in 

insulin-independent glucose transport (also known as contraction-stimulated glucose 

transport) during and immediately after exercise (22, 24, 31, 34, 50).  Study 1 and 2 

investigated the regulation of AS160 or TBC1D1 phosphorylation immediately after in 

vitro contraction. 

 

Study 1: Contraction-stimulated Glucose Transport in Rat Skeletal Muscle is Sustained 

despite Reversal of Increased PAS-phosphorylation of AS160 and TBC1D1 

 In a purified enzyme assay (cell-free condition), AMP-activated protein kinase 

(AMPK) or Akt can each phosphorylate AS160 or TBC1D1 (9, 16, 45).  However, the 

kinase(s) that phosphorylate AS160 or TBC1D1 during muscle contraction remains 

unclear.  Furthermore, activation of Akt is not essential for contraction-stimulated 

glucose transport (28, 35, 49), whereas AMPK has been implicated for mediating 

contraction-stimulated glucose transport (20, 48).  Consistent with the idea that AMPK, 

but not Akt, is important for contraction’s effect on increasing skeletal muscle glucose 

transport, previous studies demonstrated transient contraction-stimulated activation of 

Akt (36), but sustained activation of AMPK (39, 41, 43) or glucose transport (30).  No 

studies had reported the time-course of AS160 or TBC1D1 phosphorylation in response 

to in vitro contraction.  Therefore, Study 1 evaluated the time-courses for contraction-
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stimulated phosphorylation of AS160 and TBC1D1, along with these kinases and glucose 

transport.   

 

Study 2: Inhibition of Contraction-stimulated AMPK Inhibits Contraction-stimulated 

Increases in PAS-TBC1D1 and Glucose Transport without Altering PAS-AS160 in Rat 

Skeletal Muscle 

 To more directly assess the relationship between AMPK or Akt and AS160 or 

TBC1D1, Study 2 used pharmacological inhibitors that prevented the contraction-

stimulated activation of either AMPK (compound C) or Akt (wortmannin) and examined 

their effects on contraction-stimulated phosphorylation of AS160 or TBC1D1.  

Furthermore, this study determined whether the attenuation of the contraction-stimulated 

increase in AS160 or TBC1D1 phosphorylation, secondary to inhibition of upstream 

kinases, was accompanied by reduced contraction-stimulated glucose transport. 

  

 In addition to the insulin-independent increase in glucose transport during and 

immediately after in vivo exercise or in vitro contraction, a single bout of exercise or in 

vitro contractile activity in serum leads to a subsequent increase in insulin-stimulated 

glucose transport (the insulin-dependent effect of exercise, also known as increase in 

insulin sensitivity) (14, 17, 19, 21, 32).  Study 3 and Study 4 investigated a possibility 

that AS160 or TBC1D1 phosphorylation may play a role in enhanced insulin-stimulated 

glucose transport several hours after in vivo exercise or in vitro contraction.  
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Study 3: Increased AS160 Phosphorylation, but Not TBC1D1 Phosphorylation, with 

Increased Post-exercise Insulin Sensitivity in Rat Skeletal Muscle 

 The post-exercise increase in insulin-stimulated glucose transport is mediated by 

enhanced insulin-stimulated GLUT4 translocation to the cell-surface membranes (19).  

However, the cellular mechanism(s) leading to this event are unknown (21).  Proximal 

insulin signaling steps such as insulin binding (3, 4, 52), insulin receptor tyrosine kinase 

activity (40, 42, 46), insulin receptor tyrosine phosphorylation (19, 23, 42, 47), insulin 

receptor substrate tyrosine phosphorylation (19, 23, 51), insulin receptor substrate 

associated phosphatidylinositil 3-kinase activity (40, 47), and Akt serine phosphorylation 

(2, 11, 18, 40, 46) are not enhanced in insulin-stimulated muscles that have undergone 

prior exercise.  Recently, several studies reported that, in contrast to these upstream 

signaling events, AS160 phosphorylation remain elevated for many hours after a bout of 

in vivo exercise (2, 12, 39, 44).  The level of TBC1D1 phosphorylation post-exercise had 

not been previously reported.  In Study 3, the possibility that a prolonged increase in 

AS160 or TBC1D1 phosphorylation may play a role in post-exercise increase in insulin-

stimulated glucose transport was explored.  In three different post-exercise conditions 

that were known to result in either enhanced or reversed insulin-stimulated glucose 

transport, AS160 or TBC1D1 phosphorylation were measured to test whether each 

consistently accompanied the changes in insulin-stimulated glucose transport. 

 

Study 4: In Vivo Exercise Followed by In Vitro Contraction Additively Elevates 

Subsequent Insulin-stimulated Glucose Transport by Rat Skeletal Muscle  
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 In vitro contraction of isolated skeletal muscle in serum-free buffer induces an 

increase in insulin-independent glucose transport comparable to the increase after in vivo 

exercise.  In contrast, when isolated skeletal muscle is stimulated to contract, a 

subsequent increase in insulin-stimulated glucose transport is observed only when serum 

was present during the in vitro contraction (6, 13).  Therefore, it has been hypothesized 

that a serum factor is necessary for a post-exercise increase in insulin-stimulated glucose 

transport (10, 13, 15, 21).  In Study 4, to probe the possibility that AS160 or TBC1D1 

phosphorylation may play a role in the post-contraction increase in insulin-stimulated 

glucose transport, isolated skeletal muscles were stimulated to contract in the presence or 

absence of serum to examine whether changes in AS160 or TBC1D1 consistently tracked 

with changes in insulin-stimulated glucose transport.  Furthermore, the effect of in vivo 

exercise, with and without subsequent electrically stimulated contraction, on insulin-

stimulated glucose transport was determined to see if these two stimuli (in vivo exercise 

and in vitro contraction) would have additive effects on insulin sensitivity. 
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

Significance of Skeletal Muscle Glucose Transport 

Type 2 diabetes mellitus (non-insulin dependent diabetes mellitus, NIDDM) 

accounts for 90 to 95% of all cases of diabetes, and approximately 6% of the adult 

population in Western society suffers from the disease (107, 135).  Insulin resistance by 

skeletal muscle is a primary defect in the progression of Type 2 diabetes (39, 114).  

Furthermore, insulin resistance is associated with poor health even in people who do not 

become diabetic (48, 62, 96).  Skeletal muscle accounts for up to 85% of insulin-

stimulated glucose clearance (40), and glucose transport is considered a rate-limiting step 

in muscle glucose metabolism (180).   In addition to insulin-stimulation, physical 

exercise can positively modulate glucose homeostasis due to enhanced insulin-

independent glucose transport and elevated insulin action in the working muscles. The 

effects of exercise to increase skeletal muscle glucose transport and insulin sensitivity 

may help explain, at least in part, the strong epidemiological evidence that regular 

exercise prevents or delays the onset of Type 2 diabetes (90, 150).   

In addition to these health benefits, the effects of exercise on skeletal muscle 

glucose transport are important for healthy individuals with regard to energy provided 

from blood glucose during exercise and the rapid replacement of muscle glycogen after 
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exercise.  Repeated bouts of vigorous exercise in athletes or people with physically 

demanding occupations can deplete muscle glycogen and the increased skeletal muscle 

glucose transport is an essential component for replenishing muscle glycogen.  Providing 

blood glucose or replenishing muscle glycogen also likely has survival benefits in 

animals living in the wild.  

 

Insulin and Exercise 

Insulin and exercise co-regulate skeletal muscle glucose transport by increasing 

the number of cell surface GLUT4 glucose transporters (58, 155).  Multiple lines of 

evidence suggest that the effects of insulin and exercise on glucose transport are distinct:  

1) insulin and exercise stimulate separate pools of GLUT4 vesicles to be translocated to 

the plasma membrane (36, 43);  2) the effects of a maximally effective concentration of 

insulin plus exercise on skeletal muscle glucose transport or GLUT4 translocation are 

additive (37, 101);  3) insulin, but not exercise/contraction, activates insulin-receptor 

substrate (IRS)-associated phosphatidylinositol 3-kinase (PI3K) (57);  4) PI3K inhibitor 

wortmannin blocks the effect of insulin on glucose transport without affecting the effect 

of contraction in isolated skeletal muscle (100, 170);  5) muscles from Zucker rats that 

are insulin resistant have normal contraction-stimulated glucose transport (9, 16);  6) 

muscles from transgenic mice that are null for the insulin receptor or Akt2 have reduced 

insulin-stimulated glucose transport but have normal contraction-stimulated glucose 

transport (103, 127, 165);  7) exercise/contraction, but not insulin, stimulates AMP-

activated protein kinase (AMPK) and Ca2+/calmodulin dependent kinase II (CaMKII) (67, 

168);  8) mice with kinase-dead AMPK that have reduced contraction-stimulated glucose 

11 
 



transport have normal insulin-stimulated glucose transport (108).  Although many studies 

have elucidated possible pathways by which insulin or exercise regulates glucose 

transport, precise mechanisms that lead to an increase in cell surface GLUT4 are not fully 

understood. 

 

Effects of Exercise on Skeletal Muscle Glucose Transport 

The first published evidence for the insulin-like effect of exercise on glucose 

transport was from horse masseter muscle in which a chewing action was found to induce 

a difference in arterio-venous glucose concentration (27).  In 1957, Helmreich and Cori 

more directly investigated this phenomenon by studying isolated rat skeletal muscle, and 

found that muscle contraction increased pentose accumulation (69).   

A single bout of in vivo exercise can increase glucose transport in skeletal muscle 

during and immediately after exercise (73, 84, 125).  This increase in exercise-induced 

glucose transport can occur in the absence of insulin (115, 156) and therefore is also 

known as insulin-independent glucose transport (or direct effect of exercise).  The 

insulin-independent effect on glucose transport begins to reverse shortly after the 

cessation of contractile activity (155) and most of this effect is lost by 1-3 hr post-

exercise (173).  Subsequently, a much more persistent increase in sensitivity to insulin-

stimulated glucose transport occurs in skeletal muscle, lasting 3-48 hr (55, 61, 64, 119).  

This effect is known as the increase in insulin-dependent glucose transport (or indirect 

effect of exercise).   
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The Insulin Signaling Pathway 

Insulin increases glucose transport by increasing GLUT4 (a major glucose 

transporter in skeletal muscle) translocation to cell surface membranes (Fig. 2.1) (10, 98, 

170).  Insulin-stimulated GLUT4 translocation is dependent on insulin signaling initiated 

by the binding of insulin to its receptor on cell surface, causing autophosphorylation on 

multiple tyrosine residues in cytosolic domain (19, 142, 160, 176).  The tyrosine 

phosphorylation on the insulin receptor (IR) subsequently recruits multiple docking 

proteins that activate several signaling cascades, including IRS proteins, which in turn 

also become tyrosine phosphorylated as a result of the increased to insulin receptor 

tyrosine kinase activity (109, 131, 141, 159).  Tyrosine phosphorylated IRS proteins 

recruit multiple proteins including PI3K (20).  PI3K binding to IRS induces a 

conformational change in PI3K that results in activation of its kinase domain (20).  PI3K 

phosphorylates phosphatidylinositol-(3,4)-bisphosphate (PIP2) in the phospholipid 

bilayer to produce phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) (151, 153).  Proteins 

that contain pleckstrin homology (PH) domains, including phosphoinositide-dependent 

kinases-1 (PDK1) and Akt, are recruited to PIP3 lipid rafts (3, 99).  PDK1 activates Akt 

by phosphorylating Thr308 on its activation loop (1, 2) and phosphorylation on Ser473 by 

mammalian target of rapamycin complex-2 (mTORC2) stabilizes its activation (133).  

Activation of Akt is reportedly sufficient to increase glucose transport (91, 112).  Among 

many substrates that Akt can phosphorylate, Akt substrate of 160 kDa (AS160, also 

known as TBC1D4) has been recently linked to insulin-stimulated GLUT4 translocation 

and glucose transport (88, 132).  
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Role of AS160 in Insulin-stimulated Glucose Transport 

AS160 contains a Rab GTPase-activating protein (RabGAP) domain that can 

regulate Rab-GTP formation (Fig. 2.2, top) (88, 105, 132).  A family of Rab proteins is 

involved in membrane vesicle trafficking, and these proteins can exist in an active GTP-

bound form or in an inactive GDP-bound form (41, 137, 178).  Activity of Rab proteins is 

regulated by three classes of proteins including: 1) guanine nucleotide exchange factor 

(GEF) that converts inactive GDP-bound form to its active GTP-bound form; 2) GAP 

that causes GTP hydrolysis resulting in GDP formation; and 3) guanosine nucleotide 

dissociation inhibitors (GDI) that prevents Rab proteins from being turned on and retain 

its GDP-bound form.  The balance among these three classes of proteins is essential in 

optimizing the GTP-to-GDP ratio of Rab proteins (139).  Unphosphorylated AS160 has 

an active RabGAP domain that promotes GTP hydrolysis, thus inhibiting Rab activation 

(105).  Phosphorylation of AS160 seems to turn off its RabGAP activity, leading to 

decreased GTP hydrolysis of Rab proteins (105, 132).  Consequently the balance among 

GEF, GAP and GDI shifts towards an increase in GTP formation and induces Rab-

mediated GLUT4 translocation (Fig. 2.3).   

Evidence that phosphorylation of AS160 regulates GLUT4 translocation in 3T3-

L1 adipocytes was initially shown by Gus Lienhard’s group (132).  3T3-L1 adipocytes 

expressing AS160 with alanine mutations on four insulin-responsive phospho-Ser/Thr 

residues (called the 4P mutant) had a reduced insulin-stimulated GLUT4 translocation to 

the cell surface.  RabGAP domains contain an arginine residue that is critical for their 

activity, and mutation of this residue to lysine abolishes RabGAP activity (132, 162).  

Insulin-stimulated GLUT4 translocation in cells expressing mutated AS160 with inactive 
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RabGAP (R973K mutant, R/K) was not different from that in wild-type cells.  

Importantly, cells expressing double mutant AS160 (both R/K and 4P) did not exhibit the 

inhibitory effect that the 4P mutation alone has on insulin-stimulated GLUT4 

translocation.  Together, these observations in 3T3-L1 adipocytes suggested that: 1) the 

active RabGAP domain of AS160 inhibits GLUT4 translocation; 2) phosphorylation of 

AS160 induces insulin-mediated inactivation of RabGAP domain; and 3) 

phosphorylation-mediated inactivation of the RabGAP domain of AS160 is essential for 

the full insulin-stimulated GLUT4 translocation.  

Tim McGraw’s group used Total Internal Reflection Fluorescence Microscopy 

(TIRF) to assess the cell surface dynamic of GLUT4 and found that insulin-stimulated 

GLUT4 translocation is significantly reduced in 3T3-L1 adipocytes with AS160-4P 

overexpression, without significantly affecting basal GLUT4 translocation (177).  

Importantly, they found that cells expressing the AS160-4P mutant had a residual 

increase in insulin-stimulated GLUT4 translocation.  Further analyses indicated that 

while insulin regulates both exocytosis and endocytosis of GLUT4 vesicles, only 

exocytosis is regulated by AS160.   They subsequently studied the effect of siRNA-

mediated knockdown of AS160 (46) and found that basal GLUT4 translocation was 

elevated in cells that did not express AS160, supporting the idea that AS160 negatively 

regulates GLUT4 translocation.  

To summarize, studies using 3T3-L1 adipocytes suggested that AS160 inhibits 

glucose transport by suppressing GLUT4 exocytosis (but not endocytosis) through 

AS160’s RabGAP activity.  Insulin-stimulated phosphorylation of AS160 appears to 

inactivate RabGAP, resulting in increased GLUT4 exocytosis.   A variety of experimental 
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approaches, including AS160 manipulation (overexpression, knockdown and inhibitors) 

and measures related for glucose transport (cell surface GLUT4, TIRF measurements of 

GLUT4 movement and 2-deoxyglucose uptake), have provided substantial evidence for 

AS160 playing a key role in insulin-stimulated glucose transport in 3T3-L1 adipocytes. 

 

Role of AS160 Phosphorylation in Insulin-stimulated Glucose Transport in Skeletal 

Muscle 

Arias et al. (4) and Bruss et al. (17) subsequently reported in rat skeletal muscle 

that insulin results in an increase in AS160 phosphorylation detected by phospho-Akt 

substrate (PAS) antibody.  The commercially available PAS antibody was designed to 

recognize multiple Akt phosphorylation motif peptide sequences (RXRXXpT/S).  The 

time-course and dose-response for AS160 phosphorylation were consistent with the 

ability of physiological concentrations of insulin to rapidly increase glucose transport by 

isolated skeletal muscle.  The incubation of muscles with the PI3K inhibitor wortmannin 

eliminated the insulin-stimulated increase in Akt Ser473 phosphorylation and AS160 

phosphorylation, indicating that the effect of insulin on AS160 in skeletal muscle, as in 

adipocytes, is PI3K- and presumably Akt-dependent. Using primary human skeletal 

muscle cells, Juleen Zierath’s group reported that IRS1 and Akt2 siRNA-mediated 

knockdown, but not IRS2 or Akt1, resulted in elimination of insulin-stimulated AS160 

phosphorylation (14).  The idea that Akt2 is important in insulin-stimulated AS160 

phosphorylation is supported by the lack of increased insulin-stimulated AS160 

phosphorylation in Akt2 null mice (93).  Taken together, insulin-stimulated 

phosphorylation of AS160 in skeletal muscle seems to occur through the same pathway 
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as adipocytes, suggesting that insulin-stimulated glucose transport in skeletal muscle may 

also be regulated byAS160 phosphorylation.  

In collaboration with Lienhard’s group, Laurie Goodyear’s group studied the 

effect of AS160 mutants on insulin-stimulated glucose uptake in mouse skeletal muscle 

(94).  They electroporated vectors for the 4P and/or R/K mutants of AS160 to investigate 

effects of AS160 mutation on insulin-stimulated glucose uptake in mouse tibialis anterior 

muscle.  Similar to the findings in adipocytes, expression of the 4P mutant of AS160 

resulted in a decreased insulin-stimulated glucose uptake and the 4P-R/K double 

mutation rescued this effect.  These results suggested that, in skeletal muscle as in 

adipocytes, the insulin-stimulated phosphorylation of AS160 is important for the effect of 

insulin on glucose uptake in skeletal muscle, and this effect requires a functional 

RabGAP domain on AS160.   

To summarize, findings in intact skeletal muscle are consistent with the idea that 

insulin-stimulated phosphorylation of AS160 is important for the regulation of increase in 

glucose transport.  However, current understanding of the role of AS160 in insulin-

stimulated glucose transport in skeletal muscle relies heavily on findings in 3T3-L1 

adipocytes.   

 

Cell Localization of GLUT4 Vesicles and AS160 

In both 3T3-L1 adipocytes and L6 myoblasts, GLUT4 continuously cycles 

between intracellular pools and the cell surface (44, 59).  GLUT4 is largely retained 

intracellularly through idle cycling between endosomal pools, and in both cultured 

muscle and adipose cells the major depot is in the perinuclear area.  In both muscle and 
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adipose cells, GLUT4 traffic to the cell surface likely involves several steps:  1) GLUT4 

vesicle release from retention in specialized pool(s); 2) mobilization of GLUT4 vesicles 

towards the cell surface; 3) GLUT4 vesicle tethering, docking and fusion with the plasma 

membrane (157).    

In 3T3-L1 adipocytes, separation of  subcellular compartments using sucrose 

gradient fractionation revealed that in the basal state, vesicular compartments that contain 

GLUT4 also contain AS160 (97, 105), suggesting that AS160 is associated with GLUT4 

vesicles in the unstimulated state.  Immunoprecitation of insulin-regulated 

aminopeptidase (IRAP) resulted in AS160 co-immunoprecitation, suggesting that AS160 

may be bound to the GLUT4 vesicles through IRAP (113).  One study reported that 

insulin treatment induced AS160 to dissociate from GLUT4 vesicles (97), but another 

study did not detect any insulin effect on the amount of AS160 associated with IRAP 

(113).  No studies have addressed in skeletal muscle if AS160 subcellular localization is 

regulated with respect to GLUT4 vesicles. 

 

Role of 14-3-3 Proteins in AS160-dependent Action on GLUT4 Vesicles 

 In addition to IRAP and GLUT4 vesicles, AS160 has been suggested to be 

associated with 14-3-3 proteins (116).  14-3-3 is a class of proteins whose function is 

facilitated by interacting with phospho-serine or phospho-threonine residues in a variety 

of other proteins.  The interaction of 14-3-3 with target proteins has been shown to 

encode a variety of functions including subcellular redistribution, altered protein 

conformation, protection from proteolysis, impaired interaction with other proteins and 

scaffolding (15).  
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In 3T3-L1 adipocytes, 14-3-3 association to AS160 appears to increase in 

response to insulin stimulation (116).  Interestingly, cells expressing either the 4P or the 

T642A (threonine substituted for alanine at the 642 residue of AS160) mutant of AS160 

did not interact with 14-3-3, whereas cells expressing wild-type AS160 did bind 14-3-3, 

indicating that 14-3-3 may bind to AS160 on phosphorylated Thr642 site (56, 116).  In 

addition, attenuated insulin-stimulated GLUT4 translocation in cells that overexpressed 

AS160-4P was rescued by restoration of 14-3-3 binding to AS160, suggesting that 14-3-3 

binding to AS160 is important for insulin-stimulated glucose transport (116).  Consistent 

with these findings in cells, 14-3-3 binding capacity of AS160 is greater in human 

skeletal muscle biopsy samples taken immediately after a hyperinsulinemic-euglycemic 

clamp compared to pre-clamp biopsy samples, supporting the idea that 14-3-3 binding to 

AS160 may also be functionally important in insulin-stimulated skeletal muscle (76, 77). 

   

Calmodulin Binding Domain of AS160 in Insulin-stimulated Glucose Transport 

 Lienhard’s group first recognized that AS160 contains a calmodulin binding 

domain located near C-terminus (88, 132).  The calmodulin binding domain of AS160 

can bind to calmodulin in the presence of Ca2+, and calmodulin is co-immunoprecipitated 

with AS160 (87).  However, in 3T3-L1 adipocytes, overexpression of AS160 with a 

mutated calmodulin binding domain that prevents calmodulin binding to AS160 did not 

alter basal or insulin-stimulated GLUT4 translocation indicating that a functional 

calmodulin binding domain of AS160 is not essential for the insulin-stimulated increase 

in glucose transport in fat cells (87). 
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AS160-independent Mechanisms Involved in Insulin-stimulated Glucose Transport 

Although a great deal of evidence suggests that AS160 is likely involved in 

insulin-stimulated glucose transport, AS160 is likely not the only downstream factor 

affecting GLUT4 translocation.  As described previously, AS160-dependent mechanisms 

are not important for insulin-stimulated inhibition of GLUT4 endocytosis (177). The 

absence of increased basal GLUT4 at the cell surface (or increased glucose transport) in 

cells expressing the AS160 R/K mutant suggests that other steps also regulate GLUT4 

vesicles (94, 132, 177).   

Based on results from a study that used TIRF to systematically assess the docking 

rate and the fusion rate of GLUT4 vesicles in 3T3-L1 adipocytes (7, 85), insulin 

apparently caused increases in both of these steps.  However, overexpression of AS160-

4P mutant caused a complete inhibition of insulin-stimulated increase in the docking rate 

and appeared to have no effect on fusion rate.  These results suggested that AS160 is 

involved only in the docking step of the insulin-stimulated GLUT4 translocation, and that 

additional mechanisms are involved in insulin-stimulated increase in GLUT4 vesicle 

fusion to the cell membrane.  Similarly, a study that used confocal fluorescence 

microscopy on rounded-up L6 myoblasts (117) showed that overexpression of AS160-4P 

mutant only inhibited the docking step of insulin-stimulated regulation of GLUT4 

vesicles and had no effect on GLUT4 tethering.  Together, these studies suggest that 

AS160-dependent mechanisms are essential but not sufficient for the full insulin-

stimulated increase in glucose transport. 
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Role of TBC1D1 in Insulin-stimulated Glucose Transport 

Recently, Lienhard’s group (121) found that TBC1D1, a closely related protein to 

AS160 (which is also known as TBC1D4), also becomes phosphorylated with insulin 

stimulation in 3T3-L1 adipocytes and therefore could potentially influence GLUT4 

translocation.  TBC1D1 is a protein of roughly the same apparent molecular mass as 

AS160 that is 47% identical and 67% similar to AS160 over its entire length (Fig. 2.2, 

bottom). The GAP domain of TBC1D1 is 79% identical and 91% similar to that of 

AS160 and regulates activity of the same Rab proteins (2A, 8a, 8b, 10 and 14) as AS160.   

Similar to their approach in the earlier study with overexpression of AS160 

mutant in 3T3-L1 adipocytes (132), they tested the effects of TBC1D1 mutant 

overexpression on insulin-stimulated GLUT4 translocation (121).  The TBC1D1 mutants 

studied included:  1) TA (phosphorylation site Thr596 mutated to Ala) mutant of TBC1D1 

(comparable to T642A mutant of AS160); 2) arginine to lysine (R/K) mutation of the 

GAP domain that eliminates GAP activity of TBC1D1 (comparable to R/K mutant of 

AS160); or 3) TA-R/K double mutant (comparable to 4P-R/K double mutant in AS160).  

Similar to the observations in AS160 mutant overexpression experiments (132), insulin-

stimulated GLUT4 translocation in TBC1D1 mutant overexpressed cells was:  1) 

decreased in cells that overexpressed TA mutant of TBC1D1; 2) unchanged in cells that 

overexpressed R/K mutant compared to cells with empty vector overexpression; or 3) 

unchanged in cells that overexpressed TA-R/K mutant compared to cells with empty 

vector overexpression.  However, one key difference between observations from 

TBC1D1 and AS160 overexpression studies was that although the overexpression of 

wild-type AS160 did not result in the inhibition of insulin-stimulated GLUT4 
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translocation, overexpression of wild-type TBC1D1 resulted in the inhibition of insulin-

stimulated GLUT4 translocation.  These results suggested that the decrease in insulin-

stimulated GLUT4 translocation observed in cells that overexpressed TA mutant of 

TBC1D1 was not due to the threonine to alanine mutation per se, but was likely due to 

the overexpressed TBC1D1 protein in these cells.  They interpreted this difference to 

indicate that either: 1) phosphorylation of TBC1D1 by insulin is incomplete; and/or 2) 

phosphorylation of TBC1D1 by insulin is not sufficient to inhibit its GAP activity.  

TBC1D1 has fewer Akt phosphorylation sites than AS160 and has an AMPK 

phosphorylation site that is absent in AS160 (121).  Therefore it seemed possible that 

AMPK, and not Akt, may be the crucial kinase that regulates the GAP activity of 

TBC1D1.   

Chavez et al. (28) subsequently performed TBC1D1 knockdown in 3T3-L1 

adipocytes and found no effect on insulin-stimulated GLUT4 translocation.  In 3T3-L1 

adipocytes, TBC1D1 protein expression is only ~5% as abundant as AS160, and 

therefore endogenous TBC1D1 may not be important for insulin-stimulated GLUT4 

translocation in these cells.  As described above, TBC1D1 overexpression resulted in a 

significant reduction (~90%) of insulin-stimulated GLUT4 translocation (28, 121).  

AMPK activator 5’-aminoimidazole-4-carboxamide ribonucleoside (AICAR) also did not 

increase GLUT4 translocation in 3T3-L1 adipocytes overexpressing wild-type TBC1D1.  

Interestingly, in TBC1D1 overexpressing 3T3-L1 adipocytes, simultaneous incubation 

with both insulin and AICAR (which activates AMPK) significantly attenuated (~70%) 

the reduction in GLUT4 translocation caused by TBC1D1 overexpression (28).  These 

results suggested:  1) TBC1D1 can regulate GLUT4 translocation in 3T3-L1 adipocytes 
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when expressed in a much higher amount than usual; and 2) AMPK signaling may be 

necessary for TBC1D1-dependent regulation of GLUT4 translocation.  TBC1D1 protein 

is much more highly expressed in skeletal muscle than white adipose tissue (143), and 

AICAR stimulates glucose transport by AMPK-dependent pathway in skeletal muscle 

(51).  Therefore these results suggested that TBC1D1 may be a component in the signal 

transduction pathway leading to AMPK-stimulated GLUT4 translocation in muscle. 

Ishikura et al. (79) examined the effects of AS160 or TBC1D1 knockdown on 

cell-surface GLUT4 in basal and insulin-stimulated conditions in L6 myotubes which 

express relatively high levels of both AS160 and TBC1D1.  As expected, AS160 or 

TBC1D1 each resulted in an increase in cell-surface GLUT4 at basal state compared to 

non-related siRNA control, consistent with the idea that AS160 or TBC1D1 each 

functions as a stop signal for basal GLUT4 translocation.  Silencing AS160 resulted in 

unchanged insulin-induced GLUT4 translocation (insulin-dependent net gain above basal 

values for cell surface GLUT4) compared to non-related siRNA control, compatible with 

the idea that insulin-stimulated phosphorylation of AS160 relieves the stop signal that 

AS160 has on GLUT4 translocation.  However, silencing TBC1D1 resulted in greater 

insulin-induced GLUT4 translocation compared to non-related siRNA control, suggesting 

that TBC1D1 participation in GLUT4 traffic is not regulated by insulin.  In other words, 

TBC1D1 knockdown allowed insulin to induce a greater amount of GLUT4 vesicle 

translocation than in cells that express TBC1D1.  These results does not eliminate the 

possibility that TBC1D1 can regulate an insulin-independent increase in glucose transport 

(e.g., with contraction).   
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Carol MacKintosh’s group found that either Akt or AMPK can phosphorylate 

purified TBC1D1 on several sites in a cell-free kinase assay, but only phosphorylation by 

AMPK resulted in increased 14-3-3 binding (29).  In L6 myotubes, AICAR, but not 

insulin, increased 14-3-3 binding to immunoprecipitated TBC1D1 (29), consistent with 

the finding that insulin-stimulated phosphorylation of TBC1D1 is not sufficient to 

increase GLUT4 translocation (28, 121).  In addition, immunocytochemical analysis of 

L6 cells revealed that TBC1D1 was co-localized with GLUT4 in unstimulated cells (29).  

However, they did not detect TBC1D1 dissociation from GLUT4 in cells that were 

incubated in insulin or A-769662 (AMPK activator) (29).   

Goodyear’s group showed in mouse skeletal muscle that either insulin or AICAR 

can stimulate TBC1D1 phosphorylation detected using the PAS antibody, supporting the 

findings in cell lines (143).  Using mass spectrometric analysis of TBC1D1, they 

suggested that, in mouse skeletal muscle, AICAR caused greater overall phosphorylation 

of TBC1D1 sites compared to insulin, indicating that AMPK may be a robust regulator of 

TBC1D1 phosphorylation.  Further studies are necessary to elucidate the role of 

TBC1D1-mediated regulation of glucose transport in skeletal muscle. 

To summarize, studies in 3T3-L1 adipocytes indicate that endogenous TBC1D1 

may not be important for inducing the insulin-stimulated glucose transport because:  1) 

these cells contain only ~5% of TBC1D1 protein compared to AS160; and 2) 

overexpression of wild-type TBC1D1 inhibit insulin-stimulated GLUT4 translocation.  In 

cell-free kinase assay, purified Akt is not sufficient to increase 14-3-3 binding capacity of 

AS160.  Results from studies in L6 myotubes, which express higher levels of TBC1D1, 

indicate that TBC1D1 may be important for the regulation of insulin-independent 
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GLUT4 translocation.  Several lines of evidence suggest that AMPK may regulate 

TBC1D1 phosphorylation.  It would be important to determine if TBC1D1 plays a role in 

the AMPK-dependent increase in GLUT4 translocation that occurs with skeletal muscle 

contraction. 

 

Exercise/Contraction-stimulated Glucose Transport  

As discussed above, multiple reports provide evidence that there are distinct 

mechanisms for the stimulation of glucose transport by exercise/contraction versus 

insulin.  Considerable evidence suggests that both AMP-activated protein kinase 

(AMPK) and increased cytosolic calcium are involved in contraction-induced, but not 

insulin-stimulated, increase in GLUT4 translocation (Fig. 2.4) (75, 108, 168).   

Numerous studies have investigated the roles of that AMPK as a critical signaling 

molecule for the regulation of multiple metabolic, protein synthetic and transcriptional 

processes that are altered by contraction in skeletal muscle.  AMPK is a heterotrimer 

complex that consists of α, β and γ subunits (65).  The α-subunit of AMPK exhibits 

catalytic activity (106), where as the β-subunit acts as a scaffold for the binding of α- and 

γ-subunits (166), and the γ-subunit has been proposed to be involved in binding of AMP 

(30).  AMPK is activated by an increase in the AMP-to-ATP and creatine-to-

phosphocreatine ratios via a complex mechanism that involves allosteric modification 

and phosphorylation (65).  

Contraction results in the activation of AMPK via AMP binding and an increase 

in phosphorylation of AMPK on Thr172 by several AMPK kinases (51).  AICAR (which 

is converted into AMP analog ZMP upon cell-entry) stimulation is sufficient to increase 
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glucose transport in skeletal muscle (104).  AICAR-stimulated glucose transport in 

skeletal muscle is not inhibited by the PI3K inhibitor wortmannin.  Furthermore, the 

increase in glucose transport with the combination of maximally effective AICAR plus 

maximally effective insulin concentration is partially additive, whereas there is no 

additive effect on glucose transport with the combination of AICAR plus contraction (67).  

Transgenic mice that overexpress a dominant inhibitory mutant of AMPK had a 30-40% 

reduced contraction-stimulated glucose transport in isolated EDL muscle compared to 

wild type controls (108) supporting the idea that AMPK contributes to the contraction-

stimulated increase in glucose transport.  In contrast, both AMPK α1 and α2 knockout 

mice exhibit normal contraction-stimulated glucose transport, despite completely 

inhibited AICAR-stimulated glucose transport (86).  It is possible that the lack of 

inhibition is attributed to compensatory mechanisms in these models, perhaps related to 

the multiple AMPK isoforms, but it also raises important questions regarding the 

essential role of AMPK in regulating contraction-stimulated glucose transport.  One 

possibility is that other signaling pathways such as calcium signaling may compensate for 

the lack of AMPK function.  Alternatively, the large family of AMPK-related proteins 

could function redundantly in signaling for increased glucose transport (84).   

John Holloszy and Hiro Narahara provided the first evidence that calcium may be 

a signaling messenger that leads to the contraction-stimulated increase in glucose 

transport in frog sartorius muscle (75).  They found that an increase in cytosolic calcium 

induced by caffeine caused an increase in muscle glucose transport.  Because the 

caffeine-induced increase in cytosolic calcium occurs independently of membrane 

depolarization, this suggested that contraction-stimulated glucose transport is stimulated 
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by a membrane-depolarization independent mechanism.  Holloszy’s group subsequently 

published a series of papers that further supported the idea that intracellular calcium 

contributes to the increase in glucose transport by contraction.  In addition to caffeine, 

other agents such as W-7 that result in increased cytosolic calcium concentration also 

induce the increased glucose transport, and this stimulation can be inhibited by 

dantrolene which inhibits calcium release from sarcoplasmic reticulum (171, 172).  

Intracellular calcium interacts with the binding protein calmodulin (33), and three 

signaling pathways from this calcium-calmodulin complex have been proposed to 

regulate contraction-stimulated glucose transport.  CaMKII, the dominant CaMK isoform 

of skeletal muscle that is activated through binding of the calcium-calmodulin complex, 

has been implicated in contraction-stimulated glucose transport because  both caffeine- 

and contraction-stimulated glucose transport can be inhibited with CaMKII inhibitors 

KN62 and KN93 (167, 168).  However, the downstream target of CaMKII that is related 

to glucose transport has not been identified.  Calmodulin also interacts with nitric oxide 

synthase (NOS) that activates NOS signaling.  Some studies suggested that the inhibition 

of contraction-stimulated activation of NOS (with NOS inhibitors) may reduce 

contraction-stimulated glucose transport (122, 140), although others did not see this 

effect (47, 71, 126).  In addition to binding to CaMKII and NOS, calmodulin binding to 

AS160 has been implicated in contraction-stimulated glucose transport (92).  As 

discussed above, AS160 contains a functional calmodulin binding domain that is not 

involved in insulin-stimulated glucose transport (87).  The overexpression of the AS160 

mutant with a disrupted calmodulin-binding domain in mouse tibialis anterior muscle had 

a decreased contraction-stimulated glucose transport, indicating that calmodulin-binding 
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to AS160 may play an important role in contraction-stimulated glucose transport (92).  

The role of the TBC1D1 calmodulin-binding domain in contraction-stimulated glucose 

transport has not been investigated.   

Calcium can also directly activate conventional and novel protein kinase C (PKC) 

which has also been suggested to be involved in contraction-stimulated glucose transport.  

Downregulation of PKC by long-term phorbol ester treatment (35), inhibition of PKC 

using polymyxin B (70, 175) or calphostin C (66) has each been associated with 

decreases in contraction-stimulated glucose transport.   

