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Abstract 

 

Fear conditioning is a form of learning in which an initially neutral stimulus (e.g., 

tone or context) comes to be feared after being paired with an aversive stimulus 

(e.g., shock). After pairing, the neutral stimulus alone can elicit fear responses 

(e.g., freezing behavior, autonomic arousal, stress hormone release). The initially 

neutral stimulus is referred to as the "conditioned stimulus" (CS) once it is able to 

bring about fear responses on its own, the aversive stimulus is the 

"unconditioned stimulus" (US), and the fear responses elicited by the CS are the 

"conditioned responses" (CRs).  Fear extinction is a process by which the 

previously conditioned fear responses can be reduced by repeated presentation 

of the CS alone, in the absence of the aversive US. Fear conditioning and fear 

extinction are both critically dependent on the amygdala, a medial temporal lobe 

brain structure.  

 

Interestingly, it has been previously demonstrated that L-type voltage-gated 

calcium channels (L-VGCCs) have a role in fear conditioning, fear extinction, and 

amygdala neurophysiology. All of the studies implicating L-VGCCs in these 

phenomena used L-VGCC antagonists to demonstrate the role for L-VGCCs.  

There are two brain-expressed L-VGCCs, Cav1.2 and Cav1.3, both of which are 

the targets of currently-available L-VGCC antagonists.  In this dissertation, I 
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address the contribution of each of these L-VGCCs to fear conditioning, fear 

extinction, and amygdala neurophysiology using mouse models in which the 

genes for either Cav1.2 or Cav1.3 is deleted.  

 

First, I demonstrate that Cav1.3, but not Cav1.2, mediates consolidation of fear 

conditioning. Next, I show that neither Cav1.2 nor Cav1.3 alone is necessary for 

fear extinction.  Instead, I find that the L-VGCC antagonist nifedipine used in the 

previous experiments implicating L-VGCCs in fear extinction impairs locomotion 

and induces an aversive state. Further, I demonstrate that this aversive state can 

enter into associations with stimuli present at the time that it is experienced, 

suggesting that previous studies using nifedipine were likely confounded by drug 

toxicity. Finally, I show that Cav1.3 mediates long-term potentiation of afferents to 

the basolateral amygdala (BLA) as well as the afterhyperpolarization in principal 

neurons of the BLA. 
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Chapter I 

Introduction 

 

A short history of Pavlovian fear conditioning: 

Early in the 20th century, Russian physiologist Ivan Petrovich Pavlov undertook 

the study of a type of learning now commonly called Pavlovian, or classical, 

conditioning (Pavlov 1927). His motivation for embarking on this field of study 

was an observation he made while conducting experiments on the digestive 

system in dogs, experiments for which he won the Nobel Prize in Physiology or 

Medicine in 1904 (Pavlov 1967). During these experiments, he noticed that the 

dogs salivated not only when presented with food, but also in response to objects 

associated with feeding. From this observation he predicted that, if a particular 

stimulus in the dog’s environment was present when the dog was given food, 

then this stimulus would become associated with food and cause salivation on its 

own. This observation so intrigued Pavlov that he devised a systematic 

experimental approach for studying the phenomenon. 

 

In Pavlov’s experimental approach, he would ring a bell or deliver one of a wide 

variety of neutral stimuli, including whistles, metronomes, tuning forks, and a 

range of visual stimuli (Johnson 2008) just prior to delivering food to the 
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mouth of the dog. At first, the dog did not salivate until it got the food.  After a few 

repetitions, however, the dog started to salivate in response to the bell. Finally, 

Pavlov found that the dog would continue responding to the bell even if it was not 

followed by food—at least for a while. If Pavlov continued to ring the bell in the 

absence of food, then the dog would eventually stop salivating to the bell alone. 

He termed this phenomenon “extinction” and referred to the behavior as being 

“extinguished”. Pavlov called the food the unconditioned stimulus (US), that is, it 

was a stimulus to which the dog had a natural response. The response to the 

US, in this case salivation, was called the unconditioned response (UR). Once 

the bell came to elicit the UR, it was referred to as the conditioned stimulus (CS) 

and when it was the CS, rather than the US, that elicited the response, it was 

referred to as the conditioned response (CR; even if it might be the same 

behavior as the UR) (Pavlov 1927). Pavlov referred to this learned relationship as 

a “conditional reflex”, a term that was mistranslated from Russian as "conditioned 

reflex." Other scientists reading his work reasoned that since such reflexes were 

conditioned, they must be produced by a process called conditioning, thus this 

automatic form of learning has come to be known as Pavlovian, or classical, 

conditioning (Johnson 2008). 

 

Though Pavlov focused mostly on appetitive associative learning, his work has 

provided a framework for the study of aversive associative learning. Pavlov’s 

contemporary and fellow countryman, Vladimir Bekhterev, was the first to apply 

this framework to the study of aversive associative learning when he performed 
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the first fear conditioning studies nearly 100 years ago. In his initial experiments, 

volunteer human male subjects (Bekhterev also did similar experiments with 

dogs) were asked to sit in a chair, in an experimental room, and to rest one foot 

on a pedal connected to a electric shock generator. Then, sounds of a violin were 

delivered into the experimental room. The musical sounds alone would not cause 

any harm or fear. However, the experiment was designed so that every time the 

music was in the air, the patient received a brief, mild electric shock to his bare 

foot. Bekhterev found that relatively few such pairings were enough for the 

subject to learn to withdraw his foot whenever he heard the sounds of the violin. 

Applying Pavlov’s terminology to the above experiment, the music was the CS, 

the foot shock was the US, and foot withdrawal was the CR (Bekhterev 1923, 

Bourtchouladze 2004). Though I can find no record that Behhterev attempted to 

extinguish the foot withdrawal response in these men, one can imagine that if he 

had continued to play the music in the absence of delivering a footshock, the 

men might have discontinued withdrawing their feet in response to the music and 

Behhterev could have been said to have performed the first fear extinction 

experiment as well.  

 

The modern fear conditioning and fear extinction paradigms: 

Interestingly, the fear conditioning paradigm is not very different today from when 

Bekhterev performed the first fear conditioning experiments. Today, subjects 

more amenable to laboratory study studies than dogs, like mice and rats, are 

more commonly used. Humans are still used, but less frequently than mice and 
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rats. The electric shock, however, because of its resistance to habituation (the 

progressive decrease in behavioral response to repeated stimulation), continues 

to be the aversive stimulus of choice after all these years. In a typical modern-

day fear conditioning experiment, rodents are presented with an emotionally 

neutral stimulus, such as a tone or light, that is paired in time with an aversive 

US, usually a mild foot shock. Subsequent presentations of the previously-neutral 

stimulus elicit a range of fearful responses in rodents, including freezing 

behavior, the complete absence of non-respiratory movements (Fanselow 1980). 

In addition to freezing, autonomic arousal occurs, corticosteroid plasma levels 

increase, sensitivity to pain decreases, startle to unexpected, high intensity 

stimuli increases, and ongoing instrumental behavior ceases. Other phenomena 

associated with fear may also occur, including piloerection, defaecation and 

urination, and vocalization (Fanselow & Poulos 2005). The emergence of fear 

responses to the previously-neutral stimulus is taken as evidence for associative 

excitatory learning, associative because it depends on the co-occurrence of the 

CS and US, and excitatory because the CS now triggers a fear response that it 

did not trigger before the pairings.  

 

Fear extinction is the reduction of conditioned fear responses through repeated 

presentation of the CS in the absence of the aversive US. Fear extinction can 

eliminate all fearful responses with enough unpaired CS presentations, but does 

not reflect erasure of the original fear memory. The retention of the original 

association can be uncovered by a variety of maneuvers including changing the 



5 
 

test context (renewal) (Bouton & Bolles 1979), presenting unsignaled USs 

(reinstatement) (Rescorla & Heth 1975), or simply allowing time to pass 

(spontaneous recovery) (Baum 1988). Since no further CS–US pairing occurs to 

retrain the fear association, these phenomena argue that the original association 

must remain even after extinction and thus, rather than erasure, extinction 

appears to be new learning that acts to inhibit or compete with the original 

association. The extinction paradigm serves as an important model for inhibitory 

learning. Additionally, fear extinction may have implications for the treatment of 

fear disorders. 

 

Fear conditioning and fear extinction in human health: 

Everyone experiences fear. Fear serves an important survival function in 

animals, including humans. Humans are born with some innate fears including 

heights, sudden noises, potentially predatory animals (Adolph 2000, Anderssen 

et al. 1993), but they also have the ability to adapt based on experience (i.e., 

learn). Evolution has crafted this form of learning and it is generally 

advantageous. It allows humans to learn through life experiences about those 

aspects of the environment to which they do not have innate fear, but are 

dangerous and potentially threatening to survival. However, if errors in this 

process occur, it can be disadvantageous. Fear that is inappropriate, excessive, 

or prolonged can be problematic for both physiology (Sapolsky 1996) and 

emotional well being (McEwen & Sapolsky 1995)—such problems constitute the 

body of human health problems collectively referred to as ‘anxiety disorders.’ 
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Anxiety disorders include panic disorder, post-traumatic stress disorder, 

obsessive-compulsive disorder, generalized anxiety disorder, and phobias (social 

phobia, agoraphobia, and specific phobia). These disorders are not uncommon. 

Approximately 40 million American adults ages 18 and older, or about 18.1 

percent of people in this age group in a given year, have an anxiety disorder and 

thus represent a major public health problem (Kessler et al. 2005). Unfortunately, 

the causes of anxiety disorders are poorly understood and treatments for 

individuals with anxiety disorders are less effective than desirable. Current 

models of anxiety disorders suggest a role for fear conditioning  and extinction in 

the etiology,  maintenance, and treatment of anxiety disorders (Mineka & 

Oehlberg 2008). Thus, greater knowledge of the neurobiological basis of fear 

conditioning and extinction may allow for better understanding about how anxiety 

disorders develop and how they might be treated. The potential health benefits of 

expanded knowledge of fear conditioning and extinction are not limited to anxiety 

disorders. For example, anticipatory nausea and vomiting (ANV) in cancer 

chemotherapy patients results from conditioning to an aversive event. 

Anticipatory nausea and vomiting develops when a patient forms an association 

with nausea and vomiting (US) induced by cytotoxic chemotherapeutic agents 

and environmental stimuli associated with their administration  (Stockhorst et al. 

2007).  
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Clinically, principles of fear conditioning and extinction already guide some 

therapies. For example, systemic desensitization and flooding are used to treat 

some anxiety disorders. Systematic desensitization involves systematically 

exposing individuals to a feared object or situation in a gradually-increasing 

hierarchy, until the fear has been extinguished. Generally the therapy will involve 

the construction of a fear hierarchy of events that gradually escalate to exposure 

to the object of fear, moving upward through the steps in the hierarchy as the 

anxiety felt is lessened or eliminated (Frueh et al. 1997). Flooding similarly 

exposes the patient to a feared object or situation, but involves no hierarchy. 

Instead, the patient is exposed to their worst possible fear (within realistic safety 

limitations) and are prevented from escaping the situation until the fear is 

eliminated (Moulds & Nixon 2006).  Overshadowing and latent inhibition are two 

conditioning concepts that are sometimes used in addition to systematic 

desensitization to treat ANV (Figueroa-Moseley et al. 2007, Miller & Kearney 

2004, Stockhorst et al. 1993). The magnitude of aversion to the environmental 

cues present during chemotherapy sessions can be reduced by presenting a 

novel salient cue such as flavored drink during the chemotherapy session, or 

overshadowing the environmental cues with the novel salient cue. Latent 

inhibition is a process by which previous exposure to a stimulus prevents 

conditioned associations from being formed with that stimulus.  Anticipatory 

nausea and vomiting can be reduced by pre-exposing patients  to the 

environmental cues that will be present during the chemotherapy session (Hall & 

Symonds 2006). More and better therapies await greater understanding of the 
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neurobiology of fear conditioning and fear extinction. In particular, understanding 

the molecular mechanisms of fear conditioning and extinction may provide 

therapeutic targets for drugs that can be used as adjuncts to the therapies 

described above. 

 

The neurobiology of fear conditioning and fear extinction has been studied 

extensively.  As this knowledge grows, one can begin to form and test 

hypotheses about the mechanisms that might be altered in anxiety disorders and 

develop interventions for those with anxiety disorders or others that suffer 

symptoms resulting from forming an association with aversive events (e.g., AVN). 

Currently, the neurobiological literature on fear conditioning and fear extinction 

includes work conducted at multiple levels of analysis and aimed at 

understanding the anatomical substrates as well as the cellular and molecular 

mechanisms that contribute to these processes. 

 

The anatomy of fear conditioning—amygdala and hippocampus: 

The amygdala is the hub of fear memory circuitry. Within the amygdala, there are 

2 core nuclear groups: the basolateral amygdala (BLA; includes lateral nucleus, 

basolateral and basomedial nucleus) and central nucleus of the amygdala (CE). 

The BLA is the primary sensory input station of the amygdala (LeDoux et al. 

1990a).  CS information from the thalamus, hippocampus, and several cortical 

regions reach the BLA via glutamatergic projections.  
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The best-characterized pathway carrying information about the CS into the BLA 

is the thalamic pathway. The thalamic pathway contains fibers from the medial 

geniculate nucleus (MGN), the auditory relay nucleus of the thalamus. The MGN 

receives auditory information from the inferior colliculus, and lesions to either the 

MGN or inferior colliculus abolish fear conditioning to a simple auditory cue 

suggesting their importance in processing auditory CS information (LeDoux et al. 

1984). Downstream recipients of MGN projections include the auditory cortex 

and many subcortical structures, including the amygdala. Whereas lesions to the 

amygdala disrupt conditioning to an simple auditory cue (Iwata et al. 1986), 

lesions to the subcortical structures to which the MGN projects or to the auditory 

cortex do not affect conditioning to simple auditory cues (LeDoux et al. 1984). 

Together, these studies suggest that auditory information critical for fear 

conditioning to simple auditory cues passes from the inferior colliculus to the 

MGN and then projects via the thalamic pathway to the BLA. The thalamic 

pathway is sufficient for delay fear conditioning to simple auditory cues such as a 

tone. “Delay” fear conditioning refers to conditioning in which the CS onset 

occurs briefly before the US onset and terminates at either the time of US onset 

or US termination. However, when the CS is more complex, the thalamic 

pathway is insufficient. 

 

More complex CSs require greater processing and polysynaptic routes through 

cortical regions are necessary before CS information arrives at the BLA via the 

cortical pathway. In these cases, information about the environment in which the 
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shock is received during fear conditioning (i.e., contextual information) is more 

complex than a simple auditory tone and thus requires processing by the 

hippocampus and entorhinal cortex (Maren & Fanselow 1995, Anagnostaras et 

al. 1999) and perirhinal and postrhinal cortex (Amaral et al. 1992) before arriving 

at the BLA via the cortical pathway. Lesions to the ventral angular bundle (part of 

the cortical pathway from the hippocampus and entorhinal cortex), perirhinal 

cortex, and postrhinal cortex impair fear conditioning to context, but not simple 

auditiory cues (Bucci et al. 2000, Burwell et al. 2004, Maren & Fanselow 1995). 

When the ultrasonic distress call of a rat, rather than a simple tone, is used as 

the CS, information about the CS arrives at the BLA only after processing in the 

perirhinal cortex. Lesions to the perirhinal cortex impair conditioning to ultrasonic 

distress calls, but not simple auditory cues, further suggesting that complexity of 

the CS is a key determinant of the pathway by which CS information reaches the 

BLA (Lindquist et al. 2004). Another way to increase the complexity of the CS is 

to separate the CS from the US in time. That is, using a training protocol in which 

the CS terminates briefly before the US onset. Such a procedure is called “trace” 

conditioning (in contrast to “delay” conditioning described above). CS information 

in trace fear conditioning to a simple auditory cue requires processing by the 

hippocampus and anterior cingulate cortex. Lesions to the hippocampus disrupt 

trace fear conditioning to a simple auditory cue (McEchron et al. 1998). Lesions 

to the anterior cingulate cortex also disrupt trace fear conditioning to a simple 

auditory cue but spare context fear conditioning (Han et al. 2003).  
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Pain information representing the US (footshock) can arrive at the BLA from the 

posterior thalamus or insular cortex (Brunzell & Kim 2001, Shi & Davis 1999). 

Either of these routes is sufficient, but neither is necessary for fear conditioning. 

Combined lesions of both of these pathways impairs cue conditioning to tone, but 

context conditioning remains intact suggesting that there are alternative routes 

for US information to reach the BLA (Brunzell & Kim 2001).  

 

Though the BLA is the major site of CS and US input to the amygdala, the CE 

also receives sensory input. An early tracing study suggested that the auditory 

portions of the thalamus project only to the BLA (LeDoux et al. 1990b). A more 

recent tracing study suggests that the CE may also receive projections from the 

auditory portion of the thalamus (Linke et al. 2000). Pain information representing 

the US (footshock) arrives at the CE from subcortical structures such as the 

parabrachial nucleus, nucleus of the solitary tract, and the dorsal horn of the 

spine (Benarroch 2001, Rami Burstein 1993, Gauriau & Bernard 2002). In 

addition to receiving some sensory inputs, the CE is the major output station of 

the amygdala. The CE projects to areas of the brainstem and hypothalamus that 

control the expression of fear responses. Lesions to the CE interfere with 

behavioral responses (freezing), autonomic (sympathetic and parasympathetic) 

responses (Kapp et al. 1979, LeDoux et al. 1988), stress hormone (ACTH and 

glucocorticoid) release (Feldman & Weidenfeld 1997), potentiation of somatic 

reflexes (Canli & Braown 1996, Rosen et al. 1991), and changes in pain reactivity 

elicited by a CS (Helmstetter 1992, Watkins et al. 1993). 
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The classic model of fear conditioning circuitry in the amygdala proposes a serial 

circuit. In this model, it is posited that CS and US information arrives in the BLA 

where it undergoes association via a long-term potentiation-like mechanism. 

Then, the associative signal is relayed to the CE, where the expression of fear 

behavior is directed. In this model, the BLA is the site of convergence and critical 

plasticity. Evidence for this model is substantial. First, the BLA receives sensory 

information about both the CS and US. In fact, Romanski and LeDoux  (1993) 

showed that individual neurons in the BLA fire in response to presentation of both 

CS (clicks) and US (footshock). Second, lesions and temporary inactivation of 

the BLA during conditioning interferes with acquisition of conditioned fear 

(Phillips & LeDoux 1992, Maren et al. 2001, Wilensky et al. 1999). Third, BLA 

principal neurons exhibit LTP during fear conditioning (Rogan et al. 1997). 

Finally, disruption of molecular signaling mechanisms in the BLA prevents 

formation of long-term fear memories (Schafe et al. 2001). Key to this model is 

the assumption that there are direct projections from BLA to CE to brainstem. 

Unfortunately, there is no evidence that such projections actually exist (Pitkänen 

et al. 1997). Indeed, it is this fact that has led to the proposal of a new model, 

one in which the BLA and CE process information in parallel (Pare et al. 2004). 

  

In this emerging model, the intercalated cell masses (ICMs) play a central role. 

ICMs are dense clusters of GABAergic neurons located between the BLA and 

CE (Millhouse 1986). ICM neurons receive glutamatergic inputs from the BLA 
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and generate feed-forward inhibition in the CE (Royer et al. 1999a). The end 

result is the facilitation of CE output by the BLA. In this way, the BLA disinhibits 

CE output neurons, enabling synaptic plasticity in the thalamic inputs into CE. 

This model posits that distributed plasticity in thalamic afferents to both the BLA 

and CE is required for fear conditioning.  Like the earlier model, there is 

substantial evidence for this model. First, as described above, the CE likely 

receives information about both the CS and US. Second, blocking NMDA 

receptors (Gossens & Maren 2003) in the CE, or temporarily inactivating the CE 

during acquisition, blocks formation of long-term fear memories (Wilensky et al. 

2000). Finally, CE is capable of mediating fear conditioning on its own. This is 

illustrated in a study in which rats with BLA lesions can still acquire conditioned 

fear after extensive overtraining (Maren 1999b), mediated by the CE 

(Zimmerman et al. 2007). This observation cannot be explained by the serial 

model of CS and US processing in the amygdala, but rather supports the parallel 

processing model where CS and US information is processed in both the BLA 

and CE. 

 

In addition to the amygdala, the hippocampus is necessary for Pavlovian fear 

conditioning when the CS is stimuli that  happen to be present when the fearful 

stimulus is experienced (contextual conditioning), The hippocampus is not 

necessary when simple, discreet CSs like a tone or light are used (Kim & 

Fanselow 1992, Phillips & LeDoux 1992). This is consistent with the view that the 

hippocampus plays an important role in situations in which interrelations among 
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multiple stimuli are important (O'Keefe & Nadel 1978). It has been suggested that 

the hippocampus is required for assembling the elemental cues within a 

particular training context into a configural representation that then comes into 

association with the foot shock in the amygdala (Fanselow 2000). Evidence in 

support of this idea comes from a study in which hippocampus lesion-induced 

deficits in contextual fear conditioning can be eliminated if pre-exposure to the 

context occurs one month prior to lesioning and conditioning (Young et al. 1994). 

Presumably, formation of a context-US association and contextual conditioning 

proceeds normally in this case because the contextual representation was 

encoded and consolidated prior to the hippocampal damage. Context was the CS 

used throughout the studies presented in this dissertation since one of the mouse 

models employed (Cav1.3 knockout mice) cannot hear and the use of auditory 

CSs would have been impossible in these mice (Platzer et al. 2000).  

 

Long-term potentiation—a cellular mechanism for fear conditioning:  

It is widely believed that memories are established by alterations of synaptic 

connections in the brain.  How the brain accomplishes these changes is not well 

understood and is highly-debated. The leading candidate mechanism for fear 

memories is long-term potentiation (LTP) in the amygdala (Blair et al. 2001, Ki A. 

Goosens 2002, Maren 1999a).  LTP is a persistent, activity-dependent increase 

in synaptic transmission. Two characteristics of LTP that make it an attractive 

mechanism for learning and memory are (1) co-operativity and (2) associativity. 

Co-operativity refers to the fact that a neuron must be sufficiently depoloarized 
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before LTP can be induced in its afferents (McNaughton et al. 1978). Co-

operativity ensures that not every stimulus in the environment will lead to the 

formation of a memory trace. Associativity refers to the observation that pairing 

stimulation of a weak pathway with simulation of a strong pathway results in 

facilitation of synaptic transmission in both pathways (Kelso 1986). Associativity 

makes LTP suitable for encoding associations in the external world like that 

between CS and US. LTP was first described the hippocampus by Bliss and 

Lomo (Bliss & Lomo 1973). It has since been described in a number of brain 

regions, including the BLA (Bauer et al. 2002b, Chapman & Bellavance 1992, 

Chapman et al. 1990, Drephal et al. 2006, Maren & Fanselow 1995, Weisskopf et 

al. 1999) and CE (Samson & Pare 2005).  According to the current hypothesis, 

fear conditioning is mediated by an increase in the strength of synapses that 

transmit CS information to the neurons that are the site of convergence with 

information about the US. This site of convergence would be the BLA in the case 

of the serial model (described above) of CS and US processing in the amygdala 

or both the BLA and CE in the case of the parallel model (described above). The 

hypothesis assumes that prior to conditioning, the CS inputs to these neurons of 

convergence are weak and unable to elicit a fear response. US inputs to these 

neurons of convergence, however, are stronger and capable of eliciting robust 

responses. During fear conditioning, the weak CS inputs arrive at the neurons of 

convergence while they are being strongly depolarized by the US inputs to the 

same neurons. As a result, the CS inputs become stronger and more capable of 
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driving the neurons of convergence and their downstream effectors such that the 

CS can elicit fear responses on its own.  

 

Changes in neuronal excitability—another hypothesized neurobiological 
substrate for learning and memory: 
 
Though it is widely believed that LTP is a mechanism by which fear memories 

are encoded and stored, other mechanisms in addition to LTP may also play a 

role. It has been hypothesized that changes in neuronal excitability are a 

mechanism that may participate in the enccoding and storing memories (Zhang & 

Linden 2003). Though no studies have addressed learning-induced changes in 

neuronal excitability in the amygdala, it has been studied extensively in other 

brain structures. In Chapter 4 of this dissertation, I measure neuronal excitability 

in the BLA of a mouse model that is impaired in the ability to consolidate fear 

memories (Cav1.3 knockout mice). 

 

Experimentally, the afterhyperpolarization (AHP) and spike accommodation are 

used as measures of neuronal excitability. The AHP is a hyperpolarizing voltage 

deflection that follows a burst of action potentials and serves to limit firing to a 

sustained depolarizing input (Alger & Nicoll 1980, Hotson & Prince 1980, 

Madison & Nicoll 1984). The AHP is often described as having 3 components: a 

fast, medium and a slow AHP.  The fast AHP (fAHP) occurs immediately after 

individual action potentials and lasts only 1-5 ms. The medium AHP (mAHP) is 

typically observed after a burst of action potentials and has a decay constant of 

approximately 100 ms. The slow AHP (sAHP) has a time constant of 1-5 seconds 
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and is voltage-independent (Faber & Sah 2007). Spike accommodation is a 

phenomena in which the firing frequencies of successive action potentials to a 

sustained depolarization decays to a steady state, in some cases the neuron 

may even stop firing (Disterhoft & Oh 2007). Learning-induced changes in 

neuronal excitability have been studied extensively in the hippocampus and, to a 

lesser extent, cortex. For example, training in hippocampal-dependent tasks 

increases excitability (reduced AHP and spike accommodation) of neurons in the 

CA1 region of the hippocampus in multiple species, including rabbits, rats, and 

mice (Moyer Jr et al. 1996, Oh et al. 2003, Ohno et al. 2006). Similarly, increased 

excitability of neurons in the piriform cortex is observed following odorant-

discrimination learning (Saar et al. 1998) and neurons in the infralimbic prefrontal 

cortex exhibit decreased excitability (larger AHP and increased spike 

accommodation) after fear conditioning, an effect that is reversed by fear 

extinction (Santini et al. 2008). Additionally, neuronal excitability of CA1 neurons 

of the hippocampus decreases with age and correlates with age-related cognitive 

decline in performance on hippocampal-dependent learning and memory tasks 

(Disterhoft & Oh 2007). Manipulations that reverse the age-related decrease in 

neuronal excitability (Murphy et al. 2004, Oh et al. 1999) act to ameliorate the 

associated age-related cognitive impairments. Future study may demonstrate 

that this mechanism also functions in the amygdala to mediate fear memory. 
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The molecular mechanisms of fear conditioning: 

Calcium influx seems to be a critical first step in the molecular signaling 

mechanism that mediates fear conditioning. Blockade of either NMDARs 

(Miserendino et al. 1990, Maren et al. 1996) or L-type voltage-gated calcium 

channels (L-VGCCs) (Bauer et al. 2002a) in the BLA dramatically impairs fear 

conditioning. The combined calcium signal provided by these two sources 

triggers multiple intracellular events including activation of protein kinase second 

messenger pathways.  

