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ABSTRACT  

 

MODELS AND METHODS FOR GENETIC LINKAGE AND 
ASSOCIATION ANALYSES 

 

by  

Jin Zheng 
 
 
Chair: Gonçalo Abecasis 

 

Linkage and association analysis are both tools for mapping the locations of genes 

responsible for human traits. A common approach for quantitative trait linkage analysis in 

human pedigrees involves the use of variance component models. In the first part of this 

dissertation, I extended the variance-component method to allow for genetic and/or 

environmental variance components as functions of measured covariates. I show that our 

method can provide large gains in power when there is heterogeneity in heritability of the 

quantitative trait locus due to covariates, such as age and/or sex. 

 

The recent availability of a high-density reference panel has allowed for the imputation of 

genotypes at single nucleotide polymorphism markers that were untyped in a cohort or 

case-control study but that have been characterized in the reference panel. In the second 

part of this dissertation, I compared the performance of three different strategies to take 



 

 ix 

account of the uncertainty of these imputed genotypes in the imputation-based 

association studies for quantitative traits. I found that for most realistic settings of 

genome-wide association studies (GWAS), the strategy of regressing the phenotype on 

the genetic dosages provided a good compromise between power and computational 

efficiency. 

 

Although researchers have noticed the phenomenon of gene-environment interactions in 

disease etiology, it still remains uncertain how to trace the disease susceptibility loci by 

considering the role of environment and its potential to interact with genes, especially in 

GWAS. In the third part of this dissertation, I proposed a new likelihood-based method to 

identify genes involved in a gene-environment interaction, exploiting gene-environment 

independence at the population level. I compared its performance with the existing 

methods under different settings of parameters and by different criteria. The new 

likelihood-based approach shows merit in various settings, especially when the disease is 

not very rare. The simulation studies also showed that the empirical power of the new 

method was still great when the violation of the assumption was realistically modest.  
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Chapter 1 

 

Introduction 

 

1.1 Quantitative trait linkage analysis  

 

There are many traits in human, such as blood pressure and serum lipid levels, which are 

best measured by continuous values. It has been well recognized that many of those 

quantitative traits are usually, though not necessarily always, inherited and determined by 

multiple genes, environmental and behavioral factors and interactions between them 

(Falconer and Mackay 1996, Lynch and Walsh 1998). One of genetic researchers’ tasks is 

to understand the relationship between DNA sequence variation and variation in 

phenotypes for these quantitative traits, which would be important to predict disease risk 

and develop tailor therapeutic treatments in human populations. However, it is 

challenging to identify chromosomal locations and ultimately the genetic variants, or 

regulatory elements that affect the phenotypic expression of a trait, especially for a 

complex disease. There exist many quantitative trait loci with just small effects. In 

addition, phenomenon such as epistasis, pleiotropy and gene-environment interaction 

makes dissection of quantitative traits complicated. 

 

A common tool for mapping the location of genes responsible for human quantitative 
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traits is linkage analysis, which aims to discover the cosegregation between the loci and 

genetic markers with known position. The basic methods currently used for QTL linkage 

mapping are based on Haseman-Elston regression methods (Haseman and 

Elston 1972) and variance components methods (Hopper and Mathews 1982; Amos 1994; 

Almasy and Blangero 2009). The fundamental idea behind these methods is that when a 

particular locus influences a trait, individuals that share more genetic material at that 

locus are likely to be more alike in their phenotypic values (Feingold 2001). 

 

Haseman and Elston (1972) proposed the model-free linkage method by exploiting the 

inverse relationship between the squared trait difference and identity-by-decent (IBD) 

sharing between sib-pairs. Here, two alleles at a single locus are IBD if they are copies of 

the same allele in some earlier generation, i.e., both are copies that arose by DNA 

replication from the same ancestral sequence without any intervening mutation. This 

method is relatively simple and robust (Allison et al. 2000), but the power is lower than 

variance components models (Fulker and Cherny 1996). Subsequent work extended and 

revised the Haseman-Elston regression to allow for multiple relative pairs from more 

kinds of pedigrees (Amos and Elson 1989, Sham et al. 2002), take account of information 

from all marker loci simultaneously (Fulker et al. 1995) and increase power (Xu et al. 

2000).  

 

When assumptions for the underlying quantitative trait distributions are valid, the 

variance components method has higher power than Haseman-Elston method (Forrest 

2001, Tang and Siegmund 2001). In a typical variance components method widely used 
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today, variability among trait observations from individuals within pedigrees is expressed 

in terms of fixed effects from covariates and random effects due to an unobservable 

trait-affecting major locus, residual polygenic effects, and residual nongenetic variance.  

 

In some cases, however, measured covariates can actually modify the size of genetic 

effects rather than directly affecting the trait mean. For example, Pilia et al. (2006) found 

that among 98 cardiovascular and personality traits, about half showed heterogeneity in 

variance components by age, by sex or both, and Weiss et al. (2006) also found 

substantial evidence for heterogeneity by sex in several human QTLs. To account for 

heterogeneity in genetic effects due to a measured covariate, in my first paper, I extended 

the variance components method to model random genetic and environmental variance 

components for each individual as a linear function of measured covariates. This model 

improves power in situations where genetic effects differ among individuals and these 

differences can be explained by a measured covariate.  

 

1.2 Imputation-based association analysis 

 

Association studies are another powerful tool for gene mapping. Association tests check 

for correlation between genetic variants and a trait of interest within a population. 

Linkage and association analysis are both based on the same principle that the genetic 

markers are close to the disease gene, we can identify a signal, even if the causal variant 

is not tested directly.  
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Association analysis is based on population data, including affected and unaffected 

individuals, which is generally easier to collect compared to families. The possibility of 

collecting large samples makes association studies attractive to detect those alleles with 

minor effects on a disease (Risch and Merikangas 1996; Christensen and Murray 2007). 

In addition, it has been proved that unrelated controls may be more powerful than 

individuals with the same pedigrees (Witte et al. 1999; Teng and Risch 1999). In an 

association analysis, late onset diseases can be studied (Teng and Risch 1999; Clark et al. 

2005) and the actual disease allele is possible to be identified. Nevertheless, when the 

case group and the control group both are a mixture of subpopulations with different 

disease prevalence and allele frequency, even markers not associated with the disease will 

exhibit spurious association (Cardon and Palmer 2003). Linkage analysis is based on 

pedigree data, for which population stratification usually would not be a problem, 

because allele identity and the numbers of genetic variants at a locus are irrelevant 

(Rodriguez-Murillo and Greenberg 2008). Therefore, linkage analysis may be more 

appropriate for situations of rare variants.  

 

Along with a revolution occurring in single nucleotide polymorphism (SNP) genotyping 

technology, it is now possible to genotype hundreds of thousands of alleles in parallel. 

This has made it possible to rapidly scan markers across the complete genomes of many 

people. The linkage and association between interesting traits and millions of markers 

could be tested. Recently, genome-wide linkage mapping and association studies have 

identified SNPs related to several complex diseases. Hundreds of thousands of SNPs in 

thousands of individuals have been assayed; hundreds of replicated associations have 
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now been reported for more than 80 diseases, traits and biological measurements as a 

result of genome-wide association (GWA) studies. 

(http://www.genome.gov/gwastudies).  

 

The completion of The International HapMap Project (HapMap) (International HapMap 

Consortium, 2007), has provided a possibility to impute missing genotypes that were not 

directly genotyped from a cohort or case-control study but were genotyped in the 

reference samples. Genotype imputation can increase the power of GWAS (Li et al. 

2009). For example, in Willer et al. (2008), association of the low-density lipoprotein 

levels with variants in LDL receptor gene (LDLR) was detected only after imputation was 

performed, since the associated variant, rs6511720, was not selected for genotyping with 

the Affymetrix 500K array set, in which the best single marker tag has pair-wise 2r  of 

only 0.21. In addition, genotype imputation allows several different GWAS to be 

combined together. Those studies might be conducted at different times, with different 

sets of SNPs scanned.  

 

There are several imputation programs available currently. For example, MERLIN 

(Abecasis et al. 2002, Abecasis and Wigginton 2005) and MENDEL (Lange et al. 1988, 

Lange et al. 2005) for genotype imputation in studies of related individuals; IMPUTE 

(Marchini et al. 2007), MACH (Li et al. 2006), fastPHASE/BIMBAM (Scheet and 

Stephens 2006, Servin and Stephens 2007), PLINK (Purcell et al. 2007), TUNA (Nicolae 

2006), WHAP (Zaitlen et al. 2007), and BEAGLE (Browning 2006) for imputation in 

studies of unrelated individuals. For a recent review see Li et al. (2009). 
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Imputation provides probabilities of possible genotypes at the untyped positions. Then a 

natural question when implementing these procedures concerns how best to take account 

of uncertainty in imputed genotypes.  In my second paper, I evaluate the relative 

performance of several different strategies for analyzing the distribution of imputed 

genotypes by simulated data with different effect sizes and sample sizes. These methods 

are: least-squares regression on the “best-guess” imputed genotype; regression on the 

expected genotype score or “dosage”; and mixture regression models that more fully 

incorporate posterior probabilities of genotypes at untyped SNPs. I found that for most 

realistic settings of genome-wide association studies (GWAS), such as modest genetic 

effects, large sample sizes and high average imputation accuracies, the strategy of 

regressing the phenotype on the genetic dosages provided a good compromise between 

power and computational efficiency. 

 

1.3 Gene-environment-wide interaction studies 

 

In contrast to Mendelian genetic diseases, complex diseases are ultimately determined by 

a number of genetic and environmental factors and their interactions (Schork 1997). From 

the beginning of the 20th century, researchers have already noted that the effects of genes 

could be modified by the environment. For example, Garrod (1902) suggested that the 

effect of individual’s genotype in variation in response to drugs could be modified by 

diet.  
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The interaction between gene and environment means that how genetic and 

environmental factors influence the risk of a disease jointly. We usally describe the 

gene-environment multiplicative interaction as that the direction and magnitude of the 

genetic effect differs according to environmental exposure, or that genetic factors might 

modify the effect of an environmental exposure on disease risk.  

 

Although researchers have noticed the phenomenon of gene-environment interactions, 

analysis of gene-environment interactions is included in only a small fraction of 

epidemiologic studies until now (Khoury and Wacholder 2008). Especially the role of 

environment and its potential to interact with genes generally has not been adequately 

addressed at a genome-wide level. During genome-wide association studies, marginal 

association between genetic information and disease status is usually tested in order to 

locate disease locus. It still remains uncertain how to trace the disease susceptibility loci 

by considering the gene-environment interactions. However, ignoring the 

gene-environment interaction could bring in biased estimation of the proportion of the 

disease that is explained by genes, by the environment, and/or by the interaction between 

them. (Hunter 2005). 

 

Murcray et al. (2009) proposed a 2-step analysis of GWAS data to identify genes 

involved in a gene-environment interaction. Mukherjee and Chatterjee (2008) also 

conduct a novel empirical Bayes-type shrinkage estimator to trade-off between bias and 

efficiency for testing gene-environment interaction. In my third paper, I describe a 

likelihood-based statistics for testing the interaction between gene and environment. At 
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the same time, I compare my new method, the empirical Bayes estimator method, the 

2-step method, a case-only method and traditional logistic regression in terms of power 

and type I error by simulation studies with quite a range of different parameter settings 

under the GWAS framework. At some situation, our new method provides gains in power 

(compared to all alternative approaches), particularly when the trait being studied is 

common. The new likelihood-based approach provides a new way to screen the disease 

susceptibility loci after main genetic effects has been tested in GWAS. 
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Chapter 2 

 

Variance Component Linkage Analysis Allowing for Heterogeneity in 

Effect Sizes due to Measured Covariates including Age and Sex 

 

2.1 Introduction 

 

A common approach for quantitative trait linkage analysis in human pedigrees involves 

the use of variance component models. Jinks and Fulker (1970) first used the variance 

components method to divide phenotypic variance into polygenic and environmental 

components by using data on relative pairs. By extending variance components to 

pedigree analysis involving likelihood theory, Lange et al. (1976) gave the theoretical 

foundation for linkage analysis of quantitative traits using variance components models. 

Goldgar (1990), Schork (1993) and Amos (1994) developed multipoint variance 

components methods by exploiting identity-by-descent (IBD) allele sharing between 

pairs of relatives.  Fulker et al. (1995) and Almasy and Blangero (1998) further refined 

the approach by deriving practical strategies for the estimation of multipoint IBD 

matrices. 

  

It is no secret that extensive genome-wide linkage analysis of numerous complex 
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phenotypes has only yielded modest results.  It has even been argued that linkage 

analysis is not ideal for finding the genetic basis of complex phenotypes (e.g., Risch and 

Merikangus, 1996).  However, in conventional variance component models, covariates 

are typically modeled as fixed effects which impact the trait mean, with the residual 

variance being decomposed into independent QTL, polygene and environmental effects. 

Covariate effects are assumed to be independent of the random effects. In some situations, 

measured covariates can actually modify the size of genetic effects rather than directly 

affecting the trait mean. This situation might be common for cardiovascular traits. 

Several papers report evidence for heterogeneity by age and sex in the architecture of 

several traits. For example, Weiss et al. (2006) also found substantial evidence for 

heterogeneity in variance components by sex for several human QTLs. Pilia et al. (2006) 

found that among total 98 quantitative traits, the 40 traits showing significant evidence 

for heterogeneity of variance components by sex included all five anthropometric traits 

and many of the blood test results (12 of 34), cardiovascular traits (8 of 20), and 

personality traits (15 of 35). They also found significant evidence for heterogeneity in 

variance components by age in 62 of the 98 traits examined, including a majority of traits 

in all categories.  

  

Several methods have been developed to model genotype-covariate interaction. For 

example, Blangero et al. (1991) and Blangero (1993) applied multivariate segregation 

analyses to model the possibility of genotype-covariate interaction. Czerwinski et al. 

(2004) and Franceschini et al. (2006) extended the variance decomposition approach by 

including covariance-specific variance terms. Almasy et al. (2001) also presented several 
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extensions of the variance component methods for incorporating genotype x age 

interaction; however, in their evaluation, these extensions did not seem to increase power, 

which might be due to the conservative criterion for testing the heritability or the specific 

form of the models. Shi and Rao (2008) recently developed quantitative trait linkage 

analysis in the presence of temporal trends in genetics effects. They did so by modeling 

age effects and incorporating these effects into the covariance matrix directly. In that 

paper, a Gaussian function was used to model temporal trends. 

