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ABSTRACT

Over the last two decades, Design for Manufacturing (DFM) has emerged as an

essential field within the semiconductor industry. The main objective of DFM is to reduce

and, if possible, eliminate variability in integrated circuits (ICs). Numerous techniques for

managing variation have emerged throughout IC design: manufacturers design

instruments with minute tolerances, process engineers calibrate and characterize a given

process throughout its lifetime, and IC designers strive to model and characterize

variability within their devices, libraries, and circuits. This dissertation focuses on the last

of these three techniques and presents material relevant to managing variability within IC

design. Since characterization and modeling are essential to the analysis and reduction of

variation in modern-day designs, this dissertation begins by studying various correlation

models used within Statistical Static Timing Analysis (SSTA). In the end, the study shows

that using complex correlation models does not necessarily result in significant error

reduction within SSTA, and that simple models (which only include die-to-die and

random variation) can therefore be used to achieve similar accuracy with reduced

overhead and run-time. Next, the variation models, themselves, are explored and a new

critical dimension (CD) model is proposed which reduces standard deviation error in

SSTA by ~3X. Finally, the focus changes from the timing analysis level and moves lower

in the design hierarchy to the libraries and devices that comprise the backbone of IC
xi



design. The final three chapters study mechanical stress enhancement and discuss how to

fully exploit the layout dependencies of mechanically stressed silicon. The first of these

three chapters presents an optimization scheme that uses the layout dependencies of stress

in conjunction with dual-threshold-voltage (Vth) assignment to decrease leakage power

consumption by ~24%. Next, the second of the three chapters proposes a new standard cell

library design methodology, called “STEEL.” STEEL provides average delay

improvements of 11% over equivalent single-Vth implementations, while consuming 2.5X

less leakage than the dual-Vth alternative. Finally, the stress enhanced studies (and this

document) are concluded by a new optimization scheme that combines stress

enhancement with gate length biasing to achieve 2.9X leakage power savings in IC

designs without modifying Vth.
xii



CHAPTER 1

INTRODUCTION

For the past forty years, the driving force behind the semiconductor industry has been

device scaling and the ability to manufacture smaller geometries. Traditionally, in order to

maintain electric fields of the same magnitude within these scaled devices, process

engineers would also scale the device voltages (e.g., supply voltage and threshold

voltage). Since the creation of the first microprocessors in the 1970’s, supply voltage and

gate length have decreased from ~15V and 10μm [1], respectively, to 0.9V and 32nm [2]

in state-of-the-art technologies. In other words, over the past three decades geometries

have scaled by ~1000X while supply voltage has only scaled by ~10X. This difference is

partially illustrated in Figure 1.1, which shows supply voltage versus gate length over the

last 25 years [3-4]. Voltage scaling has significantly lagged behind geometry scaling in

modern-day technology nodes (starting around the 90nm process node in Figure 1.1)

because process engineers can no longer scale the supply voltage, VDD, or the threshold

voltage, Vth, without significantly degrading reliability and exponentially increasing

leakage power consumption. Consequently, devices manufactured in the latest technology

nodes have higher effective electric fields than their predecessors. These increased electric

fields can lead to a number of parasitic effects such as drain-induced barrier lowering

(DIBL), gate-induced drain leakage (GIDL), mobility degradation, and hot carrier
1



degradation. However, electric-field-related parasitics are merely one subset of a larger

collection of issues that the semiconductor industry is faced with today.

Of all the pressing semiconductor issues, one of the most fundamental concerns is,

simply, how to manufacture these nanoscale devices and fabricate features that are 32nm

or smaller. Since state-of-the-art devices are currently made using photolithography

techniques that use 193nm wavelength light, printing sub-193nm features on a wafer is

difficult, due to optical effects that occur. To further complicate matters, manufacturing

issues such as linewidth variation, random dopant fluctuation, and dielectric thickness

variation have complex dependencies and are statistical in nature. This means that the

traditional semiconductor device can no longer be handled in a deterministic manner and

modern-day integrated circuits (ICs) have to be designed to tolerate variation in certain

device parameters such as threshold voltage, gate length, and oxide thickness, in addition
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to tolerating variation in interconnect properties like resistance and capacitance. In the last

ten years variability in semiconductor devices has become such a large concern that an

entirely new technology field has emerged – Design for Manufacturability (DFM).

The concept of designing with manufacturability in mind is somewhat of a departure

from traditional semiconductor design practices since IC design and IC fabrication were

two distinct entities for the first 30 years of the semiconductor industry. DFM, therefore,

attempts to “bridge the gap” between these two fields and make engineers on both sides

aware of the others’ difficulties, challenges, and pitfalls. While linking IC design with

semiconductor manufacturing, the ultimate objective is to improve IC yield by either

reducing a circuit’s susceptibility to variation or by reducing variation altogether. DFM

from a “Very Large-Scale Integration” (VLSI) perspective typically involves reducing and

tolerating certain amounts of variation in gate length (L), threshold voltage (Vth), oxide

thickness (tox), and inter-layer dielectric (ILD) thickness.1 Since the underlying

mechanisms that cause variation in these parameters are different, each parameter requires

its own set of solutions and design rules.

1.1  Gate Length Variation

Fabricated geometries in today’s semiconductor processes vary from transistor to

transistor, die to die, reticle to reticle, and wafer to wafer. Since digital ICs typically utilize

the minimum gate length allowed for a device, gate length is especially susceptible to

variation and can dramatically affect performance (in terms of both delay and power).

Gate length variation is often included within a more liberal classification of variation,

1 Inter-layer dielectric thickness is a measure of the dielectric height between metal layers in an IC.
3



called critical dimension (CD) variation.2 CD variation has proven to be an interesting and

difficult research problem on a variety of VLSI fronts. A significant number of

publications have been dedicated to characterizing, modeling, analyzing, managing, and

reducing CD variation [5-10]. CD variability is particularly formidable because it contains

both a probabilistic component that is independent of other components, as well as a

spatially correlated (systematic) component that is dependent on device context.3 The

probabilistic components of variation manifest themselves with either a low spatial

frequency (e.g., shifts in CD) or high spatial frequency (e.g., line-edge roughness). The

underlying causes of CD variation are numerous and include stepper imperfections (lens

aberrations, variations in exposure and defocus, etc.), reticle defects, and photoresist

variations (non-uniformity and thickness variation, post-exposure bake time variation,

etc.), among others [7,11]. In fact, CD variability and its causes have become such a large

concern that manufacturers have had to add mask correction techniques such as sub-

resolution assist features (SRAFs) and optical proximity corrections (OPCs) to try and

compensate for known imperfections during fabrication.

Process engineers rely on SRAF’s and OPC’s to ensure that the devices and

interconnect print with minimum placement error (often referred to as EPE, or edge

placement error). A simple example of what these features look like in a typical layout is

included in Figure 1.2. In addition to improving printability, these features and corrections

also strive to reduce variability. Other techniques that are being researched to reduce CD

variability are regularity [8-9] and logic-brick/fabric design [10]. Since regularity makes

2 Critical dimension refers to the smallest feature size that can be manufactured/printed in a
particular technology.

3 The context of a particular device involves both the distance between a device and its neighbors,
as well as the size and orientation of the neighbors.
4



context dependency more predictable (because features are placed at fixed intervals), it

typically reduces the systematic CD variability. With reduced systematic variation, the

complex OPC rules and resolution enhancement techniques (RETs) can be relaxed and

become less computationally expensive.

Variations in CD affect VLSI designs in numerous ways and can dramatically alter an

IC’s performance. For example, gate length, or L, variation (one type of CD variation)

affects a number of metal-oxide-semiconductor field-effect transistor (MOSFET) charac-

teristics. Variation in L changes the drain current (ID) in all operating regimes

(subthreshold, triode, and saturation); the Vth through DIBL; and the gate-to-channel

capacitance (Cgc), which loads the previous logic stage (modulating the previous stage’s

delay and dynamic power consumption). This means that for a given device, gate length

variation will alter its propagation and rise/fall delays, its leakage power consumption, and

Figure 1.2. Simple Polysilicon SRAF and OPC Example.
Drawn poly is shown in red, while the OPC’s and SRAF’s are purple and blue.

OPC

SRAF
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the delays and power consumption of its fanin cone.4 Another example of CD variation is

interconnect variation. Variation in the interconnect geometries modifies the capacitance

and resistance of a given net. Variable interconnect capacitance affects both the coupling

between nets, as well as the dynamic power consumption and delay of the gates driving

those nets.

Given that CD variation affects so many circuit and device characteristics, accurately

capturing this variability and developing techniques to handle it are essential to modern-

day VLSI design. Typically in research, creating accurate models first involves

characterizing the variability itself. In the case of CD variation, this requires capturing

variations across dies, reticles, wafers, and lots. Additionally, since CD variation has a

systematic component, it will also contain a certain amount of die-to-die, reticle-to-reticle,

wafer-to-wafer, and lot-to-lot correlation. Characterizing this correlation and modeling it

is another important aspect of capturing CD variability. Once the characteristics of CD

variation are understood, accurate and efficient models can be extracted and used in

timing analysis tools (discussed later in Section 1.5).

1.2  Threshold Voltage Variation

Another type of variation that impacts fundamental MOSFET device behavior is

threshold voltage, or Vth, variation. The main cause of Vth variation is a purely

probabilistic phenomenon (which is independent of other types of variation) known as

random dopant fluctuation (RDF). Random dopant fluctuations occur in MOSFET devices

because of the random nature of ion implantation [12-13]. However, with process scaling,

4 The fanin cone of a net, N, is defined as the collection of gate(s) that have net N as an output.
6



the number of dopants located in a MOSFET’s depletion region has decreased

dramatically and is only on the order of hundreds in modern-day devices [14]. This

fluctuation in channel dopants typically results in ~50mV of Vth variation in today’s

MOSFETs [14-15]. Similar to gate length and CD variation, threshold voltage variation

has also been studied in detail and many people have proposed variation models [14-16].

On the other hand, Vth variation differs significantly from CD variation in that its main

component is probabilistic and random in nature (aside from its dependency on gate

length, itself). Therefore, Vth variation due to RDF is typically modeled as a Gaussian

random variable that is characterized by its mean, μ, and standard deviation, σ [14-15].

Similar to CD, threshold voltage variation also influences a number of MOSFET

device parameters. Both delay and leakage power are affected by changing Vth since drain

current is dependent on threshold voltage. Delay is usually a linear or slightly super-linear

function of Vth [17] while leakage power, on the other hand, is exponentially dependent on

threshold voltage [18]. This exponential relationship between subthreshold current (and

hence, leakage power) and Vth has become a major concern for contemporary VLSI

designers. With billions of transistors in one design, leakage power consumption is now

on the same order as dynamic power consumption (as illustrated in Figure 1.3), so any

variation in leakage power can lead to significant variation in total circuit power.

Additionally, Vth is often used as an optimization lever in VLSI circuits to achieve savings

in either leakage power or delay [20-22]. However, with the amount of variability in Vth in

sub-65nm devices, designers are becoming increasingly wary of using threshold voltage

for optimization.
7



1.3  Oxide and Inter-Layer Dielectric Thickness Variation

In state-of-the-art process nodes, the equivalent gate oxide thickness, tox, is on the

order of 1nm [23]. To put this in perspective, the silicon atom is ~0.2nm in diameter,

which means that sub-65nm transistors have a gate oxide thickness that is less than five

silicon atoms thick. Thus, atomic scale roughness introduced at the gate-to-oxide and

oxide-to-silicon interfaces can cause significant amounts of oxide thickness variation

(OTV) [24]. These variations are probabilistic in nature and can lead to variability in

mobility, gate tunneling leakage current, and threshold voltage, among other parameters

[24].

Aside from the gate oxide in today’s devices, another type of dielectric material that

experiences thickness variation is the dielectric between each metal layer in a process’s

metal stack. This material is often referred to as the inter-layer dielectric, or ILD. Inter-

layer dielectric thickness variation is a spatially correlated (systematic) variation that is

created during the Chemical-Mechanical Polishing (CMP) manufacturing step used to

Figure 1.3. Dynamic and Static Power Density vs. Technology [19].
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planarize dielectric material. With CMP, the resulting ILD thickness is dependent on

topology because regions with higher interconnect density polish slower than sparse

regions. Therefore, ILD thicknesses are spatially correlated with interconnect density and

the variation can be predicted [25]. Due to this fact, numerous publications have provided

techniques to improve metal density uniformity and, therefore, reduce the systematic

variation in ILD due to CMP [26-27].

1.4  Sub-100nm Induced Variation and Mobility Degradation

As the semiconductor industry continues to scale below 100nm and approaches the

fundamental limits of a number of parameters (e.g., CD size using 193nm wavelength

light, tox, Vth, Vdd, etc.), process engineering becomes increasingly complicated. Effects

like well proximity and mechanical stress due to shallow trench isolation (STI) have

emerged in the last decade and now contribute to device variability. Furthermore, with the

decline of voltage scaling, higher effective fields are causing increasing amounts of device

parameter degradation due to phenomena like hot carriers and impact ionization. In recent

process nodes, the amount of mobility degradation (due to the higher effective fields) has

become so high that it has motivated the semiconductor industry to explore techniques

like mobility enhancement. Currently, mobility enhancement is typically achieved by

adding manufacturing steps to the process which induce mechanical stress in all MOSFET

channels [28-31]. In the last five years, mechanical-stress-based enhancement has rapidly

emerged across the semiconductor industry and many companies are employing one or

more stress-enhancement techniques in their processes [28-32]. These techniques

typically involve mechanical stress sources such as embedded-SiGe (in PMOS
9



source/drain regions) [28-29,31]; compressive/tensile (dual) nitride liners [28-30]; the

Stress Memorization Technique (in NMOS transistors) [30]; and PMOS/NMOS hybrid

orientation [32]. By inducing the correct type of stress in a MOSFET device, as shown in

Figure 1.4, the effective mass and band scattering rates of the valence and conduction

bands can be modified. These changes in effective mass and band scattering can result in

increased mobility, which enhances transistor performance but increases leakage current.

While stress-based mobility enhancement does reduce the performance loss due to

mobility degradation, it can also be a source of variation in today’s devices because the

sources of mechanical stress depend on layout properties like length of diffusion (LOD),

contact placement, STI width, and well proximity [33-34]. In fact, experimental results

show that MOSFET saturation current can vary by as much as 15% if stress dependencies

are ignored. To date, researchers have mainly taken two different approaches regarding the

layout dependency of stress: they either attempt to eliminate the dependency (using

manufacturing techniques) [28,35] or they attempt to exploit the dependency (using layout

techniques) [36].

NMOS PMOS

X Tensile Compressive

Y Tensile Tensile

Z Compressive Tensile

Figure 1.4. Preferred CMOS Device Stress Types.
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1.5  Managing Variability in VLSI Designs

While process engineers constantly strive to mitigate the sources of variability

discussed in the previous sections, the reality is that these sources are inherent to modern-

day semiconductor manufacturing, so an intrinsic amount of variability is always present

in manufactured IC’s. Like any semi-automated manufacturing process, semiconductor

manufacturing relies heavily on a number of different tools and instruments, and most of

these instruments have to be calibrated frequently throughout the lifetime of a process in

order to meet tolerance specifications for given parameters. It is the imperfections and

non-zero tolerances of these tools that cause variability. Properties like stepper/scanner

dosage and defocus, mask alignment, etch rate, etc., vary from wafer-lot to wafer-lot,

wafer to wafer, reticle to reticle, and die to die. Since these tool imperfections typically

affect specific stages of the manufacturing process, they are usually identified and

classified by their region of impact: lot-to-lot, wafer-to-wafer, reticle-to-reticle, die-to-die,

or within-die.

Furthermore, the semiconductor industry is continuing to scale device parameters, but

the statistical mean of these parameters is decreasing more rapidly than the standard

deviation (due to the intrinsic, probabilistic sources that cannot be eliminated or reduced).

This means that the variation of a particular parameter is actually increasing with respect

to its mean. Thus, over the last 10 to 20 years, IC designers have had to develop various

methods of analysis and characterization which allow them to capture and reduce the

variability of their designs.
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Since static timing analysis (STA) [37] became the dominant timing verification

method in modern VLSI design, the first techniques for managing variability involved

identifying design corners and using STA to characterize circuits across various

combinations of supply voltage, temperature, and process variation. At this point in

semiconductor history, design corners were generally very simple since global/inter-die

variations (types of variation that occurred from die to die; e.g., lot-to-lot, wafer-to-wafer,

reticle-to-reticle, and within-reticle die-to-die) were more prevalent than local variations

(also called intra-die or within-die variations). Therefore, circuit variation could be

adequately captured by running characterization at the nominal-, best-, and worst-case

process corners. At each corner, process variation for all devices in a circuit would be

grouped into one category (e.g., worst-case process variation) and the STA program would

then analyze the circuit given that all of its devices (and their parameters) were affected

uniformly by this variation. For instance, in the worst-case design corner all device gate

lengths and threshold voltages would be increased to their maximum possible value

(under process variation), and then STA would characterize the circuit and report the

decrease in performance.

In the last 20 years, however, local variations have grown in importance and were

identified in the early 21st century as the dominant component [38-39]. During this time,

corner-based analysis was labeled as “pessimistic” since the likelihood that all devices

within a die would all be best- or worst-case at the same time was very small. The initial

solutions to this criticism were to either run more corners or perform thousands of Monte

Carlo STA analyses to determine the actual path distributions. The increased complexity

incurred by these solutions was unattractive to the VLSI design community and
12



consequently spawned an entirely new area of research that explored propagating

statistical distributions through a circuit graph, rather than deterministic delay values.

This type of analysis was quickly labeled “Statistical Static Timing Analysis”, or SSTA,

and researchers sought to obtain more accurate, statistical representations of circuit

performance [38-42].

In its simplest form, SSTA represents path delay as a weighted function of

independent components [38-42]. However, since path delay is dependent on a number of

varying parameters (L, tox, and Vth), modeling path delay as a function of these parameters

and determining the sensitivity of delay to changes in each of these parameters is an

essential component of SSTA. Thus, SSTA research is not only composed of proposed

algorithms and related improvements, but it also includes modeling studies on various

device parameters. The models typically used within SSTA for L, tox, and Vth variation

were briefly mentioned in Sections 1.1 through 1.3.

While SSTA, in theory, produces a more accurate representation of delay than STA

and corner-based analysis, actual implementations of SSTA algorithms have not distanced

themselves from STA-based techniques, due to the simplistic underlying models and the

approximations involved (e.g., the approximation that the maximum of two Gaussian

variables is also Gaussian). Thus, additional research and improvements in both the

underlying statistical process variation models, as well as the algorithm itself are needed

to warrant the replacement of current deterministic timing analysis (STA-based) flows

with their statistical counterpart.
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1.6  Contribution of Dissertation

This dissertation focuses on two topics that are essential to the Design for

Manufacturing space of integrated circuit design: CD variation and mechanical stress in

silicon. Capturing, analyzing, and modeling CD variation is an important but difficult

problem, as alluded to in Section 1.1. CD variation is different from Vth, tox, and ILD

variation because it contains both a systematic component that is spatially correlated, and

a probabilistic (random) component that is independent of other components. Variations in

the other three parameters (Vth, tox, and ILD) originate from sources that are either

probabilistic or systematic. This makes capturing and modeling their variability more

manageable and straightforward. The CD variation research included in this dissertation

began by analyzing raw CD data and characterizing the variations seen (die-to-die, reticle-

to-reticle, wafer-to-wafer, etc.). Next, we used the data to compare a number of CD

correlation models that had been proposed over the last decade. Prior to this work, the

correlation models were presented from a conceptual perspective, but the actual

implementation and accuracy in manufactured designs were not discussed.

Once the tradeoffs between correlation models were understood, we studied CD

variation modeling within Statistical Static Timing Analysis (SSTA). Present-day CD

models for timing analysis are error-prone because they do not capture the underlying

sources of CD variability accurately. In fact, the models prior to this work grouped all CD

variation (from various optical sources) across an entire standard cell library into one

variable, essentially masking important, context-dependent effects that occur between

transistors in a standard cell library. The CD variability research culminated in a new

SSTA model that was more accurate than its predecessors.
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The final DFM topic discussed in this dissertation is mechanical-stress-based mobility

enhancement and its impact on circuit design. In modern processes, gate width (W ), L,

Vth, and tox are no longer the only parameters that affect a device’s drain current (which

impacts both performance and power consumption). The materials that process engineers

now use to enhance MOSFET channel stress have their own dependence on layout (as

discussed in Section 1.4), which results in device mobility variation. In order to

characterize this mobility variation, this document concludes with a study that simulated,

analyzed, and modeled the layout dependence of mechanical stress in silicon. After

understanding the properties of mechanical stress, we proposed a novel standard cell

library methodology, as well as a new timing optimization framework that combined

mechanical-stress-enhancement with gate length biasing to achieve leakage power

savings.

1.7  Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 focuses on

critical dimension variation. It begins by analyzing electrical linewidth measurement

(ELM) data obtained from fabricated 0.13μm technology device structures. This ELM

data is then used to characterize and validate a number of correlation models that have

been proposed over the last decade to accurately capture CD variation. At the end of the

chapter, the results show that the basic correlation models provide a simpler solution than

the complex models (in terms of overhead and run-time) and only increase error by a few

percent. A discussion on modeling CD in SSTA follows in Chapter 3, which concludes by

proposing a new SSTA model that accurately captures CD variation and reduces the
15



average error in standard deviation by ~3X. In Chapter 4, the variability focus shifts from

CD to mechanical stress. It begins with a general discussion on mechanical stress in

silicon and culminates in a technique that uses stress-enhancement in conjunction with

dual-Vth assignment to reduce leakage by ~24%. Chapter 5 continues the discussion on

mechanical stress, but deviates from the work in Chapter 4 in that it proposes a novel

standard cell library technique and methodology for exploiting stress enhancement. This

library methodology is used to improve delay (on average) by 11% over equivalent single-

Vth implementations, while consuming 2.5X less leakage than the dual-Vth alternative. In

Chapter 6, the stress-enhancement study is completed and a new optimization scheme that

combines stress-enhancement with gate length biasing is presented. Results show that the

proposed approach (stress plus gate length biasing) can optimize a single-Vth circuit to

consume 2.5X less leakage than the dual-Vth approach with an average delay increase of

only ~4%. Finally, Chapter 7 concludes the dissertation with a summary of the DFM work

and a brief discussion of future work.
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CHAPTER 2

CD VARIATION ANALYSIS AND CORRELATION 
MODELING IN SSTA

Static timing analysis (STA) has become a key method in the performance verification

of modern chip designs and is the primary technique that abstractly incorporates

manufacturing variation into design. Recently, the shortcomings of STA have become

apparent with its inability to efficiently include within-die (or intra-die) variation in

process parameters such as gate length, oxide thickness, and doping levels. STA, in its

most common form, is a case-based analysis: designers perform simulations given best-,

nominal-, and worst-case conditions and all devices are assigned the same process

parameter value. However, with continued process scaling past 65nm, within-die variation

has become more prominent and exhibited considerable spatial correlation. Unlike inter-

die variation, within-die variation tends to average out over the length of a circuit path,

which reduces the variance of a circuit’s delay distribution. On the other hand, the

presence of significant intra-die delay variation in two converging paths increases the

“maximum” (typically Clark-based) delay distribution variance. With a case-based STA

analysis, it is therefore difficult to construct a guaranteed bound on the actual timing

distribution of a circuit without being overly conservative.
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To address this issue, “Statistical Static Timing Analysis” (SSTA) was developed and

it has received considerable attention in the CAD research community in recent years [38-

41]. SSTA models process parameters, such as gate length and doping concentration, as

random variables and propagates these random variables through the circuit in topological

fashion, analogous to the propagation in its deterministic counterpart (STA).

