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Abstract 
 
 
 

Actively cooled thermostructural panels for use in emerging hypersonic flight systems 

require the use of advanced materials able to support substantial loads at elevated 

temperatures.  A major challenge in this advancing technology is identifying formable 

structural materials that are strong, tough and oxidation resistant.  For thermostructural 

panels to be optimized for low mass with an appropriate combination of mechanical 

strength and cooling capacity, the panel is required to have a thin-walled geometry.  

Advanced, high strength cast Ni-based alloys have attractive properties, but the 

fabrication of sub-millimeter walls with conventional casting processes would be 

extremely challenging.  The purpose of this study is to develop a new processing path 

that would result in a rectangular channeled panel made of a nickel-based precipitation 

strengthened alloy in a previously unobtainable thin-walled geometry suitable for active 

cooling.  Beginning with thin sheets of Ni-based solid-solution alloys and subsequently 

strengthening the material by vapor phase aluminization combined with an annealing 

treatment, this objective is accomplished.  This study included selection of a wrought 

nickel-based alloy as the base substrate for panel fabrication, definition of a goal γ + γ′ 

microstructure, fabrication of rectangular channeled panels, and testing of the actively 

cooled panels at high temperature.  Thermodynamic, material strength, diffusion, and 

panel thermomechanical stress models were integrated to determine an optimized 

geometry and microstructure for the strengthened panel.  Panels were fabricated with the 



  xii

optimized geometry and tested at high temperature with active cooling in both the as-

fabricated and strengthened states.  The strengthened panel was able to withstand a 

temperature 478 °C higher than the as-fabricated panel prior to failure indicating the 

ncrease in strengthening and temperature capability possible with this process. i
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Chapter 1 

 

Introduction 

 

1.1 Background 

 

The National Aerospace Initiative (NAI) has provided milestones to bring to reality air-

breathing hypersonic flight.  This could be achieved using a scramjet (supersonic 

combustion ramjet) engine.  Air-breathing vehicles designed for hypersonic flight have 

highly loaded wings, hot control surfaces and an airframe that is highly integrated with 

the propulsion system.  The scramjet of a hypersonic vehicle is actively cooled by the 

fuel making high-temperature Ni-based alloys, similar to those used in turbines, 

candidate materials.  Metallic structures could also include non-leading edge “acreage” 

panels.   

 

Metallic structures are desired, where possible, due to their high resistance to damage and 

the availability of a spectrum of relatively low cost manufacturing approaches.  In the 

case of the scramjet engine, a thermostructural panel could be used.  The panels must 

endure extremely demanding high-temperature (near 1000 °C) and oxidizing conditions 

when operating at up to Mach 8 flight conditions [1-4]. 



 

In the development of any vehicle for flight, including hypersonic vehicles, weight is 

always a concern.  Thermostructural panels are possible solutions, allowing for the use of 

high-temperature metals while keeping the weight of the structures reasonable.  These 

sandwich panels may be in the form of prismatic cores, honeycombs, or Kagomé 

structures; examples of these geometries are shown in Figure 1.1.  To address the 

structural and heat flux requirements, the geometry of thermostructural panels can be 

optimized for a combination of mechanical strength and cooling capacity [5-7].  Thus 

fabrication approaches for a wide range of panel geometries are needed. 

 

(a)  (b)  

Figure 1.1: Examples of configurations for thermostructural panels. (a) Kagomé [8]. (b) 
Prismatic cores [2]. 
 

 

Nickel-based superalloys with high volume fractions of γ′ (Ni3Al) precipitates are often 

used in high-temperature aerospace applications and are conventionally cast into near net 

shape forms.  The thin walls and geometrical complexity required of thermostructural 

panels to be used in a scramjet engine pose major challenges for conventional investment 

casting of nickel-based alloys [4].  While fabrication from thin gage sheet materials is an 

efficient alternative approach, most nickel-base alloys available in sheet form have 
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severely limited high temperature creep properties.  Many refractory-lean γ-nickel alloys 

without precipitation hardening are readily processed into thin sheet and shaped at room 

temperature.  Starting with thin wrought sheets of these alloys it is possible to fabricate 

panels with the required geometries; however, to be used as a thermostructural panel, the 

high-temperature mechanical properties of these alloys must be improved.  Precipitation 

strengthening is the most efficient strengthening approach, but it must not interfere with 

the sheet processing operations.   

 

In order to achieve a more optimal combination of high-temperature strength and 

complex geometrical structure, there must be a large volume fraction of γ′ precipitates in 

the material [9,10].  In order to achieve a higher volume fraction of γ′, it is necessary to 

increase the aluminum concentration.  A processing method that consists of chemical 

vapor deposition of an aluminide layer with subsequent annealing to drive the aluminum 

through the sheet thickness has been developed.  This process, referred to as vapor phase 

strengthening, results in precipitation strengthening of the alloy in a post-fabricated state.  

It is possible to produce the aluminide layer via pack cementation [11,12] and with the 

resulting concentration gradient of Al, subsequent annealing should result in a 

homogenization of the Al in the alloy [13]. 

 

This new processing method requires a suitable material to be used as the initial 

substrate.  Ni-base alloys with good room temperature forming capabilities are likely 

candidates.  This capability allows for the material to be fabricated in any of the 

geometries specified for optimization of the thermostructural panels.  The extensive 
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research and development of nickel-based alloys for high-temperature application has 

yielded alloys with very advanced microstructures containing multiple populations of 

precipitates.  It is important to choose an initial material that has major alloy constituents 

similar to advanced precipitation-strengthened materials, excluding the aluminum 

content, in order to have as much strengthening as possible.  However, refractory alloying 

elements that result in high strengths may pose challenges to sheet processing [9,10].  

Thus, tradeoffs in composition, strength and processing require further investigation.  

 

1.2 Material Strengthening 

 

Material strengthening occurs by inhibiting the motion of dislocations through the 

material.  This can be achieved by multiple mechanisms, including solid solution 

strengthening, precipitation strengthening and/or grain size strengthening.  In the case of 

solid solution strengthening, the material is strengthened without a change in the crystal 

structure of the alloy while precipitation strengthening involves the precipitation of a new 

phase in the alloy.  Grain sizes are sensitive to the processing path with finer grains sizes 

beneficial for low temperature properties and coarser grain sizes beneficial for high 

temperature properties. 

 

1.2.1 Solid solution and precipitation strengthening in Ni-base alloys 

 

Solid solution strengthening is achieved by alloying the bulk with impurity atoms.  These 

atoms will either substitute in the crystal structure or interstitially in solid solution.  The 



impurity atoms have a slightly different size than the base atoms and will impart local 

strains on the base alloy matrix.  When a dislocation encounters this localized strain field, 

its motion is inhibited, requiring more force to keep it moving through the material [14].  

Also, it is possible to reduce diffusion and provide strong lattice cohesion at high 

temperatures when the impurity atom additions are elements with high melting 

temperatures.  Molybdenum and tungsten are typical alloying elements with Ni-based 

alloys [9,10]. This method can be very effective and can increase the strength 

dramatically. 

 

Precipitation strengthening in Ni-based alloys typically involves the L12 phase γ′.  

Elements that stabilize this phase are primarily aluminum and titanium [9,10].  The 

precipitation of a new phase in the material will also inhibit dislocation motion.  Instead 

of the dislocation only encountering a local strain field as with solid solution 

strengthening, the dislocation will also have to glide though a different crystal structure 

or else will be captured at the interface between the two phases.  In Ni-based alloys, 

dislocations gliding through the FCC matrix (γ) shear the precipitates only at very high 

applied stresses.  Upon encountering the L12 precipitate (γ′) the dislocations may also be 

subject to thermally activated cross slip, which inhibits further glide [14]. 

 

In the γ phase, deformation occurs by dislocation glide on a/2〈110〉{111} systems with 

the a/2 011  lattice vector as the shortest one available in the close-packed plane.  In the 

L12 structure, the close-packed planes are again {111}, but the shortest lattice vectors, 

a〈100〉, do not reside in the {111} plane.  Therefore a single a/2〈110〉{111} dislocation in 
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γ, although a perfect dislocation in that phase, cannot enter γ′ without a high energy anti-

phase boundary fault being formed.  This is because the vector required to restore the γ′ 

lattice to its perfect state is twice the Burgers vector of a single dislocation in γ.  It 

follows that a/2〈110〉{111} dislocations must travel in pairs through γ′.  When there is a 

high volume fraction of γ′, multiple dislocations will be in the same γ′ precipitate.  These 

dislocations are considered to be strongly coupled.  With lower volume fractions or small 

γ′, there may only be one dislocation is in a precipitate at a time.  In this case the 

dislocation pairs are weakly coupled [10]. 

 

Weak coupling refers to the case where the equilibrium spacing of the two paired 

dislocations is large in comparison with the particle diameter.  The trailing dislocation is 

far enough behind the first that it will leave some faulted particles in its trail.  While the 

first dislocation will remain at the precipitate-matrix interface until there is enough force 

to push the dislocation into the precipitate, since the second dislocation will restore order 

to the precipitates, it is energetically favorable for the second dislocation to enter the 

precipitate [10]. 

 

Strong coupling occurs when the γ′ particles are large and the spacing of the dislocation 

pairs becomes comparable to the particle diameter.  Therefore, any given particle may 

contain a pair of dislocations.  In this case the behavior is critically dependent upon the 

elastic repulsive force, which must be overcome if the trailing dislocation is to enter the γ′ 

particle.  The optimum hardening in the nickel-based superalloys occurs for a γ′ particle 

size that lies at the transition from weak to strong coupling [10]. 
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Due to the ordered character of the γ′, precipitation strengthening is much more effective 

than solid solution strengthening for Ni-based alloys.  To increase the strength of the 

initial substrate alloy to be used in a scramjet engine, it is more effective to process the 

material in a way that results in precipitation the γ′ phase.  This thesis proposes a new 

processing approach to achieve this. 

 

1.2.2 Aging and strength optimization 

 

Although the volume fraction of the precipitates is very important, optimization of 

properties requires control of precipitate size.  The addition of aluminum (and to some 

extent tantalum and titanium) to a nickel-based alloy will increase the volume fraction of 

γ′ that is stable for a given temperature.  Aging treatments will increase the size, but not 

the volume fraction of the precipitates.  After the equilibrium volume fraction of 

precipitates is established during aging, decreasing the interfacial surface area can lower 

the total energy of this system.  The lower total energy of the system is achieved through 

the growth of larger precipitates at the expense of smaller precipitates; this process is 

known as Ostwald ripening [15,16].  Because the precipitates will coarsen without 

changing the volume fraction, it is possible to tailor the microstructure and associated 

properties. 
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1.2.3 Strength modeling 

 

Due to the extensive research on the microstructure of nickel-based superalloys, it is 

possible to predict the degree of strengthening that can be achieved with processing and 

microstructure control [9,10].  A model has been developed to account for contributions 

to strengthening due to solid solution, strong and weak pair coupling, as well as the Hall-

Petch strengthening of the γ and γ′ [17].  With this model it is possible to assess the 

volume fraction and morphology of γ′ that could make a wrought nickel alloy a potential 

candidate for high temperature applications.  The use of a model allows for a wide range 

of alloy compositions to be investigated without the time consuming process of 

physically processing individual alloys and mechanically testing many alloy variants. 

 

With an appropriately strengthened alloy microstructure from the model, it is necessary 

to determine if that microstructure is feasible in a post-fabrication processing application.  

In order for there to be any γ′ precipitation strengthening the aluminum concentration 

must be increased from the initial state of a solid-solution alloy.  There are a variety of 

processes that can deposit aluminum on the surface of the alloy; the pack cementation 

process is the approach that will be employed in this research and this process will be 

discussed in the following section. 
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1.3 Pack Cementation 

 

Pack cementation is a well-established chemical vapor deposition (CVD) technique that 

has been widely used for applying high-temperature protective diffusion coatings to 

superalloys used in the hot section of gas turbines [18-20].  The most developed pack 

cementation processes include aluminizing, chromizing, and siliconizing.  Since the 

addition of aluminum to the alloys of interest will result in precipitation of γ′, the 

aluminization process will be used. 

 

The process consists of immersing the components to be coated in a powder mixture in a 

sealed or semisealed retort.  The entire apparatus is placed inside a furnace and heated in 

a protective atmosphere to prevent oxidation.  The exact time and temperature during the 

cycle are dependent on the required coating, coating thickness, and subsequent substrate 

heat treatment.  The pack normally consists of the coating element source, in this case 

aluminum, an activator (typically a halide salt) and an inert filler material (most often 

alumina) to prevent the source from sintering at the processing temperature.  At the 

treatment temperature the activator gives rise to a volatile aluminum subhalide (AlCl), 

which acts to transport solute material from the pack to the component to be coated, in 

this case depositing aluminum at the specimen surface by decomposition of the volatile 

aluminum compound [11, 18, 19]. 
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For aluminization, the source can be either pure aluminum or an aluminum alloy, 

depending on the activity required in the pack.  The implications of low and high activity 

packs will be discussed below.  The process is simple to reproduce with a set of easily 

controlled parameters (temperature, time schedule and pack composition) ensuring a 

consistent process.  The process is not ‘line-of-sight’ meaning the entire external surface 

of a component of complex shape can be uniformly coated including cavities and holes.  

Also, pack cementation is a relatively inexpensive process [20]. 

 

Although pack cementation is typically used to form a protective coating on the alloy, the 

process can be implemented for an alternative purpose.  Both the high-activity inward 

diffusion of aluminum and the low-activity outward diffusion of nickel result in an 

increase in aluminum concentration on the surface of the coated alloy.  It has been shown 

with a long heat treatment, it is possible to distribute the aluminum and nickel in a 

homogeneous manner [21-23].  This homogenization can allow for a new processing 

method of precipitation strengthened alloys. 

 

1.3.1 Activator 

 

Halide salts are typically used as the activator in pack cementation processes.  Most often 

ammonium chloride (NH4Cl) is used, yet there have been investigations into using 

alternative activators including aluminum fluorine (AlF3), ammonium fluorine (NH4F), 

sodium fluorine (NaF), sodium chloride (NaCl) and sodium iodine (NaI) [24, 25].  

Although it is possible to use a variety of halide salts for the activator, it is only critical 



  11

that this salt can react with the aluminum in the pack to create an aluminum halide.  This 

is critical as the high vapor pressure halide is the transport method for the aluminum from 

the pack to the substrate to be coated.  

 

1.3.2 Pack Activity 

 

The formation of aluminide coatings via pack cementation is carried out using either a 

high-activity or a low-activity pack.  The activity is related to the concentration of 

aluminum in the Al-containing powder (Al source) used in the pack.  If the aluminum 

source is greater than 60 atomic % aluminum, the corresponding pack is called a high-

activity pack. Otherwise, the pack is referred to as a low-activity one. [11]  

 

Typically a high-activity pack is a two-step process.  This process consists of a relatively 

low temperature (~800 °C) aluminization step followed by a high temperature heat 

treatment to convert the microstructure to a state suitable for practical use as a protective 

coating [26].  A low-activity pack is typically aluminized at a higher temperature (~1100 

°C) and does not require an additional heat treatment. 

 

With a high-activity pack, there is predominantly inward diffusion of aluminum forming 

δ (Ni2Al3) and hyperstoichiometric (Al-rich) β (NiAl) in the substrate [20, 26, 27].  A 

low-activity pack, with predominantly outward diffusion of nickel, will form a 

hypostoichiometric β (NiAl) on the substrate surface.  This indicates that aluminum is the 
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main diffusing element in δ and hyperstoichiometric β [28] while nickel is the main 

diffusing element in hypostoichiometric β [29]. 