 

To produce a computationally convenient approach for genetic linkage analysis that 

accounts for heterogeneity in genetic effects due to a measured covariate, we extended 

the variance-component method to model random genetic and environmental variance 

components for each individual as linear functions of measured covariates. Our model 

improves power in situations where genetic effects differ among individuals and these 

differences in effect can be explained by a measured covariate. We implemented the 

method in software, taking advantage of the MERLIN infrastructure (Abecasis et al. 2002, 

Abecasis and Wigginton 2005) for the analysis of human pedigrees.  

 

SIMPLE TRAIT MODEL WITH HETEROGENEITY IN GENETIC EFFECTS 

 

First, consider the standard additive model for a bi-allelic QTL with alleles ‘b’ and ‘B’. 

Let a be the additive genetic effect. In this model, the trait mean deviates for individuals 

with genotypes ‘b/b’, ‘B/b’ and ‘B/B’ are assumed to be –a, 0 (zero), and +a. We are 

interested in a situation where the additive genetic effect a is not the same for all 
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individuals but instead is influenced by a measured covariate. Specifically, we consider 

the case where the additive effect for individual i is ai = a + αxi, where a is the baseline 

additive effect, xi is a covariate that influences the additive genetic effect, and α quantifies 

the impact of the covariate on the additive genetic effect. In this model, the trait mean for 

individual i with genotypes ‘b/b’, ‘B/b’ or ‘B/B’ is assumed to be ( )ia xα− + , 0 (zero), 

and ( )ia xα+ + . Depending on the sign and magnitude of the covariate effect α, the same 

genotype could increase phenotypic values for some individuals, but decrease phenotypic 

values for others.  

 

2.2 Methods 

 

Following to Amos (1994), the conventional variance components approach that we 

considered here models trait values as:  

 i

s

j

ijjiiii exPGgMGY ++++= ∑
=1

)( βµ , 

where iY  represents the measured phenotype for the ith individual, ijx  the jth covariate 

value of the ith individual, µ  the overall mean, sj 'β  the covariate effects, and 

ii PGMG , , and ie  the additive quantitative trait locus (QTL), polygene and 

environmental components of variance, respectively. For simplicity, we assume 

that 0)()()( === iii eEPGEMGE . The first two moments of the model are 

∑
=

+=
s

j

ijji xYE
1

)( βµ , 

222)( epgmgiYVar σσσ ++= , 
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22 2),( pgijmgijji YYCov σσπ Φ+= . 

Here, ijΦ  is the kinship coefficient, defined as the probability that an allele drawn at 

random from an arbitrary locus in individual i is identical by descent (IBD) to an allele 

drawn at random from the same locus in individual j and ijπ  is the estimated proportion 

of genes that are IBD at the locus of interest for individuals i and j based on the available 

marker data. In this model, the polygenic component is shared between individuals in 

proportion to their kinship coefficient; the major gene effect is also shared between 

individuals in proportion to the estimated IBD; and the environment component is unique 

to each individual. The locus specific heritability of the trait is  

      
2

2
2 2 2

mg

mg

mg pg e

h
σ

σ σ σ
=

+ +
. 

Under this model, the heritability, 2
mgh ,  is identical for every person in a pedigree. The 

hypothesis of testing this locus specific heritability is: 2
0 : 0mgH σ =  versus 2

0 : 0mgH σ > . 

 

To allow for heterogeneity in genetic effects, we consider the extended model: 

 1
1

( , )
s

i i i i i j ij i

j

Y MG g x PG x eµ β
=

= + + + +∑ . 

In this model, 1( , )i i iMG g x  is a function of the genotypes gi but also of covariate 1ix , 

the value of the first covariate being considered in the model. Then the first two moments 

of the model are 

      ∑
=

+=
s

j

ijji xYE
1

)( βµ , 

      22
1

22
1

2 )1()1()( eipgpgimgmgi xxYVar σβσβσ ++++= ,      (2.1) 
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      )1)(1(2)1)(1(),( 11
2

11
2

jpgipgpgijjmgimgmgijji xxxxYYCov ββσββσπ ++Φ+++= . 

Notice that the major locus and polygenic contributions to the variance-covariance matrix 

now include a term related to the covariate. Here, we assume the components of the 

major gene and polygene have similar forms. See Appendix 2.1 for the explicit derivation 

of the parameters in above formulae. 

 

Therefore, the genetic heritability of the quantitative trait due to the specific locus is  

   
2 2

12
1 2 2 2 2 2

1 1

(1 )
( )

(1 ) (1 )
mg mg i

mg i

mg mg i pg pg i e

x
h x

x x

σ β

σ β σ β σ

+
=

+ + + +
,  

which is a function of the covariate. When the value of the covariate 1ix  increases, the 

value of the locus specific heritability 
2

1( )mg ih x
 might increase for some people or 

decrease for others, depending on the parameter mgβ
. For example, in Pilia et al. 2006, 

the authors found that for the quantitative trait systolic blood pressure, the heritability is 

8.2% among younger subjects (aged less than 42 years) and 29.8% among older subjects 

(aged 42 years or older). The hypothesis of testing this locus specific heritability becomes 

more complicated: 0,0: 2
0 == mgmgH βσ  versus ned.unconstrai  and 0: 2

1 mgmgH βσ >  

 

Under the assumption that the trait is distributed as multivariate normal (Fisher 1918, 

Lange et al. 1976), maximum likelihood methods can be used to estimate parameters for 

the variance component model. Assume that there are N independent families with in  

individuals for each family. Then the likelihood is 
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      ∏
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−Ω−−−− −
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i

yy

i

n
ii

t
i

i

eL
1

)()(2
1

2
1

2 )2(
1 µµ

π , 

where iµ  and iΩ  are defined according to the expressions for ( )
i

E Y , ( )
i

Var Y  and 

( , )i jCov Y Y  given above. To evaluate this likelihood, we first estimate the IBD 

coefficients for each pair of individuals within a family using Merlin (Abecasis et al., 

2002) and, if necessary, allowing for marker-marker linkage disequilibrium (Abecasis 

and Wigginton 2005). We then maximize the log-likelihood function by the Nelder-Mead 

Simplex Method (1965) using multiple different starting values to guard against 

inadequate convergence. Finally, likelihood ratio tests allow us to assess the evidence for 

genetic linkage and to test for heterogeneity of QTL effects due to a measured covariate. 

We have implemented these three steps (estimation of IBD coefficients, estimation of 

parameter values, and likelihood ratio tests of linkage and heterogeneity) into a single 

package based on the MERLIN code, so that the entire process is seamless to users. The 

classical asymptotic distribution theory of the maximum likelihood estimates does not 

hold for the test statistic, since in expression (2.1), mgβ  actually disappears under the 

null hypothesis. Therefore, we have not derived the exact number of degrees of freedom 

for these tests. Instead, we have examined their behavior through simulations.  

 

2.3 Simulations  

     

First, we evaluated the type I error of our extended model under the null hypothesis for 

different significance thresholds. We simulated 50,000 datasets including 500 nuclear 

families each with 4 phenotyped siblings per family. No parental phenotype or genotype 
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data were simulated, although our analytical engine allows for arbitrary pedigree 

configurations (subject to the family size restrictions inherent to the MERLIN IBD 

calculation engine (Lange 1997)). Under the null, we simulated genotypes for 19 SNPs 

with equal-frequent alleles (spaced 1 cM apart). We simulated a trait where a random 

environmental effect accounted for 30% of the variance, polygenic effects accounted for 

50% of the variance and a major locus accounted for 20% of variance. For each dataset, 

we first maximized the likelihood with the constraints 0,0: 2
0 == mgmgH βσ . Next, we 

maximized the likelihood with the constraints ned.unconstrai  and 0: 2
1 mgmgH βσ >  We 

compared the empirical distribution of the resulting likelihood ratio test statistics and 

different mixtures of chi-squared distributions (Figure 2.1). Although the empirical 

significance thresholds for our method varied slightly according to the parameters used to 

generate simulated data, our results suggest that critical values derived using mixture of 

50% of point mass at zero and a chi-squared distribution with 2 degrees of freedom 

provides a good approximation (Figure 2.1, top left panel). In this case, critical value 

should be 4.6 and 12.43 for type I error rates of 0.05 and 0.001, respectively. These 

thresholds can be used for an initial analysis and precise, simulation based, thresholds can 

be derived when potentially interesting signals are detected. 

       

We next carried out simulations to evaluate the power of our approach, which models 

heterogeneity, compared to the conventional approach, which ignores it. We simulated 

1,000 datasets, each with 500 families and 4 phenotyped siblings per family. We 

simulated a QTL locus (whose genotypes were masked) flanked by 19 SNPs (with 

consecutive SNPs separated by ~1 cM), with 2 alleles of equal frequency at each locus 
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and in Hardy-Weinberg equilibrium, which means (b) 0.5P p= =  and (B) 0.5P q= = , 

thus, 2(b/b) 0.25P p= = , 2(B/B) 0.25P q= = , and (b/B) 2 0.5P pq= = . The effect of 

the QTL genotype was influenced by one normally distributed covariate. Our simulations 

show that, in the absence of heterogeneity, our method results in only a small power loss 

compared to the traditional variance component model. In contrast, when there is 

interaction between the measured covariate and the QTL, our method can provide large 

gains in power (Figure 2). In Figure 2.2, the parameter alpha quantifies the degree of 

heterogeneity in the genetic effect induced by the measured covariate. When alpha is zero, 

there is no heterogeneity and the major locus accounts for ~15% of variance in each 

individual. As alpha increases, this proportion of variance explained increases for some 

individuals and decreases for others. For example, when alpha is 0.20, the locus specific 

heritability attributable to the major gene varies between 8.0% and 22.3% for 95% of 

individuals – note that in this setting the conventional approach and our extended model 

still retain similar power. As α increases further, we gradually see a gain in power due to 

our extended model. For example, when α = 0.6 and the heritability varies form 0.0% to 

35.5% for 95% of individuals power is 86.9% for the conventional model but 93.2% for 

our extended model. 

       

To compare powers of the two approaches under different settings of parameters, we 

performed more simulations by different proportions of variance components, different 

family sizes, and different type I error rates (Figure 2.3 and Figure 2.4). In general, and 

similar to our initial results summarized above, when the interaction effects between the 

covariate and the QTL are small, the power of the two approaches is similar and 
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furthermore, the power for both approaches decreases slightly as the size of the 

interaction effect increases. However, when the interaction between the covariate and 

genetic effects becomes large, the power of the extended model is markedly greater than 

the power for conventional analyses. All powers are based on the empirical distributions 

of the likelihood ratio test statistics, but not on our chi-square mixture approximation 

(Figure 2.3 and Figure 2.4). 

 

2.4 Data Application 

 

Hypertension is a common precursor of serious disorders including stroke, myocardial 

infarction, congestive heart failure, and renal failure in whites and to a greater extent in 

African Americans (Williams et al. 2000). The Hypertension Genetic Epidemiology 

Network (HyperGEN) is a constituent multi-center network participating in the National 

Heart, Lung and Blood Institute (NHLBI) Family Blood Pressure Program (FBPP) 

(Feinleib et al. 1979, Hunt et al. 1989, Pe′russe et al. 1989, Rice et al. 1989), a study 

designed to identify genetic contributions to hypertension. HyperGEN recruited two 

types of participants (hypertensive sibships and random samples of subjects) in African 

Americans and whites (Rao et al. 2003). These data are part of HyperGEN study. 

Phenotypes are the average of several systolic and diastolic sitting blood pressure 

measurements, abbreviated to SBP and DBP, respectively. Age, sex and race were 

recorded for each individual as well. Genotyping was performed by the Mammalian 

Genotyping Service (MGS) in Marshfield using a standard panel of 392 anonymous 

microsatellite markers approximately equally spaced every 9 cM throughout the genome. 
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We excluded 4 markers with unknown locations and markers on chromosome X. We also 

removed 7 subjects who contributed little information to pedigrees while making the 

pedigree too complex. All ungenotyped founders were included into the data for better 

understanding of the relationships among individuals. In the final dataset, there were 

1135 subjects (530 males and 605 females; 664 whites and 471 African Americans) 

having full phenotype measurements and genotype information on 370 autosomal 

markers, and 1983 ungenotyped persons in the final data as well. Study subjects are 

arranged in 412 families in total. The average marker heterozygosity was 77.1%. The 

numbers of generations in each pedigree are 2 (1.0%), 3 (97.3%), and 4 (1.7%). Among 

genotyped participants with phenotype information, the mean and standard deviation 

were 115.57 mmHg and 15.00 mmHg for SBP, and 69.51 mmHg and 9.54 mmHg for 

DBP, respectively. Distributions of SBP and DBP among different age groups are plotted 

in Figure 2.5. All participants with full information were aged between 18 years and 65 

years with a mean of 35.5 years and standard deviation of 8.7 years. Figure 2.6 includes 

distributions of age among different sex and race groups.  

 

Our goal was to detect genetic regions related to the variability of blood pressure 

measurements from a genome-wide scan by both conventional and extended variance 

component models, adjusted for age, sex and race. In this data application, we focused on 

comparisons of manifestation of the two models when there was heterogeneity of 

heritability due to a specific locus.  
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In Figure 2.7(a) and 2.7(b), LOD scores from conventional and extended variance 

component model for DBP were plotted cross the genome. At the location of 120.9 cM on 

chromosome 4, we found the peak LOD scores as 3.30 and 3.70 for the conventional 

model and the extended model, respectively. The locus specific heritability was 42.9% 

from the conventional model (Table 2.1). From the extended model, the heritability due 

to the QTL would vary upon age, for example, 59.6% for people with 18 years and 14.3% 

for people with 65 years. Further, we calculated the heritability among subjects younger 

than 36 years (median age for all genotyped participants) and the rest, which deviation 

makes the two groups have similar sizes. The results showed heterogeneity in heritability 

with 43.1% for the younger people and 5.4% for the older people. Figure 2.7(c) and 2.7(d) 

are plots for the extended model among the two age groups; no strong signals could be 

found. The nearest markers are GATA62A12 (located at 114.04 cM on chromosome 4) 

and ATA26B08 (located at 129.92 cM on chromosome 4).  

 

In Figure 2.8(a) and 2.8(b), LOD scores from conventional and extended variance 

component model for SBP were plotted across the genome. At the location of 56.2 cM on 

chromosome 9, there was little evidence of heterogeneity in heritability (30.7% for the 

younger people and 27.1% for the older people), and the peak LOD score from our 

extended model (1.98) was slightly less than that for the conventional model (2.28) 

(Table 2.2). In contrast, the peak LOD score from the extended model (2.03) was much 

greater than LOD score from the conventional model (0.76), where heritability was 0.0% 

for the younger people and 46.7% for the older people. The locus was at 40.87 cM on 

chromosome 13 and nearby marker was GATA6B07 (located at 38.96 cM on 
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chromosome 13).  