 

The cyclic AMP-dependent protein kinase (PKA), protein kinase C (PKC), 

calcium-calmoduliin-dependent kinase (CaMKII), and extracellular signal-

regulated kinase/mitogen-activated protein (ERK/MAP) kinase have all been 

implicated in fear conditioning. Administration of PKA inhibitors to the cerebral 

ventricles (Bourtchouladze et al. 1998) or BLA (Schafe & LeDoux 2000) blocks 

fear conditioning. Transgenic mice that overexpress (R(AB)), and inhibitory 

isoform of PKA, exhibit  deficits in fear conditioning (Abel et al. 1997). Infusion of 

a PKA/PKC inhibitor into the BLA, but not CE, impairs fear conditioning (Goosens 

et al. 2000). Transgenic mice expressing a mutant form of CaMKII exhibit fear 

conditioning deficits (Mayford et al. 1996). PKA, PKC, and CaMKII are all known 

to converge on extracellular signal-regulated kinase/mitogen-activated protein 

(ERK/MAP) kinase signaling pathway (Adams & Sweatt 2002). Not surprisingly, 

ERK/MAP pathway activation is required for acquisition of fear memory (Schafe 

et al. 2000).  
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Activated kinases translocate to the nucleus, where they phosphorylate cAMP 

response element-binding protein (CREB). CREB binds to cAMP-response 

elements (CREs) in regulatory regions of target genes and stimulates  

transcription. The final step of this cascade is transient activation of genes 

involved in synthesis of proteins essential for modification of preexisting 

synapses and formation of new ones. Mice with disruption of the α and δ 

isoforms of CREB exhibit robust impairment in contextual and auditory fear 

conditioning (Bourtchouladze et al. 1994). It is interesting that many of the 

molecules that mediate fear conditioning also mediate BLA-LTP. 

 

The anatomy of fear extinction: basolateral amygdala and prefrontal cortex: 

Compared with fear conditioning, much less is known about the neurobiology of 

fear extinction, but knowledge in this area is rapidly expanding. The anatomy of 

fear extinction is one area in which considerable progress has been made. Many 

structures have been identified which seem to play some role in fear extinction, 

including sensory cortex (Armony et al. 1998, Falls & Davis 1993, Quirk et al. 

1997), periaqueductal gray (McNally 2005, McNally & Westbrook 2003), inferior 

colliculus (Heldt & Falls 2003), lateral septum (Yadin & Thomas 1996, Yadin & 

Thomas 1981, Yadin et al. 1993), bed nucleus of stria terminalis (Waddell et al. 

2006), and ventral and dorsal striatum (Josselyn et al. 2004). Three structures 

are particularly well studied: the amygdala, hippocampus, and prefrontal cortex. I 

will review the role of these three structures in fear extinction. 
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Evidence suggesting a role for the amygdala in fear extinction comes from 

infusion and in vivo electrophysiology studies. Lesion studies examining the 

contribution of the amygdala to extinction are problematic because, as described 

above, lesions of the lateral amygdala or central nuclei eliminate expression of 

conditioned fear. Clearly, it is impossible to study the extinction of fear responses 

that are no longer expressed.  

 

The first data implicating the BLA in fear extinction came from a study in which 

the NMDA antagonist 2-amino-5-phophonopentanoic acid (APV) was infused into 

the BLA in rats prior to fear extinction training (Falls et al. 1992). When retention 

of fear extinction was tested off-drug one day later, fear extinction was blocked in 

a dose-dependent manner. In a related experiment, the NMDA agonist d-

cycloserine infused to the BLA prior to fear extinction training facilitated fear 

extinction (Walker et al. 2002). These experiments, however, did not assess 

within-session extinction and therefore did not establish whether the effect of 

NMDA receptor manipulation was on acquisition or consolidation of extinction. 

Subsequently, local blockade of NMDA receptors in the BLA was shown to impair 

acquisition of extinction (Sotres-Bayon et al. 2007). Blockade of other molecules 

in the BLA, including MAPK  (Cyril Herry 2006) and metabotropic glutamate 

receptors (Kim et al. 2007), interfere with acquisition of extinction. Consolidation 

of extinction is dependent on protein synthesis in the BLA (Lin et al. 2003b) and 

interference with the kinases MAPK (Lu et al. 2001) and PI-3 kinase, (Lin et al. 
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2003b) orthe phosphatase calcineurin (Lin et al. 2003a)—all in the BLA—

prevents consolidation of extinction. 

 

In vivo electrophysiology studies also implicate the BLA in fear extinction. In one 

study, short latency (< 20 ms after tone onset) neuron spiking in the BLA was 

increased by fear conditioning and eliminated by fear extinction (Quirk et al. 

1995). A follow up study by the same group showed that there may be two 

groups of neurons in the BLA: one that exhibits CS-related activity at the 

beginning of extinction training and then stops, and one that continues to fire, 

though at a decreased level, throughout extinction training (Repa et al. 2001). 

Hobin et al. (2003) recorded BLA neurons several days after extinction. They 

found that when extinction retention was tested in the same context in which 

extinction training was performed, BLA neurons exhibited very little CS-related 

firing. However, when retention testing was done in another context, there was 

robust CS-related firing. These results highlight the context dependency of 

extinction and represent a cellular correlate of renewal. Together, the infusion 

study data and in vivo electrophysiology studies made a strong argument for the 

role of the BLA in fear extinction. 

 

The hippocampus also seems to be important for fear extinction. As fear 

extinction is a context-dependent phenomenon, this is not surprising. As 

mentioned above, fear responses can be uncovered following extinction by 

presenting unsignaled USs  in the same context in which training occurred 
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(reinstatement) (Rescorla & Heth 1975), or by altering the test context (renewal) 

(Bouton & Bolles 1979). The context modulation of fear extinction is dependent 

on the hippocampus. For example, lesions to the hippocampus or fimbria-fornix 

prior to fear conditioning abolish reinstatement (Wilson et al. 1995, Frohardt et al. 

2000).  

 

The role of the hippocampus in renewal is more complex. Permanent lesions to 

the hippocampus or fimbria-fornix prior to fear conditioning have produced 

inconsistent effects (Ji & Maren 2005, Wilson et al. 1995, Frohardt et al. 2000), 

but temporary inactivation of the hippocampus with the GABAA receptor agonist 

muscimol yields more consistent results. When the renewal context is different 

from the context in which extinction training occurred (i.e., AAB or ABC design) 

and muscimol is infused before the retention test, no renewal is observed. That 

is, freezing does not return in any context. This observation has been interpreted 

as meaning that the inactivation of the hippocampus prior to the retention test 

frees extinction from contextual gating. However, when the renewal context is the 

same as the conditioning context (i.e., an ABA design), muscimol infusions to the 

hippocampus prior to the retention test have no effect (Corcoran et al. 2005). 

That is, renewal is observed. The findings suggest that the mechanism for ABA 

renewal is different from that of AAB and ABC renewal. 

  

Temporary inactivation of the hippocampus with muscimol during extinction 

training leads to high levels of CS-associated freezing during the retention test no 
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matter which context is used during the retention test (Corcoran et al. 2005). 

There are three possible interpretations of this observation. The first and most 

interesting is that the high levels of freezing during the retention test represent 

renewal. That is, because the hippocampus was unable to encode the context 

during extinction training, it recognizes any context as a different context when 

hippocampus function is restored and renewal results as with any context shift. 

Second, it may reflect state dependency of the extinction effect since training 

occurred “on-drug” and the retention test occurred “off-drug.” Finally, the high 

levels of freezing to CS in all contexts may simply reflect a disruption of extinction 

consolidation by muscimol.  

 

A number of studies have implicated the medial prefrontal cortex (mPFC), 

generally, and the infralimbic (IL) cortex sub-region, specifically, in retention 

and/or expression of fear extinction. Evidence for a role for the mPFC in fear 

extinction is manifold and includes the following. First, fear extinction induces 

LTP in the mPFC and interference with this LTP impairs fear extinction (Farinelli 

et al. 2006, Sandrine Hugues 2006, Garcia et al. 2006, Herry & Garcia 2002, 

Herry & Garcia 2003, Herry et al. 1999). Second, unit recordings show increased 

CS-related activity during fear extinction (Milad & Quirk 2002). Third, 

microstimulation of the mPFC during extinction training reduces conditioned 

freezing and facilitates later retention of extinction (Milad et al. 2004). Fourth, 

immunocytochemistry shows increased expression of immediate early genes 

within mPFC following extinction training (Herry & Mons 2004, Santini et al. 
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2004). Finally, infusion of a protein synthesis inhibitor into the mPFC before 

extinction training (Santini et al. 2004) or a MAPK inhibitor immediately after 

extinction (Hugues et al. 2004) impairs extinction retention tested later in the 

absence of the drug. Despite all this evidence, there are studies that did not find 

a deficit in fear extinction after making lesions to the mPFC (Gewirtz et al. 1997, 

Garcia et al. 2006). 

 

Evidence suggests that the mPFC may mediate its effect on fear extinction by 

modulating amygdala activity. The IL cortex projects to BLA, CE, and the ICMs 

.(Sesack et al. 1989, Robert 2004) Stimulation of mPFC inhibits CE unit 

reponses to afferent stimulation (Quirk et al. 2003). The effect of mPFC 

stimulation upon BLA activity seems to be primarily inhibitory (Rosenkranz & 

Grace 2002, Rosenkranz et al. 2003), but one group reports that it is excitatory 

(Likhtik et al. 2005). The ICMs appear to be activated upon stimulation of the 

mPFC stimulation. This has not been ascertained directly, but activation of ICM is 

suggested by increased ICM expression of Fos following injections of a GABAA 

receptor antagonist into the IL cortex (Berretta et al. 2005). As ICMs are primarily 

GABA-ergic (L. Nitecka 1987), receive projections from the BLA and project to 

the CE (Millhouse 1986, Pare & Smith 1993), modulate CE excitability (Royer et 

al. 1999b), and exhibit synaptic plasticity (Royer et al. 1999a), it has been 

proposed that mPFC may modulate ICM activity either directly or indirectly (via 

the BLA) and thereby gate amygdala throughput and suppress triggering of fear 

responses in extinction (Pare et al. 2004).  
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LTP and neuronal excitability in mediating fear extinction: 

Evidence suggests, as with fear conditioning, that LTP is part of the mechanism 

of fear extinction. Above, I mentioned the appearance of LTP in the mPFC after 

fear extinction and that disrupting LTP impairs fear extinction. I described how 

LTP of afferents to the ICMs might participate in fear extinction. Additionally, it 

has recently been reported that changes in neuronal excitability occur in the IL 

cortex after Pavlovian fear conditioning and fear extinction (Santini et al. 2008). 

Neurons in the IL cortex become less excitable after fear conditioning, an effect 

that is reversed by fear extinction. The roles of LTP and neuronal excitability in 

mediating fear extinction are not well understood, but these early data suggest 

both processes might be important. 

 

The molecular mechanisms of fear extinction:  

Much of what is known about the molecular mechanisms of fear extinction was 

discussed above in the section that describes infusion studies in the BLA. There 

is evidence that endocannabinoids are involved in fear extinction, but they were 

not discussed  because their role has not been localized to the BLA. Cannabinoid 

receptor type 1 (CB1 receptor)-deficient mice are impaired in both short-term and 

long-term extinction of cue-conditionied fear. Systemic injection of the CB1 

receptor antagonist SR14176 blocks both short-term and long-term extinction of 

cue- (Marsicano et al. 2002) and contextually–conditioned fear (Suzuki et al. 

2004) . Importantly, neither CB1 receptor-deficient mice nor the CB1 receptor 
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antagonist- treated mice are impaired with respect to acquisition or consolidation 

of conditioned fear.  

 

Another class of molecules for which there is evidence for a role in fear extinction 

is L-VGCCs. L-VGCCs were not discussed in the earlier section because their 

role has not been localized to the BLA. Previous studies implicating L-VGCCs in 

fear extinction have relied on systemic administration of L-VGCC antagonists. 

The L-VGCC antagonists nifedipine and nimodipine block both short-term, within-

session extinction (i.e., acquisition of extinction) and long-term fear extinction 

(i.e., retention of extinction) when administered systemically prior to extinction 

training (Cain et al. 2002, Suzuki et al. 2004). Together with the evidence above 

for the role of NMDA receptors in fear extinction, this data suggests that calcium 

influx is critical for fear extinction. It is likely that this calcium influx is the first step 

in a signaling cascade. Indeed, as described above, the inhibition of a number of 

signaling molecules downstream of calcium influx blocks fear extinction. 

 
A molecular genetic approach to understanding L-VGCCs in fear 
conditioning, fear extinction, and amygdala function: 
 
On initial review of the literature relevant to fear conditioning and fear extinction, I 

was intrigued that L-VGCCs had been implicated in both the consolidation phase 

of fear conditioning and fear extinction. Absent from this literature was an 

information regarding which of the brain-expressed L-VGCC sub-types mediate 

these phenomena, because  all previous investigations used L-VGCC 

antagonists that block all subtypes of L-VGCCs. I thought that a molecular 
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genetic approach could provide subtype-specific information on the role of L-

VGCCs in fear conditioning and fear extinction. This dissertation describes my 

investigation into the specific roles of the two brain-expressed L-VGCCs, Cav1.2 

and Cav1.3, in fear conditioning and fear extinction using genetically modified 

mice. I also address the role of Cav1.3 in neurophysiological function of the BLA, 

a region critical for both fear conditioning and fear extinction. 

 

To assess Cav1.3 function, I used Cav1.3 knockout (KO) mice. In these mice, the 

gene for the pore-forming subunit of the Cav1.3 calcium channel (α1D) has been 

deleted by insertion of a neomycin cassette into exon 2 which results in a 

complete null mutation in all cells throughout development and in adulthood 

(Platzer et al. 2000). These mice have been demonstrated to have cardiac, 

endocrine, and hearing deficits (Platzer et al. 2000, Namkung et al. 2001). The 

cardiac phenotype of Cav1.3 knockout mice includes resting bradycardia and 

arrhythmia (Platzer et al. 2000). Body weight in these mice is decreased relative 

to their wild-type littermates, likely reflecting impaired pancreatic function. Beta-

cell death and a decreased number of pancreatic islets of Langerhan’s is 

observed along with hypoinsulinemia and impaired glucose tolerance in adult 

Cav1.3 knockout mice (Namkung et al. 2001). Additionally, these mice appear to 

be deaf due to inner hair cell dysfunction and cochlear sensory cell degeneration 

(Platzer et al. 2000). Neurological function in Cav1.3 knockout mice, however, 

has been shown to be largely normal. Thermal and mechanical nocioceptive 

thresholds are unaltered in these mice, as is the ability to exhibit NMDA-receptor 
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dependent and NMDA-receptor independent long-term potentiation in the CA1 

region of the hippocampus (Clark et al. 2003). 

 

Because Cav1.2 is critical for mouse development, mice in which the gene for 

Cav1.2 is deleted in all cells throughout development and adulthood could not be 

used to assess Cav1.2 function. Instead, mice in which the gene for Cav1.2 was 

deleted postnatally in alpha calcium calmodulin kinase II (αCaMKII) expressing 

neurons of the forebrain was used to assess Cav1.2 function. These mice were 

the generated using the loxP-Cre recombination system. In this system, DNA 

flanked by loxP sites (aka 'floxed') is deleted by the enzyme Cre recombinase. 

This system, has been used to generate mice with mutations limited to certain 

cell types (tissue-specific knockout) or mice with mutations that can be activated 

by drug administration (inducible knockout) (Sauer 1998). Experimental mice 

were generated by crossing mice heterozygous for the floxed CaV1.2 gene 

(CaV1.2f/+ mice) with transgenic mice that expressed Cre-recombinase (Chen et 

al. 2006) driven by the αCaMKII promoter.  Alpha-CaMKII reaches peak 

expression levels postnatally (Sugiura & Yamauchi 1992, Kelly et al. 1987) and is 

restricted glutamatergic neurons of the forebrain (Chen et al. 2006).  Offspring 

from this cross that were heterozygous floxed and Cre positive (i.e. CaV1.2f/+, 

CaMK-CreCre/+) were then intercrossed (non-sibling) with mice heterozygous 

floxed and Cre negative (i.e. CaV1.2f/+, CaMK-Cre+/+) to achieve the following 

genotypes:  conditional knockout mice (CaV1.2f/f, CaMK-CreCre/+); wild-type mice 

(CaV1.2+/+, CaMK-Cre+/+); floxed controls (CaV1.2f/f, CaMK-Cre+/+) and Cre 
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controls (CaV1.2+/+, CaMK-CreCre/+) all on an F2 129Sve:C57Bl/6 hybrid 

background.  For ease of reading, conditional knockout mice (CaV1.2f/f, CaMK-

CreCre/+) are referred to as CaV1.2cKO throughout the remainder of the 

dissertation. These mice have been previously been demonstrated to be 

impaired in the ability to consolidate remote spatial memories (White et al. 2008). 

Using a strain of mice in which the gene for Cav1.2 was homozygously deleted in 

the forebrain and heterozygously deleted in the rest of the body, Moosmang et al. 

(2005) found that Cav1.2 is important for hippocampus function. These mice were 

impaired on two different hippocampus-dependent learning tasks and NMDA 

receptor-independent LTP in the CA1 region of the hippocampus. The MAPK 

signaling pathway and CREB-mediated transcription were also disrupted in CA1 

pyramidal neurons isolated from these mice (Moosmang et al. 2005).  

 

I demonstrate that Cav1.3 knockout mice mice are impaired with respect to 

consolidation of contextually-conditioned fear. However, they can extinguish 

contextually-conditioned fear as effectively as wild-type mice and exhibit no other 

neurological abnormalities. Results are presented in Chapter 2 and were 

published in Learning and Memory (McKinney & Murphy 2006).  

 

Next, I studied CaV1.2cKO mice. Surprisingly, I found that these mice were 

capable of consolidating and extinguishing conditioned fear as effectively as wild-

type mice. I concluded that neither of the brain-expressed L-VGCCs are required 

for fear extinction. On further investigation, I demonstrated that previous studies 
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were likely confounded by an aversive state induced by L-VGCC antagonists. 

These findings appear in Chapter 3 and were published in Learning and Memory 

(McKinney et al. 2008).  

 

Finally, I assessed field potential LTP in the BLA following high-frequency 

stimulation of external capsule fibers and used whole-cell patch clamp to assess 

excitability of BLA principal neurons by measuring the AHP and spike 

accommodation. I found that Cav1.3 KO mice exhibit impaired LTP and 

enhanced neuronal excitability. These data are presented in Chapter 4 and are 

currently in preparation for journal submission. It is my hope that these findings 

have contributed to the understanding of the neurobiology of fear, fear 

conditioning, and fear extinction. Ultimately, I hope these findings will lead to a 

better understanding of the neurobiological substrates that underlie anxiety 

disorders, and contribute to improved treatments for those that suffer from them. 
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Chapter II 

The L-type voltage-gated calcium channel Cav1.3 mediates consolidation, 
but not extinction, of contextually-conditioned fear in mice 

 

 

Abstract: 

Using pharmacological techniques, it has been demonstrated that both 

consolidation and extinction of Pavlovian fear conditioning are dependent to 

some extent upon L-type voltage gated calcium channels (LVGCCs). Although 

these studies have successfully implicated LVGCCs in Pavlovian fear 

conditioning, they do not provide information about the specific LVGCC isoform 

involved.  Both of the major LVGCC subtypes found in the brain (Cav1.2 and 

Cav1.3) are targets of the pharmacological manipulations used in earlier work. In 

this study, we employed mice in which the gene for the pore-forming subunit 

(α1D) of Cav1.3 was deleted (Cav1.3 knockout mice) to elucidate its contribution 

to consolidation and extinction of conditioned fear. We find that the Cav1.3 

knockout mice exhibit significant impairments in consolidation of contextual fear 

conditioning.  However, once sufficiently over-trained, the Cav1.3 knockout mice 

exhibit rates of extinction that are identical to that observed in wild-type mice.  

We also find that Cav1.3 knockout mice 
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perform as well as wild-type mice on the hidden platform version of the Morris 

water maze, suggesting that the consolidation deficit in conditioned fear 

observed in the Cav1.3 knockout mice is not likely the result of an inability to 

encode the context, but may reflect an inability to make the association between 

the context and the unconditioned stimulus. 

 

Introduction: 

In Pavlovian fear conditioning, pairing a conditional stimulus (CS) with an 

aversive unconditional stimulus (US) results in a conditioned fear response. A 

fear response is said to be contextually-conditioned when it is elicited by the 

context in which the US was delivered. In this case, the context serves as the CS 

(for recent review see (Fanselow & Poulos 2005)). After contextual fear 

conditioning, extended exposure to the context in the absence of the US results 

in reduced probability and amplitude—or extinction—of the conditioned 

response. Both consolidation and extinction of conditioned fear have been 

demonstrated to be critically dependent on the amygdala (for review see (Maren 

2003).  

  

Recently, many studies have investigated the molecular basis of fear 

conditioning and its extinction in rodents. Molecules involved in synaptic 

plasticity within the amygdala have been of particular interest. In light of 

evidence that a form of long-term potentiation (LTP) that depends on L-type 

voltage-gated calcium channels (LVGCCs) exists in the amygdala (Weisskopf et 
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al. 1999), multiple groups have explored the role of LVGCCs in fear conditioning 

and its extinction. In rats, blockade of LVGCCs in the lateral amygdala impairs 

consolidation of auditory conditioned fear (Bauer et al. 2002). Systemic blockade 

of LVGCCs in mice, however, does not impair the acquisition, consolidation, or 

expression of conditioned fear, but rather its extinction (Cain et al. 2002, Suzuki 

et al. 2004). Demonstration that infusions into the basolateral amygdala of an 

LVGCC antagonists block, whereas infusions of an LVGCC agonist facilitate, 

extinction of conditioned fear in mice provides additional support for the 

importance of LVGCCs in extinction of conditioned fear (Barad 2005).  

  

Thus far, studies of the role of LVGCCs in fear conditioning and its extinction 

have relied solely on pharmacological techniques. Though these techniques are 

powerful in elucidating a prominent role for LVGCCs in conditioned fear, they do 

not allow for identification of the specific LVGCCs involved. There are two major 

subtypes of brain LVGCCs, Cav1.2 and Cav1.3, both of which are the targets of 

pharmacological manipulations. In this study, we employ mice in which the gene 

for the pore-forming subunit (α1D) of the Cav1.3 L-VSCC subtype has been 

deleted (Cav1.3 knockout mice; a generous gift from D. James Surmeier, 

Northwestern University) to elucidate its contribution to consolidation and 

extinction of contextually-contextual conditioned fear. 

 

Results: 

General Neurological Screen 
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It has been previously reported CaV1.3 homozygous knockout mice are by and 

large neurologically normal (Clark et al. 2003).  Similarly, we found that deletion 

of CaV1.3 does not result in significant impairments in vestibular function, 

spontaneous locomotor activity, or anxiety-like behavior. CaV1.3 KO mice (n = 6) 

were not significantly different when compared to WT (n = 6) mice on the rotarod 

(Figure 2-1A) as both groups exhibited significant improvement in performance 

as training progressed (F(1,10) = 27.1, p < 0.05 for effect of training) and there 

was no significant effect of genotype (F(1,10) = 2.35, p > 0.05).  We did not find 

any significant difference between the CaV1.3 KO mice (n = 6) and their WT 

littermates (n = 5) in the open field (Figure 2-1B).  The total distance traveled by 

the CaV1.3 KO mice (702 ± 215 cm) was not significantly different when 

compared to WT mice (612 ± 118 cm; t(9) = .35, p > 0.05). In addition, we 

quantified the ratio of distance spent in the center of the open field as a function 

of the total distance traveled (Figure 2-1C) as a measure of anxiety-like behavior 

(Crawley 1999).  The ratio of center distance to total distance traveled in the 

open field did not differ between CaV1.3 KO mice (center: total ratio 0.426 ± 

0.159) and WT mice (0.351 ± 0.127; t(9) = 0.36, p > 0.05) suggesting that deletion 

of CaV1.3 did not affect  anxiety-like behavior.  However in contrast to the earlier 

report by Clark et al, we did not find any significant difference in body weight in 

the CaV1.3 KO mice (N = 7; 18.3 ± 0.83 g) when compared to WT littermates (N 

= 6; 19.3 ± 0.72; t(9) = 0.82, p > 0.05) (Figure 2-1D). 
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Cav1.3 KO mice are impaired on consolidation of contextually-conditioned 

fear 

As outlined above, pharmacological blockade of L-type calcium channels 

disrupts consolidation of conditioned fear (Bauer et al. 2002); therefore we 

sought to determine the relative contribution of the CaV1.3 isoform during the 

consolidation of conditioned fear.  For these experiments three separate groups 

of CaV1.3 KO mice and their WT littermate controls were conditioned with a 

single unsignaled footshock (see Methods and Materials).    Results are shown 

in Figure 2-2. During conditioning, neither CaV1.3 KO nor WT mice in any of the 

three groups froze significantly during the 3 minutes preceding the shock. Each 

group was returned to the conditioning chambers at a different time point after 

conditioning. Mice returned to the conditioning chambers 1 hour (N = 8  for KO 

and WT) or 6 hours (N = 8 for KO and WT) after conditioning exhibited significant 

freezing compared to before conditioning (F(1,14) = 27.8, p < 0.05 and F(1,14) = 

25.4, p < 0.05 respectively for effect of conditioning), however there was no 

effect of genotype at either the 1 hour (F(1,14) = 2.2, p > 0.05; Figure 2-2A) or 6 

hour (F(1,14) = 1.4, p > 0.05; Figure 2-2B) time point. Similarly, mice returned to 

the conditioning chambers 24 hours (N = 8 & 11 for KO and WT respectively) 

after conditioning exhibited significant freezing (F(1,17) = 64.5, p < 0.05 for effect 

of conditioning) compared to before conditioning.  However, at the 24 hour time 

point, the CaV1.3 KO mice exhibited significantly less freezing (14.9 ± 4.2 %) 

when compared to their WT littermates (37.9 ± 4.6 %; Figure 2-2C) with a 

significant main effect of genotype (F(1,17) = 12.2, p < 0.05) and training x 
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genotype interaction (F(1,17) = 13.1, p < 0.05).  It is important to note that deletion 

of CaV1.3 had no effect on postshock freezing measured for 30 seconds after the 

footshock in the 24 hour group.  Both KO and WT mice exhibited substantial post 

shock freezing (20.9 ± 9.2% for KO and 26.7 ± 6.3% for WT;  F(1,17) = 19.0, p < 

0.05 for effect of training), however, there was no main effect of genotype on 

post-shock freezing (F(1,17) = 0.2, p > 0.05) and the effect of the shock did not 

interact with genotype (F(1,17) = 0.3, p > 0.05) suggesting that foot shock 

sensitivity and US processing were not disrupted in KO mice.   

