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SUMMARY

An inviscid transonic theory appears to be inadequate to describe the flow
near the throat of a converging-diverging nozzle during the transition from the
symmetrical Taylor (1930) type of flow to the subsonic-supersonic Meyer (1908)
flow. A viscous-transonic equation taking account of heat conduction and longi-
tudinal viscosity has been developed previously (Cole 1949, Sichel 1963,
Szaniawski 1963). An exact nozzle type of similarity solution of the viscous-
transonic equation, similar to the inviscid solution of Tomotika and Tamada
(1950), has been found. This solution does provide a description of the gradual
transition from the Taylor to the Meyer flow and shows the initial stages in the
development of a shock wave downstream of the nozzle throat. The solution
provides a viscous shock like transition from an inviscid supersonic accelerat-

ing flow to an inviscid subsonic decelerating flow.
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1. INTRODUCTION

As the back pressure decreases the flow through a converging-diverging
nozzle changes from one which is symmetrical with respect to the throat to
an asymmetrical flow with subsonic flow upstream and supersonic flow down-
stream of the throat. The two types of flow are illustrated in Fig. 1(a) and
Fig. 1(b). The transition between these two classes of nozzle flow has formed
the subject of many investigations. Many important features of such transi-
tional flows are adequately explained by a simple one dimensional or hydraulic
theory with normal shocks in the supersonic portion of the nozzle located to
satisfy the downstream pressure boundary condition. However, to resolve
the details of the flow near the nozzle throat, which is intimately related to
the nozzle wall curvature, solutions of the two dimensional or axisymmetric
gas dynamic equations must be investigated. The initial phases of the transi-
tion during which shock wave formation first starts in the neighborhood of the
throat are of particular interest; however, the results of a number of investi-
gators indicate that the inviscid equations alone are unable to provide an ade-
quate explanation of such a transitional flow. It appears that to properly
explain the initial stages in the shock formation, or development of shock
wave structure near the throat, at least the effect of longitudinal viscosity
must be included in the conservation equations. Development of a viscous

theory for such transitional flows forms the subject of the present paper.



The two dimensional asymmetrical flow at a nozzle throat was first
calculated by Meyer (1908) using a truncated series solution of the exact
potential equation of an inviscid perfect gas. The calculations are straight-
forward and the solution appears to give a quite reasonable description of
subsonic-supersonic nozzle flow. A similar series approach was applied
by Taylor (1930) to the two dimensional symmetrical nozzle throat flow.

As the maximum velocity on the nozzle axis increases pockets of supersonic
flow begin to develop near the nozzle surfaces as shown in Fig. 1(a). Taylor
(1930) found that carrying terms up to the fourth degree in the double series
in X and y symmetrical solutions no longer exist when the peak velocity on
the nozzle axis exceeds some maximum value., For a ratio of nozzle half
height h to wall radius of curvature R, (h/R = 1/4) there are no solutions for
maximum velocities exceeding 0. 855 a, where a is the speed of sound.

Gortler (1939) showed that the series employed by Taylor tends to diverge
as the velocity near the throat approaches sonic velocity, and suggested that
the difficulty in Taylor's solution may be due to the neglect of higher order
terms which are cut off by the truncation process. Gortler (1939) attempted
to extend Taylor's solution to the case of transitional flow by relaxing the
requirement of symmetry with respect to the nozzle throat; however, a num-
ber of artificial assumptions regarding the series coefficients were required,

making the convergence of his solution suspect.



Emmons (1946) used the method of relaxation to obtain numerical nozzle
flow solutions of the inviscid gas dynamic equations. Emmons (1946) postu-
lated that the transition from the symmetrical Taylor to the asymmetrical
Meyer type of nozzle flow starts with the formation of shock waves within the
pockets of supersonic flow near the wall as shown in Fig. 2. This postulate
was borne out by the calculations. Below a peak centerline Mach number M
of 0. 812 the compressible solutions were very much like the flow through a
venturi. However, as the maximum centerline Mach number increased be-
yond this value shock waves had to be placed in the pockets of supersonic
flow in order to eliminate residuals in the relaxation calculations. and for
sufficiently large M the shock waves within the two supersonic pockets joined
at the nozzle center. On the other hand the numerical results contained sev-
eral inconsistencies. The appearance of shock waves is sudden; that is,
rather than gradually growing outward from some point in the flow the shock
wave when it first appears is of finite length. A second difficulty is that
there is a discontinuous rise in velocity immediately behind the shock waves.
Emmons (1946) points out that this effect is caused by a discontinuity in the
streamline curvature which occurs when a weak normal shock wave is adja-
cent to a curved wall. A similar effect was observed experimentally by
Ackeret, Feldman and Rott (1946) and has also been discussed by Oswatitsch
and Zierep (1960) and by Pearcy (1962). Since gradients behind weak shock

waves adjacent to curved surfaces must be of the same order as gradients



within the shock structure the assumptions which permit the use of Hugoniot
jump conditions across the shock are clearly violated. As Emmons (1946)
has observed, a perfect fluid theory including shock discontinuities across
which the Hugoniot conditions hold appears to be inadequate to describe the
nature the transitional flow when shock waves first appear within the nozzle,
rather a theory which includes the effects of fluid friction is required.

All the solutions described above are in some sense approximate solu-
tions of the inviscid gas dynamic equations. Tomotika and Tamada (1950),
on the other hand, found a mathematically exact nozzle type of solution of
the transonic equation, which is an approximate equation valid only for re-
gions of inviscid flow with Mach numbers near one. This approach avoids
questions of the convergence of either the series or numerical methods.
Tomotika and Tamada (1950) obtained an exact similarity solution of the
transonic equation describing both the Taylor and Meyer type of flow; however,
they concluded that the flow of Meyer's type cannot be approached in a continu-
ous manner from the group of solutions for the flow of Taylor's type, at least
on the basis of the inviscid equations.