Wright et al (168), showed that co-incubation of rat epitrochlearis muscle in 

AICAR and caffeine resulted in an additive increase in glucose transport, suggesting that 

AMPK and calcium increase glucose transport through independent mechanisms.  Some 

reports suggest that intracellular calcium can increase AMPK activity by CaMK kinase 

(CaMKK)-dependent phosphorylation of AMPK on Thr172, so it is also possible that a 

portion of the calcium signaling effect is mediated through AMPK signaling (81, 82, 118, 

134).  However, there is currently no evidence that suggest that CaMKII signaling or 

calmodulin binding to AS160 can converge downstream with AMPK signaling that is 

related to increasing glucose transport, so a portion of calcium signaling is apparently 

mediated in an AMPK-independent manner.   

According to some reports (17, 127, 128, 130), contraction can also result in the 

activation of Akt, an important protein involved in insulin-stimulated glucose transport 

(18, 34, 72, 91, 161).  The mechanism for the effect of contraction on Akt is uncertain.  

As mentioned above, contraction-induced Akt activation can be inhibited by wortmannin 

or LY294002, consistent with a PI3K-dependent process (130).  However, contraction 
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does not increase the activity of class IA PI3K (57, 129, 130) or class II PI3K (136).  In 

this context, Sakamoto et al. (2002) suggested that contraction instead activates Akt 

through class IB PI3K, an enzyme that is activated by G-protein coupled receptors rather 

than tyrosine kinase-coupled receptors (151, 152).   

Although multiple lines of evidence suggest that Akt plays an essential role in 

insulin-stimulated glucose transport (18, 34, 72, 91, 112, 161), Akt is not likely to be 

involved in contraction-stimulated glucose transport.  Wortmannin, a PI3K inhibitor that 

results in complete inhibition of contraction-stimulated activation of Akt, has no effect on 

contraction-stimulated glucose transport (100, 170).  Skeletal muscles from Akt2 

knockout mice, which have substantially reduced insulin-stimulated glucose transport 

(103), have a normal contraction-stimulated glucose transport (127).   

To summarize, it appears that both AMPK and calcium signaling play essential 

roles in the contraction-stimulated increase in glucose transport.  Although some 

evidence suggests that AMPK and calcium signaling may partially converge, the 

additivity of these pathways suggests that these are largely independent mechanisms by 

which each regulates glucose transport.  Downstream targets of AMPK and calcium 

signaling leading to increased glucose transport have yet to be fully elucidated. 

 

Role of AS160 in Contraction-stimulated Glucose Transport  

Bruss et al. (17) first showed that in vitro contraction of isolated rat epitrochlearis 

muscle results in an increased PAS-AS160 (measured in samples after AS160 

immunoprecipitation).  Subsequently this finding was supported in mouse extensor 

digitorum longus (EDL) that was stimulated to contract either in vitro or in situ (93), and 
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in skeletal muscle sampled immediately after in vivo endurance exercise by humans (42), 

rats (5) and mice (93).   

 

Mechanisms for Contraction-stimulated Phosphorylation of AS160 

The precise mechanism by which contractile activity results in increased PAS-

AS160 is unclear.  The contraction-stimulated increases in Akt Ser473 phosphorylation 

and PAS-AS160 were fully inhibited when isolated muscles were stimulated to contract 

in the presence of the PI3K inhibitor wortmannin (17), indicating that the contraction-

stimulated increase in PAS-AS160 was PI3K-dependent (and presumably Akt-dependent) 

in rat epitrochlearis muscle.  Importantly, because wortmannin does not affect 

contraction-stimulated glucose transport (100, 170), these results seem to strongly 

suggest that increased PAS-AS160 is not essential for contraction-stimulated glucose 

transport.   

Bruss et al. (17) also found that incubation of isolated rat epitrochlearis muscle 

with the AMPK-activator AICAR caused a small, but significant increase in PAS-AS160 

(measured in sample that had undergone AS160 immunoprecipitation).  Because AICAR 

did not affect Akt phosphorylation, this suggested that AMPK leads (directly or indirectly 

through other kinases) to an increase in PAS-AS160.  The idea that AMPK acts directly 

on AS160 is supported by the observation that recombinant AMPK can PAS-

phosphorylate AS160 in a cell-free assay (149).  As described above, contraction leads to 

the activation of AMPK (17, 51), so it seemed possible that AMPK could PAS-

phosphorylate AS160 during contraction.  However this appeared not to be the case in rat 

epitrochlearis muscle with the contraction protocol that was used for this study as 
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indicated by the complete elimination of contraction-stimulated increase in PAS-AS160 

in wortmannin treated muscles (17) even though wortmannin does not inhibit AMPK (8, 

169).   

AICAR may also lead to increased AS160 phosphorylation in mouse skeletal 

muscle (93, 149).  Goodyear’s group (93) investigated the effect of wortmannin on 

contraction-stimulated increase in AS160 phosphorylation.  Instead of 

immunoprecipitating muscle samples with AS160 (PAS-AS160), they used anti-PAS 

immunoblot and measured a band at ~160kD (PAS-160) or used anti-phospho-AS160 

Thr642 (pThrAS160) as an indication of AS160 phosphorylation.  They found that 

wortmannin appeared to only partially inhibit contraction-stimulated increase in PAS-160 

and pThrAS160.  Furthermore, tibialis anterior muscle from Akt2-null mice compared to 

wild-type controls had a roughly similar contraction-stimulated increase in PAS-160 or 

pThrAS160 despite the lack of a contraction-induced increase in Akt Thr308 

phosphorylation in the null mice.  Therefore, in mouse skeletal muscle, a substantial 

portion of the contraction-stimulated increase in PAS-160 and pThrAS160 apparently 

occurs by an Akt-independent manner.   

Studies using isolated EDL muscle from mice with genetically modified AMPK 

found that:  1) α2-inactive AMPK overexpression resulted in a reduction of contraction-

stimulated increases in PAS-160 or pThrAS160 (93);  2) kinase-dead AMPK 

overexpression resulted in a suppression of contraction-stimulated increase in PAS-160 

(149);  and 3) AMPK α2 knockout resulted in a suppression of contraction-stimulated 

increase in PAS-160 (149) .  Taken together, these observations provide evidence that 

AS160 can be a substrate of AMPK, and that AMPK can account for a portion of 
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contraction-stimulated increase in AS160 phosphorylation, at least in mouse skeletal 

muscle.  It is notable that none of these studies immunoprecipitated samples using anti-

AS160 prior to immunoblotting with anti-PAS or anti-pThrAS160.  Because AMPK is 

thought to be involved in contraction-stimulated glucose transport, and AS160 in insulin-

stimulated glucose transport, determining whether contraction-stimulated glucose 

transport occurs through AMPK-dependent phosphorylation of AS160 would be 

important.  

It is unclear what factors account for the differences in findings in contraction by 

isolated muscles from rats (in which Akt appeared to account for most phosphorylation of 

AS160) and mice (in which AMPK appeared to contribute to phosphorylation of AS160).   

The studies differed with regard to the muscles studied (rat epitrochlearis vs. mouse 

EDL), but both the rat epitrochlearis and mouse EDL are predominantly fast-twitch 

muscles.  Another difference was that rat samples were immunoprecipitated with anti-

AS160 prior to immunoblotting with anti-PAS (PAS-AS160) (17), whereas mouse 

muscles lysates were immunoblotted without prior immunoprecipitation (PAS-160, 

pThrAS160) (93, 149), although a subsequent report found that contraction-stimulated 

increase in PAS-160 (without prior AS160 immunoprecipitation) was also completely 

wortmannin inhibitable in rat epitrochlearis (25).  It is possible that the mouse muscles 

studied without prior AS160 immunoprecipitation contained signals from other proteins 

that have immunoreactivity towards anti-PAS or anti-pThrAS160.  It is possible that 

phosphorylation of TBC1D1, a paralog of AS160 that has a similar molecular weight and 

contains similar peptide sequence, might have been included in the signals from the 
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mouse muscles without prior AS160 immunoprecipitation although this possibility has 

yet to be tested. 

To summarize, the mechanism whereby AS160 becomes phosphorylated in 

response to a contractile activity remains unclear.  Evidence suggests that either Akt or 

AMPK can phosphorylate AS160, but the possible activation of compensatory 

mechanism in genetically modified mice and the possibility that signals from TBC1D1 

may have been included in measurement of PAS-160 or pThrAS160 in mouse muscle 

make the interpretation difficult.  Further studies must address this by:  1) using 

experimental methods that can acutely inhibit Akt or AMPK instead of long-term 

inhibition that occur in transgenic or knockout models; and 2) differentiating AS160 and 

TBC1D1 by prior immunoprecipitation.  

 

Role of AS160 Phosphorylation in Contraction-stimulated Glucose Transport in Skeletal 

Muscle 

Kramer et al. (94) studied the effect of overexpressing wild type or mutant AS160 

in mouse tibialis anterior muscle to assess the role of AS160 phosphorylation on 

contraction-stimulated glucose transport.  Similar to their observations on insulin-

stimulated glucose uptake, the contraction-stimulated increase in glucose uptake was:  1) 

reduced with overexpression of 4P mutant AS160; and 2) R/K mutation rescued the 

inhibitory effect of 4P mutation (4P-R/K double mutation).  These data suggest that 

AS160 phosphorylation can regulate contraction-stimulated glucose transport.  However, 

there were some observations that suggested that different mechanisms are involved in 

AS160-dependent regulations of insulin- and contraction-stimulated glucose transport.  
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While overexpression of wild-type AS160 had no effect on insulin-stimulated glucose 

uptake, it resulted in a small, but significantly reduced contraction-stimulated increase in 

glucose uptake compared to muscles transfected with empty vector.   Overexpression of 

R/K or 4P-R/K double mutant of AS160 did not alter insulin-stimulated glucose uptake, 

but contraction-stimulated glucose uptake in these muscles was slightly, but significantly 

greater than those transfected with empty vector.  It is unclear if the unexpected 

discrepancies were attributable to artifacts of genetic overexpression. Regardless, the 

interpretation of how these data relate to the role that AS160 phosphorylation plays in 

contraction-stimulated glucose transport should be made cautiously. 

In addition to these results that suggest a complex relationship between 

contraction-stimulated AS160 phosphorylation and glucose transport, there are other data 

that uncouple increased AS160 phosphorylation from contraction-stimulated glucose 

transport.  As described earlier, wortmannin, a PI3K inhibitor that has no effect on 

contraction-stimulated glucose transport (100, 170), can completely inhibit contraction-

stimulated PAS-AS160 (17).  One caveat is that there is evidence that anti-PAS does not 

interact equally to all of the Akt phosphomotifs of AS160.  Recombinant Akt1 can 

phosphorylate recombinant wild-type AS160 in vitro, as detected with anti-PAS (88).  

When the experiment was repeated using a mutant-AS160 with alanine substituting for 

Ser588, there was no diminution of the PAS-signal; however, when alanine was 

substituted for Thr642, the PAS-signal was nearly eliminated, suggesting that PAS-reacts 

strongly to the Akt phosphomotif including Thr642, but not Ser588.  Therefore, it is 

possible that AMPK-dependent phosphorylation of AS160 on sites undetectable by PAS 

may be intact in muscles incubated in wortmannin, and that phosphorylation of AS160 on 
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these wortmannin-resistant sites is sufficient for GLUT4 translocation and glucose 

transport to be elevated. 

There is additional evidence that argues against the role of AS160 

phosphorylation in contraction-induced glucose transport.  AMPKα2-null mice that have 

reduced contraction-stimulated AS160 phosphorylation (PAS-160 and pThrAS160) have 

normal contraction-stimulated increase in glucose transport (86).  However, it is possible 

important to recognize that genetic modifications in AMPK might have induced 

compensatory adaptations.  Another study in mouse soleus muscle indicated that low 

frequency twitch stimulation that results in increased glucose transport did not result in 

an increase in PAS-160, providing further evidence that increased PAS-AS160 is not 

essential for contraction-stimulated glucose transport (83).  In addition, the post-exercise 

increase in PAS-AS160 can remain elevated above resting values long after contraction-

stimulated glucose transport has reversed (5).  This indicated that not only is PAS-AS160 

unnecessary for glucose transport, but it also is not sufficient to increase glucose transport. 

To summarize, results using overexpression of mutant AS160 in mouse tibialis 

anterior muscle suggest that AS160 phosphorylation can regulate contraction-stimulated 

glucose transport.  However, 1) reduced contraction-stimulated increase in glucose 

transport in muscles with wild-type AS160 overexpression, and 2) greater contraction-

stimulated increase in glucose transport in muscles with AS160 R/K mutant or 4P-R/K 

double mutant overexpression (compared to vector overexpression in both cases), 

suggested that different mechanisms are involved in the role that AS160 plays for the 

regulation of insulin- and contraction-stimulated glucose transport.  It also seems possible 

that because of the structural similarity between AS160 and TBC1D1, overexpression of 
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AS160 may have resulted in the subcellular displacement of the endogenous TBC1D1, 

influencing GLUT4 vesicles that are associated with both AS160 and TBC1D1.  In 

addition, several studies reported that contraction-stimulated increases in PAS-AS160 

and glucose transport can be uncoupled, suggesting that PAS-AS160 may not be essential 

for the contraction-stimulated increase in glucose transport.  Further studies are necessary 

to differentiate the role that AS160 and TBC1D1 phosphorylation may play on 

contraction-stimulated glucose transport. 

 

Calmodulin Binding Domain of AS160 in Contraction-stimulated Glucose Transport 

The presence of a functional calmodulin binding domain in AS160 (87) suggests 

that AS160 may be a downstream target of calcium signaling that triggers contraction-

stimulated glucose transport.  Kramer et al. (92) studied the effect of overexpressing 

calmodulin binding domain (CBD)-mutant AS160 on contraction-stimulated glucose 

uptake in mouse tibialis anterior muscle.  Similar to the results in 3T3-L1 adipocytes (87), 

overexpression of CBD-mutant AS160 had no effect on insulin-stimulated glucose uptake.  

Consistent with their previous report (94), overexpression of wild-type AS160 resulted in 

a small but significant reduction in contraction-stimulated increase in glucose uptake.  

Overexpression of CBD-mutant AS160 further reduced the increase in contraction-

stimulated glucose uptake, providing indirect evidence that the CBD of AS160 may play 

a role in the calcium-dependent increase in contraction-stimulated glucose transport.  

However, similar to their previous observation on 4P-R/K double mutant of AS160 (94), 

overexpression of CBD-R/K double mutant of AS160 also resulted in greater contraction-

stimulated glucose uptake when compared to the muscles that were transfected with 
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empty vector, emphasizing again that these results with protein overexpression must be 

cautiously interpreted.  Importantly, the contraction-stimulated increase in glucose uptake 

was not further diminished in muscles that overexpressed CBD and 4P double mutation 

of AS160, compared to muscles that overexpressed CBD or 4P mutant alone.  These 

results suggested the increases in calmodulin binding to AS160 and phosphorylation of 

AS160 are both essential for the contraction-stimulated increase in glucose transport (92). 

 

Role of TBC1D1 in Contraction-stimulated Glucose Transport 

The possibility that TBC1D1 may play a role in the contraction-stimulated 

increase in glucose transport has not been tested.  As discussed above, skeletal muscle 

contains much greater amounts of TBC1D1 protein compared to adipose tissue (143).  In 

addition, purified AMPK is sufficient to increase 14-3-3 binding to immunoprecipitated 

TBC1D1, but not AS160, in cell-free assay (29).  TBC1D1 becomes PAS-phosphorylated 

in response to either AICAR or contraction stimulation (143).  It seems reasonable to 

suspect that contraction-stimulated PAS-TBC1D1 may play a role in contraction-

stimulated glucose transport.  TBC1D1 also contains a calmodulin binding domain (121) 

that may regulate contraction-stimulated glucose transport.  Further studies are necessary 

to understand what role, if any, that TBC1D1 plays in contraction-stimulated glucose 

transport.   As mentioned above, previous quantification of PAS-160 and/or pThrAS160 

without prior AS160 immunoprecipitation in mouse skeletal muscle (93, 149) may have 

included signals from both PAS-AS160 and PAS-TBC1D1.  Because AS160 and 

TBC1D1 are structurally similar, it is possible that the overexpression of one of the 
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paralogs results in subcellular displacement of the other, affecting GLUT4 vesicles that 

are potentially associated with both AS160 and TBC1D1.   

 

Post-exercise Increase in Insulin-stimulated Glucose Transport  

Acute exercise can markedly enhance the subsequent insulin-stimulated glucose 

transport (55, 61, 119).  This increase becomes apparent 1 to 3 hours post-exercise when 

most of the direct effect of exercise (insulin-independent glucose transport) is lost (173) 

and can last 3 to 48 hours (24, 26).  The post-exercise increase in insulin-stimulated 

glucose transport at ~3 hours after acute exercise is attributable to increased insulin-

stimulated GLUT4 cell surface localization after exercise (64) without increased total 

GLUT4 abundance (23). 

However, this increase in insulin-stimulated glucose transport after exercise 

seems to occur in the absence of enhanced upstream insulin signaling (Fig. 5) (21).  Most 

studies showed that prior exercise has no effect on insulin signaling steps such as: 1) IR 

binding (11-13, 181);  2) IR tyrosine phosphorylation (32, 64, 78, 147, 165);  3) IR 

tyrosine kinase activity (145, 147, 163, 165);  4) IRS tyrosine phosphorylation (64, 78, 

164, 165, 179);  5) IRS-PI3K association (38, 49, 145, 164, 165);  6) Akt serine 

phosphorylation (5, 32, 49, 63, 145, 163);  and 7) Akt threonine phosphorylation (63).   

In contrast to unchanged insulin signaling at proximal steps, Arias et al. (5) 

showed that PAS-AS160 is greater in insulin-stimulated muscles from exercised (4 hours 

post-exercise) rats compared with sedentary controls (Fig. 5).  However, this was not 

because AS160 phosphorylation induced by insulin-stimulation was increased, but 

because the basal PAS-AS160 in post-exercise muscles remained elevated 4 hours post-
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exercise.  In other words, prior exercise did not increase insulin-sensitivity for PAS-

AS160, rather PAS-AS160 remained above resting 4 hours post-exercise independent of 

insulin.  This observation is also supported by results in humans that showed that PAS-

160 can remain elevated for 2 to 14 hours post-exercise without elevated insulin (50, 138).  

Unphosphorylated AS160 is believed to restrain GLUT4 vesicles from moving 

toward the cell surface under basal conditions, and insulin-mediated AS160 

phosphorylation appears to relieve this restraint.  In this context, the presistent increase in 

AS160 phosphorylation after exercise might also be predicted to attenuate this restraint.  

Why, then, is the increased AS160 phosphorylation several hours after exercise not 

accompanied by a large and persistent increase in glucose transport in the absence of 

insulin?  As discussed above, increased AS160 phosphorylation appears to be necessary, 

but not sufficient for insulin-stimulated glucose transport.  Studies in both 3T3-L1 

adipocytes (7) and L6 myoblasts (117) suggest that AS160 phosphorylation is required 

for insulin-stimulated docking of GLUT4 vesicles, but that other mechanisms are 

necessary for a fusion of GLUT4 proteins to the cell surface membrane.  If additional 

insulin-stimulated processes are required for increasing GLUT4 translocation, it would 

explain why sustained increase in basal PAS-AS160 is not sufficient to cause an increase 

in basal glucose transport at ~4 hours post-exercise (5).  It seems reasonable to suspect 

that the putative additional regulatory step(s) also becomes activated upon insulin 

stimulation, and in conjunction with greater PAS-AS160 (as a result of prior exercise), a 

greater amount of GLUT4 becomes fused with cell surface membranes.  Although this 

idea has yet to be tested, it is intriguing because no other insulin signaling step has been 

shown to become amplified in insulin-stimulated muscle after exercise. 
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The post-exercise increase in insulin sensitivity can last for 3-48 hours, with the 

time course for reversal depending on post-exercise carbohydrate consumption (26, 61, 

64).  A study of rat epitrochlearis muscle indicated that the post-exercise increase in 

insulin sensitivity can be maintained for up to 48 hours if rats were not refed with 

carbohydrate (i.e., either not refed anything or fed only a high-fat, carbohydrate-free diet) 

after exercise (26).  Although low muscle glycogen has been suggested to contribute to 

increased insulin-stimulated glucose transport after exercise (182), rats that were fed a 

high-fat and carbohydrate-free diet for 48 hours post-exercise or rats that were fed high-

carbohydrate chow for 3 hours post-exercise exhibited increased insulin-stimulated 

glucose transport despite their post-exercise glycogen concentration returning to values 

similar to unexercised controls.  These results indicate that reduced muscle glycogen 

concentration is not essential at the time of the increase in post-exercise increase in 

insulin-stimulated glucose transport.  Also in support of this idea, prior incubation of rat 

epitrochlearis muscles in AICAR (which leads to AMPK activation) and serum (required 

for post-exercise increase in insulin-stimulated glucose transport as described below) 

resulted in a subsequent increase in insulin-stimulated glucose transport compared to 

muscles that were not incubated in AICAR (49).  Because AICAR and serum did not 

cause a decrease in muscle glycogen concentration, this suggests that a decrease in 

muscle glycogen concentration may also not be required for the increase in insulin-

stimulated glucose transport that is observed after exercise (which also activates AMPK). 

Although the post-exercise increase in muscle insulin sensitivity persisted even 

when glycogen concentration was restored to pre-exercise values, it was found that in 

muscles from rats fed a high carbohydrate diet for 18 hours after exercise, which resulted 
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in accumulation of glycogen to 50% greater than usual concentration (i.e., glycogen 

supercompensation), the enhanced insulin-stimulated glucose transport was completely 

reversed (26).  Thus, it is possible that glycogen supercompensation, or some related 

process, may be involved in the mechanism for reversal of the post-exercise increase in 

insulin sensitivity in muscle.   

In contrast to what happens after in vivo exercise, in vitro contractile activity by 

isolated muscle in serum-free buffer does not result in a subsequent increase in insulin-

stimulated glucose transport (24).  Gao et al. (52) demonstrated that a factor found in 

serum [protein(s) with molecular weight greater than 10kD] must be present for muscle 

contraction to induce a subsequent increase in insulin sensitivity.  In vitro contraction of 

isolated rat epitrochlearis in the presence of serum, followed by 3.5-hour incubation in 

the absence of serum, resulted in greater insulin-stimulated glucose transport compared 

with muscles treated identically except for the absence of serum during the contraction.  

The identity of the serum factor is still unknown. 

To summarize, the mechanism whereby prior exercise results in increased insulin-

stimulated glucose transport is unknown.  This increase in insulin-stimulated glucose 

transport appears to occur in the absence of enhanced upstream insulin-signaling that 

have been studied with the possible exception of AS160 phosphorylation.  Further studies 

are necessary to more thoroughly test if the sustained increase in AS160 phosphorylation 

is consistently found with the post-exercise increase in insulin-stimulated glucose 

transport. 
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Rationale for Research Models Used in This Thesis 

 Rats were used for the experiments in this thesis.  There is a large body of 

literature from the last fifty years that describes both contraction-stimulated glucose 

transport and the post-exercise increase in insulin-stimulated glucose transport in rat 

skeletal muscle.  Characterization of the contraction-stimulated glucose transport includes, 

but is not limited to:  1) insulin-independent increase in contraction-stimulated GLUT4 

translocation (43, 53); 2) time-course of glucose transport with sustained contraction 

(111); 3) reversal of increase in glucose transport after the cessation of contractile activity 

(155, 173); 4) contraction intensity dose-response of increase in glucose transport (110); 

and 5) signaling cascade thought to be involved in contraction-stimulated glucose 

transport (17, 75, 168, 171, 172).  The post-exercise increase in insulin-stimulated 

glucose transport is also well characterized in terms of, but not limited to:  1) the post-

exercise increase in insulin-stimulated GLUT4 translocation (64); 2) time-course of post-

exercise increase in insulin-stimulated glucose transport (26, 119); 3) insulin dose-

response for the post-exercise increase in insulin-stimulated glucose transport (55, 61, 80, 

119); 4) effects of post-exercise feeding on increased insulin-stimulated glucose transport 

(26, 174); 5) factors necessary for post-contraction increase in insulin-stimulated glucose 

transport in isolated skeletal muscle (24, 45, 49, 52); 6) lack of increased insulin 

signaling post-exercise (22, 49, 64, 147, 181); and 7) increased PAS-AS160 in skeletal 

muscle post-exercise (5).   

The epitrochlearis muscle were used in the research in this thesis.  The rat 

epitrochlearis muscle is a thin muscle arising from the tendon of insertion of m. 

latissimus dorsi and inserting into the medial epicondyle of the humerus.  Its function is 
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to assist extension of the antebrachium (31).  It is innervated by the ulnar nerve and is 

supplied with blood via the muscular branch of a. profunda brachii (60).  In animals 

weighing 112-132 g, the muscle is 21-24 fibers and 0.7-0.8 mm in thickness (154).  This 

diffusion distance has been estimated to be short enough to maintain adequate tissue 

oxygenation (95), making it appropriate for in vitro muscle incubation and glucose 

transport measurement.  In support of this, long-term incubation (30 hours) had no effect 

on ATP, phosphocreatine or lactate levels, demonstrating that the muscles maintained 

their energy stores and that tissue oxygenation was adequate during the incubation (154).  

The fiber type composition of epitrochlearis muscle (6-12% Type I, 10-20% Type IIa, 

70-80% Type IIb) is similar to that of total hindlimb muscle mass (5% Type I, 19% Type 

IIa, 76% Type IIb) (6, 154).  It is also highly activated during swim exercise (based on 

glycogen depletion, increased glucose transport, and activation of AMPK after exercise 

compared to sedentary control) (5, 54, 154). 

Swim exercise were used in some experiments in this thesis.  Swim exercise by 

rats is a well characterized model for studying the effect of exercise on skeletal muscle 

glucose transport.  Unlike treadmill exercise, swim exercise does not require 

familiarization that could potentially have residual effects on sedentary controls.  As 

mentioned above, rat epitrochlearis muscle is recruited during swim exercise (154).  Rat 

epitrochlearis muscle sampled immediately after swim exercise has increased AMPK 

phosphorylation and PAS-AS160, but not Akt phosphorylation (5, 144), similar to human 

skeletal muscle biopsy sampled immediately after aerobic exercise (102, 138).  Also in 

rat epitrochlearis muscle, swim exercise leads to:  1) an increase in glucose transport 

immediately post-exercise (5, 26, 74, 173); and 2) a subsequent increase in insulin-
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stimulated glucose transport several hours later (5, 23, 24, 26, 49, 61, 64, 155, 173, 174).  

Similar effects are also observed in human skeletal muscle after exercise (12, 68, 120, 

158, 163, 164).  Therefore in the context of studying skeletal muscle glucose transport, 

rat swim exercise is a useful model.  

Some experiments in this thesis used in vitro contraction by isolated skeletal 

muscle.  In vitro contraction provides valuable information for understanding 

mechanisms that are involved in skeletal muscle glucose transport during exercise.  In 

vivo exercise activates a host of hormonal, neuronal and vascular responses in addition to 

the direct effect of contractile activity.  Isolated skeletal muscle is useful for studying 

muscle contraction (17, 24, 45, 52, 89, 168) because:  1) the direct effect of skeletal 

muscle contraction alone can be studied; 2) duration or frequency of contraction can be 

precisely manipulated; 3) identical electrical stimulation is applied to muscles from 

different rats (muscle recruitment pattern may differ among rats during in vivo exercise); 

4) the incubation environment during muscle contraction can be tightly regulated (e.g., 

temperature, buffer/serum, oxygenation, pH, energy substrates); 5) various inhibitors 

(e.g., wortmannin, Compound C, etc.) can be applied at precise concentration to isolated, 

contracting muscles; 6) muscles can be frozen immediately (animals must first be 

anesthetized before muscles are dissected after in vivo exercise); and 7) force generated 

by contracting muscles can be directly measured.   

 

Gaps to be Filled by this Research 

 The regulation of glucose transport in skeletal muscle is a pivotal process because 

skeletal muscle accounts for the majority of blood glucose clearance during insulin 
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stimulation and exercise (40).  However, the molecular mechanisms by which insulin or 

exercise regulate skeletal muscle glucose transport have yet to be completely mapped out.   

The purpose of this research was to further examine the roles that AS160 and TBC1D1 

play in contraction-stimulated glucose transport.   

In Study 1, the time-courses for contraction-stimulation of glucose transport and 

phosphorylation of AMPK, Akt, CaMKII, AS160 and TBC1D1 were determined in rat 

epitrochlearis muscle.  Earlier studies provided some information on the time-courses for 

activation of each of the contraction-stimulated kinases (AMPK, Akt and CaMKII) 

separately (111, 123, 124, 130, 138, 146, 148), but this research was the first to measure 

all of these kinases in the same muscles using the same contraction protocol.  The time-

course for AS160 phosphorylation with in vivo exercise by humans has been reported, 

but they did not include assessment of all three of these kinases or glucose transport, and 

the only published study on contraction-stimulated TBC1D1 phosphorylation only 

included data at a single time-point (143).  Assessing time-courses for contraction-

stimulated kinases, their potential substrates (AS160 and TBC1D1) and the functional 

endpoint (glucose transport) provided valuable information for designing future 

experiments and useful insights into the relationships among these parameters.  

In Study 2, the influence of inhibiting contraction-stimulated activation of AMPK 

(using Compound C) or PI3K and Akt (using wortmannin) on glucose transport and 

phosphorylation of AS160 and TBC1D1 in rat epitrochlearis muscle were determined.  

Although purified AMPK was able to phosphorylate AS160 and TBC1D1 in cell-free 

assays, there was uncertainty about whether the contraction-induced activation of AMPK 

in skeletal muscle was effective for phosphorylating either protein.  Several lines of 
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evidence support the ability of contraction-induced activation of Akt for increasing 

AS160 phosphorylation in skeletal muscle, but no research addressed the role of Akt in 

contraction-stimulated phosphorylation of TBC1D1.  In addition, although AMPK was 

widely considered as a likely participant in contraction-stimulated glucose transport, the 

results with genetically modified mice were ambiguous, possibly because of redundant or 

compensatory mechanisms in these genetic models.  Therefore, it was useful to determine 

if acutely inhibiting AMPK is effective at reducing contraction-stimulated glucose 

transport.  To monitor the possibility of non-specific effects of the inhibitors, it was 

important to confirm that there are no non-specific effects of the inhibitors on tension 

development or on other key contraction-stimulated kinases that have been implicated in 

contraction effects on glucose transport or phosphorylation of AS160 or TBC1D1. 

In Study 3 and Study 4, several interventions were used to determine if the 

increased AS160 phosphorylation that has been reported in skeletal muscle after in vivo 

exercise can be uncoupled from the enhanced insulin-stimulated glucose transport after in 

vivo exercise or after in vitro contraction.  A great deal of research indicated that the 

increased insulin-stimulated glucose transport after acute exercise was not attributable to 

enhancement of proximal insulin signaling steps (e.g., insulin binding and 

phosphorylation of IR, IRS phosphorylation and PI3K association, Akt serine 

phosphorylation), but several studies recently indicated that AS160 phosphorylation was 

increased several hours after exercise in rats (5) and humans (138, 148).  To probe the 

possible functional importance of the increase in AS160 phosphorylation, this study 

determined if:  1) the persistent increase in AS160 phosphorylation was consistently 

found after exercise or contraction under conditions that have been shown to lead to 
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increased insulin-stimulated glucose transport (the day after exercise in rats that have not 

been refed; 3 hours after contraction of isolated muscles in serum), and 2) if elevated 

AS160 phosphorylation was not found after exercise or contraction conditions that are 

not characterized by increased insulin-stimulated glucose transport (after exercise when 

rats are refed a high carbohydrate diet; after contraction of isolated muscles in serum-free 

buffer).  Furthermore, the effect of in vivo exercise, with and without subsequent 

electrically stimulated contraction, on insulin-stimulated glucose transport was 

determined to see if these two stimuli (in vivo exercise and in vitro contraction) would 

have additive effects on insulin sensitivity. 
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Figure 2.1  
Putative Roles for AS160 and TBC1D1 for Insulin-stimulated Glucose Transport. 
Insulin binding to its receptor triggers a downstream signaling cascade through insulin 
receptor substrate (IRS), phosphatidylinsolitol 3-kinase (PI3K), phosphatidylinsolitol-
(3,4,5)- trisphosphate (PIP3), phosphoinositide-dependent kinase-1 (PDK1), mammalian 
target of rapamycin complex-2 (mTORC2) and Akt.  Akt phosphorylates AS160 and 
TBC1D1 on phospho-Akt substrate (PAS) motif.  PAS-phosphorylation of AS160 
inhibits its RabGAP activity that allows subsequent Rab-dependent GLUT4 translocation 
to the cell-surface membrane.  The effect of insulin-stimulated PAS-phosphorylation of 
TBC1D1 on GLUT4 translocation is uncertain. 
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Figure 2.2  
Schematic Representations of Rat AS160 and TBC1D1.  AS160 or TBC1D1 each 
contains a Rab GTPase-activating protein (GAP) domain that can inhibit activity of Rab-
dependent vesicle trafficking.  Phosphorylation of AS160 or TBC1D1 on some sites 
appears to result in the inactivation of RabGAP activity.  There are six Akt 
phosphorylation sites on AS160, whereas two Akt and one AMPK phosphorylation sites 
exist on TBC1D1.  The calmodulin binding domain (CBD) on AS160 appears to regulate 
contraction-stimulated, but not insulin-stimulated glucose transport.  A CBD is also 
found in TBC1D1 but, its function has not been evaluated.  AS160 or TBC1D1 also each 
contains two phospho-tyrosine binding domains (PTB) whose functional importance has 
yet to be tested.  Corresponding phosphorylation sites in humans are S318, S341, S570, 
S588, T642, S666, S751 for AS160 and S237, S507, T596 for TBC1D1.  
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Figure 2.3  
Putative Regulation of Rab proteins and GLUT4 Translocation by Phosphorylation 
of AS160 or TBC1D1.  In the unstimulated state, unphosphorylated AS160 and/or 
TBC1D1 (RabGAP) are believed to be associated with GLUT4 vesicles and to inhibit 
Rab-dependent GLUT4 translocation through Rab-GDP formation.  Upon 
phosphorylation by Akt and/or AMPK, RabGAP activity becomes inhibited and 
consequently a greater amount of Rab-GTP is present.  Subsequently AS160 and/or 
TBC1D1 are/is dissociated from GLUT4 vesicles which are translocated in a Rab-
dependent process. 
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Figure 2.4  
Putative Roles of AS160 and TBC1D1 for Contraction-stimulated Glucose 
Transport.  T-tubule depolarization results in the release of calcium ions from the 
sarcoplasmic reticulum (SR) to the cytosol.  Calcium ions bind to troponin allowing 
actinomyosin interaction and tension development.  Muscle contraction leads to the 
increase in intracellular AMP concentration (secondary to activation of myosin ATPase 
and SR Ca2+ ATPase) that leads to the activation of AMPK.  Activated AMPK 
phosphorylates TBC1D1 that results in the inactivation of RabGAP activity, promoting 
Rab-dependent GLUT4 translocation.  Calcium ions released from the SR also bind to 
calmodulin (CaM).  CaM can bind to AS160 during contraction and potentially regulate 
GLUT4 translocation through a Rab-dependent process. The function of TBC1D1’s CaM 
binding domain is unknown.  CaM can also bind to CaMKII causing autophosphorylation. 
Inhibitors of CaMKII have been shown to reduce contraction-stimulated glucose 
transport. 
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Figure 2.5  
Proposed Role of PAS-AS160 in the Post-Exercise Increase in Insulin-stimulated 
Glucose Transport.  The post-exercise increase in insulin-stimulated glucose transport 
occurs as a result of a post-exercise increase in insulin-stimulated GLUT4 translocation.  
However, proximal insulin signaling steps (IR binding, pIR, IRTK, pIRS, IRS-PI3K, 
pAkt) that lead to insulin-stimulated GLUT4 translocation are not enhanced by prior 
exercise.  In contrast, PAS phosphorylation of AS160 (PAS-AS160) in exercised rats 
remains elevated above sedentary controls 4 hours post-exercise.  It seems conceivable 
that the sustained increase in PAS-AS160 post-exercise plays a role in post-exercise 
increase in insulin-stimulated glucose transport.   
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CHAPTER III 

 

STUDY 1 

 

Contraction-stimulated Glucose Transport in Rat Skeletal Muscle is Sustained 
despite Reversal of Increased PAS-phosphorylation of AS160 and TBC1D1 

 

ABSTRACT 

 Akt substrate of 160kD (AS160), the most distal insulin signaling protein known 

to be important for insulin-stimulated glucose transport, becomes phosphorylated with 

skeletal muscle contraction.  Akt, AMP-activated protein kinase (AMPK) and 

Ca2+/calmodulin-dependent kinase (CaMK)-II have been implicated in regulating AS160 

and/or glucose transport.  Our primary aim was to assess time-courses for contraction’s 

effects on glucose transport and phosphorylation of Akt, AMPK, CaMKII, and AS160.  