 

The absence of an effect of genotype immediately following the shock or at 1 

hour and 6 hours after training suggests that acquisition of contextually-

conditioned fear is intact in CaV1.3 KO mice. However, that an effect of genotype 

arises 24 hours after training argues that CaV1.3 KO mice are impaired with 

respect to consolidation of contextually-conditioned fear.   

 

We also obtained similar results with mice in a C57BL/6 genetic background, 

however the deficit was somewhat more pronounced.  After 2 days of context 

conditioning (1 unsignaled shock per day, as above) both the CaV1.3 KO (n = 8) 

and WT mice (n = 11) exhibited an increase in conditioned fear on day 3 (F(2,34) = 

25.9, p < 0.05 for the effect of training).  However, the average percent time 

freezing in the CaV1.3 KO mice after 2 days of training (13.8 ± 2.8 %)  was 

significantly less than that observed for the WT mice (33.5 ± 7.4 %).  A repeated 

measures ANOVA revealed a significant effect of genotype (F(1,17) = 5.0, p < 
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0.05) and a significant interaction between genotype and training (F(2,34) = 4.2, p 

< 0.05).  Thus in 2 different genetic backgrounds, deletion of the CaV1.3 pore-

forming subunit results in disrupted contextual fear conditioning. These results 

are consistent with previous experiments demonstrating that L-type calcium 

channel antagonists disrupt consolidation of conditioned when infused directly 

into the lateral amygdala (Bauer et al. 2002). 

 

 

 

Extinction of contextually-conditioned fear is normal in Cav1.3 KO mice 

Our preliminary experiments suggested that the impairment in consolidation of 

contextually-conditioned fear exhibited by the CaV1.3 KO mice in the F2 hybrid 

background could be overcome by additional training. Thus, we used a separate 

group of mice to test extinction of contextually-conditioned fear (Figure 2-3).  For 

this experiment, CaV1.3 KO mice (N = 17) and WT mice (N = 20) were 

conditioned as before, but an additional day of training was administered so that 

extinction learning could be examined (see Methods and Materials).  On the 

following day approximately one half of the mice (9 KO mice and 12 WT mice) 

were returned to the conditioning chambers for a 30 minute extinction session 

and contextually-conditioned fear was assessed by measuring freezing 

throughout the session.  The remaining mice (8 KO mice and 8 WT mice) were 

not re-exposed to the context (retention control groups). Neither CaV1.3 KO nor 

WT littermates froze significantly during the 3 minutes prior to the shock on day 
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one (Figure 2-3A). Consistent with our previous results, CaV1.3 KO exhibited 

significantly less freezing than WT littermates on day 2, 24 hours following a 

single training trial (F(1,35) = 4.3, p < 0.05; Fig. 3A). However, CaV1.3 KO and WT 

littermates exhibited similar levels of freezing during the first 3 minutes of context 

exposure on day 3, 24 hours after a second training trial (F(1,19) = 0.05, p > 0.05; 

Fig. 3A). This confirmed that the additional training was sufficient for CaV1.3 KO 

mice to overcome their impaired ability to consolidate contextually-conditioned 

fear after a single training trial. Across the 30 minute extinction session, both the 

CaV1.3 KO and WT mice exhibited significant extinction of contextually-

conditioned fear (F(1,19) =53.2, p < 0.05 for the effect of CS exposure) with the 

CaV1.3 KO mice freezing on average 21.1 ± 4.0 % during the last 10 minutes of 

CS exposure while the WT mice similarly froze on average 23.3 ± 5.6% during 

the same time interval (Figure 2-3B).  This observation coupled with the fact that 

there was no significant difference between genotypes during the session (F(1,19) 

= 0.51, p > 0.05) demonstrates that the CaV1.3 L-type calcium channel isoform is 

not required for short-term extinction of conditioned fear.  Twenty-four hours 

later, all of the mice were returned to the conditioning chambers for a 5-minute 

exposure to the context (Figure 2-3C).  CaV1.3 KO mice in the retention control 

group exhibited robust freezing (46.4%) as did their wild-type littermates 

(48.9%).  In contrast, all mice in the extinction group froze significantly less with 

the CaV1.3 KO mice freezing only 15.4 % of the time, while the WT mice froze 

slightly more at 26.4 %.  A two-way ANOVA revealed a significant effect of group 

(F(1,33) = 16.9 p < 0.05) with no significant effect of genotype (F(1,33) = 1.1 p > 
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0.05).  Taken collectively, these data demonstrate that CaV1.3 is not involved in 

short or long-term extinction of conditioned fear.   

 

Cav1.3 KO mice are not impaired on the hippocampus-dependent version 

of the Morris water maze 

There are numerous reports demonstrating that the dorsal hippocampus is 

critically involved in contextually conditioned fear (e.g.  (Daumas et al. 2005, Kim 

& Fanselow 1992)) whereas cued conditioning (where the CS is a tone for 

example) is thought to be critically dependent on the amygdala but less 

dependent on the hippocampus (see (Fanselow & Poulos 2005) for recent 

review). Because the CaV1.3 KO mice are deaf (Platzer et al. 2000), tone-cued 

fear conditioning could not be used as a means to dissociate which anatomical 

location was impacted by the deletion of CaV1.3.  Instead, we sought to assess 

hippocampal function in the CaV1.3 KO mice by examining their ability to encode 

spatial information in the Morris water maze (MWM). 

  

Both CaV1.3 KO mice (N = 7) and WT littermates (N = 9) were trained 2 trials a 

day for 6 days on the hidden-platform version of the MWM. Acquisition data is 

shown in Figure 2-4A. The latency to reach the platform in both groups 

decreased as training progressed reaching an average escape latency of 17.5 ± 

3.2 sec for the CaV1.3 KO mice and 21.6 ± 3.5 sec for the wild-types.  There was 

a main effect of training day on the latency to find the hidden platform (F(5,70) = 

10.9 p < 0.05) however there was no main effect of genotype on latency (F(1,14) = 
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0.13; p > 0.05) and no interaction between training day and genotype (F(5,70) = 

0.77; p > 0.05). These data suggest that CaV1.3 KO and WT mice acquire the 

hidden-platform version of the MWM equally well. 

  

In addition to measuring latency to platform during the training trails a probe trial 

was conducted 24 hours after completion of the last training trial on day 6.  

Probe trial data are shown in Figure 2-4B.  During the probe trial, the CaV1.3 KO 

mice spent significantly more time (45 ± 5.5%) in the quadrant where the 

platform was previously located (training quadrant TQ in Figure 2-4B) than 

would be predicted by chance (t(8) = 3.7 p < 0.05 single group t-test compared to 

25%).  Similarly, the WT mice spent the majority of the probe trial (39.9 ± 4.1%) 

selectively searching in the training quadrant (t(8) = 3.6 p < 0.05 single group t-

test compared to 25%).  However there was no significant difference in the 

amount of time that the CaV1.3 KO mice spent in the training quadrant compared 

to their WT littermates (t(14) = 0.8; p > 0.05 unpaired t-test).  In addition, these 

same mice were tested in a non-spatial, non-hippocampal dependent version of 

the Morris water maze in which the escape platform was clearly marked with a 

small flag.  When the platform was marked in this manner, both groups found the 

platform with minimal latencies and exhibited comparable swim speeds (Figure 

2-4C).  These results demonstrate that the hippocampal function in the CaV1.3 

KO mice is not overtly disrupted and therefore suggest that the deficits observed 

in the fear conditioning experiments are likely the result of impaired functioning in 

the amygdala. 
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Discussion: 

The principal finding of the present study is that Cav1.3 KO mice are impaired in 

their ability to consolidate contextually-conditioned fear. In addition, we find that 

deletion of the CaV1.3 gene does not alter extinction of contextually-conditioned 

fear in these mice.  These results indicate that the L-type calcium channel 

Cav1.3 is critical for normal consolidation, but not extinction, of contextually 

conditioned fear.  These results are to our knowledge the first demonstration of 

an isoform specific role for L-type calcium channels in Pavlovian conditioned 

fear.  In our hands these mice appear to have normal weight gain and normal 

performance on the rota-rod and in the open field.  In addition, we found no 

significant difference between CaV1.3 KO mice and their wild-type littermates in 

the visible platform version of the Morris water maze. Taken collectively,  these 

data are consistent with a previous study (Clark et al. 2003) which found that the 

CaV1.3 KO mice were neurologically normal and strongly suggest that the deficit 

in consolidation of contextually-conditioned fear is not the result of gross 

neurological impairment.     

  

Consistent with the results of the present study is the demonstration in rats that 

blockade of LVGCCs in the lateral amygdala impairs acquisition of long-term 

auditory conditioned fear (Bauer et al. 2002). The results of this study, however, 

are inconsistent with those from a study in which systemic blockade of LVGCCs 

did not block consolidation of conditioned fear (Cain et al. 2002). There are a few 
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issues that may account for the inconsistency. First, it is difficult know the degree 

to which LVGCC activity in general, and Cav1.3 activity in particular, were 

blocked by the various LVGCC antagonists used in Cain et al. 2002.  In 

heterologous expression systems, dihydropyridine antagonists like nifedipine 

and nimodipine are significantly less efficient at blocking Cav1.3 currents than 

Cav1.2 currents (Koschak et al. 2001, Xu & Lipscombe 2001). It is possible that 

the residual activity resulting from incomplete blockade of Cav1.3 would be 

sufficient to allow for consolidation of conditioned fear. Second, differences in 

training protocol may account for these apparent inconsistencies. The training 

protocol used by Cain and colleagues (Cain et al. 2002) involved one session in 

which 5 shocks were administered and thus was quite intense. This is in contrast 

to the single shock used in the present study. Our conditioning protocol produces 

a more gradual learning curve and may be more sensitive in revealing subtle 

changes in learning produced by Cav1.3 deletion. Others have used similar 

conditioning protocols to examine subtle effects on acquisition of conditioned 

fear (Young & Fanselow 1992). The number of conditioning trials seems 

particularly important in light of the fact that, in our experiments, additional 

training trials are sufficient to overcome the impairments in acquisition of 

conditioned fear observed after a single training trial.  Further supporting the 

importance of training trials is the observation that overtraining can mitigate the 

detrimental effects of basolateral amygdala lesions on acquisition of contextual 

fear conditioning in rats (Maren 1998, Maren 1999).  
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Acquisition of contextually-conditioned fear is thought to be dependent on both 

the amygdala and hippocampus   (Blanchard et al. 1970, Kim & Fanselow 1992, 

Maren et al. 1997, Phillips & LeDoux 1992).  Because the knockout mice used in 

the present experiments lack CaV1.3 in both of these brain regions it is not 

possible at this point to definitively know if the hippocampus, amygdala or both 

areas are impacted by the loss of CaV1.3.  However, it is widely thought that 

during context conditioning, the hippocampus acts to integrate the many 

elements of the context in to a functional representation (Rudy et al. 2002).  

Thus, the observation that the CaV1.3 KO mice exhibited no impairments in the 

hidden platform version of the Morris water maze, leads us to conclude that the 

CaV1.3 KO mice can, in fact, form a spatial representation and that hippocampus 

function is intact in these mice.  Therefore it seems likely that the deficits 

observed in the CaV1.3 KO mice are the result of a disruption of neuronal 

function within the amygdala proper.  This is of particular interest given that long-

term potentiation (LTP), a form of synaptic plasticity thought to be a cellular 

substrate of learning and memory, is L-type calcium channel dependent in the 

amygdala (Bauer et al. 2002).  Impaired consolidation of contextually-

conditioned fear in CaV1.3 KO mice may represent a disruption of this putative 

cellular substrate of learning and memory in the amygdala and thus serve as an 

excellent model for studying the relationship between LTP in the amygdala and 

contextual fear conditioning. Interestingly, it was recently reported that LTP of 

synapses in the lateral amygdala, whose presynaptic neurons arise in the cortex 

and hippocampus, can be specifically blocked by the L-type calcium channel 
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antagonist nifedipine (Drephal et al. 2006). This is important as it demonstrates 

an L-type calcium channel dependent communication between two brain 

structures known to be critical for contextually-conditioned fear. 

   

Despite impaired consolidation of contextually-conditioned fear, CaV1.3 KO mice 

extinguish contextually-conditioned fear normally.  In light of previous 

experiments demonstrating that systemic injections of nifedipine/nimodipine can 

block extinction of context fear (Cain et al. 2002) our results would suggest that 

CaV1.3 is not the key LVGCC isoform involved in this process and instead point 

to CaV1.2 as the likely candidate.  Indeed it has recently been reported that 

CaV1.2 is found in abundance within the basolateral amygdala and is primarily 

found on the in soma and dendrites of pyramidal neurons but is occasionally 

found on inhibitory interneurons (Pinard et al. 2005). While similar 

immunohistochemical data regarding the cellular and subcellular distribution for 

CaV1.3 within the amygdala is lacking, these data open up the intriguing 

possibility that two different isoforms of the same calcium channel sub-type might 

subserve two fundamentally different forms of learning.  These data also suggest 

that any therapeutic interventions designed to treat emotional disorders in 

humans by pharmacologically manipulating LVGCCs will likely need to achieve 

sufficient specificity to distinguish the CaV1.2 and CaV1.3 isoforms.  

 

Materials and Methods: 

Mice 
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For all experiments, both male and female Cav1.3 knockout (KO) mice and their 

wild-type littermates (WT) were used. All mice were between 2-4 months old at 

the time of testing. In the KO mice, the gene for the pore-forming subunit of the 

Cav1.3 calcium channel (α1D) has been deleted by insertion of a neomycin 

cassette into exon 2 which results in a complete null mutation (Platzer et al. 

2000).  Mice were maintained on a C57BL/6 background by successively 

crossing heterozygous offspring with C57BL/6 wild-type mice purchased from 

Taconic Farms (Hudson, NY).  The majority of the experiments were conducted 

on mice on a C57BL/6:129Sve F2 Hybrid background.  We also did a small 

subset of fear conditioning experiments using mice on a C57BL/6 genetic 

background as noted in the results section. 

 

Open field 

The open field chamber was a white acrylic box (71 x 71 x 30 cm) in room lit by 

indirect white light. Mice were placed singly in the center of the chamber and 

allowed to explore for 5 minutes. The open field was divided into a center zone 

and a peripheral zone. Total distance traveled and center distance: total distance 

ratio were calculated.  

 

Rotarod 

Mice were placed on the rotating drum of an accelerating rotarod (UGO Basile 

Accelerating Rotarod) and the time each mouse was able to walk on top of the 

drum was measured. The speed of the rotarod accelerated from 4 to 40 rpm 



57 
 

over a 5-minute period. Mice were given 1 trial/day for 5 days with a maximum 

time of 300 seconds (5 minutes). 

Pavlovian Fear Conditioning 

Each of the 4 conditioning chambers was equipped with a stainless steel grid 

floor designed for mice (Med Associates: St Albans, VT). The grid floor was 

positioned over a stainless steel drop-pan which was lightly cleaned with 95% 

ethyl alcohol to provide a background odor. The front, top, and back of the 

chamber were made of clear acrylic and the two sides made of modular 

aluminum. The conditioning chambers were arranged in a 2 × 2 configuration on 

a steel rack. The rack was positioned in an isolated room lit by overhead 

fluorescent lighting.  Each chamber was connected to a solid-state shock 

scrambler and each scrambler was connected to an electronic constant-current 

shock source which was controlled via an interface connected to a Dell Windows 

XP computer running Actimetrics FreezeFrame software (Actimetrics; Evanston 

IL).  Four cameras were mounted (one above each chamber) to the steel rack, 

and video signals were sent to the same computer.  Freezing was assessed 

using the Actimetrics FreezeFrame software which digitizes the video signal at 4 

Hz and compares movement frame by frame to determine the amount of 

freezing. 

Contextual fear conditioning:  Mice were transferred from their home cages into 

the conditioning chambers individually in groups of 4 at one time.    During 

conditioning, mice were placed in the chamber for three minutes prior to the 

onset of the US (2 sec 0.50 mA foot shock). Thirty seconds after the footshock 
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mice were removed from the chambers and returned to their home cages.  

Contextual conditioning was assessed in different groups of mice 1 hour, 6 

hours, and 24 hours after conditioning by returning mice to the same chambers 

and measuring freezing during a 3 minute shock-free test session.  

 

Extinction of contextually-conditioned fear:  Behavioral training proceeded in 

three phases: fear acquisition, fear extinction, and testing. During the acquisition 

phase, mice were conditioned as described above, However, because CaV1.3 

KO mice exhibited impairments with respect to contextually-conditioned fear 

following a single training trial (see results); an additional training trial was 

administered by delivering a single shock immediately following the 3-minute 

shock-free test session on the 2nd day. As with the first training trial, mice were 

removed from the chambers 30 seconds after the shock. The following day (the 

3rd day), mice were returned to the same chambers and contextual conditioning 

was again assessed by measuring freezing during a 3-minute shock-free test 

session. Because contextually-conditioned fear does not differ significantly 

between KO and WT mice on the 3rd day, following two training trials,  mice were 

left in the chambers for an additional 27 minutes following the 3-minute test 

session on the 3rd day (30 minute total) to extinguish contextually-conditioned 

fear. An additional control group of CaV1.3 KO and WT mice (the retention 

control group) was included in this experiment.  These mice received the exact 

same training as described above but were not given the 30 minute extinction 
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trail.  On the following day, all mice were returned to the same chambers for a 5 

minute test session. 

 

 

Morris Water Maze 

The Morris water maze (MWM) used in these experiments consisted of a 1.2 

meter diameter pool filled with water which was made opaque with white non-

toxic paint. Water temperature was maintained at 25 ± 2 C° throughout the 

experiment.  

  

Every training trial began with the mouse on the platform for 15 seconds.  The 

mouse was then placed into the water facing the wall of the pool and allowed to 

search for the platform.  The trial ended either when the mouse climbed onto the 

platform or when 60 seconds had elapsed. At the end of each trial the mouse 

was allowed to rest on the platform for 15 seconds. Mice were given 2 trials per 

day for 6 days, with the starting position chosen pseudo-randomly among 6 start 

positions. Probe trials were conducted 24 hours after the last training trail.  

During the probe trial, the escape platform was removed and mice were placed 

in the pool at the start location directly opposite of the platform and allowed to 

swim for 60 seconds.  Mice were run in the visible-platform version of the water 

maze 24 hours following the probe trial.  The visible-platform version consisted 

of a single day of training with 6 trials during which the platform was moved to a 
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new quadrant (excluding the target quadrant from the hidden-platform version) 

every 2 trials and marked with a distinct local cue.  

 

Data Analysis 

Statistical comparisons for single measures across genotype were made using a 

two-tailed unpaired student’s t-test.  In addition, a single group t-test was used 

within genotypes to compare Morris water maze probe trial performance with 

respect to chance (25%).  All other comparisons were made using analysis of 

variance (ANOVA) with post hoc comparisons being made using Fisher’s PLSD.  
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Figure 2-1.  CaV1.3 knockout mice are neurologically normal.  (A)  Mice were 
placed on the accelerating rota-rod for a maximum of 300 seconds once a day 
for 5 days and the latency to fall was recorded for CaV1.3 knockout mice and 
wild-type littermates.  The latency to fall for knockout mice was not significantly 
different from wild-type animals. (B & C)  Exploratory behavior as measured in 
the open field was similar in CaV1.3 knockout mice and wild-type littermates both 
in the overall distance traveled (panel B) and in the ratio between the amount of 
time spent in the center divided by the total distance traveled (panel C).  (D)  
Average body weight was not significantly different between wild-type mice and 
the CaV1.3 knockout mice.  All data are presented as mean ± S.E.M.
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Figure 2-2.  Deletion of CaV1.3 disrupts normal consolidation, but not acquisition, of contextual fear conditioning.  (A) 
CaV1.3 knockout mice and wild-type littermates exhibit similar levels of freezing 1 hour following a trial of contextual 
fear conditioning.  (B) CaV1.3 knockout mice and wild-type littermates exhibit similar levels of freezing 6 hours 
following a trial of contextual fear conditioning. (C) CaV1.3 knockout mice exhibit significantly less freezing when 
compared to their wild-type littermates 24 hours after a conditioning trial. (*) p < 0.05 for post hoc comparison 
between genotypes.   All data are presented as mean ± S.E.M. 
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Figure 2-3.  CaV1.3 knockout mice exhibit normal short- and long-term extinction.  (A) CaV1.3 knockout freeze to a 
similar degree as their wild-type littermates at the beginning of testing on day 3, overcoming the impairment exhibited 
on day 2. (B) Short-term extinction in CaV1.3 knockout mice was not significantly different from wild-type mice with 
both groups freezing significantly less by the end of the 30 minute exposure to the context (10 minute bins).  (C) 
Twenty-four hours after the extinction training, mice were re-exposed to the same context for five minutes to measure 
long-term extinction.  There was no difference between CaV1.3 knockout and wild-type mice in levels of freezing (p > 
0.1) after extinction. However, both groups (knockouts and wild-types) showed significant reductions in freezing when 
compared to mice of the same genotype that had not been re-exposed to the context (p < 0.5 and p < 0.005 for wild-
type and knockouts versus retention control group). All data are presented as mean ± S.E.M. 
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Figure 2-4.  CaV1.3 knockout mice are not impaired in the Morris water maze.  (A)  Mice were trained for 2 trials a 
day for 6 days.  The time to reach the hidden platform (escape latency) was not significantly different for CaV1.3 
knockout mice when compared to wild-type littermate control mice.  (B)  A 60 second probe trial completed 24 hours 
after the last training trail (trial 12; day 6) reveals that both CaV1.3 knockout and wild type mice spend the a significant 
amount of time during the trial searching in the quadrant where the platform was previously located (TQ; training 
quadrant) but there was no significant difference between the genotypes.  The dashed line (25%) represents random 
or “chance” performance. (AR, AL, OP abbreviated for Adjacent Right, Adjacent Left & OPposite, respectively). (C)  
Average escape latencies for CaV1.3 knockout mice recorded during the visible platform version of the Morris water 
maze were not significantly different when compared to wild-type littermate controls. All data are presented as mean ± 
S.E.M
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Chapter III 

L-type voltage-gated calcium channels in conditioned fear: a genetic and 
pharmacological analysis 

 
 

Abstract: 

Using pharmacological approaches, others have suggested that L-type voltage-

gated calcium channels (L-VGCCs) mediate both consolidation and extinction of 

conditioned fear.  In the absence of L-VGCC isoform specific antagonists we 

have begun to investigate the subtype-specific role of LVGCCs in consolidation 

and extinction of conditioned fear using a molecular genetics approach. 

Previously, we used this approach to demonstrate that the Cav1.3 isoform 

mediates consolidation, but not extinction, of contextually-conditioned fear. Here, 

we used mice in which the gene for the L-VGCC pore-forming subunit Cav1.2 

was conditionally deleted in forebrain excitatory neurons (Cav1.2cKO mice) to 

address the role of Cav1.2 in consolidation and extinction of conditioned fear. We 

demonstrate that Cav1.2cKO mice consolidate and extinguish conditioned fear as 

well as control littermates. These data suggest that Cav1.2 is not critical for these 

processes and together with our previous data argue against a role for either of 

the brain-expressed L-VGCCs (Cav1.2 or Cav1.3) in extinction of conditioned 

fear. Additionally, we present data demonstrating that the L-VGCC antagonist 

nifedipine, which has been used in previous conditioned fear extinction studies, 



68 
 

impairs locomotion and induces an aversive state.  We further demonstrate that 

this aversive state can enter into associations with conditioned stimuli that are 

present at the time that it is experienced, suggesting that previous studies using 

nifedipine were likely confounded by drug toxicity. Taken together, our genetic 

and pharmacological data argue against a role for Cav1.2 in consolidation of 

conditioned fear as well as a role for L-VGCCs in extinction of conditioned fear. 

 

Introduction: 

Pavlovian fear conditioning is a popular paradigm for both the study of 

associative learning (Fanselow & Poulos 2005) and modeling anxiety disorders 

(Delgado et al. 2006, Hofmann 2007). In this paradigm, an association between a 

conditional stimulus (CS) and an aversive unconditional stimulus (US) is acquired 

through pairing the CS with the US. Learning of this association is identified by 

the emergence of new responses to the CS, termed conditioned fear responses. 

The process by which this learning is transformed into a stable long-term 

memory with the passage of time is referred to as consolidation. A fear response 

is said to be contextually-conditioned when it is elicited by the context in which 

the US was delivered. In this case, the context is the CS. Once the CS-US 

association is established, responding to the CS can be diminished by repeatedly 

presenting the CS in the absence of the US—this process is referred to as 

extinction. In the case of contextually-conditioned fear responses, extinction can 

be accomplished through extended exposure to the conditioning context in the 

absence of the US. 
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Previous work has suggested that L-type voltage-gated calcium channels (L-

VGCCs) mediate both consolidation (Bauer et al. 2002) and extinction (Cain et 

al. 2002, Cain et al. 2005, Suzuki et al. 2004) of Pavlovian conditioned fear. All of 

these studies have used pharmacological antagonists to demonstrate a role for 

L-VGCCs (Bauer et al. 2002, Cain et al. 2002, Cain et al. 2005, Suzuki et al. 

2004). One limitation of these studies is that the L-VGCC antagonists used target 

all L-VGCCS and do not allow for the identification of the specific brain-

expressed L-VGCC, Cav1.2 or Cav1.3, involved. Therefore, to investigate the 

subtype specific role of LVGCCs in consolidation and extinction of conditioned 

fear, we have adopted a molecular-genetics approach. Previously, we used this 

approach to demonstrate that deletion of the Cav1.3 subtype disrupted 

consolidation, but not extinction, of contextually-conditioned fear (McKinney & 

Murphy 2006). 