The first efforts in SSTA modeled all process parameter variations, as well as the

propagated arrival times, as independent random variables [42]. This assumption

significantly simplified the analysis but compromised accuracy. In [40,43], process

parameter variations were still considered independent, but correlations between arrival

times due to reconvergence in the circuit were accounted for. In the latest generation of

SSTA tools [38-39,41], correlations between the process parameters of different gates in

the circuit are also considered.

Of the device parameters discussed in Chapter 1, typically only gate length (or more

generally, CD) and inter-layer dielectric (ILD) thickness exhibit spatial correlations.

Specifically, CD variation exhibits both a die-to-die component (causing all CD in a die to

vary by some common amount) and a within-die component (where devices with close

proximity are more likely to have similar CD). While die-to-die correlations can be

incorporated relatively easily by enumerating a small number of die conditions, the

within-die (spatial) correlations increase the complexity of SSTA substantially.

Accounting for these correlations requires both a model which expresses the correlations

in an amenable form, as well as an accompanying SSTA algorithm that can operate on that

model. Over the past decade, a number of spatial correlation models have been proposed

[38-39]. The spatial correlation model proposed in [39] used a grid-based approach where
18



the process parameters of all gates that fell within the same grid square were assumed to

be identical. The correlation between different grid squares was decomposed using

“Principal Component Analysis” (PCA), and then modeled as a weighted sum of

independent random variables (the principal components). A different grid-based model

was developed in [38]. Here, the authors combined multiple grids with varying granularity

in a tree-like fashion, where each grid square was assigned an independent random

variable and each gate was associated with every grid square in which it resided. While the

Quad-tree used a larger total number of random variables than the PCA approach (given

the same grid granularity), less information was associated with each individual gate. One

important item addressed in this chapter that was not included in [38] is a method for

fitting the Quad-tree model to measured data.

In this chapter, critical dimension (CD) data obtained through electrical linewidth

measurements (ELM’s) of a 0.13μm test chip design is used to analyze the accuracy of a

number of proposed SSTA correlation models. The test chip consists of 8 different test

structures (various densities and orientations of polysilicon lines) repeated at 308 sites per

field over 23 fields and 5 wafers for a total of 35,420 measurements [44]. The ELM data is

used to study both the correlation characteristics of actual CD variation as well as the

effectiveness of different SSTA correlation models.

The remainder of the chapter is divided as follows. Section 2.1 discusses the types of

gate length variation while Section 2.2 explains the spatial correlation models in more

detail. Next, Section 2.3 demonstrates our experimental data and the results obtained

while characterizing the raw ELM CD data. Section 2.4 implements the spatial correlation
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models using the ELM data, discusses the observed model accuracy and, finally, Section

2.5 provides a brief summary of the results.

2.1   Types of Gate Length Variation

Within the random component of gate length variation, we can further distinguish

three types of variation: independent, die-to-die, and spatially correlated. For this section,

all variables – ΔLx – are assumed to be zero-mean, unit-variance random variables.

2.1.1  Independent

In this type of variation, each device in the design has process parameter variations

that are independent from the variations in other devices. Independent variations can be

modeled using independent random variables. If the gate lengths in a die are completely

specified by independent variations, the length of gate i can be expressed as follows:

, (2–1)

where Lnom,i is the nominal value of gate length for that gate, ΔLrnd,i is the random device

length variation for gate i, and σri is the sensitivity of gate i to changes in ΔLrnd,i.

2.1.2  Die-to-Die

Die-to-die variation, on the other hand, describes variation that is common for all

devices on a particular die. When only inter-die variation is considered, all gate lengths

within a particular die become perfectly correlated. Therefore, the gate length of gate i,

only considering die-to-die variation, can be expressed as:

Lg i, Lnom i, σri Lrnd i,Δ+=
20



, (2–2)

where Lnom,i is the nominal value for gate i, ΔLdie-to-die is a single random variable that is

applied to all gates in the circuit, and σdd is the global gate sensitivity to changes in

ΔLdie-to-die.

2.1.3  Spatially Correlated

The last type of variation that we consider is spatially correlated variation. Most

process variation within a single die is spatially correlated, and generally, correlation

decays as a function of the distance between two points. Generally, in statistical timing

analysis, the desire is to express correlation using a weighted sum of independent random

variables, as shown below,

, (2–3)

where ΔLk is the variation of the kth component and αk is the sensitivity of the gate length

to changes in the kth component. By maintaining this form throughout the timing analysis,

correlation information between the arrival times can be maintained. The specific values

of the sensitivities and the number of components will vary between the different

correlation models, which are discussed in the following subsection.

2.2   Correlation Models

The five correlation models analyzed in our experiments are die-to-die (D2D),

independent (also referred to as “random,” which we will use for the remainder of this

chapter), D2D + random, PCA, and Quad-tree.

Lg i, Lnom i, σddΔLdie to– die–+=

Lg i, Lnom i, α1 LΔ 1 α2 L2Δ α3 LΔ 3 …+ + + +=
21



2.2.1  D2D, Random, and D2D + Random

The equations used to express the length variation of a particular gate for the random

and die-to-die cases were shown in (2–1) and (2–2). Therefore, the “D2D + random”

variation is a combination of (2–1) and (2–2):

, (2–4)

Once we understand the forms of these gate length equations, it is simple to develop

sensitivity matrices, which are the input to our statistical timing tool. For instance, the

sensitivity matrices for D2D, random, and D2D + random are shown in (2–5) as D, R, and

DR, respectively.

(2–5)

where σdd is the standard deviation of only the die-to-die component, σri is the standard

deviation of the ith random component, and σri' is the standard deviation of the ith random

component when the die-to-die component has been removed.

Lg i, Lnom i, σddΔLdie to– die– σriΔLrnd i,+ +=

R

σr1 0 0 ... 0
0 σr2 0 ... 0
0 0 σr3

... 0

... ... ... ... ...
0 0 0 ... σrn

          D

σdd σdd σdd
... σdd

0 0 0 ... 0
0 0 0 ... 0
... ... ... ... ...
0 0 0 ... 0

DR

σdd σdd σdd
... σdd

σr1' 0 0 ... 0
0 σr2' 0 ... 0
0 0 σr3' ... 0

... ... ... ... ...
0 0 0 ... σrn'

= =

=
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2.2.2  PCA

The PCA model is a grid-based model (shown in Figure 2.1) that separates the die into

n grids. Each grid is associated with a principal component, and all n principal

components are independent, normal random variables with zero mean and unit variance.

Because PCA deals with spatially correlated distributions, its gate length equation is based

on (2–3). Thus, for some gate i, its length can be expressed as:

, (2–6)

where ΔLj is the jth principal component and αij is calculated as stated in (2–6); σi is the

standard deviation associated with grid i, vij is the ith element in the jth eigenvector of the

correlation matrix, and λj is the jth eigenvalue of the correlation matrix [39]. Therefore, the

sensitivity matrix, P, for the PCA model will be of the form,

, (2–7)

where each grid is associated with one column and one row (and ).

Figure 2.1. PCA Grid Example.
(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

Lg i, Lnom i, αij LjΔ
j

∑ where αij,+ σivij λj= =

P

α1 1, α1 2, α1 3, ... α1 m,

α2 1, α2 2, α2 3, ... α2 m,

α3 1, α3 2, α3 3, ... α3 m,

... ... ... ... ...
αn 1, αn 2, αn 3, ... αn m,

=

m n≤
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2.2.3  Quad-Tree

Quad-tree is another grid model that utilizes various grid levels combined in a tree-like

structure – shown in Figure 2.2 – to include spatial correlation. The Quad-tree has l+1

levels, and each level, k, contains 2k-by-2k squares [38]. Levels are numbered where “level

0” represents the top level and l is bottommost level. Level 0 only has one grid, while level

k has 4k grids. All of the regions at different levels of the tree are associated with an

independent random variable that includes part of the total intra-die variation. For a gate

located within bottommost region r, the associated variation is a sum of all the intra-die

variation components that intersect region r as you progress up the tree (e.g., in Figure 2.2

grid (2,13) intersects grids (1,3) and (0,1)). For example, the equation for gate length for

the gate that lies in grid (2,7) is,

. (2–8)

Thus, the sensitivity matrix is similar to the PCA matrix in (2–7), where all grids

(including all levels of the tree) are given one row in the sensitivity matrix, but, in the

Figure 2.2. Quad-tree Model Example.
(2,1) (2,2) (2,3) (2,4)

(2,5) (2,6) (2,7) (2,8)

(2,9) (2,10) (2,11) (2,12)

(2,13) (2,14) (2,15) (2,16)

(1,1) (1,2)

(1,3) (1,4)

(0,1)

Lg 2 7,( ), Lnom 2 7,( ), ΔL 2 7,( ) ΔL 1 2,( ) ΔL 0 1,( )+ + +=
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Quad-tree matrix, only the bottommost grids are assigned to individual columns. All grids

that do not intersect with a particular bottommost grid (assigned column i in the matrix)

will have a zero-sensitivity value at its row j in the matrix (i.e., element [j,i] equals zero).

Equation (2–9) below contains the general form for a 3-level (l = 2) Quad-tree sensitivity

matrix. Specific grids are shown in parentheses and there are a total of 16 (4l=16) columns

and 21 rows (1 “level 0” row + 4 “level 1” rows + 16 “level 2” rows). It is interesting to

note that while this matrix has a larger number of elements compared to the equivalent

PCA matrix (  compared to ), the majority of the 336

elements are 0, making the Quad-tree version a sparse matrix.

(2–9)

As stated in the introduction, the authors in [38] did not explain how to fit actual data

to the Quad-tree model. After examining several different algorithms, we derived a Quad-

tree fit that was efficient, simple and provided good accuracy. Prior to fitting, we

16 21× 336= 16 16× 256=

Q

α 0 1,( ) α 0 1,( ) α 0 1,( ) α 0 1,( ) … α 0 1,( ) α 0 1,( ) α 0 1,( ) α 0 1,( )

α 1 1,( ) α 1 1,( ) 0 0 … 0 0 0 0
0 0 α 1 2,( ) α 1 2,( ) … 0 0 0 0
0 0 0 0 … α 1 3,( ) α 1 3,( ) 0 0
0 0 0 0 … 0 0 α 1 4,( ) α 1 4,( )

α 2 1,( ) 0 0 0 … 0 0 0 0
0 α 2 2,( ) 0 0 … 0 0 0 0
0 0 α 2 3,( ) 0 … 0 0 0 0
0 0 0 α 2 4,( ) … 0 0 0 0

... ... ... ... ... ... ... ... ...
0 0 0 0 … α 2 13,( ) 0 0 0
0 0 0 0 … 0 α 2 14,( ) 0 0
0 0 0 0 … 0 0 α 2 15,( ) 0
0 0 0 0 … 0 0 0 α 2 16,( )

=

25



discovered that closely matching the die-to-die component was very important to the

overall accuracy. Therefore, this fitting method was designed to accurately capture the die-

to-die component first with zero error. The pseudo-code for the fitting algorithm is as

follows:

Essentially, the fitting method starts at level 0 and traverses down the tree. The method

stops at each level, iL, and determines the number of grids that comprise it (  for grid

level iL). Next, every grid on the particular level (all iG, iG < ) is parsed and the grid

mean, μi, is calculated. This procedure is repeated across all dies, reticles, and wafers.

Finally, the standard deviation of grid mean, σμ,i, is calculated for each grid and then

entered into the corresponding row of the sensitivity matrix (as in equation 2–9).

2.3   Experimental Data and Analysis

As stated earlier, our analysis is based on 0.13μm ELM data taken from horizontal

polysilicon lines (which were manufactured with typical resolution enhancement

techniques such as optical proximity correction) [44]. We investigated 5 different wafers

that each contained 23 fields, and each field included 308 measurement points – 14 points

Algorithm 2–1 QUADTREE_FIT(L) // Correlation fit for quad-tree
// L = number of levels

1:  iL = 0    // iL = index of level in quad-tree
2:  while (iL < L)
3: iG = 1 // iG = current grid number

4: while (iG < )
5: Compute grid mean, μi
6: Computer the standard deviation, σμ,i , of μi for all dies
7: Enter σμ,i into sensitivity matrix
8: end while
9:  end while

4iL

4
iL

4
iL
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in the horizontal direction and 22 points in the vertical direction. Individual measurement

points were spaced horizontally by 2.19mm and vertically by 1.14mm.

An example of one wafer of ELM CD measurements is illustrated in Figure 2.3. As

shown, not only do the measurements vary across the wafer (the lower right corner has

smaller CD values than the upper right corner), but specific patterns occur within the

reticles (the upper and lower boundaries of the field have a higher CD than the center

points). For these 5 wafers, we divided the reticles into various die sizes in order to

investigate the effect that die size had on CD variation. Initially, we diced a reticle into 4

die, (a 2-die x 2-die configuration where each die was approximately 15mm x 13mm).

Then, we examined a number of characteristics including the mean, standard deviation,

and correlation of all the dies.

The mean values for each data point in a die from the 2x2 reticle configuration are

shown in Figure 2.4 (a). From this type of figure, certain trends became clear. For

example, in Figure 2.4 (a) the typical die had lower values in the center of the die, and the

Figure 2.3. Wafer CD Measurement Contour Plot.
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CD values increased toward the edges of the die. In Figure 2.4 (b), the standard deviation

over mean is plotted for the same reticle configuration. Again, the figure shows the edge

effects in the die. To contrast the 2x2 diced reticle, we have also included the equivalent

plots for the 4x4 reticle configuration in Figure 2.5.

On average, the 4x4 dicing merely divided the 2x2 case into two-by-two grids of its

own. Thus, it can be seen that the 4x4 mean plot is a quarter of the 2x2 plot, with the spot

effect seen in the 2x2 case lying on the inner portion of the 4x4 die. Similarly, the

standard-deviation-over-mean plot also resembles a quarter of the 2x2 case, with the

lower deviation occurring at the top edge of the typical 4x4 die. It should be noted,

Figure 2.4. (a) Mean CD Values for Die (2x2 reticle dice)
(b) Standard Deviation/Mean for Die (2x2 reticle dice).

(a) (b)

Figure 2.5. (a) Mean CD Values for Die (4x4 reticle dice)
(b) Standard Deviation/Mean for Die (4x4 reticle dice).

(a) (b)
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however, that the variation structure is quite different between the 2x2 and 4x4 diced

cases.

In addition to the mean and standard deviation, the correlation was also extracted for

different size die. Plotted in Figure 2.6 is the average correlation versus separation

distance. It is easily identifiable that this function was not monotonically decreasing with

distance, x. On the contrary, we saw many distinctive peaks where correlation fell and then

rose again, sharply, at a particular distance. From this investigation, it became clear that

correlation versus horizontal distance was different than the correlation versus vertical

distance (i.e., correlation was typically stronger along a particular axis). This is confirmed

in Figure 2.7 (a) where correlation versus distance is plotted separately for the horizontal

and vertical directions.

As shown in Figure 2.7, correlation in the x-direction was actually stronger than

correlation in the y-direction. We hypothesized that the reason behind this phenomenon

was that during fabrication, the lithographic stepper scanned across the reticle and only

printed a narrow slit in the x-direction while the entire y-dimension was printed. Thus,

vertically, the reticle saw all of the variation in the lithographic system (particularly lens

aberrations) but as the stepper scanned across x, the variation did not change significantly

(e.g., the same part of the lens exposed all x-locations in a field), creating higher

correlation in x. Figure 2.7 (b) also shows similar behavior for the smaller die size.

Lastly, we plotted probability density functions for each point within a die. One

example is shown in Figure 2.8, which is a plot of point 76 within the 15mm x 13mm die

(2x2 reticle) and point 14 within the 8mm x 6mm die (4x4 reticle).
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2.4   Variation Modeling and SSTA Results

After analysis of the experimental data, we used the data to test the accuracy of

different correlation models and their associated SSTA runs. For our test circuit, we

utilized the behavioral Verilog from an industrial 15,000 gate implementation of a Viterbi

decoding circuit. Then Synopsys’s Design Compiler was used to synthesize the design and

balance the paths. Lastly, the test circuit was placed and routed using Cadence’s Silicon

Ensemble, in order to generate the placement information needed by the SSTA tool. The

Figure 2.6. Average Correlation vs. Distance (2x2 reticle).

Figure 2.7. Average Correlation vs. Distance (1-dimension only).
(a) 2x2 reticle dice (b) 4x4 reticle dice

(a) (b)
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authors would like to note that we did not actually layout the Viterbi decoder. It was

merely used as a simulation benchmark to test the accuracy of our spatial correlation

models.

The general flow of our analyses is illustrated in Figure 2.9. There are effectively three

branches in the flow. All branches start with the same wafer data. Then, in the first case

(the left branch), we perform static timing analysis on all N die, where,

, (2–10)

X is the number of die per reticle in the horizontal direction, and Y is the number of die per

reticle in the vertical direction (23 represents the number of reticles and 5 represents the

number of wafers). From deterministic STA, we obtain N timing reports from which we

can extract a final distribution for critical path delay of the circuit. We consider this the

golden analysis of circuit delay (since it is based directly on the underlying measured data)

and refer to it as the “Enumeration-based Timing Analysis” for the remainder of the

chapter.

ELM Measurement

Figure 2.8. PDF Plot for ELM Measured CD.
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The two paths on the right both begin with a model generation step which involves

fitting one of the 5 discussed CD models to the data. The two paths then diverge. The

center path (referred to as “Model-based Monte Carlo”) essentially follows a flow similar

to the “Enumeration-based” timing analysis (TA). The only difference between the two

paths is that the STA in the Model-based Monte Carlo TA is performed on random

samples that were generated using the fitted correlation models, whereas the Enumeration-

based TA uses the measured ELM data, directly. Finally, the right-most path, called

“Probabilistic TA,” performs SSTA on the fitted correlation model.

In the end, implementing this TA flow gave us three outputs available for comparison.

By comparing the Enumeration-based TA with the Model-based Monte Carlo TA, we

were able to determine the inherent accuracy of each correlation model. Similarly, by

comparing the Probabilistic TA distribution to the Model-based Monte Carlo TA, the

accuracy of SSTA, itself, was determined. Lastly, we computed the overall accuracy of

Figure 2.9. Timing Analyses Flow.

STA Model Generation
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using each correlation model within SSTA by directly comparing the Enumeration-based

TA to the Probabilistic TA.

Table 2.1 includes the results of our TA verification flow. All three TA flow outputs

are reported. Additionally, Figure 2.10 shows sample probability density plots for three of

the models, including the Enumeration-based and two PCA models (Model-based and

Probabilistic). All of the curves in Figure 2.10 are from the 4x4 reticle dice experiment.

When examining the Model-based Monte Carlo TA results in Table 2.1, it was clear

that even the simple die-to-die models only deviated from the Enumeration-based results

by less than 10%. The random model was more accurate than die-to-die with regards to

the mean, but it produced considerable amounts of error in standard deviation. This was

due to the fact that die-to-die variations tend to produce circuit delay variation (increasing

σ) whereas random and/or spatially correlated variations tend to average out over circuit

paths and, consequently, shift the mean value of circuit delay. Since the random

correlation model did not model die-to-die variation, it incurred a significant error in the

standard deviation of circuit delay. The “Die-to-die + random” correlation model,

Table 2.1. Enumeration-Based, Model-Based, and Probabilistic TA Results.

Analysis Method μ (ns) % Error from 
Enum. σ (ns) % Error from 

Enum.

Enumeration-based TA 2.049 – 0.152 –

Model-based 
Monte Carlo TA

Die-to-Die 1.934 5.623% 0.139 8.326%
Random 2.087 1.849% 0.058 62.12%

D2D + Random 2.006 2.117% 0.146 3.784%
PCA 2.033 0.800% 0.151 0.428%

2-level Quad-tree 2.006 2.111% 0.159 4.556%

Probabilistic TA

Die-to-Die 1.945 5.108% 0.146 3.789%
Random 2.130 3.934% 0.040 73.70%

D2D + Random 2.006 0.769% 0.146 3.793%
PCA 2.071 1.043% 0.148 2.694%

2-level Quad-tree 2.061 0.577% 0.157 3.198%
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however, improved on both die-to-die and random because it modeled both components.

Overall, after analyzing the simple models, it was apparent that both random and die-to-

die variation were the two most important components of total variation and, of the two,

die-to-die was substantially more significant.

Table 2.1 also shows the two complex spatial correlation models for Model-based

Monte Carlo TA. The error in PCA was found to be negligible (falling below 1%) while

the Quad-tree error was somewhat higher. The fact that the PCA correlation model out-

performed the Quad-tree for Model-based Monte Carlo TA was not surprising since it

utilized a much larger number of principal components to fit the measured data. 

One of the more surprising results was that when we examined the error of the

Probabilistic TA for the 5 models, PCA and Quad-tree reported very comparable accuracy,

despite the fact that PCA reported better results for Model-based Monte Carlo TA. Both

were less than 1% away from the mean of the Enumeration-based run, and both had ~3%

error in standard deviation. Hence, the PCA model may have been more accurate than the

Critical Path Delay (ns)
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Figure 2.10. Probability Density Plots for 3 Models (Enumeration-Based, 
PCA Model-Based Monte Carlo, and PCA Probabilistic).
34



Quad-tree model, but the execution of the PCA-based SSTA incurred more error than the

Quad-tree-based SSTA, making the final results approximately equal. We saw this

behavior consistently across a number of different tests and postulate that this behavior

was the result of the large number of independent components associated with each gate in

PCA. The large number of independent components allowed PCA to obtain a better fit of

the data, but also made SSTA’s task more difficult and introduced a higher error in the

Clark-based “MAX” function that was performed inside the SSTA tool. Finally, perhaps

the most noteworthy fact gleaned from this data was that the simple “D2D + random”

model performed nearly as well on the Probabilistic TA flow as the more complex models.

2.4.1  Model Accuracy vs. Die Size

Next, we studied the affect that die size had on the models and SSTA accuracies. The

results are shown in Table 2.2. The cells in the first row contain the Enumeration-based

results for mean and standard deviation, while the rest of the table displays the percent

deviation from the Enumeration-based TA. In general the D2D, D2D + random, and

Quad-tree models became more accurate (in terms of overall accuracy) as the dies

decreased in size. From a D2D perspective, this was intuitive because by shrinking the die,

more of the variation became inter-die variation. Furthermore, since we fit the Quad-tree

to the die-to-die variation first, it followed the same trend. The random model, on the other

hand, became less accurate as die size decreased because it modeled all within-die

variation as uncorrelated, which was incorrect since the dies actually became more

strongly correlated after shrinking, due to the inverse relationship between correlation and

distance. The last model, PCA, showed a non-monotonic accuracy trend with decreasing
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die size. Using PCA on large die (i.e., die that were larger than one-quarter of the reticle)

or small die (like the 4x4 reticle configuration) was less accurate than using PCA on

medium-sized die. All in all, the results showed that the relative model accuracy changed

based on die size and hence, different models were more appropriate in different die size

scenarios.

2.4.2  Grid Model Behavior

The way in which PCA and Quad-tree behaved while varying their characteristics –

such as the number of principal components for PCA and number of tree levels for the

Quad-tree – was also investigated. 

Table 2.2. Model vs. Die Size.