Isolated rat epitrochlearis muscles were studied without or with contraction (5, 10, 20, 40, 

60min).  Phospho-Akt substrate (PAS) antibody was used to measure AS160 PAS-

phosphorylation by quantifying the ~160kD band on PAS immunoblots (PAS-160); a 

separate band at 150kD (PAS-150) that responded similarly to contraction was also 

identified.  Using specific antibodies for AS160 or TBC1D1 on immunoblots, the 

molecular weight of PAS-160 was found to correspond with AS160 and not TBC1D1, 

whereas PAS-150 corresponded with TBC1D1 and not AS160.  Furthermore, supernatant 

of sample immunodepleted with anti-AS160 had greatly reduced PAS-160, whereas 
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supernatant of sample immunodepleted with anti-TBC1D1 had greatly reduced PAS-150, 

providing further evidence that PAS-160 and PAS-150 correspond with PAS-AS160 and 

PAS-TBC1D1, respectively.  Contraction induced transient increases in PAS-160, PAS-

150, pGSK3 (an Akt substrate) and pCaMKII;  glucose transport and pAMPK increases 

were maintained for 60min of contraction. These data suggest: 1) PAS-160 (AS160) and 

PAS-150 (TBC1D1) respond to contraction transiently despite sustained stimulation; 2) 

continual AMPK activation was insufficient for sustained increase in PAS-160 or PAS-

150; and 3) sustained elevation of PAS-160 or PAS-150 was unnecessary to maintain 

contraction-stimulated glucose transport for up to 60min.   

 

INTRODUCTION 

  Insulin or contractile activity each result in a rapid increase in glucose transport 

by isolated rat skeletal muscle that can be sustained for at least 60 min with continuous 

stimulation (11, 20).  Although each stimulus induces the redistribution of GLUT4 

glucose transporters from the cell's interior to its surface, multiple lines of evidence 

indicate that they trigger translocation by distinct mechanisms (5, 8).  For example, 

combining maximally effective insulin and contractile activity results in an essentially 

additive increase in glucose transport (7, 19), and concentrations of the 

phosphatidylinositol 3-kinase inhibitor wortmannin that completely inhibit insulin-

stimulated glucose transport do not alter contraction-stimulated glucose transport (16, 36). 

 Sano et al. (26) demonstrated that Akt Substrate of 160 kDa (AS160) 

phosphorylation is a key step linking the insulin signaling pathway with GLUT4 

translocation in 3T3L1 adipocytes.  Subsequently, Bruss et al. (3), using isolated rat 
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skeletal muscle, found rapid (half-time of ~2.5 min) and sustained increases in the 

phosphorylation of Akt (pAkt) and AS160 (measured using the Phospho Akt Substrate, 

PAS antibody, half-time ~7min), consistent with the time-course for insulin’s effect on 

glucose transport in isolated skeletal muscle (11).  Experiments using wortmannin (3), an 

Akt inhibitor (10), Akt knockdown by short hairpin RNA (10), or Akt2 null mice (24) 

provide substantial evidence for Akt being the major insulin-stimulated kinase that 

phosphorylates AS160. 

Insulin and contractile activity appear to regulate glucose transport by distinct 

mechanisms, but because muscle contraction can activate Akt (25), it was not completely 

unexpected that contraction by isolated muscle in the absence of insulin also increased 

AS160 PAS phosphorylation (3).  Incubation of isolated skeletal muscle with AICAR 

resulted in increased PAS-AS160 (3) suggesting that AMP-activated protein kinase 

(AMPK) might also be capable of phosphorylating AS160, which was confirmed by 

Treebak et al. (32) who reported that incubation of recombinant AMPK with AS160 

caused an increase in PAS-AS160.  

Activation of Akt is not essential for contraction-stimulated glucose transport (24, 

36), whereas AMPK and Ca2+/calmodulin-dependent kinase II (CaMKII) have each been 

implicated to be involved in contraction-stimulated glucose transport (34).  Previous 

research has demonstrated transient, contraction-mediated activation of Akt (17, 25) and 

CaMKII (22, 23), but sustained AMPK activation during contraction (28, 30).  However, 

because the time-courses for activation of these kinases were determined in separate 

studies using different contraction protocols, it would be valuable to assess the activation 

of each kinase, together with PAS-AS160, in the same muscles stimulated by the same 
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contraction protocol.  Accordingly, the primary aim of this study was to evaluate the 

time-courses for contraction-stimulated effects on phosphorylation of Akt, AMPK, 

CaMKII and AS160 in isolated rat skeletal muscle.  To better understand contraction-

induced modulation of the three contraction-stimulated kinases, we also evaluated the 

phosphorylation of glycogen synthase kinase 3 (GSK3), acetyl CoA carboxylase (ACC) 

and serum response factor (SRF), substrates for Akt, AMPK and CaMKII, respectively. 

 We previously found that wortmannin could completely eliminate the contraction-

induced increase in PAS-AS160 of isolated rat epitrochlearis muscles, suggesting that 

Akt may be the dominant kinase for increasing PAS-AS160 under these conditions (3).  

Therefore, we hypothesized that contractile activity would result in a transient increase in 

pAkt and PAS-AS160.  We further hypothesized that the same contraction protocol 

would transiently activate CaMKII, but induce a sustained activation of AMPK and 

glucose transport.  

 

METHODS 

Materials.  Reagents and apparatus for SDS-PAGE and immunoblotting including 

Precision Plus Protein Dual Color Standards (no. 161-0734) were from Bio-Rad 

(Hercules, CA). Bicinchoninic acid protein assay reagent (no. 23227) and T-PER® tissue 

protein extraction reagent (no. 78510) were from Pierce Biotechnology (Rockford, IL). 

Anti-phospho-Thr308Akt (pThrAkt, no. 9275), anti-phospho-Ser473Akt (pSerAkt, no. 

9271), anti-phospho-Ser21/9GSK3α/β (pGSK3, no 9331), anti-phospho-Thr172AMPK 

(pAMPK, no. 2531), anti-phospho-Ser79ACC (pACC, no. 3661), anti-phospho-

Thr286CaMKII (pCaMKII, no. 3361), anti-phospho-Ser103SRF (pSRF, no. 4261), anti-
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phospho-(Ser/Thr) Akt substrate (PAS, no. 9611), and goat anti-rabbit IgG HRP 

conjugate (no. 7074) were purchased from Cell Signaling Technology (Danvers, MA). 

PAS recognizes Akt phosphorylation motif peptide sequences (RXRXXpT/S). TBC1D1 

polyclonal antibody was provided by Dr. Jianxin Xie (Cell Signaling Technology).  

AS160 antibody (no. 07-741) was purchased from Upstate USA (Charlottesville, 

VA).   Preclearing Matrix F (no. 45057) and ExactaCruz™ F-HRP (no. 45043) were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA).  SuperSignal (West Dura 

Extended Duration Substrate; Pierce, no. 34075) was used to visualize immunoblots. 3-O-

methyl-[3H]glucose ([3H]3-MG) was from Sigma-Aldrich (St. Louis, MO), and 

[14C]mannitol was from Perkin Elmer (Waltham, MA). Other reagents were from Sigma-

Aldrich and Fisher Scientific (Pittsburgh, PA). 

Animal treatment.  Procedures for animal care were approved by the University of 

Michigan Committee on Use and Care of Animals. Male Wistar rats ( 150–200 g; Harlan, 

Indianapolis, IN) were provided with rodent chow (Lab Diet; PMI Nutritional 

International, Brentwood, MO), and water ad libitum until 1700 the night before 

experiment and did not have access to food thereafter. On the next day, between 1000 and 

1300, rats were anesthetized with an intraperitoneal injection of sodium pentobarbital 

(~60 mg/kg wt). While rats were under deep anesthesia, both epitrochlearis muscles were 

rapidly dissected out. 

Muscle treatment.  Epitrochlearis muscles were incubated in glass vials 

containing Krebs-Henseleit buffer (KHB) + 0.1 % bovine serum albumin (BSA) + 8 mM 

glucose (Solution 1) and were shaken for 30 min in a water bath at 35°C with continuous 

gassing (95 % O2/5 % CO2).  Muscles were then mounted in a water-jacketed glass vessel 
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that was warmed using a temperature-controlled bath (35°C). The distal end of the muscle 

was attached to a glass rod, and the proximal end was attached to a force transducer 

(Radnoti, Litchfield, CT) as previously described (9). The mounted muscles were 

incubated in KHB + BSA + glucose with continuous gassing (95% O2/5% CO2) and were 

stimulated to contract (Grass S48 Stimulator; Grass Instruments, Quincy, MA) for 5, 10, 

20, 40 or 60 min (2 ms twitch, 120 twitch/min) or rested (0, 5 or 60 min).  Subsequently, 

some muscles were rapidly blotted, trimmed of connective tissue, and freeze-clamped 

with aluminum tongs cooled to the temperature of liquid N2 and then stored at –80°C 

until homogenization and analysis. Other muscles were transferred to vials containing 

KHB + 2 mM pyruvate + 36 mM mannitol (Solution 2) at 30°C for 10 min prior to being 

used for determination of glucose transport rate. 

Measurement of glucose transport.  After the 10 min incubation in Solution 2, 

muscles were transferred to flasks containing KHB, 0.1 % BSA with 8 mM 3-MG 

(including [3H]3-MG 0.25 mCi/mmol), and 2 mM mannitol (including [14C]mannitol 0.1 

mCi/mmol). After incubation with 3-MG for 10 min, the muscles were rapidly blotted on 

filter paper dampened with incubation media, trimmed, freeze-clamped, and stored at –

80°C until processed as described below.  

Homogenization.  Frozen muscles used for glucose transport and immunoblotting 

(PAS, pSerAkt, pThrAkt, pGSK3, pAMPK, pACC, pCaMKII, and pSRF) were 

homogenized in 1 ml ice-cold homogenization buffer (20 mM Tris-HCl, pH 7.4, 150 mM 

NaCl, 1 % IGEPAL, 2 mM Na3VO4, 2 mM EDTA, 2 mM EGTA, 2.5 mM sodium 

pyrophosphate, 1 mM ß-glycerophosphate, 1 mM phenylmethanesulphonylfluoride, and 1 

µg/ml leupeptin) using glass-on-glass tubes (Kontes, Vineland, NJ). Homogenates were 
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subsequently rotated at 4°C for 1 h before being centrifuged (12,000 g for 10 min at 4°C). 

Aliquots of the supernatant from muscles used for the 3-MG analysis were pipetted into 

vials for scintillation counting, and 3-MG accumulation was determined as previously 

described (4). A portion of the supernatant was used to determine protein concentration 

by the bicinchoninic acid assay (27), and the remainder was stored at –80°C until it was 

further analyzed. 

  Immunoprecipitation.  Frozen muscles to be immunoprecipitated with anti-AS160 

or anti-TBC1D1 were homogenized in T-PER supplemented homogenization buffer (2 

mM Na3VO4, 2 mM EDTA, 2 mM EGTA, 2.5 mM sodium pyrophosphate, 1 mM ß-

glycerophosphate, 1 mM phenylmethanesulphonylfluoride, and 1 µg/ml leupeptin in T-

PER®).  Homogenized muscle (300-500 µg protein) was precleared in preclearing matrix 

F for 30 min and the resulting supernatant was immunoprecipitated with 1.5–2 µg of anti-

AS160 or anti-TBC1D1 at 4°C using ExactaCruz™ F-HRP. After gentle rotation 

overnight, the immunoprecipitation mix was centrifuged at 4,000g, and the 

immunodepleted supernatant was aspirated and subsequently used for immunoblotting.  

After washing (four times with 500 µl phosphate-buffered saline), the protein bound to 

the beads was eluted with 2x SDS loading buffer and boiled before loading on a 

polyacrylamide gel. 

Immunoblotting.  Immunoprecipitates, immunodepleted supernatants or 

homogenized muscle lysates in the SDS loading buffer were separated and 

electrophoretically transferred to nitrocellulose. Samples were then rinsed with Tris-

buffered saline plus Tween (TBST) (0.14 mol/l NaCl, 0.02 mol/l Tris base, pH 7.6, and 

0.1 % Tween), blocked with 5 % nonfat dry milk in TBST for 1 h at room temperature, 
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washed 3 x 5 min at room temperature, and treated with the relevant primary antibody 

(1:1,000 in TBST + 5 % BSA) overnight at 4°C. Blots were then washed 3 x 5 min with 

TBST, incubated with the secondary antibody, goat anti-rabbit IgG HRP conjugate 

(1:20,000 in TBST + 5 % milk), for 1 h at room temperature, washed again 3 x 5 min 

with TBST, and developed with SuperSignal reagent. Protein bands were quantitated by 

densitometry (Alpha Innotech, San Leandro, CA). The mean values for resting samples 

on each blot were normalized to equal 1.0, and then all samples on the blot were 

expressed relative to the normalized resting value.  

Statistical analysis.  Statistical analyses were done using Sigma Stat version 2.0 

(San Rafael, CA). Data are expressed as means ± SE. P 0.05 was considered statistically 

significant. One-way ANOVA was used to determine significant differences with 

contraction, and the source of significant variance was detected using the Dunnett post 

hoc test (versus resting control).  When data failed the Levene Median test for equal 

variance, the data were transformed (base 10 logarithm) prior to performing ANOVA.  A 

Pearson product moment correlation was used to assess the relationship between variables.  

For correlations determined between two signaling proteins, each correlated pair of 

signaling measurements was from the same muscle.  Correlations determined with 

tension measurements also used signaling or glucose transport values from the same 

muscle.  For correlations determined between glucose transport and a signaling value, the 

data were from the contralateral muscles from the same rat. 

 

RESULTS 
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Rested Muscles. There were no significant effects of incubation time (0, 5 or 60 

min) for protein phosphorylation or glucose transport in the rested muscles.  Therefore, 

values for resting muscles were pooled for statistical analyses and are represented as 0 

min time point in the figures (Fig. 3.2, 3.4 and 3.5).   

Tension Development.   Peak tension was 117.2 ± 8.7 g·g wt muscle-1.  There was 

a progressive decline in tension development reaching ~50% of the peak value at ~15 

min and 19.1 ± 4.0 % of peak tension at 60 min of contraction (Fig. 3.1).  The peak 

tension (represented at 0 min) was significantly greater than tension development at 5, 10, 

20, 40 and 60 min (P<0.05). 

Contraction-activated kinases and phosphorylated substrates.  There was a 

transient trend for level of pSerAkt and pThrAkt to increase above resting at 5 min of 

contraction (Fig. 3.2A).  The level of pGSK3, an Akt substrate, was significantly 

increased above resting at 10 min (half-time of ~5 min) and returned to baseline by 60 

min (Fig. 3.2B). There was a significant contraction-induced increase in both pAMPK 

(10, 20, 40 and 60 min, half-time of ~7.5 min, Fig. 3.2C) and its substrate pACC (10, 20, 

40 and 60 min, half-time of ~4 min, Fig. 3.2D).  Contraction caused a transient increase 

in pCaMKII (20 min, half-time of ~4 min, Fig. 3.2E) and its substrate pSRF (20 min, 

half-time of ~7 min, Fig. 3.2F), and each returned to baseline by 60 min.   

PAS-160 and PAS-150.  When lysates prepared from rat epitrochlearis muscles 

were immunoblotted using anti-AS160, the AS160 band migrated above the 150 kD 

molecular weight marker (Fig 3.3A, lane 1).  In samples that were immunoprecipitated 

using anti-AS160 before immunoblotting with anti-PAS, the contraction-responsive PAS-

band was also visualized above the 150 kD molecular weight marker (PAS-AS160, Fig. 
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3.3A, lane 2).  For samples that were immunoblotted using anti-PAS without prior 

immunoprecipitation, a contraction-responsive PAS band was visible at a site 

corresponding to the location of the AS160 (Fig. 3.3A lane 1) and PAS-AS160 (Fig 3.3A, 

lane 2) bands, and it was designated as PAS-160 (Fig 3.3A, lane 3).  There was strong 

PAS-immunoreactivity above the 150 kD marker in the anti-AS160 immunoprecipitate of 

contraction-stimulated muscle (PAS-AS160; Fig. 3.3B, lane 2), but the PAS-160 signal 

was barely detectable in the adjacent lane which had been loaded with supernatant of the 

anti-AS160 immunodepleted sample (Fig. 3.3B lane 1).  These results suggest that PAS-

AS160 accounts for the PAS-160 band of samples that had not been immunoprecipitated.  

PAS-160 was significantly greater than the resting value at 10 min of contraction (half-

time of ~7 min), reached its peak value at 20 min and returned to baseline by 60 min of 

contraction (Fig. 3.4A).  

On the same immunoblots, we also observed a contraction-responsive PAS band 

at ~150 kD (Fig 3.3A, lane 3 and 3.3C lane 3, designated PAS-150).  Recently, a paralog 

protein of AS160 called TBC1D1 has been identified as a novel substrate of Akt that may 

also be involved in insulin-stimulated GLUT4 translocation in adipocytes (21).  TBC1D1 

has been reported to have a slightly lower apparent molecular weight compared to AS160 

and therefore it seemed possible that PAS-150 was TBC1D1 (29).  Supporting this idea, 

when lysates were immunoblotted using anti-TBC1D1, the TBC1D1 band migrated at 

~150 kD (Fig. 3.3C, lane 1).  In samples that were immunoprecipitated using anti-

TBC1D1 before immunoblotting with anti-PAS, the contraction-responsive PAS band 

corresponded to PAS-150 (PAS-TBC1D1, Fig. 3.3C, lane 2), providing supporting 

evidence that PAS-150 may include PAS-TBC1D1.  Furthermore, the supernatant of anti-
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TBC1D1 immunoprecipitated sample had only a barely detectable PAS-150 signal (Fig. 

3.3D lane 1) compared to the strong PAS-signal in the anti-TBC1D1 immunoprecipitate 

(PAS-TBC1D1; Fig 3.3D lane 2).  These findings provide additional evidence that PAS-

TBC1D1 accounts for the PAS-150 band of samples that had not been 

immunoprecipitated.  PAS-150 peaked at 20 min of contraction (half-time of ~10 min), at 

which time it was significantly greater than resting values.  PAS-150 returned to baseline 

at 60 min (Fig. 3.4B). 

Glucose Transport.  Contraction resulted in a rapid (half-time of ~8 min) and 

significant increase in glucose transport (10, 20, 40 and 60 min). The peak value occurred 

at 20 min and plateaued thereafter (Fig. 3.5). 

Correlations.  Pearson correlation analyses revealed that (Table 3.1), PAS-160 

was significantly (P<0.01) correlated only with pGSK3 (R=0.629), pCaMKII (R=0.724) 

and PAS-150 (R=0.776). 3-MG transport was significantly (P<0.01) correlated only with 

pAMPK (R=0.350).  Tension was not significantly correlated with 3MG transport or any 

of the signaling proteins studied. 

 

DISCUSSION 

The primary aim of this study was to assess the time-courses for contractile 

activity on tension development, phosphorylation of three contraction-stimulated kinases 

(Akt, AMPK, CaMKII), PAS-160 and glucose transport.  In an earlier study, we found 

that a brief and discontinuous tetanic stimulation protocol (10 sec tetanus duration, 2 

tetani/min for 5 min) which induced a large activation of Akt can also increase AS160 

phosphorylation (3).  For the current study, we instead used a twitch contraction protocol 
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(2 ms twitch, 120 twitch/min) because:  1) discontinuous stimulation with 20 sec 

recovery periods between tetani would complicate the interpretation of a time-course 

analysis; 2) the time-course for glucose transport by rat epitrochlearis had previously 

been characterized using a similar twitch contraction protocol (20);  and 3) the twitch vs. 

tetanic protocol resulted in a slower fatigue rate.  This approach revealed some useful 

new insights regarding contraction effects on skeletal muscle glucose transport, 

including:  1) identification of a contraction-responsive phosphorylated protein band 

(PAS-150) that appears to correspond with PAS-TBC1D1 and which migrated at a 

slightly lower apparent molecular weight (MW) than AS160; 2) demonstration that a 

sustained increase in neither PAS-150 nor PAS-160 (which appears to correspond with 

PAS-AS160) was essential for maintenance of elevated glucose transport with 40 or 60 

min of stimulation; and 3) recognition that the values for PAS-150 and PAS-160 from 

muscles after contraction correlated with each other and with pGSK3 (an Akt substrate) 

or pCaMKII, but not with pAMPK or glucose transport. 

The commercially available PAS antibody was designed to identify unknown Akt 

substrates by reacting with proteins that are phosphorylated on Akt consensus motifs 

(RXRXXpS/T).  PAS immunoblots prepared using homogenates of rat epitrochlearis 

muscles had multiple PAS-reactive bands at various MW including two that were 

consistently increased for contraction vs. resting samples at an apparent MW of ~150 kD 

and above 150 kD.  The band visible above the 150 kD marker presumably includes 

AS160 because immunoreactivity against the AS160 antibody corresponds to the same 

location on immunoblots.  Immunoprecipitation using anti-AS160 followed by 

immunoblotting with PAS also identified an AS160-associated PAS band at the same 
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location (Fig. 3.3A).  Furthermore, the supernatant of sample immunodepleted with the 

AS160 antibody had a greatly reduced PAS-160 signal (Fig. 3.3B). The PAS-150 band 

responded similarly to PAS-160 in response to the contraction protocol, peaking at 20 

min and reversing to resting values by 60 min of contraction.  During the preparation of 

this manuscript, Chavez et al. (6) and Taylor et al. (29) reported that TBC1D1 protein is 

much more abundant in skeletal muscle than in adipose tissue and that TBC1D1 becomes 

phosphorylated in response to AICAR (an AMPK activator) or contractile activity.  The 

location on immunoblots for reactivity against the TBC1D1 antibody corresponded to the 

location of PAS-150 band suggesting that it includes TBC1D1 (Fig, 3.3C).  Supporting 

this idea, the supernatant of sample immunodepleted using TBC1D1 antibody had a 

greatly reduced PAS-150 signal (Fig. 3.3D).  AS160 was apparently not part of the PAS-

150 band based on the slower migration of the band visualized using the AS160 antibody 

and the apparent lack of reduced PAS-150 signal in the AS160 immunodepleted 

supernatant.  Furthermore, the lack of immunoreactivity against the TBC1D1 antibody on 

immunoblots at the location of PAS-160 and the apparent lack of reduced PAS-160 

signal in the TBC1D1 immunodepleted supernatant suggests that TBC1D1 was not part 

of that protein band. 

The reversal of the contraction-stimulated increase in PAS-160 at 40 and 60 min 

despite continued electrical stimulation is in contrast to the sustained increase in PAS-160 

that was previously found with 60 min of in vitro insulin-stimulation of rat epitrochlearis 

muscle (3).  It is conceivable that the reversal of the increase in PAS-160 was related, at 

least in part, to muscle fatigue, although the time-courses were different for the 

decrements in contraction-stimulation of PAS-160 and tension development.  These 
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results with in vitro contraction were also in contrast to the published results for skeletal 

muscle which have indicated that:  1) in muscle biopsies taken during in vivo exercise by 

humans, PAS-160 is increased at 60 and 90 min, but not at 1, 10 or 30 min (31); and 2) 

after in vivo exercise, increase in PAS-160 is maintained for at least 2.5 to 4 hr after 

cessation of exercise in rats (1) or humans (13, 28).  Even if reversal of PAS-160 is not 

typical during in vivo exercise, in vitro contraction data may reveal useful clues regarding 

the regulatory processes which modulate phosphorylation of AS160 and/or TBC1D1. 

To begin evaluating the mechanisms that regulate AS160 phosphorylation during 

contraction, we compared the timecourses for contraction effects on several key kinases 

concomitant with PAS-160 in the same muscles.  As hypothesized, contraction resulted in 

transient enhancement of pGSK3 and pCaMKII together with a sustained increase in 

pAMPK.  The patterns of contraction effects on pGSK3, pCaMKII and pAMPK were 

consistent with previous reports (17, 22, 23, 25, 28, 30).  Although it is possible that 

pAMPK was involved in the initial increase in PAS-160, the reversal of the increase in 

PAS-160 at 40 and 60 min of stimulation indicates that increased pAMPK was not 

sufficient for a sustained increase in PAS-160.  The significant correlation between 

pGSK3 (an Akt substrate) and PAS-160 is consistent with the idea that Akt is the primary 

in vitro contraction-stimulated AS160 kinase in rat epitrochlearis, at least as recognized 

with the PAS antibody.  This result is also in agreement with our demonstration that the 

phosphatidylinositol 3-phosphate inhibitor wortmannin causes full inhibition of 

contraction-stimulation of pAkt, PAS-AS160 (3) and PAS-160 (Arias and Cartee, 

unpublished data) in rat epitrochlearis.  Wortmannin does not inhibit the activity of 

purified AMPK (2) or AMPK phosphorylation in contraction-stimulated cardiomyocytes 
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(35).  Nonetheless, kinases other than Akt may be relevant and phosphorylation may also 

be occurring on sites not recognized by the PAS antibody.  Furthermore, protein 

phosphorylation reflects the action of both kinases and phosphatases, and currently little 

is known about the role of phosphatases in the effects of contraction on AS160 

phosphorylation.  A novel result was the significant correlation between pCaMKII and 

PAS-160 as well as PAS-150.  Both rat AS160 and rat TBC1D1 proteins contain several 

motifs that are potential sites of CaMKII phosphorylation (scansite.mit.edu).  Of these, 

AS160 Ser597 and TBC1D1 Thr590 are Akt phospho-motifs (RXRXXpS/T), and the 

remaining CaMKII phospho-sites have arginine at the -3 position (XXRXXpS/T).  

Therefore, it is conceivable that CaMKII phosphorylates AS160 and TBC1D1 on PAS 

sites.  It is also possible that CaMKII phosphorylates AS160 and/or TBC1D1 on non-

PAS sites, and thereby affects contraction-stimulated increases in PAS-AS160, PAS-

TBC1D1 and/or glucose transport.  The relatively high correlation between PAS-160 and 

PAS-150 suggests that these proteins may share mechanisms that regulate the 

phosphorylation on PAS sites (kinases and/or phosphatases).  

The only statistically significant correlation that was found between a signaling 

protein and glucose transport was the modest relationship between pAMPK and glucose 

transport.  This association supports a great deal of previous evidence that AMPK is 

involved in contraction-stimulated glucose transport (5, 12, 18).  In contrast, a persistent 

increase in pGSK3 or pCaMKII was not required for a sustained increase in glucose 

transport.  The pGSK3 data are not surprising because many studies have indicated that 

Akt is not essential for contraction-stimulated glucose transport.  However, some studies 

using inhibitors have suggested that CaMKII may play a role in a portion of contraction-
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mediated glucose transport (33, 34).  These earlier studies used relatively brief periods of 

contraction, and their findings are consistent with the current data with regard to an 

activation of pCaMKII during the initial minutes of contraction.  Different processes may 

be required for initiation compared to the maintenance of elevated glucose transport. 

Compelling evidence indicates that a contraction-induced increase in PAS-160 is 

not essential for increased muscle glucose transport, including:  1) the complete 

inhibition of contraction-stimulated PAS-AS160 in isolated rat epitrochlearis muscle (3) 

by concentrations of wortmannin which have no effect on contraction-stimulated glucose 

transport in isolated muscle (16, 36), and 2) the failure for in vitro contraction to elevate 

PAS-160 in muscles from α2 AMPK null mice (32) even though contraction-stimulated 

glucose uptake is not attenuated in the null compared to wild-type control mice (14).  

Furthermore, PAS-AS160 can remain elevated above basal levels for several hours after 

the cessation of in vivo exercise by rats (1) despite reversal of exercise-stimulated 

increase in insulin-independent glucose transport, indicating that elevated PAS-AS160 

alone is not sufficient to increase glucose transport.  A new finding that is consistent with 

these earlier studies was that sustained contraction resulted in temporal uncoupling of 

PAS-160 from contraction-stimulated glucose transport.  Importantly, the current data 

demonstrate that sustained increase in PAS-150 (apparently TBC1D1) was also not 

required for maintained increase in contraction-stimulated glucose transport at 40 or 60 

min.   

The PAS antibody appears to have differential immunoreactivity with AS160 

phosphorylated on some Akt phosphomotifs relative to others (26), and PAS 

immunoreactivity would presumably not be a sensitive indicator of increased 
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phosphorylation of AS160 or TBC1D1 on phosphomotifs for other kinases.  Furthermore, 

there is evidence that AS160 may modulate contraction-stimulated glucose transport by a 

mechanism related to its calcium-calmodulin binding domain (15), so the current findings 

do not preclude roles for AS160 in regulating contraction-stimulated glucose transport.  It 

remains to be determined if TBC1D1 plays a role in contraction-stimulated glucose 

transport. 

In conclusion, the current data using an in vitro twitch contraction protocol with 

rat epitrochlearis muscle demonstrate that:  1) PAS-160 (apparently AS160) and PAS-

150 (apparently TBC1D1) both transiently respond to a sustained stimulation protocol; 2) 

continual activation of AMPK was not sufficient for sustained increase in PAS-160 or 

PAS-150; 3) temporal relationships suggest that Akt and possibly CaMKII may be 

involved in the contraction-stimulated increase in PAS-160 and/or PAS-150; and 4) 

sustained elevation of PAS-160 or PAS-150 is not necessary for contraction-stimulated 

glucose transport.  Other approaches will be essential to clarify the mechanisms whereby 

contraction regulates AS160 and/or TBC1D1 function and to reveal the specific roles of 

these Rab GAP proteins in the initiation, maintenance and reversal of contraction-

stimulated glucose transport. 
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Figure 3.1   
Time course for tension development in isolated rat epitrochlearis muscles that were 
contracted for 60 min.  Data are means ± S.E., n = 15 per group.  Post-hoc analysis: 
*P<0.05 vs. peak tension (at 0 min). 
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Figure 3.2 
Time course for contraction-stimulated phosphorylation of AktSer473 and AktThr308, 
GSK3Ser21/9, AMPKThr172, ACCSer79, CaMKIIThr286 and SRFSer103 in isolated rat 
epitrochlearis muscles.  The values at 0 min are from rested muscles.  Representative 
blots are shown. Data are means ± S.E., n = 7-12 per group.  Post-hoc analysis: *P<0.05 
vs. basal.  
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Figure 3.3   
PAS-160 and PAS-150.  Lysates from isolated rat epitrochlearis muscle that were 
stimulated to contract for 20 min were subjected to immunoblotting (with or without 
prior immunoprecipitation). The samples in each Panel (A, B, C or D) were run on the 
same gel, transferred to the same blot and then the blots were cut into strips that were 
separately incubated in the different primary antibodies as indicated.  (A) The band in the 
anti-AS160 immunoblot migrated above 150 kD (Fig. 3.3A lane 1).  The band for the 
sample undergoing anti-AS160 immunoprecipitation prior to anti-PAS immunoblot was 
also visualized above 150 kD (PAS-AS160, Fig. 3.3A lane 2).  The anti-PAS immunoblot 
of muscle lysates without prior immunoprecipitation had a PAS band visible at a site 
corresponding to the location of the AS160 (lane 1) and PAS-AS160 (lane 2) bands and 
was designated as PAS-160 (Fig. 3.3A lane 3).  (B) AS160-immunodepleted supernatant 
had a greatly reduced PAS-160 signal (Fig. 3.3B lane 1), indicating that PAS-AS160 (Fig. 
3.3B lane 2) accounts for the PAS-160 band of samples that had not been 
immunoprecipitated.  (C) On the anti-PAS immunoblot, we also observed a PAS band at 
~150 kD (Fig. 3.3A lane 3 and 3.3C lane 3, designated PAS-150).  Anti-TBC1D1 
immunoblot (Fig. 3.3C lane 1) and anti-TBC1D1 immunoprecipitation before anti-PAS 
immunoblot (PAS-TBC1D1, Fig. 3.3C lane 2) each had a band at ~150 kD, 
corresponding to the location of PAS-150.  (D) TBC-1D1-immunodepleted supernatant 
had a greatly reduced PAS-150 signal (Fig. 3.3D lane 1), indicating that PAS-TBC1D1 
(Fig. 3.3D lane 2) accounts for the PAS-150 band of samples that had not been 
immunoprecipitated.   
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Figure 3.4  
Time course for contraction-stimulated PAS-160 and PAS-150 in isolated rat 
epitrochlearis muscles.  The values at 0 min are from rested muscles.  Representative 
blots are shown. Data are means ± S.E., n = 7-16 per group.  Post-hoc analysis: *P<0.05 
vs. basal.  
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Figure 3.5   
Time course for contraction-stimulated glucose transport in isolated rat 
epitrochlearis muscles. The values at 0 min are from rested muscles.  The rate of 
glucose transport was measured using [3H]3-O-methylglucose (3-MG).  Data are means ± 
S.E., n = 12-18 per group.  Post-hoc analysis: *P<0.05 vs. basal. 
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pGSK3 pAMPK pCaMKII PAS-160 PAS-150 

PAS-160 0.629* –0.053 0.724*  0.776* 

PAS-150 0.660* 0.044 0.666* 0.776*  

Glucose transport –0.033 0.350* 0.257 0.118 0.078 

 
 
Table 3.1  
R values for Pearson product-moment correlation analyses. The R values for Pearson 
product-moment correlations are indicated in the matrix. Each point on correlations 
between two signaling proteins is from the same muscle. Each point used for the 
correlation between a signaling protein and glucose transport is from paired muscles. n = 
41–51. pGSK3, phosphorylation of glycogen synthase kinase 3; pAMPK, 
phosphorylation of AMP-activated protein kinase; pCaMKII, phosphorylation of 
Ca2+/calmodulin-dependent kinase II; PAS, phospho-Akt substrate. * P < 0.01. 
 