 

In the present study, the role of Cav1.2 in consolidation and extinction of 

conditioned fear was examined using mice in which the gene for the L-VGCC 

pore-forming subunit Cav1.2 was conditionally deleted in the fore-brain 

(Cav1.2cKO mice). We have previously demonstrated that these mice have 

disrupted remote spatial memories (White et al. 2008a). Here we demonstrate 

that conditional deletion of Cav1.2 does not disrupt consolidation of conditioned 

fear.  In addition, we find that deletion of Cav1.2 does not significantly impact the 

extinction of conditioned fear.  Taken together with our previous finding that 
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Cav1.3 was not required for extinction, these results suggest that L-VGCCs do 

not play a significant role in extinction of conditioned fear.  Because these results 

were at odds with previous findings (Cain et al. 2002, Cain et al. 2005, Suzuki et 

al. 2004), we replicated the studies that implicated L-VGCCs in extinction of 

conditioned fear by blocking extinction of conditioned fear with systemic 

administration of the L-VGCC antagonist nifedipine. However, we find that the 

apparent extinction impairment in mice treated with nifedipine is likely the result 

of nifedipine’s ability to decrease locomotion and induce an aversive state in 

mice. 

 

Results: 

Conditional deletion of Cav1.2 in the basolateral amygdaloid complex of 

Cav1.2cKO mice.  Conditional deletion of Cav1.2 was achieved by crossing mice 

in which exon 2 of Cav1.2 was flanked by two loxP sites with mice in which 

expression of Cre-recombinase is driven by the calcium-calmodulin-dependent 

kinase IIα (CaMKIIα) promoter [termed CaMK-Cre here; (Chen et al. 2006)].  The 

conditional deletion of Cav1.2 in the neocortex and hippocampus of Cav1.2cKO 

mice, two brain regions critically involved in fear conditioning and its extinction 

(Maren 2001, Myers & Davis 2006) has previously been described  (White et al. 

2008b).  We have subsequently conducted a series of experiments to examine 

the expression pattern of cre-recombinase and to determine the extent of the 

deletion of Cav1.2 in the basolateral amygdaloid complex (BLA; comprised of the 

lateral, basolateral, and basomedial amygdaloid nuclei). 
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To assess the pattern of cre-recombinase expression pattern, we crossed 

hemizygous CaMK-Cre mice with homozygous R26R reporter mice, which carry 

the loxP-STOP-loxP-lacZ cassette targeted into the ubiquitously expressed 

ROSA26 locus (Soriano 1999).  Brains from bigenic animals were stained for for 

β-galactosidase activity. β-galactosidase activity and thus cre recombinase 

expression was present in much of the forebrain of these mice (Figure 3-1A), 

including the BLA (Figure 3-1A, inset).  To determine the extent of Cav1.2 

deletion within the BLA, we subjected tissue punches from the BLA of Cav1.2cKO 

mice to Western blot analysis using anti-Cav1.2 specific antibodies.  Figure 3-1B 

shows a representative section of mouse brain from which a BLA tissue punch 

was obtained. Western blot analysis of brain tissue isolated from BLA tissue 

punches is presented in Figure 3-1C.  Consistent with our previous findings in 

the hippocampus and cortex (White et al. 2008b), deletion of exon 2 of Cav1.2 

resulted in complete loss of immunoreactivity within the BLA. 

 

Conditional deletion of Cav1.2 does not disrupt consolidation of contextual 

conditioned fear memories.  As described above, others have implicated L-

VGCCs in consolidation of conditioned fear (Bauer et al. 2002) and we have 

previously demonstrated that Cav1.3 mediates consolidation of contextually-

conditioned fear (McKinney & Murphy 2006).  To determine if Cav1.2 might also 

contribute to consolidation of contextually-conditioned fear, we conditioned 

Cav1.2cKO mice (n = 28) and control littermates (n = 39) over the course of two 
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days in which mice received one unsignaled foot shock per day.  The 

experimental protocol for these experiments is outlined in Figure 3-2A.  Prior to 

delivery of the first footshock, mice in both groups exhibited negligible freezing 

but as training progressed the percent time spent freezing dramatically increased 

for both groups (F(1,65) = 150.3.2, P < 0.0001; Figure 3-2B), however, there was 

no difference between genotypes (F(1,65) = 1.7, P > 0.05; Figure 3-2B) and no 

training-genotype interaction (F(1,65) = 1.3, P > 0.05; Figure 3-2B) demonstrating 

that conditional deletion of Cav1.2 does not significantly impact acquisition of 

contextually conditioned fear in mice.  After training, mice were separated into 

four groups [control-retention (N=17), control-extinction (N=22), Cav1.2cKO-

retention (N=11), Cav1.2cKO–extinction (N=17)] based on similar day 2 post-shock 

freezing.  On day 3 (24 hrs after the last day of training), mice in the extinction 

groups were returned to the fear conditioning chambers for a 3-minute session. 

During this session, Cav1.2cKO and control mice froze similarly (t1,37) = 0.5, P > 

0.05; Figure 3-2C). These data demonstrate that Cav1.2cKO mice are not 

impaired with respect to consolidation of contextually-conditioned fear and argue 

against a role for Cav1.2 in consolidation of conditioned fear.  

 

Cav1.2cKO mice extinguish contextually-conditioned fear as well as control 

mice.  Studies using antagonists for L-VGCCs have implicated a role for L-

VGCCs in extinction of conditioned fear (Cain et al. 2002, Cain et al. 2005, 

Suzuki et al. 2004). Previously, we demonstrated that Cav1.3 KO mice are able 

to extinguish contextually-conditioned fear as well as WT mice (McKinney & 
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Murphy 2006) suggesting that Cav1.3 does not mediate extinction of contextually-

conditioned fear. Based on these data, we hypothesized that Cav1.2 likely plays 

a role in the extinction of conditioned fear. To test this hypothesis, we exposed 

the mice that had been conditioned to extinction training by leaving them in the 

fear conditioning chambers for an additional 57 minutes after retention was 

assessed on day 3 (Figure 3-2A).  Short-term extinction was measured by 

assessing freezing for the first 30 minutes of this 1-hour extinction session. Both 

Cav1.2cKO (N=17) and control mice (N=22) exhibited significant decreases in 

freezing across the first 30 minutes of training (F(2,74) = 63.2, P < 0.0001; Figure 

3-2D), however, there was no difference between genotypes (F(1,37) = 0.4, P > 

0.05; Figure 3-2D) and no training-genotype interaction (F(2,74) = 0.08, P > 0.05; 

Figure 3-2D) demonstrating that conditional deletion of Cav1.2 does not disrupt 

short-term, with-in session, extinction of contextually-conditioned fear.  

 

To explore the possibility that Cav1.2 is involved in long-term, across-session, 

extinction of contextually-conditioned fear, mice were returned to the conditioning 

chambers twenty-four hours after extinction training (on day 4). In addition to the 

mice that were subjected to extinction training, a retention control group was also 

tested on day 4. This group consisted of Cav1.2cKO (N=10) and control mice 

(N=17) that were conditioned identically as the group that received extinction 

training, but were not subjected to extinction training themselves (Figure 3-2A).  

When mice were returned to the conditioning chambers on day 4 to access long-

term retention of extinction, mice that were subjected to extinction training froze 
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significantly less than those in the retention control group as revealed by a two-

way ANOVA effect of training group (extinction training vs. retention control; 

F(1,62) = 14.1, P < 0.001; Figure 3-2E). However, there was no significant effect of 

genotype (F(1,62) = 0.4, P > 0.05; Figure 3-3E) or training group X genotype 

interaction (F(1,62) = 0.03, P > 0.05; Figure 3-3E) on day 4 freezing.  From these 

experiments we conclude that conditional deletion of CaV1.2 does not disrupt 

long-term extinction of conditioned fear. 

 

Taken collectively, the above data demonstrate conditional deletion of Cav1.2 

does not disrupt either short-term or long-term extinction of contextually-

conditioned fear. Together with our previous work showing that Cav1.3 KO mice 

are able to extinguish contextually-conditioned fear as well as WT mice, these 

data argue against a role for L-VGCCs in the extinction of conditioned fear. This 

conclusion, however, is at odds with work using pharmacological antagonists for 

L-VGCCs that suggest a role for L-VGCCs in extinction of conditioned fear. As a 

first step towards addressing the discrepancy between results of extinction 

experiments performed using genetic mouse models and those that employed 

pharmacological antagonists we tested our ability to block extinction of 

conditioned fear with the L-VGCC antagonist nifedipine using our protocol in WT 

mice with a similar genetic background as the Cav1.2cKO and Cav1.3 KO mice 

used in our experiments. 
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Consistent with previous reports, the L-VGCC antagonist nifedipine 

appears to block extinction of contextually-conditioned fear. The L-VGCCs 

antagonists nifedipine and nimodipine have been used previously to implicate L-

VGCCs in the extinction of conditioned fear. Here, we sought to test our ability to 

reproduce the findings of Cain et al. (2005, 2002) using conditions similar to 

those used in our genetic studies of the extinction of conditioned fear. The 

experimental design is presented in Figure 3-3A.  Like the mice in the above 

experiment, wild-type mice (N = 21) mice were conditioned once daily for 2 days 

with a single unsignaled footshock.  Data from the first two days is presented in 

Figure 3-3B.  Training resulted in a significant increase in freezing as measured 

on day 2 (F(1,40) = 135; P < 0.0001 for main effect of training). 

 

Twenty-four hours after the last training trial (on day 3), mice were assigned to 

four matched treatment groups based on day 2 post-shock freezing. Two of the 

groups were returned to the conditioning chamber for 1-hour of extinction training 

and the other two groups were left in their home cages to serve as retention 

controls. Of the mice that were returned to the conditioning chambers for 

extinction training (N=10), mice in one group (N=6) were injected with nifedipine 

and the mice in the other group (N=4) were injected with saline 50 minutes 

before the beginning of extinction training. Similarly, of the two groups that were 

returned to their home cages to serve as retention controls, one group (N=5) was 

injected with nifedipine and mice in the other group (N=6) was injected with 

saline (N=6).  



76 
 

Injection of nifedipine before extinction training had no effect on initial levels of 

freezing as measured during the first 3 minutes of the extinction training (t(8) = 

0.126; Figure 3-3C).  However, mice that were injected with saline before 

extinction training exhibited a significant decrease in freezing as the extinction 

training proceeded, whereas those that were injected with nifedipine did not show 

a similar decrease in freezing (Figure 3-3D).  A repeated-measures ANOVA 

revealed that there was not a significant effect of extinction training on freezing 

across the session (F(5,40) = 1.06, P > 0.05; Figure 3-3D), but that there was an 

effect of treatment (F(1,40) = 7.36, P < 0.05; Figure 3-3D) as well as a extinction 

training X treatment interaction (F(5,40) = 7.87, P < 0.0001; Figure 3-3D) 

suggesting that nifedipine treatment blocks short-term, with-in session, extinction 

of contextually-conditioned fear. Twenty-four hours following extinction training 

(day 4), all mice were returned to the conditioning chambers for a five-minute test 

session. A two-way ANOVA of freezing on day 4 revealed a significant effect of 

treatment (nifedipine vs. saline; F(1,17) = 15.8, P < 0.001; Figure 3-3E), but not 

training group (extinction training vs. retention control; F(1,17) = 3.15, P > 0.05; 

Figure 3-3E). However, there was a treatment X training group interaction (F(1,17) 

= 5.86, P < 0.05; Figure 3-3E). Planned post-hoc comparisons (unpaired t-test) 

revealed that mice injected with saline and subjected to extinction training froze 

significantly less than retention control mice (t(1,8) = 2.49, P < 0.05; Figure 3-3E) 

but those that were injected with nifedipine and subjected to extinction training 

froze no less than retention control mice (t(1,9) = 0.56, P < 0.05; Figure 3-3E) 

suggesting that nifedipine blocks long-term extinction of contextually-conditioned 
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fear. These results confirm previous reports that treatment with L-VGCC 

antagonists appears to block both short-term and long-term extinction of 

conditioned fear.  

 

While conducting these experiments it became apparent that mice injected with 

nifedipine were generally less active and more lethargic than mice injected with 

saline. It occurred to us that such an effect may complicate the use of nifedipine 

to study extinction and lead to results that could be misinterpreted. To explore 

this possibility, we proceeded to examine the effect of nifedipine on locomotor 

activity and freezing behavior.  

 

Nifedipine decreases locomotor activity to an extent interpretable as 

freezing. We first explored the effect of nifedipine on locomotor behavior using 

the open-field test. Mice were injected with nifedipine (N = 6) or saline (N = 6) 

fifty minutes prior to the open-field session. Mice were placed at the edge of the 

open field and allowed to explore for 5 minutes, total distance traveled was 

measured. Nifedipine-treated mice traveled a significantly shorter distance 

(1369.2 ± 455.4 cm) in the open field than saline-treated mice (3091.3 ± 427.78; 

t(1,10) = 2.76, P < 0.05) confirming our suspicion that nifedipine decreases 

locomotor activity.  

 

We next explored if the decrease in locomotor activity induced by nifedipine 

could be misinterpreted as freezing. To do this, we repeated the conditioning and 
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extinction protocol in the absence of foot shocks (Figure 3-4A). On days 1 and 2, 

mice were placed in the conditioning chambers for 4 minutes without shocking. 

On day 3, mice were injected with either saline (N = 6) or nifedipine (N = 8) and 

returned to the conditioning chambers 50 minutes later for 1 hour to simulate 

extinction training. On day 4, mice were returned to the chamber for 5 minutes. 

The saline- and nifedipine-treated mice both exhibited minimal freezing behavior 

on days 1 and 2 and there was no difference between groups (t(1,12) = 0.55 and 

0.19, respectively, P > 0.05; data not shown) . The nifedipine-treated group 

exhibited significant freezing on day 3. A two-way ANOVA revealed that there 

was a significant effect of treatment (saline vs. nifedipine; F(1,72) = 204.6, P < 

0.0001; Figure 3-4B) and time-in-chamber (F(5,72) = 6.67, P < 0.001; Figure 3-

4B) on freezing as well as a treatment-time-in-chamber interaction (F(5,72) = 4.21, 

P < 0.05; Figure 3-4B). Nifedipine-treated mice exhibited more freezing during 

the day 3 session than saline-treated mice suggesting that nifedipine treatment 

can affect locomotor activity to the extent that it can be measured as freezing and 

may explain why treatment with nifedipine appears to block short-term extinction 

of conditioned fear. However, the acute affect of nifedipine on locomotor activity 

and freezing behavior would not explain the previously-demonstrated effect of 

nifedipine on blocking long-term extinction of conditioned fear. Interestingly, 

when mice were returned to the conditioning chambers and tested off-drug on 

day 4, mice that had experienced the conditioning chambers under the influence 

of nifedipine on day 3 froze significantly more than those injected with saline 

before day 3 training (t(1,12) = 2.77, P < 0.05; Figure 3-4C). These results suggest 
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that treatment with nifedipine has long-term effects on freezing behavior. To us, 

these results resembled previous work suggesting that cues present during an 

aversive state can elicit species-specific defensive behaviors (e.g., freezing) 

upon subsequent presentation of the cues (McNally & Akil 2001).  

 

Long-term effect of nifedipine on freezing is context-specific. If the long-

term effect of nifedipine on freezing is the result of an association between the 

conditioning context and nifedipine-induced sickness, then the freezing observed 

when mice are tested 24 hours after nifedipine treatment should be eliminated if 

testing is carried out in an alternate context, that is, in the absence of the CS. To 

explore if the long-term effects of nifedipine on freezing behavior are context-

specific, we conducted an experiment similar to the one described immediately 

above with a minor modification—half of the mice were placed in the conditioning 

context during the long-term test (day 4) and the other half were placed in a 

reconfigured context during the long-term test (day 4; Figure 3-5A). As with the 

previous experiment, both the saline-treated mice (N = 16) and nifedipine-treated 

mice (N = 16) exhibited minimal freezing behavior on days 1 and 2 and there was 

no difference between groups (t(1,30) = 0.25 and 0.85, respectively, P > 0.05; data 

not shown) . The nifedipine-treated group exhibited freezing on day 3. A two-way 

ANOVA revealed that there was a significant effect of treatment (saline vs. 

nifedipine; F(1,180) = 99.3, P < 0.0001; Figure 3-5B) and time-in-chamber (F(5,180) = 

21.7, P < 0.001; Figure 3-5B) on freezing as well as a treatment-time-in-chamber 

interaction (F(5,180) = 3.65, P < 0.05; Figure 3-5B). On day 4, approximately half 
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of the mice returned to the same chamber in which they were placed on day 3 

and the rest were placed in a reconfigured chamber and freezing was measured 

for 5 minutes.  A two-way ANOVA revealed a significant effect of treatment (F(1,28) 

= 9.48, P < 0.01; Figure 3-5C) and context (F(1,28) = 27.8, P < 0.0001; Figure 3-

5C) on day 4 freezing as well as a treatment-context interaction (F(1,28) = 0.73, P 

> 0.05; Figure 3-5C). Planned post-hoc comparisons (unpaired t-test) reveal that 

nifedipine-treated mice freeze more than saline-treated mice when tested in the 

training context (t(1,14) = 2.90, P < 0.05; Figure 3-5C), but not in the reconfigured 

context (t(1,14) = 1.05, P > 0.05; Figure 3-5C).  Mice exhibited less freezing in the 

novel environment than in the training context independent of whether they were 

treated with nifedipine (t(1,14) = 4.40, P < 0.05; Figure 3-5C)  or saline (t(1,14) = 

2.97, P < 0.05; Figure 3-5C), likely reflecting the phenomenon of novelty-induced 

exploration (van Abeelen 1989). 

 

Nifedipine-induced nausea associates with taste to produce conditioned 

taste avoidance. In the conditioned taste avoidance paradigm, mice learn to 

avoid drinking fluid with a specific taste after it has been paired with a nausea-

inducing stimulus such as lithium chloride. To confirm that nifedipine was 

inducing an aversive state and could serve as an unconditioned stimulus and 

enter into an association with a cue, we paired saccharin with nifedipine (N = 6) 

or saline (N = 5) in wild type mice and measured their avoidance of saccharin 

(avoidance index = [(grams of water)/(grams of water and saccharin)] X 100%) 

24 hours later. An unpaired t-test reveals that mice in which saccharin was paired 



81 
 

with nifedipine avoided saccharin significantly more than mice in which saccharin 

was paired with saline (avoidance indices = 71.17 ± 7.67 and 48.77 ± 5.25, 

respectively; t(1,9) = 2.37, P < 0.05; Figure 3-6). These data suggest that 

nifedipine can act as an unconditioned stimulus and thus supports our conclusion 

that the apparent blocking of long-term extinction of contextually-conditioned fear 

by nifedipine is actually the elicitation of defensive freezing by the context in 

which extinction training was performed and thus illness experienced. 

 

Discussion: 

In this study, we show that conditional deletion of Cav1.2 does not significantly 

impact consolidation or extinction of contextually-conditioned fear.   Previously 

we have demonstrated that deletion of Cav1.3, the alternate L-VGCC subtype, 

disrupts consolidation but not extinction of contextually conditioned fear.    

 

Taken collectively these data suggest that L-VGCCs likely do not play a role in 

extinction of conditioned fear. However, consistent with previous reports by 

others and contradictory to our own genetic studies, we show that systemic 

treatment of wild type mice with the L-VGCC antagonist nifedipine before 

extinction training appears to block both short-term and long-term extinction. 

However, upon further investigation, we found that the apparent ability of 

nifedipine to block extinction of conditioned fear does not reflect nifedipine’s 

effect on extinction learning, but instead is a product of nifedipine-induced 

aversive state. Specifically, we show that mice that are under the influence of 
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nifedipine are less active than saline-treated mice and that in the fear 

conditioning chambers this decreased activity can be interpreted as freezing 

behavior. Interestingly, mice that were treated with nifedipine and placed in the 

fear conditioning chambers continue to exhibit freezing when they are returned to 

the same fear conditioning chambers when they are tested off drug 24 hours 

later. We have demonstrated that this “off-drug” freezing is context-dependent 

which suggests that the long-term freezing in nifedipine-treated mice is the result 

of association being formed between the conditioning context and nifedipine-

induced aversive state. Further demonstrating that nifedipine can induce and 

aversive state and enter into an association with a cue, we show that nifedipine 

can be used as the unconditioned stimulus to induce conditioned avoidance of 

saccharin in a standard conditioned taste avoidance paradigm.  

  

Our conclusion that L-VGCCs likely do not play a role in extinction of conditioned 

fear appears to be at odds with previous studies. We suggest that this 

discrepancy is a result of the different approaches used: pharmacological versus 

genetic.  In light of the data presented here regarding the apparent toxicity of 

nifedipine, it could be agued that if L-VGCCs do mediate extinction of conditioned 

fear it is unlikely that their putative role could be uncovered with this approach. 

  

We arrive at our conclusion that L-VGCCs likely do not play a role in extinction of 

conditioned fear by a process of elimination:  global deletion of Cav1.3 disrupts 

consolidation but not extinction of contextually conditioned fear while conditional 
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deletion of Cav1.2 does not disrupt either process.  However we must consider at 

least four other alternate explanations that would still feature a role for L-VGCCs 

in the extinction of contextual fear conditioning.   

  

The first explanation is that both brain-expressed L-VGCCs need to be blocked 

to realize impaired extinction of conditioned fear.  Setting aside the toxicity issue 

discussed above for the moment—this would explain why treatment with L-

VGCC antagonists and not genetic deletion of individual L-VGCC subtypes leads 

to impaired extinction of conditioned fear. Such an explanation would suggest 

that the two brain-expressed L-VGCCs (Cav1.2 and Cav1.3) are functionally 

similar and one can compensate for the other in its absence. In our hands, 

however, there is no change in Cav1.3 expression levels upon deletion of the 

gene for Cav1.2 or vice versa (unpublished results). Further, Cav1.2 and Cav1.3 

have quite different neuronal localization (Hell et al. 1993) and biophysical 

characteristics (Helton et al. 2005, Xu & Lipscombe 2001) making them unlikely 

functional substitutes for each other. Still, the possibility of a synergistic effect of 

simultaneous inactivation of both Cav1.2 and Cav1.3 cannot be dismissed.  

  

The second explanation relates to the conditional nature of the deletion of CaV1.2 

in the present study.  Because the gene for Cav1.2 was deleted primarily in the 

forebrain of Cav1.2cKO mice, the lack of an effect on the ability to extinguish 

conditioned fear may have resulted from the gene for Cav1.2 not being deleted in 

a critical region for extinction of conditioned fear.  However, this seems unlikely 
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given that Cav1.2 in the Cav1.2cKO mice is deleted in most of the brain regions 

that are critical for extinction of conditioned fear including the cortex, 

hippocampus (White et al. 2008b) as well as the amygdala. This, of course, does 

not eliminate the possibility that Cav1.2 is still expressed in a currently 

unrecognized area of the brain critical for extinction of conditioned fear.  

 

Third, because the cre-recombinase expression in Cav1.2cKO mice was driven the 

calcium-calmodulin-dependent kinase II alpha promoter, the gene for Cav1.2 

was only deleted in excitatory, but not inhibitory, neurons of the forebrain (Kelly 

1991). If Cav1.2 activity in inhibitory neurons is critical for the successful 

extinction of conditioned fear, then we would not have observed impaired 

extinction of conditioned fear in Cav1.2cKO mice as these mice presumably 

express the gene for Cav1.2 in inhibitory neurons.  If this were in fact the case, it 

would seem likely that Cav1.2 is exerting its influence upon inhibitory neurons 

outside of the amygdala, since almost all of the CaV1.2 immunoreactivity 

observed in the BLA is found in CaMKIIα positive pyramidal neurons (Pinard et 

al. 2005). 

  

And finally, the extinction protocol used here may not have been suitable for 

detecting Cav1.2-mediated deficits in conditioned fear extinction. We 

demonstrated successful extinction of contextually-conditioned fear using a 

single 1-hour context exposure.  Though this protocol did not uncover an effect of 

genotype on extinction, it is possible that protocols that utilized longer exposure 
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periods or different training styles (e.g., spaced extinction training) may have 

been more successful. We were, however, able to successfully reproduce the 

previously-demonstrated effect of nifedipine on extinction using this protocol and 

thus it seems likely that this protocol would be sufficient to parse out any 

contribution of Cav1.2 to the nifedipine effect. Our experiments, of course, do not 

rule out the contribution of Cav1.2 to extinction in other paradigms (e.g., cue fear 

conditioning, Morris water maze). 

 

Using a molecular genetics approach, we have begun to investigate the role that 

specific L-VGCCs isoforms play in Pavlovian fear conditioning.  Based on the 

current study and our previous work and with the above alternate explanations 

withstanding, we conclude that CaV1.3 plays a critical role in the consolidation of 

contextually conditioned fear and that L-VGCCs do not mediate extinction of 

contextual conditioned fear memories. 

 

Materials and Methods: 

Mice.  

Genetic studies were performed on mice in which the gene for the pore-forming 

subunit Cav1.2 L-VGCC subtype was conditionally deleted in excitatory neurons 

of the mouse forebrain.  To generate experimental mice, heterozygous floxed 

CaV1.2 mice (CaV1.2f/+ mice) which were maintained on a 129SvEv genetic 

background (White et al. 2008b) were crossed with transgenic mice that 

expressed Cre recombinase under the control of the calcium calmodulin kinase 
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IIα (CaMKIIα) promoter (Chen et al. 2006).  These mice (termed here as the 

CaMK-Cre mice) which express Cre recombinase in excitatory neurons of the 

forebrain (Chen et al. 2006) were propagated and maintained on a C57BL/6NTac 

genetic background (10+ generations).  

Offspring from the CaV1.2f/+ X CaMK-CreCre/+ cross (the F1 generation) that were 

heterozygous floxed and Cre positive (i.e. CaV1.2f/+, CaMK-CreCre/+) were then 

intercrossed (non-sibling) to achieve the following genotypes:  conditional 

knockout mice (CaV1.2f/f, CaMK-CreCre/+); wild-type mice (CaV1.2+/+, CaMK-

Cre+/+); floxed controls (CaV1.2f/f, CaMK-Cre+/+) and Cre controls (CaV1.2+/+, 

CaMK-CreCre/+) all on a 129S6B6F2/Tac hybrid genetic background.  For ease of 

reading, conditional knockout mice (CaV1.2f/f, CaMK-CreCre/+) are referred to as 

CaV1.2cKO throughout the text.  For the fear conditioning experiments, all four 

genotypes were used.  A post-hoc repeated measures ANOVA of the three 

control genotypes (CaV1.2+/+, CaMK-Cre+/+; CaV1.2f/f, CaMK-Cre+/+ and CaV1.2+/+, 

CaMK-CreCre/+) revealed no significant difference in freezing during training 

(F(2,36) = 2.6; P > 0.05, for the effect of genotype) or during extinction training 

(F(2,19) = 2.6; P > 0.05, for the effect of genotype), therefore the three genotypes 

are presented in aggregate (labeled as “Controls”). 