Run Type
23mmx19mm

(1.2x1.2 reticle dice)
15mmx13mm

(2x2 reticle dice)
8mmx6mm

(4x4 reticle dice)

μ (ns) σ (ns) μ (ns) σ (ns) μ (ns) σ (ns)

Enumeration-based TA 2.022 0.156 2.049 0.152 1.975 0.167

Model-based 
Monte Carlo 

TA

Die-to-Die 
(D2D) 4.176% 6.733% 5.281% 2.138% 2.407% 2.405%

Random 2.136% 68.176% 1.772% 62.396% 4.545% 51.130%
D2D + 

Random 0.029% 3.605% 1.105% 3.050% 0.103% 2.799%

PCA 0.271% 6.259% 0.303% 3.472% 0.315% 1.209%
1-level 

Quad-tree 3.165% 6.131% 3.098% 0.239% 0.173% 4.542%

2-level 
Quad-tree 0.873% 8.979% 1.056% 1.688% 0.675% 2.039%

Probabilistic 
TA

Die-to-Die 
(D2D) 3.825% 8.492% 5.108% 3.789% 1.469% 3.192%

Random 3.176% 83.625% 3.934% 73.703% 8.841% 62.472%
D2D + 

Random 1.245% 11.247% 0.767% 3.793% 1.585% 3.188%

PCA 0.099% 8.049% 1.043% 2.694% 2.138% 4.740%
1-level 

Quad-tree 2.468% 7.451% 1.549% 1.424% 0.341% 0.280%

2-level 
Quad-tree 0.794% 7.326% 0.027% 1.983% 1.002% 0.069%
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Limiting the number of principal components used after PCA is common practice

since principal components are inherently arranged in order of decreasing importance. For

our purposes, we investigated the minimum number of principal components needed to

obtain accurate results from SSTA. The behavior of the mean and standard deviation of

SSTA versus the number of principal components is given in Figure 2.11, and both are

normalized to their respective value that includes all principal components. As you can

see, both curves flatten out around 3 principal components, and approach one as the

number of principal components becomes large.

Also of interest were the number of levels included in Quad-tree. However, for the

tests that we ran, any number of levels above 3 did not produce noticeable gains in

accuracy, since the Quad-tree SSTA already had errors of <1% for means and ~1% errors

in standard deviation, as compared to the Enumeration-based model.

Figure 2.11. Mean and Standard Deviation vs. Number of Principal Components.
(Normalized to Mean and Standard Deviation with all Principal Components)
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2.5   Summary

In our analyses, we found that the grid-based models were superior, both in the Model-

based simulations as well as the Probabilistic TA. On average, Quad-tree was consistently

more accurate with respect to the mean, and it outperformed PCA when the die size was

small. However, in all cases, the “D2D + random” model only incurred a slightly larger

error (<4%) than Quad-tree and PCA. Thus, our results suggest that the “D2D + random”

model can provide a simpler implementation (both in terms of overhead and run-time)

while still achieving a similar accuracy range to PCA and Quad-tree, given that a certain

amount of error is tolerable.
38



CHAPTER 3

MODELING CD VARIATION IN SSTA

To date, there has been little improvement in the delay models used within Statistical

Static Timing Analysis (SSTA). This poses a potential problem, since the overall SSTA

accuracy is fundamentally limited by the accuracy of the underlying models. Without

sufficient accuracy, the benefits of switching from deterministic timing to SSTA are

uncertain. As mentioned in both Chapters 1 and 2, of the three main variation parameters –

Critical Dimension (CD), doping concentration, and oxide thickness (including tox and

ILD) – CD variation modeling is particularly difficult because it contains both a

systematic component that is context dependent, as well as a probabilistic component that

is mainly caused by exposure and defocus variation in the lithography system. These

variations in exposure and defocus create unique, transistor-specific distributions. Current

SSTA frameworks, however, do not model these differences in device distributions.

Instead, CD variation is handled identically across the entire standard cell library. This

type of CD model is error-prone for two reasons:

• The model assumes that a single CD distribution applies to all standard cells in the

library, regardless of cell type.

• The model assumes that the same, single CD distribution applies to all transistors

within a standard cell.
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These two assumptions lead to errors in SSTA because the resulting model does not

account for the fact that different transistors (at the same location in a die) can have

different CD distributions. For instance, Figure 3.1 contains a sample standard cell layout

(the drawn and printed image polysilicon, as well as the diffusion layers are shown) with

12 transistors. The current CD model assumes that all 12 transistors vary identically,

which means that changes in CD, or ΔCD, for each transistor can be represented by the

same random variable (RV). However, in reality, each transistor CD is dependent on its

neighboring geometries; the distance from neighboring gates, the distance to poly-to-

contact landings (shown in Figure 3.1.B), and the line-end overhang (shown in Figure

3.1.A) will all affect an individual CD distribution. These layout characteristics not only

modify the nominal CD for each device, but they also impact the variability of CD and its

sensitivity to changes in lithography exposure and defocus. Thus, capturing ΔCD with a

single RV is inaccurate. However, modeling each transistor CD as an independent RV is

also incorrect, since exposure, defocus, and context similarities lead to correlations

between CD distributions. Therefore, to accurately represent CD in a design, we would

prefer a separate RV for each transistor that would not only contain the moments (μ, σ,

Figure 3.1. Standard Cell Layout – Poly & Diffusion Layers Only.
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etc.) of its actual CD distribution, but would also preserve its correlation to other

transistors.

To verify the impact of topology on both nominal CD and CD sensitivity to changes in

exposure and defocus, Figure 3.2 is included, which plots CDi (for one transistor, i, in the

standard cell from Figure 3.1) as a function of lithography exposure. In Figure 3.2, four of

the twelve CDi’s (T1, T2, T6, and T9) are shown. When the actual distribution of exposure

is input into the CDi function, the resulting CD distribution for transistor i has a unique

mean and standard deviation, but is highly correlated to the other 11 distributions. The

average CD (at each exposure setting) for the cell is also plotted and represents the single

distribution CD model. Even though this is a simple example (the only transistors used to

compute the average CD came from one standard cell and the only variation included was

the lithography exposure variation), the single CD model still incurs an average error in

standard deviation (σ) of ~9% when total variation (σ/μ) is ~4%. The zoomed in portion

of Figure 3.2 emphasizes the difference in nominal CD for the transistors in the cell, as

well as the difference in sensitivity (the difference in curvature) to changes in exposure.

Figure 3.2. Standard Cell Gate CD vs. Exposure.
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The rest of this chapter is organized in the following manner. Section 3.1 describes

previous research in the field of SSTA CD modeling and has detailed descriptions on the

types of models used both for CD, as well as delay. Next, Section 3.2 explains the

proposed transistor-specific CD and delay models. Section 3.3 contains the experimental

results obtained and Section 3.4 concludes with a brief summary.

3.1  Prior Work and Previous Approach

While there has been significant amounts of research on developing new lithography-

aware characterization tools and determining how lithography impacts physical and

electrical device parameters [45-47], to our knowledge, no one has proposed an accurate,

transistor-specific SSTA delay model. In [45], the authors developed a lithography

simulation flow which they used to improve case-based timing analysis (STA). While they

showed improvement over traditional STA, it was not clear how their characterization

could be extended to SSTA. An improved gate length extraction was proposed in [46] and

used to improve timing accuracy in non-uniform device gates. Choi et al. in [47] designed

a tool aimed at incorporating numerous sources of variation, such as proximity effects,

lens aberrations, and Chemical-Mechanical Polishing (CMP). However, all the previous

approaches have focused on improving STA, and are therefore applicable in the

deterministic sense.

Current SSTA methodologies perform all statistical operations on propagation delays

in order to determine the final distribution for timing [39,48]. However, the propagation

delay for a single gate is actually a function of a number of parameters that are affected by

variation (e.g., gate length and threshold voltage). In this chapter, we focus on gate length
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variation. It is well known that propagation delay can be modeled as a linear or quadratic

function of gate length, as shown in (3–1) and (3–2), respectively. These models typically

provide a simple, but accurate, representation of delay in terms of gate length. From the

models in (3–1) and (3–2), only α, β (and λ), and the distribution for Lg are needed to

calculate the delay variation.

(3–1)

(3–2)

In this work we chose to model delay as a quadratic function of gate length, as in (3–2),

since quadratic models are capable of capturing some nonlinearity. Therefore, the delay

models mentioned in the remainder of the chapter are quadratic.

While (3–2) seems simplistic at first glance, its actual implementation within timing

analysis (TA) is slightly more complicated, thus, a brief description of present-day delay

modeling and CD modeling follows.

3.1.1  Delay Model

Equation (3–2) is a straightforward representation of the dependence of Delay on one

input parameter, Lg. However, in reality delay is also dependent on the output loading of

the gate and the slope or slew rate of the input signal. Additionally, a gate usually has

more than one input-pin, and the time it takes for an input transition to propagate to the

output can vary from input-pin to input-pin. Present-day timing analysis is able to manage

these dependencies by utilizing data in the form of a lookup table. This lookup table is

typically built during library characterization in the early stages of a standard cell library’s

lifetime. For every combination of output load and input slew, the characterization tool fits

Delay α βLg+=

Delay α βLg λLg
2+ +=
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the input-to-output propagation delays as a function of gate length. Thus, for some gate in

the library that has P input pins and S output-load/input-slew pairs, there will be 2 x P x S

values of each coefficient: α, β, and λ (the factor of two appears because there is a rising

and falling transition associated with each pin). Example pseudo-code for delay model

characterization is included below and its flow diagram is illustrated in Figure 3.3.

3.1.2  CD Model

The other component needed to include CD variation within SSTA is a CD model, or a

model for Lg in (3–2). As stated in the introduction of this chapter, for any gate in the

Algorithm 3–1 DELAY_CHAR // Calculates delays for all gates
1:  foreach (G)  // G = gate in library
2: foreach (pi)  // pi = input pin for gate, G
3: foreach (CL)  // CL = output load
4: foreach (tslew)  // tslew = input slew
5: Perform transient sweep of Lg and measure delay
6: // Lg = gate length for all transistors in gate, G
7: Fit delay as a function of Lg
8: end foreach (tslew)
9: end foreach (CL)
10: end foreach (pi)
11:  end foreach (G)

Figure 3.3. Delay Model Characterization.
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library at the same location, current SSTA frameworks typically model CD as a single RV

and all devices within a standard cell vary identically. Process engineers determine this

distribution by fabricating different test structure geometries, and measuring the samples

across a number of dies and wafers. These measurements are then treated as the discrete

samples that comprise the single distribution of gate length – Lg. Once Lg is known, this

model can also be extended to include spatial correlation in CD. Our SSTA

implementation of this model is referred to as the “Single-CD Library” model and is

discussed in more detail in Section 3.3.1.1.

3.2  Proposed Transistor-Specific Model

The probabilistic and systematic components of lithography variation due to exposure

and defocus exist because of the role they play in the manufacturing process. Exposure

and defocus in a lithographic system determine the amount of photoresist that is

developed. Therefore, any deviation in exposure or defocus will lead to over- or under-

development of the photoresist. This causes geometries to differ in stability and

roughness, as well as deviate from the intended size [11,49-50]. The over- or under-

development at a certain area of the die will cause probabilistic shifts in mean CD,

however, the direction and magnitude of those shifts is dependent on neighborhood or

context, which is systematic in nature. To illustrate this problem, we took the same

standard cell (with OPC) in Figure 3.1 and ran a printed-image simulation at nominal

exposure and defocus. The standard cell layout, optical proximity correction (OPC)

recipe, and lithography system setup were all obtained from an industrial 90nm process.

All geometries began with the same drawn CD, however, even when the printed-image
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simulation was run at nominal exposure and defocus settings, context dependencies arose.

Table 3.1 contains the percentage deviation of each CD from the maximum CD (the CD

for the transistor labeled “T1” in Figure 3.1). From this table it is clear that even at

nominal settings where OPC is typically most effective, within-cell context dependencies

emerge and cause deviations in CD of ~4%. These within-cell CD deviations are caused

by a number of layout characteristics (mentioned at the beginning of this chapter) like

geometry-to-geometry distance, line-end overhang, and distance to contact landings.

Since there are hundreds of standard cells in a typical library and each cell has different

orientations/spacings of geometries, the need for a lithography-aware CD model is

apparent.

Present-day, non-lithography-aware CD models can be viewed as the most

rudimentary variation model: only one random variable is needed. The most complex

model, on the other hand, would involve having an RV for each transistor in the library. In

the 90nm library that we used, this meant that SSTA would have had to keep track of

thousands of random variables for CD variation alone, which was unacceptable. However,

in our work we hypothesized that since there were two main underlying components of

CD variation (exposure and defocus), CD could be modeled as a function of ~2

components. Furthermore, when we performed printed-image simulations (over the entire

Table 3.1. Percentage Deviation from Max CD.
(Nominal Exposure & Defocus)

% Deviation from 
Max CD (T1)

% Deviation from 
Max CD (T1)

T1 0% T7 0%
T2 4% T8 2%
T3 4% T9 2%
T4 4.4% T10 3%
T5 4% T11 2%
T6 2% T12 3.4%
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range of exposure and defocus) on all of the standard cells in our library, we discovered

that most of the transistor CD distributions were highly correlated (>0.9), as expected,

since the distributions were created by two common variation sources. These experiments

suggested that a compression technique, such as Principal Component Analysis (PCA)

[51], would allow us to reduce the number of RV’s by >3 orders of magnitude, while still

preserving the actual correlations that arose due to the common variation sources and

layout similarities.

To test our theory, we used lithography-aware simulations (discussed in Section 3.2.3)

to generate CD distributions for every device in our library (all transistors within every

standard cell). These distributions were then treated as distinct RV’s and decomposed

using PCA. We determined that ~99.9% of the total variance of each RV could be captured

with the first two principal components. This fact is further illustrated in Figure 3.4, which

shows a scatter plot of the first 60 PCA coefficients (out of a total of ~200) for an arbitrary

transistor in our library. As can be seen, the first two components are orders of magnitude

Figure 3.4. Normalized CD Distribution PCA Coefficients.
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larger than the remaining components. This means that out of ~200 original RV’s, only 2

are needed to accurately model CD variation for every device in our library.

The PCA compression technique is used as the basis of our Transistor-Specific (Xtor-

Spfc) CD and delay models. They are described next in Section 3.2.1. Section 3.2.2

outlines the entire Xtor-Spfc characterization flow, while Section 3.2.3 briefly discusses

the custom lithography-aware simulator used in our experiments.

3.2.1  Transistor-Specific CD and Delay Models

Since we use PCA to compress CD variability, the proposed Transistor-Specific CD

can be analytically expressed as:

(3–3)

In (3–3), Ljk is the CD distribution of a particular transistor, j, contained in the kth standard

cell of the library. Specifically,  is the mean CD of the device (determined during

Litho-Aware simulation), ajk and bjk are the first two PCA coefficients (calculated as

described in (3–3)), and X1 and X2 are the principal components, which are standard,

normal RV’s. With respect to the ajk and bjk calculations,  is the standard deviation of

the device’s CD, vjk,1 and vjk,2 are the jkth element in the first and second eigenvectors,

respectively, while λ1 and λ2 are the first and second eigenvalues. For a more detailed

theoretical description of PCA we refer the reader to [51]. This model is referred to as the

“Xtor-Spfc CD” model for the remainder of the chapter.

Ljk μLjk
ajkX1 bjkX2+ +=

ajk σLjk
vjk 1, λ1=

bjk σLjk
vjk 2, λ2=

μLjk

σLjk
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The Xtor-Spfc CD model is used directly in (3–2) to generate our Xtor-Spfc delay

model. To determine which Ljk is actually used in the delay model, we merely choose the

transistor associated with the specific pin-to-pin transition in question. For instance, when

we characterized the rising delay transition of a minimum-sized inverter, we used the Ljk

from the PMOS CD distribution in the delay model (and assumed single input switching).

If the device happens to have multiple fingers, then we choose any one of the devices

(since all of the device’s CD’s are highly correlated).

3.2.2  Transistor-Specific Characterization

The proposed Transistor-Specific model characterization flow is presented in Figure

3.5. It uses the Litho-Aware simulator, depicted in Figure 3.6 and described in Section

3.2.3, to determine the CD distributions for all of the transistors contained in every

standard cell in our library. Then it runs PCA on the entire set of CD distributions (each

CD distribution represents a distinct RV) and calculates (3–3), our Xtor-Spfc CD equation,

based on the first two principal components.

We utilize the CD equations created in the flow from Figure 3.5 in two ways: we use

them directly within SSTA to determine the delay distributions, and we use them to

generate the gate length samples used in the Hspice delay sensitivity characterization (the

Ljk’s are used as the Lg’s in the pseudo-code in Algorithm 3–1). Because the CD

distributions, the Ljk’s, are independent of the output loading and input slew, we only need

to run the Xtor-Spfc model generation once per standard cell. When all of the CD

distributions have been simulated for every cell in the library, a limited set of samples is
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chosen to obtain an accurate quadratic fit for delay. As a result, the runtime of the

proposed Xtor-Spfc model is on the same order as existing approaches.

It is important to note that in practice, exposure and defocus in a lithographic system

gradually varies from one die location to the next. As a result, both exposure and defocus

variations tend to affect closely spaced devices in a similar manner, making them more

likely to have comparable CD’s than those placed far apart. Therefore, it is important to

capture spatial dependencies between the CD variation of two devices in addition to

characterizing the proximity dependence of layout. Process engineers currently utilize test

structures to determine the correlations that exist in a given process. Similarly, our model

could use a test-structure-based method of extracting correlation. The test structures

themselves would consist of a few representative standard cells chosen from our design

library. These library cells would be replicated across the die and then fabricated at a

manufacturing facility. Much like existing procedures, our RV’s X1 and X2 would be

Figure 3.5. Proposed Transistor-Specific Delay Model Flow.
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extracted from the manufactured data at each location in a die, across all dies, allowing

both the intra- and inter-die correlation to be calculated.

3.2.3  Litho-Aware Simulation

Our Transistor-Specific characterization is built around a number of industry IC

design tools. A flow chart for the simulator is shown in Figure 3.6. The Litho-Aware

simulator receives a graphic data system (GDS) layout file as the main input, which

contains the drawn layout of the intended design. In our library characterization, all

standard cell polysilicon already had industrial OPC’s, but the tool is also capable of

adding corrections prior to running the printed image simulation. Next, it conditionally

places neighboring geometries adjacent to all edges of the circuit under simulation so that

context dependencies can be analyzed. Then, using Mentor Graphics’ Calibre, a printed

image simulation is performed on either the original GDS or the modified, context-

inclusive GDS. The simulated printed image is then written to a new GDS file, which is

input to an extraction tool. Finally, Calibre is used again, along with an industrial

extraction tool, to extract the Hspice netlist and obtain actual gate length values. After

Figure 3.6. Lithography-Aware Simulator.
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running this flow, there are two outputs at the user’s disposal: the printed image GDS and

the extracted netlists.

3.3  Results

During our library characterization, we first analyzed the gate length and delay

distributions, and then explored the accuracy of three delay models: the Single-CD

Library (SCDL), Cell-Specific (Cell-Spfc), and Transistor-Specific (Xtor-Spfc) models.

Both the SCDL and Xtor-Spfc models were discussed previously in Sections 3.1.2 and

3.2.1, respectively. The Cell-Spfc model is a variant of the SCDL model and is described

in Section 3.3.1.2. The accuracy of each of the models is found by comparing its standard

deviation for delay to our “Golden” result. The Golden result for each standard cell is a

discrete distribution that consists of 10,000 delay samples. Each delay sample corresponds

to a printed image simulation that has been extracted and characterized in Hspice at a

particular exposure/defocus setting. Each exposure/defocus pair is sampled from the joint-

normal, bivariate distribution of exposure and defocus. As stated earlier, this work utilized

an industrial 90nm process and an industrial lithography recipe (with industrial OPC). At

the time of this work, since 90nm was a stable process and variation was expected to

increase as we moved from 65nm to 45nm and beyond, we performed our library

characterization, model generation, and analysis twice. In the first iteration, exposure and

defocus were varied according to typical 90nm process values, but in the second iteration

we increased variability so as to mimic the effects of moving from a 90nm lithographic

process to 65nm. The scaling factors used to increase variability were obtained from an

industry source. For the remainder of this work, we refer to the typical 90nm variation as
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“90nm” or small variation and the scaled 90nm variation as “pseudo-65nm” or large

variation. The authors would like to note that this experimental procedure was chosen due

to the fact that the 65nm data needed for this work (standard cells, device models, and

process data) was unavailable when this research was conducted.

The remainder of this section is divided as follows: Section 3.3.1 begins by describing

our experimental setup. Then, Section 3.3.2 discusses the general trends observed in the

CD and delay distributions, and includes a brief discussion of observed within-cell context

dependencies. Lastly, Section 3.3.3 includes our model comparisons for both variability

cases. Note that in either case we did not include neighborhood characterization between

cells because industry sources informed us that polysilicon geometries would be more or

less regular from the 45nm process node onward, reducing neighborhood effects. Thus,

we left neighborhood analysis as future work. 

3.3.1  Experimental Setup

Our experimental results compare three different gate delay models: the SCDL, Cell-

Spfc, and Xtor-Spfc models. Refer to Section 3.2 for the details pertaining to our proposed

Xtor-Spfc model.

3.3.1.1  Single-CD Library Model

For this work, we required a representative model that would demonstrate the amount

of error incurred by ignoring within-cell and cell-to-cell lithography effects. This model is

based on the current SSTA approach discussed in Section 3.1.2 and is referred to as the

Single-CD Library model, or SCDL, for the remainder of the chapter. Essentially, our
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custom Litho-Aware simulator (described in Section 3.2.3) samples a joint-normal,

bivariate distribution of exposure and defocus and determines all of the transistor CD

distributions for every standard cell in the library. Next, all of the samples from the

transistor CD distributions are collected into one RV. This RV, L, represents the single CD

distribution mentioned in Section 3.1.2, and we use the moments of L to derive Lg.

(3–4)

Here, μL and σL are the mean and standard deviation, respectively, of the single gate

length distribution, L, and X1 is a standard, normal RV (with zero mean and unit variance).

Finally, the delay distribution for each cell is calculated by substituting Lg into (3–2).

3.3.1.2  Cell-Specific Model

In addition to the Transistor-Specific model proposed in Section 3.2, we also explored

a variant of the SCDL model, which we refer to as the “Cell-Specific” (Cell-Spfc) model.

This model uses the same basic procedure described in Section 3.3.1.1, except for one key

difference: instead of collecting CD distributions from the entire library into one RV, CD

distributions from each cell are collected into a local gate length distribution. For example,

consider the procedure that we used to characterize a minimum-sized, 2-input NAND gate

that contained a total of four transistors: NMOS1, NMOS2, PMOS1, and PMOS2. After

Litho-Aware simulation, all of the CD distribution samples for these four transistors were

collected into one RV, LNAND2, and we then calculated Lg,NAND2, as seen in (3–5), using

the mean and standard deviation obtained from the LNAND2 distribution.

(3–5)

Lg μL σLX1+=

Lg NAND2, μLNAND2
σLNAND2

X1+=
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Therefore, in the Cell-Spfc model, each standard cell within the library will have a

different Lg,CELL, but similar to the SCDL model, all transistors within the same cell will

have identical Lg,CELL’s. These distinct Lg,CELL’s are then substituted into (3–2) on a cell-

by-cell basis.

3.3.2  CD and Delay Distributions

Using our characterization tool, we analyzed 22 different standard cells under varying

amounts of exposure and defocus. We discovered that with the pseudo-65nm process

variation setup, our library had an average gate length distribution 3σ/μ of ~18% and an

average delay distribution 3σ/μ of ~15%. Additionally, we verified the effect that layout

topology had on the CD and delay distributions. Our experiments proved that both the CD

and delay distributions were different for transistors within the same cell, as well as for

transistors from two different cell types. For example, Figure 3.7 contains the probability

density function (PDF) for a 4-finger, 2-input NOR gate (composed of 16 transistors

total). Included in the plot are 3 of the 16 CD distributions: two NMOS and one PMOS.

All three transistors are normalized to the PMOS device. From this figure, it is apparent
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Figure 3.7. PDF for Various Transistors in a 4-finger, 2-input NOR gate.
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that each of these distributions differ in mean and standard deviation by a few percent,

thereby confirming that ignoring within-cell variation is inaccurate. The amount of

inaccuracy is quantified in the following section.