 

High-activity packs, with the predominately inward diffusion, will maintain a consistent 

geometry and shape with the pre-coated substrate.  In contrast, a low-activity pack, with 

the outward diffusion of Ni, will increase the thickness of the pre-coated substrate [27].  

In the fabrication of thermostructural panels it is very important that the geometry of the 

panel be highly controlled, making the high-activity pack the preferred choice in this 

application. 

 

1.3.3 Coating Microstructure 

 

Due to the extensive use of the pack cementation process, there have been many studies 

on the microstructure of aluminide coatings on nickel alloys and their evolution with 

exposure to elevated temperatures for an extended period of time.  For the high-activity 

pack, the δ (Ni2Al3) phase is present on the outer surface of the substrate [26].  This 

phase is quite brittle and decomposes at relatively low temperature, therefore, a coating 

made with a high-activity pack is typically subjected to further heat treatment prior to use 

[26, 27, 30]. 

 

The subsequent heat treatment that is typically used after a high-activity aluminization 

converts the brittle δ phase into the more oxidation resistant β phase.  The diffusion 

process begins with continued inward diffusion of aluminum as the surface of the coating 
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still has similar activity to when the coating was being formed.  Eventually the inward 

diffusion of aluminum will stop when it is no longer possible for β to form via aluminum 

diffusion.  At this point, in order for continued formation of β, nickel migration must 

begin [26]. 

 

An extended heat treatment shows continued nickel diffusion from the substrate into the 

coating, reducing the aluminum content in the β phase [26].  Although this may be a 

concern when a stable β coating is desired, it shows that it is possible to use an aluminide 

coating followed by an extended high temperature heat treatment as a means to enrich a 

substrate with aluminum.   

 

1.4 Sandwich Panels 

 

The operating conditions of scramjet engines demand designs that include active cooling 

by the fuel and the use of lightweight materials that withstand extreme heat fluxes under 

oxidizing conditions.  Metallic sandwich panels are optimally designed for minimum 

weight subject to prescribed combinations of bending and transverse shear loads and 

therefore are used to carry structural load as well as dissipate heat through solid 

conduction and forced convection [1].  The ability of sandwich panels to withstand 

substantial loads while simultaneously performing a thermal management function is 

highly desirable for flight systems due to their high efficiency from a weight standpoint. 
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Well designed structures using prismatic cores have additional potential due to their open 

structure for multi-functional applications.  Unlike honeycomb core sandwiches or 

conventional stringer stiffened construction, prismatic core sandwich panels can serve as 

a heat transfer element while simultaneously carrying loads.  Whenever possible, it is 

desirable to use metallic systems for their ability to deform plastically before failure.  The 

materials selection list for high temperature applications is rather limited.  Although some 

ceramics and intermetallics may have better mechanical properties at elevated 

temperatures, the low fracture toughness and complex fabrication methods can render 

them unacceptable.  Nickel-based superalloys have proven to be very effective in turbine 

applications where high temperature performance and impact resistance are essential 

[9,10]. 

 

Although the panels considered here are of the prismatic core variety, there are still a 

number of variables that should be considered.  The height of the panel, wall thicknesses 

and channel dimensions are among the geometrical design parameters.  These design 

parameters will have optimum values that are dependent on the material of the panel.  

This would suggest that some strong materials that would not be considered in their bulk 

form due to weight could become candidate materials in a sandwich panel configuration. 

 

Optimization models have been developed [3, 31] to properly compare potential materials 

for use in rectangular channeled prismatic core sandwich panels.  These optimizations 

have shown that commercially available wrought nickel alloys will not compete with 

ceramic matrix composites for use in the sandwich panels due to the higher minimum 
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weight of commercially available nickel alloys [3, 31].  However, if the high temperature 

mechanical properties can be improved via post-fabrication processing, the nickel-based 

alloy could become competitive [32].  An increase in the maximum use temperature or 

improved strength at intermediate temperatures will decrease the overall weight of the 

panel for a specific flight condition [32].  It is also possible to improve the high 

temperature capabilities of a wrought nickel-based alloy by increasing the volume 

fraction of γ′ precipitates [21-23]. 

 

1.5 Transient Liquid Phase Bonding and Brazing 

 

As discussed in the previous section, an actively cooled thermostructural panel is desired 

for scramjet applications.  Optimization techniques [5, 31-33] result in structures with 

wall thicknesses less than 500 μm, making casting a very challenging fabrication method.  

Possible alternative fabrication methods include assembling the structure from separate 

pieces, which requires a joining method such as TLP bonding or brazing.   

 

Transient liquid phase joining, similar to brazing, is a joining process that produces high 

strength bond in heat resistant materials.  The process uses a mating surface interlayer 

alloy, which temporarily melts and then resolidifies at the bond temperature to form a 

joint with characteristics resembling those of a solid-state diffusion bond.  This method 

allows joints to be made in complex shaped parts with simple mating surface preparation 

[34].   
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As described above, the panel is fabricated before the processing of the material takes 

place.  In order to fabricate the panel, the wrought sheet must be joined in the appropriate 

geometry.  Brazing, which results in a solid-state diffusion bond, is a common way to 

repair turbine blades [34-36] and can be used to join the Ni-based substrate alloys.  The 

braze material has a similar composition to the alloy that is to be joined with the addition 

of a fast diffusing melting temperature depressant, such as boron. 

 

As the joint is heated, the braze alloy in the joint softens as it begins to approach its 

melting temperature, filling the gaps between the mating surfaces.  The melting 

depressant has a very high diffusivity and quickly diffuses into the alloy substrate.  As the 

melting point depressant diffuses away from the joint, the melting temperature of the 

filler metal increases, causing the melting temperature of the joint to increase.  After a 

sufficient brazing time, the temperature depressant has reached a very low concentration 

due to diffusion and therefore the melting temperature of the joint increases to one similar 

to the substrate, thus forming a bond at a constant temperature.  Typically the joint 

microstructure will resemble the base metal except for minor compositional and 

structural variations [34].   

 

Although the bonds have good properties at this point, they may not be equivalent to that 

of the base alloy.  If the part remains at the bonding temperature for longer times than 

needed for solidification, the bond can be homogenized both in composition and structure 

until it is essentially equivalent to the base metal [34].  For the current work, it should be 

noted that after the fabrication of the panels, the parts are exposed to long annealing 
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treatments where the limiting step is the diffusion of aluminum through the thickness of 

the panel walls.  This would allow the homogenization step of the transient liquid phase 

bonding process to be incorporated into the interdiffusion step. 

 

A growing application of brazing is the fabrication of multi-channeled metallic structures 

such as plate and plate/fin heat exchangers, fuel cells for power supply, catalytic 

converters and turbine seals. [37].  The applications above typically use amorphous 

brazing foil (ABF) or braze tape as the preferred filler metal. 

 

In manufacturing superalloy turbine blades, the TLP bonding process is often used to 

attain complex shaped turbine blades with excellent cooling ability.  The complex 

geometry allows for better cooling used to reduce fuel consumption with increased 

efficiency achieved by running at higher temperatures [38].  TLP bonding has also been 

shown to be applicable to turbine vane clusters and repairing compound turbine vanes 

[39]. 

 

The transient liquid phase process has been applied to a variety of systems simply by 

changing the filler alloy.  Titanium, dissimilar metals, semiconductors and composites 

have all been successfully joined with this process [39] showing the wide range of uses 

possible.  Transient liquid phase bonding is particularly attractive when fusion of the base 

metal must be avoided. 
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1.5.1 Temperature Depressants 

 

In simple binary eutectic systems it is relatively easy to see the sharp decline in melting 

temperature as the concentration approaches the eutectic concentration and therefore the 

potential for brazing or TLP joining.  For example, in the copper-silver system, the silver 

will act as a melting temperature depressant for copper [39].  If a layer of pure silver is 

sandwiched between a copper structure, upon heating to the bonding temperature, the 

silver interlayer and copper parent metal will undergo diffusion to form a liquid phase.  

As the dissolution progresses the composition moves up the liquidus lines from the 

eutectic.  This will continue in the liquid until the concentration of the silver is diluted to 

the equilibrium concentration with the solid silver.  At this point, solid-state diffusion 

dominates and the silver continues to diffuse into the copper [39]. 

 

This transient liquid phase process is not limited to binary eutectics, but can be applied to 

any system where the parent metal or alloy will form a relatively low melting temperature 

phase and has solubility for the melting temperature depressant [39].  It must melt at a 

temperature that the base metal can be exposed without experiencing deleterious effects, 

including melting.  It is also important that the composition is such that the bond region 

solidify at the bonding temperature and become as chemically and microstructurally 

homogeneous as possible with the base metal [34].  The filler metals widely used in 

bonding processes of nickel alloys usually contain one or several melting point 

depressants such as silicon, boron, manganese, titanium and phosphorous to ensure 

proper liquid flow and wetting at the brazing temperature [34, 40]. 
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1.5.2 Geometrical Control 

 

Control of distortion is extremely important for successful brazing, especially in complex 

parts.  For the current application, the precise control of geometry is critical.  The 

geometry is specified for an optimized solution, which would be negated if the geometry 

were to distort in a significant way.  The causes of distortion during furnace brazing have 

been investigated and control methods have been successfully used.  Distortions can 

occur during fast heating, fast cooling and phase transformation (only important for 

ferritic materials) as well as due to stresses at temperature, residual stresses and dissimilar 

metals [41]. 

 

It is important to consider the possible causes of distortions so that they can be avoided 

during the brazing cycle.  It is easy to eliminate the distortions due to rapid heating and 

cooling by simply choosing slower heating and cooling rates.  In the current application, 

the fabrication of the panel takes place before any material processing; therefore specifics 

of the heating and cooling rate will not have an effect on the finished product.  The 

possibility of distortions due to uneven heating will cause distortions resulting from 

residual stresses.  Again, a slow heating and cooling rate will help eliminate these issues. 

 

Distortion due to stresses at temperature relates to the ability of a part to support its own 

weight while at brazing temperature.  This distortion is typically a result of low elevated 

temperature creep strength of the base material [41].  In this case, it is important to 
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consider the proper positioning of the part in the furnace to minimize the weight stresses.  

This can also be accomplished using fixtures.  With the appropriate considerations, it is 

possible to fabricate a highly controlled geometry using a furnace brazing cycle.  

 

1.6 Summary 

 

A review of the literature has shown that there are a number of research areas that can be 

drawn upon and further developed to make the goals of this thesis feasible.  A summary 

of the important research elements and their relevance is as follows: 

 

• Strengthening of nickel-based alloys and processing paths to achieve 

strengthening are fairly well understood.  In particular, the role of the L12 γ′ 

precipitates has been widely studied.  With the proper volume fraction and 

morphology of the precipitates, it is possible to substantially strengthen a wrought 

nickel-based superalloy for use in a high temperature regime.  Although the 

proposed approach in this thesis begins with a wrought solid-solution nickel alloy, 

it is clear that significant strengthening can occur with increased aluminum and 

precipitation of the γ′ phase.  Without this strengthening, a solid-solution nickel 

alloy would not be feasible in the current application due to its relatively poor 

high-temperature properties.  

 

• Through modeling, it will be possible to define high strength microstructures for a 

precipitation strengthened alloy with limited experimental process development 
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and/or mechanical testing of the alloy.  This modeling allows for a more efficient 

means to develop new alloys and determine compositions and thermal processing 

paths.  It is possible to determine the amount of aluminum that must be added to 

the solid-solution alloy in order for its use to be feasible in a high-temperature 

application. 

 

• Pack cementation is a low-cost and highly repeatable process that will deposit 

aluminum on the surface of nickel alloys.  Using a high-activity pack in the 

cementation process will yield a coating that is formed with the inward diffusion 

of aluminum into the component.  It is possible to closely control the geometry of 

the part and microstructure of the coating by choosing an appropriate aluminum 

source.  Extended heat treatment of nickel alloys with high-activity coatings has 

shown an increase in aluminum penetration and a decrease of the average 

aluminum concentration over the depth of aluminum penetration.  This shows the 

aluminum in the coating will diffuse into the substrate altering the average 

composition of the alloy up to the penetration depth.  This process has the 

potential to be used as a means to increase the average aluminum concentration of 

an alloy with a high concentration aluminum coating followed by a long 

annealing treatment without altering the geometry of the component. 

 

• Transient liquid phase bonding and brazing are reliable joining methods that have 

been highly developed for high temperature applications.  Many brazes and filler 

metals have been developed for nickel-based alloys.  Structures have been 
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fabricated with very thin components.  This would be applicable to the thin-

walled prismatic core sandwich panel currently discussed, making the fabrication 

of such a panel feasible. 

 

• Optimization tools for a rectangular channeled sandwich panel show how metallic 

structures can be competitive with ceramic or composite materials.  Although the 

solid-solution nickel alloy is not very competitive from a weight standpoint for a 

fixed geometry, with the optimization model, there is room for improvement if the 

high temperature properties are improved.  If the overall use temperature is 

increased or the strength at moderate temperatures is increased, the overall weight 

of the panel will decrease, making the metallic panel an attractive solution.  With 

the model it is possible to determine the extent of strengthening and/or increase in 

use temperature that is necessary for a panel fabricated from a nickel-based alloy 

to be a feasible solution. 

 

• By combining the information from the literature it is apparent that a new 

processing method can be developed to create a precipitation strengthened nickel 

based alloy in geometries that would be extremely challenging to cast.  Without 

any of the technologies it would not be possible to create the final product.  The 

joining technology allows for the fabrication of the panel, the coating technology 

allows for aluminum to be added to the alloy and diffused through.  However, it 

would be unclear if this material is even a possible candidate for the panel without 

the modeling of its yield strength as well as the optimization of the panel with 
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these modeled properties.  With the integration of these analytical and 

experimental approaches, initially designed for separate applications, it is possible 

to define new paths for processing and strengthening that are likely to be useful 

for high temperature thermostructural applications. 

 

 

The following contributions are unique to this thesis work: 

 

• Development of a new processing method to achieve a γ + γ′ precipitation 

strengthened nickel-based alloy in a previously unobtainable geometry. 

• Integration of yield strength, panel geometry, and thermodynamic models to 

determine an optimized microstructure and geometry. 

•  Definition of the necessary combination of aluminization, homogenization and 

aging treatments to achieve the desired microstructure. 

• Fabrication and high temperature testing of actively-cooled optimized panels 

determining benefits of the vapor phase strengthening process. 

 

This thesis is organized as follows.  Chapter 2 discusses the experimental materials and 

experimental procedures.  Chapter 3 describes the feasibility of the new vapor phase 

strengthening method.  Chapter 4 concerns the integration of models to determine a 

combination of microstructure and geometry needed to minimize the weight of a 

thermostructural panel.  The vapor phase strengthening of alloy X-750 is discussed in 
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Chapter 5.  Fabrication, strengthening, and high-temperature testing of thermostructural 

panels is described in Chapter 6.  Finally, Chapter 7 summarizes with conclusions. 
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Chapter 2 

 

Procedures 

 

2.1 Experimental Materials 

 

A variety of solid-solution nickel based alloys available in wrought sheet form have been 

investigated as potential starting materials for this process, including Haynes alloys X-

750 and 214 as well as INCONEL alloys 625 and 693.  All of these alloys are refractory 

lean with relatively large amounts of chromium.  The major alloying components for 

each alloy are listed in Table 2.1.   

 

Table 2.1: Major alloying components of nickel-based alloys (wt%) [42-45] 
Alloy Cr Al Fe Ti Nb Co Mo 

H-X750 16 0.8 8 1 2.5 1 - - 

H-214 16 4.5 3 - - - - - - - - 

IN-625 20 – 23 0.4 5 0.4 3 – 4 1 8 – 10 

IN-693 27 – 31 2.5 – 4 2.5 – 6 0.5 – 2.5 - - - - - - 
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The thickness of the alloy sheets available varied from 200 μm to 2 mm in thickness.  