It appears that an adequate explanation of the transition from the Taylor
to the Meyer type flow requires consideration of an equation which includes
viscous terms such that the formation of shock waves is inherent in the equa-
tions themselves. It has been shown (Cole 1949, Sichel 1963, and Szaniawski

1963) that in regions of transonic flow in which the longitudinal or compressive



viscosity is dominant such as in the interior of a weak shock, the flow can be
described an equation which is identical to the transonic equation except for
an additional viscous term, and which has sometimes been called the viscous-
transonic or V-T equation. A nozzle type similarity solution, similar to that
of Tomotika and Tamada (1950), has been found for the V-T equation and
appears to provide a reasonable picture of the gradual transition from the
Taylor to the Meyer type of flow. This viscous-transonic solution forms the
subject of this paper; however, because of the close relation to the work of

Tomotika and Tamada (1950) their solution will first be discussed in detail.

2. THE SOLUTION OF TOMOTIKA AND TAMADA
Approximate equations for inviscid two dimensional transonic flow have

been derived by Guderley (1962) by irtroducing the series expansions

(1)

L oou=1+eut’ . . (1)

%

o

L*:v:el/z(ev +e v+, ..) (2)

o

and the coordinate stretching transformation

yzel/‘z% (3)

into the equations for adiabatic inviscid flow of a perfect gas. In the above

barred quantities are dimensional, A is a characteristic dimension of the



flow, a* the critical speed of sound while € is a small parameter proportional
to the deviation of u from the sonic value of unity. To first order, for a per-

fect gas, the equation

vy(l) -(y+1) u“) ux(l) =0 (4)

describing flow with only small deviations from the sonic velocity is obtained.
If the undisturbed or upstream flow is irrotational, the transonic flow will

also be irrotational so that

the nonlinear convective term in Eq. (4) is what distinguishes transonic
small perturbation flow from linearized subsonic and super sonic flows,

and of course makes the transonic equation very difficult to solve,

(1)

Eliminating v'~’ the transonic equation can be written in the form

Uyy - (Ugx =0 (6)

(1)

with u'"’ replaced by U to simplify notation, and where

X=%(7+1)x : Y={(7/+1)/2]3/2y (7)

Upon introducing the similarity transformation
U = Z(S) + 202Y2

S:X+0‘Y2



Tomotika and Tamada (1950) found that Eq. (6), collapses to the nonlinear

ordinary differential equation

(ZZ°)' - 07" - 20° = 0 9)

Since the flow described by Eq. (8) is symmetrical with respect to the X
axis it can be considered to represent a nozzle flow. Tomotika and Tamada

(1950) obtained the implicit analytical solution

3

(Z - ZUS)2 (Z + 08S) = g%— (10)
o

for Eq. (9) where the constant of integration @ determines the nature of the
solution. The arbitrary constant o determines the slope of the two special
solutions Z = 208, and Z = - oS corresponding to @ = 0. In their original
paper Tomotika and Tamada (1950) used 0 = 1. The more general trans-
formation above was introduced in a later paper by Tomotika and Hasimoto

(1950). From Eq. (5),(6) and (9) it follows that the y component of velocity

is given by
V =20Y (Z + 20X + % UZYZ) (11)
where
vkl )20



To first order in € the streamline slope will be

(A5/ %) = /2 (1) (12)

or

(dy/dx)_ = v (122)

Integration of Eq. (12) or (12a) then yields the streamline shape, and any
particular streamline may be chosen to represent the nozzle wall. Tomotika
and Tamada (1950) in particular chose that streamline for which the ratio of
the nozzle half height h to the streamline radius of curvature at the throat
was 1/4 to coincide with the calculations of Taylor (1930) and Gortler (1939).
The behavior of the function Z(S), which is equal to the velocity U on the
nozzle axis, depends upon the constant of integration @. Figure 3(a) repro-
duces the curves of Z vs. S obtained by Tomotika and Tamada (1950) for
various values of @, and for ¢ = 1. 0. The solution curves have four branches
separated by the special solution curves Z = 20S and Z = - oS corresponding
to @ = 0. Branches A and A’ correspond to @ < 0 while branches B and B’
correspond to @ > 0. From Fig. 3(b) it can be seen that nozzle flows cori-
structed from branch A type solutions correspond to the Taylor type, asym-
metrical, nozzle flow. As @ -0 curves of branch A asymptotically approach
(1)-P-(4), which has a discontinuous slope at point P the sonic point, and

represents the limiting Taylor flow such that the maximum velocity on the



nozzle axis is just sonic. The special solution Z = 20S yields the Meyer type
asymmetrical nozzle flow as shown in Fig, 3(b). It is shown later that the
solution Z = 208 actually is identical with the first few terms of the Meyer
solution. Solution curves from branches A' and B have infinite slope at the
sonic point, and so are not physically meaningful. Branch B' represents
entirely supersonic solutions which are not of interest here. It should be
remarked that Tomotika and Tamada's solution has been presented here some-
what differently than in the original paper. Also the direction of the flow as
indicated by arrows in Fig. 3(a) and 3(b) seems to have been reversed in the
original paper.

The behavior of the solution curves follows from the fact that the sonic

point Z = 0 is a singularity of Eq. (9) for Z. If Eq. (9) is written in the form
77" + (Z' - 20)(Z' + 0) = 0 (92)

it becomes clear that only the singular solutions with Z' =20 or Z' = - ¢
can pass through the sonic point with Z'" or curvature finite as borne out by
Fig. 3(a).

Tomotika and Tamada (1950) suggest that the limiting Taylor flow (1)-P-(4)
will change discontinuously to the Meyer type (1)-P-(2) provided the nozzle
exit conditions change sufficiently. However, their solution does not permit
a continuous transition from the limiting Taylor solution to the Meyer solu-
tion as becomes particularly apparent when the solution is plotted in the phase

plane as in Fig. 4. In this plane the sonic line Z = 0 acts as a barrier such



that subsonic solutions can never become supersonic and vise versa except
for the two singular solutions Z = 20S and Z = - 0S. The question niow to be
examined is whether taking account of the viscosity in the formulation of the

flow equations can resolve this difficulty.

3. THE VISCOUS TRANSONIC EQUATION

Within the structure of shock waves the terms of the Navier Stokes equa-
tion due to compressive or longitudinal viscosity, and due to heat conduction
are of the same order of magnitude as the nonlinear convective terms, for it
is the balance between the steepening convective terms and the smoothing
dissipative terms which leads to the existence of steady state shock wave
structures. One dimensional Navier Stokes solutions of shock wave struc-
ture are well known (Hayes, 1958); however, there are regions of flow, which
might aptly be called non Hugoniot Shock waves, where the main effect is still
a balance between convection and dissipation but where the flow is not neces-
sarily one dimensional.