3.3.3  Model Comparison

As mentioned previously, the three models discussed in Section 3.3.1 are compared in

this section and each model fits delay as a quadratic function of CD, as in (3–2). We found

that when comparing the three delay models to our Golden result, each model had about

the same average error in mean (~1%), but the error in standard deviation (σ) differed

considerably. The resulting error in σ for each model is displayed in Table 3.2. Both

variation cases – Pseudo-65nm and 90nm – are included in Table 3.2, however, unless

otherwise mentioned, the remaining results discussed in this chapter pertain to the Pseudo-

65nm data.

From Table 3.2, it is apparent that both of our delay models, the Cell-Spfc and Xtor-

Spfc, are more accurate than the current SSTA delay model, SCDL. The SCDL delay

model has an average error in σ of 11.8%, and has a worst case error of 39%. Our

Table 3.2. Absolute Error in Standard Deviation.
(from Golden Distribution)

Pseudo-65nm
(Avg. σ/μ = 4.9%)

90nm
(Avg. σ/μ = 2.9%)

% Error in σ % Error in σ

Rise Fall Rise Fall

SCDL - Avg 10.9% 12.7% 14.3% 15.0%
Cell-Spfc - Avg 8.7% 11.4% 9.3% 9.3%
Xtor-Spfc - Avg 3.4% 4.7% 2.2% 1.4%

SCDL - WC 38.0% 39.4% 41.7% 38.3%
Cell-Spfc - WC 38.2% 39.3% 36.0% 30.8%
Xtor-Spfc -WC 16.1% 8.7% 15.4% 8.8%
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proposed delay model, the Xtor-Spfc model, reduces average σ error by 2.9X and has a

worst case error of ~16% (a 2.4X improvement).

In order to visually portray the accuracy improvement achieved by using either the

Cell-Spfc model or the Xtor-Spfc model, Figures 3.8 and 3.9 are included. These figures

show the standard deviation of delay for the three models plotted against the golden

standard deviation. In these plots, one point represents a model’s standard deviation for

one input-to-output propagation delay distribution (there are ~50 different pin-to-pin

transitions for the 22 standard cells in our library). The closer a point is to the solid black

line (y = x), where Model σ = Golden σ, the more accurate the point (and model) is. From

Figure 3.8. Fall Delay σ Comparison – Normalized (Pseudo-65nm Variation).

Figure 3.9. Rise Delay σ Comparison – Normalized (Pseudo-65nm Variation).
57



Figures 3.8 and 3.9, it is clear that the SCDL model is consistently furthest from the line,

followed by the Cell-Spfc model, while the Xtor-Spfc model is the most accurate. This

confirms what we observed in Table 3.2. If we look at two example CDF graphs in Figure

3.10 and Figure 3.11, we observe similar results. The Xtor-Spfc model and Cell-Spfc

models follow the Golden result more closely than the SCDL model. However, here the

shortcomings of the Cell-Spfc model become apparent. When we compare simple

standard cell implementations, such as the minimum-sized inverter in Figure 3.10, the

Cell-Spfc model is almost as accurate as the Xtor-Spfc model. But when the models are

used on more complex cells, such as the AND/OR Invert gate in Figure 3.11 or standard

cells with fingered transistors, then the Cell-Spfc model has nearly as much error as

SCDL, since it collects many within-cell CD distributions into one RV, similar to the

SCDL model.

3.4  Summary

This chapter proposed a transistor-specific CD model and its corresponding delay

model. A custom Litho-Aware simulation tool was used to compare the Xtor-Spfc models

to existing SSTA models and calculate the absolute error of our Xtor-Spfc CD and delay

models. Our experiments suggest that the modern SSTA delay modeling approach is error-

prone and can sometimes lead to twice as much error as total variation. All in all, the

proposed SSTA delay model achieves average error reductions in standard deviation of

~3X when compared to current models and can be easily incorporated into existing SSTA

frameworks.
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Figure 3.10. Minimum-sized Inverter Fall Delay Transition CDF (90nm Variation).

Figure 3.11. AND/OR Invert Rise Delay Transition CDF (90nm Variation).
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CHAPTER 4

MECHANICAL STRESS AWARE OPTIMIZATION FOR 
LEAKAGE POWER REDUCTION

It was stated in Chapter 1 that as MOSFETs continue to scale below 100nm, higher

effective fields cause mobility degradation, leading to decreasing drive currents. In order

to battle mobility degradation and achieve higher drive currents, modern-day fabrication

processes use special means to induce mechanical stress in MOSFETs, which enhances

carrier mobility. Mobility enhancement has emerged as an attractive complement to

device scaling because it can achieve similar device performance improvements with

reduced effects on reliability and leakage.

Mechanical stress in silicon breaks crystal symmetry and removes the 2-fold and 6-

fold degeneracy of the valence and conduction bands, respectively [52-53]. This leads to

changes in the band scattering rates and/or the carrier effective mass, which in turn affects

carrier mobility. Mechanical stress induced in a CMOS channel can be either tensile or

compressive. As illustrated previously in Figure 1.4, NMOS and PMOS devices have

different desired stress types (compressive or tensile) in the longitudinal, lateral, and Si-

depth (vertical) dimensions. By providing the correct type of stress for a device (in one or

more dimensions), we can achieve higher drain currents. However, since carrier mobility

affects the drain current in all MOSFET operation regimes, increasing carrier mobility not
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only increases saturation current, but it also increases subthreshold current. Specifically,

short-channel MOSFET saturation drain current, ID,sat, has a sub-linear dependence on

mobility, μ0, while the subthreshold drain current (ID,sub) dependence on mobility is linear

[17-18]. These two relationships between drain current and mobility make mobility

enhancement an interesting alternative to other power/delay optimization techniques.

One of the most popular power/delay optimization techniques that has been researched

considerably in both academia and industry is the dual-Vth optimization scheme [20-22].

This technique typically uses gate sizing and two choices of threshold voltage to optimize

a given circuit for some metric (usually delay or power). Since ID,sat and ID,sub are super-

linearly and exponentially dependent on Vth, respectively, Vth can potentially be a

powerful optimization parameter. However, since incorporating different threshold

voltages adds significant design and process complexity, practical implementations

typically restrict the number of threshold voltages to ~2 [54].

One of the main disadvantages of using a dual-Vth scheme is, coincidentally, also one

of its strengths. Since each gate in the design can either be high-performance or low-

leakage, dual-Vth provides for a wide range of performances (due to the super-linear and

exponential dependencies of ID,sat and ID,sub on Vth, respectively), but the approach has

only coarse granularity in its selection. Mobility enhancement induced by mechanical

stress, however, is layout dependent and can therefore provide much finer delay-versus-

leakage control without adding to process complexity/cost. This granularity, coupled with

the fact that leakage is only linearly dependent on mobility, makes stress-induced mobility

enhancement an interesting research topic that can either be directly compared to dual-Vth
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assignment, or used concurrently to provide additional gains in either leakage or delay.

Since the leakage penalty incurred by mobility enhancement is significantly less than Vth

assignment, this chapter focuses on leakage reduction. However, for completeness, the

end of the chapter also demonstrates that the proposed joint optimization framework can

be used to reduce circuit delay (while maintaining iso-leakage).

The remainder of this chapter is divided as follows: the first two sections, 4.1 and 4.2,

describe prior mechanical stress work, our main contributions, and how they differ from

previous publications. Section 4.3 includes background information relevant to

mechanical-stress-based mobility enhancement and compares the power vs. performance

tradeoff inherent in both mobility enhancement, as well as dual-Vth assignment. Next,

Section 4.4 discusses the layout dependence of stress. Section 4.5 builds on the knowledge

developed in Section 4.4 by presenting the stress-dependent layout properties for our

65nm technology. Results obtained by modifying these properties in 65nm industrial

standard cells are discussed in Section 4.6. Section 4.7 introduces the optimization

methodology used in this chapter. Lastly, Section 4.8 presents the overall optimization

results and Section 4.9 concludes with a brief summary.

4.1  Prior Work

To date, most of the published work on mechanical stress in silicon has focused on the

effects of Shallow Trench Isolation (STI) [33,55-56] or limited their analysis to only

include the PMOS sources of mechanical stress [34,57-59]. Reference [60], on the other

hand, studied variability in CMOS circuits for a low power 45nm test chip that featured

STI and a tensile nitride liner as sources of stress (NMOS only). One key result
62



ascertained from [60] is that NMOS devices showed 5% higher performance as

source/drain diffusion lengths were increased by 75%, which is qualitatively similar to the

results we observed in our 65nm process that included stress sources for both PMOS and

NMOS devices. In the last few years, researchers have begun exploring layout

optimization techniques involving stress. For example, in [56] the authors presented an

active-layer fill insertion technique which optimized circuit delay by exploiting STI stress.

However, in the 65nm industrial technology used in this research, we discovered that the

STI stress contribution was <10% of the total channel stress, making STI optimization less

effective. The first optimization scheme developed to exploit the source/drain length

dependency of mechanical stress was published in [36], which described a timing closure

technique that utilized stress enhanced versions of standard cells to improve path delays.

While the authors in [36] do report average delay savings of ~5%, they do not disclose the

additional leakage power consumed, nor do they discuss possible leakage versus delay

tradeoffs.

4.2  Contributions

The work described in this chapter differs from previously published research in that it

incorporates all of the layout dependent sources of stress and, consequently, exploits a

larger number of layout properties that affect stress (e.g., source/drain lengths, contact

placement, distance from STI, etc.). Additionally, our optimization algorithm is not a one-

sided approach that only optimizes delay. Instead, it accounts for the tradeoff between

leakage and delay and achieves the largest improvement in leakage power (delay) for

identical delay (leakage power). Thus, the main contribution of this chapter is a new,
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circuit-level, block-based, joint optimization framework that uses stress-enhanced

standard cells (in conjunction with un-enhanced cells and/or dual-Vth cells) to improve

either leakage power consumption for iso-delay-performance or circuit delay for iso-

leakage-power-consumption.

We begin by addressing the layout dependency of stress-based performance

enhancement. We perform a comprehensive study in order to determine how various

layout parameters affect device stress, and then analyze their impact on device

performance. From this study we then extract the main layout properties that impact

mechanical stress in our industrial, 65nm process. Next, these layout properties allow us to

create “high-Stress” and “low-Stress” versions of a subset of standard cells from an

industrial 65nm CMOS library (analogous to “low-Vth” and “high-Vth” cells in a dual-Vth

library). Finally, we propose a stress-aware optimization algorithm and generate two

comparisons: 1) stress-based performance enhancement versus dual-Vth assignment, and

2) combined stress-based enhancement with dual-Vth versus only dual-Vth.

4.3  Background

This section discusses the two main topics that are the foundation of this chapter: the

sources of mechanical stress (and their dependency on layout properties) and how

mobility and Vth affect drain current.
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4.3.1  Mechanical Stress Sources and their Layout Dependence

Mechanical stress in silicon can be generated by either thermal mismatch or lattice

mismatch. Thermal mismatch stress is caused by differences in the thermal expansion

coefficient, while lattice mismatch stress is caused by differences in lattice constants.

Figure 4.1 shows the major sources of stress for one of the latest 65nm CMOS

technologies [61]. The sources are Shallow Trench Isolation (STI), embedded SiGe (only

in PMOS devices), tensile/compressive nitride liners (in NMOS/PMOS devices,

respectively), and the Stress Memorization Technique (SMT).

Shallow Trench Isolation (STI): STI creates compressive stress longitudinally and

laterally due to thermal mismatch [34,56-57] and volume expansion [57]. From Figure

1.4, it is apparent that this compressive stress degrades the electron mobility in NMOS

devices (in both the longitudinal and lateral directions) [62] and degrades hole mobility in

PMOS devices in the lateral direction. However, STI stress that is induced longitudinally

(e.g., at the left and right boundaries of standard cells) actually improves hole mobility in

PMOS devices.

Embedded SiGe (eSiGe): For PMOS transistors, an eSiGe process is implemented where

SiGe is epitaxially grown in cavities that have been etched into the source/drain (S/D)

Figure 4.1. Sources of Stress for NMOS and PMOS Devices.
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areas [63]. Lattice mismatch between Si and SiGe creates a large compressive stress in the

PMOS channel, thereby resulting in significant hole mobility improvement.

Dual-stress Nitride Liners: As shown in Figure 4.1, mechanical stress can also be

transferred to the channel through the active area and polysilicon gate by depositing a

permanent stressed liner over the device [30]. Tensile liners improve electron mobility in

NMOS devices, while compressive liners improve hole mobility in PMOS devices. The

latest high performance process nodes have simultaneously incorporated both tensile and

compressive stressed liners into a single, high performance CMOS flow, called the Dual-

Stress Liner approach. In this process, a highly tensile Si3N4 liner is uniformly deposited

over the entire wafer. The film is then patterned and etched from the PMOS regions. Next,

a highly compressive Si3N4 liner is deposited, patterned and etched from the NMOS

regions.

Stress Memorization Technique (SMT): In addition to the permanent tensile liner shown

in Figure 4.1, the Stress Memorization Technique (SMT) is also used to increase the stress

in n-type MOSFETs [64]. In this technique, a stressed dielectric layer is deposited over all

of the NMOS regions, thermally annealed, and then completely removed. The stress effect

is transferred from the dielectric layer to the channel during the anneal and is

“memorized” during the re-crystallization of the active area and gate polysilicon.

A closer examination of these stress sources shows that the amount of stress

transferred to the channel, and, consequently, the drive current enhancement, has a strong

dependence on certain layout properties. The amount of eSiGe (and, hence, the stress), for

example, depends upon the length of the active area. Longer active area also means that
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the STI will be pushed further away from the channel, which will lower its effect on the

total channel stress. Therefore, the drive current of a transistor depends not only upon the

gate length and width (L and W), but also upon the exact layout of the individual transistor

and its neighboring transistors. This means that the performance of two transistors with

identical gate lengths and widths can actually differ significantly, depending on their

layouts.

Beginning in Section 4.4, we study the layout dependence of stress-based performance

enhancement for different device configurations and identify simple layout properties in

our 65nm process that allow us to maximize the performance gains due to stress. The idea

is to determine the key layout parameters that a layout designer can change to affect the

transistor performance. Since we are interested in optimizing the layout, uniform

techniques such as SMT can be ignored while modeling the layout dependence of stress

because SMT involves a uniform film deposition, anneal and removal over all of the

NMOS regions, which leads to a uniform shift in NMOS drive current that is relatively

independent of layout.

4.3.2  Drain Current Dependence on Stress and Vth

Modifying carrier mobility directly affects the amount of current that flows between

the source and drain terminals of a transistor. Increased carrier mobility increases the drain

current, ID, in all regimes of MOSFET operation, which improves transistor performance

(in terms of delay) but increases leakage power. In order to study the delay-versus-leakage

tradeoffs involved in stress enhancement, we examine the saturation and subthreshold

current equations in order to determine their dependency on carrier mobility. This also
67



allows us to compare mobility enhancement to other performance enhancement

techniques, such as Vth reduction. Equations (4–1) and (4–2) below give the expressions

for drain current when the transistor is operating in the saturation and subthreshold

regimes, respectively [17-18].

(4–1)

 (4–2)

From (4–1) and (4–2), it is evident that the saturation drain current (ID,sat) has a sub-linear

dependence on mobility, μ0 (due to the vertical field mobility degradation coefficient, U0)

while the subthreshold drain current (ID,sub) dependence on μ0 is linear. The drain current

dependence on Vth, however, is almost linear in saturation, but is exponential in the

subthreshold regime. Therefore, if we obtain identical saturation current improvement

using two separate enhancement techniques: 1) stress-based mobility enhancement, and 2)

Vth reduction, then the corresponding increase in leakage current for the reduced-Vth case

will be much higher (due to the exponential dependence of ID,sub on Vth). Consequently,

the reduced increase in leakage current makes mobility enhancement a more attractive

option than its Vth counterpart.
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The benefits of using mobility enhancement over Vth reduction is illustrated in Figure

4.2, which shows the normalized Ion versus Ioff curves for stress-based and Vth-based

performance enhancements for an isolated, 65nm PMOS device. The device has three

sources of stress: STI, a compressive nitride liner, and eSiGe source/drain regions. Stress

is varied by changing the active area length, while the n-channel doping is changed to vary

Vth. The curves clearly show that the tradeoff is better for stress variation. For a 12%

improvement in Ion, the leakage for the Vth case is nearly twice as large as that for the

stress-based improvement (shown in Figure 4.2 as points P1 and P2), and the difference is

only amplified for higher values of improvement. Also, stress-based improvement allows

for more fine-grain improvement control than Vth assignment, given that only 2-3 Vth

values are typically allowed. Therefore, a designer would prefer to achieve performance

improvements through stress-enhancement whenever possible, due to the reduced leakage

penalty and increased granularity. The superiority of the stress-based performance

improvement technique makes it an appealing option for further investigation. Thus, the
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next two sections study the layout dependence of stress, and identify the primary layout

properties that can be modified so that stress-induced enhancements are maximized.

4.4  Layout Dependence of Stress-Based Performance 

Enhancement

In order to study the layout dependence of stress-based performance enhancement, we

used the Davinci 3D TCAD tool [65], which has an extensive set of stress-related features.

Additionally, we followed the layout rules from an industrial 65nm CMOS technology and

the device fabrication was simulated in Tsuprem4 [66] (in order to capture the process-

induced stress). The stress values were then imported into Davinci, which simulated the

device and solved for the stress-based mobility enhancement equations. The resulting

values for drive current and leakage were verified against experimental test chip data,

which was consistent with previously published 65nm technology data for minimum sized

NMOS and PMOS devices [61]. Furthermore, the simulated values of stress were in close

agreement with previously reported data for PMOS channel stress while considering all of

the layout dependent sources of stress [63]. Due to the absence of any previously

published data on the layout dependence of stress or drive-current (due to stress),

measured test chip results were used to quantify the impact of layout diversity on device

performance. The fabrication process used for this test-chip employed all the known stress

enhancement techniques. The hardware data was used to verify the accuracy of our TCAD

setup, and the TCAD-based simulation results were found to be in close agreement with

the measured data. Our consistency with these fabricated measurements can be attributed

to the fact that we model all of the layout dependent sources of stress in the industrial
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65nm technology. For a PMOS device, the sources of stress that are layout dependent

include the compressive nitride liner, eSiGe, and STI. The NMOS sources, on the other

hand, only include the tensile nitride liner and STI. We have ignored the Stress

Memorization Technique (SMT) in our simulations, since it involves a uniform deposition

and eventual removal of a dielectric layer over all NMOS devices (as discussed previously

in Section 4.3.1). SMT, therefore, does not depend on layout properties and can be

accurately treated as a uniform increase in NMOS drive current, independent of layout

[67].

Previously, Figure 4.1 showed the 3D cross-section of an isolated PMOS device

surrounded by STI. For the device shown, we increase the active area length (LS/D) and

examine the corresponding changes in drive current.1 Increasing active area length has a

number of effects: 1) it increases the amount of eSiGe, causing more stress to be

transferred to the channel; 2) it increases the distance between the channel and the STI,

decreasing the effect STI has on channel stress; and 3) it allows more nitride over the

active area. The nitride layer actually transfers stress in two ways – vertically through the

gate and longitudinally through the active area. Since active contacts create openings in

the nitride layer, the longitudinal component of nitride stress can be increased by moving

the contacts away from the channel. Similarly, a source/drain region that does not have

any contacts (or has a smaller number of contacts) will have higher channel stress than one

that has a high contact density.

1 The authors would like to note that in this document, LS/D is equivalent to both the LS/D and Lp/p
used in previous works (such as [36]). Thus, for the remainder of the document, LS/D can refer to
any longitudinal S/D dimension.
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Figure 4.3 (a) shows the longitudinal stress (Sxx) in the same isolated PMOS device

for two normalized LS/D values of 1 and 1.58 (the values are normalized to the length of a

minimum-sized, contacted S/D region). Figure 4.4 shows the PMOS drive current, Ion,

and leakage current, Ioff, plotted against LS/D, while Figure 4.5 shows the normalized

PMOS longitudinal stress plotted against LS/D. Results show that for a 12% performance

increase, leakage current only increases by 3.78X. This Ion versus Ioff tradeoff is much

better than the tradeoff produced by the alternative, Vth-based enhancement technique, as

predicted in Section 4.3.2. Additionally, Figure 4.4 shows the saturation point for

extending LS/D. Increasing the S/D length beyond 1.58 (normalized) yields minimal

performance gains, even when active area length and leakage current are increased

substantially. Finally, the performance enhancement is also sensitive to contact placement.

Moving the contacts away from the channel accounts for nearly 2.6% of the drive current

improvement and a device with a non-contacted drain (typically seen in series devices)

has ~4% higher performance.

Unlike its PMOS counterpart, NMOS device performance is actually degraded by STI

since STI induces compressive stress in the channel. Thus, increasing NMOS LS/D not

Figure 4.3. Longitudinal Stress, Sxx (Pa), for Normalized LS/D of 1 and 1.58.
(a) PMOS (b) NMOS

(a) (b
72



only pushes away the compressive STI, but it also allows for more contact separation from

the channel. Figure 4.3 (b) shows the longitudinal stress in an isolated NMOS device for

normalized LS/D values of 1 and 1.58. In addition to PMOS Ion and Ioff, Figure 4.4 also

shows NMOS Ion and Ioff while Figure 4.5 shows its normalized longitudinal stress versus

LS/D. For NMOS devices, a 5% performance gain can be achieved for a 1.48X increase in

leakage current. NMOS devices also have the same (normalized) upperbound for LS/D
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extension as their PMOS counterparts, 1.58. Beyond this value, the area and leakage

current penalties do not warrant the minimal gains in Ion. The increase in performance in

NMOS devices, however, is limited by the fact that we are only increasing the nitride’s

longitudinal stress through the active area (about 35% of the total stress due to the nitride

liner), and pushing away the STI (which has a relatively smaller contribution to the overall

channel stress). Experimental results show that almost 80% of the total NMOS

improvement is due to moving the contacts and a device with a non-contacted drain has

~2% higher performance.

Next, we studied transistor performance in denser layouts. Figure 4.6 shows the

channel stress and the corresponding layout view for three PMOS transistors in a 3-input

NAND gate. The device in the center (device 2) has higher stress than the two corner

transistors because it is surrounded by more eSiGe (its own S/D regions as well as its

neighbors’ S/D regions). This difference in stress is reflected in their drive current

performance, and simulations show that the drive currents for the center and edge devices

differ by 8.2%. Furthermore, if there were five devices side-by-side instead of three, the

difference would increase to 14.8%. This means that the drive current of a transistor is not

DEVICE 1 DEVICE 2 DEVICE 3

1 2 3

DEVICE 1 DEVICE 2 DEVICE 3

1 2 3

Figure 4.6. PMOS Devices in a 3-input NAND and their Channel Stress Contours (Pa).
74



only layout-dependent, but it is also location-dependent. Similar experiments for NMOS

devices show differences of 7.4% and 12.2% for the case of three and five side-by-side

transistors, respectively.

4.5  Layout Properties that Impact Mechanical Stress and 

Performance

Based on the intuition developed in the previous section, we now identify 3 simple

layout properties in our 65nm technology that can be used to optimize a given layout for

stress-induced performance enhancement. Once the properties are presented, the end of

this section discusses one other important stress effect: the position-dependency of stress-

induced performance enhancement. When mechanical stress is present in MOSFETs,

matching W and L does not guarantee similar transistor performance even when

neglecting process variation. Apart from W and L, the drive current is also affected by the

layout parameters that influence stress: active area length, placement and number of

contacts, and device context (i.e., whether the device is surrounded by other transistors or

isolated by STI on one or both sides). In this chapter, we have already discussed the first

two parameters in great detail, while the third parameter (device context) has only been

briefly mentioned (at the end of Section 4.4). However, since the device context or

position of a transistor within a layout also affects performance, it must be accounted for

by the designer, so this phenomenon is discussed in more detail at the end of the section.