The only alloy available in the 200 μm thickness was INCONEL 625.  While all other 

alloys used in this investigation varied thicknesses, they are all amenable to rolling as 

thin as 200 μm.  Specimens of each alloy were cut with an electrical discharge machining 

(EDM) process to dimensions that were needed for each particular application, as 

reported below. 

 

2.2 Aluminization 

 

In order to properly carry out the aluminization process, an environmentally controlled 

furnace was created.  A vertical tube furnace was used with a custom designed sealable 

quartz tube with moveable stage.  Figure 2.1 is a photograph of the tube furnace.  The 80 

mm diameter tube extends over 250 mm above the furnace including a cool zone while 

maintaining the environmental control.  The stage allows rapid movement between the 

hot and cool zones permitting the precise control of the aluminization time and/or aging 

treatments.  

 



 

Figure 2.1: Photograph of custom made vertical tube furnace with a sealable quartz tube 
and movable stage. 
 

 

As discussed above, an aluminide coating is deposited on the alloys to serve as an 

aluminum source for precipitation strengthening of the alloy.  Samples were cut into 

rectangular pieces approximately 1 cm x 1.5 cm for initial aluminization experiments.  

Samples destined for tensile tests were cut into a dogbone shape consistent with sub-

standard size specifications [46].  The gauge length was 2.5 cm long and 0.6 cm wide 

with a radius of curvature from the grip section of 5 cm.  Although the aluminized 

sandwich panels were fabricated using two different methods, they were aluminized in a 

post-fabricated state consistent with procedures described below. 
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2.2.1 Pack Activity 

 

A high activity pack was desired for all the aluminization procedures in this study.  The 

primarily inward diffusion of aluminum in a high activity pack will minimally alter the 

geometry of the samples.  The pack contained three components, an activator, aluminum 

source, and an inert filler. The activator was NH4Cl (99.5% min), the aluminum source 

was aluminum powder (-40+325 mesh, 99.8%) and the inert filler was a-Al2O3 (99.9%).  

Consistent with the process described by Das et al. [27], the pack contained 3 wt% 

NH4Cl, 15 wt% Al, and 82 wt% Al2O3.  This pack content was consistent for all 

aluminization procedures in this study. 

 

2.2.2 Aluminization Parameters 

 

The rectangular samples were held in alumina trays with dimensions 2.5 x 2.5 x 1 cm 

completely surrounded by the pack powder mixture.  The container was inserted into the 

cool zone in the vertical tube furnace equipped with argon flowing at 2 cm3/s at a variety 

of temperatures and times.  Once the furnace was at the specified temperature, the 

container was lowered into the hot zone of the furnace within 5 seconds and held for the 

specified time.  At the end point, the container was lifted out of the hot zone and allowed 

to cool under flowing argon.  Once the container was cooled, the samples were removed 

from the pack and ultrasonically cleaned to remove any pack powder from the surface of 

the sample. 
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Initial aluminization studies were carried out with the X-750 alloy over the temperature 

range of 800 °C to 1050 °C and times ranging from 5 minutes to 360 minutes (6 hours).  

These studies showed that the rate of aluminum deposition per square centimeter 

exhibited a logarithmic relationship with time for all temperatures tested.  Experimental 

results for aluminizations performed at 850 °C had the best correlation with logarithmic 

trend-lines.  For 850 °C the trend-line of the mass of aluminum added/cm2 = 0.002ln(t)-

0.0017.  With these values it will be possible to calculate the aluminization time 

necessary to achieve an adequate aluminum source for the homogenization treatment. 

 

2.3 Annealing and Aging 

 

The samples and the panel were subsequently annealed in a vertical tube furnace with a 

flowing gas mixture of Ar + 3% H2.  Initially the samples were annealed to homogenize 

the Al concentration through the thickness of the thinnest samples.  A homogenization 

cycle to achieve Al concentrations within 10 % of the average through the cross section 

was devised and will be discussed in more detail.  Depending on the thickness of the 

samples, the homogenization times ranged from 150 hours to 200 hours at 1100 °C 

 

Once the aluminum is distributed uniformly through the sheet cross section, aging 

treatments were performed to achieve the desired γ-γ′ microstructure.  Two aging 

treatments were performed at 1075 °C for 17 minutes and at 980 °C for 2 minutes.  The 

determination of these cycles will be discussed in more detail.  These aging treatments 

were designed to create a microstructure with γ′ precipitates in two size distributions, 110 
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nm average diameter along with a second set of precipitates 25 nm in diameter.  The 

samples were aged under flowing Ar in a vertical tube furnace that allowed for rapid 

cooling.   

 

2.4 Microstructural Characterization 

 

In order to characterize the microstructure at various steps of the process, a variety of 

techniques were employed, including scanning electron microscopy (SEM) and 

electronmicroprobe analysis (EMPA).  Sample preparation and instrument operating 

conditions are given in the following sections. 

 

2.4.1 Sample Preparation 

 

Samples intended for the scanning electron microscope were mounted and using standard 

metallographic preparation techniques was ground and polished with a finishing step of 

0.05 μm alumina.  In order to obtain good contrast for the images of the microstructure, 

two etching solutions were utilized.  An etching solution of 33% CH3COOH, 33% H2O, 

33% HNO3, and 1% HF was used to reveal the γ/γ′ microstructure, while an electrolytic 

etching solution of 11% H3PO4, 45.5% H2SO4 and 43.5% HNO3 was used to dissolve the 

γ phase, leaving the γ′ phase intact.  The electrolytic etch required a voltage of 7 volts and 

read approximately 0.2 amps/mm2 during the etching process. 
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2.4.2 Scanning Electron Microscopy 

 

Images of the microstructure for evaluation were taken using a Hitachi S-3200N SEM 

and a Phillips XL30 field emission gun SEM.  Both of the SEMs were equipped with a 

removable back-scatter electron (BSE) detector. 

 

2.4.3 Electron MicroProbe Analysis 

 

Electron microprobe analysis (EMPA) using a CAMECA SX100 was performed to 

determine elemental concentration profiles across the sample thickness.  Phases present 

were determined from wavelength spectrometry (WDS) combined with thermodynamic 

calculations from PandatTM which uses the CompuTherm database.  Additionally, X-ray 

scans of post-aluminized material were conducted with an Enraf Nonius CAD4 Single 

Crystal X-Ray Diffractometer.  

 

2.5 Mechanical Testing 

 

To characterize the change in mechanical properties of the materials after the processing 

method described above, hardness data and tensile data were collected.  Microhardness 

was chosen in order to quickly and accurately measure the gradient in properties through 

the cross section of thin samples.  These data gave insights into the strengthening that 

took place for the initial alloys.  Tensile tests were performed to characterize the change 

in yield strength for the optimized alloy microstructure. 
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Vickers microhardness was determined using a Buehler Micromet II digital 

Microhardness tester.  Microhardness measurements were made on the surface of 

samples completely homogenized and through the sheet thickness for the thicker alloy 

samples at approximately 50 μm increments.  Tensile samples were cut with an EDM 

process.  The dimensions of the samples were 10 mm x 65 mm x 0.65 mm with a gauge 

section length of 25 mm.  The radius of curvature from the grips down to the gauge 

section thickness was 5 mm.  These samples were aluminized similar to the process 

described above. 

 

The tensile samples were tested in tension with an Instron 5582 with a constant 

displacement of 0.05 mm/minute.  The strain was measured with an Instron edge grip 

extensometer with a 12.7 mm gauge length.  Measurements of Young’s Modulus, Yield 

Strength and Ultimate Tensile Strength were preformed for all of the samples. 

 

2.6 Oxidation Testing 

 

Simple one-hour oxidation tests were performed on the initial samples in the as-received 

condition as well as post-homogenization.  The cycle consisted of 1 hour at 1000 °C.  

The thickness of the oxidized layer was measured from SEM images. 
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2.7 Integrated Modeling 

 

Thermodynamic alloy models, microstructure-based strength models and panel 

thermostructural stress analysis models were employed in an integrated manner to 

determine the desired microstructure and panel geometry.  If the models were used 

separately, it is not guaranteed that a minimum weight structure would result.  In order to 

find a structure optimized for minimum weight it is essential that microstructure and 

geometry are determined together.  The models used included a thermodynamic model, a 

geometric model for a rectangular channeled sandwich panel, and a yield strength model 

all of which will be discussed in more detail in the following sections. 

 

2.7.1 Thermodynamic Modeling 

 

Thermodynamic modeling was performed for all the initial alloys and was also used to 

understand phase evolution through the various stages of processing.  PandatTM software, 

which uses the CompuTherm database, was utilized.  Using the specific elemental 

variants for each alloy, pseudo ternary phase diagrams were calculated.  The PandatTM 

software was also used to determine the feasibility of potential precipitate distributions 

suggested by the strength model.  This was determined by calculating the equilibrium 

volume fraction of the γ′precipitates over a range of temperatures. 

 

 

 



  34

2.7.2 Yield Strength Modeling 

 

In order to determine which microstructure would be optimal for a minimum weight 

thermostructural panel, the yield strength of a range of potential microstructures was 

evaluated with a model developed by R. Kozar [17].  The model calculates the yield 

strength as a function of temperature based on the microstructure, chemistry and 

reference data.  The strengthening mechanisms accounted for in the model are solid 

solution, grain boundary, weak pair coupling, and strong pair coupling.  Input parameters 

include the composition of the matrix and the γ′ precipitates, grain size, total volume 

percent γ′ and up to three distinct populations of γ′ precipitates at different sizes.   

 

The model was used once the alloy had been chosen for panel fabrication.  The reference 

data used in the yield strength model was available from the manufacturer of the X-750 

alloy.  The model was run with either two or three populations of γ′ with sizes ranging 

from 10 nm to 600 nm for volume fractions ranging from 10 – 70%.  The most promising 

data for each volume fraction was used in the panel geometry model. 

 

2.7.3 Panel Geometry Modeling 

 

A model developed by N. Vermaak et al. [32] optimizes the geometry of a rectangular 

channeled thermostructural panel for minimum weight given a required heat flux over the 

height of the panel.  The geometrical variables for the panel in the model include wall 

thickness, face sheet thickness, and dimensions of the cooling channels.  It is also 
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possible to consider a panel that takes into account the pressure in the combustor as well 

as the use of a thermal barrier coating.  In this study the combustion pressure was taken 

into account, which corresponds to a panel that is not continuously supported, while the 

use of a thermal barrier coating was not used because the panels would be tested without 

a coating.  The model will be discussed in more detail in Section 4.3. 

 

These geometric optimizations are made based on the capabilities of a given material.  To 

ensure that a global minimum mass was calculated, the material properties from a variety 

of microstructures were used as inputs for the model.  Material inputs for the model 

included density, coefficient of thermal expansion, Young’s modulus, conductivity, 

Poisson’s ratio, maximum use temperature, reference yield strength (yield strength at 127 

°C), and the yield strength change with temperature.  All materials investigated in this 

study are nickel-based and have little variation in many material properties [40-43].  

Therefore, for this study, the density, coefficient of thermal expansion, Young’s modulus, 

conductivity and Poisson’s ratio were held constant while the maximum use temperature, 

reference yield strength, and yield strength change with temperature were varied for each 

microstructure variant. 

 

2.8 Panel Fabrication 

 

Two approaches to panel fabrication were employed including brazing and electric 

discharge machining.  Initially a panel was fabricated using a brazing method, as will be 

described below.  It should be noted that this is not the only feasible way to fabricate a 



  36

thin-walled panel.  Once an optimal geometry had been calculated it was determined that 

supplier availability were not adequate for the small scale of this study.  Therefore an 

additional fabrication method was necessary to fabricate a panel with the optimized 

geometry.  A combination of traditional machining and electrical discharge machining 

were used to create the optimized panel as described below. 

 

2.8.1 Brazing 

 

The alloy used to braze the panel pieces together was AMDRY DF6A, alloy composition 

in Table 2.2.  This braze tape has a similar major alloying components to the Haynes 

alloy X-750. Some specimens were cut with an EDM into squares and rectangles for face 

sheets and panel webbing respectively.  The face sheets were 52 mm x 52 mm with the 

webbing having dimensions 52 mm x 8.8 mm.  The specimens used for the panel all had 

a thickness of 0.635 mm. 

 

Table 2.2: Alloy composition of AMDRY DF6A in wt%. [47] 
 Cr Ta B 

AMDRY DF-6A 20 3 3.15 
 

A 52 mm x 52 mm x 10mm panel with rectangular channels was fabricated with the 

pieces of X-750 sheet and AMDRY DF-6A braze tape.  The braze tape was applied to the 

long edges of the panel webbing and subsequently attached to the face sheets.  The pieces 

were held in place for the brazing cycle with a reusable fixture for high repeatability.  

The brazing cycle was performed with flowing Ar + 3% H2 gas in a vertical tube furnace 
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consisting of a 20 minute hold at 450 °C, to remove the organics from the braze tape 

followed by a 30 minute treatment at 1200 °C to join the pieces. 

 

2.8.2 Electric Discharge Machining 

 

Once the optimized geometry had been determined from the integrated modeling, the 

thickness of the webbing and face sheets needed to be thinner than the material 

immediately available from commercial suppliers.  In order to achieve the very thin walls 

for the optimized panel, it was necessary to EDM the channels of the panels.  Four panels 

were created by starting with plate stock and traditionally machined to size with a 3-axis 

mill of 5.8 mm x 45 mm x 63.5 mm.  The channels were created by drilling holes for the 

channels and cutting out the material with a wire EDM to create 5 channels with 

dimensions of 5 mm x 8.5 mm.  

 

2.9 High-Temperature Panel Testing 

 

In order to accurately determine the performance of the panels in conditions similar to 

those described in the optimization model, it is necessary to test the panel in a high-

temperature environment.  The temperature, pressure and flow rate parameters in the 

model can be replicated and varied.  This allows for testing in more benign as well as 

more aggressive conditions. 

 

 



2.9.1 Setup 

 

Two of the panels were EDMed, aluminized, homogenized, and heat treated similar to the 

tensile samples described above.  The remaining panels were kept in their as-fabricated 

state for comparison.  The testing apparatus (see Figure 2.2) for the panels was designed 

to allow the panels to be heated on one side with an oxy-acetylene torch while being 

actively cooled by water flowing through the channels at a variety of pressures.   

 

 

Figure 2.2: Image of the high-temperature testing apparatus for the actively-cooled 
thermostructural panel. 
 

 

The water traveled through a brass fixture designed to produce a fully developed 

turbulent flow before entering the panel.  The exact replication of the model would 
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require channel pressures up to 0.9 MPa and a flow rate of 90.5 cm3/s.  However, the 

capabilities of the facility limited the flow rate and pressure ranges available.  Pressures 

could range from 0.035 to 0.4 MPa with flow rates up to 80 cm3/s.   

 

Rerunning the panel failure model with the available conditions, it was possible to find an 

alternative channel pressure and flow rate combination that predicted a similar failure 

mode as the original conditions of tensile failure in the center of a cooling channel.  In 

order to reduce the possibility of boiling the water in the cooling channels, the maximum 

available pressure was used for the panel testing of 0.4 MPa.  A flow rate of 16 cm3/s was 

used to achieve the maximum use temperature on the surface of the panel.  Both the as-

fabricated and strengthened panels were subjected to similar temperatures, pressures and 

flow rates to determine the relative performance of the panels.  The comparision 

parameters include the maximum temperature of the hot side, the maximum pressure and 

minimum flow rate.  