In the transonic case, approximate equations describing the flow within
such a non-Hugoniot shock layer may be derived from the full Navier Stokes
equations (Sichel 1963, Szaniawski 1963) by using Guderley's approach of
expansion in a small parameter coupled with coordinate stretching as des-

cribed above for the inviscid transonic equation.

10



All flow parameters are made dimensionless using sonic point conditions
as reference quantities except for the dimensionless pressure p which is de-

fined as

p=—2L (13)
p*a*

All parameters may then be expanded in the same manner as u in Eq. (1)
except for p, and v. Because of the reference quantity used in (13) p must

be expanded as

p ::%+ ep((l) + €2p(2) t. 0 (14)

From the theory of characteristics it can be shown that v ~ 0(63/ 2') in invis-
cid transonic flow (Guderley 1962) and this result is assumed to hold in the
viscous case as well so that v is expanded according to Eq. (2). Substituting
the expansion and coordinate stretching above in the full Navier Stokes equa-
tions and equating coefficients of like power of € then yields first, second,
and higher order equations for the expansion coefficients. Details of this
procedure are described by Sichel (1963) and Szaniawski (1963).

In the present case it is useful to introduce the parameter

,U*” Pk
Oﬁ T ep¥ath ea*r

where u''; the longitudinal viscosity, is related to the bulk and shear vis-

cosities i and pby ' = 4/3 u+ 1, and the asterisk refers to conditions

11



at the sonic point. Lighthill (1956) has shown that the thickness of weak shock

waves will be O (v*'"/ea*) so that & ~ O(1) implies that the characteristic
dimension X and the weak shock thickness are of the same order.

logical that the above might be the case within a non-Hugoniot shock layer,

It appears

and in the derivation below it has been assumed, at least to begin with, that

o) ~ 0(1).

Equating the coefficients of the lowest power of € in the continuity, momen-

tum, energy, and state equations respectively yeilds the following set of first

order equations:

Py +uX =0
W M
o p o

‘ 4
TX*1> - (a*a*z/C-p ) p

where the subscript denotes partial differentiation and o* is the coefficient

X

(1)

P = px + a*T TX

(15a)

(15b)

(15¢)

(15d)

(15e)

of thermal expansion at the sonic point, (e* = 1/T* for a perfect gas). With

the help of (15a) and (15b), Eq. (15e) reduces to Eq. (15d) and so is redundant;

hence, theEgs. (15) cannot be solved for the first order coefficients.

12
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the expansion and the thermodynamic relation

TdS = C d—T”—g_—_T-dﬁ (16)
p 9

shows that to first order the entropy remains constant along streamlires.

Thus, if the flow originates from a region of constant entropy, as might be

COCH G

the case in a nozzle, then p will simultaneously be zero

when u(l) = 0. The Eq. (15), then, do yield the relations

JREORN C B (17a)
MEORNPA S B (17b)
* *2
1) aca* RO (17c)
P

which are identical to the relations between the pressure, density, tempera-
ture, and velocity perturbations within an acoustic wave. From Eq. {15c)

and (17b) it now follows that

so that the first order flow is irrotational.

Equating the coefficients of the next higher power of € yields a set of

1) (1) (1)

second order equations containing the first order termsu'™", p°’, v/,

(1)

p’, and T(l), The second order equations are again redundant so that the

@ @ L@ @

second order quantitiesu ™/, p= ’, , and p~ ' can be eliminated. After

13



algebraic reduction, and use of relations (17) it is found from the second

(1) (1)

order equations that ifsT)~ O(1) the first order velocities u' ' and v\’ must
satisfy
- Y / 1
<1+ZP—”—1 w D op WM 19)
r XX X y

where Pr'’ is the Prandtl number based on the longitudinal viscosity while

I' = (1/a) [G(pa)/ap]s

For a perfect gas T = (1/2){(y + 1).

Without the viscous u 1)

o term Eq. (19) would be the same as Eq. (4)

(1)

for inviscid transonic flow. On the other hand if the term v is left out

Eq. (19) becomes the steady Burgers equation (Hayes 1958) which has Taylor's
(1910) weak shock structure as a solution. These properties suggested the
name viscous transonic or V-T equation.

It has been assumed that& ~ O(1). On the other hand & ~ O{e) would
imply that the characteristic dimension of the region of interest is much
larger than the shock thickness. Consideration of Eq. (19) asgfy - 0 leads
to a singular perturbation problem such as has been considered by Ludford
(1952) and Szaniawski (1964a) for example. As@ ~ 0 the inviscid transonic
equation provides a valid description of the flow everywhere except within

certain thin viscous or shock layers. Withd) ~ O(1/¢€) viscous terms already

appear in the first order equations but are no longer balanced by the nonlinear

14



convective terms. The resultant equations, which can also be derived by a
straight-forward linearization of the one dimensional Navier Stokes equation
(Reissner and Meyeroff 1948) do not have steady one dimensional shock struc-
ture solutions which remain finite as x - + o, The dissipative effects can be
much larger than the convective effects only during the unsteady portion of
shock structure development; therefore, OC@/N O(1/e) is a physically unrealistic
assumption here. Basically the choice of@/depends upon the region of inter-
est. If the effect of two dimensionality upon the jump condition across non-
Hugoniot shocks; or the effect of shock structure development on nozzle flow
transition is of interest, as in the present case, then &\f~ 0O(1) is the appro-
priate choice.

Introduction of the transformation

v - a2y - arl/2 /2 /)

X = (A/p)x = AR/n) (20)
U=V , V= /2,
where
y -1y !
_ . - *
A_F<1+—-—=—Pr”) ;. n=v¥"/ea

reduces the viscous transonic equation and the condition of irrotationality

to the universal dimensionless form

15



Uy, - 2UU, + Vg, =0 (192)
U, =V (18a)

or if V is eliminated between (19a) and (18a)

2 iU =0 (21)

Ugxx - (U )xx YY

Thus using n, which is of the order of the thickness of a weak shock, as the
characteristic length of the flow yields a viscous transonic similitude, for as
discussed below, each solution of the dimensionless Eqs. (19a) and (18a) or
(21) corresponds to a family of similar solutions in the physical plane.