Upon finishing the layout dependency study in Section 4.4, we determined that in our

65nm industrial process, the following 3 properties had the largest impact on improving

performance (without modifying existing cell boundaries).
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Layout Property #1:Active Area or Source/Drain Lengths

Using the length of a transistor’s source or drain regions (or, equivalently, changing the

amount of active/diffusion area) to modify stress-enhancement is well known technique

and has been studied in a number of works [34,36,59-60]. Increasing the active area

moves the STI regions away from the channels and increases the amount of eSiGe in

PMOS devices. Moving the STI farther from the channel improves the performance of

NMOS devices since STI exerts a compressive stress in the longitudinal direction,

which degrades the NMOS electron mobility. For PMOS devices, on the other hand,

compressive STI stress is actually beneficial and improves hole mobility. However,

increasing the active area for PMOS devices still results in higher stress due to the rela-

tively small contribution of STI compared to the other sources of stress. Measurements

show that the stress due to STI represents <10% of the total channel stress. Therefore,

the increase in eSiGe and its resulting contribution to PMOS channel stress dominates

the stress due to STI and provides a significant increase in hole mobility.

Increasing the active area can most readily be accomplished in a compact pull-up or

pull-down network (often containing an NMOS or PMOS stack) that does not use the

full width of a cell (Figure 4.7 shows the scope for increasing the active area of a

PMOS stack in a 3-input NOR gate). In the case of stacked transistors, the layout does

Figure 4.7. Application of Layout Property #1 to PMOS Stack in 3-input NOR.
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not require contacts between intermediate nodes. Thus, their spacing can be signifi-

cantly tighter because nodes that contain contacts need larger spacing to satisfy the

technology’s design rules. In the absence of stressors, it is best to minimize the active

area in order to reduce the capacitance. However, in the presence of stressors, increas-

ing active area length also results in higher stress in the channel (and, hence, higher

drive current), in addition to increasing the source/drain capacitances. In a given

CMOS layout, increased S/D capacitance for transistors closer to the output will

directly affect the output capacitance, while transistors closer to the VDD and VSS rails

will have a smaller effect. Hence, this layout property should be increased in cells with

larger output loads, so that the change in capacitance is a small fraction of the total out-

put capacitance. The authors would like to note that the mechanical stress dependence

on active area can also be exploited to create high performance versions of standard

cells which incur some area penalty, but are assigned optimally within a design.

Layout Property #2:Contact Placement

Moving the contacts away from the channel allows more stress to be transferred by the

nitride layer. For isolated devices, pulling the contacts as far away from the gate poly-

silicon as the design rules permit maximizes the stress-enhancement. Contacts between

two gates, on the other hand, can either be placed midway for identical performance

enhancement of both transistors, or placed closer to the non-critical transistor (increas-

ing stress in the critical device). Moving the contacts away will also result in a small

increase in the source/drain resistance, but, in our 65nm study, this increase was typi-

cally less than 5Ω (based on sheet resistance calculations for the maximum S/D dis-
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placement obtained while creating the stress-aware optimized library), and the resulting

gain in drive current outweighed the increase. The maximum S/D contact displacement

observed was 60nm.

Layout Property #3:Lateral Active Area Placement

From Figure 1.4, we know that the desired stress in the lateral direction is tensile for

both NMOS and PMOS devices. Figure 4.8 (a) shows the lateral stress behavior near

the interface of the two nitride layers (cross-section across the poly going from PMOS

to NMOS over STI). Figure 4.8 (b) shows the plot of normalized lateral stress (normal-

ized to the stress value at the point farthest from the nitride liner interface) at a depth of

1nm below the Si surface versus the distance from the tensile/compressive liner inter-

face, under the tensile nitride layer. The behavior is interesting in the sense that there is

a region of compressive stress under the tensile nitride (the NMOS side) and there is a

region of tensile stress under the compressive nitride (the PMOS side). This behavior

follows from the physics involved behind the stress-inducing process step. At the com-

pressive/tensile nitride liner interface, each nitride layer exerts an equal and opposite

force on the other nitride layer, which imposes the opposite type of stress under the

adjacent layer. Therefore, if possible, it is beneficial to move the PMOS active area into
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this region of tensile stress and the NMOS away from the region of compressive stress.

The space for this movement is most readily available when the transistor widths are

small but the cell pitch (lateral size) is large (due to pitch uniformity across standard

cells). This combination of properties, for example, is common in minimum sized, sim-

ple gates (e.g., minimum size inverters, buffers, or 2-input NAND/NOR’s).

It should be noted that the lateral active area placement will slightly alter the Vth of the

shifted devices, due to well edge proximity effects [68-70]. However, since the amount

of lateral shift applied to the 65nm standard cells was <0.205μm for the NMOS cells

and <0.12μm for the PMOS cells, the corresponding shift in Vth was found to be

<0.32mV (in both Hspice and TCAD simulations, independently) for all devices.2

Since this Vth shift is relatively small, the reported results described in the remainder of

the chapter do not include the well edge proximity change induced by Layout Property

#3. However, if this shift in threshold voltage becomes appreciable in future processes,

our experimental setup can easily be modified to include a well edge proximity model,

such as the ones described in [69-70], which will capture the corresponding change in

Vth.

Apart from these three layout properties, a designer must also be aware of how the

channel stress is affected by the position of a device within the layout. Stress in the

channel of a device depends not only upon its S/D lengths and contact placement, but also

upon its surroundings. As we have shown in the previous section, devices that share their

2 Hspice well-edge proximity was captured during Calibre PEX parasitic extraction, and then fed
into our industrial BSIM models to calculate the effect on Vth. Note that the 0.32mV shift reported
can be viewed as the shift in ΔVth (the change in Vth due to well proximity), not total ΔVth itself.
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source/drain regions with other transistors have significantly higher stress (and hence

drive current enhancement) than those at the edges of an active region (which are

therefore bordered by STI), even for identical LS/D and contact placement. This difference

in stress can be attributed to the effects of STI, as well as the fact that stressors for a device

also affect its neighbors. 

Ignoring the position-dependence of stress could lead to a number of design issues.

First of all, the location of a transistor could result in an unexpected increase in drive

current, resulting in smaller delay and possible hold-time violations, as some gates might

be faster than expected. Secondly, the position-dependent current offset could modify the

noise margins of a circuit. Hence, for circuits that are sensitive to noise margins (e.g.,

SRAM cells, Sense Amplifiers, etc.), these deviations must be accounted for either during

the design phase (for example, by guardbanding against position-dependent offsets), or

during the layout phase (e.g., by modifying the LS/D’s to cancel the offsets). Finally, in

certain circuits, if the strength of a transistor (in terms of drive current) is increased

beyond the expected value, it could cause a substantial drop in performance. A detailed

example of context-sensitive design is included in Section 4.6. All in all, designers need to

be aware of the effect that position has on performance, especially if pin-to-pin delay,

noise margins, or transistor strength are essential to a particular design.

There are three main ways that a designer could capture the position dependence of

stress within a particular design: fabrication, TCAD simulation, and electrical circuit

simulation. The first solution, fabrication, is an expensive and time consuming endeavor,

especially during the early stages of a process’s lifetime. The second alternative – using

TCAD tools to simulate the position dependence of stress – can be costly in terms of
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runtime, and convergence becomes extremely difficult when simulating more than 10

devices at once. The final solution, electrical circuit simulation (e.g., Hspice simulation),

promises to be the most efficient in terms of both cost and runtime. Unfortunately, to our

knowledge, there has been little research dedicated towards electrical models that capture

the layout dependence of stress. Furthermore, of the few that have been published (such as

[58]), none have been implemented within an electrical circuit model (e.g., BSIM). The

problems associated with each of these solutions make modeling the position dependence

of stress an important and interesting research topic that remains largely unexplored.

4.6  Modifying 65nm Standard Cell Layouts

This section discusses the effectiveness of modifying the layout properties from

Section 4.5 in standard cells from an industrial 65nm CMOS technology library. For a

given layout, as shown in Section 4.4, a basic tradeoff always exists between the

source/drain length, LS/D, and the improvement in drive current. By exploiting this

tradeoff, we can make faster, but leakier, versions of the standard cells with varying area

increments and assign them intelligently to the critical paths in order to optimize

performance. The performance enhanced versions all use a combination of the three

properties discussed in Section 4.5: increased LS/D, larger poly-to-contact spacing, and

stress-aware lateral placement.

For example, Figure 4.9 (a) shows the layout for a 3-input NOR gate. It consists of

three PMOS transistors in series (a 3-PMOS stack) and three NMOS transistors in parallel.

This means that the source and drain of each NMOS is connected to the ground and the
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output, respectively, necessitating contacts at each node. The PMOS stack on the other

hand, only needs one contact to VDD (at the source of the leftmost PMOS) and one contact

to the output (at the drain of the rightmost PMOS). Using the classical layout methodology

(where stress is ignored and capacitance is minimized), we can shrink the non-contacted

S/D regions to lower the parasitic PMOS capacitance. As shown in Figure 4.9 (a) (labeled

“G1”), the PMOS region has the capability of increasing the source/drain lengths (Layout

Property #1) by ~22% without affecting the overall cell area. While increasing the

source/drain lengths, we simultaneously shift the contacts away from the gates (Layout

Property #2), maximizing performance enhancement. If we increase the active area

uniformly for all transistors, drive current improves by ~12% for each PMOS device.

Also, there is lateral room to move the NMOS and PMOS active area and exploit the stress

dependence of Layout Property #3 (labeled “G3” in Figure 4.9 (a)). This leads to further

improvements of about 3% and 1.5% for NMOS and PMOS devices, respectively.

Therefore, for the 3-input NOR gate, we observe overall improvements in drive current of

Figure 4.9. Two Layouts Illustrating Scope for Layout-based Stress Improvement.
(a) 3-input NOR Gate (b) 3-input NAND Gate

(a) (b)
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~13.5% for PMOS devices and ~3% for NMOS devices. Similarly, by modifying Layout

Properties 1–3 in a 2-input NOR gate, we can achieve drive current improvements of 7.5%

and 3% for the PMOS and NMOS devices, respectively.

Similarly, Figure 4.9 (b) shows the layout for a 3-input NAND gate. Instead of a

PMOS stack, there is an NMOS stack in the NAND gate, so there is a potential to increase

the NMOS active area length without affecting the cell area. While altering Layout

Properties 1 and 2, we obtain an improvement of ~4% for each of the NMOS drive

currents. Also, there is space for moving the active areas to exploit the mobility

dependence of Layout Property #3. This leads to further improvements in NMOS and

PMOS devices of ~3% and ~1.5%, respectively. Overall, we can achieve a ~7% NMOS

performance enhancement and a ~1.5% PMOS performance enhancement. Similarly, by

modifying Layout Properties 1–3 of a 2-input NAND, we can obtain drive current

improvements of 4.5% and 1.5% for the NMOS and the PMOS devices, respectively.

Scope for such layout-based improvements is found in most of the standard cells in our

library.

Table 4.1 shows the percentage contribution of each layout property to the total drive

current improvement achieved for PMOS and NMOS stacks in 2- and 3-input NOR and

NAND gates, respectively. The relative contribution of the properties varies between the

Table 4.1. Percentage Contribution of Layout Properties 1–3 to the 
Overall Drive Current Improvement for PMOS/NMOS Stacks.

Property 1 Property 2 Property 3

NOR3 PMOS 69.6% 19.3% 11.1%
NAND3 NMOS 20.1% 37.8% 42.1%
NOR2 PMOS 53.3% 26.6% 20.1%
NAND2 NMOS 10.1% 27.2% 62.7%
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four cases. This is due to the presence of eSiGe in PMOS which is a major contributor to

the overall stress in the channel. As a result, for PMOS devices, altering Layout Property

#1 (increasing the active area) results in the maximum improvement as compared to the

improvement achieved by modifying the other two properties. However, in the case of

NMOS devices, increasing active area results in pushing away the STI, whose

contribution to the overall channel stress is relatively smaller. The longitudinal stress due

to nitride is increased upon the alteration of Layout Property #2, and Layout Properties 2–

3 are the major contributors to the drive current improvement in NMOS devices.

Table 4.2 summarizes the results of changing Layout Properties 1–3 in a few standard

cells. It reports the percentage drive current improvement, leakage current increase, and

the percentage increase in the output capacitance (assuming an FO4 output loading). It

also reports the leakage current increase for identical drive current improvements through

Vth reduction. Comparing the leakage current increase for stress-aware layout

optimization to Vth reduction re-establishes the superiority of the stress-aware layout

optimization. For a 3-input NOR gate, the PMOS leakage current increased by 4X when

Table 4.2. Summary of Stress-Aware Layout Optimization Drive Current Improvement and 
Tradeoffs in 65nm Standard Cells.

Cell Name

Drive Current 
Increase (%) after 

Layout Optimization

Leakage Current 
Increase after Layout 

Optimization

Leakage Current 
Increase after
Vth Reduction

(iso-drive current)

Output Capacitance 
Increase (%)

(FO4 output loading)

NMOS PMOS NMOS PMOS NMOS PMOS

3-input NOR 3% 13.5% 1.22X 4.02X 1.31X 9.20X 2.74%

2-input NOR 3% 7.5% 1.22X 2.24X 1.31X 3.52X 1.92%

3-input NAND 7% 1.5% 1.98X 1.10X 2.36X 1.53X 1.85%

2-input NAND 4.5% 1.5% 1.45X 1.10X 1.68X 1.53X 1.30%

Iso Area INV 3% 1.5% 1.21X 1.10X 1.31X 1.53X 0%

Incr. Area INV 6% 13% 1.86X 3.88X 2.22X 7.04X 2.40%
84



the layout was optimized to exploit stress dependencies, while the corresponding increase

for the Vth reduction case was 9.2X. The increase in NMOS leakage for a 3-input NAND

gate was found to be 2X for stress-based layout optimization, and 2.4X for the case of Vth

reduction. Application of Layout Property #1 increased the S/D capacitance since LS/D

was increased, but, as shown in Table 4.2, this increase was very small (<3% if we assume

an FO4 output loading).

In this same manner, we modified the layout properties from Section 4.5 in ~25

standard cells in a 65nm industrial library, creating a stress-enhanced version of each cell.

For the majority of standard cells, the stress-enhanced versions are the same area as the

original cells, thus, there is no area penalty. However, since there are no series/stacked

devices in inverter layouts, there is negligible space to modify Layout Property #1. The

capacitance increase for the “Iso Area INV” is 0% as reported in Table 4.2, because there

is only space for the application of Layout Property #3, which does not affect capacitance.

Therefore, we decided to create a second, slightly larger, stress-enhanced version of each

inverter cell (with ~20% area increase per cell) that achieved larger drive currents (13%

increase for PMOS and 6% increase for NMOS). Since the inverters, however, only make

up a small subset of our standard cell library, the overall impact on circuit area is <0.5%

(as shown later in Table 4.3). The final stress-enhanced standard cell library is comprised

of different sized inverters (iso-area and increased-area versions) as well as 2- and 3-input

NAND and NOR gates of varying strengths.

As mentioned in Section 4.4, the position of a device within a layout also affects its

stress, and, therefore, its drive current. This position-dependent drive current enhancement

can significantly hurt the performance of some circuits. This fact was verified using the
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circuit shown in Figure 4.10, which contains the schematic and partial layout of a basic

domino implementation of a 2-input OR gate. Keeper device P2 is a weak PMOS that is

used to hold the high state at node N during the evaluation period of the clock, so that N is

not discharged by the NMOS leakage currents. The keeper, P2, should be sized large

enough to replace the NMOS leakage current and sustain a high voltage at N, but, at the

same time, it should be small enough so that the pull-down network can discharge N

quickly to minimize the short-circuit current.

Figure 4.10 shows two possible layout scenarios for the three PMOS transistors. In

one case P2 is located between P1 and P3, while in the other case P1 is in the middle. As

shown in Section 4.4, for the two scenarios the drive current for P2 differs by ~8%. This

means that the first scenario has higher drive current for keeper P2 than the expected

value. As the keeper fights against the pull-down stage, there is a performance loss.

Hspice simulations show that the time taken to discharge node N increases by ~12%. This

performance loss can worsen for more aggressively sized cases. For these Hspice
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Figure 4.10. Basic Domino Gate and Two Possible Layouts for the PMOS Devices.
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simulations, we approximated the drive current increase due to stress by changing the

relevant mobility numbers in the transistor models.

4.7  Optimization Methodology

Stress-based performance enhancement provides a better leakage versus performance

tradeoff than Vth assignment (as discussed previously in Section 4.3.2). However, when

the standard cell area is fixed (i.e., the stress-enhanced version occupies the same/slightly

higher amount of area as the original version), we can only obtain limited average drive

current improvement through stress-aware layout optimization (<10%). Therefore, we

combine stress-optimized assignment with dual-Vth assignment to simultaneously achieve

a larger range of current improvement and more fine-grained control over the performance

enhancement (and, consequently, the increase in leakage). Figure 4.11 shows the leakage

and switching delays for various combinations of Vth and stress-based optimization for a

3-input NOR gate. Low stress (Lstress) optimization corresponds to a standard cell in the

library that has not been optimized for stress enhancement (by altering the layout
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properties), while high stress (Hstress) optimization corresponds to the layout optimized

version of the standard cell. For the dual-Vth approach, a gate has only two options to

choose from, high-Vth (HVth) or low-Vth (LVth). Introducing stress-based, layout-

optimized cells provides an additional reduced leakage option (when performed on a high-

Vth cell) for gates that require moderate improvements in performance, thereby saving

leakage power. Additionally, it also provides a higher performance option when combined

with low-Vth to further reduce delay.

For simultaneous Vth/stress optimization level selection and sizing optimization, we

use an iterative approach similar to [22] that can be divided into two main parts:

1. A certain number of gates in each iteration are assigned to the low-Vth or high stress

optimization level.

2. The circuit is then rebalanced by reducing the size of the affected gates and other gates

are re-sized to compensate for the area reduction (the objective is iso-area).

Initially, all gates are set to their {HVth,Lstress} version, to maximize leakage savings.

Then, in each iteration, a merit function is evaluated for all gates in a circuit. This merit

function rates the increase in total leakage with respect to the performance gain of the

circuit. Gates with the highest merit are selected first and set to the next highest

performance level. The performance levels for our library are shown in the x-axis of

Figure 4.11, and, from left to right, are ordered from highest performance (and leakage) to

lowest performance (and leakage). This order holds for all standard cells in our library.

The merit function is shown in (4–3):
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(4–3)

Here, Δdα(G) is the impact that increased gate performance has on a particular timing arc,

α; k is a small negative number; and Slackmin is the worst slack seen in the circuit. This

weighting function takes the value 1/k for timing arcs on the critical paths, and approaches

zero for less critical timing arcs.

Once the merit function is evaluated, a circuit’s gate sizes are no longer optimal since

one or more gates have been assigned to a higher performance level. The resulting

decrease in delay creates excess area which can be recovered from the now oversized

gates. By shifting this excess area to undersized regions, we can improve performance

without increasing area (or only increasing it by a small amount). The candidates for

reduction include the modified gate itself along with any gates sharing a timing path with

the modified gate. Because modifying a gate has a greater effect on nearby gates, we can

identify a modified gate’s core of influence to a predetermined logic depth based on the

distance of gates (sharing a timing arc with the modified gate) from the changed gate. This

depth was experimentally determined to be three levels of logic [22]. For the purpose of

resizing, we use a delay-sensitivity-based sizing optimization algorithm [71]. The pseudo-

code for a given value of target critical delay (TT) is shown as Algorithm 4–1. Note that

Lines 3 and 4 merely provide one set of initial values for TC and TN such that the

conditions of the while loop are satisfied in the first iteration.

Merit G( )
Ioff G( )Δ
D G( )Δ

--------------------=

where D G( )Δ dα G( )Δ 1
k Slackmin Slackα–+
------------------------------------------------------⋅

arcs

α

∑=
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The next section discusses the experimental results obtained when applying this

optimization algorithm to 12 different benchmark circuits.

4.8  Experimental Setup and Results

The following section describes the library characterization used within our

experimental setup, as well as the results obtained from using the proposed optimization

scheme on a number of benchmark circuits.

4.8.1  Library Characterization

To implement our optimization methodology, we first had to characterize our stress-

enhanced standard cell library and determine the decrease/increase in propagation-

delay/leakage-power, respectively, that the standard cells achieved while exploiting the

layout dependencies of stress. The characterization flow is illustrated in Figure 4.12 and

captures the relative change in propagation delay and leakage power, as compared to the

“unstressed” version of a particular standard cell. While characterizing one standard cell,

Algorithm 4–1 STRESS_OPT(TT) // TT = Target Delay

1: Set all cells in netlist to {HVth,Lstress} version
2: Run Initial STA and baseline sizing
3: TN = TT + 1 // TN = new critical path (CP) delay
4: TC = TN + γ + 1 // TC = current CP delay
5: // γ = small constant, checks for >minimal changes in TC
6: while ( (TN > TT) and ((TC - TN) > γ) )
7: TC = TN
8: Evaluate Merit(G) for all gates, G // see (4–3)
9: Move gates with highest Merit(G) to next highest performance level
10: Rebalance circuit through sizing
11: Update STA, find new critical delay, TN
12: end while 
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we simulated both the stress-enhanced version and its unstressed counterpart in Tsuprem4

and Davinci, as discussed in Section 4.4. From these simulations, we were able to

calculate the relative increase in Ion and Ioff (referred to as ΔIon(X) and ΔIoff(X),

respectively) for each device, X, within the standard cell. These ΔIon(X) and ΔIoff(X)

values for every PMOS and NMOS device (in every standard cell in our library) were then

input directly into the optimization engine. Within the optimization algorithm, ΔIon(X) is

translated to decreasing propagation delay by using an inverse relationship fit:

. Finally, these values, Δdα(X) and ΔIoff(X), are used directly in the

merit function described in (4–3).

In order to examine the effect that neighboring cells had on the channel stress of a

device, we conducted a simple experiment where the value of Ion for a minimum-sized

inverter in isolation was compared to the same minimum-sized inverter which had

inverters as neighbors on both sides (representing a more “dense” context). We chose the

minimum-sized inverter because of all of the standard cells, it was the most sensitive to

Figure 4.12. Custom Library Characterization Flow for Stress-aware Optimization.

Δdα X( ) 1
ΔIon X( )
-------------------∝
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changes in context. For the stress-enhanced inverter cell, we observed a 0.8% higher Ion

and a 2.0% higher Ioff in the case where neighboring cells were included. However, the

corresponding gains in Ion and Ioff (ΔIon and ΔIoff) for the stress-enhanced version

(compared to the unoptimized version) decreased by <0.1% and <1%, respectively, while

considering neighbors. Since the Ion/Ioff gains achieved for stress-enhanced layouts

showed little sensitivity to changes in context and because circuit level TCAD simulations

were not possible (due to runtime and convergence issues), we used the library

characterization of isolated cells to drive the circuit-level analysis in this chapter. In the

proposed circuit-level optimization (discussed in Section 4.7), critical cells are iteratively

exchanged with their stress-enhanced (or dual-Vth) counterparts. While considering the

optimization of one particular cell within one iteration, only the type of enhancement is

modified. All other parameters like neighborhood, size, and cell type (NAND, NOR, etc.)

are held constant. Since the merit function described in (4–3) is dependent on ΔIon (which

determines Δdα) and ΔIoff, the accuracy of our optimization technique is dependent on the

sensitivity of the Ion/Ioff gains to changes in context. As mentioned previously, we found

that ΔIon (ΔIoff) changed by <0.1% (<1%) when context was varied from isolated to dense.

Therefore, the proposed library characterization of isolated cells is accurate and can be

used within our merit-based optimization scheme, independent of context.