 

All pharmacological studies were done on WT mice with a 129S6B6F2/Tac 

hybrid genetic background. To obtain these mice, 129S6B6F1/Tac hybrid mice 

were generated first by crossing C57BL/6NTac mice purchased from Taconic 

Farms (Hudson, NY) with 129S6/SvEvTac mice that were similarly obtained. 
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129S6B6F1/Tac mice were subsequently intercrossed to obtain experimental 

mice.  

Mice were housed under uniform conditions including a 12h-12h light-dark cycle 

with lights on at 6 AM, average temperature of 22oC and ad libitum food and 

water.  Mice were housed together in groups of 3-5 with same-sex siblings. Mice 

were between 2-6 months of age at testing and approximately equal numbers of 

male and female mice were used in all experiments. Behaviorally naïve mice 

were used in each experiment. All experiments were conducted according to NIH 

guidelines for animal care and were approved by the University Committee on 

Use and Care of Animals of the University of Michigan. 

X-gal Staining.   

Cre expression in CaMK-Cre mice was localized with the aid of R26R reporter 

mice which carry the loxP-STOP-loxP-lacZ cassette targeted into the ubiquitously 

expressed ROSA26 locus (Soriano 1999), a generous gift from Dr. Miriam 

Meisler.  

Brain sections from mice carrying both the CaMK-Cre and loxP-STOP-loxP-lacZ 

transgenes were stained for β-galactosidase activity. Mice were anesthetized, 

decapitated, and their brains were removed and immediately frozen in 

isopentane (-30oC). Brains were then sectioned (40 μm), mounted on microscope 

slides, and stained overnight at 37o C with X-gal staining solution [1 mg/ml X-gal, 

50 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, and 2 mM MgCl2 in 100 mM phosphate 

buffer, pH 7.5]. After staining, sections were washed with PBS, fixed in 4% 

paraformaldehyde, cover-slipped, and imaged.  
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Immunoblotting.  

Immunoblotting was carried out as previously described (White et al. 2008b) 

using basolateral amygdala (BLA) samples from Cav1.2cKO mice and control 

(CaV1.2+/+, CaMK-Cre+/+) littermates.  Mice were anesthetized, decapitated, and 

their brains were removed and placed in HSE buffer (10 mM HEPES, 350 mM 

Sucrose, and 5 mM EDTA, pH = 7.4) containing Complete Protease Inhibitor 

(Roche Diagnostics, Mannheim Germany).  Brains were then sectioned and the 

BLA removed with a 0.5 mm diameter sample corer (Fine Science Tools). The 

BLA samples were then homogenized and the homogenate centrifuged for 5 

minutes at 2,000 X g at 4° C.  The supernatant was removed and protein content 

was determined by Bradford assay (Bio-Rad, Hercules, CA), using bovine serum 

albumin (BSA) as a standard. BLA protein samples (50 μg) were solubilized in 

Laemelli buffer separated on a 7.5% SDS-PAGE gel and transferred to PVDF 

membranes (Bio-Rad, Hercules, CA) overnight.  Blots were probed with an anti-

CaV1.2 antibody (1:200; Alomone Labs, Jerusalem, Israel product # ACC-022, 

Lot# AN-03) whose epitope is located in the N-terminus of the protein (residues 

2-15).  Blots were also probed with an NrCAM specific antibody (1:40000; 

ABCAM, Cambridge, UK) which served as the loading control.  Incubation with 

the primary antibody was followed by washing with PBS-Tween and incubation 

with a horseradish peroxidase-conjugated anti-rabbit secondary (Bio-Rad, 

1:5000).  Blots were washed and immunoreactivity was visualized with an 

enhanced chemiluminescence detection system (ECL Plus, Amersham, UK). 
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Drug.  

The LVGCC antagonist nifedipine (40 mg/kg; Sigma, St. Louis) was sonicated 

into 100% Cremophor (Sigma, St. Louis). Saline was added to make the final 

vehicle 10% Cremophor/90% saline. This dose of nifedipine was a partial 

suspension and thus care was taken to thoroughly mix prior to injecting. Mice 

were injected 50 minutes prior to behavioral testing (10 mL/kg) in all experiments. 

Drug dose and pretreatment time were based on previous studies of nifedipine 

and conditioned fear (Cain et al. 2005, Cain et al. 2002).  

Pavlovian Fear Conditioning.  

Conditioning Apparatus: Pavlovian fear conditioning was performed as previously 

described (McKinney & Murphy 2006, McKinney et al. 2007).  Each of the 4 

conditioning chambers was equipped with and a stainless steel grid floor 

designed for mice (Med Associates: St Albans, VT). The grid floor was positioned 

over a stainless steel drop-pan which was lightly cleaned with 95% ethyl alcohol 

to provide a background odor. The front, top, and back of the chamber were 

made of clear acrylic and the two sides made of modular aluminum. The 

conditioning chambers were arranged in a 2 × 2 configuration on a steel rack. 

The rack was positioned in an isolated room lit by overhead fluorescent lighting.  

Each chamber was connected to a solid-state shock scrambler and each 

scrambler was connected to an electronic constant-current shock source which 

was controlled via an interface connected to a Dell Windows XP computer 

running Actimetrics FreezeFrame software (Actimetrics; Wilmette, IL).  Four 

cameras were mounted (one above each chamber) to the steel rack, and video 
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signals were sent to the same computer.  Freezing was defined as the absence 

of movement except that associated with respiration and was measured by 

subjecting the video signal to a sensitive global motion-detection algorithm 

(Freezeframe and Freezeview software; Actimetrics, Wilmette, IL). 

Contextual fear conditioning:  Mice received 2 training trials (1 trial per day) in a 3 

minute stimulus-free interval was followed by a 2 second, 0.50 mA foot shock 

delivered via the grid floor. Fifty-eight seconds after the foot shock mice were 

removed from the chambers and returned to their home cages. Twenty-four 

hours after the second day of training, mice were returned to the fear 

conditioning chambers for a 3 minute retention test. 

Extinction of contextually-conditioned fear:  Mice which received extinction 

training were first conditioned as described above. Twenty-four hours after the 

second conditioning trial (on day 3), mice were returned to the same chambers 

and extinction training commenced. Extinction training consisted of a single 1-

hour exposure to the training context in the absence of foot shock. Retention 

controls were included in extinction experiments. These mice were treated 

identically to those that received extinction training except that they were not 

subjected to the 1-hour extinction session.  On the following day, all mice were 

returned to the same chambers for a 5 minute test session. 

 

Open field. 

 Locomotor activity was assessed in an open field as described in (McKinney et 

al. 2007, McKinney & Murphy 2006). On day 1 of open-field testing, mice were 
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injected with nifedipine or saline 50 minutes before being placed in the open field. 

Mice were placed at the edge of the open field and allowed to explore for 5 

minutes. Distance traveled was measured using Actimetrics software.  

 

Unconditioned freezing behavior in fear conditioning chambers.  

Mice were placed in the fear conditioning chambers for 4 minutes a day for two 

days. On day 3, mice were injected with nifedipine or saline 50 minutes before 

being returned to the fear conditioning chambers for 1 hour. On day 4, mice were 

returned to the same fear conditioning chambers or reconfigured fear 

conditioning chambers for 5 minutes. This protocol was designed to be identical 

to the fear conditioning/extinction protocol described above except for no shocks 

were delivered and the fear conditioning chambers were reconfigured in a subset 

of experiments. Freezing was measured on all four days. Freezing was defined 

as the absence of movement except that associated with respiration and was 

measured by subjecting the video signal to a sensitive global motion-detection 

algorithm (Freezeframe and Freezeview software; Actimetrics, Wilmette, IL). 

 

Conditioned taste avoidance.  

Conditioned taste avoidance (CTA) was performed as in Josselyn et al.(Josselyn 

et al. 2004). Mice were singly-housed in cages with food, but no water 20 hours 

before the experiment. During a 5-day habituation period, mice were given 

access to two drinking bottles filled with water for decreasing periods of time 

each day (4 hours, 2 hours, 1 hour, 30 minute, 30 minute drinking period).  On 
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day 6, mice were presented with a single bottle filled with 2mM saccharin for 30 

minutes. Thirty minutes after the drinking session, mice were injected with 40 

mg/kg nifedipine or 0.15M LiCl at a dose of 2% body weight. Twenty four hours 

later, mice were given a choice test in which they were presented with two bottles 

for 30 minutes; one containing 2mM saccharin and the other containing water. 

Liquid consumed from each bottle was measured and an aversion index (AI) 

calculated as follows: [(grams of water)/(grams of water and saccharin)] X 100%. 

 

Statistical Analysis.  

All data are presented as mean ± SEM. Fear conditioning 

acquisition/consolidation and extinction training data were analyzed using 

repeated-measures ANOVA with a between-subject factor for genotype or 

treatment group and a repeated measure for training day or time-in-chamber. 

Unpaired t-tests between genotypes were used to analyze data from the final test 

session of acquisition/consolidation training. Two-way ANOVAs with genotype or 

treatment group and training group (extinction vs. retention) or testing context 

(training vs. novel) were used to analyze data from the long-term extinction test 

sessions. Unpaired t-tests were used for post-hoc comparisons when there was 

a significant interaction between factors. Open field and conditioned taste 

avoidance data were analyzed using unpaired t-tests between treatment or 

pairing groups, respectively. Results were considered significantly different when 

P < 0.05.  
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Figure 3-1. Cav1.2 is deleted from the basolateral amygdala (BLA) of Cav1.2cKO mice. (A) β-galactosidase activity is 
detected in regions of the brain critical for consolidation and extinction of conditioned fear including the cortex (Ctx), CA1 
and CA3 regions of the hippocampus, and BLA of mice carrying both the CaMK-Cre and ROSA26 transgenes. (B) 
Representative brain section showing from where tissue was harvested for BLA immunoblotting. (C) Immunoreactivity for 
Cav1.2 is present in BLA tissue from control, but not Cav1.2cKO mice. Similar immunoreactivity for the loading control 
(NrCAM) is present in BLA tissue from both Cav1.2cKO and control mice. 

93 
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Figure 3-2. Cav1.2cKO mice consolidate and extinguish contextually-conditioned 
fear as well as their control littermates. (A) Training protocol, conditioning and 
extinction training. (B) Cav1.2cKO and control mice exhibit similar levels of 
freezing prior to conditioning (day 1) and 24 hours after the first conditioning trail 
(day 2). (C) Cav1.2cKO and control mice exhibit similar levels of freezing 24 hours 
after the last conditioning trial. (D) Cav1.2cKO and control mice exhibit similar rates 
of extinction across the first 30 minutes of a 1-hour extinction training session 
(day 3). (E) Twenty-four hours after extinction training (day 4), mice were again 
exposed to the conditioning chambers and both Cav1.2cKO mice and control mice 
exhibited significant reductions in freezing compared to mice of the same 
genotype that did not undergo extinction training (retention group). All data are 
presented as mean ± S.E.M. 
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Figure 3-3. Consistent with previous reports, the L-VGCC antagonist nifedipine 
appears to block extinction of contextually-conditioned fear. (A) Training protocol, 
conditioning and extinction training with nifedipine treatment. (B) Wild type mice 
were conditioned with one shock daily for two days and exhibited significant 
freezing 24 hours after the first conditioning trail. (C)  Wild type mice were 
separated into four groups based on day 2 post-shock freezing. Two of these 
groups were returned to the conditioning chambers 24 hours after the second 
training trial and 50 minutes after treatment with nifedipine or saline. There was 
no difference in freezing between these two groups during the first 3 minutes of 
day 3. (D) Saline-treated mice exhibited significant reductions in freezing across 
a 1-hour extinction training session (day 3) however, nifedipine-treated did not 
exhibit a similar reduction. (E) Twenty-four hours after extinction training (day 4), 
mice were again exposed to the conditioning chambers. Saline-treated exhibited 
significant reductions in freezing compared to similarly-treated mice that did not 
undergo extinction training (retention group). Nifedipine-treated mice, however, 
exhibited similar levels of freezing as nifedipine-treated mice in the retention 
group. (*) p < 0.05. All data are presented as mean ± S.E.M. 
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Figure 3-4. Nifedipine induces freezing that persists upon return to the 
conditioning chambers 24 hours after treatment. (A) Training protocol, 
unconditioned freezing. (B) Fifty minutes following treatment with nifedipine, mice 
freeze more than saline-treated mice when placed in the conditioning chambers 
for 1 hour.  (C) Nifedipine-treated mice freeze more than saline treated mice 
when returned to the conditioning chambers 24 hours after treatment. (*) p < 
0.05. All data are presented as mean ± S.E.M. 
 
 



97 
 

 
 
 
Figure 3-5. The long-term effect of nifedipine on freezing is context-specific. (A) 
Training protocol. (B) Fifty minutes following treatment with nifedipine, mice 
freeze more than saline-treated mice when placed in the conditioning chambers 
for 1 hour. (C) Nifedipine-treated mice freeze more than saline treated mice when 
returned to the conditioning chambers (training context) 24 hours after treatment. 
When the conditioning chambers are reconfigured as a novel context, freezing 
does not differ between nifedipine- and saline-treated mice. (*) p < 0.05. All data 
are presented as mean ± S.E.M 
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Figure 3-6. Nifedipine associates with taste to produce conditioned taste 
avoidance. WT mice learn to avoid saccharin following a saccharin-nifedipine 
pairing. (*) p < 0.05. All data are presented as mean ± S.E.M. 
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Chapter IV 

Impaired long-term potentiation and enhanced neuronal excitability 
in the basolateral amygdala of CaV1.3 knockout mice 

 

Abstract: 

Having previously shown that mice in which the gene for the L-type voltage-gated 

calcium channel (L-VGCC) CaV1.3 is deleted (CaV1.3 knockout mice) exhibit an 

impaired ability to consolidate contextually-conditioned fear, a type of learning 

and memory critically dependent on the basolateral amygdala (BLA), we were 

interested in the mechanisms by which CaV1.3 contributes to BLA 

neurophysiology. Others have shown that some forms of long-term potentiation 

(LTP) and neuronal excitability as measured by the afterhyperpolarization (AHP) 

are dependent on L-VGCCs. These studies, however, used L-VGCC antagonists 

that target both brain-expressed L-VGCCs (CaV1.2 and CaV1.3) and thus could 

not determine the relative contribution of each of the subunits to these 

phenomena. In this study, we used CaV1.3 knockout mice to explore the role of 

CaV1.3 in LTP and neuronal excitability in the BLA. We find that LTP in the BLA, 

induced by high-frequency stimulation of the external capsule, was greatly 

impaired in CaV1.3 knockout mice. Additionally, we found that BLA principal 

neurons from CaV1.3 knockout mice exhibited enhanced excitability as measured 



102 

 

by a reduced post-burst AHP and spike accommodation.  Together, these results 

demonstrated altered neuronal function in the BLA of CaV1.3 knockout mice 

which may account for the impaired ability of these mice to consolidate 

contextually-conditioned fear. 

Introduction: 

Recently, we demonstrated that mice in which the gene for the L-type voltage-

gated calcium channel (L-VGCC) CaV1.3 is deleted (CaV1.3 knockout mice) 

exhibit an impaired ability to consolidate contextually-conditioned fear (McKinney 

& Murphy 2006). As fear conditioning is known to be critically dependent on the 

basolateral amygdala (BLA) (Maren et al. 1996, Phillips & LeDoux 1992), the 

neurophysiological function of CaV1.3 in this structure is of interest. Long-term 

potentiation (LTP) and neuronal excitability are two neurophysiological 

phenomena that have been shown previously to be dependent on L-VGCCs, 

however, the specific L-VGCC subtype(s) mediating each has not previously 

been addressed 

 

Long-term potentiation is a sustained, activity-dependent increase in synaptic 

strength that can be induced in vitro in brain slice preparations using several 

different stimulation patterns. Two patterns of stimulation commonly used are 

paired stimulation and high-frequency stimulation (HFS). Paired stimulation is the 

pairing of action potentials in the post-synaptic neuron, induced by somatic or 
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dendritic current injections, with stimulation of afferents to that same neuron. 

Delivery of a train of high-frequency stimulations to the afferents of a neuron or 

group of neurons causes the summation of synaptic potentials such that there is 

significant depolarization of the postsynaptic neuron. There are two major 

afferent pathways to the BLA, the thalamic pathway and the cortical pathway (the 

fibers of the cortical pathway travel within the external capsule (EC)). Stimulation 

of either of these pathways with a pairing protocol (Bauer et al. 2002, Weisskopf 

et al. 1999) or HFS protocol (Drephal et al. 2006, Chapman & Bellavance 1992, 

Chapman et al. 1990, Huang et al. 2000) leads to LTP at the synapses between 

these afferents and BLA neurons (BLA-LTP).  Interestingly, induction of BLA-LTP 

by both paired stimulation of thalamic afferents (Bauer et al. 2002) and HFS of 

the EC have been shown to require L-VGCCs using pharmacological antagonists 

(Drephal et al. 2006, Chapman et al. 1990). It is interesting to note that the EC 

contains afferents from brain structures implicated in processing contextual 

information (Drephal et al. 2006, von Bohlen und Halbach & Albrecht 2002), 

information of the type with which CaV1.3 knockout mice have difficulty forming 

associations.  

 

In addition to LTP, a number of groups have implicated L-VGCCs in neuronal 

excitability (Lima & Marrion 2007, Marrion & Tavalin 1998, Power et al. 2002, 

Shah & Haylett 2000). Neuronal excitability is often assessed experimentally by 

measuring the afterhyperpolarization (AHP). The AHP is a hyperpolarizing 
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voltage deflection that follows a burst of action potentials and serves to limit firing 

to a sustained depolarizing input (Alger & Nicoll 1980, Hotson & Prince 1980, 

Madison & Nicoll 1984). The AHP is often described as having 3 components: a 

fast, medium and a slow AHP.  The fast AHP (fAHP) occurs immediately after 

individual action potentials and lasts only 1-5 ms. The medium AHP (mAHP) is 

typically observed after a burst of action potentials and has a decay constant of 

approximately 100 ms. The slow AHP (sAHP) has a time constant of 1-5 seconds 

and is voltage-independent (Faber & Sah 2007). Several studies using L-VGCC 

antagonists have shown that blockade of these channels leads to a significant 

reduction in the currents underlying the AHP, suggesting that the AHP is 

generated by calcium influx via L-VGCCs (Power et al. 2002, Shah & Haylett 

2000, Lima & Marrion 2007, Marrion & Tavalin 1998) . In addition, an increase in 

expression of L-VGCCs in the hippocampus occurs with aging, and application of 

L-VGCC antagonists results in a reduction of the AHP in neurons from aging 

animals (Thibault et al. 2001, Thibault & Landfield 1996, Veng et al. 2003). Spike 

accommodation is another way to measure neuronal excitability. Studies showing 

that spike accommodation correlates with age-related increases in L-VGCC 

expression and activity suggest that this phenomena might also be L-VGCC-

dependent (Disterhoft & Oh 2007). 

 

In the present study, we investigated the role of CaV1.3 in BLA-LTP induced by 

HFS of the cortical pathway and the excitability of principal neurons of the BLA 
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using CaV1.3 knockout mice. We found that CaV1.3 is critical for BLA-LTP 

induced in this manner and for generation of the afterhyperpolarization (AHP). 

Spike accommodation is also reduced in BLA principal neurons of these mice. 

Together, these results suggest that neuronal function is impaired in the BLA of 

CaV1.3 knockout mice and this may account for the impaired ability of these mice 

to consolidate contextually-conditioned fear. 

 

Materials and Methods: 

Mice: The Cav1.3 knockout mice were generated by introducing a neomycin 

cassette into exon 2 of the gene for the pore-forming subunit of the Cav1.3 

calcium channel (Platzer et al. 2000). The null allele was maintained on a 

C57BL/6NTac background by successively crossing (> 12 generations) 

heterozygous null offspring with C57BL/6NTac wild-type mice purchased from 

Taconic Farms (Hudson, NY). Experimental mice were bred onto a 

129S6B6F2/Tac hybrid genetic background. To obtain experimental mice, 

129S6B6F1/Tac hybrid mice were generated first by crossing heterozygous null 

C57BL/6NTac mice from the maintenance cross with wild-type 129S6/SvEvTac 

mice purchased from Taconic Farms (Hudson, NY). The Cav1.3 heterozygous 

null 129S6B6F1/Tac mice were subsequently intercrossed to obtain experimental 

mice. For all experiments approximately equal numbers of young (2-6 mos) male 

and female mice were used.  All comparisons were made between Cav1.3 

knockout mice and wild-type littermates and the experimenter was kept blind as 
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to the genotype throughout the experiment. All experiments were conducted in 

accordance with the guidelines set forth by the University of Michigan Committee 

on Use and Care of Animals.     

 

Slice Preparation: Mice were anesthetized with isoflurane and decapitated. The 

brain was removed and horizontal slices were prepared as described in Drephal 

et al. (2006)  and Stoop and Pralong (2000). Briefly, the brain was divided at the 

midline and each hemisphere was positioned flat on its medial surface. The 

olfactory bulb, the cerebellum, and the brain stem were subsequently removed 

and the dorsal side of the brain was cut along a plane orthogonal to the sagittal 

place, which was tilted at a 10o posterosuperior-anteroinferior angle of a line 

passing between the lateral olfactory tract and the base of the brain stem. The 

exposed dorsal side of the brain was glued onto a cutting block, the brain was 

covered with ice-cold (<1°C) oxygenated sucrose-based cutting solution 

containing the following (in mM): 2.8 KCl, 1 MgCl2, 2 MgSO4, 1.25 NaH2PO4, 1 

CaCl2, 206 sucrose, 26 NaHCO3, 10 D-glucose, 0.40 ascorbic acid and 

horizontal slices (400 μm) were prepared with a vibratome.  These slices 

contained the ventral hippocampus, the medial and lateral divisions of the 

entorhinal cortex, the perirhinal cortex, and, the BLA. Slices were transferred to a 

holding chamber filled with oxygenated artificial cerebrospinal fluid (aCSF) 

containing the following (in mM):124 NaCl, 2.8 KCl, 2 MgSO4, 1.25 NaH2PO4, 2 

CaCl2, 26 NaHCO3, 10 D-glucose, 0.40 ascorbic acid at room temperature and 
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remained there for at least 1 hour before being individually transferred to a 

submersion chamber and continuously perfused (~1.5 ml/min) with oxygenated 

aCSF heated to 31°C.   

Electrophysiology: Field potentials were recorded using glass-pipettes made from 

Clark Borosilicate Standard Wall glass (Warner Instruments), pulled using a P-97 

Flaming-Brown pipette puller (Sutter Instruments), filled with ACSF (tip 

resistances ~ 1 MΩ), and placed in the BLA. Bipolar (Pt/Ir) stimulation electrodes 

were used to stimulate the external capsule (EC) which contains fibers from the 

perirhinal and entorhinal cortex (von Bohlen und Halbach & Albrecht 2002, 

Drephal et al. 2006). Stimulation of the EC results in a compound waveform that 

contains the summation of both EPSPs and synchronized action potentials 

(Doyere et al. 2003, Watanabe et al. 1995).  Because the slope measure of this 

waveform in the lateral amygdala is more sensitive to variability and noise in the 

(Doyere et al. 2003), we analyzed the amplitude of field potentials in the present 

study.  

 

Basal synaptic transmission was assessed by examining the input-output 

relationship within the BLA. Input-output response curves were constructed by 

varying the intensity of single-pulse stimulation, and averaging five responses to 

each intensity. For experiments that examined LTP, the stimulus intensity that 

evoked a field potential amplitude equal to ~50% of the maximal response was 

then used for high-frequency stimulation (HFS) as well as single-pulse 
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stimulations that preceded and followed the HFS.  A stable baseline of responses 

was obtained for at least 5 minutes and then a HFS consisting of two trains at 

100 Hz (1 s duration; 30 s apart) was administered. Subsequent responses to 

single stimuli were recorded for 60 min, and their amplitude quantified as change 

in percentage with respect to baseline. Stimulus frequency pre- and post-HFS 

was 0.067 Hz. 

 

To investigate changes in neuronal excitability, whole-cell recordings were made 

from BLA principal neurons using a Dagan BVC-700A amplifier in bridge mode 

using the “blind” method (Blanton et al. 1989). Patch-pipettes were made from 

Clark Borosilicate Standard Wall glass (Warner Instruments), pulled using a P-97 

Flaming-Brown pipette puller (Sutter Instruments) with resistances of 3-6 MΩ, 

and filled with the following internal solution (in mM): 120 potassium 

methylsulfate, 20 KCl, 10 HEPES, 4 Na2-ATP, 2 MgCl2, 0.3 GTP, 0.2 EGTA, 7 

phosphocreatine. Seal resistances of  >1 GΩ were achieved prior to rupturing 

into whole-cell mode. A neuron was considered to be principal neuron 

(Washburn & Moises 1992) and acceptable for data collection (i.e., healthy) if (1) 

it had a resting membrane potential more negative than -58 mV, (2) it exhibited 

action potentials that  overshot > 0 mV, (3) exhibited spike accommodation to a 

sustained depolarizing current pulse, and (4) exhibited a “sag” current in 

response to a strong hyperpolarizing current pulse. Action potentials were 

measured from rest and were analyzed for spike threshold, amplitude and width. 
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Spike width was measured at ½ of the action potential amplitude. Neurons were 

held at 5 mV below action potential threshold and the AHP was studied using a 

100 ms current step sufficient to elicit 5 action potentials.  AHP measurements 

were made from the average of 10 successive traces from each neuron.  Spike 

accommodation was studied at rest in these neurons using a series of 500 ms 

current injection of increasing intensity (-0.05 nA to 0.35nA, .05 nA steps).   

 

Data were acquired and analyzed using pClamp 10.0 (Axon Instruments). 

Sample sizes refer to number of cells or slices (data was collected from a 

maximum of 2 cells or slices per mouse) and all values are expressed as mean ± 

SEM.  Statistical analysis was performed using student t-tests or ANOVA using 

post hoc student t-tests where appropriate.  