Except for the viscous U term Eq. (21) is identical to Eq. (6), the

XXX
inviscid transonic equation expressed in terms of U. A nozzle type similarity

solution of (21) will now be considered.

4, SIMILARITY SOLUTION OF THE VISCOUS-TRANSONIC EQUATION

With the transformation

U = Z(S) + ZO'ZYZ (8)
S=X+ O'Y2
Eq. (21) for U reduces to the ordinary differential equation
2" - 2(ZZ°) + 207° + 402 =0 (22)

16



Thus Tomotika and Tamada's similarity transformation also works for the
viscous transonic equation! The resultant solution again represents a nozzle
type flow symmetrical with respect to the X axis. As before the function Z(S)
represents the centerline velocity distribution. Equation (22) is identical to
Eq. (9) except for the viscous Z''' term.

If Eq. (22) is written in the form
Z'"' - 227" -2(Z' - 20)(Z'+ 0) =0 (22a)

it is evident that the special inviscid solutions
Z = 20S

(23)
Z =-0S

are also solutions in the viscous case, With the presence of the viscous Z'"'
term in (22a) the sonic point Z = 0 is no longer a singularity so that solution
curves passing through the sonic point are not restricted to the two special
solutions (23). So far it has not been possible to obtain any other analytical
solutions of Eq. (22); however, it should be possible to obtain solutions Z{S)
numerically.

Equation (22) is such that for finite Z, Z' and Z'' choice of initial condi-

tions Z(SO), Z'(SO), and Z"(SO) at some point S, will determine a unique

0
solution (Coddington 1955); however, the question of what initial conditions to

choose is certainly not a trivial one, In what might be termed the direct noz-

zle problem specification of the nozzle contour and conditions upstream and

17



downstream of the throat lead to a boundary value problem for the viscous
transonic equation (21). Sichel (1963) has discussed the question of properly
set boundary conditions and given a uniqueness proof for the viscous transonic
equation valid for subsonic flows while Szaniawski (1964a, 1964b) has investi-
gated the direct viscous-transonic nozzle problem using series expansion
methods. The present problem, on the other hand, is indirect in that the
question asked is whether any of the flow fields corresponding to solutions
Z(8) of Eq. (22) satisfy boundary conditions representative of flow through a
nozzle throat, while also representing the transition from the Taylor to the
Meyer type of flow. In some similarity analyses, such as in the case of the
Blasius flat plate boundary layer solution, the boundary conditions which the
ordinary differential equation obtained from the partial differential equation
must satisfy are precisely specified; however, this is not the case here. All
that is known is that the transitional solutions being sought should start where
Z(S) < 0 {subsonic flow) and Z'(S) > 0 {velocity increasing), must pass through
a maximum which may occur at either a subsonic or supersonic velocity, and
then must decrease; however, at this point it is not even known whether such
solutions of Eq, (22) exist. Consequently the general properties of Eq. (22)
must first be studied to provide a guide for the evaluation of numerical solu-
tions. For this purpose the qualitative behavior of solution trajectories in

the phase space will be investigated.

18



Since Eq. (22) is of third order it becomes necessary to consider the
behavior of solution trajectories in the three dimensional Z, Z', Z'' phase
space, a more difficult problem than the more usual phase plane analysis of
second order systems, Equation (22) can be integrated once to yield the

second order equation

Z'' - 277" + 207 + 4028 = Cl (24)

where C1 is a constant of integration; however, since (24) contains the inde-
pendent variable S it is no longer autonomous so that a separate phase plane
is needed for each S. Hence, it is more straightforward to deal with the
original third order equation, and with the three dimensional phase space,

Letting p=2', q =p' = Z", the solution trajectories in the (Z, p, q)

space satisfy the equations

dZ dp dq

ekl A 25
b " a 2[G-20)p+ o+ Za] 29
Thus dZ and dp are zero on the planes p = 0; and q = 0 while dq = 0 on the
surface >, defined by
(p-20)p+0)+2Z2q=0 (26)

If r is the magnitude of the radius vector in any direction in the (Z, p, q) space

and rs is the magnitude of the radius vector in the same direction but to some

19



point on >, then it is readily shown that

dg> 0 when r>r.

(27)
dq <0 when r < r

The surface 2, also bears an interesting relation to the inviscid solution of
Tomotika and Tamada for if their solutions are plotted in the (Z, p, q) space
it follows from Eq. (9a) that the inviscid trajectories are constrained to lie
on the surface >,.

There are no singular points where dp = dq = dZ = 0 simultaneously;
however, the trajectories p =20, q=0, andp = - 0, q = 0 corresponding
to the two inviscid solutions Z = 20S and Z = - ¢S are singular lines in the
sense that dp = dq = 0 on each of them. The phase space with the two singu-
lar trajectories and a portion of the surfacez is shown in Fig. 5a for the
special case 0 = 1, while contour lines of >, for constant values of Z are
shown in Fig. 5b. The points P correspond to the sonic points of the two
singular solutions Z = 20S and Z = - ¢S. The plane q = 0 is quite similar to
the inviscid phase plane of Fig. 4; however, the third order viscous term
adds another degree of freedom to the problem and of course the p axis no
longer acts as a barrier to solution trajectories. Comparison of the invis-
cid phase plane and viscous phase space shows how the viscous term dras-

tically alters the nature of the transonic solutions.
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Certain properties of the solution trajectories can be established im-
mediately. In the region p > 0, Z will be increasing along all trajectories,
and vise versa in the half space p < 0. The point at which trajectories cross
the plane p = 0 will be a minimum, an inflection point, or a maximum of
Z(S) accordingly as g > 0, q = 0, or q < 0. The transitional solutions sought
here must thus cross the plane p = 0 where q < 0 and near the sonic plane
Z =0.