 

In addition, we found the peak LOD score was even higher as 3.27 at 40.9 cM on 

chromosome 13 from the extended model among people aged no less than 36 years 

(Figure 2.9), which meant the linear relationship between the genetic effect and age was 

more suitable among people on that group. This might suggest a quadratic relationship 

between the major genetic effect due to this specific locus and the covariate age for the 

whole sample. The phenomenon of non-monotone relationship between the heritability 

and the value of covariate has been found in epidemiological studies. For example, 

Province and Rao (1985b) found that the genetic heritability of systolic blood pressure 

had a temporal trend which begins at 0.10 at birth and reaches a peak of 0.28 at age 36 

years, then declines to a value of 0.1 at age 48 years. 

 

Along with the simulation studies, our data application demonstrates that our extended 

variance component model can perform better than the conventional one when the 

heterogeneity in heritability is large.  

 

2.5 Discussion and Conclusions 

 

The use of variance component models for linkage analysis of quantitative traits has 

demonstrated to be an important and powerful tool for detecting and identifying QTLs 

(Hopper and Mathews 1982, Goldgar 1990, and Almasy and Blangero 1998). The basic 

idea of variance component models is to partition the total variability of the phenotypic 
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values into several independent parts. For example, the variance components could 

include a polygenic component which could be partitioned into additive and dominant 

components, and an environmental component which might have include shared sibling 

environment. After genotyping for each individual in pedigrees, the additive and/or 

dominant components due to a specific locus could also be considered into models. 

Further, the basic variance component model has been generalized in many directions to 

model more complex situations. For example, gene-by-gene interactions (epistasis) 

(Mitchell et al. 1997), gene-by-sex interactions (Towne et al. 1997), multivariate 

extension (Almasy, Dyer and Blangero 1997), imprinting (Shete and Amos 2002), and 

longitudinal data (de Andrade et al. 2002). 

 

It is well known that several human traits, such as height and blood pressure, vary with 

age. Most investigators treat age as a nuisance parameter and attempt to “remove” its 

effect on a given phenotype by some sort of statistical adjustment. However, age is not 

merely a statistical nuisance parameter, it is a biological construct.  As individuals grow 

from birth, many physiological and biological changes take place, including hormonal 

changes during puberty and menopause, and consequently increasing risk for many 

diseases as a result of accumulating and/or changing exposures to environmental triggers 

and variation in gene expression over time.  Age represents a complex surrogate for a 

host of underlying phenomena.  It is important to note that, while age effects on the 

mean and variance of a phenotype can be statistically adjusted for outside a model, age 

effects on the covariance between the phenotypes of two relatives requires explicit 

modeling. Age effects on the covariance can happen as genes turn on and off at various 
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stages in one’s growth cycle, thus rendering heritability as a complex function of age.  

Indeed, rodent studies have demonstrated that heritability and genetic architecture vary 

with age, and that different genes may turn on and off at different ages (Cheverud et al., 

1983, and Vaughn et al., 1999). Here we have incorporated age-dependent variation in 

genetic effects by treating age as a covariate in a variance components linkage analysis 

model.  

 

Shi and Rao (2008) modified the genetic variance components directly by multiply a 

function of temporal trend for each individual in order to model the temporal trends in 

heterogeneity. They demonstrated the simulation results on choosing the Gaussian 

function of age as the temporal trend function. In this paper, we started from the original 

genetic effect due to the quantitative trait loci, modified it as a linear function of a 

covariate (such as age). Then we derived the corresponding locus specific variance 

component part, which could be more clearly interpreted.  

 

In the data application, we calculated LOD scores from different variance component 

models Lander and Druglyak (1995) suggested a LOD score of 3.3 in linkage analysis 

using 1 degrees-of-freedom test and LOD score of 3.7 using a chi-square test with 2 

degrees-of-freedom for “significant linkage”. Because the sizes of sibships with all 

genotypes and phenotypes information available were not very large (ranging from 1 to 

12, with distribution as 2 (36.4%), 1 (23.8%) and 3 (16.0%); the average sibship size is 

1.44), the variance component estimates may not be highly accurate (DeWan et al. 2001).  
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At the simulation section, we compared the empirical distribution of the likelihood ratio 

test statistics under the null hypothesis from our extended model and different mixtures 

of chi-squared distributions. Our results suggest that critical values of the test statistics 

derived using mixture of 50% of point mass at zero and 50% of a chi-squared distribution 

with 2 degrees of freedom provides a good approximation. In this case, critical value 

should be 4.6 for type I error rates of 0.05. After analyzing the data, we did permutation 

study by MERLIN to find out the empirical critical value in a real dataset. MERLIN has 

the ability to perform gene dropping simulations which replace input data with simulated 

chromosomes conditional on family structure and actual marker spacings and allele 

frequencies, as well as missing data patterns (Sawcer et al. 1997, Kruglyak and Daly 

1998). For the quantitative trait SBP, based on 14,868 randomly simulated markers, the 

empirical critical value is 4.48, which is very close to 4.6 from the mixture distributions.  

 

Our approach could be helpful in the mapping of the many human quantitative trait loci 

whose effects vary according to covariates, including age, sex or any other type of 

covariate, for example, known (fixed) genetic effect at a specific locus. Our model can be 

conveniently extended further, for instance, incorporating the effects of binary or 

continuous covariates, the heterogeneity environmental effect varying with the covariates, 

different function forms of effects due to covariates, or even multiple covariates in one 

analysis.  

 

SOFTWARE Source code and binaries implementing the methods described here will be 

posted online at www.sph.umich.edu/csg/abecasis/Merlin and will be available freely for 
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academic or commercial use. 
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Figure 2.1: QQ-Plots comparing the distribution of empirical test statistics with 

different reference distributions. 

To generate each reference distribution we simulated 50,000 chi-squared statistics by 
sampling from the appropriate mixture.  
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Figure 2.2: Power comparison between the conventional model and extended model.  

In our simulated data sets, 30% of the phenotypic variance is due to random 
environmental effect and 55% is due to the polygenic effect with the average heritability 
is set to 15%.  When α = 0.0, the QTL accounts for exactly 15% of the variance in all 
individuals. When α = 0.2, the heritability varies from 11.4% to 26.8% for 95% of 
individuals. When α = 0.6, the heritability varies form 0.0% to 35.5% for 95% of 
individuals. For larger values of α, there is extreme heterogeneity and the same genotype 
that raises phenotypic values in some individuals can decrease phenotypic values in 
others, depending on the covariate.  
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Figure 2.3: Power comparisons between the conventional models and extended 

models (1).  

Compare for different family sizes, and two type I error rates. In these simulated data sets, 
30% of the phenotypic variance is due to random environmental effect and 55% is due to 
the polygenic effect with the average heritability is set to 15%. 
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Figure 2.4: Power comparisons between the conventional models and extended 

models (2).  

Compare for different family sizes, and two type I error rates. In these simulated data sets, 
30% of the phenotypic variance is due to random environmental effect and 50% is due to 
the polygenic effect with the average heritability is set to 20%. 
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Figure 2.5: Distributions of systolic and diastolic blood pressures.  

Kernel densities were plotted among younger people with age less than 36 years and 
older people with age equal to or greater than 36 years.  
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Figure 2.6: Distribution of age among different sex and race groups.  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

 
Figure 2.7: LOD scores from different models across the whole genome for DBP. 
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Position Nearest Marker Model LOD Locus-specific heritability 

Conventional 3.30 42.9% 
 (43.1% for people aged 36 
years or less; 
 5.4% for people older than 36 
years) 

Chromosome 
4 
(120.93 cM) 

GATA62A12 
ATA26B08 

Extended 3.70 Varies with age.  
For example, estimated at 
59.6% for people of age 18; 
estimated at 14.3% for people 
of age 65 

 
Table 2.1: Local peak LOD scores for DBP. 
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(a) 

 

(b) 

 
 
Figure 2.8: LOD scores from different models across the whole genome for SBP. 
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Position Nearest Marker Model LOD Locus-specific heritability 

Conventional 2.28 38.3% 
 (30.7% for people aged 36 
years or less; 
 27.1% for people older than 
36 years) 

Chromosome 
9 
(56.23 cM) 

GATA7D12 

Extended 1.98 Varies with age. 
For example, estimated at 
31.2% for people of age 18;  
estimated at 27.5% for people 
of age 65 

Conventional 0.76 18.6% 
 (0.0% for people aged 36 
years or less; 
 46.7% for people older than 
36 years) 

Chromosome 
13 
(40.87 cM) 

GATA6B07 

Extended 2.03 Varies with age. 
For example, estimated at 
4.00% for people of age 18;  
estimated at 59.1% for people 
of age 65 

 
Table 2.2: Local peak LOD scores for SBP. 
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Figure 2.9: Linkage analysis by different models and for different groups.  

 
 
 
 
Appendix 2.1: Derivation of the parameters in the extended variance component 

model. 

 

 

Both the conventional and extended variance component models considered in this paper 

include three variance components due to major gene (the QTL), polygene and 

environment.  

 

Let us look at the variance of a quantitative trait explained by the major genetic effect 

first. As we described before, we consider the standard additive model for a bi-allelic 

QTL with alleles ‘b’ and ‘B’. We first define the genotypic score for the individual i, 
i

Z , 

as follow, 

, b/b

0, b/B

, B/B
i

a if  the genotype is 

Z if  the genotype is 

a if  the genotype is 

−


= 



, 

where a  is a constant. The allele frequency (b)P p= , and (B)P q=  with 1p q+ = . 

We assume that the two alleles are equally likely and in Hardy-Weinberg equilibrium, 

which means 0.5p q= = , thus,  2(b/b) 0.25P p= = , 2(B/B) 0.25P q= = , and 

(b/B) 2 0.5P pq= = .  

 

The variance due to the QTL effect for the individual i is 

2 2( ) ( ) ( ( ))i i iVar Z E Z E Z= −  
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22 2 2 2 2 2( )a p a q a p a q   = − × + × − − × + ×     

   22 pqa=  

   20.5a= . 

This is actually the maximum variance from the major gene effect, since a marker is 

assumed to be fully informative with equally frequent alleles (Shi and Rao 2008).  

 

The covariance due to the QTL effect between the sibling i and j is  

( , ) ( ) ( ) ( )i j i j i jCov Z Z E Z Z E Z E Z= −  

  ( )i jE Z Z= , when 0.5p q= = . 

 

As we mentioned before, ijπ  is the proportion of genes that are identical by descent at 

the locus of interest for siblings i and j. We would find out ( )i jE Z Z  based on the 

conditional probabilities given ijπ .  

(I) If 0ijπ = , then the two persons will not share the same gene passed from the same 

parent. At this situation,  

2 2( | 0) ( , | 0) ( , | 0)i j ij i j ij i j ijE Z Z a P Z a Z a a P Z a Z aπ π π= = = − = − = + = = =  

 2 2( , | 0) ( , | 0)i j ij i j ija P Z a Z a a P Z a Z aπ π− = − = = + = = − =  

  2 ( : b/b & b/b | 0)ija P genotypes π= =  

2 ( : B/B & B/B | 0)ija P genotypes π+ =  

22 ( : b/b & B/B | 0)ija P genotypes π− × = . 

We denote bn  or Bn  as the nth
 gene with genotype b or B. Then if the parents of two 
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siblings have genotypes: 1 2 3 4(b /b  & b /b ) , then there are four possibilities for the 

genotypes of the two siblings: 1 3 2 4(b /b  & b /b ) , 1 4 2 3( /  & / )b b b b , 2 3 1 4(b /b  & b /b ) , 

and 2 4 1 3(b /b  & b /b ) . So, 

( : b/b & b/b | 0)ijP genotypes π =  

  (b/b & b/b | : b/b & b/b,  and 0) ( : b/b & b/b)ijP Parents P Parentsπ= = ×  

  41 p= × 4p= . 

With similarity, 

4( : B/B & B/B | 0)ijP genotypes qπ = = . 

when 0ijπ = , two siblings with genotypes b/b and B/B would have both parents with 

genotype b/B. For this instance, with the parents’ genotypes: 1 2 3 4(b /B  & b /B ) , the four 

possibilities for the two siblings’ genotypes are: 1 3 2 4(b /b  & B /B ) , 1 4 2 3(b /B  & B /b ) , 

2 3 1 4(B /b  & b /B ) , and 2 4 1 3(B B / & b /b ) . So, 

( : b/b & B/B | 0)ijP genotypes π =  

     (b/b & B/B | : b/B & b/B,  and 0) ( : b/B & b/B)ijP Parents P Parentsπ= = ×  

     2(1 4) (2 )pq= ×  

     2 2p q= . 

Therefore, 

2 4 2 4 2 2 2( | 0) 2i j ijE Z Z a p a q a p qπ = = + − ×  

                    0= . 

 

(II) If 0.5ijπ = , then the two persons will share only one gene passed from the same 
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parent. At this situation,  

2 2( | 0.5) ( , | 0.5) ( , | 0.5)i j ij i j ij i j ijE Z Z a P Z a Z a a P Z a Z aπ π π= = = − = − = + = = =  

 2 2( , | 0.5) ( , | 0.5)i j ij i j ija P Z a Z a a P Z a Z aπ π− = − = = + = = − = . 

By the property of conditional probabilities, we could have, 

( , | 0.5)i j ijP Z a Z a π= − = − =  

  (b/b & b/b | : b/b & b/B,  and 0.5) ( : b/b & b/B)ijP Parents P Parentsπ= = ×  

  (b/b & b/b | : b/b & b/b,  and 0.5) ( : b/b & b/b)ijP Parents P Parentsπ+ = ×  

We consider the following instance first: 0.5ijπ =  and parents’ genotypes 

1 2 3 4(b /b  & b /B ) . Then the possible genotypes of the two siblings are: 1 3 1 4(b /b  & b /B ) , 

1 3 2 3(b /b  & b /b ) , 1 4 1 3(b /B  & b /b ) , 1 4 2 4(b /B  & b /B ) , 2 3 2 4(b /b  & b /B ) , 

2 3 1 3(b /b  & b /b ) , 2 4 2 3(b /B  & b /b ) , and 2 4 1 4(b /B  & b /B ) . Among the eight possible 

pairs of genotypes, there are two satisfy b/b and b/b. So, 

(b/b & b/b | : b/b & b/B,  and 0.5) ( : b/b & b/B)ijP Parents P Parentsπ = ×  

  21 4 2 2p pq× × ×=（ ）  

  3p q= . 

By similar procedure, we have, 

( , | 0.5)i j ijP Z a Z a π= − = − =  

    4 3p p q× +=1  

    3p= ; 

And, 

( , | 0.5)i j ijP Z a Z a π= = =  
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4 21 4 2 2q q pq× × × ×=1 +（ ）  

3q= ; 

( , | 0.5) 0i j ijP Z a Z a π= − = = = ; 

( , | 0.5) 0i j ijP Z a Z a π= = − = = . 