4.8.2  Experimental Results

The algorithm described in Section 4.7 was implemented in C and tested on ISCAS85

benchmark circuits, two DSP circuit implementations (“Viterbi1” and “Viterbi2”), and a

USB 2.0 controller implementation. The benchmarks vary in size from 166 to 37560
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gates. The circuits were synthesized using an industrial 65nm CMOS technology with the

following specifications:3

• VDD,nominal = 1V

• HVT, NMOS Vth = 334mV

• HVT, PMOS Vth = -391mV

• LVT, NMOS Vth = 243mV

• LVT, PMOS Vth = -280mV

The resulting spread in Ion and Ioff (between HVT and LVT) was 1.24X/1.32X and

16X/29X, respectively, for NMOS/PMOS transistors. All of the standard cells (both the

original and the stress-enhanced versions) in our library were characterized (using Hspice)

at both the high- and low-Vth values. The layout-dependent characteristics (e.g., rise/fall

delay, rise/fall power, etc.) and parasitics (such as junction capacitance and S/D resistance)

for each cell were captured during the Hspice characterization. All of the improvements

discussed in this section use a dual-Vth optimization (using simultaneous Vth selection and

gate sizing) as the basis for comparison.

Figure 4.13 shows the leakage power versus critical delay curves for the two

techniques: dual-Vth assignment and dual-Vth assignment combined with stress-aware

layout optimization, for one of the larger circuits, c7552. As mentioned earlier, combining

stress-based layout optimization with Vth assignment provides a better range and more

3 Reported Vth values were obtained using the industry standard “constant current method” [72],
where Vth is determined by extracting VGS at the point where  (with VDS =
VDD,nominal).
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fine-grained control of performance enhancement as compared to the dual-Vth based

assignment (see Table 4.3 for the cell combinations used in each optimization scheme).

This is clearly seen in Figure 4.13 while comparing both the critical delay for the two

techniques at the same value of leakage (iso-leakage), as well as the leakage power at the

same value of critical delay (iso-delay). The key metric that we use in our comparisons is

known as hardware intensity (η), which was proposed in [73] for quantifying the tradeoff

between power and delay of a design. A hardware intensity of x means that a 1% decrease

in delay leads to an x% increase in power. The hardware intensity for the majority of

blocks in a microprocessor design is between 2 and 3 [74]. Thus, for a fair evaluation of

the proposed approach, we present results for points on the power-delay curve that

correspond to a hardware intensity value between 2 and 3. One such point is shown as “P”

in the leakage-power-delay tradeoff curve (η = 2) in Figure 4.13. For the circuit, c7552,

our proposed optimization results in 22% lower leakage power for iso-delay, and 5.4%

lower delay for iso-leakage, when compared to dual-Vth based assignment at point P.
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Figure 4.13. Pleak vs. Delay for Dual-Vth and Proposed Approach for Benchmark c7552.
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Figure 4.14 shows how the percentage improvement (of our combined method over

dual-Vth) in leakage power and critical delay, as well as the corresponding area overhead

varies with hardware intensity for c7552. Percentage improvement in leakage power

increases with increasing hardware intensity because the leakage-power-delay curves for

our approach and dual-Vth assignment move further apart as delay decreases (or hardware

intensity increases). The improvement in critical delay also increases with increasing

hardware intensity. The area overhead, however, shows an initial increase as more gates

require higher performance, but then becomes fairly constant at higher values of hardware

intensity. For the remainder of this section, we report power and delay improvement

numbers for points on the leakage-power-delay curves that correspond to a hardware

intensity of 2.

Table 4.3. Stress and Vth Combinations.

Cell Combinations

(1)
Combined stress-enhancement and 
dual-Vth

{LVth, Hstress}, {LVth, Lstress}, 
{HVth, Hstress}, {HVth, Lstress}

(2) Only dual-Vth {LVth, Lstress}, {HVth, Lstress}

(3) Only stress-enhancement {HVth, Hstress}, {HVth, Lstress}
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Figure 4.14. Delay, Pleak, and Area Overhead vs. Hardware Intensity.
95



Table 4.4 summarizes the improvements seen in two comparisons: combined stress-

enhancement and dual-Vth (which uses the cell combinations shown in (1) in Table 4.3)

versus only dual-Vth (see (2) in Table 4.3); and stress-enhancement (see (3) in Table 4.3)

versus only dual-Vth. The first two columns state the name of the test circuit and its size.

The next four columns report the percentage improvement in leakage over the dual-Vth

case and the corresponding area overhead for iso-delay (for both comparisons). The last

four columns show the percentage improvement in critical delay and the corresponding

area overhead for iso-leakage-power (for both comparisons). The small value of area

overhead occurs because of the increased area variants of the layout-optimized inverter

cells (mentioned in Section 4.6).

Table 4.4. Improvement in Leakage and Delay Compared to Dual-Vth based Assignment.

Circuit Number 
of gates

Comparison for iso-delay against only 
dual-Vth assignment

Comparison for iso-leakage against only 
dual-Vth assignment

Stress + Vth based 
assignment

Only Stress based 
assignment

Stress + Vth based 
assignment

Only Stress-based 
assignment

Improve-
ment in 
leakage

Area 
overhead

Improve-
ment in 
leakage

Area 
overhead

Improve-
ment in 
delay

Area 
overhead

Improve-
ment in 
delay

Area 
overhead

c432 166 38.5% 0.3% 5.4% 0.5% 5.0% 0.5% 3.6% 0.6%
c499 962 20.4% 0.9% 5.1% 0.9% 4.6% 0.9% 3.4% 1.0%
c880 390 33.7% 0.1% 12% 0.2% 5.8% 0.3% 2.3% 0.3%
c1908 432 22.5% 0.6% 7.4% 0.7% 4.7% 0.9% 3.0% 0.9%
c2670 964 14.7% 0.1% 5.1% 0.2% 5.2% 0.3% 3.6% 0.3%
c3540 962 23.9% 0.2% 4.7% 0.3% 4.7% 0.3% 2.5% 0.3%
c5315 1750 22.9% 0.2% 4.9% 0.3% 4.9% 0.2% 2.6% 0.2%
c6288 2470 20.1% 0.9% 5.9% 0.9% 4.6% 0.9% 3.0% 0.9%
c7552 1993 22.0% 0.3% 4.8% 0.2% 5.4% 0.2% 3.1% 0.3%
Viterbi1 14503 21.5% 0.3% 4.9% 0.4% 5.3% 0.3% 2.9% 0.5%
Viterbi2 34082 22.6% 0.3% 5.1% 0.4% 5.2% 0.2% 2.7% 0.4%
USB 37560 22.4% 0.3% 5.2% 0.3% 5.2% 0.4% 2.8% 0.3%

Average 23.8% 0.4% 5.9% 0.4% 5.1% 0.5% 3.0% 0.5%
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The results clearly show that our combined approach significantly improves the

leakage power for iso-delay, and also improves critical delay for iso-leakage, when

compared to dual-Vth based assignment. We get up to a 38.5% (23.8% on average)

improvement in leakage for iso-delay, and up to a 5.8% (5.1% on average) improvement

in delay for iso-leakage. The area overhead is very small for both the cases – less than

0.5% on average across all 12 circuits. It is worth noting that while our delay

improvements are similar to those published in [36], our proposed technique provides the

5.1% delay improvement (on average) for iso-leakage.

As mentioned previously, Table 4.4 also includes a one-to-one comparison of stress-

enhancement versus dual-Vth, where stress-enhancement achieves up to a 7.4% (5.9% on

average) improvement in leakage for iso-delay, and up to a 3.6% (3% on average)

improvement in delay for iso-leakage (compared to dual-Vth). The discrepancy between

the leakage improvement of the combined approach (stress + dual-Vth) versus dual-Vth

(23.8% on average) compared to only stress-enhancement versus dual-Vth (5.9% on

average) arises because the point on the stress-enhancement leakage/delay curve where

hardware intensity equals 2 (η = 2) occurs at a larger delay (e.g., a point to the right of P in

Figure 4.13). This is explained by the fact that stress-enhancement alone can only achieve

<1/2 of the performance enhancement of dual-Vth. Thus, the leakage comparison between

stress-enhancement and dual-Vth occurs in the region of leakage-versus-delay where stress

does not have as large of an advantage over dual-Vth (note the smaller gap between the

two curves in Figure 4.13 as you move towards larger delays). However, at the new

comparison point, for this framework and technology, stress-enhancement still
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outperforms dual-Vth both in leakage optimization as well as delay optimization. This is

noteworthy because using stress-enhancement by itself eliminates the extra masks and

processing steps required by dual-Vth designs, which reduces process complexity and cost.

Furthermore, the stress-enhancement versus dual-Vth improvement numbers are limited by

the fact that we require small or no area overhead for the redesigned standard cells. Using

more advanced techniques, we could further improve the stress-enhanced tradeoff

between area and performance, which will increase the performance gap between stress-

enhancement and dual-Vth.

Figure 4.15 shows the percentage of gates assigned to low-Vth for the dual-Vth

assignment, as well as the combined “stress enhancement + dual-Vth” approach. These

numbers are reported for iso-delay points on the leakage-delay curves corresponding to a

hardware intensity of 2. As expected, for the combined approach, a lesser number of gates

are assigned to low-Vth as compared to dual-Vth assignment. This is because for the dual-

Vth assignment, not all gates assigned to low-Vth need such a large performance

improvement. Combining stress-optimized cell assignment with dual-Vth assignment
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98



provides an additional lower leakage option for the cells that require moderate

improvements. This reduces the number of cells that are assigned to low-Vth, which, in

turn, results in lower leakage current. Typically, the number of gates assigned to low-Vth

for the combined approach is ~35% lower than the number for dual-Vth assignment.

To further investigate the tradeoff that exists between leakage power savings and area

overhead, we performed another experiment using a richer library comprised of higher

area, stress-enhanced versions of all the cells. The area overhead for the higher area

versions was ~20% per cell, and every cell in the richer library had three variants: an

original unoptimized version; an iso-area, stress-enhanced version; and an increased area,

stress-enhanced version. The richer library provided more intermediate, low-leakage

options (in addition to the low-Vth cell) for gates requiring moderate improvements. By

providing these intermediate performance alternatives, the overall leakage power (for iso-

delay) is further reduced as compared to dual-Vth assignment. Figure 4.16 shows the

comparison between the “stress-enhancement + dual-Vth assignment” optimization for the

richer library and the original, stress-optimized library (with increased area versions for
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Figure 4.16. Pleak Improvement and Area Overhead for the Richer Library vs. Original.
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inverters only). It plots the leakage power improvement (for iso-delay) and the

corresponding area overhead obtained by using the richer library (compared to the original

stress-enhanced library) for six of the larger circuits. On average, using the richer library

further improved the leakage power (at iso-delay) by ~12% for an area overhead of ~1%

over joint assignment using the original library. This experiment shows that there is scope

for further improvement using the richer library. However, the richer library also incurs a

higher characterization cost due to the large number of variants for each cell. One

approach to minimize this cost would be to only create multiple versions of cells that are

used most often (typically the smaller gates such as inverters, NAND’s, NOR’s, etc.).

4.9  Summary

In this chapter, we explored the modification of standard cell layouts in order to

optimize the stress-based performance enhancement, and proposed a block-based

optimization algorithm that combined stress-enhancement with dual-Vth assignment to

achieve performance gains in leakage or delay. We studied the dependence of drive current

improvement on layout parameters like source/drain length and contact placement, and

found that the performance of any given layout could be enhanced by increasing the active

area length. Based on our observations, we exploited a set of layout properties which

maximized the performance improvement of a standard cell without increasing area.

When these properties were modified in standard cells from a 65nm industrial library,

PMOS and NMOS drive currents attained an average performance enhancement of 6%

and 4.4%, respectively, without increasing the cell area. The corresponding average

increase in leakage was found to be 2.2X and 1.5X for PMOS and NMOS devices,
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respectively. Next, we combined the assignment of these stress-optimized cells with Vth

assignment in order to optimally tradeoff leakage power and performance. When

compared to the traditional dual-Vth based assignment technique, the new approach

reduced leakage current by 23.8% on average for identical delay, and improved critical

delay by 5.1% on average for identical leakage, with a very small area overhead (<0.5%).
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CHAPTER 5

STEEL: A TECHNIQUE FOR STRESS-ENHANCED 
STANDARD CELL LIBRARY DESIGN

As discussed in Chapter 4, three of the four main mechanical stress sources in today’s

processes – STI, nitride, and eSiGe – are all dependent on common layout parameters in

modern standard cells. The two most dominant layout properties that affect mechanical

stress and are customizable within standard cell design are source/drain (S/D) active area

and contact placement. Larger S/D areas allow for greater amounts of eSiGe (in PMOS

devices) and nitride (in both types of devices), which enhances mechanical stress in the

channel. Contact placement, however, disrupts the continuity of the nitride layer and,

consequently, lowers the contribution of the nitride layer to channel stress. Hence,

contacts placed farther away from the channel will increase the amount of nitride adjacent

to the channel, enhancing channel stress. Overall, the layout dependencies of stress are

well documented [29,33,58], but little research has been dedicated to developing new

standard cell library design techniques that exploit these dependencies.

Thus, in this chapter we propose a new standard cell design methodology that strives

to fully exploit the layout dependencies of mechanical stress. Our library design

methodology differs from previous mechanical stress work in that it employs a cell-level,

library-wide enhancement technique that not only increases within-cell stress, but also
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increases cell-to-cell stress. Since most standard cells in a typical library have source/drain

VDD and VSS ties adjacent to one or both edges of the cell, our new, stress-enhanced

libraries share these ties across cell placement and route boundaries as illustrated in Figure

5.1. By sharing the VDD and VSS nodes, stress is enhanced in both the edge devices as well

as their neighbors, increasing Ion and Ioff  by up to ~20% and ~3.5X, respectively for

PMOS devices, and 7.5% and ~2X, respectively for NMOS devices.

The remainder of the chapter is organized as follows. Section 5.1 describes the

technique used in our proposed standard cell design methodology. Section 5.2 presents our

standard cell design and its ease of integration within state-of-the-art VLSI design flows.

Finally, Section 5.3 discusses our results and Section 5.4 concludes the chapter with a

brief summary.

5.1  A Technique for Enhancing Stress in Standard Cell Layouts

As stated in Chapter 4, mechanical stress in MOSFET channels depends on a number

of layout parameters. However, the amount of mechanical stress in a typical CMOS device

Figure 5.1. Traditional Standard Cell Layout vs. Proposed Shared Source/Drain Layout 
for a 2-input NAND.
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is not only a function of its own layout parameters (S/D area, contact placement, etc.), but

also of its neighbors’ parameters. Thus, NMOS and PMOS devices that share their S/D

regions with other transistors have significantly higher channel stress (and, hence, drive

current enhancement) than those at the edges of an active region (which are therefore

bordered by STI), even for identical active area length and contact placement. For NMOS

devices, this is mainly due to the fact that STI has a negative impact on the amount of

tensile stress induced in the longitudinal direction, resulting in lower values of tensile

stress in edge devices compared to devices towards the center. For PMOS devices, stress

due to STI enhances channel stress, however, since eSiGe has a much stronger

contribution than STI, “center” PMOS devices also exhibit considerably higher channel

stress as they are surrounded by more eSiGe. Therefore, in the presence of mechanical

stress, two devices with identical layout parameters (W, L, LS/D, contact placement, etc.)

may differ significantly in drive current, depending upon their positions in the layout

(even when neglecting process variation).

From a standard cell design perspective, one would ideally avoid these stress-based

variations and move to a more uniformly stressed standard cell to minimize context

dependencies and performance uncertainty. By sharing the VDD and VSS source/drain ties

across standard cell boundaries, we can effectively increase the number of “center”

devices (devices with at least one other transistor on both sides) in a given standard cell.

This results in higher channel stress in the devices of such cells, since all of the affected

devices will have more neighbors (which means more eSiGe, smaller STI regions, more

nitride, etc.). Figures 5.2 (a) and (b) illustrate our shared VDD and VSS source/drain

connection technique (referred to as the STEEL – STrEss Enhanced Library – technique
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for the remainder of the chapter). Figure 5.2 (a) depicts the traditional standard cell layout

(for an inverter with two fingers) where the active area edge is placed at a location >=1/2

the design rule space from the standard cell boundary (the black rectangle that

encapsulates the cell). However, since most standard cells in a typical library have at least

one cell edge that is adjacent to a VDD and VSS S/D, we can share the connection between

cells, effectively doubling the S/D active area and eliminating STI between the two cells.

The edge devices achieve the largest increase using this approach – typically LS/D

increases by >2X – and their induced channel stress now becomes more comparable to the

stress in the “center” devices. Therefore, sharing the VDD and VSS connections between

standard cells will not only lead to a more uniform distribution of channel stress, but will

also improve the overall drive current of the standard cells (shown in the channel stress

contour plots in the center of Figure 5.2). The actual “sharing” occurs in Figure 5.2 (b)

where the Metal-1 connections from VDD and VSS have been moved to the cell boundary.

In this case, PMOS and NMOS drive currents increase by 13.5% and 6.3%, respectively,

while leakage current increases by 2.8X and 1.6X. Furthermore, one of the strengths of

Figure 5.2. Impact of Shared VDD/VSS Approach on Stress (Pa) in a Two-Finger Inverter.
(Note: The channel stress in N1 (P1) is identical to N2 (P2) due to symmetry)
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STEEL is that it achieves these improvements in stress uniformity and drive current with

no cell area increase (i.e., the area encapsulated by the black place and route boundaries in

Figure 5.2 is identical for both cells (a) and (b)).

5.2  Implementation of STEEL in Standard Cell Design

In order to develop a 65nm STEEL standard cell library that accurately captured stress

effects and ensured compatibility within existing VLSI design tools (e.g., synthesis tools,

place and route tools, etc.), we created a design flow which is described below and

illustrated in Figure 5.3. This design flow is executed on a cell-by-cell basis, and begins by

capturing the effects of stress for each device within a cell. We use Tsuprem4 to simulate

the fabrication steps and Davinci 3D TCAD to capture the stress-enhanced device

parameters. Then, we calibrate our TCAD model with an Hspice model and extract the

effects of stress into one device-specific multiplication factor: the low-field mobility

multiplier (μ0,STRESS_MULT). This modified Hspice model is then used within Cadence’s

Signalstorm (a library characterization tool) to calculate the propagation delays and power

consumption for a given cell, which is eventually output in Synopsys’s LIBERTY file

Figure 5.3. STEEL Library Characterization Flow.
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format. This LIBERTY file can be used in a number of industry standard synthesis and/or

automated place and route (APR) tools.

The remainder of this section describes the STEEL standard cell design flow in more

detail and concludes by describing common issues encountered and how they were

resolved. We implemented our design flow on a reduced set of the most commonly used

standard cells – 33 standard cells in total.

5.2.1  Tsuprem4 and Davinci Device Simulation

Our design flow begins by using Tsuprem4 to simulate the fabrication of a particular

device and capture the process-induced stress. Davinci 3D TCAD tool is then used to

capture device behavior under stress by solving for stress-based mobility enhancement

equations. We used a TCAD device simulator for this work because currently, to our

knowledge, there are no industry-standard device models that capture all of the layout-

dependent effects of stress. BSIM4 captures only the STI-related stress impact on effective

mobility (μeff), saturation velocity (vsat), and threshold voltage (Vth). However, Chapter 4

showed that other layout parameters also play a critical role in determining the amount of

mechanical stress induced in a channel. Therefore, to capture these effects we simulate

each standard cell in Tsuprem4 and Davinci, and extract the new, stress-enhanced low-

field mobility (μ0) at VGS = VDD = 1V and VDS = 50mV. By comparing a device’s stress-

enhanced mobility to its mobility without stress (the same TCAD simulation with the

stress-analysis disabled), we can determine a device-specific scalar multiplier for μ0:

μ0,STRESS_MULT. This multiplier is then used in our BSIM4 Hspice model, described next.
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5.2.2  Stress-Enhanced BSIM4 Hspice Model

After calibrating Davinci device simulations to 65nm industrial Hspice models (by

matching Ion and Ioff), we adjust the BSIM4 model so that the low-field mobility

multiplier, μ0,STRESS_MULT, is included as a possible input parameter for both PMOS and

NMOS devices. We simply scale the old value of μ0 by the multiplier:

μ0 = μ0,OLD . μ0,STRESS_MULT. Simultaneously, since our Davinci models already capture

all of the sources of mechanical stress, we temporarily turn off the BSIM4 stress models

for μeff, vsat, and Vth by setting the stress effect parameters for mobility

degradation/enhancement (KU0), saturation velocity degradation/enhancement (KVSAT),

and threshold voltage shift (KVTH0) to zero. The resulting I-V fit for minimum-sized

NMOS and PMOS devices is shown in Figure 5.4, which verifies the accuracy of our

model. For example, in these minimum-sized devices we find that our modified Hspice

device models incur an average root mean square error in saturation current of ~3μA and

~0.7μA for the NMOS and PMOS devices, respectively. These Hspice device models

eventually serve as the basis of our standard cell library characterization.
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5.2.3  Standard Cell Library Characterization

To make our new standard cell library compatible with existing digital, integrated

circuit (IC) design flows, it is essential to be able to characterize the new standard cells

and determine typical gate level parameters such as pin capacitance, propagation delay,

dynamic and leakage power consumption, etc. To achieve this, we input our modified

Hspice models into Cadence’s Signalstorm delay calculator. Signalstorm then simulates

our stress-enhanced gates over a number of output-loading and input-slew combinations

and finally generates a LIBERTY characterization file. The LIBERTY file generation is

the last step in the STEEL standard cell design flow and it enables the use of these new

libraries within synthesis and APR tools with minimum additional overhead (described in

more detail in Section 5.3.1).

5.2.4  Implementation Decisions in STEEL

There were several design decisions that needed to be resolved while creating a

STEEL standard cell library. The first decision addressed the number of variants that

could exist at an abutted boundary. These variants occur because many of the standard

cells in a typical library cannot share the VDD and VSS connections at both edges of the

cell. Instead, the adjacent S/D node is connected to some other net (e.g., the output node in

a minimum-sized Inverter or NAND gate). For instance, refer to the 2-input NAND layout

in Figure 5.1 (b). The NMOS drain on the right-hand side is tied to the output, Y.

Therefore, this drain cannot be shared at the boundary with any arbitrary cell in a design

whose left NMOS S/D is not connected to the same net. In this case, the PMOS source tied

to VDD could be shared, but only with a cell that has the same configuration (shared
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PMOS, unshared NMOS) or a custom “Filler” cell designed for the “shared PMOS,

unshared NMOS” case. Therefore, to keep the number of edge variants small, we

implemented two types of standard cell edges: shared or unshared. If either the NMOS or

PMOS S/D is not connected to VSS/VDD, respectively, then that edge of the cell is designed

to be completely unshared. STEEL consequently has three different types of cells:

• Cells with both edges “shared” (such as the one in Figure 5.2 (b)).

• Cells with one “shared” edge and one “unshared” edge (previously discussed and

illustrated in Figure 5.1 (b)).

• Cells with both edges “unshared” (similar to the layout shown in Figure 5.1 (a)).

Each standard cell in the library corresponds to only 1 of these 3 types, with the exception

of inverters and buffers. To ease APR we designed two versions of inverter and buffer

cells, one with the maximum number of shared connections and one with zero shared

connections (both edges “unshared”). The “unshared” inverter and buffer cells reduce the

placement/routing complexity involved during buffer insertion. For additional details of

using STEEL libraries within APR, refer to Section 5.3.1.

The second design decision made was that a cell edge of a certain type (either shared

or unshared) could only be abutted with an edge of the same type. In our implementation,

we chose to let the APR tool handle this by passing it an additional set of constraints:

• Only abut “shared” edges with “shared” edges.

• Only abut “unshared” edges with “unshared” edges.

Details regarding the additional overhead needed to use STEEL within APR is included in

Section 5.3.1.
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The final implementation detail is a by-product of the layout dependency of stress.