 

2.9.2 Temperature and Measurements 

 

In order to measure the comparison parameters, which included the maximum surface 

temperature, thermocouples were attached to the heated side of the panel. The 

performances of the as-fabricated and strengthened panels were compared to each other 

and to model predictions. 
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2.9.3 Pressure and Water Flow Measurements 

 

Replicating the failure conditions in the model required control of the water pressure and 

flow rate.  The pressure of the water in the actively-cooled channels was measured with a 

dial gauge and the water flow was measured with a flow meter.  The city water pressure 

available was 0.4 MPa.  The water flow could be varied with a pair of needle valves, one 

located at the inlet and one located at the outlet in order to achieve a similar failure mode 

as predicted in the panel geometry model. 
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Chapter 3 

 

Vapor Phase Strengthening Feasibility 

 

The feasibility of a vapor phase strengthening approach was established on small scale 

samples before applying the process to a fabricated sandwich panel.  The following 

sections describe the results of experiments performed to determine if this approach was 

a possible solution for strengthening refractory-lean nickel-base alloys in a post-

fabricated state. 

 

3.1 Aluminization 

 

The aluminization time and temperature used for the feasibility studies was one hour at 

950 °C based on aluminization studies performed by Dunand et al. [18].  As described 

below, the results for four alloys were investigated using similar aluminization 

conditions.  No effort was made to achieve a particular aluminum concentration, the 

objective was investigating the feasibility of establishing a γ - γ′ microstructure without 

any other detrimental phases. 
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SEM inspection as well as concentration profiles from WDS of the as-aluminized alloys 

revealed high aluminum concentration layers on the outer surfaces of all the samples.  

The number of phases present, thicknesses and aluminum concentration of the layers 

varied from alloy to alloy.  There was no appreciable change in total sample thicknesses 

for any of the alloys investigated.  For example, on average after aluminization, the IN-

625 sample thickness changed from 201 to 203.8 μm, an increase of only 1.9%.  The 

concentration profiles of the samples, compared with the Ni-Cr-Al ternary phase diagram 

[48] and thermodynamic calculations were used to identify the phases present. 

 

3.1.1 Haynes X-750 

 

The as-aluminized coating on the H-X750 alloy had two layers, the outermost consisting 

of a mixture of Al3Ni2 and β-NiAl and with a β-NiAl innermost layer.  The thickness of 

the outermost layer was 90 μm and the inner layer was 30 μm.  Figure 3.1 shows the as-

aluminized microstructures and the associated concentration profiles for the H-X750 

alloy in the as-aluminized condition. 

 



 

Figure 3.1: BSE image and EMPA concentration profiles of as-aluminized X-750 

 

3.1.2 Haynes 214 

 

The H-214 alloy had a very similar as-aluminized microstructure compared to the H-

X750 alloy, with the only variation being a thicker coating.  The two layers present 

consisted of Al3Ni2 and β-NiAl (outer layer) and β-NiAl (inner layer).  The Al3Ni2 + β-

NiAl layer was 180 μm thick while the β-NiAl layer had a thickness of 20 μm. Figure 3.2 

shows the microstructure and associated concentration profiles for the as-aluminized 

alloy 214. 

 

  43



 

Figure 3.2:  BSE image and EMPA concentration profiles of as-aluminized 214. 

 

 

3.1.3 Inconel 625 

 

The IN-625 alloy showed the most complex microstructure with an outer two-phase layer 

near the surface, measuring approximately 25 μm thick and a second 10 μm subsurface 

layer consisting of a third phase.  The topmost layer of the aluminized specimen 

contained the highest concentration of aluminum throughout the sample.  The cross 

section of the IN-625 sample is shown in Figure 3.3a.  The concentration profiles of the 

aluminized surface (Fig. 3.3b) compared with thermodynamic predictions of phase 

equilibria reveal that the topmost layer consists of α-Cr and β-NiAl while the inter-layer 

is α-Cr, γ-Ni and the topologically close packed (TCP) sigma (σ) phase.  In addition, X-

ray scans of the post-aluminized sample showed new peaks consistent with the sigma 

phase. 
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(a) (b)  

Figure 3.3:(a) BSE image of cross section of as-aluminized IN-625. (b) Concentration 
profile for as-aluminized 625 specimen. 
 

 

3.1.4 Inconel 693 

 

The as-aluminized microstructure of the IN-693 alloy also consisted of three layers.  The 

outermost layer consisted of the two phases α-Cr and β-NiAl, with a thickness of 30 μm.  

The middle layer, with a thickness of approximately 3 μm, consisted of the three phases 

α-Cr, β-NiAl and γ.  The innermost layer was also three phases and with the decreased 

aluminum concentration consisted of α-Cr, γ and γ′ with a thickness of 5 μm.  The SEM 

images and EMPA concentration profiles are shown in Figure 3.4. 
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Figure 3.4:  BSE image and EMPA concentration profiles of as-aluminized 693.   

  

 

3.2 Homogenization 

 

Initial homogenization studies utilized a homogenization heat treatment of 118 h at 1050 

°C for the IN-625 samples while the remaining alloys were heat treated for 150 h at 1100 

°C.  The selection of the times and temperatures is discussed in Section 3.5.2.  The 

availability of the IN-625 alloy samples with a thickness of 200 μm allowed for the 

reduced homogenization time. 

 

3.2.1 Haynes X-750 

 

A piece of the H-X750 sheet was ground to a thickness of 400 μm to determine if the 

aluminum deposited on both surfaces was able to diffuse to create a sample homogenized 
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through the thickness.  This sample was aluminized for 1 hour at 950 °C and annealed for 

150 hours at 1100 °C.  Concentration profiles from EMPA and SEM images confirmed 

diffusion of aluminum after annealing from the initial coatings through the thickness of 

the H-X750 sheet.  In Figure 3.5 the aluminum concentration profile indicates an 

aluminum concentration of approximately 4.5 weight percent.  This is an increase from 

the 0.8 weight percent in the as-received X-750 alloy.  Thermodynamic calculations were 

also employed to determine pseudo phase diagrams for all the alloys investigated at the 

homogenization temperature.  The implications of these diagrams will be discussed in 

Section 3.5.2.  Although not investigated in this study, X-750 has small M23C6 carbides 

up to 50 nm in diameter to control grain size during rolling [49]. 

 

 

 

Figure 3.5:  BSE image and EMPA concentration profiles of X-750 alloy aluminized for 
1 hour at 950 °C and annealed for 150 hours at 1100 °C. 
 

 

  47



3.2.2 Haynes 214 

 

The 214 alloy sample was over 1 mm in thickness and therefore the preliminary 

aluminization of 1 hour at 950 °C and the homogenization treatment of 150 hours at 1100 

°C was unable to completely homogenize the aluminum as with the H-X750 alloy 

described above.  From the concentration profiles and SEM images (Figure 3.6) it is clear 

that the H-214 alloy showed increased aluminum concentration to a depth of 

approximately 250 μm from the coated surface at the bottom.  Unlike the X-750 alloy, H-

214 maintained an outer layer consisting of β + γ + γ′ and an inner layer of γ + γ′ 

following homogenization. 

 

 

Figure 3.6:  BSE image and EMPA concentration profiles of 214 alloy aluminized for 1 
hour at 950 °C and annealed for 150 hours at 1100 °C. 
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3.2.3 Inconel 625 

 

The IN-625 sample (Fig. 3.7) aluminized for 1 hour at 950 °C and homogenized for 118 

hours at 1100 °C showed a relatively uniform microstructure.  The concentration profiles 

from WDS indicate the aluminum has diffused through the thickness of the sample while 

leaving the TCP σ phase in the region where the second layer of the aluminized coating 

was originally located.  In addition, large σ precipitates formed at the grain boundaries 

during the homogenization treatment, Figure 3.7. 

 

 

 

Figure 3.7: BSE images of 625 alloy aluminized for 1 hour at 950 °C and annealed for 
118 hours at 1100 °C. (a) Cross section view showing the homogenization through entire 
thickness. (b) Higher magnification image to show σ precipitates at grain boundaries. 
 

 

3.2.4 Inconel 693 

 

The IN-693 alloy contains much more chromium than the other alloys investigated in this 

study, which ultimately affected the stability of the γ′ phase.  The 693 alloy sample 

(Figure 3.8) aluminized for 1 hour at 950 °C and annealed for 150 hours at 1100 °C 
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showed an increase in aluminum concentration to a depth of 250 μm.  There was a 

residual β coating remaining on the surface with α-Cr particles present to the depth of 

aluminum penetration.   

 

 

 

Figure 3.8: BSE image and EMPA concentration profiles of 693 alloy aluminized for 1 
hour at 950 °C and annealed for 150 hours at 1100 °C. 
 

 

3.2.5 Precipitation of the γ′ phase 

 

To check for the presence of γ′ precipitates in the processed samples, the etched surfaces 

were examined and secondary electron (SE) images were taken.  All of the alloys 

investigated had increased aluminum concentrations to depths up to 250 μm.  However 

the IN-693 sample did not achieve sufficient increase in concentration to precipitate γ′.  

All of the other alloys showed a fine precipitate microstructure in the γ matrix as shown 

  50



in Figure 3.9.  These precipitates resulted from cooling the samples from the 

homogenization temperature and not from aging treatments. 

 

 

(a) (b) (c)  

Figure 3.9:  SE images of aluminized and annealed samples.  Etched to reveal 
microstructure  (a) 625 grain interior (b) 214 and (c) X-750 
 

 

In the grain interior of alloy IN-625 (Figure 3.9a), the precipitates were approximately 

150 – 200 nm in diameter.  Both alloy H-214 and H-X750 (Figure 3.9b and 3.9c) 

contained precipitates 100 – 150 nm in diameter. 

 

3.3 Hardness Testing 

 

The hardness of the samples was measured as a function of position through the thickness 

of the aluminized + homogenized samples.  Alloy IN-625 showed an increase from 197 ± 

12 Hv in the as-received condition to 403 ± 46 Hv in the processed condition through its 

thickness, as the sheet was thin enough to be uniformly enriched in aluminum.  For the 

remaining alloys it was necessary to use samples with greater thicknesses, as thinner 

sheets were not available in small quantities.  In these alloys there was a correlation 

between the hardness and aluminum penetration through the thickness.  Although the 
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thickness of the sheets used was greater than the aluminum penetration, homogenization 

would still be possible with standard thinner sheets.  

 

 

Figure 3.10:  Measured Vickers hardness as a function of depth on X-750 and 214 
samples aluminized for 1 hour at 950 °C and annealed for 150 hours at 1100 °C. 
 

 

Figure 3.10 shows the measured hardness as a function of position over a representative 

etched image of the H-214 and H-X750 samples for easy comparison of hardness to 

microstructure.  As mentioned in Section 3.2.1, the X-750 sample shown was ground to a 

thickness of 0.4 mm while the sample in Figure 3.10 was 0.7 mm thick and therefore was 

not completely homogenized.  It is apparent that the hardness is higher near the edges of 

the samples and falls off past the depth of aluminum penetration.  As the aluminum 

diffuses into the samples, the aluminum concentration is higher near the surfaces of the 

samples in Figure 3.10, which increases the volume fraction of the γ′ phase in 
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equilibrium.  With the increase in hardness near the surface of the samples, it can be 

inferred that there is a correlation between hardness and an increase in volume fraction of 

γ′.  On average, the change in hardness from the bulk as-received material to near the 

edge of the processed samples was 326 ± 19 to 445 ± 20 for H-214 and 204 ± 9 to 550 ± 

32 Hv for H-X750.  A summary of the averaged hardness values for all the alloys is given 

in Table 3.1. 

 

Table 3.1:  Vickers hardness for as-received and aluminized + homogenized alloys 
Alloy As-received Aluminized + Homogenized

IN-625 197 ± 12 403 ± 46 
IN-693 297 ± 27 497 ± 30 
H-214 326 ± 19 445 ± 20 

H-X750 204 ± 9 550 ± 32 
 

 

3.4 Oxidation Behavior 

 

All as-received alloys and processed samples were subjected to oxidation in air for 1 hour 

at 1000 °C.  After homogenization, there was a residual β coating remaining at the 

surface of all of the samples except for H-X750.  Even without the β coating (which 

should improve the oxidation properties of the material [48]), all the alloys including H-

X750 showed improved oxidation resistance.    

 

All the as-received alloys grew a thick, irregular mixed oxide layer while the aluminized 

and annealed samples grew a thinner, more uniform oxide layer.  Of all the alloys, IN-

625 showed the largest reduction of oxide thickness, from approximately 170 μm for the 



as-received material to 6 μm in the processed sample (Figure 3.11).  The remaining 

alloys showed very consistent oxidation behavior with the IN-693 images being 

representative (Figure 3.12).  There was close to one order of magnitude reduction in 

oxide layer thickness. 

 

(a) (b)  

Figure 3.11: Oxidation layer formed on 625 after 1 hour at 1000 ºC. (a) As-received 625. 
(b) 625 aluminized for 1 hour at 950 °C and annealed for 118 hours at 1100 °C. 
 

 

 

Figure 3.12: Oxidation layer formed on 693 after 1 hour at 1000 °C.  (a) As-received 
693. (b) 693 aluminized for 1 hour at 950 °C and annealed for 150 hours at 1100 °C. 
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3.5 Discussion 

 

3.5.1 Deposition of Source Aluminum 

 

In this study the feasibility of strengthening solid solution nickel-based alloys in a post-

fabricated state has been addressed.  For this processing approach to be feasible for use in 

thermostructural panels, where geometry must be closely controlled, it is important that 

the sheet thicknesses remain nominally unchanged through the procedure.  After the 

aluminization of all the alloys, it was shown that the nominal thickness of the samples 

remained consistent with the samples that were not aluminized, which indicates primarily 

inward aluminum diffusion during the process, typical with high-activity pack 

aluminization [27]. 

 

Although each alloy experienced the same aluminization process, the depth of aluminum 

penetration as well as phases present varied with each alloy.  Both the microstructural 

and diffusion differences are due to the differences in major alloying elements of these 

alloys.  Different elements will promote stability of certain undesirable phases, 

specifically TCP σ and α-Cr in this study.  For IN-625, the presence of Mo as an alloying 

component makes it possible to form the σ phase [9,10].  The IN-693 alloy contained 

more Cr than the other alloys, and due to the limited solubility of Cr in NiAl phases [51] 

a precipitation front rich in Cr formed at the interface as will be discussed further.  

Importantly, as shown in Figure 3.13, thermodynamic databases for Ni-based systems are 
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becoming sufficiently mature that the diffusion path and phases formed could be 

evaluated as part of the sheet material selection process. 

 

The differences in major alloying elements will substantially affect the interdiffusion 

constants of a system [13].  The increased Cr in IN-693 inhibited the inward diffusion of 

Al, decreasing the depth of the aluminized coating.  The increased Cr showed α-Cr phase 

stability, which can interfere with the growth rate of the coating [52].  The increased Mo 

content of IN-625 reduced the depth of the aluminized coating, consistent with the lower 

mobility of Mo [53].  The difference in thickness of the aluminized layer for the alloys H-

214 and H-X750 is due to the Nb present in H-X750.  The lower mobility of Nb and 

other refractory additions found in superalloys will decrease the coating thickness [53].  

Also, alloy H-214 already contains the most Al of all the alloys investigated, making less 

additional Al necessary for stability of the aluminum-rich Ni3Al phase.   