Therefore, 

2 3 2 3( | 0.5)i j ijE Z Z a p a qπ = = +  

                     20.5 ija π= . 

In general,  

2( , ) ( ) 0.5i j i j ijCov Z Z E Z Z a π= = . 

 

(III) If 1ijπ = , then the two persons will have exactly the same two genes passed from 

their parents. At this situation,  

2 2( | 1) ( , | 1) ( , | 1)i j ij i j ij i j ijE Z Z a P Z a Z a a P Z a Z aπ π π= = = − = − = + = = =  

                2 2( , | 1) ( , | 1)i j ij i j ija P Z a Z a a P Z a Z aπ π− = − = = + = = − = , 

in which, 

( , | 1)i j ijP Z a Z a π= − = − =  

  (b/b & b/b | : b/b & b/b,  and 1) ( : b/b & b/b)ijP Parents P Parentsπ= = ×  

    (b/b & b/b | : b/b & b/B,  and 1) ( : b/b & b/B)ijP Parents P Parentsπ+ = ×  

(b/b & b/b | : b/B & b/B,  and 1) ( : b/B & b/B)ijP Parents P Parentsπ+ = ×  

  4 2 21 (1 2) 2 (2 ) (1 4) (2 )p p pq pq= × + × + ×  
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  2p= ; 

And, 

( , | 1)i j ijP Z a Z a π= = =  

  4 2 21 (1 2) 2 (2 ) (1 4) (2 )q q pq pq= × + × + ×  

  2q= ; 

( , | 1) 0i j ijP Z a Z a π= − = = = ; 

( , | 1) 0i j ijP Z a Z a π= = − = = . 

Thus, 

2 2 2 2( | 1)i j ijE Z Z a p a qπ = = +  

                     20.5 ija π= . 

 

Now, we define the genotypic score for the individual i, 
i

Z , as follow, 

( ), b/b

0, b/B

, B/B

i

i

i

a x if  the genotype is 

Z               if  the genotype is 

a x      if  the genotype is 

α

α

− +


= 
 +

, 

where the additive genetic effect is not the same for all individuals but instead is 

influenced by a measured covariate through a linear function. Assuming the covariate X 

and Z are independent, with the similar derivation as above, we could have, 

2( ) 0.5( )
i i ii

Var Z a xα π= + , 

where 1
ii

π = ; and, 

( , ) 0.5( )( )i j i j ijCov Z Z a x a xα α π= + + . 

Without loss of generality, we define the variance and covariance due to the QTL as: 
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2 2
1( ) (1 )i mg mg iVar Z xσ β= + , 

and, 

2( , ) (1 )(1 )i j ij mg mg i mg jCov Z Z x xπ σ β β= + + . 

We also consider the same structure of the variance and covariance due to the polygenic 

effect in our extend variance component model accommodating the heterogeneity of 

genetic effect. 
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Chapter 3 
 

A Comparison of Approaches to Account for Uncertainty 

in Analysis of Imputed Genotypes 

 

3.1 Introduction 

 

The shared ancestry of chromosomes in a population results in haplotype stretches in 

covered by different individuals that are very similar to each other. Making use of these 

haplotype stretches, and thereby accounting for the correlation of alleles at nearby 

markers (linkage disequilibrium; LD), statistical algorithms can make inferences about 

unobserved alleles. To estimate a missing allele at a specific single-nucleotide 

polymorphism (SNP) on a haplotype, these algorithms compare flanking markers with 

those from other haplotypes in the sample to find appropriate “template” or reference 

haplotypes from which to make a guess about the missing allele. 

 

Recently there has been considerable interest in the imputation of missing genotype data 

for the analysis of genome-wide association (GWA) studies. The availability of panels of 

extensively-genotyped reference samples, such as those from The International HapMap 

Project (HapMap) (International HapMap Consortium, 2007), has allowed for the indirect 

measurement of SNP genotypes that were not directly typed from a cohort or 
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case–control study but only typed in the reference samples. This strategy has aided the 

discovery of multiple loci associated with diseases (e.g. Barrett et al. 2008, Scott et al. 

2007, The Wellcome Trust Case Control Consortium, 2007) or quantitative trait (Lettre et 

al. 2008, Loos et al. 2008, Willer et al. 2008). For example, in Willer et al. (2008), the

LDLR (cholesterol receptor) signal was detected only after imputation was performed, 

since the associated variant (rs6511720) was poorly tagged in samples genotypes with the 

Afymetrix 500K array set (maximum 2 0.21R ≈ ). 

 

This imputation-based mapping protocol is a 2-step process. First, unmeasured genotypes 

are imputed in the GWA data. Then, imputed genotypes are tested for association with 

phenotypes. Multiple methods exist for imputing genotypes from population genetic data 

(Browning and Browning, 2007; Greenspan and Geiger 2004, Li et al. 2009, Scheet and 

Stephens 2006, Stephens and Scheet 2005); for a recent review see Browning (2008). 

Here we focus on the second step, testing the imputed genotypes for association with a 

trait of interest. 

 

Specifically, we aim to evaluate the relative performance of several strategies for 

analyzing the distribution of imputed genotypes in downstream analyses. One summary 

of these probabilities comes from imputing a “best-guess” genotype for each individual, 

which corresponds to the marginal mode of the posterior distribution of the unmeasured 

genotype. This approach ignores the uncertainty in the imputed genotype. When 

imputation is accurate, the correspondence between the true and imputed genotype is 

strong and an analysis of the imputed genotypes might result in little loss in power 
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compared with the true genotypes. However, if imputation accuracy is low there may be a 

weak correlation between the true genotypes and the guesses, which will mask any real 

association between genotype and phenotype. 

 

We also consider two approaches that attempt to account for this uncertainty. The first of 

these uses the mean of the distribution of imputed genotypes, which corresponds to an 

expected allelic or genotypic count, or “dosage”, for each individual. This approach may 

do well, relative to using the “best guess” genotype, when there is some uncertainty about 

the true genotype, since it retains more of the available information, differentiating 

genotypes that were imputed very confidently from those that are more uncertain. 

 

A final approach uses mixture regression models to take full advantage of the individual 

genotype posterior probabilities. This approach should be superior when there is 

uncertainty in the imputed genotypes, and information about the relationship between 

genotype and phenotype is not related by an average. For example, this may occur when 

the posterior probabilities are high for the two homozygote genotypes, and an average 

dosage would indicate the unmeasured genotype was a heterozygote.  

 

We find that for most realistic settings of GWAS, such as modest genetic effects, large 

sample sizes and high average imputation accuracies, the strategy of regressing the 

phenotype on the genetic dosages provides adequate performance. In fact, for these 

settings, small gains from using the full mixture models are rendered negligible by the 

increased model complexity and associated “cost” of estimating additional parameters. 
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3.2 Methods 

 

Overview 

To simulate data from realistic cohort-based association studies, we first generated dense 

genotype data from a coalescent model. Then, conditional on these genotypes, we 

simulated quantitative trait data for all individuals in each cohort. To mimic the marker 

density from a GWA study, we masked a fraction of the SNPs and imputed these 

genotypes, conditional on a set of simulated reference haplotypes and the remaining 

observed SNPs. Finally, we performed analyses to test for association between imputed 

genotypes and phenotypes. 

 

Simulations 

Genotype data 

For each 100 one-megabase (1 Mb) region, we simulated 10,000 chromosomes from a 

coalescent model that mimics LD in real data, accounts for variations in local 

recombination rates, and models population history consistent with the HapMap CEU and 

YRI analysis panels (Schaffner et al. 2005). 

 

For each 1-Mb region, we then took a random subset of 120 simulated chromosomes to 

generate a region-specific “pseudo-HapMap”. We randomly paired (assuming 

Hardy-Weinberg equilibrium) a random subset of 2,000 chromosomes of the remaining 

9,880 chromosomes to create 1,000 diploid individuals.  
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For the simulated HapMap data, polymorphic sites were ascertained and thinned to match 

the corresponding (CEU or YRI) Phase II HapMap International HapMap Consortium 

(2007) marker density, allele frequency spectrum and LD patterns, resulting in ≈  1,000 

SNPs for each region for the panel of 120 HapMap chromosomes. Based on the thinned 

HapMap panel, we selected a set of 100 tagSNPs for each region that included the 90 

tagSNPs with the largest number of proxies and 10 additional SNPs picked at random 

among the remaining tags (Carlson et al. 2004). The tagSNP selection approach taken 

above resulted in tagSNP sets that captured ≈   78% of the common variants (MAF > 

5%) in the simulated CEU HapMap, similar to the observed performance of the Illumina 

HumanHap300 Beadchip SNP genotyping platform. The genotypes at these 100 tagSNPs 

constituted the observed data for each simulated sample. 

 

Quantitative trait 

We generated phenotype values on each of the n individuals for a large and small sample 

(n = 1000, 50), conditional on their simulated genotypes. We simulated trait values 

separately for four genetic models, with varying degrees of dominance, and also for a null 

model where genotypes and phenotypes were independent. 

 

At each SNP, the genotype label (0, 1, 2) is represented by the count of an arbitrarily 

chosen allele. Table 3.1 contains a summary of notation for the frequencies and genetic 

effect sizes (“phenotypic deviations”) of each genotype. Since allele frequency affects the 

power to detect phenotype association, we adjust the phenotypic deviations separately for 
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each SNP, so that we may tabulate results over all SNPs. To accomplish this, we maintain 

constant genetic variance of 0.0293 (respectively 1.4874) for n = 1000 (n = 50), 

calculated so as to achieve approximately 90% power at type-I error of 55 10−×  when 

analyzing the simulated genotypes under an additive genetic model with equal allele 

frequencies of one-half. We used the following formula for genetic variance 
G

V  (from 

Equation [8.8] of Falconer (1989), p. 129): 

2 22 [ ( )] [ ]
G

V pq a d q p apqd= + − +        (1) 

where p and 1q p= −  are allele frequencies, and a  and d are additive and dominance 

effects (Table 3.1). 

 

We performed the above trait simulations for 83,327 SNPs in turn for the following 

genetic models: additive ( 0d = ); partially-dominant (
1

2
d a= ); dominant ( d a= ); and 

over-dominant (
6

5
d a= ), corresponding to a value for the heterozygote that is 10% 

greater than the difference between the two homozygotes.  

 

To simulate trait data 
i

y  for individual i (1, … , n) at a single SNP, we used the 

following model: 

{ } { } { }
* *

0 1 2( ) ( ) ( )
i i i

i ig g g
y a I d I a Iµ ε

= = =
= + − + + +      (2) 

where 
i

g  is the true genotype for individual i, a and d are chosen according to (1), the 

indicator variable { }A
I  is one if A is true and zero otherwise, and (0,1)

i
Nε ∼ .  
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Genotype imputation 

To obtain posterior probabilities and imputed genotypes, we used the software  package 

fastPHASE (Scheet and Stephens, 2006). For each simulated region, we fit the LD model 

to the reference chromosomes only, and then applied this fitted model to the pseudo 

individuals in the simulated cohort. (For convenience we set the number of haplotype 

clusters K to be 20.) We assess imputation accuracy with the square of the Pearson 

correlation coefficient between the true and best-guess genotypes ( 2R ), which is more 

informative about power at different allele frequencies than a simple genotype imputation 

error rate measure. For our simulations, the median 2R  for these data was 0.90 and the 

mean was 0.75. 

 

Regression analysis 

We used regression analysis to test the effectiveness of multiple summaries of the 

imputed genotypes. Let 
ki

p  denote the conditional (“posterior”) probabilities for the 

imputed genotypes of individual i(1, … , n), where k (0, 1, 2) indexes the genotype by its 

label. We evaluated the performance of the following three summaries of the genotype 

probabilities conditional on the observed data: 

1. best guess — “maximum a posteriori”; 

2. dosage — estimated allelic or genotypic counts; and 

3. posterior probabilities — probabilities of the 3 possible genotypes obtained 

from imputation. 

For comparison, we also analyzed the true (simulated) genotypes. 
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First we give the models used for ordinary least squares (OLS) regression. Then we 

explain the use of mixture models for regression. For each method, we consider both 

additive (1-parameter) and non-additive (2-parameter) regression models for analysis. In 

what follows, let 
i

y  denote the quantitative trait value for individual i at a SNP. 

 

Ordinary regression on genotype imputation features 

Additive. Let 
i

x  represent a particular feature of the imputation procedure or the true 

genotype (
i

g ) at a SNP under consideration, i.e. 

{ } { }0,1,2

1 2

arg max ,

2 ,

,

kik

i i i

i

p best guess genotype

x p p allelic dosage

true genotypeg

∈
 −


= +



 

The additive model is written as 

i i i
y xµ β ε= + + ,        (3) 

where 2(0, )
i

Nε σ∼ , independently for all i. We use ordinary least squares (OLS) 

regression to test the null hypothesis 0 : 0H β =  vs. 0 : 0H β ≠ . We compute an 

F-statistic. 

 

Non-additive. Under a non-additive model, we expand 
i

x  to be comprised of two 

components ( )(1) (2),
i i

x x  as follows: 

( )
{ } { }

{ } { }

1 2

(1) (2)
1 2

1 2

( , ) ,

, ( , ) ,

,( , )

i i

i i

x x

i i i i

g g

I I best guess genotype

x x p p allelic dosage

true genotypeI I

= =

= =

 −


= 



. 

We write the dominance model as 
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(1) (2)
1 2i i i i

y x xµ β β ε= + + + ,      (4) 

where 2(0, )
i

Nε σ∼ , as above. Again we evaluate the null hypothesis that there is no 

effect for any genotype, i.e. 0 1 2: 0, 0H β β= =  vs. 0 1 2: 0 0H orβ β≠ ≠ . We apply OLS 

regression to compute an F-statistic. 

 

Mixture of regression models 

To investigate the approach of multiple-imputation, we fit a mixture of regression models 

to the phenotype data and posterior genotype probabilities. The composite regression 

model may be written as 

2

0

( , , )i ki i i

k

y p f µ β ε
=

=∑ ,       (5) 

where the regression function ( )
k

f ⋅  is a function of the assumed genetic model, i.e. 

additive or non-additive (see below). 

 

For each assumed model, we construct a likelihood ratio statistics to test for a genetic 

effect. To estimate the parameters ( , )µ β , we maximize the log-likelihood function using 

the Nelder-Mead Simplex Method (Nelder and Mead, 1965), implemented in the R 

package optim. 