 

Results: 

CaV1.3 knockout mice exhibit intact synaptic transmission, but impaired 

LTP.  An input-output response curve was constructed to assess synaptic 

transmission in CaV1.3 knockout mice (Figure 4-1). BLA field potential 

amplitudes increased with EC stimulus intensity (F(6, 150) = 90.3, p < 0.05; Figure 

4-1), but did not differ between wild-type (N = 15) and CaV1.3 knockout (N = 12) 

mice (F(1, 25) = 0.16, p > 0.05; Figure 4-1) 
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After establishing that that synaptic transmission was intact in CaV1.3 knockout 

mice, we investigated the ability of CaV1.3 knockout mice to exhibit BLA-LTP 

following HFS delivered via the EC. Figure 4-2 shows the effect of HFS on field 

potential amplitude in the BLA. Paired t-tests reveal that average field potential 

55-60 minutes post-HFS was significantly potentiated over the average field 

potential during the five-minute baseline in wild-type (N=13; t(1, 11) = 5.2, p < 0.05; 

Figure 4-2) and CaV1.3 knockout mice (N=11; t(1, 9) = 2.8, p < 0.05; Figure 4-2). 

However, an unpaired t-test between genotypes showed that field potential 

amplitudes were significantly less potentiated in CaV1.3 knockout mice (N=11; 

112.7 ± 4.6 %) than wild-type mice (N=13; 144.3 ± 8.6 %). This suggests that 

CaV1.3 knockout mice are impaired in the ability to exhibit BLA-LTP following 

HFS to the EC. 

 

CaV1.3 knockout mice exhibit enhanced excitability: reduced AHPs and 

spike accommodation. CaV1.3 knockout mice did not differ from wild-type mice 

with respect to membrane properties such as resting membrane potential, input 

resistance, action potential threshold, width, or peak amplitude (unpaired t-tests, 

p > 0.05; Table 4-1).   

 

While deletion of CaV1.3 did not significantly alter membrane properties at rest or 

during a single action potential, loss of CaV1.3 resulted in substantial changes in 
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firing properties in response to more prolonged depolarization.  The AHP that 

resulted after 5 action potentials was significantly smaller in the CaV1.3 knockout 

mice in overall area (N = 14; 5552.8 ± 762.2 mV ● ms) when compared with the 

AHP recorded in wild-type mice (N = 16; 10003.8 ± 1249.6.2 mV ● ms; t(1, 28) = 

2.9, p < 0.05; Figure 4-3). A change in the overall area of the AHP could be the 

result of alterations in either the mAHP or sAHP. To determine whether the 

mAHP was affected in CaV1.3 knockout mice, we measured the amplitude of the 

AHP at its peak (~60 ms after current stimulus offset) and 200 ms after current 

stimulus offset. The peak amplitude of the AHP did not differ between wild-type 

(N = 16; -9.9 ± 0.6 mV) and CaV1.3 knockout mice (N = 14; -9.6 ± 0.5 mV; t(1, 28) = 

0.6, p > 0.05; Figure 4-4A). There was a strong, but statistically non-significant, 

trend for a smaller AHP amplitude at 200 ms after current stimulus offset in 

CaV1.3 knockout mice (N = 14; -4.8 ± 0.4 mV; Figure 4-4B) compared with wild-

type mice (N = 16; -6.0 ± 0.5 mV; t(1, 28) = 2.0 p = 0.06; Figure 4-4B). To assess if 

the sAHP was affected in CaV1.3 knockout mice, we measured the amplitude of 

the AHP at 1000 ms after current stimulus offset. The AHP amplitude at 1000 ms 

was significantly smaller in CaV1.3 knockout mice (N = 14; -1.7 ± 0.3 mV; Figure 

4-4C) than wild-type mice (N = 16; -2.9 ± 0.3 mV; t(1, 28) = 2.4, p < 0.05; Figure 4-

4C) suggesting that deletion of CaV1.3 selectively impacts the generation of the 

sAHP. Additionally, AHP duration is significantly shorter in CaV1.3 knockout mice 

(N = 14; 4.4 ± 0.7 seconds; Figure 4-4D) than in wild-type mice (N = 16; 6.7 ± 

0.6 seconds, t(1, 28) = 2.5; p < 0.05, Figure 4-4D). 
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In addition to altering the sAHP, deletion of CaV1.3 also resulted in a decrease in 

spike accommodation (Figure 4-5).  Prolonged current steps (500 ms) 

consistently generated more spikes in BLA principal neurons from CaV1.3 

knockout mice (N = 14; Figure 4-5A) when compared with wild-type mice (N = 

16; F(6, 168) = 4.6; p < 0.05, Figure 4-5A).  Instantaneous firing frequency of the 

first four spikes generated by a 500 ms, 0.35 nA current injection were also 

calculated, CaV1.3 knockout mice (N = 14) were found to exhibit significantly 

higher frequencies than wild-type mice (N = 16) for the third (45.8 ± 3.7 vs. 31. 9 

± 4.0 seconds-1; t(1, 28) = 2.5; p < 0.05, Figure 4-5B) and fourth (37.5 ± 3.0 vs. 

25.0 ± 2.8 seconds-1; t(1, 28) = 3.0; p < 0.05, Figure 4-5B) spikes further pointing to 

reduced spike accommodation in CaV1.3 knockout mice. 

 

Discussion: 

We demonstrated altered neuronal function in the BLA of CaV1.3 knockout mice. 

Deletion of CaV1.3 results in reduced HFS-induced LTP in the cortical pathway 

(via stimulation of the EC) to the BLA (BLA-LTP). Principal neurons in the BLA of 

CaV1.3 knockout mice  exhibit enhanced excitability as measured by the AHP 

and spike accommodation. These findings suggest a critical role for CaV1.3 in 

BLA-LTP induced in this manner and in principal neuron excitability in the BLA.  

 



113 

 

Several studies of BLA-LTP have demonstrated L-VGCC-dependence (Bauer et 

al. 2002, Chapman et al. 1990, Drephal et al. 2006). The dependence of BLA-

LTP on L-VGCCs seems dependent on which afferents are stimulated and the 

stimulation protocol. The major afferent pathways to the amygdala include the 

thalamic pathway carrying auditory afferents and the cortical pathway traveling in 

the EC and carrying afferents from higher-order sensory cortices (de Olmos et al. 

1985, Pitkänen et al. 1997). In the thalamic pathway, BLA-LTP induced by 

pairing presynaptic stimulation with postsynaptic depolarization is L-VGCC-

dependent, whereas HFS stimulation that produces prolonged postsynaptic 

depolarization but not spikes is L-VGCC-independent (Bauer et al. 2002, 

Weisskopf et al. 1999). BLA-LTP induced by HFS of the EC is L-VGCC-

independent in the coronal slice preparation, but strongly L-VGCC-dependent in 

the horizontal slice preparation (Drephal et al. 2006, Huang et al. 2000).  For this 

reason as well as the fact that the EC of the horizontal slice preparation contains 

intact afferents from brain regions (hippocampus, perirhinal and entorhinal 

cortices) critical for encoding contextual information of the type with which CaV1.3 

knockout mice are impaired in forming associations (von Bohlen und Halbach & 

Albrecht 1998, von Bohlen und Halbach & Albrecht 2002), we chose to work with 

the horizontal slice preparation in this study. Additionally, it is advantageous that 

LTP can be induced in the horizontal slice preparation without blocking inhibitory 

transmission as is the case with other preparations (Drephal et al. 2006). To 

date, all studies that have explored the L-VGCC dependence of BLA-LTP have 

relied on the use of L-VGCC antagonists. Because all currently available L-
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VGCC antagonists block both brain-expressed L-VGCCs, Cav1.2 and Cav1.3, the 

pharmacological approach does not allow for the elucidation of their relative 

contribution to phenomenon like LTP. Using mice in which the genes for Cav1.2 

and Cav1.3 have been deleted, it is possible to dissect the contributions of each 

brain-expressed L-VGCCs. When the horizontal slice preparation is treated with 

L-VGCC antagonists, HFS stimulation of the EC does not lead to potentiation of 

the field potential 1 hour after HFS. In this study, we show, using CaV1.3 

knockout mice, that CaV1.3 is responsible for much of the potentiation observed 

following HFS of the EC. In fact, CaV1.3 knockout mice exhibit only ~25% as 

much field potential potentiation as wild-type mice 1 hour after HFS, suggesting 

that CaV1.3 mediates ~75% of the LTP blocked by L-VGCC antagonists and 

CaV1.2 likely mediates the remaining ~25%. It is interesting to note that a 

previous study found that L-VGCC-dependent LTP in the hippocampus of CaV1.3 

knockout mice was not impaired (Clark et al. 2003). This suggests that different 

L-VGCC subtypes subserve L-VGCC-dependent LTP in different brain regions. 

Alternatively, the discrepancy between our LTP data and that from the 

hippocampus of CaV1.3 knockout mice may reflect differences in the stimulation 

protocols used.  

 

 A limitation to the genetic approach presented here and the pharmacological 

approach used by others is the inability to determine which cell population is 

responsible for the electrophysiological observation. Because the CaV1.3 
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knockout mice lack CaV1.3 in all cell types and pharmacologically L-VGCC 

antagonists are not cell-type specific, neither approach can elucidate which 

population of cells is responsible for the effect observed. In the future, it will be of 

interest to know in which cell population(s) CaV1.3 function is critical. This could 

be addressed by generation of a mouse line in which the gene for CaV1.3 is 

floxed so that cell line specific deletion can produced by mating with mouse lines 

that express cre-recombinase in cell specific manner. 

 

Like BLA-LTP, neuronal excitability measured by the AHP is L-VGCC dependent. 

Several studies using L-VGCC antagonists have shown that blockade of these 

channels leads to a significant reduction in the AHP (Shah & Haylett 2000, Lima 

& Marrion 2007, Marrion & Tavalin 1998, Power et al. 2002). Increased activity 

and expression of L-VGCCs in the hippocampus occurs with aging and is 

correlated with an increase in the AHP and spike accommodation, an effect that 

is reversed with the application of L-VGCC antagonist (Moyer et al. 2000, 

Thibault et al. 2001, Thibault & Landfield 1996, Veng & Browning 2002). 

Previously, using mice in which the genes for CaV1.2 or CaV1.3 were deleted, we 

demonstrated that CaV1.3 mediates the sAHP in the CA1 region of the 

hippocampus but does not affect spike accommodation. Deletion of CaV1.2 does 

not have this effect on the sAHP (Kuo et al., submitted). Here, as in the CA1 

region of the hippocampus, we show that CaV1.3 mediates the AHP in the 

principal neurons of the lateral amygdala. Unlike in the hippocampus, however, 
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principal BLA neurons exhibited significantly less spike accommodation than 

wild-type mice. These effects on the AHP and spike accommodation in principal 

BLA neurons from Cav1.3 knockout mice were seen in the absence of any effects 

on basic membrane properties. Though this difference between the spike 

accommodation data may represent a different role for CaV1.3 in amygdala than 

in the hippocampus, we feel it more likely reflects a difference the absolute size 

of AHPs recorded in each study. AHPs in this study were 2-3 times larger than 

those recorded in Kuo et. al (submitted) and thus more likely to affect spike 

accommodation. The difference in size of the AHP between the two studies as 

well as the spike accommodation effect likely reflects a difference in the 

recording methods used (visualized vs. “blind”) since recordings from CA1 

pyramidal neurons using the “blind” method closely resemble those from the BLA 

with respect to AHP size and spike accommodation (McKinney et al, unpublished 

results). Because the AHP amplitude is significantly reduced at 1000 ms after 

current stimulus offset, but not 200 ms or at the peak of the AHP (~60 ms after 

current stimulus offset) in CaV1.3 knockout mice, it seems that CaV1.3 is 

selectively involved in the sAHP. This is supported by the observation that AHP 

duration is significantly shorter in CaV1.3 knockout mice than in wild-type mice as 

the sAHP is the only component of the AHP with a time constant on the order of 

seconds (Storm 1990) and thus capable of affecting the duration so dramatically. 

It is worth noting that though not statistically significant, there is a strong trend 

toward a reduction in the AHP amplitude at 200 ms after current stimulus offset, 

suggesting that CaV1.3 may mediate the mAHP to a modest extent. Though 
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significantly reduced, a residual sAHP is present in the principal BLA neurons of 

CaV1.3 knockout mice. This is consistent with previous studies demonstrating the 

lack of complete abolition of the sAHP using pharmacological blockade of L-

VGCCs (Marrion & Tavalin 1998, Lima & Marrion 2007, Shah & Haylett 2000), 

and suggests that additional calcium sources contribute to the generation of the 

sAHP. One possibility is that the calcium source for the residual sAHP is calcium 

influx through the other brain-expressed L-VGCC, CaV1.2. This seems somewhat 

unlikely in light of our previous demonstration that the sAHP in mice lacking the 

gene for CaV1.2 in CA1 neurons of the hippocampus is similar to that of wild-type 

mice (Kuo et al, submitted), however brain-region specific differences in sAHP 

generation cannot be ruled out. 

 

It is also possible that calcium from intracellular calcium stores can also mediate 

the residual sAHP. Indeed, disruption of calcium-induced calcium release (CICR) 

from intracellular calcium stores has been shown to reduce the currents that 

underly the sAHP (Shah & Haylett 2000, Torres et al. 1996, Borde et al. 2000). 

One study even found a reduced sAHP after inhibition of CICR (Shah & Haylett 

2000, Torres et al. 1996). It is important to note, however, that studies in which 

CICR was implicated in generation of the sAHP used unclamped calcium spikes 

(Borde et al. 2000, Torres et al. 1996) or prolonged spike trains (Shah & Haylett 

2000) to activate the sAHP. In contrast, in the present study the AHP was elicited 

with only 5 action potentials. Interestingly, CICR blockade reverses the age-
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related increase in the sAHP, but has no effect on the sAHP in young animals 

(Gant et al. 2006). Whether this age-dependent role for CICR in sAHP generation 

reflects increase in calcium release from intracellular stores or an increase in 

activation of CICR in response to an age-related increase in L-VGCC channel 

density is not known. If CICR is responsible for the residual sAHP, our data 

would suggest that the source of calcium that triggers the calcium release from 

internal stores does not require CaV1.3. 

 

A final explanation for the residual sAHP may lie in the action of other voltage-

gated calcium channels. The residual sAHP may be mediated by P-, Q-, or N-

type voltage-gated calcium channels. In support of this possibility is the 

observation that the N-type calcium channel blocker ω-conotoxin-GIVA 

significantly reduces IsAHP in cultured rat pyramidal neurons (Shah & Haylett 

2000).  

 

The fact that BLA-LTP and neuronal excitability, two hypothesized 

neurobiological substrates for learning and memory, are altered in Cav1.3 

knockout mice makes it tempting to speculate that one or both of the 

abnormalities leads to the impaired ability of Cav1.3 knockout mice to consolidate 

contextual fear learning. Of the two major brain structures known to be necessary 

for context fear learning, the hippocampus and BLA, the BLA seemed more likely 
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as we  previously demonstrated that the hippocampus in Cav1.3 knockout mice is 

capable of encoding spatial information (McKinney 2006) and LTP in the 

hippocampus of CaV1.3 knockout mice is intact (Clark et al. 2003). Within the 

BLA, a strong case can be made that LTP is necessary for fear learning. Sensory 

information about many potential conditioned and unconditioned stimuli, including 

auditory, contextual, and somatosensory information, converge on the BLA 

(Romanski et al. 1993, von Bohlen und Halbach & Albrecht 1998, von Bohlen 

und Halbach & Albrecht 2002) and LTP has been demonstrated in each of these 

afferent pathways (Bauer et al. 2002, Drephal et al. 2006, Huang et al. 2000, 

Paul F. Chapman 1990, Rogan et al. 1997, Weisskopf et al. 1999). Additionally, 

fear learning has been shown to modify synaptic strength of afferents on o BLA 

neurons in a way similar to experimentally-induced LTP (McKernan & Shinnick-

Gallagher 1997).  Further, fear learning and BLA-LTP share similar stimulus 

contingencies (Bauer et al. 2001)  and molecular mechanisms (Rodriques et al. 

2004). Together, these observations suggest that an LTP-like mechanism 

underlies fear learning in the BLA. An example of the shared molecular 

mechanisms of fear learning and BLA-LTP which is consistent with our findings 

comes from a study in which Bauer et al  (2002) demonstrated that the L-VGCC 

antagonist blocks BLA-LTP as well as long-term fear memory when a L-VGCC 

antagonist was infused into the BLA.  Based on these studies it would be 

logically consistent to hypothesize that the deficits in contextual fear conditioning 

consolidation observed in the Cav1.3 knockout mice is due to a reduction in BLA-

LTP, however this hypothesis may be simplistic. There is a significant disparity in 
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time course between the BLA-LTP experiments and the deficits observed in the 

Cav1.3 knockout mice with regard to the consolidation of contextual fear 

conditioning (see figure 2 in McKinney and Murphy 2006).  This disparity has 

been reported frequently in the literature.  Many manipulations (genetic and 

pharmacological) that impair long-term but not short-term memory block LTP 

within minutes after induction. The work of Bauer et al. (2002) provides a relevant 

example. Application of the L-VGCC antagonist verapamil impaired BLA-LTP 

induced by paired stimulation of the EC immediately, whereas intra-amygdala 

infusion of the same L-VGCC antagonist before fear learning resulted in 

impairment performance 24 hours later, but not at earlier time points. Some have 

argued that this disparity in time course may reflect a difference in the way in 

which LTP is engaged naturally in vivo from the way it is studied in vitro. These 

differences include patterns of stimulation and modulation by other areas of the 

brain (Schafe et al. 2001). Experiments using in vivo electrophysiological 

methods will be necessary to resolve this question. The LTP underlying fear 

memories may not be induced during training, but rather at a later time point, for 

example, during sleep. There is evidence that consolidation of memories may 

occur via the replaying of newly acquired patterns of activity during sleep  

(Axmacher et al. 2006). Replaying of specific patterns of neuronal activity during 

sleep may induce LTP. 
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Like LTP, changes in neuronal excitability have been proposed as a 

neurobiological substrate of learning. It has been suggested that enhanced 

excitability is not part of the encoding of learning per se, but rather serves a 

permissive function for synaptic modification (Zhang & Linden 2003). It is 

proposed that when a neuron is more excitable, the threshold for LTP is lower, 

thus information encoding is facilitated. Following this line of reasoning, one 

would expect animals with more excitable neurons to be better capable at 

encoding information and thus more efficient learners. Our results suggest this is 

not the case in Cav1.3 knockout mice. That is, though Cav1.3 knockout mice 

exhibit enhanced excitability in principal neurons of the BLA (the present study) 

and in CA1 neurons of the hippocampus (Kuo et al., submitted; McKinney et al., 

unpublished results), neither hippocampus-dependent learning (Morris water 

maze) nor BLA-dependent learning (contextual fear conditioning) is enhanced 

(McKinney & Murphy 2006). It could be that enhanced excitability does facilitate 

learning, but Cav1.3 knockout mice have other deficits that interfere with learning 

(e.g., impaired BLA-LTP). Further behavioral characterization of Cav1.3 knockout 

mice may reveal that there are some learning tasks on which they perform better 

than wild-type mice. Our data, however, are consistent with other data in which 

manipulations that enhance excitability rescue impaired learning and memory in 

aged animals (Murphy et al. 2005, Disterhoft et al. 1996), but not young animals 

(Giese et al. 1998, Disterhoft et al. 1996). 
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L-VGCCs have previously been implicated in amygdala neurophysiology, 

including LTP and neuronal excitability, but these data are the first to implicate 

Cav1.3 specifically.  The role of the other brain-expressed L-VGCC, Cav1.2, in 

these processes should be explored in future studies. Though it is tempting to 

speculate that changes in BLA-LTP and neuronal excitability could account for 

the impaired ability of Cav1.3 knockout mice to consolidate conditioned fear, 

thorough understanding of the mechanism by which this learning deficit arises 

awaits further study.  
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Figure 4-1. Synaptic transmission in the EC-LA pathway does not differ between 
CaV1.3 knockout (N=12) and wild-type (N=15) mice. Field potential amplitude in 
the LA increases and plateaus with increasing stimulation of the EC in both 
CaV1.3 knockout and wild-type mice and there are no differences in this 
response between the genotypes. All data are presented as mean ± S.E.M. 
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Figure 4-2. Long-term potentiation of BLA field potentials (BLA-LTP) induced by 
high-frequency stimulation (HFS) of the EC is impaired in CaV1.3 knockout mice. 
(A) Significant BLA-LTP is induced by HFS in both wild-type (N=13 slices) 
CaV1.3 knockout (N=11 slices), but BLA-LTP in CaV1.3 knockout mice is 
significantly smaller than in wild-type mice. Data points represent averaged 
amplitudes normalized with respect to baseline. All data are presented as mean 
± S.E.M. (B) Representative traces of field potentials evoked by EC stimulation 
before and after HFS stimulation in wild-type mice. (C) Representative traces of 
field potentials evoked by EC stimulation before and after HFS stimulation in 
CaV1.3 knockout mice. 
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Table 4-1. Biophysical properties of BLA principal neurons are similar in wild-
type (N=16 neurons) and CaV1.3 knockout (N=14 neurons) mice. Abbreviations: 
RMP, resting membrane potential, IR, input resistance, AP, action potential.  All 
data is presented as mean ± S.E.M. 

 

 

 

 

 

 

RMP (mV) IR (mΩ) 

AP 
Threshold 
(mV) 

AP Width 
(ms) 

AP Height 
(mV) 

Wild-type -65.4 ± 1.5 173.3± 10.3 48.4 ± 1.7 1.2 ± 0.05 90.9 ± 2.4 

Knockout -63.6 ± 1.2 147.1± 13.9 47.2 ± 0.9 1.4 ± 0.08 86.6 ± 2.1 
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Figure 4-3. Area of the AHP is significantly smaller in CaV1.3 knockout mice. (A) 
Group data exhibiting that the area of the AHP in CaV1.3 knockout mice (N=14 
neurons) is ~50% of that in wild-type mice (N=16 neurons). (B) Representative 
trace of AHP from a neuron of a wild-type mouse. (C) Representative trace of 
AHP from a neuron of a CaV1.3 knockout mouse. (*) p < 0.05. All data are 
presented as mean ± S.E.M. 
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Figure 4-4. AHP parameters in which sAHP is major component are selectively 
affected in CaV1.3 knockout mice. (A) AHP peak amplitude does not differ 
between wild-type (N=16 neurons) and CaV1.3 knockout (N=14 neurons) mice. 
(B) There is a strong, but statistically insignificant, trend for a smaller AHP 
amplitude at 200 ms after stimulus offset in CaV1.3 knockout than wild-type mice. 
(C) The AHP amplitude at 1000 ms after stimulus offset is significantly smaller in 
CaV1.3 knockout mice than wild-type mice. (D) The duration of the AHP is 
significantly shorter in CaV1.3 knockout mice than wild-type mice. (*) p < 0.05. All 
data are presented as mean ± S.E.M. 
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Figure 4-5. BLA principal neurons from CaV1.3 knockout (N = 14 neurons) mice 
exhibit greater excitability than neurons from wild-type (N= 16 neurons) mice. (A) 
Spike accommodation is less pronounced in neurons from CaV1.3 knockout mice 
than wild-type neurons. (B) Instantaneous fire frequency is significantly greater in 
neurons from CaV1.3 knockout mice than it is in neurons from wild-type mice. (C) 
Representative trace from a wild-type neuron during a 500 ms, 0.35 nA current 
injection. (D) Representative trace from a CaV1.3 knockout neuron during a 500 
ms, 0.35 nA current injection. (*) p < 0.05. All data are presented as mean ± 
S.E.M. 

 

 

 

 

 



129 

 

References: 

 

Alger, B. E. and Nicoll, R. A. (1980) Epileptiform Burst Afterhyperpolarization: 
Calcium-Dependent Potassium Potential in Hippocampal CA1 Pyramidal 
Cells. Science, 210, 1122-1124. 

Axmacher, N., Mormann, F., Fernandez, G., Elger, C. E. and Fell, J. (2006) 
Memory formation by neuronal synchronization. Brain Res Rev, 52, 170-
182. 

Bauer, E. P., LeDoux, J. E. and Nader, K. (2001) Fear conditioning and LTP in 
the lateral amygdala are sensitive to the same stimulus contingencies. Nat 
Neurosci, 4, 687-688. 

Bauer, E. P., Schafe, G. E. and LeDoux, J. E. (2002) NMDA Receptors and L-
Type Voltage-Gated Calcium Channels Contribute to Long-Term 
Potentiation and Different Components of Fear Memory Formation in the 
Lateral Amygdala 

J. Neurosci., 22, 5239-5249. 
Blanton, M. G., Lo Turco, J. J. and Kriegstein, A. R. (1989) Whole cell recording 

from neurons in slices of reptilian and mammalian cerebral cortex. Journal 
of Neuroscience Methods, 30, 203-210. 

Borde, M., Bonansco, C., de Sevilla, D. F., Le Ray, D. and Buno, W. (2000) 
Voltage-clamp analysis of the potentiation of the slow Ca2+-activated K+ 
current in hippocampal pyramidal neurons. Hippocampus, 10, 198-206. 

Chapman, P. F. and Bellavance, L. L. (1992) Induction of long-term potentiation 
in the basolateral amygdala does not depend on NMDA receptor 
activation. Synapse, 11, 310-318. 

Chapman, P. F., Kairiss, E. W., Keenan, C. L. and Brown, T. H. (1990) Long-
Term synaptic potentiation in the amygdala. Synapse, 6, 271-278. 

Clark, N. C., Nagano, N., Kuenzi, F. M. et al. (2003) Neurological phenotype and 
synaptic function in mice lacking the CaV1.3 alpha subunit of neuronal L-
type voltage-dependent Ca2+ channels. Neuroscience, 120, 435-442. 

de Olmos, J. S., Alheid, G. F. and Beltramino, C. A. (1985) Amygdala. In: The rat 
nervous system, (G. Paxinos ed.), pp. 223-334. Academic Press, Sydney. 

Disterhoft, J. F. and Oh, M. M. (2007) Alterations in intrinsic neuronal excitability 
during normal aging. Aging Cell, 6, 327-336. 

Disterhoft, J. F., Thompson, L. T., Moyer, J. R. and Mogul, D. J. (1996) Calcium-
dependent afterhyperpolarization and learning in young and aging 
hippocampus. Life Sciences, 59, 413-420. 