Since we are essentially extending the active area between standard cells, differing

amounts of active overlap for different combinations of cells could significantly change

the Ion and Ioff  currents for a given device. Therefore, context dependencies could easily

arise if the STEEL library is not carefully designed. To illustrate this problem, consider

the example in Figure 5.5, which shows two overlap cases for transistor, T1. In the first

case, the standard cell containing T1 is placed next to a cell whose nearest device is T2.

The distance, X12, between these two transistors corresponds to the active area length,

LS/D, of this source/drain region and directly affects the amount of stress induced in both

T1 and T2. However, in the same design, the same cell type that contains T1 is used again,

but this time is placed next to T3 and the S/D length increases by 1.3X. In this simple

example, this 30% change will increase the drive current by ~10% (if we assume T1, T2,

and T3 are PMOS devices), which is substantial.

One way to handle this context dependency is to characterize the particular device, T1

for every possible X1,N that could exist by abutting it next to any other “shared” edge in

Figure 5.5. Context Dependency within STEEL Designs.
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the library. However, since an industrial library typically has many hundreds of cells, this

leads to an infeasibly large number of characterizations. Instead, we chose to fix the

distance XM,N, such that each device TM and TN are placed 0.5XM,N away from the

boundary. We selected a value for XM,N that achieved ~20% and ~8% increases in PMOS

and NMOS Ion (for the edge devices) and increased Ioff  by ~4X and ~2X, respectively.

5.3  Experimental Results

In order to determine the strengths of the STEEL design methodology, we compared it

to two industry design flows: single-Vth (using regular-Vth, or RVT, cells) and dual-Vth

(using both RVT and low-Vth, or LVT, cells). These comparisons are included in Sections

5.3.2 and 5.3.3, respectively. We also describe a simple assignment technique in Section

5.3.4 which only applies the advantages of STEEL to critical cells, improving leakage at

slower delay points or in unbalanced circuits. However, before we examine our results, we

begin by briefly discussing how our place and route tools were configured to handle the

STEEL library.

5.3.1  APR using STEEL Libraries

As mentioned previously in Section 5.2.4, the various standard cell edge types (either

“shared” or “unshared” in our implementation) in the STEEL library add a small amount

of complexity to cell placement. To minimize this complexity, we enforced a few

additional constraints within the APR tool (discussed in Section 5.2.4). We accomplished

this through a custom Tool Command Language (TCL) script that was designed and run

within Cadence’s APR tool, Encounter. Essentially, the script steps through each placed
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standard cell in the design, starting with the top, left most cell, and continues from left to

right across a single core row before proceeding to the next row down. As the script

traverses the standard cell row (from left to right), it checks the adjacent cell edges. If the

edges match, the TCL script moves to the next cell. However, if the edges do not match,

the script checks if the opposite side of the right cell matches the current cell edge. If it

does, the script flips the cell and continues. If neither sides match, then a filler cell is

placed in between the cells, to ensure that design rules are satisfied. The penalty incurred

is typically minimal, and we found that even with row utilizations of up to ~85%, the

STEEL library can be placed and routed using the same floorplan and dimensions as the

traditional standard cell libraries.

5.3.2  STEEL versus Regular-Vth Results

We begin our analysis by comparing the area, leakage power, and delay of STEEL

designs to their traditional, single-Vth-based equivalent. The basis of our comparison was

an industrial 65nm RVT library. Both libraries were characterized using the stress-

enhancement models and flow described in Section 5.2 and pictured in Figure 5.3. With

the new LIBERTY files, we were able to synthesize and place and route a variety of

benchmarks using both libraries. In total, we implemented the physical design of 10

benchmarks whose gate count ranged anywhere from ~100 to ~60,000 standard cells.

Each benchmark was synthesized at a number of different constraints to determine both

the area-versus-delay tradeoff, as well as the leakage-power-versus-delay tradeoff.

For example, Figures 5.6 and 5.7 illustrate these tradeoffs for a Viterbi Decoding

circuit (with ~25,000 gates). There are a few interesting points to notice from these plots.
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First of all, the STEEL version has a better area/delay tradeoff characteristic. Hence, for

the same critical path delay, the STEEL implementation will consume less area. This

improvement occurs because the STEEL cells are identical in area to the traditional cells,

but have reduced propagation delays (due to the stress-enhancement achieved through

active-area overlap). Consequently, the physical design tools do not have to size a given

STEEL path as aggressively as its corresponding traditional path implementation, leading

to reduced area consumption.

Alternatively, if you analyze the circuits at the same value of area (iso-area), STEEL

typically reduces delay by 11% (again, due to the stress-enhancement achieved without

increasing area). Notice that even at the minimum delay point on the traditional curve, the

STEEL library still provides ~9% improvement. Furthermore, if you examine the leakage

tradeoff in Figure 5.7, leakage power in the Viterbi decoder increases rapidly on the left

side of the plot (toward smaller values of delay). This is due to the fact that to meet these

tight timing constraints, the synthesis tool must size up the majority of the gates in the

design, which increases leakage dramatically. Since stress-enhanced gates are designed to
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primarily give improvements in Ion (and therefore, delay), this region of the curve is where

the STEEL library prefers to operate.

The full set of benchmark results compared to the single-RVT library is included in the

seven left most columns of Table 5.1. This table was constructed using the following

procedure. For each benchmark, we analyzed the area/delay tradeoff curve for the

traditional 65nm implementation to determine the delay where hardware intensity was ~2.

Hardware intensity was originally proposed in [73] as a power versus delay metric. In this

work we use a modified version of hardware intensity that compares area and delay. Thus,

for the remainder of the chapter, hardware intensity is defined as the percentage change in

area over the percentage change in delay. Next, the corresponding values of area and delay

(whose hardware intensity is ~2) were used to determine the iso-area and iso-delay

comparisons made against the STEEL implementation. For example, in the Viterbi

decoder benchmark, the point on the area/delay curve (for the traditional implementation)

where the hardware intensity was equal to 2 is labeled point “P1” in Figure 5.6. The
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corresponding delay improvement that we achieve using STEEL is given in Column 3 of

Table 5.1. For the Viterbi decoder, this value is calculated by comparing the delays at “P1”

and “P2” (in Figure 5.6). Similarly, area improvement – Column 4 in Table 5.1 – is

calculated by comparing the areas at “P1” and “P3”. Next, Columns 5 and 6 include the

leakage power increase incurred by the STEEL implementation. These values are

calculated for the Viterbi circuit by comparing the leakage values at “P4” and “P5” (from

Figure 5.7) for the iso-delay case, and comparing “P4” with “P6” for the iso-area column.

Finally, the decrease in the minimum critical path delay is noted in Column 7. This value

for the Viterbi decoder is determined by comparing the delay at points “P7” and “P8” in

Figure 5.7. The remainder of Table 5.1 is discussed in Section 5.3.3.

Generally, we discovered that for iso-area, the STEEL implementation achieves

average delay improvements of 11% while leakage only increases by 35% on average.

† The dual-Vth leakage increase over STEEL is calculated at iso-delay for the minimum critical path delay of the

STEEL design.

Table 5.1. Design Improvement Obtained using STEEL.
(Compared against Single-Vth and Dual-Vth Implementations)

Circuit Gate 
Count

% Delay 
Improvement

(Iso-area)

% Area 
Improvement

(Iso-delay)

Leakage 
Increase

(Iso-delay)

Leakage 
Increase

(Iso-area)

% Delay 
Improvement 
Beyond Min. 
Critical Path †

c432 143 18.6% 2.4% 1.41 1.46 12.5% 2.95
c1908 265 6.00% 6.7% 1.11 1.22 9.4% 4.88
c880 291 16.5% 2.6% 1.34 1.39 8.1% 2.37
c2670 489 9.2% 1.1% 1.35 1.34 4.4% 0.85
c3540 921 9.0% 2.1% 1.33 1.36 9.0% 2.08
c7552 1264 11.1% 0.9% 1.27 1.28 12.5% 2.97
c5315 1275 15.5% 1.5% 1.33 1.34 13.3% 2.78
c6288 1703 7.1% 0.4% 1.27 1.28 8.2% 3.52
Viterbi Dec. 25287 8.0% 1.1% 1.33 1.35 6.3% 2.06
Ethernet 66310 8.6% 0.1% 1.50 1.50 7.5% 0.79

AVERAGE 11.0% 1.9% 1.32 1.35 9.1% 2.53

Dual-Vth Leakage
STEEL Leakage

-----------------------------------------------
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Additionally, we found that the STEEL-based benchmarks successfully synthesized at a

minimum delay value that was, on average, 9.1% less than the traditional minimum delay.

5.3.3  STEEL versus Dual-Vth Results

In addition to a significantly improved area-delay tradeoff for STEEL versus a single-

Vth standard library, we now demonstrate that STEEL provides superior performance with

a single-Vth over a traditional dual-Vth library for the majority of operating points where

dual-Vth would be of interest. This arises due to the improved Ion vs. Ioff  tradeoff using

stress enhancement compared to using low-Vth devices (discussed in Section 4.3.2) and

indicates that STEEL simultaneously offers a better power/performance envelope and

lower manufacturing costs over dual-Vth. Figure 5.8, for example, illustrates the

leakage/delay curve for the dual-Vth implementation of the Viterbi decoder (notice its

similarity to Figure 5.7). The slower part of the curve (delay > 4.26ns) is actually identical

to Figure 5.7, due to the fact that only RVT cells are used in the design until the delay
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constraint becomes less than or equal to 4.26ns. In the region of interest for STEEL, we

found that the leakage crossover point (where dual-Vth leakage becomes greater than

STEEL) typically occurred between the most tightly constrained RVT design (with zero

LVT cells) and the dual-Vth implementation that used the minimum number of LVT cells

needed to satisfy timing. Since the LVT cells in our industrial library typically increased

leakage by ~20X, the minimum leakage for the dual-Vth case occurred at the timing

constraint that used the minimum number of LVT cells. Even at this minimum leakage

point for dual-Vth (where the number of LVT cells is only a small percentage of the total

number of cells, <5%), the substantial leakage increase per low-Vth cell caused this

minimum-leakage, dual-Vth implementation to almost match the leakage increase incurred

by STEEL. Over all of the benchmarks, we found that even at the minimum dual-Vth

leakage, dual-Vth only showed a 2.9% average savings in leakage over STEEL.

Furthermore, by the time the STEEL implementations reached their minimum delay, the

dual-Vth leakage had increased to ~2.5X the average value of STEEL leakage (displayed

in the last column of Table 5.1). An example point for the Viterbi decoder circuit for this

value is shown in Figure 5.8.

Since the STEEL implementations can typically provide up to ~10% delay

improvements over single-Vth designs while consuming only a fraction of the leakage

power of dual-Vth, STEEL can provide more optimal designs in two ways. First, for

designs that only need moderate delay improvements – less than 10% – STEEL can be

used to achieve these improvements. By utilizing the STEEL standard cells, the designer

would not only reduce leakage (as compared to the dual-Vth implementation), but would
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also dramatically reduce manufacturing costs, since the second threshold voltage mask

would not be needed. Alternatively, STEEL could also be used in conjunction with the

dual-Vth approach to achieve more optimal designs (in terms of area and power). Since

typical dual-Vth processes only provide coarse-grain threshold voltage values, some

standard cells in a path might be sub-optimally assigned if they do not need the full

performance enhancement provided by moving to a lower Vth value. For these cells, the

STEEL versions would be more appropriate, since they can obtain more fine-grained

performance improvements and will fill some of the performance space between Vth

values. Additionally, by designing LVT STEEL cells, delay improvement can be extended

beyond the performance of dual-Vth.

5.3.4  Intelligent STEEL-Cell Assignment

One interesting discrepancy that we found during this work was the fact that in our

largest circuit, an ethernet controller, the STEEL design did not outperform the dual-Vth

implementation. In fact, out of the 10 benchmarks, the ethernet circuit was the only case

where we did not obtain improvements in leakage versus dual-Vth. To understand this

phenomenon, we analyzed the structure of the ethernet controller and made some

interesting observations:

• Even though the ethernet controller used a large number of standard cells, its paths

were not balanced and the number of critical paths only represented a small

fraction of the total number of paths.

• Out of ~66,000 standard cells, the dual-Vth design only used 285 LVT cells (<1%

of the total) to meet the minimum timing constraint achieved using STEEL.
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With this knowledge, it was clear why the STEEL implementation did not improve

upon the dual-Vth case. Since we had not previously employed any delay/leakage

optimization in our approach, the ~1.3X STEEL average leakage increase per standard

cell occurred in each of the ~66,000 standard cells, whereas the ~20X leakage increase per

LVT cell only occurred in <1% of the total cells. Therefore, while the STEEL designs

outperformed dual-Vth in the majority of our experiments, it was clear that exploring

intelligent assignment schemes would be beneficial to our work, both to improve the

STEEL leakage performance in unbalanced designs (as compared to dual-Vth), as well as

achieve leakage values closer to the RVT-based designs.

So far, we have reported the STEEL results for the case where we use our stress-

enhanced library uniformly across a given design (i.e, every gate in the circuit is assigned

to its stress-enhanced version). However, not all of the gates in a circuit need performance

enhancement to meet timing for a given delay constraint. These non-critical gates only add

to the leakage overhead, and as a result we observed that the STEEL designs had larger

leakage than their single-Vth counterpart, even at larger values of delay (more relaxed

delay constraints). Thus, there is ample scope for intelligent assignment of stress-

enhanced cells, where the traditional RVT library is used in conjunction with STEEL, and

the STEEL cells are only assigned to timing critical gates. An intelligent cell assignment

scheme will substantially reduce the leakage overhead but maintain similar improvements

in delay. The benefits of this technique derive from the fact that only a fraction of total

number of gates in a circuit are timing critical. Replacing only the critical gates with the

leakier, higher-performance versions will result in significantly lower leakage increases,

as compared to the case where all of the gates are replaced.
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As a further investigation into the scope of intelligent assignment, we perform a

simple experiment where we replace only the top ~10%, timing critical gates in a circuit

with their stress-enhanced versions. We perform this experiment at the same hardware

intensity point (discussed previously) on the area-versus-delay curve for the traditional

RVT library, and compare the delay improvement and leakage overhead numbers to the

case where stress enhancement was used in every cell (Column 3 and Column 6 of Table

1, respectively). Figure 5.9 shows the percentage improvement that we observe using

intelligent assignment, as compared to the uniform-replacement (“Original” STEEL)

scheme. Ideally, we would prefer to obtain all of the delay improvement achieved in the

previous section (i.e., achieve 100% of the typical 11% delay improvement over RVT),

while reducing the percentage leakage increase to 0% (i.e., matching the RVT leakage).

As shown in the figure, we can get >80% of the “Original” delay improvement through

selective replacement, while incurring a much smaller increase in leakage. The selective

scheme typically reduces the uniform STEEL leakage increase by ~90%. From Figure 5.9,

observe that the leakage number for the ethernet benchmark is exceptionally small
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because, despite its large size (~66,000 gates), the number of timing critical gates is very

small (as mentioned previously). Thus, to achieve 80% of the “Original” improvement,

only 625 gates need to be replaced with their stress-enhanced version (less than 1% of the

total gates), which results in substantial leakage savings that is comparable with dual-Vth.

Intelligent replacement schemes like this approach allow STEEL to maintain its

advantage over dual-Vth, even for designs that are extremely unbalanced (such as the

ethernet benchmark). Additionally, this approach can be used to improve leakage power

consumption within any STEEL design (especially for relaxed delay constraints). This

means that the leakage for the STEEL technique will approach that of the traditional RVT

library, especially at delay constraints located to the right of the leakage crossing point

(e.g., all of the STEEL leakage values to the right of point “P9” in Figure 5.7 will be much

closer to RVT).

5.4  Summary

In this chapter, we proposed STEEL, a new standard cell library design technique for

modern stress-enhanced semiconductor processes. STEEL fully exploits the layout

dependencies of stress. By designing the STEEL standard cells to share the VDD and VSS

source/drain connections across cell boundaries, one can achieve drive current

improvements of up to 20%. While implementing the proposed standard cell approach in a

number of benchmark circuits, we demonstrated average delay reductions of 11% with

only a 35% average increase in leakage, compared to single-Vth implementations.

Additionally, STEEL-based circuits typically achieved a ~2.5X reduction in leakage when
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compared to dual-Vth designs. This implies that for designs requiring an 11% delay

improvement (or less) beyond a single-Vth implementation, STEEL can provide this

improvement for a smaller leakage penalty as well as much lower manufacturing costs

compared to dual-Vth. Orthogonally, STEEL can also be used in conjunction with dual-Vth

(similar to the work in Chapter 4) to provide more optimal designs (in terms of both

leakage and delay).
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CHAPTER 6

COMBINING STRESS ENHANCEMENT WITH
GATE LENGTH BIASING

The previous two chapters presented the idea of improving mechanical-stress-induced

mobility enhancement in today’s transistors by modifying common circuit layout

properties that influence stress. Mobility enhancement has emerged as one of the most

prevalent manufacturing changes in recent semiconductor history because of its ability to

enable continued process scaling. However, it is the optimization potential of mobility

enhancement that has attracted a number of researchers, especially since designers are

becoming increasingly wary of varying threshold voltage (Vth) in their circuits. Using

multiple values of Vth is not as straightforward or beneficial in today’s technologies, due to

the amount of inherent uncertainty in threshold voltage and the extra mask cost incurred

by including multiple Vth values in a design. Precisely controlling the value of Vth in

modern-day processes is extremely difficult since the underlying sources (e.g., random

dopant fluctuation, line-edge roughness, and work-function variation [75]) are truly

random sources of variation inherent to current CMOS manufacturing.

Threshold voltage optimization is, at its core, merely a tradeoff between steady-state

power consumption and performance. Generally, lowering a transistor’s Vth means that
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that the transistor will switch states faster, but will consume exponentially higher amounts

of power in steady-state. Since the magnitude of steady-state power consumption (also

called leakage power consumption) in state-of-the-art circuits is approaching the same

order of magnitude as dynamic power consumption (shown previously in Figure 1.3 and

repeated here as Figure 6.1, for convenience), Vth optimization has largely been used as a

leakage savings technique; choosing a slower device with a higher Vth saves exponentially

in leakage. However, the difficulties encountered by modern-day process engineers in

controlling threshold voltage have lead circuit designers to explore other leakage savings

techniques. Two such techniques that, until this work, have previously been explored

independently are gate length biasing and mechanical stress optimization.

Mechanical stress optimization is a technique that involves leveraging the mechanical-

stress-dependent layout properties in a circuit to vary mobility and ultimately

increase/decrease performance while increasing/decreasing leakage. By manipulating

properties like active area, gate-to-contact spacing, and active edge placement (relative to

the lateral STI), layout designers can achieve maximum performance gains of 10 – 20%.

Figure 6.1. Dynamic and Static Power Density vs. Technology [19].
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This performance gain becomes especially appealing after discovering that the resulting

leakage penalty is substantially less (typically ~2X) than the penalty incurred by an

equivalent dual-Vth implementation. For a full background on mechanical stress

optimization, the reader is referred to Chapters 4 and 5, where mechanical stress was

covered in great detail.

On the contrary, gate length biasing is a more established technique that involves

increasing (decreasing) a transistor’s gate length to simultaneously decrease (increase) its

performance and leakage power consumption. The idea was first proposed in [76], where

the authors used large increases in gate length (up to ~50nm) to reduce leakage. Then, in

[77], the approach from [76] was amended to only use small (8nm) gate length biases. In

this approach, 8nm biases were chosen to maximize the leakage savings while still

allowing the gate-length biased cells to be layout-swappable with their higher

performance counterparts.

In order to meet equivalent delay targets achieved by dual-Vth (DVT) schemes,

previous gate-length bias (GLB) works (such as [77]) primarily used GLB in conjunction

with DVT optimization, since negative gate-length biases (i.e., smaller than nominal gate

lengths) are typically not allowed by manufacturers (since smaller gate lengths increase

leakage and are more susceptible to short channel effects and variability). However, in this

work we noticed that layout-dependent mechanical stress enhancement could be used

along with GLB to provide a competitive optimization alternative to DVT, in terms of

performance, while reducing leakage power consumption (since stress-enhancement has a

better delay/leakage tradeoff than DVT). Additionally, using stress-enhancement and GLB
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instead of DVT reduces mask costs (due to the elimination of the additional Vth mask) and

overall variability [77].

Therefore, this chapter illustrates the benefit of using layout-dependent stress

enhancement and GLB versus DVT. Since Chapters 4 and 5 went into great detail

discussing the benefits of stress-enhancement versus DVT, this chapter only outlines

layout-dependent stress enhancement and GLB (in Section 6.1). Section 6.2 explains how

stress-enhancement and GLB can be combined in standard cell library design and then

describes the standard cell implementation for our stress plus GLB library (referred to as

STLB from this point forward). The optimization algorithm written to utilize the STLB

library is discussed in Section 6.3 and Section 6.4 illustrates the results obtained by using

STLB optimization on eight different benchmark circuits (six ISCAS’85 circuits and two

larger Viterbi decoding circuits). Finally, Section 6.5 concludes the chapter with a brief

summary.

6.1  Stress Enhancement and Gate-Length Biasing

From equations (4–1) and (4–2) in Chapter 4 (and from basic semiconductor classes),

we know that a device’s saturation (ID,sat) and subthreshold (ID,sub) drain currents are both

functions of a number of parameters (for convenience, the two equations are also copied

below), including carrier mobility (μ0) and gate length (Leff, which we refer to as L for the

remainder of the chapter). 
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(6–1)

(6–2)

Specifically, a device’s drain current (in both regimes of operation) is directly dependent

on μ0 and inversely dependent on L. In Chapters 4 and 5, we learned that carrier mobility

in modern-day devices can be increased or decreased by changing certain transistor layout

parameters. For example, modifying properties like active area, contact placement, and

active edge placement (with respect to the lateral STI) alters the mechanical stress induced

in a transistor’s channel which, in turn, affects μ0. Prior to the 90nm technology node, the

only device properties that a designer could use to significantly affect performance were L

and W. However, with the addition of mechanical stress, engineers now have a third

parameter to manipulate: carrier mobility. After identifying the dominant layout

dependencies of stress in a given technology, designers can utilize those dependencies to

modify mobility. For example, in the 65nm industrial technology presented in the previous

chapters, modifying one or more of the layout properties in Table 6.1 (as prescribed in the
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Table 6.1. Methods for Increasing PMOS and NMOS Mobility in Standard Cells.

Active Area Gate-to-Contact 
Spacing

Active Edge to Lateral 
STI Spacing

PMOS Increase Increase Decrease

NMOS Increase Increase Increase
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table) will increase channel mobility. This allows transistors with minimum gate lengths to

increase performance (and leakage) without increasing the transistor’s width (W in

equations 6–1 and 6–2).

Gate-length biasing, on the other hand, directly manipulates the gate length, L, of a

transistor. In traditional digital circuit design, gate length is typically minimized for a

number of reasons: smaller L means faster switching, less gate capacitance, and less

dynamic power consumption. Therefore, in a given technology, digital designers usually

desire the smallest possible gate length and process engineers strive to provide the

smallest gate possible while simultaneously optimizing performance, leakage current, and

printability (which affects yield). Tuning a process’s minimum gate length, however, is

becoming increasingly difficult because as transistors continue to shrink from generation

to generation, short channel effects (SCE) are having a larger impact on performance and

leakage. Thus, gate-length biasing has emerged as a popular technique (embraced by a

number of companies [77]) to help combat SCE and improve variability. GLB is a viable

technique because every transistor in a circuit does not require the speed provided by the

high performance, minimum L transistors (a trait DVT and stress-optimization also rely

on). By slightly increasing (biasing) the L of non-critical transistors, circuit designers can

save leakage power and improve variability while minimally increasing area and dynamic

power consumption. In [77], the L biases proposed were <10% of Lnominal because the

leakage savings saturated around 10%. Similarly, in the 65nm technology used in this

work, we discovered that the leakage savings also saturated around 10%, as shown in

Figure 6.2. Note that in Figure 6.2, ION and L are a normalized percentage about the
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nominal value (ION at L = Lnominal), while IOFF is a normalized, scaled value of its

nominal (IOFF at L = Lnominal). After understanding the gate length bias impact in our

65nm technology, we were able to design and optimize a standard cell library that

simultaneously contained stress-enhancement and gate length biasing.