 

Additive. Under an assumption of additivity of the allelic effects, the regression function 

( )
k

f ⋅  is 
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, 0

( , , ) , 1

, 22

i

k i i

i

k

f k

k

µ ε

µ β ε µ β ε

µ β ε

+ =


= + + =
 =+ +

,       (6) 

where 2(0, )
i

Nε σ∼ . 

 

To test the hypothesis 0 : 0H β =  vs. 0 : 0H β ≠ ，we construct a likelihood ratio test. 

 

Non-additive. Relaxing the assumption of additivity (allowing for dominance) of the 

allelic effects, we expand β  to be 1 2( , )β β , and the regression function ( )
k

f ⋅  is 

1 2 1

1 2

, 0

( , , , ) , 1

, 2

i

k i i

i

k

f k

k

µ ε

µ β β ε µ β ε

µ β β ε

+ =


= + + =
 =+ + +

,         (7) 

where 2(0, )
i

Nε σ∼ . To test the hypothesis 0 1 2: 0, 0H β β= =  vs. 0 1 2: 0 0H orβ β≠ ≠ , 

we construct a likelihood ratio test. 

 

3.3 Results 

 

Large sample size with small effects 

We computed power empirically, based on the analysis of ≈  1 million null data sets. 

Results from analysis based on our various imputation strategies and regression models, 

for the large sample of 1,000 individuals in the simulated studies, are reported in Table 

3.2. In general, there was a consistent gain in performance achieved from using the 

dosage summaries or mixture models in comparison to using the best guess genotypes. 

This improvement was larger for the 2-parameter regression models, regardless of the 
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underlying genetic model, with absolute gains in power of ≈  14%. For additive or 

1-parameter models, the average gain was more modest (3-4%). All differences between 

the dosage and mixture model strategies were small (< 2%). 

 

We also examined the effect of imputation accuracy and allele frequencies on the power 

to detect association (Figure 3.2). We summarized accuracy at each SNP with the square 

of the Pearson correlation coefficient between the imputed and true genotypes (coded as 

0, 1, or 2), which we refer to as 2R .  

 

When the accuracy is high ( 2 0.9R > ), using the best-guess genotype from the imputation 

procedure results in little loss of power. The gain from using a dosage or mixture model 

is greatest at intermediate accuracies, since posterior probabilities are informative about 

the underlying genetic variation, even if they do not allow accurate best-guess imputation 

of genotypes. For all three strategies, at low imputation accuracies, the lines of the 

additive regression models converge together; so do the lines of the dominant regression 

models. An important factor in overall power summaries, such as those in Tables 3.2 and 

3.3, is the allele frequency distribution of SNPs present in the reference panel, at which 

genotypes are being imputed in the study samples, since the tables are constructed with 

averages over all SNPs. In Figures 3.2(c) and 3.3(c), where phenotypes were simulated 

from an additive genetic model, powers of all regression models increase substantially 

when minor allele frequencies are relatively low. This may reflect the relative difficulty 

of accurate imputation at SNPs with a lower MAF. (Under the correct additive model, 

power for the true genotypes is unaffected, since, we attempted to make power 
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independent of allele frequency for the purposes of making general comparisons among 

analysis strategies; see Methods.) For data simulated under a dominant genetic model, the 

powers of different regression models are much greater for SNPs with low to moderate 

allele frequencies of the dominant allele. Methods that assume the correct dominant 

model for analysis are superior at a greater range of allele frequencies.  

 

Small sample size with large effects 

For SNPs with modest genetic effects, as above, there is little gain from the increased 

computational demands of applying mixture models for the analyses. To examine a 

scenario where the mixture models might offer an advantage, we repeated the above 

simulations with larger genetic effects (and thus smaller sample sizes so that power was 

below 100%). This situation might be found at expression quantitative trait loci (eQTL) 

mappings. These results are in Table 3.3. Here, the advantage of applying mixture models 

is apparent, with average power gains of 10-12%. The contrast is greater at lower 

imputation accuracies (top row of Figure) and is maintained even when we applied the 

incorrect additive regression model to data simulated with a strong genetic effect (Figure 

3.3(b)). 

 

3.4 Discussion 

 

Several software packages have been developed to impute and test SNPs that were not 

typed directly, such as BIMBAM (Servin and Stephens, 2007), IMPUTE (Marchini et al. 

2007), Mach (Li et al. 2006) and Beagle (Browning and Browning 2009). Two of these 
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methods (BIMBAM and IMPUTE) assess association between genotype and phenotype 

with a Bayes Factor. Here we do not consider the Bayesian approach, which is discussed 

by Guan and Stephens (2008). 

 

Multiple factors will impact power of imputation-based strategies for the analysis of 

GWAS, including differences in the patterns of LD and allele frequencies between the 

study and reference populations. However, for the single-marker analyses examined in 

our study, the impact of these factors can be measured via their effect on imputation 

accuracy, since the missing (unmeasured) genotypes are the quantities of interest for 

analysis. 

 

Here, we have made no attempt to model the correlation of genotypes among SNPs 

during analysis. To detect interactions among genotypes at nearby SNPs, it may be 

beneficial to model this dependence during imputation and analysis. The imputation 

procedures mentioned above may obtain correlated genotypes by sampling entire 

chromosomes of untyped SNPs, instead of the data at each SNP, marginally. 

 

It may be possible to do better in such a setting by using genuine “multiple imputation” 

methods. However, in our setting, by applying a mixture of regression models, we hope 

to capture a range of possible phenotype–genotype relationships, and the gain from 

multiple imputation over the mixture model should not be large. Therefore, we felt that 

the mixture model provided a close approximation to an optimal analysis procedure. 
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In our most relevant comparisons with modest effects and large sample sizes, use of the 

dosage summaries was as powerful as using the mixture model methods, at a fraction of 

computational cost. The exception to this result is apparent only at SNPs with very large 

genetic effects. In such situations of large effects, most methods will be effective at 

detecting an association. This difference is most pronounced at poorly imputed SNPs. 

Overall, use of the dosage quantities appear to be effective and efficient to account for the 

uncertainty in the imputed genotypes. 
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Figure 10.1: A didactic figure illustrating the three strategies.  
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 Genotype 

 

Labels 

A/A 

0 

A/a 

1 

a/a 

2 

Frequencies 

Phenotypic deviation 

2q  

a−  

2 pq  

d  

2p  

a  

 

Table 3.1: Genotype and phenotype values. Genotype labels are the counts of an 

arbitrarily chosen allele.  

The phenotypic deviations are the deviations from the mean *µ  in expression (2) used 
in the simulation, and vary by SNP. (This table is adapted from Table 7.3 of Falconer, 
1989, p. 121.) 
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Table 4.2: Power results for small effects and large sample size.  

The “Analysis Strategy” specifies the combination of imputation quantity/summary (e.g. 
best guess, dosage, or mixture model) and whether the regression model allows for 
deviations from a strict additive model. Results are based on a cohort of 1,000 individuals. 
Power was computed at a fixed type-I error rate (α ) of 55 10−× , based on empirical 
quantiles from analysis of 916,597 “null” data sets, with a trait simulated independent of 
genotype. Quantitative traits were simulated to have constant genetic variance of 0.0293. 
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Figure 5.2: Power vs. accuracy and allele frequency for large sample size and small 

effects.  

For each summary and the true genotypes, both an additive (solid line) and dominant 
(dotted line) model were analyzed. Figures A and C are based on data simulated with an 
additive effect; Figures B and D are based on data simulated under a model of complete 
dominance. Power was computed at a fixed type-I error rate (α ) of 55 10−× . The sample 
size was 1000. TOP: Power is plotted against 2R , a measure of imputation accuracy. 
BOTTOM: Power is plotted against allele frequency.  
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Table 6.3: Power results for large effects and small sample size.  

The “Analysis Strategy” specifies the combination of imputation quantity/summary (e.g. 
best guess, dosage, or mixture model) and whether the regression model allows for 
deviations from a strict additive model. Results are based on a cohort of 50 individuals. 
Power was computed at a fixed type-I error rate (α ) of 55 10−× , based on empirical 
quantiles from analysis of ≈  1 million “null” data sets, with a trait simulated 
independent of genotype. Quantitative traits were simulated to have constant genetic 
variance (see Methods), given the genetic model and allele frequencies at each SNP. 
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Figure 7.3: Power vs. accuracy and allele frequency for small sample size and large 

effects.  

Power was computed at a fixed type-I error rate (α ) of 55 10−× . The sample size was 50. 
For each summary and the true genotypes, both an additive (solid line) and dominant 
(dotted line) model were analyzed. Figures A and C are based on data simulated with an 
additive effect; Figures B and D are based on data simulated under a model of complete 
dominance. TOP: Power is plotted against 2R , a measure of imputation accuracy. 
BOTTOM: Power is plotted against allele frequency. 
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Chapter 4 

 

Locate Complex Disease Susceptibility Loci by Investigating Gene and 

Environment Interaction for Genome-Wide Association Studies 

 

4.1 Introduction 

 

Susceptibility to most of complex diseases is influenced by a combination of genetic 

factors, environmental factors, and interactions between them. Understanding the 

interaction of genes and environment will lead us to new methods of disease detection 

and prevention. If we know how genetic variation would cause people to respond 

differently to a drug, then the drug treatment could be made safer and more effective. For 

example, current treatment guidelines for coronary artery disease prevention require risk 

stratification of the patient. Quantification of the patient’s coronary artery disease risk 

guides the intensity of evidence-based drug treatment of modifiable risk factors (Lanktree 

and Hegele 2009). Studying the gene-environment interaction could also strengthen the 

associations between environmental factors and diseases by examining these factors in 

genetically susceptible individuals (Hunter 2005). Failure to analyze genetic and 

environmental factors together would weaken the observed associations between a true 



 

 65 

risk factor and disease occurrence, when susceptible and non-susceptible persons are 

mixed (Khoury et al. 1988, Khoury and Wacholder 2009).  

 

In general, interactions are differences in the strength of association between a gene and 

phenotype based upon the presence of or quantitative variations in another factor. The 

additional factor could be an environmental factor, behavior quantity, or another genetic 

variant (for example, genotype at another locus). The multiplicative interaction between 

genetic and environmental factors is often investigated for detecting the disease 

susceptibility loci. Usually, the multiplicative interaction is described as that an 

association of gene and environment in diseased subjects (cases) is different than that in 

healthy subjects (controls). Mechanistically, an interaction could be that the direction and 

magnitude of the genetic effect differs according to environmental exposure. A classical 

example is phenylketonuria (PKU), a human genetic condition caused by mutations to a 

gene coding for the liver enzyme phenylalanine hydroxylase. If newborns are put on a 

special, phenylalanine-free diet right away and stay on it, they avoid the severe mental 

retardation that typically results from PKU (Baker 2004). An alternative mechanistic 

explanation is that genetic factors might modify the effect of an environmental exposure 

on disease risk (Kraft et al. 2007). An example is the interaction between sunlight 

exposure and skin color: sunlight exposure has a much stronger influence on skin cancer 

risk in fair-skinned humans than among individuals with an inherited tendency to darker 

skin (Green and Trichopoulos 2002). Statistically, the two mechanistic routes are 

indistinguishable. 
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During the current decade, increasing efficiency and decreasing cost of genotyping and 

improved statistical methods have made genome-wide associate (GWA) studies the 

method of choice for localizing common susceptibility variants. Risch and Merikangas, 

in 1996, showed that GWAS can have high power to identify alleles with modest effects. 

In GWAS, the marginal genetic effect is usually tested in order to detect disease genes. 

However, we still do not know the best way to locate complex disease susceptibility loci 

by exploiting the gene-environment interaction, especially in the GWAS framework, in 

which hundreds of thousands markers are scanned. In the context of GWAS, multiple 

comparisons would be considered and even the hypotheses might possibly be different 

than those in traditional contexts. For example, we might be more interested in whether 

there is at least one locus showing significant evidence of the gene-environment 

interaction, rather than which specific locus shows significant evidence of the 

gene-environment interaction. 

 

The standard model for testing the gene-environment interaction is to evaluate a logistic 

regression model, with genotypic status, exposure status, and an interaction term between 

them as covariates. Another approach to detect gene-environment interaction is to use in 

case-only data and test whether genotypic status and exposure status are correlated 

among cases; this approach assumes that the two are independent at the population level 

and the disease is rare. Recently, Mukherjee and Chatterjee (2008) proposed an empirical 

Bayes-type shrinkage estimator to test the relationship between gene and environmental 

factors. The estimator is a weighted average of the case-only and case-control estimators 

of the logarithm of the interaction. This estimator balances the bias of case-only estimator 
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and the inefficiency of case-only estimator. Murcray et al. (2009), developed a 2-step 

method. They examined the marginal correlation of gene and environment first and then 

used the traditional logistic model as the second step at markers selected by the first step. 

This approach is generally more powerful than the traditional logistic regression-based 

approach.  

 

In this paper, we describe a new powerful method for identifying gene-environment 

interactions based on likelihood ratio tests, which models the interaction of genetic and 

environmental factors among cases and controls under the assumption that gene and 

environment are independent at the population level. We also compare its performance to 

above existing approaches in the setting of large scale association studies by different 

definitions of powers and type I errors, as well as ranked p-values. We show that our 

approach provides great gains in power (compared to all alternative approaches) when the 

trait being studied is common and performs similarly to the case-only approach when the 

trait is rare. When the departure to the assumption of gene-environment independence is 

modest, which closes to the reality, our new method still performs best in terms of the 

empirical power.  

 

4.2 Methods 

 

The traditional logistic regression model is: 

[ ] 0( 1| , ) g e gelogit P D g e G E GEβ β β β= = + + + ,    (1) 

where D is the disease status for each individual, coded as 1 for affected and 0 for 



 

 68 

unaffected, E is the exposure status with 1 for exposed and 0 for unexposed. For 

simplicity and demonstration purposes, we assume a binary coding of the genotype such 

that G = 1 means carriers of at least one risk allele and G = 0 means non-carriers. 

| 0( )
g g E

log ORβ ==  is the natural logarithm of the odds ratio between disease status and 

genotypes among individuals with E = 0, | 0( )
e e G

log ORβ ==  is the natural logarithm  of 

the odds ratio between disease status and exposure category among individuals with G = 

0, and | 1 | 0( / )
ge g E g E

log OR ORβ = ==  is the natural logarithm of the ratio of the genetic 

odds ratios comparing exposed to unexposed subjects. If 0
ge

β = , the odds ratio between 

disease status and genotypes for exposed people is the same as that for unexposed people, 

and there is no multiplicative gene-environment interaction at the tested marker. In the 

GWAS, the null hypothesis 0:0 =geH β  would be tested for each marker with a 

one-degree-of-freedom likelihood ratio test. The power would be corrected for multiple 

comparisons by Bonferroni criterion.  