 

87 
 



 
 

REFERENCES 

1. Arias EB, Kim J, Funai K, and Cartee GD. Prior exercise increases 
phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle. Am J 
Physiol Endocrinol Metab 292: E1191-1200, 2007. 
2. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, 
Arthur JS, Alessi DR, and Cohen P. The selectivity of protein kinase inhibitors: a 
further update. Biochem J 408: 297-315, 2007. 
3. Bruss MD, Arias EB, Lienhard GE, and Cartee GD. Increased 
phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response 
to insulin or contractile activity. Diabetes 54: 41-50, 2005. 
4. Cartee GD and Bohn EE. Growth hormone reduces glucose transport but not 
GLUT-1 or GLUT-4 in adult and old rats. Am J Physiol 268: E902-909, 1995. 
5. Cartee GD and Wojtaszewski JF. Role of Akt substrate of 160 kDa in insulin-
stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab 32: 
557-566, 2007. 
6. Chavez JA, Roach WG, Keller SR, Lane WS, and Lienhard GE. Inhibition of 
GLUT4 Translocation by Tbc1d1, a Rab GTPase-activating Protein Abundant in Skeletal 
Muscle, Is Partially Relieved by AMP-activated Protein Kinase Activation. J Biol Chem 
283: 9187-9195, 2008. 
7. Constable SH, Favier RJ, Cartee GD, Young DA, and Holloszy JO. Muscle 
glucose transport: interactions of in vitro contractions, insulin, and exercise. J Appl 
Physiol 64: 2329-2332, 1988. 
8. Douen AG, Ramlal T, Rastogi S, Bilan PJ, Cartee GD, Vranic M, Holloszy 
JO, and Klip A. Exercise induces recruitment of the "insulin-responsive glucose 
transporter". Evidence for distinct intracellular insulin- and exercise-recruitable 
transporter pools in skeletal muscle. J Biol Chem 265: 13427-13430, 1990. 
9. Dumke CL, Kim J, Arias EB, and Cartee GD. Role of kallikrein-kininogen 
system in insulin-stimulated glucose transport after muscle contractions. J Appl Physiol 
92: 657-664, 2002. 
10. Gonzalez E and McGraw TE. Insulin signaling diverges into Akt-dependent and 
-independent signals to regulate the recruitment/docking and the fusion of GLUT4 
vesicles to the plasma membrane. Mol Biol Cell 17: 4484-4493, 2006. 
11. Grimditch GK, Barnard RJ, Kaplan SA, and Sternlicht E. Insulin binding and 
glucose transport in rat skeletal muscle sarcolemmal vesicles. Am J Physiol Endocrinol 
Metab 249: E398-408, 1985. 
12. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, and Goodyear LJ. 
Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle 
contraction on glucose transport. Diabetes 47: 1369-1373, 1998. 
13. Howlett KF, Mathews A, Garnham A, and Sakamoto K. The effect of exercise 
and insulin on AS160 phosphorylation and 14-3-3 binding capacity in human skeletal 
muscle. Am J Physiol Endocrinol Metab 294: E401-407, 2008. 
14. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, 
Vaulont S, Richter EA, and Wojtaszewski JF. Knockout of the alpha2 but not alpha1 
5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-

88 
 



 
 

beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J 
Biol Chem 279: 1070-1079, 2004. 
15. Kramer HF, Taylor EB, Witczak CA, Fujii N, Hirshman MF, and Goodyear 
LJ. Calmodulin-binding domain of AS160 regulates contraction- but not insulin-
stimulated glucose uptake in skeletal muscle. Diabetes 56: 2854-2862, 2007. 
16. Lee AD, Hansen PA, and Holloszy JO. Wortmannin inhibits insulin-stimulated 
but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett 
361: 51-54, 1995. 
17. Markuns JF, Wojtaszewski JF, and Goodyear LJ. Insulin and exercise 
decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal 
muscle. J Biol Chem 274: 24896-24900, 1999. 
18. Mu J, Brozinick JT, Jr., Valladares O, Bucan M, and Birnbaum MJ. A role 
for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport 
in skeletal muscle. Mol Cell 7: 1085-1094, 2001. 
19. Nesher R, Karl IE, and Kipnis DM. Dissociation of effects of insulin and 
contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol 249: C226-
232, 1985. 
20. Nesher R, Karl IE, and Kipnis DM. Epitrochlearis muscle. II. Metabolic effects 
of contraction and catecholamines. Am J Physiol Endocrinol Metab 239: E461-467, 1980. 
21. Roach WG, Chavez JA, Miinea CP, and Lienhard GE. Substrate specificity 
and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. 
Biochem J 403: 353-358, 2007. 
22. Rose AJ, Alsted TJ, Kobbero JB, and Richter EA. Regulation and function of 
Ca2+-calmodulin-dependent protein kinase II of fast-twitch rat skeletal muscle. J Physiol 
580: 993-1005, 2007. 
23. Rose AJ, Kiens B, and Richter EA. Ca2+-calmodulin-dependent protein kinase 
expression and signalling in skeletal muscle during exercise. J Physiol 574: 889-903, 
2006. 
24. Sakamoto K, Arnolds DE, Fujii N, Kramer HF, Hirshman MF, and 
Goodyear LJ. Role of Akt2 in contraction-stimulated cell signaling and glucose uptake 
in skeletal muscle. Am J Physiol Endocrinol Metab 291: E1031-1037, 2006. 
25. Sakamoto K, Hirshman MF, Aschenbach WG, and Goodyear LJ. Contraction 
regulation of Akt in rat skeletal muscle. J Biol Chem 277: 11910-11917, 2002. 
26. Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, Garner CW, and 
Lienhard GE. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein 
regulates GLUT4 translocation. J Biol Chem 278: 14599-14602, 2003. 
27. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano 
MD, Fujimoto EK, Goeke NM, Olson BJ, and Klenk DC. Measurement of protein 
using bicinchoninic acid. Anal Biochem 150: 76-85, 1985. 
28. Sriwijitkamol A, Coletta DK, Wajcberg E, Balbontin GB, Reyna SM, 
Barrientes J, Eagan PA, Jenkinson CP, Cersosimo E, DeFronzo RA, Sakamoto K, 
and Musi N. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects 
with type 2 diabetes: a time-course and dose-response study. Diabetes 56: 836-848, 2007. 
29. Taylor EB, An D, Kramer HF, Yu H, Fujii NL, Roeckl KS, Bowles N, 
Hirshman MF, Xie J, Feener EP, and Goodyear LJ. Discovery of TBC1D1 as an 

89 
 



 
 

90 
 

Insulin-, AICAR-, and Contraction-stimulated Signaling Nexus in Mouse Skeletal 
Muscle. J Biol Chem 283: 9787-9796, 2008. 
30. Toyoda T, Tanaka S, Ebihara K, Masuzaki H, Hosoda K, Sato K, Fushiki T, 
Nakao K, and Hayashi T. Low-intensity contraction activates the alpha1-isoform of 5'-
AMP-activated protein kinase in rat skeletal muscle. Am J Physiol Endocrinol Metab 
290: E583-590, 2006. 
31. Treebak JT, Birk JB, Rose AJ, Kiens B, Richter EA, and Wojtaszewski JF. 
AS160 phosphorylation is associated with activation of alpha2beta2gamma1- but not 
alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise in 
humans. Am J Physiol Endocrinol Metab 292: E715-722, 2007. 
32. Treebak JT, Glund S, Deshmukh A, Klein DK, Long YC, Jensen TE, 
Jorgensen SB, Viollet B, Andersson L, Neumann D, Wallimann T, Richter EA, 
Chibalin AV, Zierath JR, and Wojtaszewski JF. AMPK-mediated AS160 
phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory 
subunits. Diabetes 55: 2051-2058, 2006. 
33. Wright DC, Geiger PC, Holloszy JO, and Han DH. Contraction- and hypoxia-
stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch 
rat soleus muscle. Am J Physiol Endocrinol Metab 288: E1062-1066, 2005. 
34. Wright DC, Hucker KA, Holloszy JO, and Han DH. Ca(2+) and AMPK Both 
Mediate Stimulation of Glucose Transport by Muscle Contractions. Diabetes 53: 330-335, 
2004. 
35. Yang J and Holman GD. Insulin and contraction stimulate exocytosis, but 
increased AMP-activated protein kinase activity resulting from oxidative metabolism 
stress slows endocytosis of GLUT4 in cardiomyocytes. J Biol Chem 280: 4070-4078, 
2005. 
36. Yeh JI, Gulve EA, Rameh L, and Birnbaum MJ. The effects of wortmannin on 
rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-
activated hexose transport. J Biol Chem 270: 2107-2111, 1995. 
 
 



CHAPTER IV 

 

STUDY 2 

 

Inhibition of Contraction-stimulated AMPK Inhibits Contraction-stimulated 
Increases in PAS-TBC1D1 and Glucose Transport without Altering PAS-AS160 in 

Rat Skeletal Muscle 
 

ABSTRACT 
 
 Phosphorylation of two members of the TBC1 domain family of proteins, Akt 

substrate of 160kD (AS160, also known as TBC1D4) and TBC1D1, has been implicated 

in the regulation of glucose transport in skeletal muscle.  Insulin-stimulated 

phosphorylation (measured using the phospho-Akt substrate, PAS, antibody) of AS160 

and TBC1D1 appears to occur in an Akt-dependent manner, but the kinases responsible 

for contraction-stimulated PAS-AS160 and PAS-TBC1D1 remain unclear.  AMP-

activated protein kinase (AMPK) and Akt, both activated by contraction, can each 

phosphorylate AS160 and TBC1D1 in cell-free assays.  To evaluate the roles of AMPK 

and Akt on insulin- or contraction-stimulated PAS-AS160, PAS-TBC1D1 and glucose 

transport, rat epitrochlearis were incubated ± Compound C (inhibitor of AMPK) or 

wortmannin (inhibitor of phosphatidylinositol 3-kinase, PI3K, which is upstream of Akt) 

prior to and during insulin-stimulation or contraction.  Insulin-stimulated glucose 

transport and phosphorylation of both AS160 and TBC1D1 were completely inhibited by 

 91



wortmannin.  Wortmannin eliminated contraction stimulation of pGSK3 (Akt substrate) 

and PAS-AS160, but did not significantly alter pAMPK, pACC (AMPK substrate), PAS-

TBC1D1 or glucose transport in contraction-stimulated muscle.  Compound C 

completely inhibited contraction-stimulated pACC and PAS-TBC1D1 and partially 

blocked glucose transport, but did not significantly alter pAkt, pGSK3 or PAS-AS160.  

These data suggest that:  1) insulin stimulates glucose transport and phosphorylation of 

AS160 and TBC1D1 in a PI3K/Akt-dependent manner; 2) contraction stimulates PAS-

AS160 (but not PAS-TBC1D1 or glucose transport) in a PI3K/Akt-dependent manner; 

and 3) contraction-stimulates PAS-TBC1D1 and glucose transport (but not PAS-AS160) 

in an AMPK-dependent manner.  

 

INTRODUCTION 

 Insulin and contractile activity, the two most important physiologic stimuli that 

increase glucose transport in skeletal muscle, can each induce the translocation of 

GLUT4 glucose transporters from the cell’s interior to its surface membranes (9, 11).  

However, they regulate glucose transport via distinct signaling pathways (5).  Insulin-

stimulated glucose transport requires phosphatidylinositol 3-kinase (PI3K) activation, 

which leads to Akt activation without stimulating AMP-activated protein kinase (AMPK) 

(5, 8, 20, 32).  A great deal of evidence suggests that contraction stimulates glucose 

transport by a mechanism independent of PI3K/Akt (19, 31, 39, 48) and attributable to 

the effects of multiple inputs, with AMPK- and calcium-mediated processes being major 

factors (35, 47).   

 92



In 3T3-L1 adipocytes, insulin stimulates phosphorylation of Akt substrate of 

160kD (AS160; also called TBC1D4) in an Akt-dependent manner on sites identifiable 

by the phospho-Akt substrate (PAS) antibody (25, 41).  AS160 includes a Rab GTPase-

activating protein domain (RabGAP) that inhibits Rab proteins which are involved in 

regulating vesicular traffic (34).  The insulin-mediated increase in PAS-phosphorylation 

of AS160 (PAS-AS160) appears to inhibit RabGAP activity, thereby allowing GLUT4 to 

be recruited to surface membranes and elevate glucose transport (13, 34, 41, 49).  In 

skeletal muscle, insulin or contraction results in elevated PAS-AS160 (3, 15), and AS160 

phosphorylation appears to regulate glucose transport (29). 

Recently, TBC1D1, a RabGAP protein paralog to AS160, was also shown to 

become PAS-phosphorylated (PAS-TBC1D1) in response to insulin in an Akt-dependent 

manner (38).  However, whereas AS160 knockdown in 3T3-L1 adipocytes resulted in 

elevated basal cell-surface GLUT4 (1, 13), TBC1D1 knockdown had no effect on basal 

cell-surface GLUT4 in 3T3-L1 cells (6).  TBC1D1 protein is only ~5% as abundant as 

AS160 protein in 3T3-L1 adipocytes, which may explain why TBC1D1 does not appear 

to play a major role in regulating glucose transport in these cells (6).  TBC1D1 protein 

abundance is much greater in skeletal muscle versus adipose tissue (43), and silencing 

TBC1D1 in L6 myotubes resulted in increased basal cell-surface GLUT4 (22), supporting 

the idea that TBC1D1 inhibits GLUT4 translocation in the basal state.  However, in 

contrast to the results for L6 cells with AS160 knockdown (which did not alter the 

insulin-stimulated net increase in cell-surface GLUT4), silencing TBC1D1 in L6 cells 

resulted in greater insulin-induced GLUT4 translocation versus control cells (22).  In 

other words, TBC1D1 knockdown allowed insulin to induce a greater amount of GLUT4 
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translocation than in cells that express TBC1D1.  These findings suggest that at least a 

portion of the inhibitory effects of TBC1D1 on GLUT4 may not be restrained by insulin.  

However, they do not eliminate the possibility that TBC1D1 can regulate an insulin-

independent increase in glucose transport (e.g., with contraction).  PAS-TBC1D1 is 

elevated in response to contraction in rodent skeletal muscle (15, 43).   Therefore, it 

seems possible that PAS-TBC1D1 may play a role in mediating contraction-stimulated 

glucose transport.   

Experiments using purified Akt or AMPK demonstrated that each kinase can 

phosphorylate both AS160 and TBC1D1 in cell-free assays (7, 17).  Considerable 

evidence indicates that the insulin-stimulated increase in PAS-AS160 is Akt-dependent in 

skeletal muscle (3, 28), and increased AS160 phosphorylation appears to be important for 

the full effect of insulin on glucose transport (29).  However, the specific kinases 

responsible for contraction-stimulated PAS-AS160 need to be clarified because: 1) 

wortmannin can completely inhibit the contraction-stimulated increase in PAS-AS160 in 

rat skeletal muscle suggesting that Akt is responsible for the increased PAS-

phosphorylation of AS160 during contraction (3); but 2) muscles from mice with 

genetically disrupted AMPK versus wild-type littermates had reduced contraction-

stimulated increase in immunoreactivity towards PAS antibody at ~160 kD (PAS-160) 

(28, 45).  

The primary aim of this study was to elucidate the contributions of Akt and 

AMPK on increases in PAS-AS160 and PAS-TBC1D1 in skeletal muscle stimulated by 

insulin or contraction.  The PI3K inhibitor wortmannin was used to prevent Akt 

activation (without altering AMPK activation), and Compound C, a potent AMPK 
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inhibitor (50), was used to prevent AMPK activation (without altering Akt activation).  A 

secondary aim was to determine if inhibition of insulin- or contraction-stimulated 

increases in PAS-AS160 or PAS-TBC1D1 was accompanied by attenuated insulin- or 

contraction-stimulated glucose transport.  We hypothesized that in isolated rat 

epitrochlearis muscle:  1) Akt-dependent mechanisms are essential for the insulin-

stimulated increases in glucose transport and phosphorylation of AS160 and TBC1D1;  2) 

Akt-dependent (but not AMPK-dependent) mechanisms are essential for contraction-

stimulated increases in PAS-AS160, but not glucose transport; and 3) AMPK-dependent 

(but not Akt-dependent) mechanisms are essential for contraction-stimulated increases in 

PAS-TBC1D1 (but not PAS-AS160) and glucose transport. 

 

METHODS 

 Materials.  Human recombinant insulin was obtained from Eli Lilly (Indianapolis, 

IN).  Wortmannin was purchased from Sigma-Aldrich (St. Louis, MO).  Compound C 

was from EMD Chemicals, Inc. (San Diego, CA).  Reagents for SDS-PAGE and 

immunoblotting including Precision Plus Protein Dual Color Standards were from Bio-

Rad (Hercules, CA).  Bicinchoninic acid protein assay reagent, T-PER tissue protein 

extraction reagent and West Dura Extended Duration Substrate were from Pierce 

Biotechnology (Rockford, IL).  Anti-phospho-Thr308Akt (pAkt), anti-phospho-

Ser21/9Glycogen Synthase Kinase 3α/β (pGSK3), anti-GSK3α, anti-phospho-

Thr172AMPK (pAMPK), anti-AMPK, anti-phospho-Ser79Acetyl CoA Carboxylase 

(pACC), anti-ACC, anti-phospho-Thr286Ca2+/calmodulin-dependent kinase II (pCaMKII), 

anti-CaMKII, anti-phospho-(Ser/Thr) Akt substrate [PAS which was designed to 
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recognize Akt phosphorylation motif peptide sequences (RXRXXpT/S)], and goat anti-

rabbit IgG HRP conjugate were from Cell Signaling Technology (Danvers, MA).  

TBC1D1 polyclonal antibody was provided by Dr. Jianxin Xie (Cell Signaling 

Technology).  AS160 antibody was from Millipore (Billerica, MA).   Anti-Akt1/2/3, 

Preclearing Matrix F and ExactaCruz F-HRP were from Santa Cruz Biotechnology 

(Santa Cruz, CA).  3-O-methyl-[3H]glucose ([3H]3-MG) was from Sigma-Aldrich, and 

[14C]mannitol was from Perkin Elmer (Waltham, MA).  Other reagents were from Sigma-

Aldrich or Fisher Scientific (Pittsburgh, PA). 

 Animal treatment.  Procedures for animal care were approved by the University of 

Michigan Committee on Use and Care of Animals.  Male Wistar rats ( 150–200 g; 

Harlan, Indianapolis, IN) were provided with rodent chow (Lab Diet; PMI Nutritional 

International, Brentwood, MO) and water ad libitum until 1700 the night before the 

experiment when their food was removed.  The next day, between 1000 and 1300, rats 

were anesthetized (intraperitoneal injection of sodium pentobarbital; 60 mg/kg wt).  

While rats were deeply anesthetized, both epitrochlearis muscles were rapidly extracted. 

 Muscle Treatment.  Isolated epitrochlearis muscles were pre-incubated in Krebs-

Henseleit buffer (KHB) + 0.1% bovine serum albumin (BSA) + 8 mM glucose (Solution 

1) in a water bath at 35°C with continuous gassing (95% O2/5% CO2).  During this step, 

one muscle per rat was incubated in Solution 1 with either 500 nM wortmannin (30 min) 

or 40 µM Compound C (60 min); stock solutions of each inhibitor were dissolved in 

vehicle, dimethyl sulfoxide (DMSO), and the contralateral muscle was incubated in 

Solution 1 containing vehicle (wortmannin, 0.05% DMSO; Compound C, 0.4% DMSO).  

Inhibitors or vehicle remained at the same concentration throughout subsequent 
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incubations.  Some muscles were transferred to vials containing identical media for 20 

min (Basal).  Other muscles were attached to a glass rod and force transducer (Radnoti, 

Litchfield, CT) as previously described (12).  Mounted muscles were incubated in 

Solution 1 with gassing (95% O2/5% CO2) and stimulated to contract as previously 

described (Grass S48 Stimulator; Grass Instruments, Quincy, MA; 20 min, 2 ms pulse, 

120 pulses/min, 25V) (15).  Immediately afterward, muscles were either freeze-clamped 

or transferred to vials containing KHB + 2 mM pyruvate + 36 mM mannitol (Solution 2; 

30°C, 10 min) prior to 3-MG transport measurement. 

 In separate experiments, muscles pre-incubated with inhibitors or vehicle were 

transferred to vials with Solution 1 supplemented with either insulin (2000 µU/mL, 20 

min) or 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, 2 mM, 40 min). 

Muscles were then either freeze-clamped or transferred to vials with Solution 2 for 10 

min prior to 3-MG transport measurement. 

 Measurement of 3-MG transport.  After 10 min incubation in Solution 2, muscles 

were transferred to flasks containing KHB, 0.1% BSA with 8 mM 3-MG (including 

[3H]3-MG at a final specific activity of 0.25 mCi/mmol), and 2 mM mannitol (including 

[14C]mannitol at a final specific activity of 6.25 μCi/mmol) (4).  After 10 min, muscles 

were rapidly blotted, trimmed, freeze-clamped, and stored (–80°C) until processed.  

 Homogenization.  Muscles used for glucose transport and immunoblotting were 

homogenized in 1 ml ice-cold homogenization buffer (20 mM Tris-HCl, pH 7.4, 150 mM 

NaCl, 1% IGEPAL CA-639, 2 mM Na3VO4, 2 mM EDTA, 2 mM EGTA, 2.5 mM 

sodium pyrophosphate, 20 mM ß-glycerophosphate, 2 mM 

phenylmethanesulphonylfluoride, and 1 µg/ml leupeptin) using glass-on-glass tubes 
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(Kontes, Vineland, NJ).  Homogenates were rotated (4°C, 1 h) before being centrifuged 

(12,000 g, 10 min, 4°C).  Aliquots of supernatant used for 3-MG transport measurement 

were pipetted into vials for scintillation counting, and 3-MG transport was determined (4).  

A portion of supernatant was used to determine protein concentration by the 

manufacturer’s instructions (Pierce Biotechnology Catalog no. 23227).  Remaining 

supernatant was stored at –80°C until further analyzed.  

 Immunoprecipitation.  Muscles to be immunoprecipitated by anti-PAS or anti-

TBC1D1 were homogenized in T-PER-supplemented homogenization buffer (2 mM 

Na3VO4, 2 mM EDTA, 2 mM EGTA, 2.5 mM sodium pyrophosphate, 1 mM ß-

glycerophosphate, 1 mM phenylmethanesulphonylfluoride, and 1 µg/ml leupeptin in T-

PER).  Homogenate (300-500 µg protein) was mixed with preclearing matrix F (30 min) 

and the supernatant was immunoprecipitated with 1.5–2 µg of anti-PAS, anti-AS160 or 

anti-TBC1D1 (4°C) using ExactaCruz F-HRP.  After gentle rotation overnight, the 

immunoprecipitation mix was centrifuged (4,000g), and supernatant was aspirated.  After 

washing (four times with 500 µl phosphate-buffered saline), protein bound to beads was 

eluted with 2x Laemmli sample buffer, boiled and loaded on a polyacrylamide gel. 

 Immunoblotting.  Immunoprecipitates or lysate, boiled with SDS loading buffer, 

were separated and electrophoretically transferred to nitrocellulose. Samples were rinsed 

with Tris-buffered saline plus Tween (TBST; 0.14 mol/l NaCl, 0.02 mol/l Tris base, pH 

7.6, and 0.1% Tween 20), blocked with 5% nonfat dry milk in TBST (1 h, room 

temperature), washed 3x5 min (room temperature), and treated with primary antibodies 

(1:1,000 in TBST + 5% BSA) overnight (4°C). Blots were washed 3x5 min with TBST, 

incubated with the secondary antibody, goat anti-rabbit IgG HRP conjugate (1:20,000 in 
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TBST + 5% milk; 1 h, room temperature), washed again 3x5 min with TBST, and 

developed with West Dura Extended Duration Substrate reagent. Protein bands were 

quantitated by densitometry (Alpha Innotech, San Leandro, CA). Mean values for basal 

muscles incubated without inhibitors on each blot were normalized to equal 1.0.  All 

values were expressed relative to the normalized basal value.  

 Statistical analysis.  Statistical analyses used Sigma Stat version 2.0 (San Rafael, 

CA). Data are expressed as mean ±SE. P 0.05 was considered statistically significant. 

One-way ANOVA and the Student-Newman-Keuls post-hoc test were used. When data 

failed the Levene Median test for equal variance, the Kruskal-Wallis nonparametric 

ANOVA on ranks was used with Dunn’s post-hoc test. 

 

RESULTS 

 Tension Development.  Neither wortmannin nor Compound C affected peak force 

or total force (data not shown). 

 Total Protein Abundance.  For all comparisons of immunoblot band intensities, 

equal amounts of total protein or of immunoprecipitate derived from equal amounts of 

total protein were loaded in each lane.  Abundance of total proteins (Akt, GSK3, AMPK, 

ACC, CaMKII, AS160 and TBC1D1) was unaltered by insulin, contraction, wortmannin 

and/or Compound C (Fig. 4.1). 

 AS160 and TBC1D1 Phosphorylation.  As previously shown (15), the anti-PAS 

immunoblot of muscle samples (basal, insulin or contraction) without prior 

immunoprecipitation contained multiple PAS bands, including;  1) an anti-PAS band 

migrating at a location above the 150 kD molecular marker (PAS-160) that corresponded 

 99



to the location of the anti-AS160 band from an AS160 immunoblot; and 2) an anti-PAS 

band migrating at a location similar to the 150 kD molecular marker (PAS-150) and 

corresponding with the location of the anti-TBC1D1 band from a TBC1D1 immunoblot 

(data not shown).  When samples were immunoprecipitated with anti-PAS and 

immunoblotted with anti-AS160, the location of the band (PAS-AS160) corresponded to 

the location of the PAS-160 band.  When samples were immunoprecipitated with anti-

TBC1D1 and immunoblotted with anti-PAS, the location of the band (PAS-TBC1D1) 

corresponded to the location of the PAS-150 band.  Throughout the manuscript, when 

samples were directly immunoblotted with anti-PAS, the bands are referred as PAS-160 

or PAS-150, whereas when samples are immunoprecipitated prior to immunoblotting, the 

respective bands are referred as PAS-AS160 or PAS-TBC1D1. 

 Wortmannin.  Incubation of skeletal muscle with wortmannin for 30 min 

completely inhibited the insulin-stimulated increases in pAkt and pGSK3 (Fig. 4.2A-B, 

P<0.001).  Insulin (with or without wortmannin) did not alter pAMPK, pACC or 

pCaMKII (data not shown).  Insulin-stimulated increases in PAS-160 (Fig. 4.2C), PAS-

150 (Fig. 4.2D) and glucose transport (Fig. 4.2E) were completely inhibited by 

wortmannin (P<0.001).   

Contraction resulted in a significant increase in glucose transport, pGSK3, 

pAMPK, pACC, pCaMKII (Fig. 4.3 and 4.4, P<0.05), PAS-160 and PAS-150 (data not 

shown).  PAS-AS160 and PAS-TBC1D1 were also significantly (P<0.05) elevated after 

contraction compared to basal muscles (Fig. 4.3F-G).  Consistent with previous results 

using this contraction protocol (15), there was a non-significant trend for a small 

contraction-stimulated increase in pAkt (Fig. 4.3A and 4.4A).  There were no contraction 
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effects on pAkt and pGSK3 in wortmannin-treated muscles (Fig. 4.3A-B, P<0.05).  

Wortmannin did not affect contraction-stimulated pAMPK, pACC or pCaMKII (Fig. 

4.3C-E).  Increases in PAS-AS160 (Fig. 4.3F, P<0.01) and PAS-160 (data not shown) in 

contraction-stimulated muscles were eliminated with wortmannin treatment.  In contrast, 

increases in PAS-TBC1D1 (Fig. 4.3G) and PAS-150 (data not shown) in contraction-

stimulated muscles were not significantly affected by wortmannin treatment.  As 

expected, glucose transport in contraction-stimulated muscles was unaltered by 

wortmannin (Fig. 4.3H).  

 Compound C.  Compound C caused complete inhibition of the contraction-

stimulated increase in pACC (Fig. 4.4D, P<0.001) without affecting pAkt, pGSK3 and 

pCaMKII (Fig. 4.4A, B, E).  Compound C did not significantly alter the increased PAS-

AS160 (Fig. 4.4F) or PAS-160 (data not shown) in contraction-stimulated muscles.  In 

contrast, Compound C significantly reduced the increases in PAS-TBC1D1 (Fig. 4.4G, 

P<0.05) and PAS-150 (data not shown) in contraction-stimulated muscles.  The increase 

in glucose transport in contraction-stimulated muscles was partially reduced by 

Compound C (Fig. 4.4H, P<0.001).  Insulin-stimulated glucose transport was unaffected 

by Compound C (Fig. 4.5A), and the increase in glucose transport in AICAR-stimulated 

muscles was completely eliminated by Compound C (Fig. 4.5B, P<0.01).  

 

DISCUSSION 
 

This study provides new information about the regulation and function of AS160 

and TBC1D1, two related RabGAP proteins expressed by skeletal muscle, each of which 

has been implicated to modulate glucose transport.  The results demonstrate that it is 
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possible to separate contraction’s ability to increase AS160 phosphorylation from 

TBC1D1 phosphorylation, as identified using the PAS-antibody, and reveal novel 

insights regarding their respective roles in the activation of glucose transport.  The data 

suggest that in isolated rat epitrochlearis muscle:  1) PI3K-dependent (and presumably 

Akt-dependent) mechanisms are essential for the insulin-stimulated increases in glucose 

transport and phosphorylation of AS160 and TBC1D1;  2) PI3K/Akt-dependent (but not 

AMPK-dependent) mechanisms are essential for the contraction-stimulated increase in 

PAS-AS160 (but not PAS-TBC1D1 or glucose transport); and 3) AMPK-dependent (but 

not PI3K/Akt-dependent) mechanisms are essential for the contraction-stimulated 

increases in PAS-TBC1D1 (but not PAS-AS160) and glucose transport.  The findings 

support the idea that elevated PAS-TBC1D1, via an AMPK-dependent mechanism, may 

participate in contraction-mediated glucose transport. 

Regarding insulin-stimulation, the data are consistent with earlier research in 3T3-

L1 adipocytes (18, 25, 49), human primary myocytes (2) and rodent skeletal muscle (3, 

28) which indicated that the insulin-stimulation of PAS-AS160 is Akt-dependent.   Our 

results confirm that insulin can induce increased PAS-TBC1D1 in skeletal muscle (43).  

Wortmannin has been shown to reduce PAS-TBC1D1 in insulin-stimulated HEK-293 

cells (38), but the current data are apparently the first demonstration in an authentic 

insulin-target tissue that wortmannin-induced inhibition of Akt eliminates the insulin-

stimulated increase in PAS-150, which corresponds to PAS-TBC1D1.  

Contraction for 20 min caused an increase in phosphorylation of GSK3, an Akt 

substrate, despite only a trend for increased Akt phosphorylation.  These results are 

consistent with previous observations indicating that contractile activity can transiently 
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activate Akt, achieving peak activity and phosphorylation at ~2 to 5 min with reversal at 

~15-20 min despite continued stimulation (15, 40). In rat epitrochlearis, contraction-

stimulated PAS-AS160 was completely wortmannin-inhibitable, suggesting that 

contraction-stimulated AS160 PAS-phosphorylation is PI3K/Akt-dependent, as 

previously reported (3).  The current results confirm recent studies that found contraction 

causes an increase in skeletal muscle PAS-TBC1D1 (15, 43).   In striking contrast to 

AS160, wortmannin did not attenuate the contraction-stimulated increase in PAS-

TBC1D1 suggesting that contraction’s effect on PAS-TBC1D1 was not PI3K/Akt-

dependent.  Furthermore, the AMPK inhibitor Compound C completely suppressed 

contraction-stimulated PAS-TBC1D1 without inhibiting contraction’s effect on PAS-

AS160.  Notably, wortmannin did not alter phosphorylation of AMPK or ACC (an 

AMPK substrate), and Compound C did not alter phosphorylation of Akt or GSK3 (an 

Akt substrate).   These experiments reveal fundamental differences in mechanisms 

whereby contraction regulates phosphorylation of two closely related RabGAP proteins. 

The data provide new evidence that increased PAS-TBC1D1 in skeletal muscle 

with contraction is AMPK-dependent.  Supporting this interpretation, incubating skeletal 

muscle with AICAR induced an increase in PAS-TBC1D1 and incubation of recombinant 

AMPK with immunoprecipitated TBC1D1 caused increased PAS-TBC1D1 (43).  Earlier 

studies which found that muscle from mice with genetically disrupted AMPK had 

reduced contraction-stimulated phosphorylation at ~160 kD did not perform 

immunoprecipitation of samples prior to immunoblotting with the PAS antibody (28, 45).  

Perhaps in these studies the PAS-immunoreactivity included both TBC1D1 and AS160, 

 103



with TBC1D1 accounting for at least a portion of the apparently AMPK-dependent 

phosphorylation. 

A secondary aim was to determine if inhibition of insulin- or contraction-

stimulated increases in PAS-AS160 or PAS-TBC1D1 were accompanied by attenuation 

of glucose transport.  A great deal of evidence supports the idea that the insulin-

stimulated increase in AS160 phosphorylation, via a PI3K/Akt-dependent mechanism, is 

important for increased GLUT4 translocation and glucose transport (3, 13, 18, 25, 34, 41, 

49).  The current data are consistent with this role of AS160.  Few studies have evaluated 

TBC1D1’s possible role in insulin-stimulated glucose transport.  In 3T3-L1 adipocytes, 

knockdown of TBC1D1 did not alter basal or insulin-stimulated GLUT4 in surface 

membranes (6).   However, these results are not necessarily predictive of skeletal muscle 

which, compared to 3T3-L1 cells, expresses TBC1D1 at much greater levels (6).  In L6 

myotubes, knockdown of TBC1D1 resulted in elevated basal surface GLUT4 and ~1.5-

fold elevation in insulin-stimulated GLUT4 translocation (22).  The authors’ 

interpretation was that TBC1D1 can modulate GLUT4 traffic, but insulin may not 

regulate TBC1D1’s RabGAP activity.  The current data demonstrate that insulin regulates 

TBC1D1 phosphorylation in skeletal muscle via a PI3K/Akt-dependent mechanism, but 

the functional consequences of TBC1D1 phosphorylation on glucose transport remain 

uncertain. 

Because contraction-stimulated glucose transport was unaltered by wortmannin 

despite elimination of the increase in PAS-AS160, it is evident that increased PAS-

AS160 is not essential for contraction-mediated glucose transport.  The lack of a 

wortmannin effect on contraction-stimulated increases in PAS-TBC1D1 and glucose 
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transport, together with Compound C inducing full inhibition of contraction’s effect on 

PAS-TBC1D1 and partial inhibition of glucose transport, is consistent with the possibility 

that PAS-TBC1D1 participates in the contraction-stimulated increase in glucose transport.  

However, the current results do not establish causality, and although Compound C did 

not alter tension development, pCaMKII, pAkt, pGSK3 or PAS-AS160, these results do 

not prove that Compound C’s effects are exclusively attributable to inhibiting AMPK. 

Wortmannin can completely inhibit contraction’s activation of Akt in skeletal 

muscle without reducing contraction-stimulated glucose transport (31, 36, 48).  Another 

PI3K inhibitor (LY294002) also inhibits contraction-activated Akt (40).  These results 

with two distinct PI3K-inhibitors suggest that PI3K is upstream of contraction-stimulated 

Akt.  However, muscle contraction does not increase class Ia PI3K activity associated 

with insulin receptor substrate proteins (19) or class II PI3K activity (42).  Sakamoto et al. 

(40) proposed that contraction may activate class Ib PI3K, but this possibility remains to 

be experimentally confirmed.  Regardless, wortmannin can clearly eliminate contraction-

stimulated increases in pAkt and PAS-AS160 in rat epitrochlearis muscle, which begs the 

question:  how can activation of Akt and PAS-AS160 be important for insulin-stimulated 

glucose transport, but not contraction-stimulated glucose transport?  A similar paradox is 

that either insulin or contraction can individually lead to increased glucose transport in 

skeletal muscle by increasing GLUT4 translocation, but the combined stimulation of 

muscle with maximally effective insulin and contraction can increase glucose transport 

(10, 16) and cell-surface GLUT4 (16) more than either stimulus alone.  There is evidence 

suggesting that insulin and contraction recruit different intracellular pools of GLUT4 

vesicles (9, 11).  Little is known about subcellular localization of AS160 or TBC1D1, but 
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it has been reported that in 3T3-L1 adipocytes, AS160 appears to be associated with 

GLUT4 vesicles under basal conditions, and insulin-treatment can cause an increase in 

cytosolic AS160 (30).  A speculative scenario is that insulin-recruitable GLUT4 vesicles 

may associate with AS160, whereas contraction-associated GLUT4 vesicles may 

associate with TBC1D1.  In addition, AS160 and TBC1D1 function are likely also 

regulated by other mechanisms, including:  1) phosphorylation on sites undetectable with 

anti-PAS; 2) Ca2+-calmodulin interaction with each protein’s calmodulin binding domain; 

3) binding to 14-3-3 proteins; and 4) changes in subcellular localization (7, 17, 24, 27, 30, 

37, 38).  Evaluation of these and alternative mechanisms will be necessary to fully 

understand the regulation and roles of AS160 and TBC1D1. 

We also determined if acute inhibition of the contraction-stimulated activation of 

AMPK would result in attenuated glucose transport.  AMPK was originally recognized as 

a potential participant in contraction-stimulated glucose transport by Winder and co-

workers.  They found that exercise or contraction can activate AMPK (21, 46), and 

AICAR, which also leads to AMPK activation, can stimulate glucose uptake (33).  Many 

studies have supported a role for AMPK in contraction-stimulated glucose transport (20, 

26, 35, 47), but research using mice with genetic modification of AMPK suggests that 

AMPK may not be essential for contraction-stimulated glucose transport (14, 23).  With 

genetic modifications, there may be compensatory responses. Compound C, which offers 

a useful alternative approach for rapid inhibition of AMPK, resulted in reduced 

contraction-stimulated glucose transport, providing novel evidence that AMPK may be 

important for this contraction effect. 
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The partial reduction in contraction-stimulated glucose transport by Compound C 

supports earlier studies which indicated that AMPK-independent mechanisms can 

account for a portion of the contraction-stimulated glucose transport (35, 47).  Multiple 

lines of evidence suggest that increased cytosolic calcium contributes to contraction-

stimulated glucose transport (27, 47).  For example, calmodulin binding to AS160 has 

been implicated in contraction-stimulated glucose transport (27).  TBC1D1 also contains 

a calmodulin binding domain (38).  Unaltered contraction-stimulated increases in 

pCaMKII and tension in Compound C-treated muscles suggest that cytosolic Ca2+ was 

not reduced, which may account, at least in part, for the residual effect of contraction on 

glucose transport.  AICAR can activate AMPK without altering cytosolic Ca2+ 

concentration in isolated rat epitrochlearis (44).  In this context, it is notable that, in 

contrast to the partial inhibition of contraction-stimulated glucose transport, Compound C 

completely inhibited AICAR-stimulated glucose transport.  Furthermore, Compound C 

had no effect on insulin-stimulated glucose transport, indicating that Compound C’s 

ability to reduce glucose transport activated by contraction or AICAR is not because of a 

non-specific effect on glucose transport, regardless of the stimulation pathway. 

The contraction-stimulated increases in PAS-TBC1D1 and glucose transport with 

20 min of contractile activity in the current study are similar to earlier results using the 

same contraction protocol (15).  The previous study, which included assessment for up to 

60 min of contraction, found that the glucose transport rate achieved with 20 min of 

contraction was sustained with contraction lasting 60 min even though contraction-

stimulated PAS-TBC1D1 had returned to basal levels at 60 min (15).  These results 

suggest PAS-TBC1D1 may trigger the initial increase in contraction-stimulated glucose 
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transport.  It remains unclear if the initial increase in PAS-TBC1D1 is sufficient to cause 

a sustained increase in contraction-stimulated glucose transport or if another mechanism 

is required for a sustained increase. 