 

3.5.2 Thermodynamic and Kinetic Considerations 

 

Once the aluminum has been added to the samples, an annealing treatment is required to 

homogenize the aluminum concentration within 10 atomic percent of the mean aluminum 

concentration through the thickness of the thinnest sample (IN-625) of 200 μm.  The 

homogenization time required was estimated using a Fourier series approximation 

modeled for a composite slab and including the initial conditions consistent with this 

study [13]. 

 



                                   (1) 

 

Where Cave is the average aluminum concentration over the entire thickness, Ccoat is the 

aluminum concentration in coating, D, the interdiffusion coefficient, and l being half the 

thickness of the sample.  Interdiffusion data for β-NiAl [54] and nickel solid solutions 

[55] were considered in calculating an estimate for the required annealing time.  An 

interdiffusion coefficient of D = 3.68 x 10-15 m2/sec at 1100 °C was used to approximate 

an annealing time of 118 hours for a sheet thickness of 200 μm.  Examination of IN-625 

after this annealing treatment by WDS confirmed that the aluminum concentration was 

homogenized through the 200 μm thick sample as in Figure 3.7. 

 

The aluminum addition to the H-X750 and H-214 alloys resulted in a γ + γ′ 

microstructure after the homogenization treatment.  The other alloys contained either a σ 

phase (IN-625) or the α-Cr phase (IN-693).  For comparison, the calculated Ni-Cr-Al 

pseudo ternary phase diagrams for each alloy are shown in Figure 3.13 at the 

homogenization temperature of 1100 °C.  These phase diagrams were calculated keeping 

the minor alloying elements constant for each alloy and varying the Ni, Al, and Cr 

concentrations. 
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(a) (b)  

(c)  (d)  

Figure 3.13 Thermodynamically calculated Ni-Al-Cr pseudo ternaries for the alloys 
tested showing the initial as-received alloy composition and the composition after the 
aluminization and homogenization treatments.  (a) H-X750 (b) H-214 (c) IN-625 (d) IN-
693. 
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The IN-625 alloy showed large σ phase precipitates after the homogenization, as reported 

above.  The precipitation of the TCP σ phase is common after long exposure at elevated 

temperatures of Ni-based superalloys containing high concentrations of chromium and 

molybdenum [9,10].  PadantTM computational analysis confirmed the stability of γ + γ′ + 

σ at 1100 °C for the new alloy composition. 
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After homogenization, IN-625 was somewhat embrittled, fracturing when bent through a 

large radius.  Foils of the other alloys were still deformable following homogenization.  

The brittleness of the TCP σ phase that was present at the grain boundaries will reduce 

the ductility of the alloy [9,10].  It is possible to avoid this phase by choosing an alloy 

containing less molybdenum, as shown with the other alloys tested in this study. 

 

The IN-693 alloy had the largest chromium content of all the alloys tested.  Due to the 

increased Cr, the alloy preferentially stabilized α-Cr as opposed to γ′ within the γ matrix.  

From the ternary calculated in Figure 3.13, it is clear that the new alloy composition falls 

into the γ + α phase field. 

 

3.5.3 Post-Strengthened Properties 

 

Microhardness testing was performed to gain insight into the strengthening that occurred 

in the alloys due to the processing they underwent.  Hardness can be used to infer the 

yield strength [56] and therefore is an easy and fast way to get feedback on changes in 

mechanical properties. 

 

Hardness testing was used in the feasibility portion of this study as a means to show that 

the processing improved the strengthening of the alloys.  From this data it was possible to 

choose an alloy to investigate further.  Due to the largest increase in hardness, alloy H-

X750 was determined to be the most promising alloy for the application.   
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Similar to the hardness testing, the simple oxidation test was used to show the feasibility 

of the process and the potential improvements.  All of the alloys showed improved 

oxidation resistance when comparing the as-received to the processed samples.   

 

The reduction of oxide growth was achieved with the increase of aluminum at the surface 

of the alloys.  After the homogenization procedure, the surface microstructure of the 

alloys was near or contained the β NiAl phase.  When exposed to oxygen at high 

temperatures, the β phase will form an Al2O3 oxide layer [57].  Alumina is a protective 

oxide [57] in that it will not grow uncontrollably and spall.  The addition of aluminum in 

the alloys, especially having larger concentrations at the surface, ensures the formation of 

alumina opposed to a mixed oxide that grew on the as-received samples. 

 

3.6 Summary 

 

The purpose of these initial tests was to determine the feasibility of the vapor phase 

strengthening process.  It was not initially clear that this approach would be 

thermodynamically possible in a reasonable time frame.  Initial aluminization and 

homogenization studies demonstrate that: 

 

• All alloys have improved oxidation resistance as well as an increase in hardness.  

The reasonable time frame and improved properties make this a feasible process. 
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• The pack cementation process resulted in an aluminum rich outer coating on all 

alloys tested while maintaining the geometrical dimensions of the samples within 

2%.  This was possible due to the high activity of the aluminization pack, which 

results in primarily inward diffusion of aluminum.  The microstructures of the 

coatings were consistent with previous literature and thermodynamic databases. 

 

• A homogenization treatment of 150 hours at 1100 °C showed aluminum 

penetration up to a depth of 250 μm.  This would allow for the processing of a 0.5 

mm thick sheet in approximately 7 days.  Although the length of time needed is 

not ideal, it is not prohibitively long. 

 

• Although the aluminum was able to penetrate all of the alloys to a significant 

depth, it was clear that not all of the alloys were appropriate for this application.  

For example, the IN-625 alloy formed the topologically close packed phase σ 

during the aluminization process, which continued to precipitate and grow during 

the homogenization treatment.  The formation of this phase greatly reduces its 

ductility, making it unsuitable for this process.  The IN-693 alloy also proved to 

unsuitable for this process.  During the homogenization, the added aluminum 

preferentially stabilized α-Cr rather than the desired γ′ phase.  Although no 

deleterious phases were formed, the phases present in equilibrium after processing 

were not desired for this application. 
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• Both H-214 alloy and H-X750 alloys contained no undesirable phases after the 

homogenization treatment.  Combining this with the increased hardness and 

improved oxidation properties, the vapor phase strengthening process is valid for 

these alloys.  The H-X750 alloy was chosen for further investigation because of 

its large increase in post-processing hardness – an increase of almost 170%. 
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Chapter 4 

 

Integrated Modeling 

 

As mentioned in Chapter 2, three models were used in an integrated manner to determine 

the combination of material properties and processing parameters that result in a 

thermostructural panel with minimum weight.  The models include the PandatTM software 

for thermodynamic modeling, a yield strength model developed by Kozar et al. [17] and a 

minimum weight panel geometry optimization developed by Vermaak et al. [32].  Each 

of the models will be discussed in more detail in the following sections and the 

integration of the models will also be discussed further. 

 

4.1 Thermodynamic Modeling 

 

As discussed in previous chapters, the aluminide coating deposited on the surface of the 

alloys will not be used for its traditionally intended purpose.  Instead of providing 

environmental protection, the coating is used as an aluminum source for the bulk alloy.  

This process results in a new alloy composition with additional aluminum. 
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With the new alloy composition comes new alloy phases and associated stable phase 

composition ranges.  Fortunately, advanced thermodynamic modeling programs that 

alleviate the need to determine the phase stability and composition ranges experimentally 

are available.  In this study the thermodynamic modeling and calculations were done with 

PandatTM that uses the CompuTherm databases. 

 

Pandat allows for all alloy components to be accounted for and generates phase diagrams 

based on thermodynamic modeling of individual phases that may develop within the 

multi-component system.  As discussed in 3.5.2 and shown in Figure 3.13 (repeated 

below in Figure 4.1), ternary phase diagrams were calculated for all the alloys for fixed 

levels of base alloying elements and varying aluminum, chromium, and nickel.  Although 

the base alloying elements vary slightly across the thickness in the post-processed state, 

those changes result in negligible changes in the stable phases predicted. 

 



(a) (b)  

(c)  (d)  

Figure 4.1 Thermodynamically calculated Ni-Al-Cr pseudo ternaries for the alloys tested 
showing the initial as-received alloy composition and the composition after the 
aluminization and homogenization treatments.  (a) H-X750 (b) H-214 (c) IN-625 (d) IN-
693. 
 

 

In addition to calculating phase diagrams over a range of composition, it is possible to 

calculate the volume fractions of phases at specific temperatures and compositions.  This 

is very useful when determining potential heat treatment temperatures for a multi-sized 

population of precipitates.   
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Although the thermodynamic modeling cannot determine the optimum microstructure, it 

is a very useful tool in determining the necessary level of aluminum required to achieve 

the desired volume fraction of γ′.  Thermodynamic modeling is utilized by calculating if 

achieving a given microstructure is thermodynamically possible with available chemistry 

and potential heat treatments.  It should be noted that not all thermodynamically 

calculated databases predict the correct equilibrium phases and volume fractions.  

However, due to the extensive validation of the databases for this class of Ni alloys, the 

CompuTherm database is reasonably accurate [58-60]. 

 

4.2 Yield Strength Modeling 

 

For a particular alloy composition, the microstructure will have a large impact on the 

yield strength [9,10].  In order to eliminate the need to fabricate, heat treat and test 

individual alloys and microstructure variants, a yield strength model has been developed 

by Kozar et al. [17] for nickel-based alloys.  This model calculates the potential increase 

in yield strength due to the following strengthening mechanisms: solid solution, weak 

pair coupling, strong pair coupling, and grain boundary strengthening.  The input 

variables for the model include the composition of the matrix and precipitates, grain size, 

total volume fraction of γ′ precipitates as well as up to three distinct precipitate 

populations.  Although the yield strength model allows for any number of microstructure 

combinations, it does not consider if the microstructures are thermodynamically feasible, 

it will only show what is mechanically ideal. 
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For this research, the model was exercised for a range of precipitate sizes, distributions 

and volume fractions for microstructures with two populations of precipitates.  The larger 

population was varied from 100 – 200 nm while the smaller population was varied from 

20 – 35 nm with full results listed in the Appendix.  From these results, typically the 

higher yield strengths corresponded to microstructures containing 40-55 volume percent 

γ′ with relatively small precipitate sizes, typically 100 – 120 nm for the larger population.  

Depending on the specific total volume fraction and relative volume fractions of the two 

distributions, the most favorable smaller precipitate size ranged from 20 to 35 nm.  An 

example of the output from the yield strength model calculated for a microstructure with 

a total of 40 volume percent γ′ (20 % at 110 nm and 20 % at 25 nm) is shown in Figure 

4.2a) with the contributions from each strengthening mechanism in Figure 4.2b).  It 

should be noted that the predicted yield strength is much larger than would typically be 

expected and this discrepancy will be discussed further in Section 4.5. 

 

 

 

 

 



a) b)  

Figure 4.2:  a) Maximum predicted increase in yield strength calculated for a 
precipitation strengthened altered X-750 base alloy with a total of 40 volume percent γ′ 
(20 % at 110 nm and 20 % at 25 nm) b) Relative contributions from each strengthening 
mechanism. 
 

 

Although the particular sizes mentioned above were for the highest yield strength at room 

temperature, when taking the temperature dependence into account, there were additional 

microstructures that could be considered favorable due to better potential performance at 

higher temperatures with increased volume fraction γ′.  Also, it was necessary to confirm 

that the proposed microstructures were thermodynamically feasible.  Furthermore, 

achieving such high strength levels would require confirmation that deformation 

mechanisms predicted in the strength model are actually operative.  The panel geometry 

modeling will make it possible to assess the performance of each feasible microstructure 

in terms of panel weight. 
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4.3 Panel Geometry Modeling 

 

The planned application for this research is a thermosturctural panel for use in the 

combustor of a scramjet engine.  As discussed in Chapter 1, actively-cooled sandwich 

panels would be an appropriate structure for such an application.  Vermaak et al [32] 

have developed an analytical model that embodies the results of a large set of finite 

element calculations and functions to optimize the geometry of a rectangular 

channeled/actively-cooled panel for minimum weight.  Weight was chosen as the 

optimizing parameter as it is arguably the most important parameter for a flight 

application.   

 

The model considers both the thermal and mechanical stresses experienced by the panel 

and will only return a geometry optimized for minimum weight if the panel is able to 

survive the environment.  Therefore, the thermomechanical loads on the panel dictate the 

optimum geometry for the thermostructural panels.  In addition to simply calculating if a 

panel will survive, the anticipated failure mode and loading contributions are calculated 

along with the ratio of the calculated value to the failure criterion, showing how close the 

panel is to a certain failure mode.  Although this information is extremely useful, the 

model is only designed to calculate the stresses for steady-state conditions.  Therefore, if 

a panel is near failure under a certain stress, it is possible for the panel to fail with a slight 

change in the environment. 
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The model takes material property inputs and determines the optimum geometry for a 

range of cooling liquid flow and heat transfer conditions of the panel.  The full list of 

material properties include: density, coefficient of thermal expansion, Young’s modulus, 

conductivity, Poisson’s ratio, maximum use temperature, reference yield strength (yield 

strength at 127 °C), and the yield strength change with temperature.  The material 

properties that were varied included reference yield strength, yield strength as a function 

of temperature, and maximum use temperatures.  Table 4.1 includes the values for the 

material properties that were held constant for the optimizations. 

 

Table 4.1: Values of material properties considered constant for this application. 
Density 8276 [kg/m3] 

Coefficient of Thermal Expansion 16.0 x 10-6 [1/K] 
Young’s Modulus 128 x 109 [Pa] 

Conductivity 23.0 [W/mK] 
Poisson’s Ratio 0.30 

 

 

This model allows for accurate comparison between materials because it optimizes the 

panel geometry for each material separately.  For example, Figure 4.3 [32] shows the 

weight of a variety of optimized rectangular channeled panels as a function of the 

equivalence ratio.  The equivalence ratio is the ratio of the fuel flow necessary for cooling 

to the fuel needed for combustion therefore an equivalence ratio of 1 means all the fuel 

needed for cooling will be used for combustion where a ratio of 1.5 means that for 

cooling, it is necessary to carry 1.5 times the fuel needed for combustion.  

 



 

Figure 4.3 Geometrically optimized thermostructural panels for minimum weight for a 
variety of materials from Vermaak et al. [32].   
 

 

This model is advantageous because of its ability to compare material systems with 

consideration of the full set of material properties that are relevant to panel operating 

conditions.  For example, copper alloys (such as Grcop84 in Figure 4.3) may be 

considered for their conductivity, but the model demonstrates that their relatively low 

yield strength requires extra material to sustain the required loads making the panel 

prohibitively heavy.  The titanium alloy would also be considered for its low density, 

however the extra fuel needed for cooling makes it a less obvious choice.  It should be 

noted that the maximum use temperature for the alloys chosen by Vermaak et al. [32] are 

overly aggressive therefore the mass versus equivalence ratio curve for the X-750 alloy 

reported in Section 4.4 will be slightly altered due to a more conservative T* value. 
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From Figure 4.3 it appears that the C-SiC material is the most promising from a weight 

standpoint.  Unfortunately, the low toughness, oxidation resistance and high cost of the 

material are concerns.  Considering that the panel is designed for the interior of a 

combustor with airspeed above the speed of sound, it is crucial to have a material that has 

high enough toughness to tolerate damage by ingestion of foreign objects.  For example, 

engulfing raindrops at those speeds would cause serious erosion problems with a material 

such as C-SiC [61].   

 

In order for metallic systems to compete with a C-SiC panel, the material properties must 

be improved.  However, due to the complex relationships between material properties and 

the optimized geometry, the connection between a reduced overall weight and specific 

material properties is not easily determined.  Although the exact connections cannot be 

determined, Vermaak et al [32] considered the effects of increasing two parameters on 

the optimized weight of a panel: the reference yield strength, S, and the maximum use 

temperature, T*, above which the mechanical properties drop off precipitously.  The 

resulting flow rate versus mass is shown in Figure 4.4 with the gray area indicating the 

solution region of the as-received material and the colored area indicating the solution 

region for a 25% increase in yield strength (green) and a 25% increase in T* (orange).   