Additional information can be obtained by studying the trajectories obtained
when Z in Eq. (25) is held constant. These curves in the planes Z = const are
not solution trajectories but are tangent to the projections of these trajec-
tories at the point where they cross the Z = const plane. Consideration of
such ''crossing trajectories' for planes corresponding to various values of
Z then yields a composite picture of the phase space behavior. In these (q,p)
planes the points (0, - 0) and (0, 20) are now singularities where dp = dq = 0.
Using well established methods for studying the singularities of second order
systems (Minorsky 1962) it is shown in the Appendix that the point (0, 20)
behaves as a saddle point for all values of Z; however, the directions of the
two separatrixes of the saddle point and of the~>, contour line, which passes
through both singularities, do vary with Z. The singularity (0, - ¢), on the
other hand changes in character with Z from an unstable node to an unstable
focus to a stable focus and finally to a stable node corresponding respectively

to the ranges Z > V60, V6o > Z > 0, 0> Z > - V60, and Z < - V60. The
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qualitative behavior of the above singularities is shown in Fig. 6 for various
values of Z, and for o = 1,0, while Fig. 7 shows a more complete picture

of crossing trajectories plotted by the method of isoclines for the particular
value Z = - 1. The parabolas in Fig. 7 are lines of constant slope,

In assessing the significance of the above results it is extremely impor-
tant to recognize that the crossing trajectories are not solution trajectories
and that there are no true signularities in the phase space as for example
in the case of one dimensional shock wave (Ludford 1951) or detonation struc-
ture (Wood 1961). The phase space behavior is largely determined by the
behavior of the solution trajectories near the singular solutions Z = 208,

Z = - 0S. Solutions starting near the Z = 208 trajectory, no matter how

close, will ultimately deviate from this trajectory as S increases. From

the crossing trajectory diagrams and the behavior of the crossing trajectories
near the singularity at q = 0, p = - 1, it appears that there may be solutions
starting infinitesimally near Z = 20S and with p < 20 and q < 0, which will
pass through a maximum in Z on the plane p = 0 and will then, as Z decreases,
asymptotically approach the solution Z = - ¢S. Numerical integration of

Eq. (22) indicate that such solutions do indeed exist.

Figure 8 shows a number of numerical solutions Z(S) obtained by starting
the integration infinitesimally near the point (0.920) for different initial values
of Z. Starting from an essentially subsonic Taylor type centerline velocity

profile this sequence of solutions shows the gradual development of what
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appears to be a shock wave. All these numerical solutions asymptotically
approach the inviscid solutionp = - 0, q = 0 as S -, The initial conditions
were adjusted so that the integration constant C1 = 0 for then, as can be seen
from Eq. (24), the phase of Z(S) will be such that the solutions will be asymp-
totic to Z = 20S and Z = - oS.

As the maximum supersonic value of Z(S) increases the slope Z'(S) in
the transition region becomes progressively steeper. If the dimensionless
velocity upstream of a weak normal shock is 1 + eU1 then the downstream
velocity will be 1 - eU1 provided the Hugoniot conditions hold. In Fig. 8
the downstream velocity at first overshoots the Hugoniot value; however,
as Zmax increases the jump conditions more closely approach those of a
normal shock. As Zmax increases the large values of Z'" and Z' in the

transition region make the terms Z'' and ZZ' dominant in Eq. (24); however,

the equation
2" -2727' =0

formed keeping these terms alone is just the one describing the Taylor struc-
ture of a weak shock wave. Thus as Zmax increases, the supersonic-subsonic
transition on the axis of the nozzle seems to approach the structure of a weak
normal shock. These results further suggest that with o << 1 solutions will
be obtained such that there is essentially a weak normal shock near the nozzle

axis which is modified by non-Hugoniot effects only for sufficiently large Y.

23



The expansion scheme used here is based on the assumption that U~ O(1);
therefore, when Zmax is large the solutions are at the limit of what might

be considered consistent, However, in view of the close relation between

the nozzle transition and the Taylor shock structure, which remains rea-
sonably accurate for remarkably large upstream Mach numbers (Sichel 1960),
these solutions may, nevertheless, be meaningful.

Several (q, p) plane projections of trajectories corresponding to the solu-
tions of Fig. 8 are shown in Fig. 9 and support the results of the "crossing
trajectory' singular point analysis. Because of the unstable nature of the
special solution p = 20, q = 0, numerical solutions, though started very close
to this solution do not, in general, correspond exactly to one of the solutions
which asymptotically approaches Z = 208, as is evident from the plots of the
detailed behavior near the two special inviscid solutions. The situation is

similar to that encountered in plane shock structure problems where numeri-

cal integration must be started near the downstream saddle point.

5. CONSTRUCTION OF NOZZLE FLOW FIELDS
A complete evaluation of the similarity solution described above requires
the computation of the corresponding nozzle flow fields. For this purpose
isotachs and streamlines must be determined and it is also necessary to re-

late the dimensionless solution in the X-Y plane to the physical §-§ plane,
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Since the dimensionless speed q = g/a* is given by

2 3.2 .1/2 2

q=[{1+€U)" + VT =1+ €U+ O(¢) (28)

it follows that isotachs correspond to contours of constant U to the present

order of approximation. The streamline slope (dy/ di)S is given by

(@F/d), = G/8) = 22/ 4 eus )
= S22y o 5/ (29)
or in terms of the stretched coordinates X and Y

(dY/dX)S = GZFV (29a)

The velocity V must now be determined from the similarity solution. From
the condition of irrotationality (18a) and the similarity transformation (8) it
follows that

V = 20YZ + 40°XY + £(Y) (30)

where {(Y) is a function of Y. From the V-T equation (19a), Eq. (30) above,

and Eq. (24) for Z it follows that

£(Y) = g oSy3 - C,Y+C, (31)

Since V(X’O) = (0 for nozzle flow, C2 = 0. The constant C1 depends upon the

initial conditions used in evaluating Z and upon the origin S, chosen for S,

0

and from Eq. (24) is readily seen to have the value
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+ 4028 (32)

— [
C, =Z'"(S o .