In conclusion, Figure 4.6 represents our working model for increasing PAS-

AS160 and PAS-TBC1D1 with insulin or contraction, and for the roles that insulin- or 

contraction-stimulated PAS-AS160 and PAS-TBC1D1 may play in the regulation of 

glucose transport:  1) insulin stimulates PAS-phosphorylation of AS160 and TBC1D1 in 

an Akt-dependent manner, and PAS-AS160 appears to be important for the regulation of 

insulin-stimulated glucose transport with the functional role of insulin-stimulated PAS-

TBC1D1 currently uncertain; 2) contraction stimulates PAS-phosphorylation of AS160, 

but not TBC1D1, in an Akt-dependent manner, and the contraction-stimulated PAS-

AS160 does not contribute to contraction-stimulated glucose transport; and 3) contraction 

stimulates PAS-phosphorylation of TBC1D1 in an AMPK-dependent manner, consistent 

with the idea that contraction-stimulated PAS-TBC1D1 may regulate contraction-

stimulated glucose transport.  Additional research with specific manipulation of TBC1D1 

expression and/or activation will be needed to further elucidate TBC1D1’s role in glucose 

transport of skeletal muscle. 
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Figure 4.1  
Abundance of total proteins (Akt, GSK3, AMPK, ACC, CaMKII, AS160 and 
TBC1D1.  There were no statistically significant differences among groups (n=4/group) 
for total protein abundance in muscles with or without: (A) insulin and/or wortmannin; 
(B) contraction and/or wortmannin; and (C) contraction and/or Compound C.  Wort: 
wortmannin. CC: Compound C.  
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Figure 4.2   
Effects of wortmannin on insulin-stimulated phosphorylation of AktThr308, 
GSK3Ser21/9, PAS-160, PAS-150 and glucose transport. (A) pAktThr308, (B) pGSK3Ser21/9, 
(C) PAS-160, (D) PAS-150 and (E) glucose transport.  Paired isolated rat epitrochlearis 
muscles were incubated with or without 500 nM of wortmannin for 30 min.  Muscles 
were then either incubated in identical media (Basal) or in solution that contained 2000 
µU/mL of insulin for 20 min, freeze clamped immediately and used for immunoblotting 
or for 3-MG transport measurement.  Data are means ± S.E., n = 5-9/group. Post hoc 
analysis: *, P < 0.05 (effect of insulin); †, P < 0.05 (effect of wortmannin).  Wort: 
wortmannin.  Open bars = DMSO; filled bars = wortmannin. 
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Figure 4.3   
Effects of wortmannin on contraction-stimulated phosphorylation of AktThr308, 
GSK3Ser21/9, AMPKThr172, ACCSer79, CaMKIIThr286, PAS-AS160, PAS-TBC1D1 and 
glucose transport.  (A) pAktThr308, (B) pGSK3Ser21/9, (C) pAMPKThr172, (D) pACCSer79, 
(E) pCaMKIIThr286, (F) PAS-AS160, (G) PAS-TBC1D1 and (H) glucose transport. Paired 
isolated rat epitrochlearis muscles were incubated with or without 500 nM of wortmannin 
for 30 min.  Muscles were then either rested (Basal) or stimulated to contract for 20 min, 
freeze clamped immediately for immunoprecipitation and/or immunoblotting or used for 
3-MG transport measurement.  Data are means ± S.E., n = 9-17/group.  Post hoc analysis: 
*, P < 0.05 (effect of contraction); †, P < 0.05 (effect of wortmannin).  Wort: wortmannin.  
Open bars = DMSO; filled bars = wortmannin. 
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Figure 4.4   
Effects of Compound C on contraction-stimulated phosphorylation of AktThr308, 
GSK3Ser21/9, AMPKThr172, ACCSer79, CaMKIIThr286, PAS-AS160, PAS-TBC1D1 and 
glucose transport.  (A) pAktThr308, (B) pGSK3Ser21/9, (C) pAMPKThr172, (D) pACCSer79, 
(E) pCaMKIIThr286, (F) PAS-AS160, (G) PAS-TBC1D1 and (H) glucose transport.  
Paired isolated rat epitrochlearis muscles were incubated with or without 40 µM of 
Compound C for 60 min.  Muscles were then either rested (Basal) or stimulated to 
contract for 20 min, freeze clamped immediately for immunoprecipitation and/or 
immunoblotting or used for 3-MG transport measurement.  Data are means ± S.E., n = 6-
14/group.  Post hoc analysis: *, P < 0.05 (effect of contraction); †, P < 0.05 (effect of 
Compound C).  CC: Compound C.  Open bars = DMSO; filled bars = Compound C. 
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Figure 4.5   
Effects of Compound C on insulin- and AICAR- stimulated glucose transport.  (A) 
Insulin- and (B) AICAR- stimulated glucose transport.  Paired isolated rat epitrochlearis 
muscles were incubated with or without 40 µM of Compound C for 60 min.  Muscles 
were then either incubated in identical media (Basal) or (A) in solution that contained 
2000 µU/mL of insulin for 20 min or (B) in solution that contained 2mM of AICAR for 
40 min and used for 3-MG transport measurement.  Data are means ± S.E., n = 6-
14/group.  Post hoc analysis: *, P < 0.05 (effect of insulin or AICAR); †, P < 0.05 (effect 
of Compound C).  CC: Compound C.  Open bars = DMSO; filled bars = Compound C. 
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Figure 4.6   
Working model for the roles of PAS-AS160 and PAS-TBC1D1 in insulin- and 
contraction-stimulated glucose transport.  For clarity, the figure focuses on PAS-
AS160 and PAS-TBC1D1 and does not depict other possible mechanisms which may 
influence glucose transport (e.g., calcium-mediated processes with contraction; binding 
of AS160 or TBC1D1 to 14-3-3 proteins, and/or phosphorylation on sites not recognized 
by anti-PAS with insulin or contraction).  Insulin, by a phosphatidylinositol 3-kinase 
(PI3K) dependent mechanism, activates Akt, which phosphorylates Akt substrate of 160 
kD (AS160 or TBC1D4) and TBC1D1 on sites identified using the phospho-Akt 
substrate (PAS) antibody.  The PI3K inhibitor wortmannin completely eliminates insulin-
stimulated glucose transport and PAS-phosphorylation of AS160 and TBC1D1.  
Increased PAS-AS160 is required for insulin’s full effect on GLUT4 translocation and 
glucose transport.  TBC1D1’s role in insulin-stimulated glucose transport is uncertain.  
Contraction leads to increased phosphorylation of AMPK and Akt, although the ability of 
wortmannin to inhibit Akt activation by contraction suggests at PI3K-dependent process, 
the precise mechanism is unknown.  AMPK-inhibition (by Compound C) completely 
eliminates the increased PAS-TBC1D1 without altering PAS-AS160, and wortmannin 
completely eliminates the increased PAS-AS160 without altering PAS-TBC1D1.  
Compound C partially inhibits contraction-stimulated glucose transport consistent with 
AMPK-related mechanisms accounting for a portion of contraction-mediated glucose 
transport.  The concomitant AMPK-dependent inhibition of PAS-TBC1D1 suggests it 
may play a role in contraction-stimulated glucose transport. 
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CHAPTER V 

 

STUDY 3 

 

Increased AS160 Phosphorylation, but Not TBC1D1 Phosphorylation, with 
Increased Post-exercise Insulin Sensitivity in Rat Skeletal Muscle 

 

ABSTRACT  

A single exercise bout can increase insulin-independent glucose transport 

immediately post-exercise and insulin-dependent glucose transport (GT) for several hours 

post-exercise.  Akt substrate of 160 kDa (AS160) and TBC1D1 are paralog Rab GTPase 

activating proteins that have been proposed to contribute to these exercise effects.  Previous 

research demonstrated greater AS160 and Akt threonine phosphorylation in rat skeletal 

muscle at 3-4 h post-exercise concomitant with enhanced insulin-stimulated GT.  To 

further probe if these signaling events or TBC1D1 phosphorylation were important for the 

enhanced post-exercise insulin-stimulated GT, male Wistar rats were studied using four 

experimental protocols (2 h swim-exercise, differing with regard to timing of muscle 

sampling and whether food was provided post-exercise) that were known to vary in their 

influence of insulin-independent and insulin-dependent GT post-exercise.  The results 

indicated that in isolated rat epitrochlearis muscle:  1) elevated phosphorylation of AS160 

(measured using anti-phospho-Akt substrate, PAS-AS160, and phospho-specific anti 

Thr642-AS160, pThr642-AS160) consistently tracked with elevated insulin-stimulated GT; 
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2) PAS-TBC1D1 was not different from sedentary values at 3 or 27 h post-exercise, when 

insulin sensitivity was increased; 3) insulin-stimulated Akt activity was not increased post-

exercise in muscles with increased insulin sensitivity; 4) PAS-TBC1D1 was increased 

immediately post-exercise, when insulin-independent GT was elevated, and reversed at 3 

and 27 h post-exercise, when insulin-independent GT was also reversed; and 5) there was 

no significant effect of exercise or insulin on total abundance of AS160, TBC1D1, Akt or 

GLUT4 protein with any of the protocols.   The results are consistent with increased AS160 

phosphorylation (PAS-AS160 or pThr642-AS160), but not increased PAS-TBC1D1 or Akt 

activity, being important for increased post-exercise insulin-stimulated GT in rat skeletal 

muscle.  They also support the idea that increased TBC1D1 phosphorylation may play a 

role in the insulin-independent increase in GT post-exercise.  

 

 INTRODUCTION  

A single bout of exercise leads to a subsequent increase in insulin-stimulated 

glucose transport (7, 9, 22, 40).  The post-exercise increase in insulin sensitivity is 

attributable to increased insulin-stimulated GLUT4 cell surface localization (24).  

However, many studies have found that prior exercise has no effect on proximal insulin 

signaling steps, including: insulin receptor binding (4, 5, 55), insulin receptor tyrosine 

phosphorylation (24, 26, 47, 53), insulin receptor tyrosine kinase activity (46, 47, 52), 

insulin receptor substrate tyrosine phosphorylation (24, 26, 54), insulin receptor substrate 

associated phosphatidylinositol-3-kinase (PI3K) activity (46, 53), and Akt serine 

phosphorylation (1, 16, 23, 46, 52).  

 120



 The Rab GTPase activating protein (Rab GAP) Akt substrate of 160 kDa (AS160; 

also known as TBC1D4) is the most distal signaling protein that has been implicated in 

insulin-mediated GLUT4 translocation (8, 32, 42, 43).  Arias et al. (1) found that 

phosphorylation of AS160 is greater in insulin-stimulated muscles from exercised (3-4 h 

post-exercise) rats compared with sedentary controls.  However, this increase was not 

because of greater insulin sensitivity for AS160 phosphorylation, rather it was because 

the baseline phosphorylation of AS160 in the absence of insulin remained increased 3-4 h 

post-exercise. In other words, basal AS160 phosphorylation remained higher at 3-4 h 

post-exercise compared to resting, and this elevated baseline accounted for the greater 

AS160 phosphorylation found in muscles that were subsequently stimulated with insulin.  

This observation is also supported by results in humans that indicated that skeletal muscle 

AS160 phosphorylation can remain elevated for 2 to 14 h post-exercise without elevated 

insulin (17, 44, 49).  Arias et al. (1) proposed that the persistent increase in insulin-

stimulated glucose transport is attributable, at least in part, to the sustained increase in 

AS160 phosphorylation after acute exercise. 

Phosphorylation of TBC1D1, a paralog RabGAP of AS160, may also regulate 

GLUT4 translocation (10, 28, 41).  In skeletal muscle, TBC1D1 phosphorylation is 

increased in response to insulin (19, 45), contraction (3, 18, 19, 45) or incubation with the 

AMP-activated protein kinase (AMPK) activator AICAR (45).  However, it is unknown 

if TBC1D1 phosphorylation is increased in response to in vivo exercise.  The relationship 

between TBC1D1 phosphorylation and the post-exercise increase in insulin-stimulated 

glucose transport has also not been investigated.  Experiments using 3T3-L1 (10) or L6 

(28) cells suggest that although insulin can induce TBC1D1 phosphorylation, TBC1D1’s 
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inhibitory effects on GLUT4 translocation may not be subject to regulation by insulin.  It 

remains possible that TBC1D1 participates in GLUT4 trafficking induced by insulin-

independent stimuli, e.g., in vivo exercise.   

Consistent with previous reports (12, 16, 23, 46, 52), Arias et al. (1) found that 

insulin-stimulated Akt serine phosphorylation (pSerAkt) was not enhanced at 3-4 h post-

exercise.  However, in the same muscles, insulin-stimulated Akt threonine 

phosphorylation (pThrAkt) was greater at 3-4 h post-exercise compared to sedentary 

controls.  The insulin-stimulated phosphorylation of two Akt substrates (glycogen 

synthase kinase-3, GSK3, and AS160) was not greater at 3-4 hr post-exercise, suggesting 

that greater insulin-stimulated pThrAkt after exercise did not result in greater Akt activity.  

Nonetheless, it would be important to determine if this prediction is true because 

enhanced insulin-stimulated Akt activity could potentially contribute to increase insulin 

sensitivity.  

To further probe the possible functional importance of AS160, TBC1D1 and Akt 

for the post-exercise increase in insulin-stimulated glucose transport, we used four 

experimental protocols (differing with regard to the timing of muscle sampling and 

whether food was provided post-exercise) that were known to vary in their influence on 

insulin-independent and insulin-dependent glucose transport after exercise (male Wistar 

rats, 2 h swim-exercise).  We hypothesized that the protocols with enhanced insulin-

dependent glucose transport after exercise would be accompanied by increased AS160 

phosphorylation, and protocols without enhanced insulin-dependent glucose transport 

after exercise would not be characterized by elevated AS160 phosphorylation.  We also 

hypothesized that increased TBC1D1 phosphorylation for exercised versus sedentary 
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groups would be found in protocols with elevated insulin-independent glucose transport, 

but not in protocols with an exercise effect on insulin-dependent glucose transport.  We 

further hypothesized that the increased pThrAkt found in insulin-stimulated skeletal 

muscle at 3 h post-exercise would not be accompanied by an increase in Akt activity 

compared to sedentary controls.  

 

METHODS  

Materials.  Human recombinant insulin was obtained from Eli Lilly (Indianapolis, 

IN).  Reagents and apparatus for SDS-PAGE and immunoblotting were purchased from 

Bio-Rad (Hercules, CA).  Bicinchoninic acid protein assay reagent (no. 23227), T-PER 

tissue protein extraction reagent (no. 78510) and West Dura Extended Duration Substrate 

(no. 34075) were from Pierce Biotechnology (Rockford, IL).  Anti-Akt (no. 9272), anti-

phospho-Thr308Akt (pThrAkt, no. 9275), anti-phospho-(Ser/Thr) Akt substrate (PAS, no. 

9611), anti-GLUT4 (no. 2299) and goat anti-rabbit IgG HRP conjugate (no. 7074) were 

from Cell Signaling Technology (Danvers, MA).  PAS was designed to recognize Akt 

phosphorylation motif peptide sequences (RXRXXpT/S).  TBC1D1 polyclonal antibody 

was provided by Dr. Makoto Kanzaki  at Tohoku University (35).  Anti-AS160 (no. 07-

741), anti-phospho-Thr642AS160 (pThrAS160, no. 07-802), protein G agarose beads (no. 

16-266) and Akt immunoprecipitation kinase assay kit (no. 17-188) were from Upstate 

USA (Charlottesville, VA).  3-O-Methyl-[3H]glucose ([3H]3-MG) was from Sigma-

Aldrich. [14C]Mannitol and [γ-32P]ATP were from Perkin Elmer (Waltham, MA).  Other 

reagents were from Sigma-Aldrich and Fisher Scientific (Pittsburgh, PA).   
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Animal treatment.  Procedures for animal care were approved by the University of 

Michigan Committee on Use and Care of Animals.  Male Wistar rats ( 140–200 g; 

Harlan, Indianapolis, IN) were studied using four experimental protocols. In each 

protocol, rats were provided with rodent chow (Lab Diet; PMI Nutritional International, 

Brentwood, MO) and water ad libitum.  At 1700 on the night before the experiments, rats 

were housed individually and provided ad libitum water and 4 g of chow each.   

On the following day, rats were randomly assigned to a post-exercise (PEX) or 

sedentary (SED) treatment.  Beginning at ~0900, PEX rats swam in a barrel filled with 

water (35°C) to a depth of ~60 cm (6 or 7 rats per barrel) for 4 x 30 min bouts with a 5 

min rest period between each bout.  The 4 experimental protocols differed for the PEX 

groups and their respective SED controls only with regard to:  1) the time after 

completion of exercise when muscles were dissected out from anesthetized rats, and 2) 

whether rats had access to chow after exercise.  The 8 groups (a PEX and a SED group 

for each protocol) were:  1) anesthetized immediately post-exercise without access to 

food after exercise (0hPEX and 0hSED); 2) anesthetized 3 h post-exercise without access 

to food after exercise (3hPEX and 3hSED); 3) anesthetized 3 h post-exercise with 

unlimited access to food after exercise (3hPEX-Chow and 3hSED-Chow); and 4) 

anesthetized 27 h post-exercise without access to food after exercise (27hPEX and 

27hSED).  While rats were under deep anesthesia, both epitrochlearis muscles were 

rapidly dissected out and either freeze-clamped immediately or transferred to vials for 

subsequent incubation.   

Muscle incubations. For all incubation steps, flasks were continuously gassed 

from above with 95 % O2/5 % CO2 and shaken in a heated water bath.  Isolated 
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epitrochlearis muscles were incubated in Krebs-Henseleit buffer (KHB) + 0.1 % bovine 

serum albumin (BSA) + 8 mM glucose + 2mM mannitol (Solution 1) for 30 min in a 

water bath at 35°C.  During this step, one muscle from each rat was incubated in Solution 

1 supplemented with 50 µU/ml of insulin and the contralateral muscle was incubated in 

Solution 1 without insulin.  Insulin remained present at the same concentration 

throughout all subsequent incubations.  After the initial incubation, muscles were 

transferred to vials containing KHB + BSA + 2 mM pyruvate + 6 mM mannitol (Solution 

2) at 30°C for 10 min.  Finally, muscles were transferred to flasks containing KHB, 0.1 % 

BSA with 8 mM 3-MG (including [3H]3-MG 0.25 mCi/mmol), and 2 mM mannitol 

(including [14C]mannitol 0.1 mCi/mmol).  After incubation with 3-MG for 15 min, the 

muscles were rapidly blotted on filter paper dampened with incubation media, trimmed, 

freeze-clamped, and stored at –80°C until processed as described below.  

3-MG transport and protein phosphorylation.  The procedures for 3-MG transport, 

immunoprecipitation and immunoblotting were conducted as previously described (19).  

For PAS-AS160, muscles were immunoprecipitated using anti-PAS, followed by 

immunoblotting by anti-AS160.  For PAS-TBC1D1, muscles were immunoprecipitated 

using anti-TBC1D1, followed by immunoblotting by anti-PAS.  The mean values for 

basal muscles (sedentary without insulin) on each blot were normalized to equal 1.0, and 

then all samples on the blot were expressed relative to the normalized basal value.  

Akt activity measurement.  Akt activity was determined according to the 

manufacturer’s instructions (Upstate USA, Charlottesville, VA).  Briefly, protein G-

agarose beads were rotated overnight with anti-Akt/PH domain clone SKB1 (no. 05-591).  

The antibody/protein G-agarose mixture was combined with 300 µg of protein from each 
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sample and rotated for 2 h at 4oC.  The antigen/antibody/protein G-agarose complex was 

combined with Akt substrate peptide (no. 12-340) and [γ-32P]ATP (final concentration of 

1µCi/µl) and shaken at room temperature for 60 min.  Next, the complex was centrifuged 

(4,000 g for 1 min) and 40 µl of supernatant was collected and transferred to 

phosphocellulose paper.  After washes (3 times with 1.5% phosphoric acid and once with 

acetone), the phosphocellulose paper was transferred to a vial containing scintillation 

cocktail for scintillation counting.  The mean values for basal muscles (sedentary without 

insulin) on each experiment day were normalized to equal 1.0, and then all samples were 

expressed relative to the normalized basal value. 

Muscle glycogen concentration. Muscles used for measurement of glycogen were 

frozen immediately after dissection, weighed and homogenized in ice-cold 0.3M 

perchloric acid.  An aliquot of the homogenate was stored at -80°C for later 

determination of glycogen concentration by the amyloglucosidase method (37). 

Statistical analysis.  Statistical analyses were performed using Sigma Stat version 

2.0 (San Rafael, CA). Data are expressed as mean ±SE.  P  0.05 was considered 

statistically significant.  Data from the 3hPEX and 27hPEX experiments were analyzed 

with two-way ANOVA and the Student-Newman-Keuls post-hoc test. When data failed 

the Levene Median test for equal variance, the Kruskal-Wallis nonparametric ANOVA 

on ranks was used with Dunn’s post-hoc test.  The insulin-stimulated increases (∆-

insulin) in glucose transport, protein phosphorylation and Akt activity were calculated by 

subtracting the values for muscles incubated without insulin from the respective values of 

paired muscles incubated with insulin.  Student’s t-test was used for the analysis of 
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glucose transport and protein phosphorylation for 0hPEX experiments and ∆-insulin 

values for 3hPEX and 27hPEX experiments.   

 

RESULTS 

3-MG transport.  Insulin-independent glucose transport was approximately 2.3-

fold greater (P < 0.05) for 0hPEX rats compared with sedentary (0hSED) controls (Fig. 

5.1A), and this increase was completely reversed at both 3 and 27 h post-exercise (Fig. 

5.1B-D).  Insulin-treated muscles had a greater glucose transport than paired muscles 

incubated without insulin for all groups (Fig. 5.1B-D).  PEX versus SED groups that 

were not refed chow after exercise (Fig. 5.1B and 5.1D) had significantly greater glucose 

transport for insulin-stimulated muscles at both 3hPEX (P < 0.001) and 27hPEX (P < 

0.01).  Significant (P < 0.01) effects of prior exercise were also found for ∆-insulin 

glucose transport for the 3hPEX (0.322 ± 0.052 µmol·g-1·15min-1) versus 3hSED (0.125 ± 

0.024 µmol·g-1·15min-1) and 27hPEX (0.523 ± 0.075 µmol·g-1·15min-1) versus 27hSED 

(0.240 ± 0.068 µmol·g-1·15min-1) groups.  The exercise effects on glucose transport by 

insulin-stimulated muscles and ∆-insulin glucose transport were lost with chow refeeding 

(Fig. 5.1C), i.e. there were no significant differences between the 3hSED-Chow (0.144 ± 

0.039 µmol·g-1·15min-1) and 3hPEX-Chow (0.187 ± 0.037 µmol·g-1·15min-1) groups. 

Total protein abundance.  The total protein abundance of AS160 (Fig. 5.2, A–D), 

TBC1D1 (Fig. 5.2, E–H), GLUT4 (data not shown), and Akt (data not shown) was 

unaltered by the experimental treatments (insulin or exercise; n = 4 for each protein 

within every exercise and insulin treatment group) in every protocol studied (0-h PEX, 3-

h PEX, 3-h PEX-chow, or 27-h PEX). 
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AS160 phosphorylation.  Insulin treatment compared to no insulin resulted in 

significantly greater PAS-phosphorylation of AS160 (PAS-AS160) in all groups (Fig. 

5.3A-C).  Consistent with our previous study (1), PAS-AS160 in muscles incubated 

without insulin was significantly greater (P < 0.05) in the 3hPEX compared to the 3hSED 

group (Fig. 5.3A).  Also consistent with our previous study (1), PAS-AS160 in muscles 

incubated with insulin was significantly greater (P < 0.05) in the 3hPEX compared to the 

3hSED group (Fig. 5.3A).  In contrast, PAS-AS160 was not different between 3hSED-

Chow and 3hPEX-Chow groups, with or without insulin during the incubations (Fig. 

5.3B).  PAS-AS160 in muscles incubated without insulin was significantly greater (P < 

0.05) in the 27hPEX compared to the 27hSED group (Fig. 5.3C).  PAS-AS160 in muscles 

incubated with insulin was also significantly greater (P < 0.05) in 27hPEX compared to 

27hPEX group (Fig. 5.3C).  The ∆-insulin values were not significantly different between 

SED and PEX rats for any of the groups (data not shown).   

AS160 Thr642 phosphorylation.  AS160 Thr642 phosphorylation was 

significantly elevated (P < 0.05) for the 0hPEX compared to the 0hSED group (Fig. 

5.4A).  Insulin treatment compared to no insulin resulted in significantly greater 

pThr642-AS160 in all groups (Fig. 5.4B-D).  Consistent with the results for PAS-AS160, 

pThr642-AS160 in muscles incubated without insulin was significantly greater (P < 

0.001) in the 3hPEX compared to the 3hSED group (Fig. 5.4B).  Also consistent with the 

results on PAS-AS160, pThr642-AS160 in muscles incubated with insulin was 

significantly greater (P < 0.001) in the 3hPEX compared to the 3hSED group (Fig. 5.4B).  

As was found with PAS-AS160, pThr642-AS160 was not different between 3hSED-

Chow and 3hPEX-Chow groups (Fig. 5.4C).  The 27hPEX group compared to the 
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27hSED group had greater pThr642-AS160 with (P < 0.05) or without (P < 0.005) 

insulin (Fig. 5.4D).  The ∆-insulin values were not significantly different between SED 

and PEX rats for any of the protocols (data not shown). 

TBC1D1 phosphorylation.  PAS-phosphorylation of TBC1D1 (PAS-TBC1D1) 

was significantly elevated (P < 0.001) in 0hPEX compared to 0hSED rats (Fig. 5.5A).  

This increase in was completely reversed at 3 h post-exercise, with or without refeeding, 

and at 27 h post-exercise (Fig. 5.5B-D).  Insulin treatment compared to no insulin 

resulted in significantly greater PAS-TBC1D1 in all groups (Fig. 5.5B-D).  However, in 

contrast to PAS-AS160, PAS-TBC1D1 was not different for at 3hPEX, 3hPEX-Chow 

and 27hPEX compared to the respective sedentary controls (3hSED, 3hSED-Chow and 

27hSED) regardless of insulin concentration.  The ∆-insulin values were also not 

significantly different between SED and PEX rats for any of the groups (data not shown).   

Akt threonine phosphorylation.  Insulin treatment compared to no insulin resulted 

in significantly greater pThrAkt in all groups (Fig. 5.6A-C).  Consistent with our previous 

results (1), pThrAkt in muscles incubated with insulin was greater (P < 0.05) for the 

3hPEX group compared with 3hSED controls (Fig. 5.6A).  Furthermore, there was also a 

significant (P < 0.05) increase for the 27hPEX versus 27hSED group (Fig. 5.6C).  The ∆-

insulin values were significantly greater for 3hPEX versus 3hSED and 27hPEX versus 

27hSED groups (P < 0.05).  In contrast, neither the pThrAkt in muscles incubated with 

insulin (Fig. 5.6B) nor the ∆-insulin values (data not shown) were significantly different 

between 3hSED-Chow and 3hPEX-Chow groups.  

Akt activity.  Insulin treatment compared to no insulin resulted in significantly 

greater Akt activity (Fig. 5.6D).  Unlike pThrAkt, Akt activity for insulin-stimulated 
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muscles was not significantly different between the 3hSED and 3hPEX groups.  The ∆-

insulin values were also not different between 3hSED (0.831 ± 0.173 relative units) and 

3hPEX rats (0.886 ± 0.373 relative units).   

Glycogen concentration.  Epitrochlearis glycogen concentration (Table 5.1) was 

reduced by ~60% (P < 0.001) immediately post-exercise (0hPEX vs. 0hSED).  In the 

exercised groups that were not refed (3hPEX and 27hPEX), glycogen did not increase 

significantly above the 0hPEX values.  Glycogen values were also essentially unchanged 

for 3hSED versus 0hSED, but there was an ~30% reduction (P < 0.05) for the 27hSED 

group compared to the other sedentary groups that were not refed (0hSED and 3hSED).  

With this decline there was no significant difference for the 27hSED compared to any of 

the exercised groups that were not refed (0hPEX, 3hPEX and 27hPEX).  Glycogen, 

which was increased in the 3hPEX-Chow above all other groups (P < 0.05), was ~4-fold 

greater than the 0hPEX group and ~50% greater than the 3hSED-Chow rats.  Chow 

refeeding did not significantly increase glycogen for the 3hSED group compared to the 

0hSED or 3hSED animals. 

 

DISCUSSION 

 The results support the hypothesis that a sustained increase in AS160 

phosphorylation, but not TBC1D1 phosphorylation, consistently occurs with protocols 

that cause a sustained post-exercise increase in insulin-stimulated glucose transport.  

Specifically, the data:  1) indicated an increased PAS-AS160 and pThr642-AS160 in 

skeletal muscle, with or without insulin, and enhanced insulin-stimulated glucose 

transport at 3 h post-exercise in rats that were not refed; 2) extended the previously 
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published results (1) by demonstrating the post-exercise increase in PAS-AS160 and 

pThr642-AS160 together with increased insulin-stimulated glucose transport at 27 h post-

exercise in rats not refed; 3) demonstrated the elimination of increased PAS-AS160, 

pThr642-AS160 and increased insulin-stimulated glucose transport at 3 h post-exercise in 

rats that were refed; and 4) found that neither insulin nor exercise altered the total 

abundance of AS160, TBC1D1, Akt or GLUT4 protein in any of the protocols tested.  In 

addition, there was not a persistent increase in PAS-TBC1D1 at 3 or 27 h post-exercise, 

supporting the idea that AS160 phosphorylation, rather than TBC1D1 phosphorylation, is 

important for improved insulin sensitivity after exercise.  Furthermore, the lack of an 

increase in insulin-stimulated Akt activity after exercise indicates that this mechanism 

cannot account for the improved insulin sensitivity. 

There was a persistent increase in basal (without insulin) AS160 phosphorylation 

in the 3hPEX and 27hPEX groups, and this higher baseline value accounted for the 

greater AS160 phosphorylation in insulin-stimulated muscles after exercise.  What is a 

possible mechanism that could link the elevated AS160 phosphorylation without insulin 

with increased insulin-stimulated glucose transport after exercise?  It is important to 

recognize that AS160 does not regulate all of the steps required for GLUT4 to be 

redistributed from intracellular storage vesicles to the cell surface membranes where they 

are able to facilitate glucose uptake (27, 51).  Studies in both 3T3-L1 adipocytes (2) and 

L6 myoblasts (38) suggest that AS160 phosphorylation is required for insulin-stimulated 

docking of GLUT4 vesicles to cell surface membranes.  AS160 apparently does not 

regulate several of the other steps that are required for complete GLUT4 translocation 

and increased glucose transport rate, including the recruitment, tethering, and fusion of 
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GLUT4 vesicles with surface membranes and possibly GLUT4 activation (2, 20, 27, 51).  

We speculate that the persistent increase in AS160 phosphorylation in the absence of 

insulin results in a change in the localization of a portion of the GLUT4 vesicles (perhaps 

there is a persistent increase in docked vesicles) so that they are more susceptible to the 

insulin-stimulated, AS160-independent steps of GLUT4 vesicle traffic.  The idea is that 

the persistent increase in AS160 phosphorylation found several hours after exercise may 

serve to “prime the pump” so that, when the muscle is subsequently stimulated with 

insulin, there is a greater pool of GLUT4 that is susceptible to being recruited by a given 

amount of insulin.  This scenario is similar to a mechanism that was previously proposed 

by John Holloszy (25).   We propose that AS160-independent regulatory steps which 

become activated upon insulin stimulation, acting in concert with the persistent effect of 

exercise on AS160 phosphorylation, culminate in the enhanced post-exercise insulin-

stimulated GLUT4 translocation and glucose transport.   This model does not exclude the 

possibility that prior exercise also amplifies insulin signaling steps other than AS160 

phosphorylation. 

In contrast to PAS-AS160 and pThr642-AS160, PAS-TBC1D1 was not different 

for the 3hPEX, 3hPEX-Chow and 27hPEX groups compared to their respective sedentary 

control groups (3hSED, 3hSED-Chow and 27hSED), demonstrating that enhanced PAS-

TBC1D1 is not essential for the post-exercise increase in insulin-stimulated glucose 

transport.  It remains possible that there is a persistent effect of exercise on TBC1D1 by 

another mechanism such as phosphorylation on sites not recognized by the PAS antibody 

or changes in subcellular localization (10, 11, 41).  Therefore, we cannot rule out the 

possibility that TBC1D1 participates in the increased insulin-stimulated glucose transport 
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after exercise.  Nevertheless, the results suggest that: 1) PAS-phosphorylation of 

TBC1D1 is not essential for increased insulin-stimulated glucose transport post-exercise, 

and 2) post-exercise reversal of the increased phosphorylation of TBC1D1 and AS160 are 

regulated differently. 

We confirmed the previous observation indicating that there is an increase in 

insulin-stimulated pThrAkt at 3 h post-exercise in rats not fed after exercise (1), and 

extended this result to show enhanced insulin-stimulated pThrAkt at 27 h post-exercise in 

rats that remained unfed.  Furthermore, insulin-stimulated pThrAkt was not increased 3 h 

post-exercise in rats that were refed.  Thus, the effect of exercise on insulin-stimulated 

pThrAkt tracked with insulin-stimulated glucose transport for each protocols.  However, 

because there was not a concomitant increase in insulin-stimulated Akt activity at 3 h 

post-exercise in rats not refed, it seems unlikely that the elevated pThrAkt could account 

for improved insulin sensitivity.  These data suggest that in post-exercise muscles: 1) the 

post-exercise enhancement of insulin-stimulated pThrAkt does not induce greater than 

usual increase in insulin-stimulated Akt activity, and 2) enhanced Akt activity is not 

responsible for the enhanced insulin-stimulated glucose transport post-exercise.  The 

similar Akt activity found in sedentary compared to post-exercise groups is also 

consistent with our previous results indicating that exercise did not alter the insulin-

stimulated (∆-insulin) increase in phosphorylation of Akt substrates, pGSK3 and PAS-

AS160 (1).  The current study also found that prior exercise did not alter the ability of 

insulin to induce the phosphorylation of Akt substrates (as assessed by PAS-AS160, 

pThr642-AS160 and PAS-TBC1D1) in skeletal muscle.  These results are consistent with 
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a number of studies indicating that acute exercise does not amplify proximal insulin 

signaling in skeletal muscle.   

Although elevated PAS-TBC1D1 could not explain the long-lasting increase in 

insulin-dependent glucose transport found at 3 or 27 h post-exercise, the increased PAS-

TBC1D1 tracked closely with the more transient, post-exercise effect on insulin-

independent glucose transport (14, 50).    The exercise effects on PAS-TBC1D1 and 

glucose transport in the absence of insulin were both substantially elevated at 0hPEX, and 

the exercise effects in both were also completely reversed in the 3hPEX, 3hPEX-Chow 

and 27hPEX groups.  This consistent association supports the idea that PAS-TBC1D1 

may play an important role in contraction-stimulated glucose transport (3, 19).  The 

relationship between PAS-TBC1D1 and insulin-independent glucose transport with 

contraction or exercise is in striking contrast to the results for PAS-AS160 which 

remained increased without insulin at 3hPEX and 27hPEX compared to respective 

sedentary controls in the absence of an exercise effect on insulin-independent glucose 

transport.  We previously found that wortmannin completely eliminated the contraction-

stimulated increase in PAS-AS160 without altering the contraction-stimulated increases 

in PAS-TBC1D1 or glucose transport (19).  Furthermore, an AMPK inhibitor eliminated 

the contraction effect on PAS-TBC1D1 and reduced contraction-stimulated glucose 

transport by 65% without attenuating the contraction-induced increase in PAS-AS160.  In 

conjunction with many other results (1, 6, 15, 19, 48), these data suggested that AS160 

phosphorylation is neither necessary nor sufficient for increased insulin-independent 

glucose transport after exercise or contraction.  The results are also consistent with the 

possibility that TBC1D1 plays a role in a portion of the insulin-independent increase in 
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glucose transport induced by exercise or contraction.  Our working hypothesis is that 

AS160 phosphorylation is more important for insulin-stimulated glucose transport, 

whereas TBC1D1 phosphorylation is more important for exercise-stimulated glucose 

transport.  Regulation of AS160 by its calmodulin binding domain (CBD) has been 

implicated in a portion of the contraction-stimulated increase in glucose transport (31).  

TBC1D1 also has a CBD, but its role in contraction-stimulated glucose transport has not 

been assessed. 

Both AS160 and TBC1D1 can be phosphorylated by multiple kinases (11, 21).  

Many studies have shown that in vivo exercise can activate AMPK (23, 39, 44, 48), 

including Arias et al. (1) who found increased pAMPK at 0hPEX using the same protocol 

as the current study.  Although increased Akt activity after in vivo exercise has been 

reported (44, 48), some studies have not detected Akt activation in skeletal muscle with 

in vivo exercise (17, 33, 53), including Arias et al. (1) who found unaltered pThrAkt and 

pSerAkt at 0hPEX.  These results suggest AMPK as a candidate for the increased AS160 

and TBC1D1 phosphorylation at 0hPEX, but we cannot rule out the possibility that Akt 

was transiently activated in the early stages of the exercise or a role for other kinases that 

were not tested. 

Both AS160 and TBC1D1 can be phosphorylated on multiple sites (11, 21, 29).  