 

 



 

Figure 4.4: Increase in feasible solution space for the X-750 alloy by increasing the 
reference yield strength, S, and the maximum use temperature, T*, by 25% from Vermaak 
et al. [32]. 
 

 

From Figure 4.4, which considers X-750, it appears that increasing the reference yield 

strength has a larger effect than increasing the maximum use temperature.  However, 

increasing T* permits lower fuel flow rates.  This investigation was performed for a range 

of heat transfer coefficients and therefore may not be directly translated for a reduced 

mass for a given heat transfer coefficient.  Although this investigation gave some insight 

into the relative importance of which mechanical properties to improve, the integration of 

the three models is necessary to achieve a panel with the global minimum weight. 
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4.4 Integrating Models 

 

As mentioned above, the panel geometry model will optimize a panel based on a set of 

material properties.  It is not clear exactly what combination of material properties will 

result in the optimized panel.  If a microstructure were chosen using the thermodynamic 

and yield strength modeling, it would be possible to find an optimum geometry for that 

microstructure.  However, in order to find the microstructure corresponding to a 

rectangular channeled thermostructural panel with the global minimum mass all the 

models need to be used in an integrated manner. 

 

To begin, the PandatTM software was used to calculate a pseudo phase diagram for the 

base X-750 alloy at the homogenization temperature of 1100 °C.  All elemental 

concentrations besides Ni, Al and Cr where held constant at the as-received values as the 

small variants of the minor alloying elements proved to be insignificant.  Figure 4.5 

shows this pseudo phase diagram with the following values for the minor alloying 

elements (in wt%): Fe = 7.8, Ti = 2.4, and Nb = 0.9. 

 



 

Figure 4.5:  Pseudo phase diagram calculated with PandatTM software for the X-750 
alloy varying Ni, Al and Cr. 
 

 

As discussed in section 4.2, the yield strength model was used to determine promising 

microstructures and the corresponding yield strengths versus temperature were 

calculated.  The temperature dependent yield strength and maximum use temperature 

from those microstructures were put into the panel geometry model and mass versus 

equivalence ratio was calculated.  A three-population microstructure similar to 

commercial disc alloys was also included for comparison.  The results of those 

calculations are plotted in Figure 4.6. 
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Figure 4.6 Optimized panel mass versus equivalence ratio based on the material 
properties calculated with the yield strength model for the most promising 
microstructures. 
 

 

From the plot it is clear that the improvement in material properties from the X-750 alloy 

have reduced the mass of a metallic thermostructural panel to be competitive with a C-

SiC for equivalence ratios as low as 1.25.  Compared to the as-received X-750 alloy, the 

panel mass with a modeled microstructure has been reduced by approximately 50% for a 

given equivalence ratio, or cooling flow rate.  The promising microstructures are in the 

range from 30 to 70 volume percent γ′.  The proposed alloys with 40-50 volume percent 

precipitates showed the most potential in terms of weight reduction (Appendix).   

 

  76



  77

From the integrated modeling it appears that a microstructure with a volume fraction of γ′ 

of approximately 40 with the populations evenly distributed between 110 nm and 25 nm 

is desirable.  An average of 4.6 wt% aluminum is necessary to achieve the desired 

microstructure.  The resulting optimized geometry of the rectangular channeled panel 

consisted of channels with dimensions of 8 mm x 5 mm and wall/face sheet thicknesses 

of 0.4 mm.  In order to check microstructures at and around this target, multiple heat 

treatments were employed for the tensile samples.  Results of these tests will be discussed 

in Chapter 5. 

 

4.5 Discussion 

 

Calculations performed by integrating the models indicate that an intermediate volume 

fraction of fine-scale precipitates show the most promise for a minimum panel mass.  The 

yield strength model predicted that intermediate ranges of volume percent precipitates 

would have higher yield strengths.  As mentioned in Section 4.2, the calculated room 

temperature yield strength is well above a value that is typical for a nickel based alloy.  

Although it is clear that γ′ precipitates will strengthen the alloy, the outputs from this 

model may not accurately predict realistic values.  The model predicted that the smaller 

population strengthened with a weak pair mechanism while the larger precipitate 

population strengthened with a strong pair mechanism.  The model assumes a Gaussian 

distribution of sizes for each population of precipitates.  It is most likely that with a 

combination of both strong and weak pair mechanisms at work, the model has over 

estimated the possible increase in yield strength.  
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Considering the thermostructural panel optimizations, there are some general trends 

relating improvement in mechanical properties to improvements in panel performance.  

From the investigations into the specific effects of increasing maximum use temperature 

and increasing the reference yield strength, it appears that increasing the maximum use 

temperature will yield lower equivalence ratios for a given mass while increasing the 

yield strength will reduce the mass for a given equivalence ratio.  The yield strength 

model indicated favorable microstructures concerning high room temperature yield 

strength.  Although the general trends of increasing yield strength and maximum use 

temperature were described above, it is not obvious if one is particularly better than the 

other or what combination of the two result in the most efficient structure.  

 

4.6 Summary 

 

A combination of thermodynamic, yield strength and geometric modeling was necessary 

for global optimization of the geometry for a minimum mass thermostructural panel.  

Considering this process: 

 

• The yield strength and geometric models were integrated to identify the range of 

microstructures that result in a global minimum panel mass while the 

thermodynamic modeling was used to confirm the feasibility of the 

microstructures.  Without the integration, it would only be possible to find 

minimum masses for a given microstructure with no insight into if that 
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microstructure actually produces an optimized thermostructural panel of if it was 

thermodynamically possible. 

 

• A range of precipitate volume fraction and sizes were investigated for definition 

of microstructures that would yield low mass panels.  A microstructure consisting 

of a total 40 vol % γ′ (20 vol % at 110 nm and 20 vol % at 25 nm) was determined 

to result in an optimized rectangular channeled panel with channel dimensions of 

8 mm x 5 mm with wall and face sheet thicknesses of 0.4 mm.  

 

• These integrated models showed that, although not intuitive, a strengthened 

nickel-base alloy could be competitive from a weight standpoint with a C-SiC 

panel.  Although extra fuel would need to be carried, having a metallic combustor 

could reduce the potential for fracture in the case of foreign object damage. 
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Chapter 5 

 

Vapor Phase Strengthening of X-750 

 

Although Chapter 4 discussed the modeling that was employed to determine a goal 

microstructure, it is still necessary to demonstrate vapor phase strengthening of the X-750 

alloy and experimentally measure the resulting mechanical properties.  Also, the heat 

treatment temperatures and aging times must be developed and validated.  The following 

sections will discuss the experimental results of the strengthened X-750 alloy with the 

goal microstructure. 

 

5.1 Aging Treatments 

 

The optimized microstructure determined in Chapter 4 consisted of a total of 40 volume 

percent γ′ with 20 percent at a size of 110 nm and 20 percent at 25 nm, which correlates 

to an aluminum concentration of 4.6 weight perent.  The thermodynamic feasibility of 

this microstructure was confirmed with PandatTM and was used to determine the solution 

temperature and aging treatment temperatures.  A solution treatment of one hour was 

carried out at 1200 °C.  According to the thermodynamic calculations, 20 volume percent 

γ′ is stable at 1075 °C.  The elemental concentrations of the matrix were used to 



determine an additional aging temperature of 980 °C to precipitate another 20 volume 

percent γ′ at the lower temperature.  Due to the phase stability of γ + γ′ (shown in Figure 

5.1) it is possible to increase the equilibrium volume fraction of γ′ by aging at lower 

temperatures. 

 

 

Figure 5.1: Volume fraction of phases in equilibrium for an altered X-750 alloy 
containing 4.6 weight percent aluminum calculated with PandatTM software. 
 

 

As mentioned above, the precipitate sizes are rather small and therefore require relatively 

short heat treatments. The equation for Ostwald Ripening below [15] was used to 
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determine the approximate aging time to achieve precipitate populations with sizes of 110 

nm and 25 nm. 

 

r3 - ro
3 = kt      [2] 

 

Extrapolating a value for k of 1.19 x 10-24 m3/s for 1075 °C and 1.77 x 10-25 m3/s for 980 

°C from an experimentally determined k value for an alloy with similar aluminum and 

chromium content to X-750 [62], the required aging times to obtain two populations of 

precipitates of 110 nm and 20 nm were estimated to be 16 minutes at 1075 °C and 2 

minutes at 980 °C.  Due to the approximate nature of the kinetic constant k, aging 

treatments were carried out for a range of times, 13 to 19 minutes and 2 to 5 minutes 

respectively.  Although these short aging times are not ideal, considering the maximum 

surface temperature before failure predicted by the panel code is 875 °C, the higher final 

aging temperature makes the microstructure more stable at the maximum use 

temperature.   

 

In order to achieve these very short aging treatments, an environmentally controlled 

vertical tube furnace with the ability to quickly move the sample from the hot zone to the 

cool zone was used.  The cool zone of the furnace remained at temperatures no greater 

than 250 °C throughout the treatments.  After a solution treatment at 1200 °C the samples 

were rapidly cooled at a rate of approximately 50 °C/s to inhibit precipitation of γ′ during 

cooling.  The aging treatments were carried out by initially heating the furnace to the 

desired temperature and then lowering the samples into the hot zone.  When the 



necessary time had elapsed, the samples were pulled from the hot zone and rapidly 

cooled at approximately 50 °C/s.  Samples were etched with an electrolytic etching 

solution of 11% H3PO4, 45.5% H2SO4 and 43.5% HNO3 to dissolve the γ matrix while 

leaving the γ′ phase exposed on the surface.  This allowed for inspection of the precipitate 

size and morphology. SEM images of the γ′ precipitates resulting from the heat 

treatments are shown in Figure 5.2. 

 

 

 

Figure 5.2: SEM secondary electron images of the γ′ precipitates in altered X-750 alloy 
with 4.6 weight percent aluminum with the following aging treatments:  a) 13 minutes at 
1075 °C and 2 minutes at 980 °C.  b) 15 minutes at 1075 °C and 2 minutes at 980 °C.  c) 
17 minutes at 1075 °C and 3 minutes at 980 °C.  d) 19 minutes at 1075 °C and 5 minutes 
at 980 °C. 
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Although the images have different magnification scales, the average precipitate size 

increases from image a to image d.  All of the aging treatments appeared to produce 

spherical precipitates.  The shortest aging treatment of 13 minutes at 1075 °C resulted in 

precipitates approximately 90 nm in diameter while the longest treatment of 19 minutes 

had precipitate sizes of approximately 400 nm.  The 15 minute aging treatment at 1075 

°C appeared to result in the precipitates closest in size to the goal of 110 nm.  Although 

difficult to image, the smaller precipitates from the second aging treatment are visible 

especially in Figure 5.2d.  The sample in Figure 5.2d had a 5 minute aging treatment at 

980 °C.  The other samples had between 2 and 3 minute aging treatments which resulted 

in precipitates between approximately 20 and 35 nm. 

 

5.2 Tensile Tests 

 

As discussed in the previous section, a range of heat treatments was carried out and 

hardness measurements were performed.  In addition to the hardness tests, flat sheet 

tensile dogbone samples were prepared and tested.  The single sample tensile tests were 

performed at room temperature to compare with the yield strength model.  As mentioned 

above a range of heat treatments were employed to target the goal microstructure.  Table 

5.1 contains the measured yield strength, ultimate tensile strength and strain at fracture 

for as-received and strengthened samples. 
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Table 5.1: Tensile properties measured and calculated from single tensile tests for as-
received X-750 alloy and altered X-750 alloy with 4.6 weight % aluminum with varying 
two stage aging treatments. 

Sample Yield Strength 
(MPa) 

Ultimate Tensile 
Strength (MPa) 

Strain at fracture 
(%) 

As-Received 260 745 28.5 
13 min @ 1075 °C 
2 min @ 980 °C 

887 918 1.2 

15 min @ 1075 °C 
2 min @ 980 °C 

879 941 2.7 

17 min @ 1075 °C 
3 min @ 980 °C 

724 740 0.7 

19 min @ 1075 °C 
5 min @ 980 °C 

630 705 1.8 

 

 

Based on these tests, the improvement in yield strength varied from approximately 240% 

to 340% depending on the heat treatment while the strain at fracture has been reduced by 

at least an order of magnitude.  There appears to be a trend when comparing the 

calculated yield strength and the heat treatment times.  As the heat treatment time 

increases, the room temperature yield strength decreases.  The shorter aging times 

correlate to smaller precipitate sizes.  Although the 13 and 15 minute aging treatments 

yielded similar results, the 17 and 19 minute heat treatments had considerable reductions 

in strength.   

 

Compared to the as-received X-750 the strengthened tensile samples exhibited a 

considerable reduction in ductility.  With a higher strength material a reduction in 

ductility would be expected, but in this case another mechanism also contributed.  Upon 

further examination of the samples after fracture, a large number of surface cracks were 



apparent along the gauge length.  For these samples, a residual β-NiAl coating was left 

on the surfaces of the samples after annealing.  Although this residual coating improves 

the oxidation resistance of the samples, the brittle nature of the β layer can initiate surface 

cracks [60].  The small cracks along the surface of the tensile samples (see Figure 5.3) 

may be in part responsible for the ductility reduction.  Beyond this, lower ductility would 

generally be expected for a higher strength material. 

 

 

 

Figure 5.3:  Optical microscope image of the gauge section of a tensile sample after 
fracture showing the crack initiation sites along the surface. 
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5.3 Discussion 

 

The results from the room temperature tensile tests show strengthening of the as-

homogenized panel due to aging at 1075 °C between 13 and 15 minutes.  In the yield 

strength model, when the size of the larger population of precipitates is increased, there is 

a significant decrease in the strong-pair coupling contribution.  As discussed in Section 

1.2.2, the optimum strengthening due to precipitates occurs at the intersection of the 

relative strength due to strong and weak pair coupling mechanisms.  The room 

temperature tensile results show that the longer aging times appear to be past the 

precipitate size that produces the highest yield strength. 

 

Although the strains at fracture were significantly smaller for the vapor phase 

strengthened samples, most are still significantly larger than a 3-D woven C-SiC 

structure, which is approximately 0.6% [64].  The purpose of this study is demonstrating 

the feasibility of a metallic thermostructural panel to be competitive with a C-SiC panel.  

At the optimal aging treatments, the vapor phase strengthened alloy has approximately 

450% more ductility than the C-SiC.  As mentioned above, the brittle nature of the β 

phase on the surface of the samples reduced the ductility of the tensile samples as well as 

provided crack initiation sites.  Although this study showed the strengthened X-750 alloy 

had as much as a 450% increase in ductility over C-SiC, it is possible to improve the 

ductility even further without the β phase layer present.  Longer annealing treatments 

could be used to eliminate the β phase, diffusing all of the source aluminum into the bulk 

of the alloy. 



 

Even when using the most ideal mechanical properties experimentally measured, the 

values determined experimentally fell far short of the values predicted by the yield 

strength model.  It should be noted that the model predicts the maximum possible increase 

in strength and as shown in Figure 4.2b) (repeated here in Figure 5.4), slightly over 90% 

of the strengthening comes from strong and weak pair coupling.  As discussed in Section 

4.5, the model predicts that the smaller precipitates strengthen with a weak pair 

mechanism while the larger precipitates strengthen with a strong pair mechanism.  It is 

most likely that with a combination of both strong and weak pair mechanisms at work, 

the model has over estimated the possible increase in yield strength.  Also, the 

combination of a brittle surface layer and not fully realizing the predicted incremental 

strength from each strengthening mechanisms reduced the overall yield strength from the 

calculated value of the model. 