1 27(S

)Z'(S,) + 20Z(S

0)' 0 0)

C1 does not affect the functional form of Z(S) but merely determines the phase
of the solution with respect to the S coordinate. It now follows that

2 232C1)

V:ZY(0Z+20 X+§oY - — (33)

2

which is identical to the result of Tomotika and Tamada (Eq. 12) except for
the constant C1 which they set equal to zero but which has been retained here,
Streamlines can now be determined by integrating the differential equation
(29a) for different initial conditions using V as given by Eq. (33).

Any streamline can be considered as the wall of a nozzle; however, it
is of particular interest to choose a streamline with a predetermined ratio
of nozzle half height to radius of curvature at the throat in order to compare
the viscous-transonic results to the inviscid calculations of Taylor (1930)

and Tomotika and Tamada (1950). At the nozzle wall throat V = 0 so that

2 2 2 3,2
oZ(Xt+ crYt ) + 20 Xt+§o Yt - (Cl/Z) =0 (34)

where the subscript t refers to the throat coordinates. Letting h be the

nozzle half height at the throat and Rt the throat radius of curvature of the

nozzle wall, it follows from Eq. (29a) and (33) that

2 [0Z" (X, + oY 2) + 202] (35)

(/R = h(dz‘y'/diz)t - 2¢¥, + oY,
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Equations (34) and (35) are sufficient to determine the throat coordinates
(th Yt) once (h/Rt) and € are specified, and with (Xt, Yt) known the wall stream-
line is obtained by integrating Eq. (29a).

It now is necessary to establish the connection between the nozzle solu-
tion above, which is expressed in terms of the dimensionless coordinates X
and Y, and the physical plane. The viscous transonic equation when expressed
in the dimensionless form (21) provides the basis of a viscous-transonic simili-
tude. For each solution of Eq, (21) there exists a family of physical flows
corresponding to different values of the parameters ¢, I, v*", a* and Pr'’.

The members of this family are similar, and each point (X, Y) of the dimen-
sionless solution defines a set of corresponding points in the family of similar
solutions. This similitude is closely related to the more conventional tran-
sonic similitude, discussed, for example, by Guderley (1962); the main
difference between the two being the nature of the characteristic length X .

In the conventional transonic similitude A is some characteristic dimension

of the flow such as the chord length of an airfoil, for example, but in the

viscous-transonic case

X = (V¥ /ea*)

as is evident from Eq. (20), i.e., X is of the order of the thickness of a
weak shock wave. With decreasing €, X can remain fixed in the inviscid

case but must increase in the viscous transonic case.
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The definition of the parameter €, which characterizes the maximum
deviation of the fluid velocity from the sonic value a*, is arbitrary, but usually
related to the particular problem under investigation, In the study of non-
Hugoniot Shock Structure (Sichel 1963) it was convenient to let € = ﬁl/a*) -1
where U, is the velocity of the undisturbed flow upstream of the shock wave,
while in flow about bodies the choice € = (MOo - 1), where MOo is the Mach
number of the undisturbed flow, is frequently made. In the present case,
since neither of the above definitions is suitable, € represents the value of
(W/a*) - 1 corresponding to points where U = 1, As a consequence of this
definition only that domain of the solutions of Eq. (22) for Z such that U ~ O(1)
is consistent with the expansion scheme used here.

From Eq. (20) it follows that for given X and Y corresponding values

of x and y are given by

X=n/AX ; 7= (n/AI‘I/ 2.1/ 2)Y (20a)

3/2

so that for fixed fluid properties and a*, X ~ ¢! and F~e at corres-

ponding points. The streamlines in the X,y plane corresponding to the stream-

lines passing through a particular point (X,,Y

1 1) in the X, Y plane will be called

corresponding streamlines. This reference point (‘ilﬁl) transforms accord-

3/2)

ing to Eq. (20a) but since ¥V ~O(e the streamline slope, dy/dX, must also

be 0(63/ 2)‘, On the other hand if all points on corresponding streamlines
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tranformed according to (20a) the result would be (dy/dx) ~ O( e 1/2)‘, This
strange behavior, which was also noted by Guderley (1962), is responsible
for the appearance of ez in Eq. (30a) for streamlines in the X-Y plane.

The relation between the dimensionless and physical nozzle solutions is
now established. In the X direction the length of the region of interest will
be O(n). Since (v*''/a*) is of the order of a mean free path, n = v*''/a*e
will be very small unless the density is low or € is very small. The nozzle
half height h is the other significant dimension of the flow. From Eq. (35)
it follows that streamlines with (h/ Rt) fixed will not at the same time be
corresponding streamlines. Thus assuming that [ 0Z°(X, + oY 2) + 202] ~0(1)

t t
it follows from Eq. (35) that

¥, - Ol (/R)Y2 (v /axe?)) (36)

and if (h/Rt)l/2 ~ O(1) it follows that

h/n ~ (1/€) (37)

so that the nozzle half height will be much greater than the thickness of a
weak shock provided that € << 1.

For the particularly simple inviscid solution, Z = 20(S - S.) explicit

o

expressions for the isotachs, the vertical velocity, and the streamlines can

be found. Equation (8) for U becomes

U=20(X-8,) + 402Y2 (38)

0

29



so that isotachs will be parabolas in the X-Y plane. It can be seen that S0

is equal to the value of X for which U(X,0) = 0, i. e., it is the location of

the sonic point on the axis of the nozzle. From Eq. (32) C1 = 40280, and
from Eq. (33) it then follows that
2 3,2
V = 8Y[o (X-SO)+(2/3)0Y ] (39)
Letting 8 = h/Rt Eq. (85) yields the result
5172
R IERvEn (40)

from which it is again clear that as € varies the streamline with fixed B
will not be a "corresponding streamline' in the sense considered above.