6.2  STLB Standard Cell Library Implementation

This section explains how we combined stress-enhancement and gate-length biasing,

and then presents our STLB standard cell library implementation.

6.2.1  Combining Stress-Enhancement and Gate-Length Biasing

The overall goal of this work was to study and compare an STLB library to its DVT

counterpart. Since stress sources (such as embedded SiGe, dual-nitride liners, and the

stress memorization technique) are typically used in high performance processes,1 we

decided that the most appropriate comparison would be a high performance one:
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• Dual-Vth: low-Vth (LVT) cells and regular-Vth (RVT) cells

versus

• STLB: high-stress (HST) cells with low-stress, +5nm length biased (GLB) cells.

Both optimization schemes attempted to maximize performance while minimizing

leakage power consumption. In the STLB library, we used layout properties (such as the

column headers in Table 6.1) to increase mobility (through stress) and, consequently,

performance. With stress-based mobility enhancement, we were able to increase the

performance of our regular-Vth (RVT) standard cells anywhere from 5% to 15%. In order

to achieve adequate performance increases in these cells, we increased the area of the RVT

cells by 24% on average (each standard cell width was increased by one metal track). The

low leakage cells, on the other hand, were low-stress, +5nm biased RVT cells. By

manipulating the stress-dependent layout properties of the RVT cells conversely to Table

6.1 while adding a +5nm gate length bias (which was close to the “knee” of the curve in

Figure 6.2, where leakage savings saturated), we were able to maximize the leakage

savings of our GLB cells. The next section lists the specific characteristics of the STLB

library and compares its performance to the DVT implementation.

6.2.2  The STLB 65nm Library

To create our 65nm STLB library, we used industrial 65nm standard cells as our

baseline. Then, for 10 basic standard cells in the library, we created the stress-enhanced

(high-stress, or HST) layouts by following the guidelines presented in Table 6.1. The GLB

1 Stress-based mobility enhancement is used more liberally in high performance processes because
the resulting increase in leakage power is typically unattractive for most low power processes.
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layouts, on the other hand, were created by reversing the guidelines from Table 6.1 to

ensure minimal stress-enhancement and then increasing the gate lengths by 5nm. For the

HST cells, each layout was simulated in Synopsys’s Tsuprem4 (which simulated the

device fabrication steps and calculated the stress) and Davinci 3D (which simulated the

electrical operation and computed mobility) TCAD tools to evaluate the mobility

enhancement achieved in the new layouts. Similar to Section 5.2, the mobility

enhancement factors calculated for each transistor were written into a modified BSIM4

Hspice model (the details of which can be found in Section 5.2.2). Finally, this modified

Hspice model was used by Cadence’s Encounter Library Characterizer (ELC), which

generated the LIBERTY format file that contained performance information such as

propagation delays, power consumption, etc., for each cell. Overall, the HST library

characterization flow was similar to Figure 5.3, which has been reproduced here as Figure

6.3, for convenience. Cadence’s ELC tool was also used to characterize the GLB library.

When we compared the LIBERTY files generated by the ELC, the benefit of using

STLB over DVT was apparent. While the DVT library provided a larger spread in

performance (~27% when averaging rise and fall  performance), it also incurred a

Figure 6.3. STLB characterization flow.

LVT
RVT
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much larger spread in leakage power consumption (~13X). The STLB library, on the other

hand, provided a 12% performance difference between the HST cells and the GLB cells

for only a 2.5X difference in leakage. Furthermore, we directly compared the high

performance cells (LVT and HST) separately from the low performance cells (RVT and

GLB), and found that the LVT cells had ~22% better delay than the HST cells, on average,

but they consumed 7.6X more leakage power. Similarly, the RVT cells had ~6% better

delay than their GLB counterparts, while consuming 1.5X more leakage, on average.

Table 6.2 illustrates similar types of comparisons across three difference cells (one

inverter, one 2-input NAND, and one 2-input NOR) from our two libraries, and also

includes an average comparison across all 10 cells. Four ratios are shown for each cell.

The first two of these ratios show a direct comparison between the two different libraries:

 and . These rows allowed us to examine the performance difference between

each class of cell (high performance or low performance). The remaining two ratios

illustrate the performance difference in one library: the  row shows the spread in

performance for the DVT library, while the  row shows the spread in performance

for the STLB library. Table 6.2 contains the performance ratios for six different

parameters:

• Rise delay is the 50%-50% propagation delay for a rising output

• Fall delay is the 50%-50% propagation delay for a falling output

LVT
HST
----------- RVT

GLB
------------

LVT
RVT
-----------

HST
GLB
------------
133



• Leakage power is the average steady-state power consumed by the cell (across all

input states)

• Internal power is the average power consumed during a transition that is internal to

the cell (e.g., short circuit current, internal switching capacitance, etc.)

• Dynamic power is derived from a cell’s increase in input pin capacitance, since pin

capacitance affects the upstream dynamic power of the preceding gates

• Area is the area consumed by the standard cell.

It is interesting to note that DVT also incurred a slight increase in the internal power

consumption for both the high performance (LVT) and low performance (RVT) cells

(about 50% and 20%, respectively). This increase can most likely be attributed to larger

short circuit current in the LVT and RVT cells, compared to their HST and GLB

Table 6.2. DVT vs. STLB Library Comparison.
(Note: DVT vs. STLB cell comparison is shaded; DVT and STLB spread are unshaded.)

Ratio Rise Delay Fall Delay Leakage 
Power

Internal 
Power

Dynamic 
Power Area

INVX1

LVT/HST -19.2% -18.0% 5.9X 1.1X 3.0% -25.0%

RVT/GLB -5.4% -6.1% 1.5X 1.5X -2.2% 0.0%

LVT/RVT -24.6% -22.8% 10.4X 2.0X 5.0% 0.0%

HST/GLB -11.5% -11.5% 2.6X 4.5X -0.3% 33.3%

NAND2X4

LVT/HST -18.0% -28.9% 6.9X 1.2X 4.2% -12.5%

RVT/GLB -6.1% -5.4% 1.6X 1.1X -3.1% 0.0%

LVT/RVT -22.7% -32.2% 16.7X 2.3X 5.6% 0.0%

HST/GLB -11.3% -10.1% 3.8X 1.6X -1.9% 14.3%

NOR2X4

LVT/HST -19.0% -30.0% 8.6X 1.9X 5.1% -12.5%

RVT/GLB -5.7% -6.8% 1.4X 1.2X -2.5% 0.0%

LVT/RVT -26.0% -31.8% 14.7X 2.1X 4.5% 0.0%

HST/GLB -13.8% -10.1% 2.4X 1.3X -3.1% 14.3%

AVERAGE 
(across all 
10 cells)

LVT/HST -18.1% -25.4% 7.6X 1.5X 3.4% -18.8%

RVT/GLB -5.7% -6.1% 1.5X 1.2X -2.5% 0.0%

LVT/RVT -24.2% -29.1% 12.8X 2.3X 4.2% 0.0%

HST/GLB -12.6% -11.4% 2.5X 1.8X -1.7% 23.5%
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counterparts. The difference in dynamic power, however, is much smaller: LVT consumed

3.4% more dynamic power than HST while GLB consumed 2.5% more dynamic power

than RVT. These numbers were derived directly from the input pin capacitance increase.

Since the LVT and GLB cells had larger pin capacitance (due to the lower Vth and larger L,

respectively), those cells created larger dynamic power consumption for their fan-in.

Lastly, the only cells that increased in area were the HST cells, which were ~24% larger

(on average) than the LVT, RVT, and GLB cells, because of the additional metal track

space added to the width of each cell, discussed previously.

6.3  Dual Performance Optimizer for DVT and STLB Libraries

In order to obtain circuit-level comparisons between DVT and STLB libraries, this

work required a custom, dual-performance optimization algorithm, similar to the

optimization methodology presented in Section 4.7. However, as stated earlier in the

chapter, since stress enhancement is used in high performance processes, the proposed

algorithm in this chapter differs from Algorithm 4–1 in that it strives to achieve the best

delay possible and then minimize leakage power consumption once that delay is met. In

this algorithm, there are two types of cells available: high-performance cells and low-

leakage cells. The algorithm begins by setting each gate to its high performance version

(e.g., LVT or HST, depending on which library is being used). Then a typical STA and

sizing algorithm is used to meet the defined cycle time for the circuit. Next, the dual-

performance optimizer is called. Each iteration, it identifies one gate that, when upsized,

provides the largest improvement in delay (thereby creating additional slack in the
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circuit). After the particular gate is upsized, the optimizer evaluates a merit function –

shown below in (6–3) – for every gate in the circuit.

(6–3)

The optimizer then replaces the highest merit gates with their low-leakage versions and

calculates the resulting total power improvement. If the circuit power improves, the move

is accepted and the optimizer attempts to find another gate to upsize, which will allow

more gates to be replaced by their low-leakage versions. The optimizer halts once all

potential low-leakage replacements have been evaluated and upsizing no longer creates

slack in the circuit. The pseudo-code for a given critical delay target (TT) is shown in

Algorithm 6–1.

Merit G( ) ΔIoff G( ) Slackα⋅=
where α is the path that contains G

Algorithm 6–1 DELAY_LEAKAGE_OPT(TT) //TT = critical delay target

1: Set all cells in netlist to High Performance version (e.g., LVT or HST)
2: // Initialize circuit and run sizing algorithm to meet critical delay target
3: TC = SIZE_CIRCUIT_TO_MEET_DELAY(TT) // TC = current CP delay
4: if ( TC == TT ) //Then timing constraint is met, perform leakage opt.
5: Evaluate current power consumption // PTOT = total power
6: PNEW = PTOT
7: while ( PNEW <= PTOT )
8: Order gates by potential delay improvement after upsizing
9: Upsize first gate // Has largest delay improvement
10: Evaluate MERIT(G) for all gates, G // According to (6–3)
11: Move highest merit gates to low-leakage versions (e.g., RVT or GLB)
12: Evaluate new TC and PNEW
13: if ( (TC <= TT) AND (PNEW < PTOT) ) // Then accept move
14: PTOT = PNEW
15: else 
16: // Undo low-leakage moves and last gate upsize
17: Restore previous state
18: end if 
19: end while 
20: end if 
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6.4  Experimental Results

As stated previously, the ultimate goal of the work in this chapter was to obtain a

circuit-level comparison of a DVT library versus an STLB library. To achieve this, we

used the custom, dual-performance algorithm described earlier in Section 6.3 to optimize

a number of ISCAS’85 benchmarks and two larger Viterbi decoding circuits. This section

presents the comparison results for the eight largest circuits (six ISCAS’85 benchmarks

and the two Viterbi decoders). For each benchmark and library (DVT or STLB), we

optimized the circuit across a number of critical path delay targets. Then we compared the

delay, area, leakage, and dynamic power performance of each library. The comparison

points discussed in the remainder of this section were once again chosen based on a

modified version of hardware intensity [73].

From Section 4.8.2, we know that a hardware intensity (η) of x means that a 1%

decrease in delay leads to an x% increase in power, and the hardware intensity for the

majority of blocks in a microprocessor design is between 2 and 3 [74]. Thus, the

performance results presented in this section (and specifically in Table 6.3) were

compared at the minimum delay point where the hardware intensity was between 2 and 3

(or as close as possible). To visualize the performance of each library, refer to Figures 6.4

– 6.6 for an example comparison. Figures 6.4 through 6.6 show critical path delay versus

leakage power, area, and dynamic power for the Viterbi Decoder 1 benchmark.

As depicted in Figure 6.4, the leakage-based hardware intensity point for the Viterbi

Decoder 1 benchmark was located at the normalized delay values of 1.4 and 1.5 for the
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Figure 6.4. Normalized Leakage Power vs. Delay for Benchmark Viterbi Decoder 1.
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STLB and DVT libraries (respectively). The STLB implementation, therefore, was almost

8% faster. Additionally, the STLB circuit consumed ~1.6X less leakage than its DVT

counterpart. The STLB implementation provided these benefits while only increasing area

and dynamic power by about 9% and 10% (compared to DVT). These increases were

expected, due to the area overhead incurred by the HST cells and the pin capacitance

increase of the GLB cells.

Table 6.3 shows the full comparison for all eight benchmarks. The circuits’ gate count

ranged from ~500 gates to ~34,000 gates. Overall, the STLB library delay averaged 2.4%

slower than the DVT library (at the iso-hardware-intensity comparison point) but

consumed ~2.9X less leakage power. As expected, the area of the STLB library was larger

than the DVT library (by 14% on average), but the dynamic power was almost equal (the

STLB library actually showed an average dynamic power improvement over DVT of

0.9%). The amount of area increase can be attributed to the higher area of the HST cells

(referring back to Table 6.2, the HST cells were 23.5% larger in area, on average), as well

Table 6.3. STLB Performance Directly Compared to DVT.a,b

a. Comparison made at minimum delay point where hardware intensity was between 2 and 3.

b. Each column compares performance as a ratio: .

Benchmark # Gates Delay Leakage Power Dynamic Power Area

c1908 499 0.98 3.23 0.98 0.8

c2670 885 0.84 3.49 1.19 0.91

c3540 1193 1.07 2.58 0.88 0.84

c5315 1730 0.98 2.23 1.01 0.92

c6288 2598 0.89 2.15 1.12 0.93

c7552 2060 1.05 1.99 0.93 0.79

Viterbi Dec. 1 12181 1.08 1.61 0.90 0.91

Viterbi Dec. 2 33972 0.92 5.73 1.05 0.79

AVERAGE 0.98 2.88 1.01 0.86

DVT
STLB
--------------
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as the slower delay of the STLB cells. That is, the only way that the STLB library could

match the DVT library’s lower values of delay was to use more, higher area HST cells.

However, since on-chip area in state-of-the-art processes is relatively inexpensive,

designers are increasingly willing to tradeoff increased area for increased performance.

Thus, the ~3X leakage reduction for a 14% area increase should be a worthwhile tradeoff.

6.5  Summary

In this chapter, we presented a joint optimization framework that used stress-

enhancement with gate length biasing to maximize circuit performance (i.e., achieve small

critical path delays) while minimizing leakage consumption. The resulting library, called

STLB, was directly compared to DVT, both on the cell level and the circuit level. The

STLB library provided a ~12% delay performance spread for a 2.5X leakage increase,

whereas the DVT counterpart provided a ~27% delay spread for a 13X leakage increase

(which, comparing the ratio of delay-spread to leakage-spread, was >2X smaller than

STLB). On the circuit level, the STLB implementation typically came within ~2% of

DVT, in terms of delay, and reduced leakage power consumption by ~2.9X (for an average

area increase of ~14%). Therefore, providing that a <20% area increase is tolerable,

combining stress-enhancement with gate length biasing can offer an excellent alternative

to dual-Vth.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

As the semiconductor industry forges into the next decade, the integrated circuit

design roadmap is as uncertain as ever. The manufacturing community is constantly

working to push the scaling barrier lower, but physical fundamental limits decrease the

performance gains traditionally achieved by CMOS scaling and threaten to halt scaling

altogether around the 15nm technology node. Thus, in order to produce viable designs at

next-generation nodes like 32nm, 22nm, and beyond, circuit designers and process

engineers have to collaborate under the expanse of DFM. The work presented throughout

this dissertation taught us that DFM is an essential semiconductor field that contains a

plethora of broad, difficult problems. Since complex interactions now exist between how

transistors are used, how they perform, and how they are manufactured, circuit design

must also evolve to produce optimal results. That means that the models, tools,

optimization schemes and processes all have to work together to understand all of the

tradeoffs. The remainder of this section summarizes our contributions to these areas and

concludes with a discussion of future work.
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7.1  Conclusion – Summarizing Our Contributions

This dissertation primarily dealt with improving the awareness and accuracy of the

underlying process models, Computer-aided Design (CAD) tools, and IC optimization

schemes. The work presented in Chapters 2 and 3 focused on improving the spatial

correlation models and variability models used with Statistical Static Timing Analysis. In

the 0.13μm study in Chapter 2, we discovered that the Quad-tree correlation model

generally outperformed four other prominent correlation models, especially as die size

decreased. Another important observation made was that the simple correlation model that

expressed CD as a function of two parameters – inter-die variation (which was perfectly

correlated) and independent variation – came within 4% of the accuracy of the complex

Quad-tree and PCA models, with significantly less overhead and run-time. The

exploration in Chapter 2 emphasized the classic tradeoff between accuracy and efficiency

and illustrated the need for judicious selection of correlation models within all timing

analyses (both STA and SSTA).

Chapter 3, on the other hand, investigated the underlying process models essential to

SSTA. Specifically, Chapter 3 proposed a new statistical model for gate length (or CD).

During this work, we discovered that the current method for modeling CD within SSTA

was error-prone and could sometimes cause twice as much error as total variation. The

magnitude of this error was derived from the fact that the existing CD models did not

capture the complex, context dependent interactions that arose in state-of-the-art

processes. However, after using PCA to decompose CD variability within a standard cell

library, we discovered that adding one random variable to the CD model would

significantly improve accuracy, while minimally impacting the characterization
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complexity and run-time. After implementing the proposed CD model on a 90nm standard

cell library, we found that our model – which could easily be incorporated within existing

SSTA frameworks – reduced standard deviation error by ~3X.

After improving the modeling within IC timing analysis, we shifted our focus to

improving the optimization tools and schemes that allow designers to intelligently

improve digital circuits. In this document, the optimization tools and schemes explored

primarily involved mechanical-stress-based enhancement. Chapters 4, 5, and 6 all

presented different stress-based methodologies that either worked with current dual-Vth

frameworks, or aimed to replace dual-Vth, altogether.

Our mechanical stress optimization study began in Chapter 4. In this chapter, we

described the potential for mechanical-stress-based enhancement and discovered the

improved delay/leakage tradeoff of mobility enhancement (compared to DVT). We also

identified the set of layout properties in a 65nm technology that allowed us to influence

mobility through layout. Using those properties to improve performance, we then created

a 65nm stress-enhanced library that was used in conjunction with DVT. By including

stress-enhanced cells within a traditional DVT library, we were able to reduce leakage

power consumption by ~24% without increasing delay (and only increasing area by

<0.5%). Alternatively, we used the same framework to reduce delay by ~5% without

increasing leakage (for the same, <0.5%, area penalty).

Since DVT design is becoming increasingly problematic with each subsequent process

node, Chapters 5 and 6 investigated ways to use mechanical-stress-based mobility

enhancement to replace DVT optimization. In Chapter 5, we proposed a new library
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design methodology, called STEEL, which shared the VDD and VSS (power and ground)

source/drain connections across standard cell boundaries and, consequently, increased

mobility and performance (due to the strong active area dependency of mechanical stress).

By sharing the power and ground connections across standard cell boundaries, we

discovered that we could improve drive current by up to ~20% without increasing area.

Overall, this standard cell performance improvement lead to circuit delay reductions of

11% while only increasing leakage by 35% – a 2.5X reduction from equivalent DVT

implementations. Thus, STEEL was our first optimization exploration that attempted to

create efficient, high performance circuits without modifying Vth.

The final study that we performed for this dissertation work was also our final study

on high performance, stress-aware circuit optimization. In Chapter 6, we sought a more

highly optimized solution that focused on leakage savings in high performance designs.

This solution manifested itself as STLB, a library that combined high performance, highly

stressed devices with low-leakage, gate length biased devices. Using stress-enhancement

and gate length biasing, we were able to create a library and optimization scheme that

more closely resembled DVT. The final STLB library implementation provided a ~12%

spread in delay performance for a 2.5X spread in leakage consumption. After optimizing a

set of circuits with the STLB library, we discovered that the STLB circuits typically came

within ~2% of the DVT delay while reducing leakage power consumption by ~2.9X (for

an average area increase of ~14%). Therefore, we determined that combining stress-

enhancement with gate length biasing could offer an excellent alternative to dual-Vth,

provided that a <20% area increase was tolerable.
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7.2  Future Work

As alluded to at the beginning of this chapter, there are numerous problems within IC

design and DFM that need to be addressed in current and future process nodes. In this

section, we propose future explorations related to the work presented throughout this

dissertation.

7.2.1  CD Modeling at Advanced Process Nodes

In Chapter 1, it was mentioned that the semiconductor industry currently uses 193nm

wavelength light to produce sub-100nm transistors. The light source currently used to

produce this wavelength light has not changed since around the 130nm process node, and

likely will not change until somewhere around the 15nm node. Instead, manufacturers are

using processing techniques such as resolution enhancement (e.g., OPC), double

patterning/exposure, and immersion lithography to produce the sub-wavelength features.

Since the lithographic system itself is not changing, the exposure window (the region of

the wafer that is illuminated at any particular time) is also staying relatively constant. This

means that at every node, when device area scales by ~1/2, almost twice as many devices

can exist within the same exposure window. All of the patterns that exist within the

exposure window interact to create various diffraction patterns, and ultimately influence

the size and quality of the printed geometries. In the CAD community, these interactions

are typically referred to as “context dependencies” at the layout-level. Therefore, a

particular gate’s size is not only a function of its designed size, but also a function of the

characteristics of its neighboring gates. “Regular” standard cell design (e.g., logic bricks,

fixed-pitch polysilicon, etc.) has emerged to aid in reducing the context variability, but
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perfect regularity is costly to achieve. Thus, there is a tremendous need for intelligent

context models on the design-side of the DFM space. This means that studies of advanced

process node context should be conducted so that the results can be analyzed, and

intelligent models can be developed. Ultimately, this context dependency should be

included within variability models so that it can be accounted for by CAD tools at design-

time.

7.2.2  Library Characterization, Automation, and Optimization

The discussion of context dependency in the previous section is just one example of

the layout-level dependencies that occur in modern-day technology nodes. Other

examples (mentioned throughout this work) include the stress-based mobility dependence

and well proximity dependence present in today’s processes. While creating state-of-the-

art layouts, designers must now be aware of device context, active area size, gate-to-

contact spacing, and a number of other parameters that all affect transistor performance.

This is a large number of interactions to manage in every standard cell design, and the

magnitude of the interactions appears to be changing at every subsequent process node. In

order to truly optimize the 100’s of standard cells that appear in today’s libraries, some

level of automation is needed in order to achieve a certain amount of design efficiency.

Therefore, creating layout automation tools that understand all of the process-dependent

layout parameters and their interaction is an interesting and important area of research that

is essential for current and future process nodes.
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7.2.3  Further Exploration of Mechanical Stress

Aside from incorporating the knowledge of mechanical-stress-dependent layout

parameters into state-of-art layout automation tools, further exploration of the benefits and

limits of mechanical stress is also needed. The mechanical-stress-based work presented in

the previous three chapters relied on Technology-CAD (TCAD) tools to simulate and

characterize the amount of mobility-enhancement achieved after manipulating the

mechanical stress. However, the correlation between TCAD simulation and fabricated

device measurements is a topic that has not been well published. In order to evaluate the

full potential of stress-based mobility enhancement, actual silicon-based studies are

needed. These silicon test chips should explore and validate a number of areas:

• the layout dependence of stress and its correlation to TCAD (especially with

respect to the dependence on active area)

• the influence that various process structures (e.g., sigma-shaped eSiGe) have on

mechanical stress and its layout dependencies

• the variability of mechanical-stress-based enhancement and its overall impact on

performance variability (especially delay and leakage variability).

These types of studies are necessary to strengthen the case for stress-based-enhancement

and numerous research studies will have to be conducted to truly compare its merits to

dual-Vth optimization.
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