Treebak et al. (49) recently reported that after one-legged exercise by humans resulted in 

an elevation of AS160 phosphorylation on S318, S341, and S751, with a trend for an 

increase on S588 in muscle in the absence of insulin infusion (at 240 min post-exercise) 

and with insulin infusion (at 340 min post-exercise).  There was no effect of prior 

exercise on AS160 phosphorylation detected on T642, S666, or using anti-PAS.  Previous 
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research with humans had found increased PAS-AS160 at 2.5 h post-exercise (44).  

Although the explanation for the different results for PAS-AS160 and pThr642-AS160 

after exercise is uncertain, there is a great deal of evidence for a persistent increase in 

AS160 in skeletal muscle after acute exercise. 

As expected, exercise resulted in decreased muscle glycogen content. It has been 

hypothesized that reduced glycogen concentration is involved in the postexercise increase 

in insulin-stimulated glucose transport (13, 34, 36). However, activation of AMPK by 

AICAR can result in subsequently elevated insulin-stimulated glucose transport in the 

absence of altered glycogen levels (16). Furthermore, a study that compared multiple in 

situ contraction protocols found that all protocols that resulted in decreased glycogen 

concentration also resulted in greater insulin sensitivity postexercise, but not all protocols 

that induced a similar decrement in glycogen levels were also characterized by improved 

insulin sensitivity (30). These findings suggest that glycogen reduction may be necessary, 

but not sufficient, for a postexercise-induced increase in insulin-stimulated glucose 

transport. The reduced muscle glycogen levels at the 3-h PEX and 27-h PEX groups 

compared with the 0-h SED group are consistent with the idea that glycogen reduction 

may contribute to the postexercise increase in insulin-stimulated glucose transport, and 

the higher glycogen content in 3-h PEX-chow group vs. the 3-h SED group is consistent 

with the idea that glycogen resynthesis may contribute to the reversal of the postexercise 

effect on insulin sensitivity. However, the lack of difference in glycogen content between 

27-h SED and 27-h PEX groups, taken together with earlier results (30), suggests that 

lower glycogen values do not fully explain the mechanism for the prolonged increase in 

insulin sensitivity on the day after exercise. 
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In conclusion, the results of this study support a model in which AS160 and 

TBC1D1, two Rab GAP paralogs, have different roles in the post-exercise effects on 

skeletal muscle glucose transport.  The major, new findings indicate that: 1) elevated 

PAS-AS160 or pThr642-AS160 after exercise consistently tracked with elevated insulin-

stimulated glucose transport, supporting the idea that AS160 phosphorylation plays a role 

in the post-exercise increase in insulin sensitivity; 2) PAS-TBC1D1 was not different 

from sedentary control values at 3 or 27 h after exercise, when insulin-stimulated glucose 

transport was increased, demonstrating that the post-exercise dephosphorylation of 

TBC1D1 is regulated differently from AS160, and PAS-TBC1D1 is not important for the 

post-exercise increase in insulin-stimulated glucose transport; 3) insulin-stimulated Akt 

activity was not increased at 3 h after exercise, at which time insulin-stimulated glucose 

transport was enhanced, demonstrating that it cannot account for increased post-exercise 

insulin sensitivity; and 4) the temporal relationship between the post-exercise effects on 

insulin-independent glucose transport and PAS-TBC1D1 (both elevated immediately 

after in vivo exercise, and both reversed at 3 and 27 h post-exercise) supports the 

hypothesis that TBC1D1 phosphorylation may play a role in the transient exercise-

induced  increase in glucose transport in the absence of insulin.   It will be important for 

future research to identify the unique phospho-signatures of AS160 and TBC1D1 in 

response to exercise and insulin, to determine their protein-protein interactions 

(especially with 14-3-3 proteins), and to characterize how their subcellular localization is 

influenced by exercise and insulin. 
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Figure 5.1   
Rate of 3-O-methylglucose (3-MG) transport in isolated rat epitrochlearis muscles.  
A) 0hPEX, B) 3hPEX, C) 3hPEX-Chow, and D) 27hPEX.  For rats in the 0hPEX and 
0hSED groups, all muscles that were used to measure 3-MG transport were incubated 
without insulin to determine the insulin-independent effect of exercise.  For rats in the 
3hPEX, 3hPEX-Chow and 27hPEX groups and their respective SED controls, one of the 
paired muscles was incubated without insulin and the contralateral muscle was incubated 
with insulin.  A) Data are means ± SE, n = 6 per group. *P < 0.05 (exercise effect; t-test). 
Open bar = 0hSED; grey bar = 0hPEX.  B-D) Data are means ± SE, n = 6-13 per group. 
*P < 0.05 (insulin effect; post-hoc test); †P < 0.05 (exercise effect; post-hoc test). Open 
bars = without insulin; filled bars = with insulin.  
 
 
 
 
 
 

 139



 
 
 
 
 

 
 
 

Figure. 5.2  
Akt substrate of 160 kDa (AS160) and TBC1D1 total protein abundance in rat 
epitrochlearis muscles. There were no significant effects of exercise or insulin with any 
of the protocols (n = 4 for each exercise and insulin treatment group). A: AS160 of 0-h 
PEX; B: AS160 of 3-h PEX; C: AS160 of 3-h PEX-chow; D: AS160 of 27-h PEX; E: 
TBC1D1 of 0-h PEX; F: TBC1D1 of 3-h PEX; G: TBC1D1 of 3-h PEX-chow; H: 
TBC1D1 of 27-h PEX. 
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Figure 5.3   
AS160 PAS-phosphorylation in rat epitrochlearis muscles.  A) 3hPEX, B) 3hPEX-
Chow, and C) 27hPEX.  One of the paired muscles from each rat was incubated without 
insulin and the contralateral muscle was incubated with insulin.  Data are means ± SE, n 
= 6-13 per group. *P < 0.05 (insulin effect; post-hoc test); †P < 0.05 (exercise effect; 
post-hoc test).  Open bars = without insulin; filled bars = with insulin.  The SE value for 
the basal 3hSED group Fig. 3A is too small to be visible. 
  

 141



 
 
 
 

 
 
Figure 5.4   
AS160 Thr642 phosphorylation in rat epitrochlearis muscles.  A) 0hPEX, B) 3hPEX, 
C) 3hPEX-Chow, and D) 27hPEX.  For rats in the 0hPEX group, muscles were frozen 
immediately after dissection and used to determine the insulin-independent effect of 
exercise.  For rats in the 3hPEX, 3hPEX-Chow and 27hPEX groups and their respective 
SED controls, one paired muscle from each rat was incubated without insulin and the 
contralateral muscle was incubated with insulin.  A) Data are means ± SE, n = 4 per 
group. *P < 0.05 (exercise effect; t-test). Open bar = 0hSED; grey bar = 0hPEX.  B-D) 
Data are means ± SE, n = 4 per group. *P < 0.05 (insulin effect; post-hoc test).  †P < 0.05 
(exercise effect; post-hoc test).  Open bars = without insulin; filled bars = with insulin. 
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Figure 5.5   
TBC1D1 PAS-phosphorylation in rat epitrochlearis muscles.  A) 0hPEX, B) 3hPEX, 
C) 3hPEX-Chow, and D) 27hPEX.  For rats in the 0hPEX group, muscles were frozen 
immediately after dissection and used to determine the insulin-independent effect of 
exercise.  For rats in the 3hPEX, 3hPEX-Chow and 27hPEX groups and their respective 
SED controls, one of the paired muscles from each rat was incubated without insulin and 
the contralateral muscle was incubated with insulin.  A) Data are means ± SE, n = 6 per 
group. *P < 0.05 (exercise effect; t-test). Open bar = 0hSED; grey bar = 0hPEX.  B-D) 
Data are means ± SE, n = 6-10 per group. *P < 0.05 (insulin effect; post-hoc test). Open 
bars = without insulin; filled bars = with insulin. 
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Figure 5.6   
Akt threonine phosphorylation and Akt activity in rat epitrochlearis muscles.  One 
of the paired muscles from each rat was incubated without insulin and the contralateral 
muscle was incubated with insulin.  A) pThrAkt 3hPEX, B) pThrAkt 3hPEX-Chow, C) 
pThrAkt 27hPEX, and D) Akt activity 3hPEX.  Data are means ± SE, n = 7-12 per group. 
*P < 0.05 (insulin effect; post-hoc test); †P < 0.05 (exercise effect; post-hoc test). Open 
bars = without insulin; filled bars = with insulin.  Open bars = without insulin; filled bars 
= with insulin.  The SE value for the basal 3hSED group in Fig. 6A is too small to be 
visible. 
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Time, h SED PEX SED-Chow PEX-Chow 

0 14.4±1.5* 5.9±0.6#   

3 13.5±1.9* 5.8±1.1# 17.5±2.2* 25.9±1.8  

27 9.4±0.3# 8.8±1.1#   

 
 
 
Table 5.1  
Muscle glycogen concentration.  Values are means ± SE (µmol/g muscle); n = 6-
8/group. SED, sedentary; PEX, postexercise; SED- and PEX-chow, SED and PEX rats, 
respectively, with unlimited access to food. Time refers to the time at which muscles 
were sampled relative to the completion of exercise by PEX groups. Values not marked 
with the same symbol (*, #, or ) were significantly different (P < 0.05). 0 = immediately 
PEX; 3 = 3 h PEX; 27 = 27 h PEX. 
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CHAPTER VI 

 

STUDY 4 

 

In Vivo Exercise Followed by In Vitro Contraction Additively Elevates Subsequent 
Insulin-stimulated Glucose Transport by Rat Skeletal Muscle  

 

ABSTRACT  

 The cellular mechanisms whereby prior exercise enhances insulin-stimulated 

glucose transport are not well understood.  Previous studies suggested that a prolonged 

increase in phosphorylation of Akt substrate of 160 kDa (AS160), a Rab GTPase-

activating protein (RabGAP) that is implicated in the regulation of glucose transport, may 

be important for the post-exercise increase in insulin sensitivity.  Isolated skeletal 

muscles that are stimulated to contract in vitro only have a subsequent increase in insulin-

stimulated glucose transport when incubated in serum during contraction.  In this study, 

dissected rat epitrochlearis muscles were stimulated to contract with or without serum to 

identify whether increased insulin-dependent glucose transport coincides with enhanced 

AS160 or TBC1D1 (a paralog of AS160) phosphorylation at 3 h post-electrical 

stimulation.  An increase in insulin-dependent glucose transport occurred in the absence 

of enhanced AS160 or TBC1D1 phosphorylation 3 h after electrical stimulation, 

suggesting that increased insulin sensitivity in isolated skeletal muscle that were 

stimulated to contract occur independent of increased phosphorylation of these two 
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RabGAP proteins.  Importantly, the combined effects of prior exercise and prior electrical 

stimulation in the same muscles on a subsequent increase in insulin-stimulated glucose 

transport were additive, suggesting that exercise and electrical stimulation may stimulate 

insulin-stimulated glucose transport through distinct mechanisms.  It remains possible 

that in vivo exercise stimulated the subsequent increase in insulin sensitivity through 

increased AS160 phosphorylation, whereas an unidentified mechanism may be important 

for the electrical stimulation effect on insulin sensitivity.   

 

INTRODUCTION 

 A single bout of exercise leads to: 1) an increase in insulin-independent glucose 

transport during and immediately after exercise, and 2) a subsequent increase in insulin-

dependent glucose transport (5, 24).  The enhanced insulin-stimulated glucose transport 

post-exercise occurs as a result of greater insulin-stimulated cell-surface GLUT4 

localization (16), but the cellular mechanisms that lead to this event are not well 

understood (5).  Many studies have found that prior exercise does not amplify insulin 

effects on proximal insulin signaling steps (e.g., insulin receptor tyrosine kinase activity, 

insulin receptor substrate tyrosine phosphorylation, insulin receptor substrate association 

phosphatidylinositol-3 kinase activity, Akt serine phosphorylation, etc.) (1, 8, 15, 29, 30).  

In contrast, a number of studies have recently found a prolonged increase in 

phosphorylation of Akt substrate of 160 kD (AS160 also known as TBC1D4) after 

exercise (1, 12, 26, 28). We previously proposed that this persistent increase in AS160 

phosphorylation may be important for the post-exercise enhancement of insulin-

stimulated glucose transport (1, 3, 12). 
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 AS160 and TBC1D1 are paralog Rab GTPase-activating proteins (RabGAP) that 

appear to regulate GLUT4 vesicular trafficking (6, 17, 18, 23, 25).  In basal conditions, 

AS160 appears to restrain GLUT4 exocytosis presumably by its active RabGAP domain.  

Insulin-stimulated phosphorylation of AS160 on specific motifs appears to inactivate its 

RabGAP domain, thus allowing GLUT4 to become translocated (19, 25).  In contrast, 

evidence from cultured cells suggests that insulin may be less effective in regulating 

TBC1D1’s restraint of GLUT4 translocation (6, 7, 17, 23).  Results from skeletal muscle 

are consistent with the idea that phosphorylation of TBC1D1 may be important for an 

increase in insulin-independent glucose transport immediately after exercise (11, 12, 22).  

Nevertheless, enhanced phosphorylation of TBC1D1 had reversed at 3 h post-exercise, 

suggesting it may not be essential for the persistently increased insulin sensitivity post-

exercise (12).  

 Although in vivo exercise results in a subsequent increase in insulin-stimulated 

glucose transport, isolated skeletal muscle that are electrically stimulated to contract in 

serum-free buffer do not exhibit enhanced insulin-stimulated glucose transport (4).  Gao 

et al. found that when isolated skeletal muscles were stimulated to contract in serum, 

there was a subsequent increase in insulin-stimulated glucose transport (13).  Therefore, 

they hypothesized that a serum factor may be essential for the post-exercise increase in 

insulin-stimulated glucose transport (13).    

 To further investigate the role that increased phosphorylation of AS160 may play 

on insulin sensitivity, isolated skeletal muscle was stimulated to contract with or without 

serum.  Glucose transport and phosphorylation of AS160 and TBC1D1 were measured 

immediately or 3 h after electrical stimulation.  We hypothesized that in vitro contraction 
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results in 1) increased insulin-independent glucose transport and AS160 phosphorylation 

immediately after electrical stimulation regardless of the presence of serum, but 2) serum 

would be required for a persistent increase in AS160 phosphorylation and enhanced 

insulin-stimulated glucose transport 3 h after electrical stimulation and 3) the effects of 

exercise and electrical stimulation would not be additive for insulin-stimulated glucose 

transport or AS160 phosphorylation, consistent with the idea that they share the same 

mechanism (increased AS160 phosphorylation) for increased insulin sensitivity.  

 

METHODS  

Materials.  Serum from male Wistar rats (120-200g, fasted for 12 hr) was 

purchased from Gemini Bio-Products (West Sacramento, CA).  Human recombinant 

insulin was obtained from Eli Lilly (Indianapolis, IN).  Reagents and apparatus for SDS-

PAGE and immunoblotting were purchased from Bio-Rad (Hercules, CA).  Bicinchoninic 

acid protein assay reagent (no. 23227), T-PER tissue protein extraction reagent (no. 

78510) and West Dura Extended Duration Substrate (no. 34075) were from Pierce 

Biotechnology (Rockford, IL).  Anti-phospho-Thr308Akt (pThr308Akt, no. 9275), anti-

phospho-Thr172AMPK (pThr172AMPK, no. 2531), anti-phospho-(Ser/Thr) Akt substrate 

(PAS, no. 9611), and goat anti-rabbit IgG HRP conjugate (no. 7074) were from Cell 

Signaling Technology (Danvers, MA).  PAS was designed to recognize Akt 

phosphorylation motif peptide sequences (RXRXXpT/S).  Total TBC1D1 and phospho-

Ser237 (equivalent to Ser237 in humans and Ser231 in rats) TBC1D1 (pSer237TBC1D1) 

polyclonal antibody and were provided by Dr. Makoto Kanzaki at Tohoku University 

(20).  Anti-AS160 (no. 07-741), anti-phospho-Thr642 (equivalent to Thr642 in humans and 
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Thr597 in rats) AS160 (pThr642AS160, no. 07-802) and protein G agarose beads (no. 16-

266) were from Upstate USA (Charlottesville, VA).  3-O-Methyl-[3H]glucose ([3H]3-

MG) was from Sigma-Aldrich. [14C]Mannitol was from Perkin Elmer (Waltham, MA).  

Other reagents were from Sigma-Aldrich and Fisher Scientific (Pittsburgh, PA).   

Insulin concentration in serum.  Rat serum purchased from Gemini Bio-Products 

was submitted to the Chemistry Laboratory Core of the Michigan Diabetes Research and 

Training Center for the measurement of insulin concentration.  The insulin concentration 

of serum (21 µU/mL) was determined with a double-antibody radioimmunoassay using 

an 125I-Human insulin tracer (Linco Research), a rat insulin standard (Novo), a guinea pig 

anti-rat insulin first antibody (Linco Research), and a sheep anti-guinea pig gamma 

globulin-PEG second antibody (MDRTC). 

Animal treatment.  Procedures for animal care were approved by the University of 

Michigan Committee on Use and Care of Animals.  Male Wistar rats (120–200 g; Harlan, 

Indianapolis, IN) were provided with rodent chow (Lab Diet; PMI Nutritional 

International, Brentwood, MO) and water ad libitum until 1700 the night before the 

experiment when their food was removed.  On the following day between 800 and 1000, 

rats were randomly assigned to:  1) resting (REST), 2) post-electrical stimulation (in vitro 

electrical stimulation: PES), 3) post-exercise (in vivo exercise: PEX) or 4) post-exercise 

and electrical stimulation (in vivo exercise followed by in vitro electrical stimulation: 

PEX+PES) groups.  For all experiments, rats were anesthetized with an intrapertoneal 

injection of sodium pentobarbital (50 mg/kg wt).  While rats were under deep anesthesia, 

both epitrochlearis muscles were rapidly dissected. 
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In vitro electrical stimulation.  Paired isolated epitrochlearis muscles were 

incubated in either Krebs-Henseleit buffer (KHB) + 0.1% bovine serum albumin (BSA) + 

8 mM glucose + 32 mM mannitol (Solution 1) or in serum for 30 min in a water bath at 

35°C.  For all incubation steps, flasks were continuously gassed from above with 95% 

O2/5% CO2 and shaken in a heated water bath.  Subsequently, one of the paired muscles 

was transferred to vials containing identical media (REST).  The contralateral muscle was 

attached to a glass rod and a force transducer (Radnoti, Litchfield, CT).  Mounted 

muscles were incubated in identical media and were stimulated to contract (PES) as 

previously described (Grass S48 Stimulator, Grass Instruments, Quincy, MA; 0.1 ms 

twitch, 100 Hz train for 10 s, 10 trains, 10 min) (9).  For the experiments immediately 

post-electrical stimulation (0hREST and 0hPES, Fig. 6.1A), muscles were either freeze-

clamped or transferred to vials containing KHB + 0.1% BSA + 2 mM pyruvate + 36 mM 

mannitol (Solution 2; 30°C, 10 min) prior to 3-MG transport measurement.  For the 

experiments 3 h post-electrical stimulation (3hREST and 3hPES, Fig. 6.2A and 6.S2A), 

muscles were incubated according to the protocol previously used (9, 13).  Immediately 

after electrical stimulation, all muscles (regardless of whether the previous incubation 

was with or without serum) were transferred to vials containing Solution 1 for a 5 min 

wash step at 35°C.  Muscles were then transferred to other vials containing Solution 1 for 

3 h at 35°C.  After 3 h, muscles were transferred to flasks containing Solution 2 for 30 

min at 30°C.  During this step, for some muscle pairs, Solution 2 contained 50 µU/mL of 

insulin; for other muscle pairs Solution 2 contained no insulin.  After 30 min, all muscles 

were incubated with 3-MG (see 3-MG transport below).  
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Serum vs. insulin experiment.  One experiment compared the effect of incubation 

of muscles in serum to incubation of muscles in 21 µU/mL insulin (which equaled the 

insulin concentration in serum; Fig. 6.S1A).  Immediately after dissection, isolated 

epitrochlearis muscles were placed in Solution 1 with no insulin, Solution 1 with 21 

µU/mL of insulin, or serum for 30 min at 35°C.  Muscles were then transferred to a 

second flask including the identical media as in Step 1 for 10 min before being freeze-

clamped.  

Additivity experiments.  In experiments comparing the combined effects of 

exercise and electrical stimulation on the subsequent increase in insulin-stimulated 

glucose transport, four groups were studied: REST, PES, PEX and PEX+PES.  Prior to 

anesthetization and muscle incubation steps, PEX or PEX+PES rats swam in a barrel 

filled with water (35°C) to a depth of ~60 cm (6-8 rats/barrel) for 4 x 30 min bouts, with 

a 5-min rest period between each bout.  Immediately after exercise or rest, both 

epitrochlearis muscles were rapidly removed and were either frozen immediately (0hPEX 

or 0hREST, Fig. 6.4A) or were frozen after subsequent in vitro electrical stimulation 

(0hPEX+PES or 0hPES, Fig 6.4A).  In another set of experiments, immediately after 

exercise or rest, both epitrochlearis muscles were dissected out and incubated in serum 

prior to and during electrical stimulation (or resting), followed by a 5 min wash in 

Solution 1, a 3 h rest in Solution 1 and a 30 min rinse in Solution 2 (± insulin) prior to 

incubation with 3-MG as described below (3hREST, 3hPES, 3hPEX and 3hPEX+PES, 

Fig. 6.3A).   

3-MG transport and homogenization.  After incubation in Solution 2, muscles 

were transferred to flasks containing KHB + 0.1% BSA + 8 mM 3-MG (including [3H]3-
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MG at a final specific activity of 0.25 mCi/mmol), and 2 mM mannitol (including 

[14C]mannitol at a final specific activity of 6.25 µCi/mmol) with or without 50 µU/mL 

insulin at 30°C.  After 10 min, muscles were rapidly blotted, trimmed, freeze-clamped 

and stored (-80°C) until processed.  

Frozen muscles were homogenized in 1 ml ice-cold homogenization buffer (2 mM 

Na3VO4, 2 mM EDTA, 2 mM EGTA, 2.5 mM sodium pyrophosphate, 1 mM ß-

glycerophosphate, 1 mM phenylmethanesulphonylfluoride, and 1 µg/ml leupeptin in T-

PER) using glass-on-glass tubes (Kontes, Vineland, NJ).  Homogenates were 

subsequently rotated at 4°C for 1 h before being centrifuged (15,000 g for 10 min at 4°C).  

Aliquots of the supernatant from muscles used for the 3-MG transport measurement were 

pipetted into vials with scintillation cocktail for scintillation counting, and 3-MG 

transport was determined as previously described (2).  A portion of supernatant was used 

to determine protein concentration according to the manufacturer’s instructions (Pierce 

Biotechnology Catalog no. 23227).  The remaining supernatant was stored at –80°C until 

further analyzed.  

Immunoprecipitation.  Homogenized muscle (200-300 µg protein) was precleared 

and immunoprecipitated with anti-AS160 or anti-TBC1D1 at 4°C with protein G agarose 

beads.  After gentle rotation overnight, the immunoprecipitation mix was centrifuged at 

4,000 g, and the supernatant was aspirated.  After washing (four times with 500 µl 

phosphate-buffered saline), the protein bound to the beads was eluted with 2x SDS 

loading buffer and boiled before loading on a polyacrylamide gel. 

Immunoblotting.  Samples (immunoprecipitates or homogenates) were boiled with 

SDS loading buffer, separated by PAGE, and electrophoretically transferred to 
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nitrocellulose. Samples were then rinsed with Tris-buffered saline plus Tween (TBST; 

0.14 mol/l NaCl, 0.02 mol/l Tris base, pH 7.6, and 0.1% Tween), blocked with 5% nonfat 

dry milk in TBST for 1 h at room temperature, washed 3 x 5 min at room temperature, 

and treated with the primary antibodies (1:1,000 in TBST + 5% BSA) overnight at 4°C.  

Blots were then washed 3 x 5 min with TBST, incubated with the secondary antibody, 

goat anti-rabbit IgG HRP conjugate (1:20,000 in TBST + 5% milk), for 1 h at room 

temperature, washed again 3 x 5 min with TBST, and developed with West Dura 

Extended Duration Substrate reagent.  Protein bands were quantified by densitometry 

(Alpha Innotech, San Leandro, CA).  The mean values for basal muscles (REST without 

insulin) on each blot were normalized to equal 1.0, and then all samples on the blot were 

expressed relative to the normalized basal value. 

Muscle glycogen concentration.  Muscles used for measurement of glycogen were 

weighed and then homogenized in ice-cold 0.3 M perchloric acid.  An aliquot of the 

homogenate was stored at -80ºC for later determination of glycogen concentration by the 

amyloglucosidase method (21).  

Statistical analysis.  Statistical analyses were performed using Sigma Stat version 

2.0 (San Rafael, CA).  Data were expressed as mean ±SE.  P  0.05 was considered 

statistically significant.  Data from the REST vs. PES (0h and 3h) experiments were 

analyzed with two-way ANOVA.  Data from the serum vs. insulin experiment were 

analyzed using one-way ANOVA.  Data from the additivity experiments were analyzed 

with: 1) one-way ANOVA for those muscles that were frozen immediately after exercise 

and/or electrical stimulation (0hPEX+PES) or 2) two-way ANOVA for those muscles 

that were frozen 3 h after exercise and/or electrical stimulation (3hPEX+PES).  For all 
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ANOVA, the Student-Newman-Keuls post-hoc test was used to identify the source of 

significant variance.  When data failed the Levene Median test for equal variance, the 

Kruskal-Wallis nonparametric ANOVA on ranks was used with Dunn’s post-hoc test.   

 

RESULTS 

Immediately post-electrical stimulation.  Glucose transport determined 

immediately after the electrical stimulation (0hPES) was significantly greater (P < 0.05) 

compared with 0hREST values, regardless of the incubation media (serum-free buffer or 

serum) (Fig. 6.1B).  Electrical stimulation (0hPES) also resulted in significantly greater 

pThr308Akt, pThr172AMPK, PAS-AS160, pThr642AS160, PAS-TBC1D1, and 

pSer237TBC1D1 compared with the 0hREST group, regardless of the incubation media 

(serum-free buffer or serum) (P < 0.05, Fig. 6.1C-H).   

In the muscles that were incubated in serum prior to and during electrical 

stimulation (or resting), glucose transport (measured immediately after ± electrical 

stimulation) was significantly elevated compared to the muscles that were incubated in 

serum-free buffer prior to and during the electrical stimulation step (Fig. 6.1B).  

Incubation in serum had no effect on pThr172AMPK and pSer237TBC1D1 (Fig. 6.1D, H).  

In contrast, muscles that were incubated in serum prior to and during electrical 

stimulation (or resting) had greater values for pThr308Akt, PAS-AS160 and pThr642AS160 

(P < 0.05) compared to the muscles that were incubated in serum-free buffer prior to and 

during electrical stimulation step (Fig. 6.1C, E, F).  Incubation in serum resulted in 

greater PAS-TBC1D1 (compared to incubation in serum-free buffer) in muscles that were 

not stimulated to contract (P < 0.05), but incubation in serum had no effect on PAS-
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TBC1D1 (compared to incubation in serum-free buffer) in muscles that were stimulated 

to contract (Fig. 6.1G).  Incubating muscles in insulin at concentration equivalent to that 

in the serum (21 µU/mL) resulted in levels of pThr308Akt, PAS-AS160, pThr642AS160 

and PAS-TBC1D1 that were greater compared to muscles incubated in serum-free buffer 

(P < 0.05) but not different from muscles incubated in serum (Fig. 6.S1).  Thus, the 

effects of serum alone on these outcomes could be accounted for by the effects produced 

by the insulin concentration that was found in the serum. 

3 h post-electrical stimulation without serum.  As previously reported (4, 9, 13), 

prior electrical stimulation in serum-free buffer (3hPES) had no effect on glucose 

transport in basal or insulin-stimulated muscles (measured 3 h after electrical stimulation) 

compared to 3hREST (Fig. 6.S2B).  As expected, prior electrical stimulation had no 

effect on the phosphorylation of any of the proteins studied (pThr308Akt, pThr172AMPK, 

PAS-AS160, pThr642AS160, PAS-TBC1D1, and pSer237TBC1D1) in basal or insulin-

stimulated muscles at 3hPES compared to 3hREST (Fig. 6.S2C-H).  Insulin treatment 

(immediately prior to and during the incubation with 3-MG) significantly elevated 3-MG 

transport, pThr308Akt, PAS-AS160, pThr642AS160 and PAS-TBC1D1 (P < 0.05, Fig. 

6.S2B-C, E-G) compared to no insulin treatment, but had no effect on pThr172AMPK or 

pSer237TBC1D1 (Fig. 6.S2D, H).   

3 h post-electrical stimulation with serum.  As previously reported (9, 13), prior 

electrical stimulation in the presence of serum (3hPES) resulted in greater insulin-

stimulated glucose transport (measured 3 h after electrical stimulation) compared to 

3hREST (P < 0.05, Fig. 6.2B).  In contrast, prior electrical stimulation had no effect on 

the phosphorylation of any of the proteins studied (pThr308Akt, pThr172AMPK, PAS-
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AS160, pThr642AS160, PAS-TBC1D1, and pSer237TBC1D1) in basal or insulin-

stimulated muscles at 3hPES compared to 3hREST (Fig. 6.2C-H).  Insulin treatment 

(immediately prior to and during the incubation with 3-MG) significantly elevated 3-MG 

transport, pThr308Akt, PAS-AS160, pThr642AS160 and PAS-TBC1D1 (P < 0.05, Fig. 

6.2B-C, E-G) compared to no insulin treatment, but had no effect on pThr172AMPK or 

pSer237TBC1D1 (Fig. 6.2D, H).   

Additivity experiments.  The purpose of these experiments was to examine the 

possibility that prior in vitro contraction (in serum) enhances insulin-stimulated glucose 

transport through a mechanism distinct from that after exercise.  Insulin-stimulated 

glucose transport in muscles from rats that exercised immediately prior to electrical 

stimulation of the isolated muscles (PEX+PES) was compared to that of muscles that 

were subjected to PEX or PES treatment alone (Fig. 6.3B).  Total force production during 

electrical stimulation (11,102.3 ± 755.5 g·min·g muscle-1 vs. 8969.8 ± 1129.2 g·min·g 

muscle-1, P < 0.05), but not peak force (478.0 ± 26.1 g·g muscle-1 vs. 424.5 ± 52.4 g·g 

muscle-1, P = 0.122), was significantly reduced in PEX+PES muscles compared to PES 

muscles.  Either exercise (3hPEX, Fig. 6.3C, 3rd bar) or electrical stimulation (3hPES, Fig. 

6.3C, 2nd bar) induced a subsequent increase in insulin-stimulated glucose transport, with 

no significant differences between the groups.  Importantly, muscles that underwent 

electrical stimulation after being dissected from exercised rats (3hPEX+PES, Fig. 6.3C, 

4th bar) had greater insulin-stimulated glucose transport compared to muscles from the 

3hPEX or 3hPES group.  The greater insulin-stimulated glucose transport in 3hPEX+PES 

muscles was not accompanied by altered pThr642AS160, PAS-TBC1D1 or GLUT4 

abundance in the 3hPEX+PES group versus the PEX group (Fig. 6.3D-F).  Furthermore, 
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glycogen concentration, pThr172AMPK and pThr642AS160 were not different for the 

0hPEX+PES group compared to the 0hPES group (Fig. 6.4B-D).  Doubling the amount 

of exercise (1 h vs. 2 h) or electrical stimulation (5 tetani vs. 10 tetani) did not result in 

higher values for the subsequent insulin-stimulated glucose transport and pThr642AS160 

(Fig. 6.5 and 6.6), providing evidence that the protocol used for each stimulus (exercise 

or electrical stimulation) was maximally effective.  

 

DISCUSSION 

 A primary aim of this study was to determine if the enhanced insulin-stimulated 

glucose transport 3 h after in vitro electrical stimulation of isolated skeletal muscle in 

serum would be accompanied by elevated AS160 phosphorylation as occurs after in vivo 

exercise.  Consistent with previous reports (4, 9, 10, 13, 14), in vitro electrical stimulation 

of isolated rat epitrochlearis muscles resulted in:  1) a subsequent increase in insulin 

sensitivity 3 h after electrical stimulation when incubated in rat serum; and 2) unaltered 

insulin sensitivity 3 h after electrical stimulation in serum-free buffer.  However, neither 

group was characterized by a prolonged increased AS160 phosphorylation at 3 h post-

contraction despite an elevated AS160 phosphorylation immediately after in vitro 

contraction.  These results contrast with the prolonged increase in AS160 

phosphorylation that accompanied the enhanced insulin-stimulated glucose transport at 3 

and 27 h after in vivo exercise (1, 12).  Importantly, insulin-stimulated glucose transport 

in muscles from rats that had undergone in vivo exercise immediately prior to in vitro 

electrical stimulation (PEX+PES) was greater than values found in muscles after either in 

vivo exercise (PEX) or in vitro electrical stimulation (PES) alone.  These results provide 
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evidence to suggest that in vivo exercise and in vitro electrical stimulation may stimulate 

enhanced insulin-stimulated glucose transport through distinct mechanisms.  The 

essentially additive effects of in vivo exercise and in vitro contraction on the insulin-

stimulated glucose transport in the PEX+PES group was not attributable to differences in 

GLUT4 abundance, glycogen depletion or phosphorylation of AS160, TBC1D1 or 

AMPK.    

 Arias et al. (1) found a prolonged increase in AS160 phosphorylation concomitant 

with improved insulin-stimulated glucose transport 3-4 h after in vivo exercise and 

suggested that the enhanced AS160 phosphorylation may play a role in post-exercise 

increase in insulin-stimulated glucose transport.  Consistent with this idea, we recently 

extended this observation by demonstrating that: 1) at 27 h post-exercise both AS160 

phosphorylation and insulin-stimulated glucose transport remained elevated in fasted rats, 

and 2) when rats were allowed to eat a high-carbohydrate chow for 3 h after exercise, the 

increased AS160 phosphorylation and the increased insulin-stimulated glucose transport 

were both reversed to levels found in sedentary controls (12).  Other studies have also 

supported that AS160 phosphorylation remains enhanced several hours post-exercise in 

humans (26, 28).  In contrast, in vitro contraction in serum-free buffer has not been found 

to induce a subsequent increase in insulin-stimulated glucose transport (4, 13), but 

contraction in serum does lead to increased insulin sensitivity (9, 13).  Hence, we 

hypothesized that a protocol for in vitro electrical stimulation in serum that was known to 

result in a subsequent increase in insulin-stimulated glucose transport would also induce a 

prolonged increase in AS160 phosphorylation.  As expected, insulin-stimulated glucose 

transport was enhanced 3 h after in vitro contraction in serum.  However, it did not result 
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in a prolonged increase in AS160 phosphorylation (measured by PAS-AS160 and 

pThr642AS160) at 3hPES.   Therefore, enhanced insulin-stimulated glucose transport in 

3hPES group appears to occur independent of enhanced AS160 phosphorylation, at least 

at Thr642.  Treebak et al., recently reported that prior exercise resulted in enhanced 

phosphorylation of AS160 on Ser318, Ser341 and Ser751 (28).  It remains possible that 

phosphorylation on these sites are enhanced 3 h after in vitro electrical stimulation. 

TBC1D1, a paralog protein of AS160 (or TBC1D4), has also been implicated in 

the regulation of GLUT4 translocation (6, 11, 23, 27).  Recently we demonstrated that 

PAS-TBC1D1 was not enhanced 3 h after in vivo exercise (12).  It remained possible that 

phosphorylation of TBC1D1 might play a role in enhanced insulin sensitivity with in 

vitro electrical stimulation in the presence of serum.  However, TBC1D1 phosphorylation 

(measured by PAS-TBC1D1 or pSer237TBC1D1) was unchanged for 3hPES vs. 3hREST 

values, suggesting that enhanced insulin sensitivity after electrically stimulated 

contraction in vitro occurs independent of enhanced phosphorylation of TBC1D1 Ser237.  