 

Under the assumption that genetic effect and environment factor are independent at the 

population level and the disease is rare, the case-only method estimates the interaction 

with better precision than the traditional logistic regression (Piegorsch et al. 1994; 

Khoury and Flanders, 1996), which means the variance of the estimator is smaller than 

that from the standard logistic model in case-control studies. The case-only method uses a 

simpler logistic regression model on diseased individuals only: 

[ ] 0( 1| ) glogit P E g Gγ γ= = + .       (2) 

In a GWA study, the one-degree-of-freedom likelihood ratio test for testing 0:0 =gH γ  
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could be performed at each marker within the case group, and again must be adjusted for 

multiple comparisons.  

 

Murcray et al., in 2009, developed a 2-step test. At Step 1, they performed a 

likelihood-ratio test for the association between gene and environement at all M SNPs, 

based on the logistic regression model (2). The subset of m SNPs that exceed a given 

significance threshold (i.e. with p-value < α1) for the test of 0:0 =gH γ  would be 

analyzed at Step 2. Similar to the case-only method, this step also assumes that gene and 

environment are independent at population level and the disease is rare. At Step 2, the m 

SNPs that passed Step 1 are tested by the traditional test of gene-environment interaction 

based on model (1). These two steps are proved to be independent, therefore, this 2-step 

method maintains correct type I error rates and is robust to the assumption of 

gene-environment independence. They demonstrated that this method generally show 

higher powers than the logistic model in various situations  

 

Mukherjee and Chatterjee (2008) proposed an empirical Bayes-type shrinkage estimator 

to analyze case-control data. The estimator is a weighted average of the case-only and 

case-control estimators of the logarithm of the interaction. When the difference between 

the case-only and case-control estimators is bigger, the weight of the case-control 

estimator is larger. When the variance of case-only estimator is bigger, the weight of 

case-only estimator is larger. This empirical Bayes estimator methodis given as: 

2 2

2 2 2 2

ˆ ˆˆ ˆ ˆ
ˆ ˆ ˆ ˆ( ) ( )

CC
EB CO CC

CC CC

σ τ
β β β

τ σ τ σ
= +

+ +
. 
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Here, ˆ
CO

β  and ˆ
CC

β  are the case-only and case-control estimator, respectively, 2τ̂  is 

square of the difference between these two estimators. 2ˆ
CC

σ  is the variance of 

case-control estimator. The authors use Wald test statistics for testing the 

gene-environment interaction.  

 

Our new likelihood-based approach tests the interaction between gene and environment 

by likelihood ratio test statisteics, exploiting the gene-environment independence at 

underlying population. We assume gene-environment independent at population level, but 

we do not require rare disease assumption. Table 4.1 gives the data structure, which is a 

2x2x2 contingency table. The core of the log likelihood function of the table is 

log( ) log( )
i i j j

i j

l n p m q= × + ×∑ ∑ . 

Let D, G and E denote variables of disease status, genotype and environmental factor, 

respectively. The disease prevalence is denoted as ( )f P D= . At the population level, we 

have 

1 1( , ) ( , | ) ( ) ( , | ) ( ) (1 )P G E P G E D P D P G E D P D p f q f= × + × = + − , 

2 2( , ) ( , | ) ( ) ( , | ) ( ) (1 )P G E P G E D P D P G E D P D p f q f= × + × = + − , 

3 3( , ) ( , | ) ( ) ( , | ) ( ) (1 )P G E P G E D P D P G E D P D p f q f= × + × = + − , and 

4 4( , ) ( , | ) ( ) ( , | ) ( ) (1 )P G E P G E D P D P G E D P D p f q f= × + × = + − . 

Under the assumption of independence of gene and environment,  

( , ) ( , ) ( , ) ( , )P G E P G E P G E P G E× = × . 

The null hypothesis of no gene-environment multiplicative interaction in our method is 
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equivalent to 0 | |
:

ge d ge d
H OR OR= , which is exactly the same as 1 4 1 4

2 3 2 3

p p q q

p p q q
= , 

corresponding to 0:0 =geH β  for model (1). 

 

Thus, under the null, we have 

1 2 3 4

1 2 3 4

1 4 1 4

2 3 2 3

1

1

( , ) ( , ) ( , ) ( , )

p p p p

q q q q

P G E P G E P G E P G E

p p q q

p p q q

+ + + =


+ + + =
× = ×


 =


, 

with four unknown parameters (the rests are nuisance parameters). Under the alternative,  

1 2 3 4

1 2 3 4

1

1

( , ) ( , ) ( , ) ( , )

p p p p

q q q q

P G E P G E P G E P G E

 + + + =


+ + + =


× = ×

, 

with five unknown parameters in total. Thus, we can carry out a one-degree-of-freedom 

likelihood ratio test for the gene-environment interaction at each SNP, corrected by 

Bonferroni criterion.  

 

We performed simulations to compare the above five methods: traditional logistic 

regression model, the case-only method, 2-step method by Murcray et al., empirical- 

Bayes estimator and our new likelihood-based approach. In the simulations, we adopted 

the parameter settings similar to those studied by Murcray et al. (2009), based on the 

model (1). For each of 500 replicate data sets, we simulated 500 cases and 500 controls, 

M = 10,000, 25,000, or 50,000 independent markers for each individual, including one 

true disease susceptibility locus and the rest independent of disease status. Minor allele 
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frequency at the disease locus was set to 0.1, 0.2, or 0.25
A

q = ; distributions of minor 

allele frequency at null markers was set to ~  (0.05,0.5)q Uniform ; disease prevalence 

0.05, 0.1, 0.3 or 0.5
d

p = ; and environmental exposure frequency 0.1, 0.25, or 0.5
E

p = . 

We considered different combinations of main effects and interaction in the model (1): 

( )g gR exp β= , ( )
e e

R exp β= , and ( )ge geR exp β= . 

 

To examine the sensitivity of all methods when the gene-environment independence at 

population level assumption is violated, we also simulated the situations in which genetic 

and environmental factors are correlated at a small portion of markers. We define 

0.01 and 0.05
ge

p = , as the probability of gene-environment association at a given null 

marker in the population. 0
ge

p =  indicates that gene and environment are independent 

at all simulated markers. If the marker is not independent to exposure status, the 

population marker-exposure odds ratio ( ( )geexp θ ) would be simulated as 1.1, 1.2, 1.5 or 

2.0. 

 

In this paper, we compared different methods by different definitions of measurements as 

follow: 

1. Experiment-wise power and type I error. Power is calculated as the proportion of the 

total 500 replicates in which the disease susceptibility locus was detected at p < 0.05/M, 

where M is the total number of SNPs tested. For the 2-step method, the criterion is p < 

0.05/m at Step 2, where m is the number SNPs selected by the first step. The type I error 

rate is estimated as the proportion of the total 500 replicates in which at least one of the 
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null markers is found significant after Bonferroni correction for multiple comparisons. 

Both criteria are introduced by Murcray et al. 2009.  

 

2. Top selections. The proportion of the total 500 replicates in which the disease 

susceptibility locus is among the top 10 or top 25 most significant SNPs is calculated 

based on the ranked p-values. 

 

3. Empirical power. Among all null markers ( 500M ×  in total), the empirical cutoff is 

defined as the value that makes exactly 5% of total 500 replicates (i.e. 25 replicates here) 

in which at least one null marker is detected significant after adjusting for multiple 

comparisons. The empirical power is then estimated based on this empirical cutoff. The 

purpose of the empirical power is to control the corresponding type I error at exactly 

0.05. 

 

4. Integrated type I error and power. Mukherjee et al. (2008) introduced these criteria. 

They evaluated average power and type I error rate for different tests for interaction 

under some distributions for the genotype-exposure odds-ratio parameters that were 

likely to hold in large-scale association studies, instead of assuming a fixed value of that 

parameter 

 

5. Tabulated type I error. This type I error is the proportion of significant markers with p 

< 0.05 among all simulated null markers across all replicates (( 1M − ) SNPs in each of 

500 replicates totally).  
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4.3 Results  

 

Figure 4.1 shows power comparison for the traditional logistic model, the case-only 

approach, the 2-step approach, the empirical Bayes estimator method and our new 

likelihood-based approach across different interaction effect sizes 
ge

R . The powers of all 

methods increase as the interaction effect size increases. The power is at nominal level 

where there is no interaction, while powers approach 1 when the interaction is very large 

(say, log(5)). At intermediate interaction effect sizes, the likelihood-based approach and 

the case-only method both have highest powers. The power of the logistic model is 

consistently low. The empirical Bayes estimator method performs similarly as the 2-step 

method at this framwork. 

 

In comparison to the basic setting of parameters: 000,10=M , 2.0=Aq , 5.0=Ep , 

1
g

R = , 1
e

R = , 3
ge

R = , 0.05
d

p = , and 0
ge

p = , various alternatives are considered at 

Table 4.2, Table 4.3 and Table 4.4, with experiment-wise powers, experiment-wise type I 

errors, and empirical powers, respectively. These tables need to be assessed 

simultaneously. For example, under the base model setting, the experiment-wise power is 

0.330 for the logistic model, while the type I error rate is 0.048. Based on the empirical 

threshold controlling the type I error as exactly 0.05, the empirical power becomes 

slightly higher, 0.334. Overall, all methods seem maintain correct type I error rates with 

slight variation in Table 4.3. The power of likelihood-based approach is always highest 

under these settings and the traditional logistic models have the lowest powers for most 
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situations. In many situations, the power of the likelihood-based approach is more than 

two times greater than the power of the logistic model. All methods have relatively high 

powers for common exposures and alleles. We notice that in Table 4.3, the 

experiment-wise type I error rate of the empirical Bayes estimator method is always very 

small. For example, under the basic setting of parameters, the experiment-wise type I 

error rate is as low as 0.008, while the type I error rates range between 0.036 and 0.050 

for the other four methods. We then plotted empirical power comparisons in Figure 4.2 

with the same settings as Figure 4.1. By comparing both figures, we find that the 

empirical power of the empirical Bayes method is generally little higher than that of the 

2-step method. 

 

When the disease prevalence 0.05dp = , the case-only method always performs well. 

However, as disease prevalence increases, the power of the case-only method drops very 

quickly (Table 4.2, Table 4.3), since one of the assumptions of case-only method (rare 

disease) is violated. At the extreme case of disease prevalence 0.5, the power of the 

likelihood-based approach becomes similar as the logistic model, whereas the powers of 

2-step method and case-only method are very low. To further exam the performance for a 

common disease, we plotted experiment-wise powers and empirical powers of different 

models upon varying interaction effect sizes for disease prevalence 0.2 (Figure 4.3 and 

Figure 4.4, respectively). The power line of the case-only method overlaps that of the 

2-step method and both are intermediate to the other two methods. The empirical power 

line of the empirical Bayes estimator method is very close to that of the logistic 

regression model.  
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Figure 4.5 displays the percentage of replicates in which the disease susceptibility locus 

would be picked up among the top 10 most significant markers upon different interaction 

effect sizes; findings mirror those in Figure 4.1 for power comparisons. When the disease 

prevalence is as low as 0.05, the case-only method performs as well as the 

likelihood-based approach, while the five methods perform more similarly in Figure 4.5 

compared with performance in power comparison in Figure 4.1. However, when the 

disease prevalence is 0.2, the case-only method is worse than the new method, and the 

2-step method is even worse than the logistic model in terms of power to select the 

disease susceptibility locus by the top-10-ranked p-values (Figure 4.4). These results are 

confirmed in Table 4.5. The likelihood-based approach is the most robust over all settings 

of parameters. For example, when the exposure prevalence Ep = 0.1, there are still 

73.2% of replicates where the disease susceptibility locus is among the top 10 selection, 

although the power of the likelihood-based approach dropped down to 0.262 (Table 4.2). 

Although the power line of the empirical Bayes estimator method is lowest in Figure 4.3 

and Figure 4.4, the ability to pick up the disease susceptibility locus of the empirical 

Bayes estimator method is better than that of logistic regression model and the 2-step 

method in Figure 4.6.  

 

Since the two methods with generally higher powers both exploit the assumption of gene 

and environment independence at the population level, we did simulations to exam the 

performance of the methods when this assumption is violated. We denote gep  as the 

probability that one specific marker is correlated with an environmental factor. We also 
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define geθ  as the natural logarithm of odds ratio between gene and environment in the 

population, if the marker is associated with the environmental factor. As expected, the 

experiment-wise type I errors of case-only method and the likelihood-based approach are 

inflated at all situations (Table 4.6). The stronger the gene–environment association, the 

greater the inflation of type I error rates for both methods. For example, when 

( )geexp θ =1.5, the type I errors of the new method are as high as 0.370 and 0.884 when 

gep =0.01 and gep =0.05, respectively. The experiment-wise powers are meaningless in 

these circumstances. However, we could investigate the empirical powers at Table 4.7 

instead. By controlling the adjusted type I error at exactly 0.05, the empirical powers of 

the likelihood-based approach are 0.640 and 0.414 for the case of gep =0.01 and 

gep =0.05, respectively, which are still relatively higher.  

 

In the simulations above, we fixed the value of the key parameter geθ , which describes 

the degree to which the gene is associated with environment at the population level. 

Mukherjee et al. (2008) introduced an idea that the value of geθ  is distributed as a 

normal distribution, instead of a fixed value. This scenario is more like realistic situation 

in GWAS, since there is possibility that at a small portion of markers, not all markers 

over the genome, the gene and environment might be associated to various degrees. For 

example, when gep =0.1 and (0, (1.2) / 2)ge N logθ ∼ , there are 90% of markers are 

independent of the environment, and for 95% of the rest 10%, the GE odds ratio is 

between (1.2)log−  and (1.2)log . Table 4.8 lists integrated power and type I error for 

different parameter settings, as well as the corresponding empirical power. Again, when 
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the departure from the gene-environment independence assumption is modest, our new 

likelihood-based approach still has relatively high empirical powers. For example, when 

85% of markers are independent of the environment, and for 95% of the rest 15% 

markers, the gene-environment odds ratio is between (1.3)log−  and (1.3)log , the 

empirical power of the likelihood-based approach is 0.768, which is much higher than 

that of the 2-step method and the empirical Bayes estimator method. When the 

gene-environment independence assumption does not hold, the 2-step method and the 

empirical Bayes estimator method perform similarly. When the departure to the 

assumption is small, the empirical Bayes estimator method has a little higher power, 

whereas the 2-step is a little better when the departure is large. 

 

Finally, we compared the power to select the disease susceptibility locus for all methods 

when the gene-environment independence assumption was not satisfied (Table 4.9). The 

likelihood-based approach has very robust performance at all situations, despite highly 

inflated experiment-wise type I errors at some cases.  