From Eq. (21) relating X and Y to X and ¥ it follows that

b g2 (41)
N g32p1/2 a
With Eq. (41) the dimensionless velocity perturbations v/a* and (u/a* - 1)
can be expressed in terms of the physically more meaningful coordinates
X/h and y/h so that
—- XX 2
u e B0, 1y
a1 =eUs= 1/2—1“ R h) ZB(h)
(42)
a ey 3[(% o), A8 o
ax ~h h h 6 h




where 3{'0 and SO are related by

S =A
0

X

2

U]

In the case of a perfect gas with I' = (y + 1)/2 Eq. (42) is identical to the noz-
zle velocity distribution obtained from the first three terms of Meyer's double
expansion for the velocity potential (Meyer 1908, Hall and Sutton 1964), except

that in accordance with the discussion above the choice of the characteristic

nozzle dimension is no longer arbitrary. From Eq. (34) it follows that
1/2 /3T
x/h) - X /h) = - B 2r'/6 (43)

Integration of Eq. (29a) for the streamlines is straightforward and will not
be reproduced here. Isotachs and streamlines corresponding to the Meyer
type flow with 0 = 1, are shown in Fig. 10(a) plotted in the (X/h, y/h) plane.
The wall streamline has been chosen so that h/Rt = 0. 25 as in the calculations
of Taylor and of Tomotika and Tamada.

In the more general case streamlines can only be obtained by numerical
integration of Eq. (29a), and it is no longer possible to obtain simple expres-
sions for U and V in terms of X/h and y/h. Figures 10(b), (¢), and (d) show
the streamlines and isotachs corresponding to solutions Z(s) shown in Fig. 8.
Figure 10(b) represents a Taylor type nozzle flow with subsonic velocities
throughout but regions of high velocity flow near the nozzle wall. In Fig.

10(c) the maximum centerline velocity is just sonic, while there are pockets
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of supersonic flow near the nozzle wall. Upstream of the throat the flow is
similar to the Meyer type flow of Fig. 10(a), but downstream a certain crowd-
ing of the isotachs as compared to the Taylor flow of Fig. 10(b) is evident.
In Fig. 10(d) the velocity along the axis becomes supersonic beyond the throat
but this supersonic region is followed by a rapid deceleration to subsonic flow.
Figure 10(d) appears to indicate an initial stage in the development of a shock
wave downstream of the throat. There are undulations in the portion of the
nozzle wall downstream of the throat which follow from the rapid changes in
Z'(S). This boundary condition goes with the similarity solution for, as men-
tioned previously, there is no freedom to choose the streamline shape in the
present case. Nevertheless, Fig. 10(d) depicts flow through a nozzle with a
throat or section of minimum area.

The wall streamlines of Fig. 10 are shown in greater detail in Fig. 11.
The nozzle contour of Fig. 10(d) coincides with the Meyer flow contour up-
stream of the throat while far downstream this contour (Curve C) approaches
the shallower Taylor type contour. This result is not surprising since the
flow in Fig. 10(d) does change from a Meyer to a Taylor type of flow down-

stream of the throat.

6. DISCUSSION
By including the effect of longitudinal viscosity in the equation for plane

transonic flow it has been possible to obtain solutions which provide a smooth
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transition from the Taylor to the Meyer type of nozzle flow, and which show
what happens in the initial stages of shock formation downstream of the nozzle
throat. The difficulties near the sonic point, so characteristic of the inviscid
analysis, disappear when the nozzle problem is formulated in terms of the
viscous-transonic equation,

The solution of the viscous-transonic equation found above is exact but
is purchased at the penalty of not being able to specify an arbitrary nozzle
wall shape. Hopefully this exact solution will provide a guide to future studies
of viscous transonic flow. The results of this investigation indicate that the
viscous-transonic equation may provide a key to the solution of problems
where the use of shock waves with one dimensional Hugoniot jump conditions
leads to contradictory results,

The solution obtained here is in some sense related to Taylor's weak
shock solution (Taylor 1910) describing the viscous transition between uni-
form, supersonic and subsonic flows. The viscous-transonic solution yields
a viscous transition between a supersonic flow of increasing and a subsonic
flow of decreasing velocity. In each case viscous effects vanish upstream
and downstream of the transition. As the maximum value of the centerline
velocity U(X, 0) increases the viscous transonic transition appears to approach
the Taylor weak shock structure.

The horizontal scale of the portion of the nozzle flow under consideration

here is of the order of n, the thickness of a weak shock wave, while the
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vertical scale h is of the order of n/e. Unless € << 1, and the flow is one of
low density, the throat width of the nozzles under consideration here will be
extremely small. For example for nitrogen at 27. 4OC9 with p = 1 atm, and
€=0.1, n ~ O(. 001 mm) while h ~ O(. 01 mm). On the other hand with
p=.01atm, and € = 0. 01, n ~ O(1. 0 mm) while h ~ O(100 mm) which is
certainly of a more reasonable magnitude,

The applicability of the viscous-transonic nozzle solution to practical
flows thus appears limited:; however, it is possible to attach a broader inter-
pretation to the results obtained here. The nozzle height h or characteristic
y dimension is essentially the vertical distance over which non-Hugoniot
effects will be important, and the nozzles considered above are such that
non-Hugoniot effects are important over the entire nozzle width. Under
ambient conditions for nozzles with half heights several orders of magni-
tude greater than the shock thickness 7 the regions of non-Hugoniot flow
are probably confined to relatively small regions near the nozzle walls as
is to some extent borne out by the calculations of Emmons (1946), It is
possible to consider half of a viscous-transonic nozzle as representing such
a region of non-Hugoniot flow near the wall, and perhaps not too unreasonable
to suppose the flow beyond this wall region continued by means of more con-
ventional Rankine-Hugoniot shock waves. It has already been noted that the
viscous transition at the centerline, i.e., Z(S) closely resembles the Taylor

weak shock structure as the velocity U(X, 0) upstream of the transition increases.
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As mentioned above it may also be possible to construct nozzle flows with
normal shocks near the center by constructing solutions with 0 << 1, Since
actually h ~ n/oe such a procedure might also lead to more reasonable throat
heights. Of course what is really needed is a solution approaching the one
dimensional shock structure as the distance from the nozzle wall tends to
infinity.

It will be difficult to obtain a precise experimental verification of the
results obtained here. The presence of the nozzle wall boundary layer will
make it very hard to reproduce bounding streamlines or nozzle contours
which agree exactly with the streamlines obtained from the similarity solu-
tion, and of course, slight shifts of the boundary can cause relatively large
changes in transonic flow. The region of interest will be extremely small
unless the density is low, and only slight deviations from the sonic velocity
are considered. Under such conditions it is difficult to make accurate ve-
locity and density measurements.