 

 

Figure 5.4:  Percentage of modeled strengthening occurring from specific mechanisms. 
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5.4 Summary 

 

Mechanical tests of samples subjected to aluminization, homogenization and subsequent 

solutioning and aging have been conducted.  Experimentally determined values with 

those calculated from the models discussed in Chapter 4 showed the following results: 

 

• Aging treatments were developed to produce a microstructure with 40 total 

volume fraction γ′ consisting of two distinct populations of 20 volume fraction at 

approximately 110 nm and 20 volume fraction at approximately 25 nm.  From 

extrapolation of experimental values, the microstructure can be made with a 14 

minute aging treatment at 1075 °C followed by a 2.25 minute aging treatment at 

980 °C. 

 

• Tensile tests demonstrate increased yield strength in the vapor phase strengthened 

samples.  Even with a brittle β phase layer on the surface of the samples, the room 

temperature tensile tests showed a 340% increase in yield strength and 2.7% 

ductility. 
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Chapter 6 

 

Thermostructural Panel Tests 

 

The previous chapters have demonstrated the feasibility of the vapor phase strengthening.  

However, it is still necessary to fabricate and strengthen rectangular channeled 

thermostructural panels.  The strengthening process applied to the panels is discussed 

below as well as the high temperature performance of the heated panels with active 

cooling.   

 

6.1 As-Fabricated Panels 

 

Although the feasibility of the panel strengthening process was demonstrated in Chapter 

3, it is further necessary to consider the feasibility of fabricating a rectangular channeled 

panel.  Although the methods described in the following sections are not the only means 

to fabricate a rectangular channeled panel, two methods, brazing and electrodischarge 

machining, were investigated for this study.  The feasibility was initially tested with a 

brazed panel before the determination of the optimized geometry. 

 

 



 

6.1.1 Brazed Panel 

 

A rectangular channeled sandwich panel was fabricated by brazing X-750 alloy sheets 

with AMDRY DF-6A.  The top and bottom surfaces were brazed together with evenly 

spaced webbing perpendicular to the face sheets to create the channels.  The face sheets 

and panel webbing were 0.635 mm thick creating 9 channels with dimensions 5.1 x 8.8 

mm   The geometry of the panel was accomplished by placing the braze tape on the ends 

of the webbing and using a reusable fixture to hold the pieces in place during the brazing 

process.  The cross section of the sandwich panel is shown in Figure 6.1a and there was 

good joint integrity between the X-750 pieces, shown in Figure 6.1b. 

 

 

(a)  (b)  

Figure 6.1: (a) Cross section of rectangular channeled panel fabricated from X-750 alloy 
sheet (b) SEM image of brazed joint 
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The brazing was performed with a pair of heat treatments, 20 minutes at 450 °C (to 

remove organics from the braze tape) and 30 minutes at 1200 °C to join the pieces.  

These are standard specifications [41] without the annealing treatment on the panels after 

brazing.  However, after brazing and aluminization, the panels were subjected to a long 

annealing heat treatment, which is sufficient to homogenize the aluminum concentration.  

Comparing the homogenization of the joint and the aluminum homogenization, the longer 

process is the diffusion of the aluminum through the thickness of the samples.  This 

allows the annealing step of the brazing process to be eliminated.   

 

6.1.2 Electric Discharge Machined Panel 

 

Due to the inability to order small quantities of the X-750 alloy sheet in thicknesses less 

than 0.635 mm, an alternative method was needed to fabricate a panel with the optimized 

geometry calculated from integrated modeling.  Beginning with a solid 6.35 mm thick 

plate of X-750 alloy, the plate was traditionally milled to appropriate exterior dimensions 

of 5.8 x 45 x 63.5 mm and 8 x 5 mm channels were cut along the length of the panel 

using an electric discharge machining process.  This left a rectangular channeled panel 

with webbing and face sheet thickness of 0.4 mm, as shown in Figure 6.2.  

 



 

Figure 6.2: Image of the cross section of the electric discharge machined panel with 
webbing thickness of 0.4 mm. 
 

 

6.2 As-Aluminized Panels 

 

In order to more clearly refer to the fabricated panels, the following designations will be 

used and are summarized in Table 6.1.  Panel 1 will refer to the brazed panel described in 

Section 6.1.1 while panel 2 will refer to the EDM fabricated panel described in 6.1.2.  If 

the panel was altered in any way after fabrication, either the letter A or H will follow it 

representing aluminized and homogenized respectively.  The specific aluminization and 

annealing conditions are described in Table 6.1. 
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Table 6.1: Designations referring to fabricated X-750 alloy panels and alterations to 
those panels. 
Designation Description 

Panel 1 Panel fabricated by brazing X-750 alloy sheet 
Panel 1A Panel 1 after a 1 hour aluminization at 950 °C 
Panel 1H Panel 1A after 200 hour annealing at 1100 °C 
Panel 2 Panel fabricated by EDM of X-750 alloy plate 

Panel 2A Panel 2 after a 3 hour aluminization at 850 °C 
Panel 2H Panel 2A after 200 hour annealing at 1100 °C 

 

 

Panel 1 was aluminized for 1 hour at 950 °C and as-aluminized microstructure of the 

panel was consistent with the as-aluminized microstructure of the X-750 sheet (discussed 

and shown in section 3.1.1), which includes an outer layer of Al3Ni2 and β-NiAl with a β-

NiAl innermost layer.  A SEM image of the as-aluminized panel is shown in Figure 6.3.  

The pack cementation process produced a coating of uniform thickness on the outside of 

the panel as well as the channels on the inside of the panel. 

 

 

Figure 6.3: BSE image of Panel 1A – Rectangular channeled panel fabricated by brazing 
X-750 alloy sheet and aluminizing the panel for 1 hour at 950 °C. 
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Due to the elimination of the annealing step during the brazing cycle, the brazed joint is 

still clearly visible in Fig. 6.3.  Although the microstructure differences are apparent at 

this step in the process, once the homogenization heat treatment is performed the brazed 

joint will be indistinguishable from the rest of the panel.  

 

6.3 Annealing and Homogenization 

 

Once panel 1 was aluminized it underwent a 200 hour homogenization heat treatment at 

1100 °C in an Ar + 3% H2 atmosphere.  This treatment allowed for the aluminum to 

diffuse through the thickness of all the panel components, including joints.  The EMPA 

concentration profiles across the joint are shown in Figure 6.4.  The elemental 

concentrations are constant over the joint thickness, indicating the homogenization in the 

thickest component of panel 1H. 

 

 

 

Figure 6.4: BSE image and EMPA concentration profiles of a joint in panel 1H – 
aluminized for 1 hour at 950 °C and annealed for 200 hours at 1100 °C. 
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6.4 High-Temperature Panel Testing 

 

In order to test the thermostructural panels at high temperatures, panel 2 and panel 2H 

were actively cooled with water while being aggressively heated on one side of the panel 

with an oxy-acetylene torch.  A thermocouple welded to the surface was used to measure 

the temperature of the torch heated surface of the panels during testing.  Panels with the 

optimized geometry were tested in both panel 2 and panel 2H conditions in the setup 

shown in Figure 2.2, repeated here (Figure 6.5). 

 

 

 

Figure 6.5: Image of the high-temperature testing apparatus for the actively-cooled 
thermostructural panels. 
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In order to directly compare the performance of panel 2 and panel, the mechanical loads 

they experienced were held constant.  The water used as the cooling liquid was kept at a 

pressure of 0.4 MPa and a flow rate of 0.95 L/min (15.8 cm3/s).  Finite element analysis 

from the panel geometry code predicts the maximum combined stress occurs at a location 

along the top surface of the panel, with the specific location dependent on the channel 

dimensions.  Output from the finite element analysis of a panel optimized for the as-

received X-750 alloy is shown in Figure 6.6 (a).  For panel 2, the failure mode predicted 

by the panel optimization code (for surface conditions below the maximum use 

temperature, T*) was a tensile failure in the center of a cooling channel, see schematic in 

Figure 6.6(b).  This is identical to the failure mode predicted for the panel 2 geometry 

under the conditions originally predicted in the panel geometry optimization code for fuel 

cooling conditions (90.5 cm3/s at 0.9 MPa). 

 

(a) (b)  

Figure 6.6: (a) Finite element analysis output from panel geometry code showing the 
maximum combined stress at a position on the top surface of the panel (b) Schematic of 
the predicted failure location on a channel of the thermostructural panel optimized for the 
altered X-750 alloy. 
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Both panel 2 and panel 2H were heated with the torch on one side until failure.  Although 

the failure did not occur directly at the thermocouple, both panels failed at similar 

distances from the thermocouple.  The temperature measurement just before failure for 

panel 2 was 377 °C while panel 2H failed at a temperature measurement of 855 °C.  

Images of the panel surfaces after testing are shown in Figure 6.7 where it is clear that 

panel 2 had a larger perforation than panel 2H.  Along with the improvement in 

mechanical and thermal resistance, images of the surface after testing reveal that the 

panel 2H also showed an increase in oxidation resistance.  As seen in Figure 6.8, panel 2 

has apparent discoloration on the surface near the failure while panel 2H does not show 

comparable degradation. 

 

 

 

Figure 6.7:  Optical images of the surface of the failed thermostructural panels. a) Panel 
2 - X-750 alloy b) Panel 2H – altered X-750 alloy with 3 hour aluminization at 850 °C 
and 200 hour anneal at 1100 °C. 
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Figure 6.8:  Optical images of the surface degradation near the failure points of the 
thermostructural panels. a) Panel 2 - X-750 alloy b) Panel 2H – altered X-750 alloy with 
3 hour aluminization at 850 °C and 200 hour anneal at 1100 °C. 
 

 

Upon further examination of the failure and the microstructure near the failure, panel 2H 

appears to have failed because the panel surface experienced temperatures above the 

maximum use temperature, T* as evidenced by the reduced volume fraction of γ′ near the 

failure.  Panel 2 seems to have failed due to exceeding the yield strength of the alloy.  

Etched images of various sections of panel 2H are shown in Figure 6.9 with a schematic 

of reference panel locations.  The microstructure near the failure in panel 2H showed 

very limited and very coarse γ′ (Figure 6.9a) indicating that the excessive temperature on 

the surface resulted in the γ′ phase resolutioning into the matrix, reducing the strength of 

the alloy.  The volume fraction of γ′ appears to have remained unchanged just below the 

thermocouple at about 40 volume % (Figure 6.9b), however there was significant 

coarsening near the surface.  The microstructure in the center of the panel face sheet 

(Figure 6.9c) showed only slightly coarsened γ′ compared to the microstructure from a 

cool section of the panel (Figure 6.9d).  
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a) b)  

c) d)  

e)  

Figure 6.9:  SEM images of deeply etched positions in panel 2H after failure a) near the 
failure b) directly under the thermocouple c) from the center of the top face sheet under 
the thermocouple and d) from a cool region and a schematic e) of relative panel locations. 
 

 

Comparing the calculated equilibrium volume fraction of γ′ in panel 2H as a function of 

temperature from PandatTM (Figure 5.1) with the images of the microstructure taken near 
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the failure, it is estimated that the local temperature at which the strengthened panel 

failed is about 1100 °C.  Also the significantly reduced coarsening in the center of the 

face sheet below the thermocouple (Figure 6.9c) compared to directly below the 

thermocouple (Figure 6.9b) indicates that there was a temperature gradient across the 

thickness of the face sheet.   

 

If the actual temperature at failure for panel 2H was near 1100 °C and the thermocouple 

measured 855 °C, it follows that the thermocouple measured a temperature approximately 

245 °C lower than what the panel experienced at failure.  With the similarity of the 

failure location relative to the thermocouple for panels 2 and 2H, it is possible to infer 

that the actual temperature panel 2 experienced at failure was approximately 245 degrees 

higher than the measured temperature of 377 °C resulting in a temperature at failure of 

622 °C.  With the finite element analysis in panel code, it is possible to calculate the 

stresses experienced by panel 2 with a surface temperature is 622 °C.  In this case the 

maximum value of the combined thermal and mechanical stresses was predicted to be 

620 MPa.  

 

6.5 Discussion 

 

6.5.1 Joining Process 

 

It was possible to fabricate a rectangular channeled sandwich panel using the X-750 alloy 

with the braze tape (panel 1).  The fixture held the pieces in the appropriate geometry 
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during the braze cycle to appropriate tolerances.  As mentioned above, typically the braze 

cycle includes an annealing heat treatment in order to assure a homogenous joint.  Due to 

the long heat treatment for the homogenization of aluminum after fabrication, it was 

possible to eliminate that step from the brazing procedure.  The annealed panel did not 

show any deleterious effects from eliminating the annealing step during the brazing 

cycle.  As shown in Figure 6.4, the homogenized panel (panel 2H) showed essentially no 

gradient in elemental concentrations across the joint ensuring similar material properties 

as in the remainder of the panel. 

 

6.5.2 Machining Process 

 

The EDM process allowed for the fabrication of a very thin walled structure, however 

this method was both time consuming and expensive.  The small scale of this research 

made the EDM process feasible, yet for larger panels this process might be too expensive.  

Also, the EDM process changes the surface microstructure and leaves residual stresses in 

the material [65].  For larger scales it may be more beneficial to pursue a joining 

approach, such as demonstrated with the brazing fabrication. 

 

6.5.3 Panel Homogenization 

 

The microstructural evolution during the annealing of the panels 1 and 2 were identical to 

the annealing of the X-750 alloy reported in section 3.2.1 and was previously discussed in 
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section 3.5.2.  The addition of joints in the panel increased the time necessary for 

homogenization of aluminum.   

 

Both the brazed and EDM panels showed some geometrical inconsistencies after the 

annealing treatment.  For the brazed panel, the average change of channel width from 

panel 1 to panel 1H was approximately 1.8% while the average change of channel height 

was approximately 4.5%.  This panel was rapidly brought to the annealing temperature of 

1100 °C.  Initially the interior of the webbing and face sheets was still the pure X-750 

alloy and at this temperature the X-750 alloy has extremely limited creep resistance [45] 

accounting for the change in panel geometry.  The EDM panel also showed changes in 

the channel dimensions from panel 2 to panel 2H.  The average change for channel height 

and width was approximately 2.2% and 1.2% respectively.  In this case the panels were 

brought to the annealing temperature in a gradual manner, however the residual stresses 

from the EDM process were relaxed during annealing.  

 

6.5.4 Panel Performance 

 

Under the testing conditions, the cooling channels maintained a constant water pressure, 

keeping the mechanical loading similar for both the panels for a given temperature.  

Although the stresses due to thermal loading were different for the panels, panel 2 had a 

smaller thermal gradient and therefore would have experienced a reduced level of stress.  

Figure 6.10 is a schematic of yield strength versus temperature for both the strengthened 

and as-received X-750 alloys.   



 

 

Figure 6.10:  Schematic of yield strength as a function of temperature for the vapor 
phase strengthened and as-received X-750 alloy. 
 

 

Knowing that panel 2H failed due to experiencing temperatures that exceeded T*, the 

yield stress of the vapor phase strengthened alloy at T* can be used as an approximation 

of the stress experienced by panel 2.  From the chart in Figure 6.9, it is clear that that 

stress at T* would exceed the yield stress of the as-received alloy at a much lower 

temperature, ΔT.  With panel 2 failing at a temperature greater than 450 °C lower than 

panel 2H, it follows that the conditions described above are responsible for the failure of 

the panels.   
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The yield strength of the X-750 alloy at room temperature was 260 MPa, yet the ultimate 

tensile strength was 745 MPa.  As mentioned in Section 6.4, the finite element analysis 

calculated combined thermal and mechanical stresses would have been 620 MPa.  