 

4.4 Discussion  

 

In the context of GWAS, gene-environment interaction is still a new frontier. In this paper, 

we proposed a new likelihood-based approach to test for the gene-environment 

interaction, and compared its performance by simulation studies to the traditional logistic 

regression model, a case-only method (Piegorsch et al. 1994; Khoury and Flanders, 1996), 

the 2-step method (Murcray et al. 2009) and the empirical Bayes-type shrinkage 
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estimator method (Mukherjee and Chatterjee 2008), through various criteria and under a 

range of settings of parameters. The likelihood-based approach has increased power 

compared to the other methods when the gene-environment independence assumption is 

satisfied. When the assumption is slightly violated, the likelihood-based approach would 

have inflated type I error rate. However, the empirical power of the likelihood-based 

approach is still relatively high under modest departure from independence assumption. 

For example, the probability of a marker associated with environment is less than 0.05 

and the gene-environment odds ratio at population level for the associated marker is less 

than 1.5. These are very realistic situations, suggested by Liu et al. (2004), that violation 

of gene-environment independence would likely to be modest in most situations when it 

occurs.  

 

In our simulation studies, the traditional logistic model had poor performance as expected. 

It maintains theoretically correct type I error rates under all circumstances considered, 

whereas the power is influenced greatly by the numbers of samples within each cell in the 

data structure (Table 4.1).  

 

The case-only method assumes gene-environment independence at the population level 

and that the disease is rare. The rare disease assumption for all levels of both genetic and 

environmental exposures might not be always valid. Schmidt and Schaid (1999) describe 

a situation where the marginal probability of the disease may be small in the population 

but high for certain subgroups. Our simulations show that when the disease is 

comparatively common (prevalence greater than 0.1), both power and the ability to select 
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the disease susceptibility locus decreases substantially, although the type I error rates 

remain at their nominal levels.  

 

The 2-step method proposed by Murcray et al. (2009) conducts a screening test at the 

first step, which reduces the number of multiple comparisons at the independent second 

step reduced. Therefore, it has higher power than the traditional logistic regression model. 

Similar to the case-only method, the first step of the 2-step method also assumes 

gene-environment independence and rare disease, which is the reason why the 2-step 

method performs much worse at common disease situations in our simulation studies. 

Since the two steps are proved to be un-correlated, the 2-step method maintains the 

correct type I error rates.  

 

Mukherjee and Bhatterjee (2008) described a novel empirical Bayes-type shrinkage 

estimator to detect gene-environment interaction. This strategy balanced the bias and 

efficiency, since the case-control estimator is always unbiased and the case-only 

estimator would be much more efficient when the gene-environment independence and 

rare disease assumption holds. When genetic and environmental factors are independent 

at the underlying population, this method would exploit this assumption to get higher 

power; when the assumption does not hold, this method would ensure lower false 

positives.  

 

Our new likelihood-based method exploits the entire information of the independence 

between genetic and environmental factors in general population but does not require the 
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rare disease assumption, which makes its power higher than other methods. This 

assumption has been exploited in many methods, for example, Self et al. 1991, Hwang et 

al. 1994, Piegorsch et al. 1994, Umbach and Weidinger 1997, Modan et al. 2001, 

Chatterjee and Carroll 2005, Kraft et al. 2007. The gene-environment independence 

assumption is reasonable for “randomized exposures” (such as treatments assigned in a 

randomized trial), and for external environment agents such as carcinogens from a nearby 

chemical factory (Chatterjee and Carroll 2005). In some situations, genotype and 

exposure may co-vary according to other factors (such as ethnicity), however, this 

assumption might not be valid (Umbach and Weidinger 1997).  

 

In the paper, we also evaluated the sensitivity to the violation of the gene-environment 

independence assumption for all methods under several parameter settings, either fixing 

the value of gene-environment odds ratio or considering it as normal distributed partially. 

The later scenario is similar to the prior distribution of a key parameter in Bayesian 

analyses. Apparently, the “prior” of mixed normal distribution is more close to real 

situation than the “prior” as a constant, especially in a GWA study. Then the 

corresponding power and type I error could be treated as a weighted average of those 

values with weights obtained from the specified mixture distribution (Mukherjee et al. 

2008). 

 

When the experiment-wise type I errors could not be restricted as 0.05, for example, type 

I errors are inflated at some situations, we are more interested in the empirical powers 

rather than the experiment-wise power. The empirical power is calculated by controlling 
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the adjusted type I error at exactly 0.05, i.e., the false positives are controlled. On the 

basis of empirical powers, the performance of different models could be compared fairly. 

In a real situation, there might not be enough null markers to calculate the empirical 

threshold. We could get the empirical cutoffs through the null distribution developed by 

permutation or bootstrap resampling.  

 

When the departure to the gene-environment interaction assumption is large, we could try 

to find definable homogeneous strata in which the assumption would hold or perhaps use 

recently developed approaches (for example, genomic control based methods (Devlin et 

al. 2001) or principal component of ancestry covariates (Alexander et al. 2009)) to 

control for differences in genetic background among samples.  

 

In this paper, we conducted many different definitions of powers and type I errors to 

perform the model comparisons. We would like to investigate two definitions of type I 

errors more here. The corresponding hypotheses of the experiment-wise type I error and 

the tabulated type I error (Table 4.10) are different. Under the GWA study framework 

similar to our simulations, the null hypothesis of the experiment-wise type I error is that 

there is no any marker showing gene-environment interaction for the whole set of 

markers; the alternative hypothesis is that there is at lease one null marker found 

significant after the multiple comparisons correction. These hypotheses are reasonable for 

a GWA study. In contrast, the null hypothesis of the tabulated type I error is that for a 

specific marker, there is no evidence of gene-environment interaction, while the 

alternative is that this specific marker shows significant evidence of gene-environment 
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interaction. This is the reason why we do not need to adjust the cutoff when estimating 

the tabulated type I error. The integrated type I error described by Mukherjee et al. (2008) 

is corresponding to the tabulated type I error here. For example, when gep  = 0.2 and 

~ ( (2) / 2)ge N logθ , the tabulated type I error in Table 4.10 is 0.0740 at level of 0.05; 

while the corresponding integrated type I error at Mukherjee et al. (2008) is 0.070 for 

case-only method. 

 

We could easily extend our method to accommodate multi-genotypes other than 

dichotomous genotypes by extending the contingency table 4.1 to bigger dimensions. The 

environmental factor E here could be an external factor, a behavior quantity, or another 

genetic variant. The extension to the continuous phenotypes is also possible. Our method 

provides a new way to screen the disease susceptibility loci after main genetic effects has 

been tested in GWAS. 
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Case (D = 1) Control (D = 0) 
 

E = 1 E = 0 E = 1 E = 0 

G = 1 1p  ( 1n ) 2p  ( 2n ) 1q  ( 1m ) 2q  ( 2m ) 

G = 0 3p  ( 3n ) 4p  ( 4n ) 3q  ( 3m ) 4q  ( 4m ) 

 
Table 11.1: Data structure for case-control studies.  

D is the disease status for each individual, valued as 1 for affected and 0 for unaffected, E 
is the exposure status with 1 for exposed person and 0 for unexposed. G = 1 means 
carriers of at least one risk allele and G = 0 means non-carriers. '

i
p s  and '

i
q s  are the 

probability of each cell, '
i

n s  and '
i

m s  are the counts for each sub-group.  
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Figure 12.1: Experiment-wise power comparison at diseases prevalence 0.05.  

The base setting of parameters is 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 1
e

R =  

and 0
ge

p = . The interaction effect size 
ge

R  is varying.  
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Figure 13.2: Empirical power comparison at diseases prevalence 0.05.  

The base setting of parameters is 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 1
e

R =  

and 0
ge

p = . The interaction effect size 
ge

R  is varying.  
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Figure 14.3: Experiment-wise power comparison at diseases prevalence 0.2.  

The base setting of parameters is 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 1
e

R =  

and 0
ge

p = . The interaction effect size 
ge

R  is varying.  
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Figure 15.4: Empirical power comparison at diseases prevalence 0.2.  

The base setting of parameters is 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 1
e

R =  

and 0
ge

p = . The interaction effect size 
ge

R  is varying.  
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Model Logistic 2-step Case-only Empirical 
Bayes 

Likelihood 
-based 

BASE 0.330 0.592 0.796 0.554 0.830 
  Disease susceptibility locus 

    allele frequency ( Aq ) 

     

    0.1 0.172 0.346 0.644 0.320 0.656 
    0.25 0.336 0.598 0.806 0.610 0.848 

  Exposure prevalence ( Ep )  
    

    0.1 0.022 0.090 0.246 0.098 0.262 
    0.25 0.214 0.476 0.778 0.468 0.800 

  Effect sizes ( gR , eR , geR )  
    

    123 0.228 0.486 0.566 0.394 0.648 
    213 0.308 0.568 0.700 0.568 0.762 
    223 0.200 0.446 0.380 0.260 0.542 
  No. of markers (M)      
    25,000 0.292 0.490 0.762 0.512 0.792 
    50,000 0.262 0.478 0.712 0.572 0.762 

  Disease prevalence ( dp )  
    

    0.1 0.318 0.532 0.674 0.420 0.726 
    0.2 0.330 0.452 0.450 0.234 0.602 
    0.3 0.328 0.236 0.210 0.156 0.434 
    0.5 0.308 0.028 0.020 0.148 0.308 

 
Table 16.2: Experiment-wise power comparison.  

The parameters of the base model are: 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 

1
e

R = , 3
ge

R = , 0.05
d

p = , and 0
ge

p = . 
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Model Logistic 2-step Case-only Empirical 
Bayes 

Likelihood 
-based 

BASE 0.048 0.050 0.036 0.008 0.042 
  Disease susceptibility locus 

    allele frequency ( Aq )  

    

    0.1 0.074 0.066 0.056 0.012 0.052 
    0.25 0.050 0.046 0.054 0.012 0.056 

  Exposure prevalence ( Ep )  
    

    0.1 0.050 0.048 0.042 0.006 0.042 
    0.25 0.048 0.058 0.052 0.016 0.062 

  Effect sizes ( gR , eR , geR )  
    

    123 0.050 0.054 0.046 0.008 0.046 
    213 0.046 0.046 0.038 0.014 0.038 
    223 0.050 0.064 0.044 0.006 0.040 
  No. Of markers (M)      
    25,000 0.038 0.052 0.040 0.014 0.040 
    50,000 0.074 0.056 0.060 0.012 0.048 

  Disease prevalence ( dp )  
    

    0.1 0.056 0.040 0.052 0.008 0.048 
    0.2 0.038 0.046 0.054 0.012 0.042 
    0.3 0.040 0.060 0.052 0.014 0.048 
    0.5 0.050 0.058 0.060 0.012 0.050 

 
Table 17.3: Experiment-wise type I error comparison.  

The parameters of the base model are: 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 

1
e

R = , 3
ge

R = , 0.05
d

p = , and 0
ge

p = . 
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 Logistic 2-step Case-only Empirical 
Bayes 

Likelihood 
-based 

BASE 0.334 0.592 0.810 0.674 0.838 
  Disease susceptibility locus 

    allele frequency ( Aq )  

    

    0.1 0.144 0.326 0.636 0.400 0.652 
    0.25 0.336 0.610 0.802 0.690 0.844 

  Exposure prevalence ( Ep )  
    

    0.1 0.022 0.090 0.254 0.164 0.268 
    0.25 0.216 0.454 0.772 0.554 0.798 

  Effect sizes ( gR , eR , geR )  
    

    123 0.228 0.482 0.572 0.502 0.668 
    213 0.308 0.576 0.730 0.568 0.788 
    223 0.200 0.434 0.392 0.366 0.562 
  No. of markers (M)      
    25,000 0.310 0.472 0.770 0.658 0.808 
    50,000 0.262 0.478 0.712 0.572 0.762 

  Disease prevalence ( dp )  
    

    0.1 0.310 0.546 0.672 0.532 0.734 
    0.2 0.344 0.458 0.422 0.340 0.608 
    0.3 0.344 0.222 0.206 0.220 0.438 
    0.5 0.308 0.028 0.018 0.212 0.308 

 
Table 18.4: Empirical power comparison.  

The parameters of the base model are: 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 

1
e

R = , 3
ge

R = , 0.05
d

p = , and 0
ge

p = . 
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Figure 19.5: Comparison of top selection at diseases prevalence 0.05.   

Percentages of replicates for which the p-value for disease susceptibility locus is ranked 
in the top 10 marker p-values are plotted. The base setting of parameters is 000,10=M , 

2.0=Aq , 5.0=Ep , 1
g

R = , 1
e

R =  and 0
ge

p = . The interaction effect size 
ge

R  is 

varying.  
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Figure 20.6: Comparison of top selection at diseases prevalence 0.2.   

Percentages of replicates for which the p-value for disease susceptibility locus is ranked 
in the top 10 marker p-values are plotted. The base setting of parameters is 000,10=M , 

2.0=Aq , 5.0=Ep , 1
g

R = , 1
e

R =  and 0
ge

p = . The interaction effect size 
ge

R  is 

varying.  
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Logistic 2-step Case-only Empirical Bayes Likelihood-based  
Model Top 

10 
Top 
25 

Top 
10 

Top 
25 

Top 
10 

Top 
10 Top 25 

Top  
25 

Top 
10 Top 25 

BASE .790 .868 .938 .972 .990 .992 .942 .962 .992 .996 
  Disease susceptibility  
      locus allele  

      frequency ( Aq )   

        

    0.1 .582 .660 .814 .880 .938 .946 .852 .894 .946 .974 
    0.25 .806 .874 .944 .976 .978 .984 .950 .968 .984 .998 
  Exposure prevalence  

      ( Ep )   

        

    0.1 .276 .372 .530 .620 .722 .732 .576 .684 .732 .824 
    0.25 .718 .796 .908 .954 .984 .986 .916 .944 .986 .990 
  Effect sizes 

      ( gR , eR , geR )   

        

    123 .730 .810 .914 .942 .928 .956 .890 .918 .956 .980 
    213 .766 .836 .942 .968 .952 .962 .920 .954 .962 .976 
    223 .678 .762 .926 .966 .840 .936 .846 .898 .936 .958 
  No. Of markers (M)           
    25,000 .722 .796 .912 .954 .98 .982 .924 .948 .982 .986 
    50,000 .670 .746 .874 .928 .960 .982 .910 .938 .970 .988 
  Disease prevalence 

      ( dp )   

        

    0.1 .740 .844 .914 .940 .954 .972 .944 .972 .972 .990 
    0.2 .794 .858 .744 .758 .854 .932 .834 .894 .932 .958 
    0.3 .774 .862 .388 .394 .642 .740 .740 .818 .866 .924 
    0.5 .798 .856 .048 .052 .204 .800 .638 .766 .800 .856 

 
Table 8.5: Comparison of top selection.  