Doyere, V., Schafe, G. E., Sigurdsson, T. and LeDoux, J. E. (2003) Long-term 
potentiation in freely moving rats reveals asymmetries in thalamic and 
cortical inputs to the lateral amygdala. European Journal of Neuroscience, 
17, 2703-2715. 

Drephal, C., Schubert, M. and Albrecht, D. (2006) Input-specific long-term 
potentiation in the rat lateral amygdala of horizontal slices. Neurobiology 
of Learning and Memory, 85, 272-282. 



130 

 

Faber, E. S. L. and Sah, P. (2007) Functions of SK channels in central neurons. 
Clinical and Experimental Pharmacology and Physiology, 34, 1077-1083. 

Gant, J. C., Sama, M. M., Landfield, P. W. and Thibault, O. (2006) Early and 
simultaneous emergence of multiple hippocampal biomarkers of aging is 
mediated by Ca2+-induced Ca2+ release. Journal of Neuroscience, 26, 
3482-3490. 

Giese, K. P., Storm, J. F., Reuter, D., Fedorov, N. B., Shao, L.-R., Leicher, T., 
Pongs, O. and Silva, A. J. (1998) Reduced K+ Channel Inactivation, Spike 
Broadening, and After-Hyperpolarization in Kvbeta 1.1-Deficient Mice with 
Impaired Learning. Learn. Mem., 5, 257-273. 

Hotson, J. R. and Prince, D. A. (1980) A calcium-activated hyperpolarization 
follows repetitive firing in hippocampal neurons. J Neurophysiol, 43, 409-
419. 

Huang, Y.-Y., Martin, K. C. and Kandel, E. R. (2000) Both Protein Kinase A and 
Mitogen-Activated Protein Kinase Are Required in the Amygdala for the 
Macromolecular Synthesis-Dependent Late Phase of Long-Term 
Potentiation. J. Neurosci., 20, 6317-6325. 

Lima, P. A. and Marrion, N. V. (2007) Mechanisms underlying activation of the 
slow AHP in rat hippocampal neurons. Brain Research. 

Madison, D. V. and Nicoll, R. A. (1984) Control of the repetitive discharge of rat 
CA 1 pyramidal neurones in vitro. J Physiol, 354, 319-331. 

Maren, S., Aharonov, G. and Fanselow, M. S. (1996) Retrograde abolition of 
conditional fear after excitotoxic lesions in the basolateral amygdala of 
rats: Absence of a temporal gradient. Behavioral Neuroscience, 110, 718-
726. 

Marrion, N. V. and Tavalin, S. J. (1998) Selective activation of Ca2+-activated K+ 
channels by co-localized Ca2+ channels in hippocampal neurons. Nature, 
395, 900-905. 

McKernan, M. G. and Shinnick-Gallagher, P. (1997) Fear conditioning induces a 
lasting potentiation of synaptic currents in vitro. Nature, 390, 607-611. 

McKinney, B., Brandon C|Murphy,GG,Geoffrey G (2006) The L-Type voltage-
gated calcium channel Cav1.3 mediates consolidation, but not extinction, 
of contextually conditioned fear in mice. In: Learning & memory, Vol. 13, 
pp. 584-589. 

McKinney, B. C. and Murphy, G. G. (2006) The L-Type voltage-gated calcium 
channel Cav1.3 mediates consolidation, but not extinction, of contextually 
conditioned fear in mice. Learn. Mem., 13, 584-589. 

Moyer, J. R., Jr., Power, J. M., Thompson, L. T. and Disterhoft, J. F. (2000) 
Increased excitability of aged rabbit CA1 neurons after trace eyeblink 
conditioning. J Neurosci, 20, 5476-5482. 

Murphy, G. G., Rahnama, N. P. and Silva, A. J. (2005) Investigation of age-
related cognitive decline using mice as a model system: behavioral 
correlates. Am J Geriatr Psychiatry. 

Paul F. Chapman, E. W. K., Claude L. Keenan, Thomas H. Brown, (1990) Long-
Term synaptic potentiation in the amygdala. Synapse, 6, 271-278. 



131 

 

Phillips, R. G. and LeDoux, J. E. (1992) Differential contribution of amygdala and 
hippocampus to cued and contextual fear conditioning. Behav Neurosci, 
106, 274-285. 

Pitkänen, A., Savander, V. and LeDoux, J. E. (1997) Organization of intra-
amygdaloid circuitries in the rat: an emerging framework for understanding 
functions of the amygdala. Trends in Neurosciences, 20, 517-523. 

Platzer, J., Engel, J., Schrott-Fischer, A., Stephan, K., Bova, S., Chen, H., 
Zheng, H. and Striessnig, J. (2000) Congenital Deafness and Sinoatrial 
Node Dysfunction in Mice Lacking Class D L-Type Ca2+ Channels. Cell, 
102, 89-97. 

Power, J. M., Wu, W. W., Sametsky, E., Oh, M. M. and Disterhoft, J. F. (2002) 
Age-related enhancement of the slow outward calcium-activated 
potassium current in hippocampal CA1 pyramidal neurons in vitro. J 
Neurosci, 22, 7234-7243. 

Rodriques, S. M., Schafe, G. E. and LeDoux, J. E. (2004) Molecular mechanisms 
underlying emotional learning and memory in the lateral amygdala. 
Neuron, 30, 75-91. 

Rogan, M. T., Staubli, U. V. and LeDoux, J. E. (1997) Fear conditioning induces 
associative long-term potentiation in the amygdala. 390, 604-607. 

Romanski, L. M., Clugnet, M.-C., Bordi, F. and LeDoux, J. E. (1993) 
Somatosensory and auditory convergence in the lateral nucleus of the 
amygdala. Behavioral Neuroscience, 107, 444-450. 

Schafe, G. E., Nader, K., Blair, H. T. and LeDoux, J. E. (2001) Memory 
consolidation of Pavlovian fear conditioning: a cellular and molecular 
perspective. Trends in Neurosciences, 24, 540-546. 

Shah, M. and Haylett, D. G. (2000) Ca2+ Channels Involved in the Generation of 
the Slow Afterhyperpolarization in Cultured Rat Hippocampal Pyramidal 
Neurons. J Neurophysiol, 83, 2554-2561. 

Stoop, R. and Pralong, E. (2000) Functional connections and epileptic spread 
between hippocampus, entorhinal cortex and amygdala in a modified 
horizontal slice preparation of the rat brain. European Journal of 
Neuroscience, 12, 3651-3663. 

Storm, J. F. (1990) Potassium currents in hippocampal pyramidal cells. Progress 
in Brain Research, 83, 161-187. 

Thibault, O., Hadley, R. and Landfield, P. W. (2001) Elevated Postsynaptic 
[Ca2+]i and L-Type Calcium Channel Activity in Aged Hippocampal 
Neurons: Relationship to Impaired Synaptic Plasticity. Journal of 
Neuroscience, 21, 9744-9756. 

Thibault, O. and Landfield, P. W. (1996) Increase in single L-type calcium 
channels in hippocampal neurons during aging. Science, 272, 1017-1020. 

Torres, G. E., Arfken, C. L. and Andrade, R. (1996) 5-hydroxytryptamine4 
receptors reduce afterhyperpolarization in hippocampus by inhibiting 
calcium-induced calcium release. Molecular Pharmacology, 50, 1316-
1322. 



132 

 

Veng, L. M. and Browning, M. D. (2002) Regionally selective alterations in 
expression of the a1D subunit CaV1.3 of L-type calcium channels in the 
hippocampus of aged rats. Molecular Brain Research, 107, 120-127. 

Veng, L. M., Lone, M., Mesches, M. H. and Browning, M. D. (2003) Age-related 
working memory impairment is correlated with increases in the L-type 
calcium channel protein alpha1D (Cav1.3) in area CA1 of the 
hippocampus and both are ameliorated by chronic nimodipine treatment. 
In: Molecular Brain Research, Vol. 110, pp. 193-202. 

von Bohlen und Halbach, O. and Albrecht, D. (1998) Tracing of axonal 
connectivities in a combined slice preparation of rat brains--a study by 
rhodamine-dextran-amine-application in the lateral nucleus of the 
amygdala. Journal of Neuroscience Methods, 81, 169-175. 

von Bohlen und Halbach, O. and Albrecht, D. (2002) Reciprocal connections of 
the hippocampal area CA1, the lateral nucleus of the amygdala and 
cortical areas in a combined horizontal slice preparation. Neuroscience 
research, 44, 91-100. 

Washburn, M. S. and Moises, H. C. (1992) Electrophysiological and 
morphological properties of rat basolateral amygdaloid neurons in vitro. J. 
Neurosci., 12, 4066-4079. 

Watanabe, Y., Saito, H. and Abe, K. (1995) Nitric oxide is involved in long-term 
potentiation in the medial but not lateral amygdala neuron synapses in 
vitro. Brain Research, 688, 233-236. 

Weisskopf, M. G., Bauer, E. P. and LeDoux, J. E. (1999) L-type voltage-gated 
calcium channels mediate NMDA-independent associative long-term 
potentiation at thalamic input synapses to the amygdala. J Neurosci, 19, 
10512-10519. 

Zhang, W. and Linden, D. J. (2003) The other side of the engram: experience-
driven changes in neuronal intrinsic excitability. Nat Rev Neurosci, 4, 885-
900. 

 
 

 



 
 

133

Chapter V 

Conclusion 

 

Overview of rationale and findings: 

Fear conditioning and fear extinction are popular models for studying the 

neurobiology of fear, associative and inhibitory learning, and fear disorders. 

Recently, the molecular mechanisms underlying fear conditioning and fear 

extinction have been a particularly active subject for research. Intense interest 

and active investigation into this area has led to a greater understanding of the 

molecular mechanisms of fear conditioning and fear extinction. It is interesting 

that many of the same molecules found to be important for fear conditioning are 

also implicated in fear extinction. In this dissertation, I focused my studies on one 

such class of molecules, the L-type voltage-gated calcium channels (L-VGCCs). 

Previously, others used L-VGCC antagonists to demonstrate a role for L-VGCCs 

in consolidation and extinction of conditioned fear. Though L-VGCC antagonists 

are powerful in elucidating a prominent role for LVGCCs in conditioned fear, they 

do not permit identification of the specific LVGCCs involved. There are two major 

subtypes of brain LVGCCs, Cav1.2 and Cav1.3, both of which are the targets of 

currently-available L-VGCC antagonists. As Cav1.2 and Cav1.3 have different 

cellular and sub-cellular distributions (Hell et al. 1993b), exhibit different 

biophysical properties 
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(Helton et al. 2005, Xu 2001), and have been implicated in quite different 

physiological processes (Cui et al. 2007, Nitert et al. 2008), it seemed to me that 

an understanding of the specific subtype(s) involved in fear conditioning and fear 

extinction would be valuable for understanding fear, associative and inhibitory 

learning, and could have implications for human health. To address the question 

of subunit-specific involvement of L-VGCCs in fear conditioning and fear 

extinction, I characterized the ability of mice in which the gene for either of the 

brain-expressed L-VGCCs was deleted (Cav1.2cKO and Cav1.3 knockout mice) to 

consolidate and extinguish conditioned fear. As is detailed in chapters 2 and 3 of 

this dissertation, I demonstrated that Cav1.3, but not Cav1.2, mediates 

consolidation of conditioned fear and neither Cav1.2 nor Cav1.3 alone plays a 

role in extinction of conditioned fear. I go on to show that previous studies 

suggesting a role for L-VGCCs in extinction of conditioned fear were likely 

confounded by an aversive state produced by the L-VGCC antagonists used in 

those studies. In chapter 4 of this dissertation, I explore the role of Cav1.3 in 

basolateral amygdala (BLA) neurophysiology, a brain structure implicated in both 

fear conditioning and fear extinction. I show that Cav1.3 mediates long-term 

potentiation (LTP) and neuronal excitability in this structure. 

 

Cav1.3 mediates consolidation of conditioned fear: 

In 1949, D. O. Hebb introduced the “dual trace” hypothesis of memory formation. 

Hebb proposed that reverberation of activity within assemblies of neurons was 

the essence of short-term memory and that if maintained long enough some 
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growth processes at the level of the synapse could lead to long-term memory 

(Hebb 2002). This hypothesis about the cellular basis of memory has been the 

dominant one since Hebb’s time and has driven much of the research in the field. 

Interestingly, much of what we know now about the cellular and molecular 

mechanisms of memory formation look very much like what Hebb proposed. 

 

Currently, initial acquisition of information (i.e., learning) and its maintenance in 

the short-term is thought to occur on the cellular and molecular level via post-

translational modifications to existing proteins and is thus protein synthesis 

independent. Following learning, consolidation takes place. Consolidation is the 

process by which information acquired during learning is transformed from a 

labile state into long-term stable memories and stored in the brain. The cellular 

events thought to underlie consolidation include activation of second messenger 

systems, new gene transcription, and de novo synthesis of proteins important for 

creating new synapses or modifying existing synapses. Consolidation is 

measured by the period of time when memory is sensitive to the inhibition of 

protein synthesis, usually on the order of hours following initial learning (Dudai 

2004). Some types of memories, particularly hippocampus-dependent 

declarative-type memories, are thought to undergo further systems-level 

consolidation (Dudai 2004, Frankland & Bontempi 2005). Systems-level 

consolidation can take weeks, months, and even years to be completed. The 

duration of systems-level consolidation is measured by the time it takes for 

memory to become independent of the hippocampus (Dudai 2004).  
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Suppressing the transcription of new mRNA (Bailey et al. 1999) or preventing the 

translation of new protein from mRNA in the amygdala disrupts long-term fear 

memory assessed at 24 hours, but not earlier time points (Parsons et al. 2006, 

Schafe et al. 2000). Therefore, according to the definition of consolidation 

presented above, fear memories assessed 24 hours after fear conditioning can 

be used as a measure of consolidation.  Bauer et al. (2002) first showed that 

consolidation of fear conditioning was mediated by L-VGCCs using an approach 

in which they infused the L-VGCC antagonist verapamil into the BLA of rats prior 

to fear conditioning and then testing them at various times after conditioning. 

Rats infused with verapamil prior to conditioning performed as well as rats 

infused with vehicle when tested 1, 3, and 6 hours after conditioning, however, 

verapamil-infused rats exhibited severely impaired fear memory 24 hours after 

conditioning. Similarly, I demonstrated that that Cav1.3 knockout mice exhibit 

significantly impaired fear memory 24 hours after conditioning, but were not 

impaired at 1 and 6 hours after conditioning. Cav1.2cKO mice performed as well as 

wild-type mice with respect to consolidation of conditioned fear. Together, these 

data suggest that Cav1.3, but not Cav1.2, mediates consolidation of conditioned 

fear. The infusion data suggests that the BLA is a locus at which Cav1.3 is critical 

for the mediation consolidation of conditioned fear. However, it is not understood 

how Cav1.3 might function in the BLA to bring about this deficit. Also, it cannot be 

ruled out that Cav1.3 functions to mediate consolidation of conditioned fear in 

other brain areas as well. 



 
 

137

 

Future directions for unraveling the role of Cav1.3 in consolidation of 
conditioned fear—location, location, location: 
 
Location at which Cav1.3 functions with respect to consolidation of conditioned 

fear is one issue not addressed well by my studies. Here, I use “location” to 

include brain structures, cell types, and point in time. These issues were not 

addressed in my experiments because of my choice of approach, namely, the 

use of a mouse model in which the gene for Cav1.3 is deleted in all cells at all 

times. I have relied on what is known about the neurobiology of fear conditioning 

to hypothesize the likely brain structures and cells in which Cav1.3 is critical to 

mediate consolidation of conditioned fear. For example, I have focused my 

investigations on the BLA because (1) it has been repeatedly demonstrated to be 

necessary for conditioned fear (Phillips & LeDoux 1992, Maren et al. 1996, 

Maren 1999, Iwata et al. 1986, Wilensky et al. 1999) and (2) LTP in this structure 

is dependent on L-VGCCs (Drephal et al. 2006, Bauer et al. 2002). For my study 

of neuronal excitability, I chose to focus on BLA principal neurons because  in 

vivo electrophysiology after fear conditioning suggest that these neurons 

participate in encoding fear memories (Rogan et al. 1997).  Though my choices 

of brain structure and neurons to study were logical given the information 

available, an advancement in our understanding of the impairment observed in 

Cav1.3 knockout mice and thus the molecular mechanisms of consolidation of 

conditioned fear awaits the unraveling of the question of where and when Cav1.3 

functions should be one of the primary focuses of this project’s future. 
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With respect to identifying brain structures in which Cav1.3 is critical, a number of 

possible experiments can be envisioned. All of the best options depend on the 

development of new tools. Local infusion of L-VGCC antagonists in specific brain 

regions either before or shortly after fear conditioning is one approach to 

addressing brain structures in which Cav1.3 is critical for consolidation of 

conditioned fear. The study by Bauer et al. (2002) used such an approach to 

demonstrate the importance of L-VGCCs in the BLA for mediating consolidation 

of conditioned fear. However, this study was limited to only one brain structure. It 

is certainly possible, if not likely, that L-VGCCs in other brain structures are 

critical. The major limitation of such an approach, however, is the absence of any 

subunit specific L-VGCC antagonists. All currently-available L-VGCC antagonists 

target both Cav1.2 and Cav1.3. The advent of subunit-specific antagonists would 

be necessary for this approach to be maximally effective. 

 

 

Another approach for delineating the brain structures in which Cav1.3 is important 

for consolidation of conditioned fear would require the use of Cre-loxP 

recombination (Metzger & Chambon 2001). One can “flox” a gene and thus 

render it capable of being conditionally deleted. “Floxing” refers to the 

introduction of two loxP sites into the gene of interest. The loxP sites are 34 

base-pair stretches of DNA that are recognized for cleavage by cre-recombinase 

and placement of a loxP site on each side of a critical piece of a gene will mark 

that segment of DNA for removal by cre-recombinase and render the gene non-
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functional. Cre-recominase, however, is not normally present in mammalian cells 

and its introduction by the experimenter dictates when the gene of interest is 

deleted. The development of a mouse model in which the gene for Cav1.3 is 

floxed would allow for some powerful experiments in the effort to uncover the 

function of Cav1.3 in the consolidation of fear memories.  If such a mouse model 

existed, one such application would be to use local infusion of viruses expressing 

cre-recombinase into specific brain structures so that the gene for Cav1.3 could 

be regionally deleted and the effects of these deletions on the consolidation of 

conditioned fear investigated.  

 

Though similar to the pharmacological approach, the use of Cre-loxP 

recombination offers different advantages and poses different problems. First, 

the development of such a mouse model and the requisite viruses is probably 

technically less challenging and more realistic in the short term than developing 

subunit specific antagonists. This approach also allows for the engineering of a 

method to determine more specifically in which cells the gene was deleted. A 

disadvantage of using L-VGCC antagonists as suggested above is the inability to 

know the extent of diffusion and thus the area of L-VGCC inactivation. A floxed 

gene could be engineered to express a marker upon cleavage by cre-

recombinase allowing the cells in which the gene is deleted to be visualized. 

Disadvantages of this approach include the lack of temporal resolution and 

inability to reverse the effect. That is, because this approach targets the gene, 

the delay until Cav1.3 is no longer present will be dependent on the half-life of the 
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protein. Also, once the gene is excised from the genome, the genes function 

cannot be recovered. 

 

In addition to identifying brain structures in which Cav1.3 function is critical for 

conditioned fear, the types of neurons in which Cav1.3 mediates its function with 

respect to conditioned fear are of interest. Addressing the cells in which Cav1.3 

function is important would benefit from an approach utilizing cre-loxP 

recombination. Mice carrying a floxed version of the gene for Cav1.3 could be 

crossed with mice carrying the cre gene driven by various cell-specific promoters 

to generate mice in which the gene for Cav1.3 is deleted specifically in those cells 

expressing cre. This is the same approach that I used for the experiments 

presented in Chapter 3 of this dissertation to assess the role of Cav1.2 in 

conditioned fear. The structures of the brain have complicated neural circuitries 

and are composed of many different types of cells with differing 

neurotransmitters and connectivity. A primary dysfunction in any one group of 

neurons could lead to impaired function of any of the neurons to which it is 

functionally connected. Within the BLA, there are numerous types of neurons 

(Faber et al. 2001). A logical first step to addressing the types of cells in which 

Cav1.3 functions during consolidation of conditioned fear would be to use cre-lox 

recombination to delete the gene for Cav1.3 in the two most broad classes of 

neurons: inhibitory and excitatory neurons. Mouse models expressing cre-

recombinase under the control of the appropriate promoters for such an 

approach currently exist (Stenman et al. 2003, Chen et al. 2006). Once the broad 
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class of neurons in which Cav1.3 is important is established, a narrowing of the 

neurons involved can be achieved by using mice in which cre expression is 

driven by more specific promoters. 

 

Location in time is another parameter that is important to understand with respect 

to the role of Cav1.3. The current data sets with respect to the role of Cav1.3 in 

consolidation of conditioned fear do not tell us a lot about when Cav1.3 is 

important. Bauer et al. (2002) infused an L-VGCC antagonist into the BLA prior to 

fear conditioning. It is likely that L-VGCCs were blocked for much longer than just 

the period of fear conditioning. As discussed above, learning and memory 

formation proceeds in phases. By infusing the L-VGCC before fear conditioning, 

Bauer et al. (2002) likely blocked L-VGCCs across multiple phases. At a 

minimum, using this approach blocked L-VGCCs during acquisition and early 

consolidation. The use of Cav1.3 knockout mice in my experiments did not allow 

for temporal resolution as there were never any functioning Cav1.3 channels at 

any stage of memory formation.  

 

Infusion studies are likely the best tool for addressing the temporal phase during 

which Cav1.3 is important. Of course, subunit-specific antagonists would be ideal. 

Genetic approaches, including inducible deletions, would not provide the 

necessary temporal resolution as most memory phases last minutes to hours and 

the half-lives of most proteins are hours to days. If Cav1.3 is important for 

mediating consolidation of conditioned fear and not acquisition as current data 
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suggests, infusions of L-VGCC antagonists immediately after fear conditioning 

should block consolidation of conditioned fear as well as those prior to fear 

conditioning. It would be interesting to know how long after fear conditioning L-

VGCC antagonists could be delivered and still disrupt consolidation.  

 

Understanding the “location” at which Cav1.3 mediates its effect with respect to 

fear conditioning will be a significant step forward for the understanding of Cav1.3 

and fear conditioning generally. These experiments, however, will not be easy, or 

inexpensive. The lines of research that I have proposed will likely require 

development of new technology that will be costly in terms of both money and 

manpower. This raises the question: “what is the value of understanding fear 

conditioning?” 

 

The significance of understanding how fear memories are formed: 

Evolutionarily, the ability of humans to form fear memories has likely been quite 

important to our survival. Even today this ability serves us in learning about, and 

avoiding, dangers in our environment for which we do not have innate fear. For 

example, one might learn to avoid red stove-top burners after touching one and 

suffering a burn. There is no doubt that understanding how such memories are 

formed is important for comprehending ourselves as human beings and fear 

conditioning is a valuable tool for developing such an understanding. However, I 

am particularly interested in how understanding fear conditioning might be 

harnessed to serve human health and reduce suffering. Understanding the 
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molecular mechanisms underlying fear conditioning, including the role of Cav1.3, 

is an important part of this growing knowledge especially because molecules are 

the targets of pharmacotherapy.  

  

One situation in which a greater understanding of how fear memories are formed 

might benefit human health and comfort is during the administration of chronic 

cancer chemotherapy. Many forms of cancer chemotherapy induce nausea and 

vomiting. Interestingly, stimuli surrounding the administration cancer 

chemotherapy (CS) (e.g., health care personnel, drug delivery equipment, 

doctor’s office or hospital) can enter into association with the chemotherapy-

induced nausea and vomiting (US) (Stockhorst et al. 2007). Subsequent 

encounters with these stimuli leads to the experience of nausea and vomiting in 

many patients even in the absence of additional chemotherapy administration. In 

fact, 20-30% of cancer patients receiving chemotherapy report nausea and 

vomiting when being re-exposed to the stimuli that usually signal the 

chemotherapy session and drug infusion. This phenomenon is referred to as 

anticipatory nausea and vomiting (ANV). It is not uncommon for ANV to lead to 

drop out from cancer treatment (Miller & Kearney 2004).  

 

If the molecular mechanisms that mediate the formation of such aversive 

associations were better understood, it is possible that pharmacological inhibitors 

of this process might be successful in preventing ANV and subsequent drop out 

from chemotherapy treatment. Recently, a rat model of ANV has been 
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established in which nausea-inducing lithium chloride is paired with a particular 

context such that subsequent exposure to that context elicits conditioned gaping 

(a marker for nausea in rats) (Limebeer et al. 2006). This model will likely be 

valuable for assessing potential ANV therapeutics. It would be interesting to 

investigate whether any of the same manipulations that disrupt fear conditioning 

are also able to interfere with conditioned gaping given their obvious similarities. 

In particular, I would like to know if Cav1.3 mediates conditioned gaping. There 

would be challenges to assessing Cav1.3 knockout mice in the conditioned 

gaping paradigm since mice, unlike rats, do not show any clear signs of nausea 

(Welzl et al. 2001). Using L-VGCC antagonists in rats might be another approach 

for addressing this issue. In actuality, I may have inadvertently addressed this 

issue while performing the experiments that I present in Chapter 3 of this 

dissertation to assess whether the acute effects induced by nifedipine injection 

were able to enter into association with the context in which it was experienced. 

In those experiments, I paired nifedipine with a fear conditioning chamber and 

showed that subsequent exposure to that chamber elicited the same response as 

acute nifedipine injection (i.e. immobility). Because a high dose of nifedipine was 

used as the US in those studies, it seems reasonable to assume that both Cav1.2 

and Cav1.3 were effectively blocked. The fact that mice were still able to form the 

association between the acute effects of nifedipine and the context in which they 

were experienced suggests to me that L-VGCCs are not critical for forming this 

association. While it is unclear how mice perceive the acute effects of nifedipine, 

it seems that L-VGCCs do not mediate the association of internal perception with 
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their surroundings and this may imply that L-VGCCs do not participate in the 

formation nausea-context associations. If this is the case, it does not necessarily 

mean that other molecules that mediate fear conditioning do not participate in 

conditioned gaping or ANV and thus are potentially valuable therapeutic targets. 