 At first glance, the results with in vitro contraction may be interpreted to suggest 

that enhanced AS160 phosphorylation post-exercise is only incidental to the enhanced 

insulin-stimulated glucose transport after in vivo exercise.  However, this interpretation is 

based on the assumption that exercise and electrical stimulation enhance insulin-

stimulated glucose transport through an identical mechanism. Although that is one 

possibility, there are two other possibilities.  The mechanisms for elevated insulin-

stimulated glucose transport PEX and PES may be: 1) mutually exclusive (in which event, 

it remains possible that AS160 phosphorylation is important for elevated insulin 

sensitivity PEX, but not PES);  or 2) partially overlapping (in which event AS160 
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phosphorylation may or may not be important for a part of the PEX improvement in 

insulin sensitivity).  In an attempt to distinguish among these possibilities, muscles from 

rats that had undergone in vivo exercise prior to in vitro electrical stimulation 

(PEX+PES) were compared to muscles after either in vivo exercise (PEX) or in vitro 

electrical stimulation (PES) alone.  Importantly, insulin-stimulated increase in glucose 

transport (Δ-insulin, calculated by subtracting glucose transport in muscles incubated 

without insulin from glucose transport in muscles incubated with insulin) in PEX+PES 

group was significantly greater than that of PEX or PES group.  Furthermore, the effect 

was essentially additive as evidenced by the approximately equivalent values for sum of 

1) Δ-insulin in 3hPEX group above that of 3hREST group (0.156 µmol/g/10min) and 2) 

Δ-insulin in 3hPES group above that of 3hREST group (0.179 µmol/g/10min) compared 

with 3) Δ-insulin in 3hPEX+PES group above that of 3hREST group (0.362 

µmol/g/10min).  Doubling the amount of in vivo exercise (1 h vs. 2 h) or in vitro 

contraction (5 tetani vs. 10 tetani) did not result in higher values for the subsequent 

insulin-stimulated glucose transport.  The apparent additivity of the effects on insulin-

stimulated glucose transport suggests that distinct mechanisms may be responsible for the 

enhanced insulin sensitivity after in vivo exercise or in vitro electrical stimulation.   

 We attempted to identify the mechanism whereby insulin-stimulated glucose 

transport in PEX+PES group is enhanced above that of PEX or PES group.  We found 

that levels of 1) AS160 Thr642 phosphorylation, TBC1D1 PAS-phosphorylation and 

GLUT4 abundance found in 3hPEX+PES group, and 2) AS160 Thr642 phosphorylation, 

AMPK phosphorylation and glycogen depletion found in 0hPEX+PES group were not 

greater than the levels found in PEX group.  Therefore, the further enhancement in 
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insulin sensitivity in the PEX+PES group cannot be attributed to the differences in these 

factors.   

 One possible explanation for the reversed AS160 phosphorylation in the 3hPES 

group (not different from the level of 3hREST group) is that a prior electrical stimulation 

activates the dephosphorylation of AS160 (e.g., via enhanced activation of phosphatases).  

Therefore, it was possible that muscles from rats that have undergone in vivo exercise 

prior to in vitro electrical stimulation (PEX+PES) would exhibit reversed AS160 Thr642 

phosphorylation 3 h after contraction (i.e., in vitro contraction may interfere with the 

effect of in vivo exercise to persistently elevate AS160 Thr642 phosphorylation).  Had the 

values for AS160 Thr642 phosphorylation in 3hPEX+PES group been reversed to the 

levels of 3hREST group, it would have provided evidence against the role of enhanced 

AS160 Thr642 phosphorylation in increased insulin-stimulated glucose transport post-

exercise.  However, AS160 Thr642 phosphorylation in the 3hPEX+PES group remained 

elevated above the 3hREST group, similar to the level of the 3hPEX group, consistent 

with the idea that AS160 Thr642 phosphorylation  may play a role in enhanced insulin-

stimulated glucose transport 3 h after exercise.  

 In conclusion, this study provides novel insights into the mechanisms for 

enhanced insulin-stimulated glucose transport with in vivo exercise or in vitro electrical 

stimulation.  Prolonged increase in AS160 phosphorylation has been repeatedly observed 

in rats and humans (1, 12, 26, 28), concomitant with enhanced insulin-stimulated glucose 

transport in rats (1, 12) and improved insulin sensitivity in humans (28).  However, the 

current study clearly demonstrated that the increased insulin sensitivity after in vitro 

electrical stimulation in serum is not because of a prolonged increase in AS160 
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phosphorylation (PAS or Thr642).  At first glance, this may be interpreted to suggest that a 

prolonged increase in AS160 phosphorylation is only incidental to the enhanced insulin-

stimulated glucose transport post-exercise.  However, the effects of in vivo exercise and 

in vitro electrical stimulation on a subsequent increase in insulin-stimulated glucose 

transport were additive, suggesting that distinct mechanisms may be responsible for 

increased insulin sensitivity after in vivo exercise or in vitro electrical stimulation.  

Therefore, enhanced AS160 phosphorylation remains a viable candidate for playing an 

essential role in increased insulin-stimulated glucose transport after in vivo exercise.  The 

apparently distinct mechanisms for in vitro electrical stimulation to enhance insulin 

sensitivity can also be explored as a potential alternative pathway to therapeutically 

enhance insulin-stimulated glucose transport in skeletal muscle.  
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Figure 6.1   
0hPES vs. 0hREST.  Rat epitrochlearis muscles were incubated in either buffer or serum 
prior to and during in vitro electrical stimulation or resting control.  A) Experimental 
design, B) Rate of 3-O-methylglucose (3-MG) transport, C) pThr308Akt, D) 
pThr172AMPK, E) PAS-AS160, F) pThr642AS160, G) PAS-TBC1D1 and H) 
pSer237TBC1D1.  Data were analyzed with two-way ANOVA and the Student-Newman-
Keuls post-hoc test.  *P < 0.05 (electrical stimulation effect; post-hoc test); †P < 0.05 
(serum effect; post-hoc test).  Data are means ± SE, n = 4-6 per group.  Open bars = 
resting (0hREST); grey bars = immediately after electrical stimulation (0hPES).  RU = 
relative units. 
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Figure 6.2   
3hPES vs. 3hREST.  Rat epitrochlearis muscles were incubated in serum prior to and 
during in vitro electrical stimulation or resting control and were subsequently incubated 
in buffer solution for 3 h.  A) Experimental design, B) Rate of 3-O-methylglucose (3-
MG) transport, C) pThr308Akt, D) pThr172AMPK, E) PAS-AS160, F) pThr642AS160, G) 
PAS-TBC1D1 and H) pSer237TBC1D1.  Data were analyzed with two-way ANOVA and 
the Student-Newman-Keuls post-hoc test.  *P < 0.05 (insulin effect; post-hoc test); †P < 
0.05 (post-electrical stimulation effect; post-hoc test).  Data are means ± SE, n = 6-12 per 
group.  Open bars = resting in serum followed by 3 h incubation in buffer (3hREST); 
filled bars = in vitro electrical stimulation in serum followed by 3 h incubation in buffer 
(3hPES).  RU = relative units. 
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Figure 6.3   
3h post-exercise+electrical stimulation (3hPEX+PES).  Following 2 h of exercise bout 
(4 x 30 min) or sedentary, isolated rat epitrochlearis muscles were incubated in serum 
prior to and during in vitro electrical stimulation or resting control and were subsequently 
incubated in buffer solution for 3 h.  A) Experimental design, B) Rate of 3-O-
methylglucose (3-MG) transport; data for muscles incubated without insulin and those 
incubated with insulin were each analyzed with two-way ANOVA and the Student-
Newman-Keuls post-hoc test.  *P < 0.05 (significantly different from 3hREST); **P < 
0.05 (significantly different from 3hREST, 3hPEX and 3hPES).  C) Δ-insulin (increase 
above basal, calculated by subtracting the values for muscles incubated without insulin 
from the respective values of paired muscles incubated with insulin) for the rate of 3-O-
methylglucose (3-MG) transport; data were analyzed with two-way ANOVA and the 
Student-Newman-Keuls post-hoc test.  *P < 0.05 (significantly different from 3hREST); 
**P < 0.05 (significantly different from 3hREST, 3hPEX and 3hPES).  D) pThr642AS160; 
data for muscles incubated without insulin and those incubated with insulin were each 
analyzed with two-way ANOVA and the Student-Newman-Keuls post-hoc test.  *P < 
0.05 (significantly different from 3hREST, comparison within muscles that were 
incubated without insulin); #P < 0.05 (significantly different from 3hREST, comparison 
among muscles that were incubated with insulin).  E) PAS-TBC1D1; data were analyzed 
with two-way ANOVA and the Student-Newman-Keuls post-hoc test.  *P < 0.05 
(significantly different from 3hREST).  F) GLUT4 abundance.  Data are means ± SE, n = 
8-14 per group. 
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Figure 6.4   
Immediately after exercise+electrical stimulation (0hPEX+PES).  Following 2 h of 
exercise bout (4 x 30 min) or sedentary, isolated rat epitrochlearis muscles were frozen 
immediately or were incubated in serum or serum-free buffer prior to and during in vitro 
electrical stimulation or resting control and were frozen immediately after. A) 
Experimental design, B) Muscle glycogen concentration: data were analyzed with 
Kruskal-Wallis nonparametric ANOVA on ranks and the Dunn’s post-hoc test.  *P < 0.05 
(significantly different from 0hREST).  C) pThr172AMPK; data were analyzed with one-
way ANOVA and the Student-Newman-Keuls post-hoc test.  *P < 0.05 (significantly 
different from 0hREST); **P < 0.05 (significantly different from 0hREST and 0hPEX).  
D) pThr642AS160; data were analyzed with one-way ANOVA and the Student-Newman-
Keuls post-hoc test.  *P < 0.05 (significantly different from 0hREST); **P < 0.05 
(significantly different from 0hREST, 0hPES-buffer, 0hPEX and 0hPEX/PES-buffer).  
Data are means ± SE, n = 6-8 per group. 
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Figure 6.5   
Comparison of 1 h or 2 h bout of in vivo exercise.  Following 1 h of exercise bout (2 x 
30 min), 2 h of exercise bout (4 x 30 min), or sedentary, rat epitrochlearis muscles were 
incubated in serum and were subsequently incubated in buffer solution for 3 h.  A) 
Experimental design, B) Rate of 3-O-methylglucose (3-MG) transport; data for muscles 
incubated without insulin and those incubated with insulin were each analyzed with one-
way ANOVA and the Student-Newman-Keuls post-hoc test.  *P < 0.05 (significantly 
different from 3hREST).  C) Δ-insulin (increase above basal, calculated by subtracting 
the values for muscles incubated without insulin from the respective values of paired 
muscles incubated with insulin) for the rate of 3-O-methylglucose (3-MG) transport; data 
were analyzed with one-way ANOVA and the Student-Newman-Keuls post-hoc test.  *P 
< 0.05 (significantly different from 3hREST).  D) pThr642AS160; data for muscles 
incubated without insulin and those incubated with insulin were each analyzed with one-
way ANOVA and the Student-Newman-Keuls post-hoc test.  *P < 0.05 (significantly 
different from 3hREST, comparison within muscles that were incubated without insulin); 
#P < 0.05 (significantly different from 3hREST, comparison among muscles that were 
incubated with insulin).  Data are means ± SE, n = 6 per group. 
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Figure 6.6   
Comparison of 5 or 10 tetani in vitro electrical stimulation.  Isolated rat epitrochlearis 
muscles were incubated in serum prior to and during in vitro electrical stimulation (5 vs. 
10 tetani) or resting control and were subsequently incubated in buffer solution for 3 h.  
A) Experimental design, B) Rate of 3-O-methylglucose (3-MG) transport; data for 
muscles incubated without insulin and those incubated with insulin were each analyzed 
with one-way ANOVA and the Student-Newman-Keuls post-hoc test.  *P < 0.05 
(significantly different from 3hREST).  C) Δ-insulin (increase above basal, calculated by 
subtracting the values for muscles incubated without insulin from the respective values of 
paired muscles incubated with insulin) for the rate of 3-O-methylglucose (3-MG) 
transport; data were analyzed with one-way ANOVA and the Student-Newman-Keuls 
post-hoc test.  *P < 0.05 (significantly different from 3hREST).  D) pThr642AS160; data 
for muscles incubated without insulin and those incubated with insulin were each 
analyzed with one-way ANOVA and the Student-Newman-Keuls post-hoc test.  Data are 
means ± SE, n = 5-6 per group. 
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Supplemental Figure 6.S1   
Serum or 21 µU/mL insulin incubation. Rat epitrochlearis muscles were incubated in 
either serum-free buffer, serum or 21 µU/mL of insulin (equal to serum insulin 
concentration). A) Experimental deisgn, B) pThr308Akt, C) PAS-AS160, D) 
pThr642AS160 and E) PAS-TBC1D1.  Data were analyzed using one-way ANOVA and 
the Student-Newman-Keuls post-hoc test.  *P < 0.05 (significantly different from buffer 
group).  Data are means ± SE, n = 4-6 per group.  Open bars = incubated in serum-free 
buffer; grey bars = incubated in serum; filled bars = incubated in 21 µU/mL of insulin. 
RU = relative units.  
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Supplemental Figure 6.S2   
3hPES vs. 3hREST (in serum-free buffer).  Rat epitrochlearis muscles were incubated 
in serum-free buffer prior to and during in vitro electrical stimulation and were 
subsequently incubated in another buffer solution for 3 h.  A) Experimental design, B) 
Rate of 3-O-methylglucose (3-MG) transport, C) pThr308Akt, D) pThr172AMPK, E) PAS-
AS160, F) pThr642AS160, G) PAS-TBC1D1 and H) pSer237TBC1D1.  Data were 
analyzed with two-way ANOVA and the Student-Newman-Keuls post-hoc test.  *P < 
0.05 (insulin effect; post-hoc test).  Data are means ± SE, n = 6-12 per group.  Open bars 
= resting in serum-free buffer followed by 3 h incubation in buffer (3hREST); filled bars 
= in vitro electrical stimulation in serum-free buffer followed by 3 h incubation in buffer 
(3hPES).  RU = relative units. 
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CHAPTER VII 

 

DISCUSSION 

 

Focus of this Discussion 

 This discussion will 1) summarize the key findings of each study, 2) review 

relevant studies that were published during and after completion of the studies included 

in the dissertation, 3) describe how the findings in this dissertation advance the current 

understanding of the role that AS160 and TBC1D1 phosphorylation play on the 

regulation of skeletal muscle glucose transport after muscle contractile activity, 4) 

identify new questions raised by the results in the dissertation, 5) propose a brief research 

plan for a future experiment, and 6) provide overall conclusions. 

 

Summary of Key Findings 

 Results from this dissertation provide a number of novel insights into the cellular 

mechanisms involved in the regulation of insulin-independent and insulin-dependent 

glucose transport after a single bout of exercise.  Previous research established a need to 

investigate the role that phosphorylation of AS160 and TBC1D1 may play on the 

regulation of glucose transport during and after exercise.  Accordingly, the studies in this 

dissertation focused on exploring the possibility that AS160 or TBC1D1 phosphorylation 

may be involved in increased insulin-independent and insulin-dependent glucose 
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transport after a single bout of in vivo exercise or in vitro contractile activity.  A 

summary of the key findings is provided below. 

 

Study 1:  Contraction-stimulated Glucose Transport in Rat Skeletal Muscle is Sustained 

despite Reversal of Increased PAS-phosphorylation of AS160 and TBC1D1 

 Isolated rat epitrochlearis muscles were stimulated to contract (2 ms twitch, 2 Hz) 

for various lengths of time (5, 10, 20, 40 or 60 min) or were used for resting control.  One 

of the paired muscles was used for the measurement of 3-O-methylglucose transport 

whereas the contralateral muscle was frozen immediately and used for immunoblotting. 

• Consistent with previous results, pAkt (Ser473 and Thr308), pGSK3 (an Akt 

substrate), pCaMKII and pSRF (a CaMKII substrate) responded to contraction 

transiently, whereas pAMPK and pACC (an AMPK substrate) were increased 

throughout the duration of contraction.  

• Using immunoblotting, a contraction-responsive phosphorylated protein band, 

PAS-150, was identified and found to correspond with PAS-TBC1D1, a second 

contraction-responsive phosphorylated protein band, PAS-160, was found to 

correspond with PAS-AS160. 

• PAS-150 (TBC1D1) and PAS-160 (AS160) responded to contraction transiently 

(peaked at 20 min), despite sustained AMPK activation for 60 min. 

• Glucose transport was increased throughout the duration of contraction, despite 

reversal of the increases in PAS-150 (TBC1D1) and PAS-160 (AS160). 

• Glucose transport significantly correlated with pAMPK, but not with pGSK3, 

pCaMKII, PAS-150 or PAS-160. 
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Study 2:  Inhibition of contraction-stimulated AMPK Inhibits Contraction-stimulated 

Increases in PAS-TBC1D1 and Glucose Transport without Altering PAS-AS160 in Rat 

Skeletal Muscle 

 Isolated rat epitrochlearis muscles were incubated in either wortmannin or 

Compound C prior to and during in vitro electrical stimulation (2 ms twitch, 2Hz, 20 

min), insulin-stimulation (2 mU/mL, 20 min) or AICAR stimulation (2 mM, 40 min).  

One of the paired muscles was used for the measurement of 3-O-methylglucose transport 

whereas the contralateral muscle was frozen immediately and was used for 

immunoprecipitation and/or immunoblotting. 

• The PI3K inhibitor wortmannin eliminated the insulin-mediated increases in 

pThrAkt, pGSK3, PAS-160 (AS160), PAS-150 (TBC1D1) and glucose transport. 

• The PI3K inhibitor wortmannin eliminated contraction-stimulated increases in 

pThrAkt, pGSK3 and PAS-AS160 without affecting contraction’s elevation in 

pAMPK, pACC, PAS-TBC1D1 or glucose transport. 

• The AMPK inhibitor Compound C eliminated contraction-stimulated increases in 

pACC and PAS-TBC1D1 and partially inhibited (62%) contraction-stimulated 

increase in glucose transport, without affecting pThrAkt, pGSK3 or PAS-AS160. 

• Neither wortmannin nor Compound C affected tension development or pCaMKII 

with contraction. 

• Compound C eliminated AICAR-stimulated glucose transport without affecting 

insulin-stimulated glucose transport. 
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Study 3:  Increased AS160 Phosphorylation, but not TBC1D1 Phosphorylation, with 

Increased Post-exercise Insulin Sensitivity in Rat Skeletal Muscle 

 Male Wistar rats were randomly assigned to post-exercise (PEX) or sedentary 

(SED) treatment.  Rats were either:  1) anesthetized immediately post-exercise without 

access to food after exercise (0hPEX and 0hSED);  2) anesthetized 3 h post-exercise 

without access to food after exercise (3hPEX and 3hSED);  3) anesthetized 3 h post-

exercise with unlimited access to food after exercise (3hPEX-chow and 3hSED-chow);  

or 4) anesthetized 27 h post-exercise without access to food after exercise (27hPEX and 

27hSED).  Epitrochlearis muscles were dissected and were either frozen immediately or 

were incubated for the measurement of 3-O-methylglucose transport (without insulin for 

0hPEX and 0hSED groups and with or without insulin for other groups).  Frozen muscles 

were used for immunoprecipitation, immunoblotting or glycogen measurement.   

• Post-exercise glucose transport (measured in the absence of insulin) consistently 

tracked with PAS-TBC1D1 (i.e., both increased at 0h, and both reversed at 3h and 

27hPEX). 

• The reversal of post-exercise glucose transport (measured in the absence of 

insulin) at 3 and 27PEX was not accompanied by reversal of PAS-AS160 or 

pThr642AS160.  

• The post-exercise increase in insulin-stimulated glucose transport consistently 

tracked with enhanced PAS-AS160, pThr642AS160 and pThrAkt (i.e., both 

increased at 3hPEX and 27hPEX, and both reversed at 3hPEX-chow). 

• The post-exercise increase in insulin-stimulated glucose transport was not 

accompanied by enhanced PAS-TBC1D1 or Akt activity. 

182 
 



• Glycogen depletion coincided with enhanced insulin-stimulated glucose transport 

at 3hPEX and 3hPEX-chow, but not at 27hPEX. 

 

Study 4:  Additive Effects of In Vivo Exercise and In Vitro Contraction on Insulin-

stimulated Glucose Transport by Rat Skeletal Muscle 

 Male Wistar rats were randomly assigned to:  1) resting (REST);  2) post-

electrical stimulation (in vitro electrical stimulation, ± serum, 0.1 ms twitch, 100 Hz train 

for 10 s, 10 trains, 10 min: PES);  3) post-exercise (in vivo exercise: PEX);  or 4) post-

exercise and electrical stimulation (in vivo exercise followed by in vitro electrical 

stimulation: PEX+PES) groups.  After in vivo exercise or in resting controls, 

epitrochlearis muscles were dissected and were either immediately frozen (0hSED or 

0hPEX) or were incubated in rat serum prior to during in vitro electrical stimulation.  

Subsequently muscles were either frozen immediately (0hPES or 0hPEX+PES) or were 

incubated in buffer solution for 3 h prior to being incubated with 3-O-methylglucose 

transport (3hREST, 3hPEX, 3hPES or 3hPEX+PES).  Frozen muscles were used for 

immunoprecipitation, immunoblotting or glycogen measurement. 

• The increase in glucose transport with electrical stimulation (without insulin) 

consistently tracked with increases in PAS-AS160, pThr642AS160, PAS-TBC1D1, 

pSer237TBC1D1, pAMPK and pThrAkt (all were increased at 0hPES and all were 

reversed at 3hPES). 

• The post-contraction increase in insulin-stimulated glucose transport 3 h after 

electrical stimulation in serum was not accompanied by PAS-AS160, 

pThr642AS160, PAS-TBC1D1, pSer237TBC1D1, pAMPK or pThrAkt (with or 
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without insulin, values at 3hPES-serum was not different from values at 

3hREST). 

• Doubling the amount of exercise (1 h vs. 2 h) or electrical stimulation (5 tetani or 

10 tetani) did not result in a higher value for the subsequent insulin-stimulated 

glucose transport and pThr642AS160. 

• The effects of exercise (PEX) and electrical stimulation (PEX) on subsequent 

increase in insulin-stimulated glucose transport were additive in muscles that were 

electrically stimulated in vitro after in vivo exercise (PEX+PES). 

• The enhanced insulin-stimulated glucose transport in the PEX+PES group above 

that of either PEX or PES alone was not explained by differences from PEX or 

PES groups for:  1) pThr642AS160 at 3hPEX+PES;  2) PAS-TBC1D1 at 

3hPEX+PES;  3) GLUT4 abundance at 3hPEX+PES;  4) pThr642AS160 at 

0hPEX+PES;  5) pAMPK at 0hPEX+PES;  or 6) glycogen concentration at 

0hPEX+PES.   

 

Relevant Studies Published after the Dissertation Proposal  

 Several relevant studies were published on the regulation of AS160 or TBC1D1 

during and after completion of the experiments in this dissertation.   

 David James’ group further investigated the role that association of AS160 to 

GLUT4 vesicles may play on the regulation of GLUT4 translocation in cultured cells 

(32).  Consistent with previous results (22, 23), AS160 associated with GLUT4 vesicles 

in the basal condition.  Interestingly, expression of a GLUT4/AS160-RabGAP (the 

peptide sequence of AS160’s RabGAP domain fused to the C terminus of GLUT4) fusion 
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protein by 3T3-L1 cells prevented insulin-stimulated GLUT4 translocation, and this 

inhibitory effect was eliminated when cells were expressed a GLUT4/AS160-RabGAP-

R/A (GLUT4 fused with constitutively inactive RabGAP of AS160) fusion protein (basal 

GLUT4 translocation in either of these cells was not different compared to wildtype 

cells).  Expression of the AS160-RabGAP domain alone (without GLUT4) had no 

detectable effect on basal or insulin-stimulated cell-surface GLUT4.  These results 

suggested that association of AS160 active RabGAP domain with GLUT4 vesicles is 

sufficient to restrain insulin-stimulated GLUT4 translocation.  As reported previously 

(22), insulin-stimulated phosphorylation of AS160 and its dissociation from GLUT4 

vesicles.  Cells that expressed the GLUT4/AS160 fusion protein (GLUT4 fused with full 

length AS160) underwent normal insulin-stimulated GLUT4 translocation.  Furthermore, 

the GLUT4/AS160 fusion protein in these insulin-stimulated cells was phosphorylated on 

the AS160 Thr642 site.  Together, these results suggested that insulin-stimulated release of 

AS160 from GLUT4 vesicles is not required for GLUT4 translocation.  Moreover, in L6 

myotubes, many agonists that stimulate GLUT4 translocation to the cell-surface 

membranes (AICAR, adiponectin, berberine, IL-6 or endothelin-1) appeared to require 

AS160 for this action (expression of AS160-4P mutant partially GLUT4 translocation) 

but, unlike insulin, these agonists did not result in a detectable release of AS160 from 

GLUT4 vesicles into the cytosol.  It remains possible that GLUT4 translocation induced 

with these agonists are mediated through dissociation of TBC1D1, and not AS160, from 

GLUT4 vesicles.  It is currently unknown whether in vivo exercise results in:  1) a 

dissociation of AS160 from GLUT4 vesicles immediately after exercise, and 2) if a 

prolonged increase in AS160 phosphorylation several hours after exercise is coupled with 
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a sustained dissociation of AS160 to GLUT4 vesicles.  An exercise induced increase in 

AS160 phosphorylation is unlikely to be essential for insulin-independent increase in 

glucose transport (1, 3, 9, 13, 15, 34, 36), but it remains possible that it is sufficient for 

AS160 dissociation from GLUT4 vesicles.  Although in vivo exercise may be insufficient 

to fully translocate AS160-associated GLUT4 vesicles to the cell-surface membranes, 

AS160 phosphorylation (with or without dissociation from GLUT4 vesicles) may 

eliminate AS160’s inhibitory effect and render GLUT4 vesicles more susceptible to 

subsequent insulin-triggered translocation.  Thus, sustained phosphorylation of AS160 

from GLUT4 could potentially explain the mechanism for enhanced insulin-stimulated 

glucose transport several hours after exercise.   

 Tim McGraw’s group provided further insights into the mechanisms whereby 

insulin stimulates membrane dissociation of AS160 in 3T3-L1 adipocytes (17).  To 

measure membrane associated AS160, they used a quantitative microscopy assay in 

which cells were detergent permeabilized before fixation to release soluble cytosolic 

contents (29).  Consistent with previous reports (22, 32), the amount of AS160 associated 

with plasma membrane was reduced by insulin stimulation.  Importantly, the effect of 

insulin on AS160 plasma membrane association was blunted by RNAi knockdown of 

Akt2, but not Akt1.  Furthermore, consistent with the idea that Akt2, but not Akt1, is 

responsible for AS160 phosphorylation with insulin stimulation, knockdown of Akt2, but 

not Akt1, blunted insulin-stimulated phosphorylation of AS160.  Therefore, Akt2 

specifically regulates the phosphorylation and plasma membrane release of AS160 in 

response to insulin, providing insights into the molecular explanation for Akt isoform-

specific signaling to GLUT4.  In contrast, results from Laurie Goodyear’s laboratory (21) 
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showed that:  1) increased AS160 PAS phosphorylation with in vitro contraction was 

significantly reduced in EDL muscles that were incubated in PI3K inhibitor wortmannin 

(that resulted in complete inhibition of contraction-stimulated phosphorylation of pan-

Akt, presumably including both Akt1 and Akt2), whereas 2) increased AS160 PAS or 

Thr642 phosphorylation with in situ contraction was not reduced in EDL muscles from 

Akt2 knockout mice.  Therefore, by deduction, phosphorylation of AS160 during 

contraction may occur in Akt1-dependent, but not Akt2-dependent, manner.   This 

difference may suggest that insulin and contraction stimulate phosphorylation of different 

pools of AS160.  Consistent with this idea, the effects of insulin and contraction on 

AS160 PAS and Thr642 phosphorylation were additive (21).  In turn, in conjunction with 

results (32) interpreted in the previous paragraph, it seems conceivable that Akt2-

mediated phosphorylation of AS160 with insulin results in GLUT4 translocation, 

whereas Akt1-mediated phosphorylation of AS160 with contraction results in 

sequestering GLUT4 vesicles to a location more susceptible to insulin-triggered 

translocation.  A caveat to this idea is that mechanism for AS160 phosphorylation has not 

been investigated with in vivo exercise (only with in vitro or in situ contraction), and it 

remains possible that other kinases such as AMPK may be involved in exercise-induced 

phosphorylation of AS160. 

  Evidence suggests that there may be multiple AS160 binding proteins that are 

involved in the regulation of insulin-stimulated GLUT4 translocation.  In addition to 14-

3-3 that has been previously described (10, 27), Rip11 (37), RUVBL2 (40) and ClipR-59 

(8) have all been implicated to be important for insulin-stimulated GLUT4 translocation 

through its interaction with AS160.  Each of these proteins associates with AS160, and 
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knockdown of each of these proteins resulted in the inhibition of insulin-stimulated 

GLUT4 translocation in 3T3-L1 adipocytes (8, 37, 40).  Details for the mechanisms that 

explain how these proteins regulate GLUT4 translocation are not yet fully elucidated.  It 

would also be important to explore the possibility that some of these proteins might also 

be involved in exercise stimulated increase in insulin-independent and insulin-dependent 

increase in GLUT4 translocation.  

 Sharma et al. (30) investigated the effect of a transient insulin incubation on 

AS160 phosphorylation in rat epitrochlearis muscles.  Incubation of epitrochlearis muscle 

in 300 µU/mL of insulin for 30 min followed by a subsequent incubation of the muscle in 

the absence of insulin resulted in a rapid reversal of AS160 phosphorylation (75% 

reduction after 10 min, and complete reversal to no insulin level after 20 min).  Although 

the rapid loss of AS160 phosphorylation after insulin removal might seem to be 

predictable, this expectation was less certain in the context of earlier observation that, 

after a bout of exercise, AS160 phosphorylation can remain increased (1, 11, 14, 15, 31).  

It is unclear if the differing results after insulin and exercise are because of differences 

inherent to the two stimuli, or other differences in the experimental designs of the study 

compared to these earlier studies.  For example, the insulin stimulation was performed in 

vitro whereas in vivo exercise was used in the earlier studies.  In the context of a 

subsequent increase in insulin-stimulated glucose transport, the lack of prolonged 

increase in AS160 phosphorylation after a transient insulin incubation concomitant with 

the known lack of subsequent increase in insulin sensitivity is consistent with the idea 

that sustained increase in AS160 phosphorylation may contribute to increased insulin-

stimulated glucose transport (also supported by data from Study 1, 3 and 4) (12, 14, 15).  
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Geiger et al. reported that incubation of isolated skeletal muscle in serum and 

supraphysiologic dose of insulin resulted in a subsequent increase in insulin-stimulated 

glucose transport (16).  Therefore, it seems plausible that the reversal of insulin-

stimulated AS160 phosphorylation would be delayed if serum was added during the 

initial, transient insulin incubation.  However, the results from Study 4 of this dissertation 

(14) suggest that the effect that in vitro contraction in serum has on a subsequent increase 

in insulin sensitivity may be different from the effect of in vivo exercise.  Not only was 

the AS160 phosphorylation not elevated in the muscles that had undergone prior 

contraction in serum (in contrast to the sustained increase in AS160 phosphorylation 

post-exercise), the effect of prior contraction and exercise on insulin-stimulated glucose 

transport was additive, supporting the idea that there are distinct mechanisms that 

stimulate increased insulin sensitivity under in vitro contraction in serum or in vivo 

exercise.  The role that AS160 phosphorylation may play on increased insulin-stimulated 

glucose transport after the incubation with insulin and serum is unresolved. 

 Gus Lienhard’s group followed up on their previous reports (4, 28) on the role 

that TBC1D1 phosphorylation plays in insulin-stimulated GLUT4 translocation in 3T3-

L1 adipocytes (25).  In their previous studies (4, 28), insulin was unable to stimulate 

GLUT4 translocation in cells that overexpressed wildtype TBC1D1.  In their more recent 

study, by reducing the level of ectopic TBC1D1 expression (WT), insulin significantly 

increased cell-surface GLUT4 content (25).  Furthermore, cells that overexpressed 

TBC1D1 with Ser/Thr to Ala mutation on three phosphorylation sites (3P; Thr590, Thr499 

and Ser489 that in WT becomes phosphorylated in response to insulin) had lower insulin-

stimulated cell-surface GLUT4 when compared to WT cells, consistent with the idea that 
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insulin-stimulated phosphorylation of TBC1D1 can increase GLUT4 translocation.  

Nonetheless, because overexpression of wildtype AS160 had no influence on insulin-

stimulated GLUT4 translocation (whereas low level of TBC1D1 overexpression still 

lowered cell-surface GLUT4 by ~60% in insulin-stimulated cells compared to cells with 

empty vector expression), at least in 3T3-L1 adipocytes, insulin appears to be more 

effective in regulating increased GLUT4 translocation by increasing AS160 

phosphorylation than by increasing TBC1D1 phosphorylation.  

 In addition to the evidence provided in Study 2 of this dissertation (13), recent 

reports support the idea that contraction stimulates TBC1D1 in AMPK-dependent 

manner.  In C2C12 myotubes that generate highly developed contractile activity (due to 

manipulation of intracellular calcium transients with electric pulse stimulation), 

excitation induced contractile activity resulted in an activation of AMPK concomitant 

with TBC1D1 phosphorylation on the Ser237 site (24).   

 Consistent with the results from rat epitrochlearis muscles in Study 2, wortmannin 

had no effect on contraction-stimulated increase in PAS-TBC1D1, pThr596TBC1D1 or 

pSer237TBC1D1 in isolated EDL muscles from wildtype mice (26).  In addition, isolated 

EDL muscles from AMPK kinase dead mice lacked a contraction-stimulated increase in 

PAS-TBC1D1, pThr596TBC1D1, pSer237TBC1D1 or 14-3-3 binding to TBC1D1 (26), 

consistent with the idea that AMPK phosphorylates TBC1D1 on these sites during 

contraction.  However, insulin-stimulated PAS-TBC1D1 or pThr596TBC1D1 was also 

significantly lower in muscles from AMPK kinase dead mice.  Phosphorylation of 

TBC1D1 on Ser237 was not significantly elevated in response to insulin.  The implication 

of these results is unclear, but the authors interpreted that basal phosphorylation of 
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TBC1D1 (on Ser237, Thr596 or other residues that are yet unidentified) by an AMPK-

dependent mechanism is required for insulin to exert its effect on PAS-TBC1D1 or 

pThr596TBC1D1.  The effects of insulin and contraction (incubated in insulin prior to 

contraction) were not additive on PAS-TBC1D1 (consistent from the results of Study 4 of 

this dissertation (14)) and pThr596TBC1D1.   The lack of additive effects on PAS-

TBC1D1 and pThr596TBC1D1 is in contrast with results that the effects of insulin and 

contraction on AS160 PAS or Thr642 phosphorylation were additive (21).  The simplest 

interpretation for the apparent differences is that insulin and contraction stimulates 

phosphorylation of:  1) AS160 from distinct pools, and 2) TBC1D1 from a shared pool.  

This idea is supported by the evidence that: 1) the effects of insulin and contraction on 

AS160 PAS or Thr642 phosphorylation are additive (21), and 2) Akt1 may phosphorylate 

AS160 during contraction (21) whereas Akt2 phosphorylates AS160 with insulin (17).  

Under a number of circumstances, binding of 14-3-3 to TBC1D1 closely matched that of 

pSer237TBC1D1 in mouse EDL muscle (26).  Binding of 14-3-3 has been suggested to be 

important for the regulation of its RabGAP activity (5, 22), supporting the idea that 

phosphorylation of TBC1D1 on pSer237 site may a play role in the regulation of GLUT4 

translocation.     

 Isolated rat epitrochlearis muscles that were stimulated to contract in the presence 

of a myosin II ATPase inhibitor, N-benzyl-p-toluenesulfonamide (BTS), had significantly 

lower pAMPK, pACC and PAS-TBC1D1, without significantly affecting PAS-AS160 

compared to the muscles that were stimulated to contract in the vehicle (2).  In addition, 

contraction-stimulated glucose transport was significantly lower in the muscles with BTS 

(2), providing additional evidence that contraction may stimulate glucose transport via 
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the AMPK-TBC1D1 axis.  Together, these data provide evidence that contraction 

stimulates phosphorylation of TBC1D1 in AMPK-dependent manner.   

 In addition to reports that a single bout of endurance exercise results in a 

prolonged increase in AS160 phosphorylation (1, 11, 14, 15, 31), a single bout of 

resistance exercise in humans also resulted in a subsequent increase in AS160 

phosphorylation (9).  In contrast, AS160 phosphorylation (determined using PAS 

antibody) was not increased immediately after the resistance exercise, despite increased 

in vivo leg glucose uptake.  These results are consistent with the notion that increased 

AS160 phosphorylation on PAS sites is not essential for insulin-independent increase in 

glucose transport during exercise. 

 Treebak et al. reported site-specific phosphorylation of AS160 determined 4 h 

post-exercise (60 min of dynamic one-legged knee extensor exercise at ~80-100% of 

peak workload, contralateral leg was used for the resting control) in human vastus 

lateralis biopsies (35).  In contrast to findings in rat epitrochlearis muscles (1, 14, 15) and 

previous studies in humans (11, 31), PAS-AS160 was not different between muscles that 

have undergone prior exercise and the sedentary controls (35).  Phosphorylation at Thr642 

and Ser666 sites of AS160 were also not different between exercised muscles and the 

sedentary controls.  However, phosphorylation at Ser318, Ser341 and Ser751 (borderline 

significance at Ser588, P = 0.09) sites of AS160 were enhanced in exercised muscles 

compared to the sedentary controls.  Although the explanation for the differences in the 

results from two studies for PAS-AS160 and pThr642AS160 after exercise is uncertain, 

there is a great deal of evidence for a persistent increase in AS160 in skeletal muscle after 

acute exercise.    
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How the Studies in this Dissertation Fill Gaps in Current Understanding 

 The studies in this dissertation were designed to provide insights into the roles 

that AS160 or TBC1D1 play in the regulation of skeletal muscle glucose transport after 

exercise and electrically stimulated contraction.  Between the identification of AS160 (in 

2002) and TBC1D1 (in 2007) and the proposal of this dissertation (September 24, 2008), 

there were only 17 publications that included original experimental data on AS160 and/or 

TBC1D1 with contraction or exercise.  In the subsequent year, this number increased by 

~50% (to 26 publications, as of November 23, 2009).  It is apparent that there is a 

growing interest in the role that AS160 or TBC1D1 play in the regulation of skeletal 

muscle glucose transport after exercise.  