Clearly the present investigation touches on the problem of whether it is
possible to have regions of supersonic flow imbedded in a subsonic flow with-
out the existence of shock waves. Extensive investigations of this problem
based on the inviscid transonic equation have been made and are, for example,
discussed by Manwell (1958, 1963) who, with others, concludes that it is not
in general possible to obtain smooth inviscid solutions for the transonic flow

in such regions. A detailed discussion of this problem in the light of the
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viscous-transonic equation is beyond the scope of the present paper; however,
the existence of supersonic regions within regions of subsonic flow does not
appear to result in any difficulties when viscous effects are taken into account.
This is not a surprising result for the viscous transonic equation inherently
contains the possibility for formation of steady shock structures where re-
quired by the conditions of the flow while the inviscid equations do not. Whether,
in general, the proper inclusion of viscous effects can eliminate the difficulties
encountered by Manwell and others in constructing transonic solutions is cer-
tainly a worthwhile subject for future investigation.

There are two basic differences between Szaniawski's (1964a, 1964b)
studies of viscous-transonic nozzle flow and the present work. While Szaniawski
permits an arbitrary nozzle contour his solutions are approximate rather than
exact as in the present case. Also, the expansion scheme used by Szaniawski
is different. The nozzle half height is used as the characteristic flow dimen-
sion with the result that while (y/L) ~ O(1) the dimensionless coordinate
corresponding to Y in the present paper has a maximum value of O(el/ 2) and
v~ O(ez)c As a consequence the velocity U is a function of X only in the first
order series solution, and to obtain details of the flow field, in particular a
non-trivial result for the shape of the sonic lines, it is necessary to compute

2)

{
the second order coefficient u' In the expansion scheme used here Y ~ O(1)

and all details of the flow are recovered from the first order solution.
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Szaniawski finds, as in the present paper, that in the Taylor flow viscous effects
become crucial near the nozzle throat as the maximum velocity approaches the

sonic value.
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Figure 3(a). Z vs.

S from solution Tomotika and Tamada (1950).

g>a qg>a
- - q<a ! S0>a
P L~ o N
Branch A Q-r-® O-P-@
Taylor Type Flow Limiting Taylor Meyer Type Flow
Flow

Figure 3(b). Nozzle flows corresponding to the
solution of Tomotika and Tamada (1950).
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Figure lO(a). Isotachs and streamlines corresponding
to Z = 25 (Meyer's solution).
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to curve A in Figure 8.
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Figure 10(c). Isotachs and streamlines corresponding
to curve B in Figure 8.
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Figure 10(d). Isotachs and streamlines corresponding
to curve C in Figure 8.

=
o =



9 8AIN)

OO.H. =0 NOHOO = 3 Nnmio = ﬂ

*sanojquoo sTzzou Jo 3o0T1d PaTTela(d

*TIT 8an3td

0°1-

Y 9AIN)

uol}njos
SETEITY

v 8AIN9)

g 9AIN)

I

uoinjos
Jaka\ pue
9 aAIN)

—

0°1

01t

0C°1

0€°T

oy °1

I>»c



APPENDIX
ANALYSIS OF SINGULARITIES IN THE (q - p) PLANE

The equations of the crossing trajectories in the q-p plane are
(dp/dS) = q (A-1)
(da/dS) = 2[(p - 20)(p + 0) + Zq] (A-2)

where Z in this case is treated as a parameter. The singularity at (0, 20)
will be considered first. Choosing this point as origin and letting 7= (p - 20)

Eq. (A-1) remains unchanged while (A-2) becomes
(do/ds) = 2[7 (@ + 30) + Zq] (A-3)

To study the singularity, which is now at (0, 0) it is sufficient to consider
the linearized form of Eq. (A-3) valid only in the immediate neighborhood
of (0,0). The problem then is reduced to an investigation of the linear system

(drn /dS) = q

(A-4)
(dg/dS) = 607 + 2Zq

The book by Minorski (1962) is one of many describing the procedure

which is followed below. A transformation

£=oq+ BT
(A-5)
n=7yq+ 57

A-1



reducing Eq. (A-4) to the canonical form

(d¢/ds) = D1‘§

is sought. The nature of the constants Dl’ and Dzy which are also called

the characteristic values, then determines the properties of the singularity.
In order that a non-trivial solution exist for @, 3, v, and § in A-5 the constants
D1 and D2 must for the singularity (0, 20) be solutions of the characteristic
equation

D2 - 27D - 60 = 0 (A-1T)

so that

1/2

Dl’DZ =Z+ (Z2 + 60) (A-8)

From Eq. (A-8) D1 > 0, D2 < 0 for all Z so that the singularity at (0, 20)
is a saddle point for all Zwithdirectrices £ = 0, along which solution tra-
jectories approach the singularity and n = 0, along which trajectories leave

the singularity. In the (q/%) plane the slopes of thedirectricesare given by

(d%/dq)g _o=- (22 + 60)/2 . 7.]/60

| \A-9)
(@ /da),_ g = (2% + 60) 2 - 21/60

A-2



Near the singularity at (0, -o) with 7 = p + o the linearized equations are

dr/dS = q
{A-10)
(dq/dS) = - 60% + 2Zq

The characteristic equation is then

2
D -2ZD+ 60 =0 (A-11)

with the solutions

DD, =7+ (22 - 60)1/2 (A-12)

For Z > V6o, D, > D, > 0 so that the singularity is an unstable node with
solution trajectories tangent to the line £ = 0, For Z < - V6g, D, <D, <0
and the singularity is a stable node with trajectories tangent to the line n = 0.

In the (q, 7) plane the slopes of the lines £ = 0 and n = 0 are given by

(d?"f/dq)‘é§ _0° [Z + (Z2 - 60)1/2]/60
(A-13)
@/aq), _ o= (2 - @ - 69)'/2)/6o
In the range Vo> 7> - \/5, D1 and D2 are complex conjugates. Since
Re D, > 0 and Re D_ > 0 for Yo > Z > 0 the singularity is an unstable focus

1 2
for this range of Z. In the range 0> Z > - Vo, Re D, <0, and Re D, <0

so that the singularity is a stable focus.
The results of the analysis above are borne out by the numerical calcu-

lations.
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