 

Additionally, as discussed in this dissertation, the development of some fear 

disorders may proceed via a process like fear conditioning. An excellent example 

is the development of panic disorder. A panic attack is the sudden onset of 

intense apprehension, fear, or terror, often associated with feelings of impending 

doom. Individuals with panic disorders experience unexpected panic attacks and 

develop anxiety focused on the next potential attack (Barlow et al. 1994). The 

conditioning theory of development of panic disorder posits that exposure to 

panic attacks causes the conditioning of anxiety to cues present at the time of the 

attack, including one’s internal state. Anxiety and panic differ in that anxiety is an 

anticipatory emotional state, whereas panic is an emotional state that is 

experienced when a traumatic event is in progress. The presence of conditioned 

anxiety potentiates the next panic, which begins the individual's spiral into panic 

disorder (Bouton et al. 2001, Wolpe & Rowan 1988). In a extension of this theory, 

if previous attacks have occurred at a public places (e.g., shopping mall or 

sporting arena), an individual might then come to avoid these places by not 

leaving the safety of their home and thus develop agoraphobia (Klein & Gorman 

1987). Like ANV in cancer chemotherapy treatment, individuals with panic 

disorder may benefit from interventions that impair the formation of aversive 
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associative memories. 

 

Cav1.3 in BLA neurophysiology: 

After establishing that Cav1.3 is involved in consolidation of conditioned fear, I 

wanted to know how it is involved. As a first step towards addressing how Cav1.3 

might be involved in consolidation of conditioned fear, I sought to understand the 

role of Cav1.3 in BLA neurophysiology, I investigated long-term potentiation 

(LTP) and neuronal excitability in the BLA of Cav1.3 knockout mice. Though it 

has been demonstrated that L-VGCCs are important for both LTP and neuronal 

excitability, the contribution of Cav1.3 to these phenomena has not been 

assessed. I focused on these two phenomena because there is strong evidence 

that both are neurobiological substrates of learning and memory. I reasoned that 

understanding the role of Cav1.3 in these phenomena in this brain structure that 

is required for fear conditioning might provide insight into the mechanism 

responsible for the impaired ability of Cav1.3 knockout mice to consolidate 

contextually-conditioned fear. It should be noted that the purpose of these 

experiments was not necessarily to demonstrate causation of the fear 

conditioning deficit, but rather to understand the role of Cav1.3 in the BLA and 

generate hypotheses about how the fear conditioning deficit in Cav1.3 knockout 

mice might be mediated. 

 

Interestingly, I found that that Cav1.3 knockout mice exhibit only ~25% as much 

LTP in the BLA (BLA-LTP) as wild-type mice upon high-frequency stimulation of 
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the cortical pathway afferents traveling in the external capsule. Based on a great 

deal of evidence, it has been suggested that BLA-LTP is the substrate of fear 

conditioning (Blair et al. 2001, Sah et al. 2008, Goosens & Maren 2002). 

Evidence for BLA-LTP as a neurobiological substrate for Pavlovian fear 

conditioning comes from studies showing that fear conditioning can produce 

LTP-like changes in synaptic strength in the BLA (McKernan & Shinnick-

Gallagher 1997, Rogan et al. 1997). BLA-LTP and fear learning are sensitive to 

the same stimulus contingencies (Bauer et al. 2001) and share similar molecular 

mechanisms (Rodriques et al. 2004). In light of the hypothesized role for BLA-

LTP as a substrate for fear conditioning, it is tempting to speculate that the 

impaired ability of Cav1.3 knockout mice to consolidate contextually conditioned 

fear is explained by their impaired ability to exhibit robust BLA-LTP. One issue 

that makes it difficult to draw this connection is the discrepancy in time course of 

the two impairments. That is, while the BLA-LTP deficit develops as soon as 10-

15 minutes after induction, the consolidation deficit does not present itself until 

somewhere between 6 and 24 hours after conditioning. This discrepancy 

between LTP and learning deficit is not unique to Cav1.3 knockout mice, in fact, it 

is common to both pharmacological and molecular genetic studies of LTP and 

learning. One explanation for this discrepancy may be the way in which the 

processes are engaged in vivo. That is, in vitro studies employ artificial patterns 

of electrical stimulation to induce LTP which are unlikely to reproduce the natural 

activity patterns that occur in the BLA of behaving animals during fear 

conditioning. Further, brain slice preparation disrupts the connections between 
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BLA neurons and modulatory inputs that are normally present in vivo. 

Additionally, it might be that the LTP underlying fear memories is not induced 

during training, but rather occurs at a later time point, for example, during sleep. 

Indeed, there is evidence that consolidation of memories may occur via the 

replaying of newly acquired patterns of activity during sleep (Axmacher et al. 

2006). It seems possible that such replaying of specific patterns of neuronal 

activity during sleep may induce LTP. These factors may explain the discrepancy 

between the time course of LTP deficits and learning deficits, generally, and also 

the discrepancy between the BLA-LTP deficit we observe in horizontal brain 

slices from Cav1.3 knockout mice and the fear conditioning deficit observed in 

these mice. Studies using in vivo LTP recording techniques and natural patterns 

of stimulation may provide insight into this discrepancy. Nevertheless, these data 

suggest that the capacity for Cav1.3 knockout mice to exhibit normal plasticity is 

impaired, and this may have unknown implications for their impaired inability to 

consolidate conditioned fear.  

 

I also found that principal neurons in the BLA of Cav1.3 knockout mice exhibit 

enhanced neuronal excitability as measured by a decreased 

afterhyperpolarization (AHP) and increased number of spikes in response to a 

depolarizing current injection (i.e., reduced spike accommodation). The 

observation that Cav1.3 mediates the AHP and neuronal excitability in BLA 

principal neurons is consistent with our laboratory’s data from CA1 pyramidal 

neurons in the hippocampus (Kuo et al. Submitted). Though these data suggest 
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that the role of Cav1.3 in generation of the AHP is a generic mechanism and not 

specific to the CA1 pyramidal neurons of the hippocampus, it is difficult to 

imagine that this abnormality explains the learning impairment observed in 

Cav1.3 KO mice. In fact, in the hippocampus, reversing age-related decreases in 

excitability can rescue the corresponding learning deficits (Deyo et al. 1989a, 

Deyo et al. 1989b). Thus, one might expect enhanced neuronal excitability to 

facilitate learning and memory, however, this is not the case: Cav1.3 KO mice 

perform as well as wild-type mice in the hippocampus-dependent Morris water 

maze and exhibit an impaired ability to consolidate contextually-conditioned fear. 

The fact that increased neuronal excitability did not enhance learning and 

memory in these mice be accounted for by the fact that manipulations that 

increase excitability tend to improve learning and memory in aged animals 

(Murphy et al. 2004, Disterhoft et al. 1996) but not young animals (Giese et al. 

1998, Disterhoft et al. 1996). It is interesting to note, however, that I did not 

observe a difference in performance between aged Cav1.3 KO and wild-type 

mice in the Morris water maze (McKinney et al. In Preparation).  

 

That the change in excitability may be too small to influenc information 

processing in these brain regions and may therefore have no effect on learning 

and memory. Indeed, in CA1 pyramidal neurons of the hippocampus, the area of 

the AHP is only decreased by ~30% in Cav1.3 KO mice relative to wild-type mice 

and spike accommodation is not affected at all (Kuo et al. Submitted). In BLA 

principal neurons, the effect is slightly bigger: the area of AHP is ~50% of that in 
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wild-type mice and spike accommodation is significantly reduced in Cav1.3 KO 

mice. In both the hippocampus and amygdala of Cav1.3 KO mice, a significant 

portion of the AHP remains, and even in the amygdala, the effect on spike 

accommodation is minimal and only manifests at strong, prolonged current 

injections suggesting that the change may not be large enough to be 

physiologically relevant.   

 

Though unlikely, it is possible that the excitability changes observed in Cav1.3 

KO mice do contribute to the learning impairment that these mice exhibit. Most 

reports of learning-induced changes in neuronal excitability describe excitability 

varying directly with learning. These studies, however, have been performed in a 

limited number of brain structures and none have been done in the amygdala. It 

seems possible that the direction of excitability change of a neuron after learning 

is dependent on its place in the circuit mediating learning. For example, its was 

demonstrated recently that the excitability of neurons in the infralimbic (IL) cortex 

of rats decreased after fear conditioning and returned to baseline when the fear 

memory was extinguished (Santini et al. 2008). IL cortex neurons project to the 

amygdala (BLA, CE, and intercalated cell masses) (Sesack et al. 1989, Robert 

2004). The net effect of these projections on amygdala output seems to be 

primarily inhibition (Likhtik et al. 2005, Quirk et al. 2003, Rosenkranz & Grace 

2002, Rosenkranz et al. 2003). It is in this way that excitability of IL cortical 

neurons may regulate fear expression. Decreased excitability of these neurons 

may lead to less inhibition of the amygdala, creating a permissive state for fear 
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conditioning-related plasticity. If the IL cortex neurons exhibited enhanced 

excitability, like the neurons of the hippocampus and amygdala of Cav1.3 KO 

mice, the amygdala may not be disinhibited and a permissive state for plasticity 

may not be established, thus preventing plasticity and impairing fear learning. If 

the role of Cav1.3 in AHP generation is a general mechanism across all brain 

regions, then IL cortex neurons in Cav1.3 KO mice may be more excitable and 

thus prevent the plasticity in the amygdala necessary to support fear 

conditioning. Alternatively, the hyper-excitability of BLA principal neurons might 

disrupt the circuitry of the amygdala in a way that leads to impaired fear memory.  

 

Participation in signaling to the nucleus is the final mechanism by which Cav1.3  

may mediate consolidation of contextually-conditioned fear.  Many agree that the 

series of events described below is involved in memory formation in a variety of 

paradigms and brain structures (Kandel 2001, Lamprecht & LeDoux 2004, Silva 

2003, Thomas & Huganir 2004). Input signals carrying new information act on 

neurons resulting in calcium influx. Calcium initiates an intracellular signal 

transduction cascade: the activation of adenyl cyclase, the increased synthesis of 

cAMP, and the activation of several protein kinases. Activated kinases are 

translocated to the neuron nucleus, where they phosphorylate the cAMP 

response element-binding protein (CREB). CREB binds to the cAMP-response 

elements (CRE) in regulatory regions of target genes and stimulates their 

transcription. The final step of this cascade is the transient activation of genes 
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involved in the synthesis of proteins essential both for modification of preexisting 

synapses and formation of new ones.  

 

L-VGCCs may be one of the sources of the calcium influx that initiates the series 

of events described above. Experiments with neuronal cell cultures have shown 

that calcium influx via L-VGCCs can efficiently activate extracellular signal-

related kinases (ERKs) (Dolmetsch et al. 2001, Rosen et al. 1994, Hardingham et 

al. 2001). In hippocampal slices from mice in which the gene for Cav1.2 is 

deleted, ERK phosphorylation and nuclear translocation is impaired following 

activation (Moosmang et al. 2005). Activation of ERK may contribute to memory 

formation by stimulating many events, including transcription of memory-related 

genes (Sweatt 2004). The downstream effector of ERK, CREB, is a transcription 

factor that has been shown to be critical for memory (Silva et al. 1998). Activation 

of CREB and CRE-dependent gene expression is achieved by phosphorylation of 

Ser133 (Brindle & Montminy 1992).  Activation of hippocampal slices from mice in 

which the gene for Cav1.2 is deleted fails to induce CREB phosphorylation and 

nuclear translocation as strongly as in hippocampal slices from control mice 

(Moosmang et al. 2005).  

 

In light of the evidence implicating L-VGCCs and Cav1.2 as one source of 

calcium influx for memory-related cascades, I hypothesize that Cav1.3 is also 

important for signaling to the nucleus and transcription of memory related genes. 

In preliminary studies, I treated hippocampal slices and BLA punches from 
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Cav1.3 knockout mice and wild-type mice with tetraethylammonium (TEA) and  

assessed phosphorylation of CREB thirty minutes later. TEA is a non-specific 

potassium channel blocker, the application of which greatly increases membrane 

excitability, calcium influx, CREB phosphorylation, and LTP (Aniksztejn & Ben-Ari 

1991). Initial results suggested that TEA treatment induced robust CREB 

phosphorylation in tissue from wild-type, but not Cav1.3 knockout mice. 

Unfortunately, these results were inconclusive due to small samples size and 

high variability. However, this line of research should be continued and if Cav1.3 

is important for new gene transcription, it will be important to determine which 

genes are transcribed. I hypothesize that such genes might encode structural 

proteins important for synapse formation and modification.  

 

Though data supporting a role for Cav1.3 in signaling to the nucleus and gene 

transcription is currently tenuous, it is my belief that further investigation will be 

fruitful in uncovering important memory-related genes and gene products. Since 

consolidation of learning into long-term memories is thought to be dependent on 

new gene transcription and de novo protein synthesis, deficient signaling to the 

nucleus is more likely to explain impairments like the one observed in Cav1.3 

knockout mice than impaired LTP or altered neuronal excitability. A 

transcriptional mechanism is also more consistent with the time course of the 

impairment than dependence on LTP. Early-phase LTP that I measured in my 

studies is dependent on modification of already existing proteins and thus is 

more relevant to maintaining memories immediately post training. In contrast, 
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signaling to the nucleus, new gene transcription, de novo protein synthesis, and 

integration of new proteins into the synaptic structure likely takes hours and is 

more suited for mediating consolidation of learning into long-term memories. 

 

L-VGCCs probably do not mediate extinction of conditioned fear:  

In addition to a role for L-VGCCs in consolidation of fear conditioning, early 

reports suggested that L-VGCCs were critical for both short-term (within session) 

and long-term (24 hours after extinction training) extinction (Suzuki et al. 2004, 

Cain et al. 2002). Using Cav1.2cKO mice and Cav1.3 knockout mice, I 

demonstrated that neither Cav1.2 or Cav1.3 alone are critical for either short-term 

or long-term extinction. I then showed that the L-VGCC antagonist nifedipine, 

used in the original experiments implicating L-VGCCs in extinction of conditioned 

fear, had effects that may have confounded the interpretation of extinction 

experiments in which it was used. First, nifedipine seemed to impair locomotion 

acutely. The locomotor impairment was so profound that when mice were treated 

systemically with nifedipine and then placed in fear conditioning chambers, they 

appeared to be exhibiting freezing behavior even though they had never been 

conditioned. This behavior, when superimposed upon actual conditioned freezing 

behavior during extinction training, presents as an inability to extinguish 

conditioned freezing in the short term. In addition to the acute effect of nifedipine, 

I found that the nifedipine apparently induces an aversive state that can enter 

into association with the context used for extinction training. Upon retesting in the 

same context, the context appears to serve as a CS and leads to freezing in mice 
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treated with nifedipine previously. The sum of this freezing and the freezing to 

context resulting from the original conditioning is quite large during retesting and 

could be misinterpreted as impaired long-term extinction in mice. This type of 

misinterpretation is what appears likely to have happened in the earlier studies 

that implicated L-VGCCs in extinction of conditioned fear. 

 

Recently, two other groups have presented data that sheds light on the apparent 

blockade of fear extinction by L-VGCC antagonists (Busquet et al. 2008, 

Waltereit et al. 2008). Busquet et al. (2008) showed that the apparent nifedipine-

induced blockade of fear extinction was abolished in a mouse model expressing 

DHP-insensitive Cav1.2 L-VGCCs (these Cav1.2 channels are not blocked by 

nefedipine) suggesting that the effect of systemically administered nifedipine on 

fear extinction is mediated through Cav1.2 rather than Cav1.3.  Interestingly, they 

showed that the effects of nifedipine on fear extinction are likely mediated via 

peripheral Cav1.2 channels as intracerebroventricular infusion of nifedipine does 

not affect fear extinction. Further, in a test of activity in the open field, they show 

that mice given systemic injection of nifedipine exhibit marked reductions in 

exploratory behavior. 

  

Another group, however, suggests another mechanism by which L-VGCC 

antagonists may act to influence fear extinction (Waltereit et al. 2008). In their 

experiments, Waltereit et al. systematically vary the timing of systemic injections 

of nifedipine relative to the onset of extinction training. They find that 
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intraperitoneal injection (i.p.) or sub-cutaneous (s.c). injections of nifedipine 

impair fear extinction as many as 2 or 4 hours prior to extinction training, 

respectively, despite the fact that nifedipine peaks in blood serum as quickly as 

30 minutes after administration and is nearly undetectable by 2 hours following 

i.p. injection and by 4 hours following s.c. injection.  It is, therefore, highly unlikely 

that blockade of L-VGCCs in the brain is responsible for the effects of nifedipine 

on fear extinction when administered at these intervals. Further, they show that 

both i.p. and s.c. injections of nifedipine are associated with significant elevations 

in plasma corticosterone at either 2 or 4 hours following injection, respectively. 

Thus, Waltereit et al. suggest that nifedipine induces protracted stress response 

following systemic administration and this stress response likely accounts for its 

observed effects on fear extinction.  Such a suggestion is consistent with the 

observation that both acute and chronic stress impair fear extinction (Izquierdo et 

al. 2006, Miracle et al. 2006), while leaving fear acquisition intact. Waltereit et al. 

also observed decreases in locomotor activity and a complete loss of rearing 

behavior that lasts up to 4 hours after s.c. administration of nifedipine. 

 

Combining the findings from these two studies (Waltereit et al. 2008, Busquet et 

al. 2008) and my study of fear extinction (McKinney et al. 2008), I propose the 

following mechanism for the effect of systemic injection of nifedipine on fear 

extinction.  With regard to the apparent effect of nifedipine on short-term 

extinction, I propose that nifedipine induces a hypotensive state through 

interaction with Cav1.2 channels on the peripheral vasculature and that this state 
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is perceived as aversive and leads to stress hormone release and malaise. This 

idea is consistent with the observation of decreased locomotion/exploratory 

behavior in my experiments and those of the other two groups as well as 

peripheral distribution of Cav1.2 channels and the documented actions of L-

VGCCs on peripheral vasodilation and hypotension (Kubo et al. 1981, Barrett et 

al. 1988). Addtionally, as I referred to earlier in the discussion of this data, I 

propose that the aversive state induced by nifedipine administration enters into 

association with cues surrounding extinction training and that these cues serve 

as CSs that cause mice to re-experience the acute effects of nifedipine when 

they are presented with these cues at a later time. Such a mechanism is not 

without precedence. Studies in rats of Pavlovian conditioning processes in 

morphine withdrawal suggest that exposure to contextual or olfactory cues 

previously paired with morphine withdrawal provoke the species-typical defense 

response of freezing (McNally & Akil 2001). Further, rats that receive a nausea-

inducing stimulus, experience nausea again when they are placed back into the 

context in which the originally received the nausea-inducing stimulus (Limebeer 

et al. 2006).  

 

Though my findings and the two new studies above have led to a rethinking of 

the role of L-VGCCs in fear extinction (Schafe 2008), other factors may 

contribute and should be considered.  
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Alternative explanations for the apparent lack of a role for L-VGCCs in 
extinction of conditioned fear: 
 
First, it may be necessary to block both brain-expressed L-VGCCs to impair 

extinction of conditioned fear.  If one disregards the complications presented by 

nifedipine, this would explain why treatment with L-VGCC antagonists and not 

genetic deletion of individual L-VGCC subtypes leads to impaired extinction of 

conditioned fear. Such an explanation would suggest that the two brain-

expressed L-VGCCs (Cav1.2 and Cav1.3) are functionally similar and one can 

compensate for the other in its absence. In our hands, however, there is no 

change in Cav1.3 protein expression levels upon deletion of the gene for Cav1.2 

or vice versa (unpublished results). Further, Cav1.2 and Cav1.3 have quite 

different neuronal localization (Hell et al. 1993a) and biophysical characteristics 

(Helton et al. 2005, Xu & Lipscombe 2001) making them unlikely functional 

substitutes for each other. Also, if functional compensation is at play, it appears 

surprisingly specific for extinction given the consolidation deficit described in 

Cav1.3 knockout mice. Still, the possibility of a synergistic effect of simultaneous 

inactivation of both Cav1.2 and Cav1.3 cannot be dismissed.  

 

The second explanation relates to the conditional nature of the deletion of CaV1.2 

in the present study.  Because the gene for Cav1.2 was deleted primarily in the 

forebrain of Cav1.2cKO mice, the lack of an effect on the ability to extinguish 

conditioned fear may have resulted from the gene for Cav1.2 not being deleted in 

a critical region for extinction of conditioned fear.  However, this seems unlikely 
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given that Cav1.2 in the Cav1.2cKO mice is deleted in most of the brain regions 

that are critical for extinction of conditioned fear including the cortex, 

hippocampus (White et al. 2008) as well as the amygdala (McKinney et al. 2008). 

This, of course, does not eliminate the possibility that Cav1.2 is still expressed in 

a currently unrecognized area of the brain critical for extinction of conditioned 

fear. Also, in light of the reports of Busquet et al. (2008) and Waltereit et al. 

(2008), it is possible that deletion of Cav1.2 in the peripheral vasculature might 

have been required. 

 

Third, because the cre-recombinase expression in Cav1.2cKO mice was driven by 

the calcium-calmodulin-dependent kinase II alpha (CaMKIIα) promoter, the gene 

for Cav1.2 was only deleted in excitatory, but not inhibitory, neurons of the 

forebrain (Kelly 1991). If Cav1.2 activity in inhibitory neurons is critical for the 

successful extinction of conditioned fear, then we would not have observed 

impaired extinction of conditioned fear in Cav1.2cKO mice, since these mice 

presumably express the gene for Cav1.2 in inhibitory neurons. Cav1.2 may exert 

its influence in inhibitory neurons outside of the amygdala, since almost all of the 

CaV1.2 immunoreactivity observed in the BLA is found in CaMKIIα positive 

pyramidal neurons (Pinard et al. 2005). This explanation seems less likely in light 

of the recent evidence that nifedipine’s effect on fear extinction is mediated 

peripherally (Busquet et al. 2008). 
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Finally, the extinction protocol used here may not have been suitable for 

detecting Cav1.2-mediated deficits in conditioned fear extinction. We 

demonstrated successful extinction of contextually-conditioned fear using a 

single 1-hour context exposure.  Though this protocol did not uncover an effect of 

genotype on extinction, it is possible that protocols that utilized longer exposure 

periods or different training styles (e.g., spaced extinction training) may have 

been more successful. We were, however, able to successfully reproduce the 

previously-demonstrated effect of nifedipine on extinction using this protocol and 

thus it seems likely that this protocol would be sufficient to parse out any 

contribution of Cav1.2 to the nifedipine effect.  

 

Despite the apparent lack of importance of Cav1.2 in fear conditioning and fear 

extinction, recent studies using mice in which the gene for Cav1.2 is conditionally 

deleted have demonstrated a role for Cav1.2 in other forms of memory. Using the 

same strain of mice that I used in my studies, White et al. (2008) showed that 

Cav1.2 is dispensable for short- and long-term spatial memory formation in the 

Morris water maze, but critical for remote memories. Using a strain of mice in 

which the gene for Cav1.2 was homozygously deleted in the forebrain and 

heterozygously deleted in the rest of the body, Moosmang et al. (2005) showed 

that Cav1.2 is important for hippocampus function. These mice were impaired on 

two different hippocampus-dependent learning tasks and NMDA receptor-

independent LTP in the CA1 region of the hippocampus. The MAPK signaling 

pathway and CREB-mediated transcription were disrupted in CA1 pyramidal 
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neurons isolated from these mice. Together, this data suggests that the role for 

Cav1.2 in learning and memory is specific for certain types of learning and 

memory. 

 

The positive implication of a negative finding on the role of L-VGCCs in fear 
extinction: 
 
Negative findings can make a positive contribution. My initial findings regarding 

the role of L-VGCCs in fear extinction were negative. That is, I demonstrated that 

neither Cav1.2 nor Cav1.3 alone mediates extinction of conditioned fear. Had 

these results been the first on the subject, they may be less interesting. However, 

because these data were at odds with the claims of two other groups at the time, 

they were of great interest. Upon trying to explain the discrepancy among my 

data set and those published, I found that previous findings regarding L-VGCCs 

in fear extinction were likely misinterpreted as the result of an aversive state 

induced by the L-VGCC antagonists used. Perhaps the greatest implication of 

these findings is that future studies will not be based on the idea that L-VGCCs 

mediate fear extinction. Given the excitement surrounding the initial reports of a 

role for L-VGCCs in fear extinction, these studies may have been extensive and 

costly. Further, my findings highlight the power of using a combined approach 

when investigating molecular mechanisms of biological processes. Genetically 

modified mouse models and pharmacological approaches each have advantages 

and disadvantages. The major advantage of using genetically modified mice is 

specificity. That is, one specific gene product can be targeted for study without 

the possibility that observed phenotypes are the by-products of non-specific 
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effects that often accompanies drug studies.  However, when using genetically 

modified mice, it is possible that the organism may compensate for the absence 

of the gene of interest in a way that obscures its normal biological role. Further, 

genetically modified mice provide poor temporal regulation. The drawback of 

poor temporal resolution was discussed earlier with regard to the timing of  

Cav1.3 involvement in consolidation of contextual fear. Mice in which the gene of 

interest has been deleted since early development, like Cav1.3 knockout mice, 

offer no temporal resolution. Even mice in which the gene can be deleted 

experimentally offer temporal resolution that is only as short as the half-life of the 

protein product. Pharmacological approaches offer much better temporal 

resolution as well as the possibility for anatomical resolution if the drug is infused 

into a particular anatomical region. Pharmacology, however, is often criticized for 

being non-specific. With respect to L-VGCC antagonists, none of those that are 

currently available are able to distinguish among the various subtypes of L-

VGCCs. Also, there is always the risk that drugs may interfere with the function 

of molecules for which they were not designed. A combined approach allows for 

the advantages of both genetically modified mice and pharmacology to be 

exploited. 

 

A subtype-specific understanding of L-VGCCs in fear conditioning, fear 
extinction, and BLA neurophysiology: 
 
The studies presented in this dissertation represent the first attempt to 

understand the role of individual L-VGCCs subtypes in fear conditioning, fear 

extinction, and BLA neurophysiology. The findings of these studies suggest that 
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each L-VGCC subtype participates in a different subset of neurobiological 

processes. Understanding which subtype(s) participate in a particular 

neurobiological process provides a more complete understanding and directs 

future investigations. Additionally, it identifies more specific molecular targets for 

pharmacological manipulation of these neurobiological processes.   Altogether, 

this work not only demonstrates the importance of particular L-VGCC subtypes, it 

also sets the stage for a subtype-specific understanding of L-VGCCs in learning 

and memory.  
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