 The major goal of Study 1 was to characterize the time course of AS160 and 

TBC1D1 phosphorylation during contraction of isolated skeletal muscle.  It was 

hypothesized that, consistent with the idea that Akt phosphorylates AS160 and AMPK 

phosphorylates TBC1D1 during contraction, AS160 PAS-phosphorylation would 

increase transiently (concomitant with transient activation of Akt) and TBC1D1 PAS-

phosphorylation would have a sustained increase (concomitant with sustained increases 

in AMPK activity and glucose transport).   AS160 PAS-phosphorylation responded 

transiently, consistent with the idea that:  1) Akt phosphorylates AS160 on PAS-

detectable sites during contraction, and 2) AS160 PAS-phosphorylation is not required 

for a sustained increase in contraction-stimulated glucose transport.  In contrast to the 

hypothesis, TBC1D1 PAS-phosphorylation also responded transiently, providing 

evidence for a disconnect between TBC1D1 PAS-phosphorylation with: 1) TBC1D1’s 

193 
 



upstream kinase AMPK, or 2) TBC1D1’s downstream target glucose transport.  It 

remains possible that TBC1D1 PAS-phosphorylation results in sequestering of TBC1D1 

to a subcellular compartment inaccessible by AMPK.  Recently, studies in HEK-293 cells 

suggested that PAS antibody mainly recognizes phosphorylation on Thr596, but not Ser237, 

on TBC1D1 (5).  Furthermore, phosphorylation on Ser237, but not PAS or Thr596 

phosphorylation, appeared to better coincide with increase in insulin-independent glucose 

transport with contraction (14, 26).  Therefore, it is possible that phosphorylation of 

TBC1D1 on Ser237 remained elevated throughout 60 min of contraction.  It also remains 

possible that the initial increase in TBC1D1 PAS-phosphorylation is sufficient for a 

sustained increase in glucose transport.   

 The major goal of Study 2 was to use inhibitors of key signaling proteins to 

investigate the mechanisms whereby contraction stimulates phosphorylation of AS160 or 

TBC1D1.  It was hypothesized that:  1) the PI3K inhibitor wortmannin would inhibit 

AS160 PAS-phosphorylation without affecting TBC1D1 PAS-phosphorylation or 

glucose transport, and 2) the AMPK inhibitor Compound C would inhibit TBC1D1 PAS-

phosphorylation and glucose transport, but not AS160 PAS-phosphorylation.  In support 

of the hypotheses, AS160 PAS-phosphorylation was eliminated using wortmannin 

without affecting TBC1D1 PAS-phosphorylation or glucose transport, consistent with the 

idea that Akt-dependent phosphorylation of AS160 on PAS-sites are not essential for 

contraction-stimulated glucose transport.  Also in support of the hypotheses, TBC1D1 

PAS-phosphorylation was eliminated using Compound C without affecting AS160 PAS-

phosphorylation, consistent with the idea that AMPK phosphorylates TBC1D1 on PAS-

sites during contraction.  Concomitantly, Compound C partially (62%) inhibited glucose 
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transport, consistent with the idea that AMPK contributes to increasing glucose transport 

through TBC1D1 PAS-phosphorylation.  Subsequent research has shown that among 

multiple phosphorylation sites on TBC1D1, increase in phosphorylation on Ser237 site 

coincided most with 14-3-3 binding which has been implicated for TBC1D1’s function 

on regulating glucose transport (5, 26).  Furthermore, contraction-stimulated increase in 

TBC1D1 phosphorylation (PAS, Thr596 or Ser237) or 14-3-3 binding capacity was 

completely inhibited in mouse EDL from AMPKα2 knockout mice (26), consistent with 

the idea that AMPK-dependent processes regulate TBC1D1 function with in vitro 

contraction.  At the time when Study 2 was being conducted, a phospho-specific antibody 

for pSer237TBC1D1 was not available.  We have since obtained this antibody and 

confirmed that phosphorylation on this site is:  1) increased immediately after in vitro 

contraction when insulin-independent glucose transport is increased, and 2) reversed to 

the resting level 3 h after in vitro contraction when insulin-independent glucose transport 

is also reversed (Study 4) (14).  It would be useful to confirm the results in this study by 

examining whether Compound C completely inhibits contraction-stimulated 

pSer237TBC1D1. 

 Together, Study 1 and Study 2 provide evidence that TBC1D1 PAS-

phosphorylation, but not AS160 PAS-phosphorylation, may be important for insulin-

independent increase in glucose transport during and immediately after in vitro 

contraction.  It is still possible that:  1) phosphorylation sites not recognized by PAS 

antibody, 2) binding of calmodulin, 14-3-3 or other proteins (Rip11, RUVBL2, ClipR-59, 

etc.) are important for the contraction effect on insulin-independent glucose transport, or 

3) inhibitors used in the studies may have had non-specific effects towards other proteins 
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involved in the regulation of glucose transport.  Genetic or pharmacological manipulation 

directly on TBC1D1 would be useful to further identify the role that TBC1D1 

phosphorylation may play on contraction- or exercise-stimulated glucose transport.  

Although results from Study 1 showed that the timecourse for AS160 and TBC1D1 

phosphorylation coincided with each other, Study 2 clearly showed that, by using two 

different inhibitors, phosphorylation of these two proteins can be teased apart, suggesting 

that there are distinct mechanisms that phosphorylate AS160 and TBC1D1 during in vitro 

contraction. 

 The major goal of Study 3 was to probe the functional importance of AS160 or 

TBC1D1 phosphorylation under four experimental conditions that were known to vary in 

their influence on insulin-independent glucose transport (or exercise-stimulated glucose 

transport) and insulin-dependent glucose transport after exercise (post-exercise increase 

in insulin sensitivity).  It was hypothesized that:  1) increased TBC1D1 phosphorylation 

would be found in protocols with increased insulin-independent glucose transport but not 

in protocols with enhanced insulin-dependent glucose transport; 2) the protocols with 

enhanced insulin-dependent glucose transport after exercise would be accompanied by 

increased AS160 phosphorylation; and 3) that protocols without enhanced insulin-

dependent glucose transport after exercise would not be characterized by elevated AS160 

phosphorylation.  Consistent with the hypotheses and with the idea that TBC1D1 

phosphorylation is important for exercise-stimulated glucose transport, TBC1D1 PAS-

phosphorylation was increased immediately after exercise when insulin-independent 

glucose transport was elevated, but was reversed at 3 h and 27 h post-exercise when the 

insulin-independent increase in glucose transport had reversed.  Also in support with the 
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hypotheses, TBC1D1 PAS-phosphorylation was not enhanced at 3 h or 27 h post-exercise 

conditions, consistent with the idea that TBC1D1 phosphorylation does not contribute to 

post-exercise increase in insulin-stimulated glucose transport.  In contrast to the results 

with TBC1D1, but also in support of the hypotheses, increased AS160 phosphorylation 

(PAS-AS160 and pThr642AS160) consistently tracked with increased insulin-stimulated 

glucose transport in post-exercise conditions.  In contrast, glycogen depletion did not 

always coincide with increased insulin-stimulated glucose transport.  Together, these 

findings provide evidence that AS160 PAS or Thr642 phosphorylation, but not TBC1D1 

PAS-phosphorylation may be important for the post-exercise increase in insulin-

stimulated glucose transport. 

 The major goal of Study 4 was to determine if the increased insulin-stimulated 

glucose transport after in vitro electrical stimulation of isolated skeletal muscle in the 

presence of serum was accompanied by enhanced AS160 phosphorylation, similar to 

results after in vivo exercise (Study 3).  It was hypothesized that:  1) in isolated skeletal 

muscles that were stimulated to contract in serum-free buffer (which is known to not 

result in a subsequent increase insulin-stimulated glucose transport), would not induce a 

persistent increase in AS160 phosphorylation at 3 h post-electrical stimulation, and 2) in 

isolated skeletal muscles that were stimulated to contract in serum (which is known to 

result in a subsequent increase in insulin-stimulated glucose transport) would induce both 

enhanced AS160 phosphorylation and insulin-stimulated glucose transport 3 h after the 

electrical stimulation.  Contrary to the hypotheses, regardless of the presence of serum, 

skeletal muscles that were stimulated to contract in vitro did not have a persistently 

enhanced AS160 phosphorylation (measured with PAS-AS160 and pThr642AS160) at 3 h 
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post-electrical stimulation, despite elevated insulin-stimulated glucose transport after 

contraction in serum.  TBC1D1 phosphorylation (measured with PAS-TBC1D1 and 

pSer237TBC1D1) was also unaltered 3 h after electrical stimulation, regardless of the 

presence of serum during contraction.  Importantly, insulin-stimulated glucose transport 

in muscles from rats that had undergone in vivo exercise prior to in vitro electrical 

stimulation was greater than that of muscles after exercise or electrical stimulation alone.  

The enhanced insulin-stimulated glucose transport in exercise+electrical stimulation 

group above that in exercise or electrical stimulation groups was not attributable to 

greater phosphorylation of AS160 or TBC1D1 or by greater glycogen depletion in 

muscles that underwent both in vivo exercise and in vitro contraction.  Although not 

conclusive, the additivity of prior electrical stimulation and prior exercise on the 

subsequent increase in insulin-stimulated glucose transport (using exercise and electrical 

stimulation protocols that appeared to be maximally effective) suggests that mechanisms 

whereby prior electrical stimulation (in serum) increases insulin sensitivity are distinct 

from the mechanisms whereby prior in vivo exercise increases insulin sensitivity.  

Therefore, it remains possible that the persistently enhanced AS160 phosphorylation 

plays a role in the post-exercise increase insulin-stimulated glucose transport.  It is also 

important to note that prolonged increase in pThr642AS160 (and concomitant increase in 

insulin-stimulated glucose transport) was found in muscles that were dissected 

immediately after exercise and were incubated in the buffer solution for 3 h (whereas 

muscles were dissected 3 h after exercise in Study 3).  Therefore, the mechanisms for a 

sustained increase in AS160 phosphorylation and insulin-stimulated glucose transport 
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appears to be intrinsic to changes occur in muscles during exercise, independent of 

external factors in vivo after exercise. 

 Together, Study 3 and Study 4 provide evidence that AS160 phosphorylation 

(PAS or Thr642), but not TBC1D1 phosphorylation (PAS or Ser237), may play a role in 

insulin-dependent increase in glucose transport in rat skeletal muscles at 3 and 27 h after 

exercise.  Furthermore, in multiple conditions, the level of glycogen depletion did not 

match with enhanced insulin-stimulated glucose transport, suggesting that glycogen 

depletion alone does not explain the post-exercise increase in insulin-stimulated glucose 

transport.  They also provide data consistent with the idea (from Study 2) that TBC1D1 

Ser237 phosphorylation may be important for the insulin-independent increase in glucose 

transport.   

 In addition, results from Study 4 suggest that in vitro electrical stimulation and in 

vivo exercise may stimulate a subsequent increase in insulin-stimulated glucose transport 

through distinct mechanisms.  In vivo exercise and in vitro contraction differ many ways, 

including  presence of blood flow and pressure changes, presence of extracellular 

hormones and metabolites (which may change during exercise), neuromuscular 

stimulation vs. field electrical stimulation, stimulation pattern (twitch length, twitch 

frequency, tetanus frequency and duration) and isometric contraction vs. physiologic 

(shortening and lengthening) contraction.  In vivo exercise and in vitro contraction results 

in the activation of many similar signaling events.  However, studies in this dissertation 

also indicate that there are some noteworthy differences in several signaling events after 

in vivo exercise and in vitro contraction (Table 7.1).  The distinct mechanisms for in vivo 

exercise and in vitro contraction to enhance insulin-stimulated glucose transport may be 
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attributable to (but not limited to) these differences.  It is also plausible that exercise or 

electrically stimulated contraction may induce insulin-independent glucose transport 

through distinct mechanisms.  Hence, one must be cautious when interpreting data from 

skeletal muscle in vitro electrical stimulation (including Study 1 and Study 2) as a model 

for in vivo exercise.  Genetic or direct pharmacological manipulation of AS160 or 

TBC1D1 would be useful to further identify the role that these RabGAP proteins may 

play in the exercise stimulated increase in insulin-independent and insulin-dependent 

glucose transport.  

 In summary, studies in this dissertation and those that have been published by 

others suggest the following for the roles that AS160 or TBC1D1 phosphorylation play 

on insulin-independent and insulin-dependent increase in glucose transport after in vivo 

exercise and in vitro contraction: 

 1. AS160 phosphorylation (on Thr642 or PAS sites) in skeletal muscle was 

elevated immediately after in vivo exercise (1, 7, 11, 15, 19, 20, 31, 34).  However, in 

multiple exercise conditions, elevated AS160 Thr642 or PAS phosphorylation could be 

uncoupled from increase in insulin-independent glucose transport (1, 9, 15, 34).  Results 

from studies using in vitro contraction provide further evidence that contraction-

stimulated PAS-phosphorylation of AS160 was not essential for contraction-stimulated 

glucose transport (2, 12, 13, 21, 36).  Taken together, there is strong evidence that 

suggests that AS160 phosphorylation, at least on PAS sites, are not essential for insulin-

independent increase in glucose transport in skeletal muscle after in vivo exercise.   

 2. TBC1D1 phosphorylation (on PAS sites) in skeletal muscle was elevated 

immediately after in vivo exercise (15).  Unlike AS160 phosphorylation that remained 
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elevated for several hours post-exercise, TBC1D1 PAS-phosphorylation reversed to 

resting level 3 h after exercise, concomitant with the reversal of insulin-independent 

increase in glucose transport (15).  Immediately after in vitro contraction, TBC1D1 

phosphorylation became elevated on PAS, Ser237and Thr596 sites (2, 12-14, 26, 33).  

Phosphorylation of Ser237 TBC1D1 was reversed to the resting level 3 h after contraction 

when contraction-stimulated glucose transport was reversed (14). Results from studies 

using pharmacological inhibitors with in vitro contraction provided evidence that, in 

multiple conditions, contraction-stimulated PAS-phosphorylation of TBC1D1 

consistently tracked with contraction-stimulated glucose transport (2, 13).  In skeletal 

muscles that were deficient in AMPKα2, which has been implicated for increasing 

insulin-independent glucose transport, TBC1D1 phosphorylation on PAS, Ser237and 

Thr596 sites were completely inhibited.  In mouse EDL and cultured cells, TBC1D1’s 14-

3-3 binding capacity (which has been suggested to play a role in the regulation of GLUT4 

translocation) closely tracked with phosphorylation of TBC1D1 on Ser237 site (5, 26).  

Taken together, it seems reasonable to suggest that phosphorylation of TBC1D1 on Ser237 

may play a role in insulin-independent increase in glucose transport in skeletal muscle 

immediately after in vivo exercise. 

 3. Unlike other insulin-signaling steps (IR tyrosine kinase activity, IRS 

tyrosine phosphorylation, IRS associated PI3K activity, Akt Ser473 phosphorylation, 

TBC1D1 PAS-phosphorylation, etc.) (1, 6, 15, 38, 39), that were not enhanced in skeletal 

muscles several hours after exercise, AS160 PAS or Thr642 phosphorylation in skeletal 

muscles remained elevated up to 27 h after exercise (1, 15, 31, 35).  AS160 PAS or Thr642 

phosphorylation was elevated at 3 and 27 h after exercise (fasted after exercise) when 
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insulin-stimulated glucose transport also remained elevated, whereas AS160 PAS or 

Thr642 phosphorylation and insulin-stimulated glucose transport both reversed to the 

resting level when rats were fed with carbohydrate-rich chow for 3 h after exercise (15).  

It would be important to further pursue the role that AS160 phosphorylation (especially 

on Thr642 site) in post-exercise increase in insulin-stimulated glucose transport.  

Enhanced insulin-stimulated glucose transport observed in muscles that were stimulated 

to contract in serum occured independent of AS160 phosphorylation (at least on PAS or 

Thr642 site) and through mechanisms that may be distinct from that of in vivo exercise.  

 

Future Directions 

 The studies in this dissertation have revealed novel aspects of the mechanisms 

involved in insulin-independent or insulin-dependent increase in glucose transport with in 

vitro contraction and in vivo exercise.  Results from experiments using inhibitors with in 

vitro electrical stimulation (Study 2) suggest that AMPK-dependent phosphorylation of 

TBC1D1 (on Ser237), but not Akt-dependent phosphorylation of AS160 (on Thr642), is 

important for insulin-independent increase in glucose transport.  However, evidence from 

Study 4 suggests that results from in vitro electrical stimulation may not always coincide 

with results in vivo exercise, thus, it would be important to study the mechanism for 

insulin-independent glucose transport with in vivo exercise.  In contrast, results from 

Study 3 and Study 4 suggest that enhanced AS160 phosphorylation may be important for 

the post-exercise increase in insulin-dependent glucose transport.  However, 

interpretation of these results are largely dependent on associations between protein 

phosphorylation and glucose transport and do not provide direct evidence for the role of 
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AS160 on the post-exercise increase in insulin-dependent glucose transport.  The results 

of these studies raised the following questions:   

 1) Are/is AS160 and/or TBC1D1 phosphorylation essential for the normal 

increase in insulin-independent glucose transport after in vivo exercise? 

 2) Are/is AS160 and/or TBC1D1 phosphorylation essential for the post-exercise 

increase in insulin-dependent glucose transport? 

 No studies have yet identified the effect of AS160 or TBC1D1 genetic 

manipulation on the insulin-independent and insulin-dependent glucose transport in 

skeletal muscle after in vivo exercise.  The following section will outline a brief proposal 

of experiments aimed at answering these questions using mice that are genetically 

deficient in AS160 or TBC1D1. 

 

 

Proposal for Future Research 

Specific Aims 

 Studies with pharmacological inhibitors suggest that, in isolated skeletal muscles 

that are stimulated to contract in vitro, TBC1D1 phosphorylation (but not AS160 

phosphorylation) may play a role in the insulin-independent increase in glucose transport.  

In contrast, mechanisms for the insulin-independent glucose transport with in vivo 

exercise are uncertain.  On the other hand, AS160 phosphorylation (but not TBC1D1 

phosphorylation) appears to be important for the post-exercise increase in insulin-

dependent glucose transport.  However, no studies have directly assessed the role of 

AS160 or TBC1D1 on the post-exercise increase in insulin-dependent glucose transport.  
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Therefore, the proposed research will investigate the effects of AS160 or TBC1D1 

deletion on insulin-independent and insulin-dependent glucose transport after exercise.  

To minimize the possibility of compensatory mechanisms as a result of whole body 

knockout, mice with a muscle-specific tamoxifen-inducible AS160 or TBC1D1 deletion 

will be created. 

 

Specific Aim 1:  Determine if insulin-stimulated glucose uptake is affected in mouse 

skeletal muscles with inducible deletion of gene AS160 or TBC1D1 

Hypothesis 1-A: AS160 deletion will result in a partial reduction in insulin-stimulated 

glucose uptake in skeletal muscle. 

Hypothesis 1-B: TBC1D1 deletion will have no effect on insulin-stimulated glucose 

uptake in skeletal muscle.   

 

Specific Aim 2:   Determine if the exercise-stimulated glucose uptake is affected in mouse 

skeletal muscles with inducible deletion of the gene AS160 or TBC1D1. 

Hypothesis 2-A: AS160 deletion will have no effect on exercise-stimulated glucose 

uptake in skeletal muscle. 

Hypothesis 2-B: TBC1D1 deletion will result in a partial reduction in exercise-stimulated 

glucose uptake in skeletal muscle.  

 

Specific Aim 3:  Determine if the post-exercise increase in insulin-stimulated glucose 

uptake is affected in mouse skeletal muscles with inducible deletion of the gene AS160 or 

TBC1D1. 
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Hypothesis 3-A: AS160 deletion will result in an elimination of post-exercise increase in 

insulin-stimulated glucose uptake in skeletal muscle.  

Hypothesis 3-B: TBC1D1 deletion will have no effect on post-exercise increase in 

insulin-stimulated glucose uptake in skeletal muscle. 

 

Research Design and Methods 

  Mice with flanked loxP sites on AS160 or TBC1D1 gene will be crossed with 

mice with muscle creatine kinase (MCK) specific tomoxifen-inducible Cre-ER.  

Subsequently, the offspring containing the desired genotype will be backcrossed to 

C57/B6 mice for 10 generations.  At age 4 wks, mice will be either injected with 

tamoxifen or vehicle for two weeks (4 intraperitoneal injections over the course of a 

week).  Muscle-specific inducible AS160 knockout mice (MCKCre-ER AS160loxP 

tamoxifen injected: mAS160-/-) or TBC1D1 knockout mice (MCKCre-ER TBC1D1loxP 

tamoxifen injected: mTBC1D1-/-) and their respective controls not injected with 

tamoxifen (mAS160+/+ or TBC1D1+/+) will be used for this study.   

 Mice (male, 6 wks) will be randomly assigned to treadmill running exercise (15-

25 m/min for 1 h (18), PEX) or sedentary control (SED).  Mice will be either anesthetized 

immediately (0hPEX or 0hSED) or 3 h after exercise (3hPEX or 3hSED).  Epitrochlearis 

(EPI) and soleus (SOL) muscles will be dissected and are either frozen immediately or 

will be incubated for the measurement of 2-deoxyglucose uptake (without insulin 

immediately after exercise, and with or without 50 µU/mL insulin 3 h after exercise). 

Frozen muscles will be used to determine glycogen concentration or for 
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imunoprecipitation/immunoblotting (protein abundance and phosphorylation for AS160 

on Thr642 and TBC1D1 on Ser237).   

 

Anticipated Results 

A) Inducing a muscle-specific AS160 knockout will result in (compared to tomaxifen 

uninjected controls):  1) a slight increase in basal glucose uptake; 2) partial reduction in 

insulin-stimulated glucose uptake; 3) no effect on insulin-independent glucose uptake 

immediately after exercise; and 4) a lack of post-exercise increase in insulin-stimulated 

glucose uptake 3 h after exercise. 

B) Inducing a muscle-specific TBC1D1 knockout will result in (compared to 

tomaxifen uninjected controls):  1) a slight increase in basal glucose uptake; 2) no effect 

on insulin-stimulated glucose uptake; 3) a partial reduction in insulin-independent 

glucose uptake immediately after exercise; and 4) no effect on post-exercise increase in 

insulin-stimulated glucose uptake 3 h after exercise. 

 

Interpretation 

 The hypothesis that AS160, but not TBC1D1, is important for a portion of 

insulin-stimulated increase in glucose uptake would be supported if insulin-stimulated 

glucose uptake is partially suppressed in mAS160-/- mice but not in mTBC1D1-/- mice.  In 

contrast, the hypothesis that TBC1D1, but not AS160, is important for insulin-

independent glucose transport after exercise would be supported if insulin-independent 

glucose uptake is suppressed in mTBC1D1-/- mice but not in mAS160-/- mice.  

Furthermore, the hypothesis that AS160, but not TBC1D1, is important for post-exercise 

206 
 



increase in insulin-dependent glucose transport would be supported if insulin-dependent 

glucose uptake is suppressed in mAS160-/- mice but not in mTBC1D1-/- mice. 

 It is conceivable that deletion of AS160 will result in a complete reduction of 

insulin-stimulated glucose uptake.  In this case, the interpretation would be that AS160 is 

essential for any insulin-stimulated increase in glucose uptake, and that insulin-stimulated 

AS160-independent mechanisms, without AS160, are insufficient to increase glucose 

uptake.  In addition, if AS160 deletion results in a lack of insulin-stimulated increase in 

glucose uptake, the lack of post-exercise increase in insulin-stimulated glucose transport 

in mAS160-/- would not be a definitive evidence for a specific role of AS160 in post-

exercise increase in insulin sensitivity.   

 

Potential Pitfalls and Alternative Experiment 

 Although the possibility of inducing compensatory mechanisms is minimized by 

inducing deletion in a tissue specific manner rather than on whole body level, and also by 

inducing deletion after the neonatal and early development rather than inducing in 

embryo, it remains possible that knocking out AS160 or TBC1D1 may produce 

unanticipated changes secondary to the effect of deletion.  Deletion of these proteins may 

result in increased expression of other key signaling proteins in the regulation of glucose 

transport.  In this context, it would be important to test whether AS160 deletion results in 

increased expression of TBC1D1, and TBC1D1 deletion results in increased expression 

of AS160.  Other proteins such as GLUT4, GLUT1, insulin receptor, Akt and AMPK 

abunadance will also be measured.  It would also be important to examine whether:  1) 

body weight, 2) food intake, 3) voluntary activity, 4) exercise capacity, 5) resting and 

207 
 



exercise VO2 and RER and 6) glucose and insulin tolerance, 7) muscle mass, 8) glycogen 

and intramuscular triglycerides content and 9) mitochondrial enzyme are altered in these 

mice.  For example, if exercise capacity of mTBC1D1-/- mice was found to be 

compromised, it would complicate the interpretation of results after in vivo exercise.  In 

this case, mice can be compared after running on treadmill at the same relative intensity 

(%VO2max) in addition to comparing them after the exercise of same absolute intensity 

(Watts).   

 Alternatively, instead of knocking out AS160 or TBC1D1 from all skeletal 

muscles in the body, deletion can be isolated in a single skeletal muscle by using in vivo 

electroporation.  Accordingly, one EDL muscle per mouse will be subjected to shRNA-

mediated knockdown of AS160 or TBC1D1 using an in vivo electroporation 

(contralateral muscle will be electroporated with scrambled shRNA).  The effect of 

AS160 or TBC1D1 deletion on insulin-stimulated glucose transport, exercise-stimulated 

glucose transport, and post-exercise increase in insulin sensitivity could be assessed in 

these muscles.  

 

Overall Conclusions 

 In conclusion, this dissertation has provided novel insights (Fig. 7.1) into the 

mechanisms for:  1) insulin-independent increase in skeletal muscle glucose transport 

during and immediately after in vitro contraction, and 2) insulin-dependent increase in 

skeletal muscle glucose transport 3 and 27 h after exercise.  The results in the studies 

suggest that:  1) TBC1D1 phosphorylation (on PAS sites and/or Ser237 site), but not 

AS160 phosphorylation (on PAS sites including Thr642), may be important for insulin-
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independent increase in glucose transport (after in vivo exercise or in vitro contraction) in 

rat skeletal muscle; and 2) AS160 phosphorylation (on PAS sites including pThr642), but 

not TBC1D1 phosphorylation (on PAS sites and/or Ser237 site), may be important for 

insulin-dependent increase in glucose transport (after in vivo exercise but not in vitro 

contraction) in rat skeletal muscle.  It also provided evidence that distinct mechanisms 

may regulate insulin-stimulated glucose transport after in vivo exercise or in vitro 

electrical stimulation.  AS160 and TBC1D1, two RabGAP proteins that have been 

implicated in the regulation of GLUT4 translocation, each becomes phosphorylated in 

response to in vitro contraction or in vivo exercise.  Nonetheless, the mechanisms 

whereby in vitro contraction or in vivo exercise stimulates AS160 or TBC1D1 

phosphorylation and the role that they play on the regulation of GLUT4 translocation 

appear to be distinct.  Further clarification of the influence of exercise on AS160 and 

TBC1D1 function depends on further studying their regulation, including identifying 

each protein’s site-specific phosphorylation, interactions with other proteins (e.g., 14-3-3) 

and/or subcellular localization.  
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   Electrical Stimulation                Exercise 
            vs. Rest                              vs. Rest 

 
 

Immediately PES or PEX  
(no insulin) 
 

Glucose Transport 
 
 

pThr172AMPK 
 
 

pThr308Akt 
 
 

PAS-AS160A, PAS-160B or 
pThr642AS160C 
 
 
 

PAS-TBC1D1D, PAS-150E or 
pSer237TBC1D1F 
 
 
 

Glycogen 
 

       

 
 
 

↑ 10 x 10 s tetanus                  ↑ 120 min swim 
↑ 10, 20, 40, 60 min twitch 
 

↑ 10 x 10 s tetanus                  ↑ 120 min swim 
↑ 10, 20, 40, 60 min twitch 
 

↑ 10 x 10 s tetanus                 ↔ 120 min swim 
↔ 10, 20, 40, 60 min twitch 
 

↑ 10 x 10 s tetanus AC              ↑ 120 min swimAC 
↑ 10 min twitchB  
↑ 20 min twitchAB            
↔ 40, 60 min twitchB 
                                             

↑ 10 x 10 s tetanusDF               ↑ 120 min swimD 
↑ 10 min twitchE  
↑ 20 min twitchDE           
↔ 40, 60 min twitchE 
 

↓ 10 x 10 s tetanus                   ↓ 120 min swim 
 

 
 

↑ 10 x 10 s tetanus (serum)     ↑ 60, 120 min swim 
↔ 10 x 10 s tetanus (buffer)                
 

↔ 10 x 10 s tetanus                 ↔ 120 min swim 
 

↔ 10 x 10 s tetanus                 ↑ 120 min swim 
                                                  (+ insulin only) 
 

↔ 10 x 10 s tetanusAC             ↑ 60 min swimC  

                                                 ↑ 120 min swimAC 
                                                  (± insulin) 
 

↔ 10 x 10 s tetanusDF             ↔ 120 min swimD 
 

↔ 10 x 10 s tetanus                ↔ 120 min swim 
                

3 hours PES or PEX 
 

Δ-insulin glucose transport 
 
 

pThr172AMPK 
 

pThr308Akt 
 
 

PAS-AS160A or pThr642AS160C  
 
 
    

PAS-TBC1D1D or pSer237TBC1D1F 
 

GLUT4 abundance 
 

 
Table 7.1 
Comparisons of signaling events and glucose transport after in vitro electrical 
stimulation and in vivo exercise.  The table summarizes results from the 4 studies in this 
dissertation.  PES: post-electrical stimulation (in serum or buffer unless specified), PEX: 
post-exercise, REST: resting control. ↑: increased compared to resting control, ↔: 
unchanged compared to resting control, ↓: decreased compared to resting control. A: 
PAS-AS160, B: PAS-160, C: pThr642AS160, D: PAS-TBC1D1, E: PAS-150, F: 
pSer237TBC1D1.  
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Figure 7.1 
Working Hypothesis: Roles of TBC1D1 Phosphorylation on Contraction-stimulated 
Glucose Transport and AS160 Phosphorylation on Post-exercise Increase in Insulin-
stimulated Glucose Transport.  For clarity, the figure does not depict mechanisms other 
than AS160 and TBC1D1 phosphorylation that may influence glucose transport.  A) With 
in vitro contraction, AMPK phosphorylates TBC1D1 on Ser237 site, whereas Akt 
phosphorylates AS160 on Thr642 site.  AMPK-dependent phosphorylation of TBC1D1 on 
Ser237 may play a role in translocating contraction-responsive pool of GLUT4 (associated 
with TBC1D1) to the cell-surface membranes.  In vitro contraction stimulates AS160 
Thr642 phosphorylation in Akt-dependent manner (on insulin-responsive pool of GLUT4).  
However, AS160 Thr642 phosphorylation via contraction is not sufficient for this pool of 
GLUT4 to become translocated to the cell-surface membranes.  We hypothesize that 
these GLUT4 vesicles which are associated with pThr642AS160 are more susceptible to 
being fully translocated to cell surface membranes by subsequent insulin stimulation.  B) 
The reversal of the insulin-independent increase in glucose transport was found with 
dephosphorylation of TBC1D1 on Ser237 at 3 hours post-exercise (internalized GLUT4 
vesicles may become reassociated with unphosphorylated TBC1D1).  In contrast, AS160 
Thr642 phosphorylation remains elevated.  We speculate that the persistently elevated 
AS160 Thr642 phosphorylation that was found at 3 and 27 h post-exercise plays a role in 
post-exercise increase in insulin-stimulated glucose transport.    
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 Appendices A to D include a summary of some of the unpublished data collected 

at the University of Michigan that was not included in Studies 1 to 4 of this dissertation.  
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Appendix A 
Effects of Akti-1/2 on insulin-stimulated phosphorylation of AktThr308, GSK3Ser21/9, 
PAS-160, PAS-150 and glucose transport.  (A) pAktThr308, (B) pGSK3Ser21/9, (C) PAS-
160, (D) PAS-150 and (E) glucose transport.  For all incubation steps, media solution 
contents and conditions were identical to those in Study 2.  Paired isolated rat 
epitrochlearis muscles were incubated with or without 5 µM of Akti-1/2 (Akt inhibitor, 
Sigma-Aldrich, A6730) for 60 min.  Muscles were then either incubated in identical 
media (Basal) or in solution that contained 100 µU/mL of insulin for 20 min, freeze 
clamped immediately and used for immunoblotting or for 3-MG transport measurement.  
Data are means ± S.E., n = 6-8/group.  Post hoc analysis: *, P < 0.05 (effect of insulin); †, 
P < 0.05 (effect of Akti-1/2).  Open bars = DMSO; filled bars = Akti-1/2. 
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Appendix B 
Effects of Akti-1/2 on contraction-stimulated phosphorylation of AktThr308, 
GSK3Ser21/9, AMPKThr172, ACCSer79, CaMKIIThr286, PAS-160, PAS-150 and glucose 
transport.  (A) pAktThr308, (B) pGSK3Ser21/9, (C) pAMPKThr172, (D) pACCSer79, (E) 
pCaMKIIThr286, (F) PAS-160, (G) PAS-150, (H) glucose transport.  For all incubation 
steps, media solution contents and conditions were identical to those in Study 2.  Paired 
isolated rat epitrochlearis muscles were incubated with or without 5 µM of Akti-1/2 (Akt 
inhibitor, Sigma-Aldrich, A6730) for 60 min.  Muscles were then either incubated in 
identical media (Basal) or were stimulated to contract (Contract, 2 ms twitch, 2 Hz) for 
20 min, freeze clamped immediately and used for immunoblotting or for 3-MG transport 
measurement.  Akti-1/2 did not affect peak force or total force production.  Data are 
means ± S.E., n = 6-8/group.  Post hoc analysis: *, P < 0.05 (effect of contraction); †, P < 
0.05 (effect of Akti-1/2).  Open bars = DMSO; filled bars = Akti-1/2. 
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Appendix C 
Effects of Akti-1/2 on AICAR-stimulated phosphorylation of AMPKThr172, ACCSer79, 
PAS-160, PAS-150 and glucose transport.  (A) pAMPKThr172, (B) pACCSer79, (C) PAS-
160, (D) PAS-150, (E) glucose transport.  For all incubation steps, media solution 
contents and conditions were identical to those in Study 2.  Paired isolated rat 
epitrochlearis muscles were incubated with or without 5 µM of Akti-1/2 (Akt inhibitor, 
Sigma-Aldrich, A6730) for 60 min.  Muscles were then either incubated in identical 
media (Basal) or in solution that contained 2 mM of 5-aminoimidazole-4-carboxamide-1-
β-D-ribofuranoside (AICAR, AMPK activator) for 40 min, freeze clamped immediately 
and used for immunoblotting or for 3-MG transport measurement.  Data are means ± 
S.E., n = 6/group.  Post hoc analysis: *, P < 0.05 (effect of contraction); †, P < 0.05 
(effect of Akti-1/2).  Open bars = DMSO; filled bars = Akti-1/2. 
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Appendix D 
Effects of AIP2 on contraction-stimulated phosphorylation of AktThr308, GSK3Ser21/9, 
AMPKThr172, ACCSer79, CaMKIIThr286, PAS-160, PAS-150 and glucose transport.  (A) 
pAktThr308, (B) pGSK3Ser21/9, (C) pAMPKThr172, (D) pACCSer79, (E) pCaMKIIThr286, (F) 
PAS-160, (G) PAS-150, (H) glucose transport.  For all incubation steps, media solution 
contents and conditions were identical to those in Study 2.  Paired isolated rat 
epitrochlearis muscles were incubated with or without 20 µM of AIP2 (CaMKII inhibitor, 
autocamtide-2 related inhibitory peptide II, EMD Biosciences, no. 189484) for 120 min.  
Muscles were then either incubated in identical media (Basal) or were stimulated to 
contract (Contract, 2 ms twitch, 2 Hz) for 20 min, freeze clamped immediately and used 
for immunoblotting or for 3-MG transport measurement.  AIP2 did not affect peak force 
or total force production.  Data are means ± S.E., n = 6-8/group.  Post hoc analysis: *, P < 
0.05 (effect of contraction); †, P < 0.05 (effect of AIP2).  Open bars = DMSO; filled bars 
= AIP2. 
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