Percentages of replicates for which the p-value for disease susceptibility locus is ranked 
in the top 10 and top 25 marker p-values are listed. The parameters of the base model are: 

000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 1
e

R = , 3
ge

R = , 0.05
d

p = , and 0
ge

p = . 
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Model Logistic 2-step Case-only Empirical 
Bayes 

Likelihood 
-based 

BASE 0.048 0.05 0.036 0.008 0.042 
  Population gene-environment 

      association ( gep =0.01)  

    

    ( )geexp θ =1.1 0.040 0.042 0.058 0.014 0.058 

    ( )geexp θ =1.2 0.040 0.042 0.068 0.014 0.068 
    ( )geexp θ =1.5 0.040 0.040 0.474 0.040 0.370 
    ( )geexp θ =2 0.040 0.036 1.000 0.028 1.000 
  Population gene-environment 
      association ( gep =0.5)      
    ( )geexp θ =1.1 0.040 0.046 0.070 0.020 0.072 
    ( )geexp θ =1.2 0.044 0.046 0.114 0.024 0.108 
    ( )geexp θ =1.5 0.038 0.062 0.952 0.118 0.884 

    ( )geexp θ =2 0.040 0.034 1.000 0.080 1.000 
 

Table 9.6: Experiment-wise type I error when gene and environment are correlated.  

The parameters of the base model are: 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 

1
e

R = , 3
ge

R = , 0.05
d

p = , and 0
ge

p = . 
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Model Logistic 2-step Case-only Empirical 
Bayes 

Likelihood 
-based 

BASE 0.334 0.592 0.81 0.674 0.838 
  Population 
gene-environment 
      association ( gep =0.01) 

     

    ( )geexp θ =1.1 0.334 0.608 0.780 0.654 0.820 
    ( )geexp θ =1.2 0.334 0.608 0.774 0.650 0.800 

    ( )geexp θ =1.5 0.334 0.602 0.550 0.588 0.640 
    ( )geexp θ =2 0.334 0.608 0.078 0.614 0.144 
  Population 
gene-environment 
      association ( gep =0.5)      

    ( )geexp θ =1.1 0.330 0.606 0.764 0.648 0.796 
    ( )geexp θ =1.2 0.322 0.592 0.740 0.622 0.766 

    ( )geexp θ =1.5 0.338 0.536 0.362 0.466 0.414 
    ( )geexp θ =2 0.334 0.572 0.032 0.498 0.054 

 

Table 10.7: Empirical power when gene and environment are correlated.  

The parameters of the base model are: 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 

1
e

R = , 3
ge

R = , 0.05
d

p = , and 0
ge

p = . 
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 Logistic 2-step Case 
-only 

Empirical 
Bayes 

Likelihood 
-based 

          BASE      
Power 0.330 0.592 0.796 0.554 0.830 
Type I error 0.048 0.050 0.036 0.008 0.042 
Empirical power 0.334 0.592 0.810 0.674 0.838 

          gep =0.1; (0, (1.2) / 2)ge N logθ ∼  

Power 0.338 0.572 0.824 0.608 0.844 
Type I error 0.042 0.030 0.064 0.014 0.056 
Empirical power 0.352 0.602 0.818 0.664 0.840 

          gep =0.15; (0, (1.3) / 2)ge N logθ ∼     

Power 0.356 0.574 0.824 0.564 0.840 
Type I error 0.064 0.048 0.262 0.040 0.226 
Empirical power 0.346 0.586 0.708 0.576 0.768 

          gep =0.2; (0, (1.5) / 2)ge N logθ ∼     

Power 0.360 0.576 0.850 0.616 0.874 
Type I error 0.044 0.050 0.948 0.126 0.878 
Empirical power 0.370 0.578 0.294 0.510 0.344 

 
Table 11.8: Integrated power and type I error comparison.  

The parameters of the base model are: 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 

1
e

R = , 3
ge

R = , 0.05
d

p = , and 0
ge

p = . Power and type I error above refer to 

integrated power and integrated type I error.  
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  Logistic 2-step Case-only Empirical Bayes Likelihood-based 

gep  ( )geexp θ  Top 
10 

Top 
25 

Top 
10 

Top 
25 

Top 
10 

Top 
25 

Top 
10 

Top 
25 

Top 
10 

Top 
25 

0 - .790 .868 .938 .972 .990 .996 .942 .962 .992 .996 
.01 1.1 .808 .870 .932 .964 .982 .994 .942 .962 .986 .994 
 1.2 .808 .870 .932 .964 .980 .994 .940 .962 .986 .994 
 1.5 .808 .870 .932 .960 .970 .992 .938 .962 .978 .992 
 2 .808 .870 .932 .960 .738 .942 .938 .962 .828 .942 
.05 1.1 .808 .870 .930 .962 .982 .994 .944 .962 .986 .994 
 1.2 .808 .870 .928 .962 .980 .994 .940 .962 .986 .994 
 1.5 .810 .870 .916 .952 .908 .974 .928 .962 .930 .974 
 2 .810 .866 .910 .948 .464 .724 .934 .962 .564 .724 
.1 (0, (1.2) / 2)

ge
N logθ ∼

 .786 .862 .952 .978 .994 .996 .950 .968 .996 .996 
.15 (0, (1.5) / 2)

ge
N logθ ∼

 .796 .858 .934 .972 .978 .996 .936 .958 .984 .996 
.2 (0, (2) / 2)ge N logθ ∼

 .816 .872 .946 .958 .930 .978 .930 .950 .954 .978 
 
Table 12.9: Comparison of top selection when gene and environment are correlated.  
Percentages of replicates for which the p-value for disease susceptibility locus is ranked in the top 10 
and top 25 marker p-values are listed. The parameters of the base model are: 000,10=M , 

2.0=Aq , 5.0=Ep , 1
g

R = , 1
e

R = , 3
ge

R = , 0.05
d

p = , and 0
ge

p = . 

The first row of 0
ge

p =  indicates the base model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 99 

  Logistic 2-step Case-only Empirical Bayes Likelihood-based 

gep

 

( )geexp θ
 

.05 .001 .05 .001 .05 .001 .05 .001 .05 .001 

0 - .0505 .00102 .0491 .00102 .0504 .00103 .0392 .00048 .0504 .00103 
.01 1.1 .0507 .00103 .0494 .00104 .0506 .00103 .0395 .00049 .0506 .00103 
 1.2 .0507 .00103 .0498 .00103 .0513 .00108 .0397 .00056 .0513 .00108 
 1.5 .0507 .00103 .0499 .00104 .0546 .00188 .0396 .00052 .0546 .00188 
 2 .0507 .00103 .0500 .00103 .0587 .00579 .0392 .00048 .0587 .00579 
.05 1.1 .0507 .00103 .0499 .00103 .0515 .00109 .0399 .00051 .0515 .00109 
 1.2 .,507 .00103 .0499 .00104 .0548 .00136 .0409 .00058 .0548 .00136 
 1.5 .0507 .00103 .0500 .00103 .0717 .00531 .0420 .00083 .0717 .00531 
 2 .0507 .00103 .0500 .00101 .0921 .02498 .0407 .00063 .0921 .02498 
.1 (0, (1.2) / 2)

ge
N logθ ∼

 
.0508 .00103 .0499 .00102 .0527 .00117 .0403 .00054 .0527 .00117 

.15 (0, (1.5) / 2)
ge

N logθ ∼

 
.0506 .00103 .0500 .00102 .0571 .00168 .0415 .00065 .0571 .00168 

.2 (0, (2) / 2)ge N logθ ∼

 
.0506 .00103 .0500 .00105 .0717 .00435 .0441 .00090 .0717 .00435 

 
Table 13.10: Tabulated type I error when gene and environment are correlated.  

The parameters of the base model are: 000,10=M , 2.0=Aq , 5.0=Ep , 1
g

R = , 1
e

R = , 

3
ge

R = , 0.05
d

p = , and 0
ge

p = . The first row of 0
ge

p =  indicates the base model. The 

tabulated type I errors are estimated at level of 0.05 and 0.001, respectively. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 100 

 

Chapter 5 

 

Conclusions and Discussions 

 

One of the greatest challenges for genetic researches is the identification of genes that are 

responsible for complex traits. Unlike classical Mendelian disorders, complex diseases do 

not show Mendelian patterns of inheritance and include a multiplicity of genetic and 

environmental factors. The contribution of each factor might be small and different 

factors might be interactive (Cardon and Bell 2001). Further, confounding factors such as 

heterogeneity, phenocopies, genetic imprinting and reduced penetrance make thorough 

genetic dissection difficult, if not impossible.  

 

Although assigning genes to chromosomal locations is ultimately a physical exercise, 

much can be done with statistical analysis (Weir 2000). With the advent of more 

cost-efficient high-throughput genotyping technology, appropriate statistical methods are 

needed to best exploit best information from different types of data, and sophisticated 

models with higher power are required.  In this dissertation, I proposed and analyzed 

statistical methods for genetic linkage and association analysis.  

 

In the second chapter, I extended the model for linkage analysis of quantitative trait loci. 

Usually, methods for humans QTL linkage analysis rely on a partitioning of the total 

variability of trait values. Through variance component models, I estimated and tested the 
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proportion of phenotypic variance explained by the major genetic, polygenic and 

environmental factors. Conventionally, the heritability due to the specific locus, polygene 

or environment is assumed independent of other factors, i.e., identical for different 

individuals. However, more and more researches have discovered heterogeneity in 

heritability by age, sex or other covariates. I proposed an extended model to 

accommodate this type of heterogeneity based on the common variance component 

model. In the extended model, the genetic effect is a linear function of a covariate, which 

leads to distinct variances and covariances for different individuals within a pedigree 

upon the covariate. Simulation studies considering different proportions of variance 

components, different family sizes, and different significance levels showed that allowing 

for the heterogeneity lead to an increase in power to detect linkage, especially when the 

heterogeneity in heritability is large. I also applied the new method to data from 

HyperGEN network. At the quantitative trait loci where the heritability are very different 

among different age groups, the new model considering the heterogeneity due to age gave 

us stronger linkage signals. 

 

In this paper, I test the hypothesis 0,0: 2
0 == mgmgH βσ  vs. 

2
1 : 0 and  unconstrainedmg mgH σ β> . The classical asymptotic distribution theory of the 

maximum likelihood estimates does not hold for the test statistic, since at the expression 

(2.1), mgβ  actually disappears under the null hypothesis. I simulated the distribution of 

the likelihood ratio test statistic under the null hypothesis, and calculate powers based on 

the empirical cutoffs. By adopting the ideas of admixture test for linkage heterogeneity 

(Chiu, Liang and Beaty 2002), I would like to establish a new approach next that could 
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eliminate the nuisance parameters in the test statistic, thereby the theoretical distributions 

and properties could be explicitly assessed. Based on the theoretical approach, I would 

also discover more appropriate LOD score of evidence for significant linkage in data 

application. The relationship between locus specific genetic effect and covariates (linear 

relationship in this paper) would be further investigated.  

 

In the third chapter, I evaluated and compared several imputation-based association 

methods to account for uncertainty of imputed genotypes for quantitative traits analyses. 

During high-throughput genotyping across the whole genome, there are always missing 

genotype data at some SNP sites due to assay failures and/or by design. Imputation-based 

association methods provide a powerful framework for testing untyped variants for 

association with phenotypes and for combining results from multiple studies that use 

different genotyping platforms (Guan and Stephens 2008). I assessed the powers of three 

methods to summarize the outputs of genotype imputation in testing the association 

between the genotypes and the trait of interest by simulation studies. The three strategies 

are least-squares regression on the “best-guess” imputed genotype, regression on the 

expected genotype score or “dosage”, and mixture regression models that more fully 

incorporate posterior probabilities of genotypes at untyped SNPs. For most realistic 

settings of GWAS, such as modest genetic effects, large sample sizes, and high average 

imputation accuracies, dosage-based analysis provides adequate performance.  

 

In this paper, I focused on testing quantitative phenotypes for association with genotypes. 

I would be interested in comparison of the three strategies in case-control association 
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studies (i.e. binary phenotypes), especially establishing a sophisticated model to take full 

advantage of the individual posterior probabilities, which is similar to the mixture 

regression model described in the paper. I would also like to determine whether the 

performance of the three strategies is robust to different imputation methods while I used 

fastPHASE (Scheet and Stephens, 2006) here. In addition to the likelihood ratio test (the 

F test statistics used in the first two methods is asymptotically equivalent to the likelihood 

ratio test statistics) I used in this paper, Guan and Stephen (2008) proposed a Bayesian 

approach. They defined the Bayes factor as the strength of the evidence for alternative 

hypothesis versus null hypothesis, and demonstrated some advantages of the Bayes factor 

method than the standard likelihood ratio test. I would compare this approach to others 

under the same settings.  

 

In the fourth chapter, I proposed a new likelihood-based approach to identify the 

susceptibility loci by detecting the interaction between gene and environment in the 

GWAS framework. The gene-environment interaction is a common and important factor 

for complex diseases. However, current GWAS are designed to test the direct association 

of a SNP or cluster of SNPs with disease (Browning and Browning 2007, Zhao et al. 

2006). Investigators may, therefore, miss important genetic variants that are specific to 

subgroups of the population defined by some environmental exposure (Engelman et al. 

2009). In comparison to the standard logistic regression model, case-only method, the 

2-step method (Murcray et al. 2009) and the empirical Bayes estimator method 

(Mukherjee and Chatterjee 2008), my new likelihood ratio test for the multiplicative 

gene-environment interaction exploiting the assumption of gene-environment 
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independence at population level is more powerful than any of others in many 

circumstances, especially when the disease being studied is common. When the departure 

to the gene-environment independence is modest across the whole genome, the empirical 

power (by controlling the adjusted type I error at level of 0.05) of the new method still 

shows dominant.  

 

In the future, I would like to borrow the idea of conducting a weighted average estimator 

to combine the case-control estimator and my proposed one. At the same time, I would 

give the close form of the test statistic for the new likelihood ratio test and further assess 

the theoretical properties. The 2-step method in Murcray et al. (2009) is very robust to the 

relationship between genotype and environment in a population. I would also replace the 

original test by the new likelihood ratio test in the first step, since they claimed that when 

the power of the first step test is high, the chance that a true positive will be carried to the 

second step is also high.  

 

In summary, my dissertation focused on models and methods for genetic linkage and 

association studies. I extended the variance component model to allow the heterogeneity 

in heritability; I evaluated different imputation-based association method in GWAS; I 

proposed a new test for identifying susceptibility loci by detecting the gene-environment 

interaction in GWAS. My new models show advantages over existing ones and my 

analyses provide reference and justification for further studies.  
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