Although this is lower than the ultimate tensile strength, it is well above the yield strength 

of the material.  With these stresses, the material deformed plastically altering the 

geometry of the channel, changing the stress concentrations and exceeding the ultimate 

tensile strength of the materal. 

 

The improved oxidation resistance of panel 2H was due to the higher aluminum content 

and residual β layer on the surface of the panel.  Although the deleterious effects of the 

residual β layer were discussed for room temperature applications in the previous 

chapter, in a high temperature oxidation environment the β layer provides more 

protection than hindrance. 

 

6.5.5 Panel Mass Related to Processing Parameters 

 

Combining the integration of models discussed in Chapter 4 and the experimental results 

of Chapter 5 it is possible to determine a relationship between the processing parameters 

and final minimum panel weight.  For example, for a given aluminization time, a 

maximum yield strength can be determined.  With the strength of the material, it is 

possible to calculate the minimum mass for a thermostructural panel-lined scramjet 

combustor (with dimension 0.148 x 0.5 x 2 m) for a constant heat transfer coefficient and 

equivalence ratio (related to cooling liquid flow rate) for the internal surfaces of a 



scramjet combustor.  The chart in Figure 6.11 displays this relationship for an 

aluminization temperature of 850 °C, a heat transfer coefficient of 445 W/m2K and an 

equivalence ratio of 1.21 and a base alloy of X-750. 

 

 

Figure 6.11:  Relationship between minimum panel mass for a given aluminization time 
at 850 °C for a heat transfer coefficient of 445 W/m2K and an equivalence ratio of 1.21 
using X-750 as the substrate. 
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6.6 Summary 

 

The feasibility of the vapor phase strengthening approach was determined in Chapter 3.  

Although the strengthening approach was validated, the application of the approach to a 

fabricated thermostructural panel was further demonstrated.  The actively cooled panels 

were tested at high temperature in panel 2 and panel 2H conditions. Concerning the vapor 

phase strengthening and high temperature performance of thermostructural panels: 

 

• Rectangular channeled thermostructural panels were successfully fabricated using 

two distinct methods – brazing and machining.  The brazed panel (panel 1) was 

fabricated from pieces of flat sheet while the electric discharge machined panel 

(panel 2) was fabricated from a solid plate. 

 

• The aluminized panels 1A and 2A yielded very similar microstructures to sheet 

samples discussed in Chapter 3.  The coating structure was consistent over all the 

surfaces of the panel including the interior walls of the channels setting up the 

component for the homogenization treatment. 

 

• After homogenization, the panel 1H had no deviation from the sheet samples in 

microstructure at the joints.  This shows the joining process had no deleterious 

effects on the strengthened panel.  The electric discharge machined panel (panel 

2H) also showed no deviation in microstructure from the sheet samples. 
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• Both fabrication methods investigated proved to be feasible, although there was a 

slightly larger geometrical change for panel 1H than the flat sheet samples 

discussed in Chapter 3 for the brazed sample.  When properly annealed, as in the 

case of the EDM panel (panel 2H), the average changes were very similar to the 

2% changes in the feasibility samples.  

 

• The high temperature performance of the vapor phase strengthened panel (panel 

2H) showed improvements in mechanical properties, thermal resistance and 

oxidation resistance compared to panel 2.  These were demonstrated with the 

difference in failure modes and the ability of panel 2H to withstand temperatures 

478 °C higher than panel 2.  
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Chapter 7 

 

Conclusions and Recommendations 

 

7.1 Conclusions 

 

This study has demonstrated the feasibility and performance of a vapor phase 

strengthened, refractory-lean, non-precipitation hardened alloy in a post-fabricated state.  

This was achieved by altering X-750 alloy by depositing aluminum on the surface and 

annealing to homogenize the material increasing the average aluminum concentration of 

the bulk all after the alloy was fabricated into a rectangular channeled sandwich panel.  

The following is a summary of the key components for the process: 

 

• Aluminization via pack cementation successfully created an Al-rich layer near the 

surface of a variety of refractory-lean, non-precipitation hardened alloys without 

any significant change in dimensions. 

 

• Annealing of the aluminized specimens homogenously distributed the aluminum 

through the 200 μm thick IN-625 sample and up to a depth of 250 μm in the 
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remaining samples, transforming initially highly formable materials into stronger, 

γ + γ′ precipitation hardened alloys. 

 

• Panels with rectangular channels were fabricated by brazing wrought X-750 alloy 

sheet in a fixture to ensure proper geometry as well as by electric discharge 

machining from solid plate.  

 

• Annealing of the aluminized specimens homogenously distributed the aluminum 

through the X-750 panel walls (up to 0.635 mm thick) transforming the initially 

formable material into a stronger, γ + γ′ precipitation hardened alloy.  Thus it has 

been demonstrated that a solid solution Ni-based alloy can be fabricated into a 

panel and subsequently processed to achieve a precipitation strengthened Ni alloy 

in a previously unattainable geometry. 

 

• An optimum microstructure was determined by integrating a trio of models 

including thermodynamic, yield strength and panel geometry.  The optimum 

microstructure corresponded to an optimum aluminum content, which lead to an 

optimum aluminization process.  In order to achieve the determined 

microstructure, heat treatment temperatures and aging times were established.   

 

• Mechanical tests were performed to show the post-processing improvement in the 

mechanical properties.  Even with a brittle residual β layer on the surface of 

tensile samples, yield strength was improved up to 340%.  
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• High temperature testing of thermostructural panels in the as-fabricated and post-

fabrication processed conditions clearly showed the improvement of temperature 

capability, mechanical properties and oxidation resistance.  The processed panel 

was able to withstand temperatures 478 °C higher than the as-fabricated panel.   

 

• The integration of models along with experimental results permitted a relationship 

between processing parameters and final material properties to be developed.  For 

example, a minimum thermostructural panel mass can be calculated for a given 

aluminization time. 

 

• Although this study was exclusively directed towards a rectangular channeled, 

thin walled thermostructural panel, there is no reason why this strengthening 

process could not be used for other applications where a thin-walled, high-

temperature capable structure is required.  The applications may be varied, 

however, the results of this study would be limited to the refractory-lean nickel-

base systems as the phases encountered along the diffusion path can drastically 

alter the feasibility of this process. 
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7.2 Recommendations for Future Research 

 

• This study demonstrated the feasibility of the vapor phase strengthening approach 

for a small-scale thermostructural panel.  Scaling up a component typically 

involves a new set of processing and fabrication challenges. 

 

• The vapor phase strengthening process discussed in this study can be applied to 

additional metallic alloy systems.  It will be necessary to determine the 

thermodynamic phases present for the alloy systems as well as the ability for 

aluminum to diffuse through any phases confirmed for the process. 

 

• Different geometries for a thermostructual panel can use the vapor phase 

strengthening approach discussed in this study.  For example, some scramjet 

designs include a cylindrical combustor.  An actively cooled thermostructural 

panel could be employed for this application and will most likely require a thin 

walled geometry making the vapor phase strengthening approach feasible. 

 

• Further studies on the temperature dependence of vapor phase strengthened 

material properties should be investigated and transmission electron microscopy 

studies be conducted to discern mechanisms of deformation.  Also more detailed 

analysis of panel deformation following active cooling tests should be conducted. 
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Appendix 
 
 

Full results of yield strength modeling for volume fractions 30 -70 % varying two 

precipitate population sizes (ds = 100-200 nm for the larger and dt = 20-35 nm for the 

smaller) as well as the relative volume fraction for the two populations (ft/fs).  Reported 

values are for room temperature (RT) and in units of ksi. 

 
Total volume fraction γ′ = 30 
ft/fs ds dt RT ys ft/fs ds Dt RT ys ft/fs Ds dt RT ys 
0.1 100 20 126 0.2 100 20 136 0.3 100 20 142 

  120 20 122   120 20 132   120 20 367 
  140 20 119   140 20 129   140 20 351 
  160 20 116   160 20 127   160 20 134 
  180 20 114   180 20 125   180 20 132 
  200 20 112   200 20 123   200 20 131 
  100 25 126   100 25 134   100 25 141 
  120 25 122   120 25 131   120 25 365 
  140 25 119   140 25 128   140 25 349 
  160 25 116   160 25 126   160 25 132 
  180 25 114   180 25 124   180 25 130 
  200 25 112   200 25 122   200 25 129 
  100 30 125   100 30 133   100 30 139 
  120 30 121   120 30 129   120 30 363 
  140 30 118   140 30 127   140 30 347 
  160 30 116   160 30 124   160 30 130 
  180 30 114   180 30 122   180 30 128 
  200 30 112   200 30 120   200 30 127 
  100 35 124   100 35 132   100 35 141 
  120 35 120   120 35 128   120 35 366 
  140 35 117   140 35 125   140 35 350 
  160 35 115   160 35 123   160 35 133 
  180 35 113   180 35 121   180 35 131 
  200 35 111   200 35 119   200 35 129 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs Ds dt RT ys 
0.4 100 20 148 0.5 100 20 152 0.6 100 20 190 

  120 20 308   120 20 239   120 20 245 
  140 20 292   140 20 226   140 20 235 
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  160 20 272   160 20 232   160 20 226 
  180 20 252   180 20 217   180 20 228 
  200 20 137   200 20 220   200 20 218 
  100 25 149   100 25 180   100 25 214 
  120 25 310   120 25 268   120 25 269 
  140 25 294   140 25 255   140 25 260 
  160 25 274   160 25 260   160 25 250 
  180 25 253   180 25 245   180 25 252 
  200 25 138   200 25 248   200 25 243 
  100 30 157   100 30 186   100 30 226 
  120 30 317   120 30 274   120 30 281 
  140 30 301   140 30 261   140 30 272 
  160 30 281   160 30 266   160 30 262 
  180 30 261   180 30 251   180 30 264 
  200 30 145   200 30 255   200 30 255 
  100 35 164   100 35 201   100 35 237 
  120 35 324   120 35 289   120 35 292 
  140 35 308   140 35 276   140 35 283 
  160 35 288   160 35 281   160 35 273 
  180 35 267   180 35 266   180 35 275 
  200 35 152   200 35 270   200 35 265 

 
Total volume fraction γ′ = 35 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs Ds dt RT ys 
0.1 100 20 128 0.2 100 20 139 0.3 100 20 146 

  120 20 124   120 20 135   120 20 142 
  140 20 121   140 20 132   140 20 139 
  160 20 118   160 20 129   160 20 137 
  180 20 116   180 20 127   180 20 135 
  200 20 114   200 20 125   200 20 133 
  100 25 128   100 25 137   100 25 144 
  120 25 124   120 25 133   120 25 140 
  140 25 121   140 25 130   140 25 137 
  160 25 118   160 25 128   160 25 135 
  180 25 116   180 25 126   180 25 133 
  200 25 114   200 25 124   200 25 131 
  100 30 127   100 30 136   100 30 146 
  120 30 123   120 30 132   120 30 142 
  140 30 120   140 30 129   140 30 139 
  160 30 117   160 30 126   160 30 137 
  180 30 115   180 30 124   180 30 135 
  200 30 113   200 30 122   200 30 133 
  100 35 126   100 35 134   100 35 148 
  120 35 122   120 35 130   120 35 144 



  115

  140 35 119   140 35 127   140 35 141 
  160 35 116   160 35 125   160 35 139 
  180 35 114   180 35 123   180 35 137 
  200 35 112   200 35 121   200 35 135 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs Ds dt RT ys 
0.4 100 20 151 0.5 100 20 179 0.6 100 20 224 

  120 20 376   120 20 307   120 20 306 
  140 20 360   140 20 318   140 20 294 
  160 20 143   160 20 299   160 20 281 
  180 20 141   180 20 279   180 20 284 
  200 20 140   200 20 285   200 20 271 
  100 25 162   100 25 204   100 25 244 
  120 25 386   120 25 332   120 25 326 
  140 25 371   140 25 343   140 25 314 
  160 25 154   160 25 324   160 25 301 
  180 25 152   180 25 304   180 25 304 
  200 25 150   200 25 310   200 25 291 
  100 30 177   100 30 222   100 30 260 
  120 30 401   120 30 350   120 30 341 
  140 30 385   140 30 361   140 30 329 
  160 30 168   160 30 342   160 30 316 
  180 30 167   180 30 322   180 30 320 
  200 30 165   200 30 328   200 30 306 
  100 35 131   100 35 231   100 35 272 
  120 35 405   120 35 360   120 35 354 
  140 35 389   140 35 371   140 35 342 
  160 35 173   160 35 352   160 35 329 
  180 35 171   180 35 332   180 35 332 
  200 35 169   200 35 337   200 35 319 

 
Total volume fraction γ′ = 40 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs Ds dt RT ys 
0.1 100 20 130 0.2 100 20 141 0.3 100 20 148 

  120 20 126   120 20 137   120 20 145 
  140 20 122   140 20 134   140 20 142 
  160 20 120   160 20 131   160 20 139 
  180 20 117   180 20 129   180 20 137 
  200 20 115   200 20 127   200 20 135 
  100 25 129   100 25 139   100 25 146 
  120 25 125   120 25 135   120 25 142 
  140 25 122   140 25 132   140 25 139 
  160 25 119   160 25 129   160 25 137 
  180 25 117   180 25 127   180 25 134 
  200 25 115   200 25 125   200 25 133 
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  100 30 128   100 30 137   100 30 155 
  120 30 124   120 30 133   120 30 151 
  140 30 121   140 30 130   140 30 148 
  160 30 118   160 30 127   160 30 146 
  180 30 116   180 30 125   180 30 143 
  200 30 114   200 30 123   200 30 142 
  100 35 127   100 35 136   100 35 156 
  120 35 123   120 35 132   120 35 152 
  140 35 120   140 35 129   140 35 149 
  160 35 117   160 35 126   160 35 147 
  180 35 115   180 35 124   180 35 144 
  200 35 113   200 35 122   200 35 143 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs Ds dt RT ys 
0.4 100 20 154 0.5 100 20 210 0.6 100 20 257 

  120 20 151   120 20 391   120 20 374 
  140 20 148   140 20 373   140 20 359 
  160 20 145   160 20 385   160 20 343 
  180 20 143   180 20 200   180 20 348 
  200 20 142   200 20 198   200 20 331 
  100 25 182   100 25 239   100 25 277 
  120 25 179   120 25 420   120 25 394 
  140 25 176   140 25 402   140 25 379 
  160 25 174   160 25 414   160 25 363 
  180 25 172   180 25 229   180 25 368 
  200 25 170   200 25 227   200 25 351 
  100 30 197   100 30 253   100 30 295 
  120 30 194   120 30 434   120 30 411 
  140 30 191   140 30 415   140 30 397 
  160 30 188   160 30 427   160 30 381 
  180 30 186   180 30 243   180 30 386 
  200 30 185   200 30 241   200 30 368 
  100 35 203   100 35 265   100 35 310 
  120 35 200   120 35 446   120 35 427 
  140 35 197   140 35 428   140 35 412 
  160 35 195   160 35 440   160 35 396 
  180 35 193   180 35 255   180 35 402 
  200 35 191   200 35 253   200 35 384 

 
Total volume fraction γ′ = 45 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs Ds dt RT ys 
0.1 100 20 131 0.2 100 20 142 0.3 100 20 150 

  120 20 126   120 20 138   120 20 146 
  140 20 123   140 20 135   140 20 143 
  160 20 120   160 20 132   160 20 140 
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  180 20 118   180 20 129   180 20 138 
  200 20 116   200 20 127   200 20 136 
  100 25 130   100 25 140   100 25 153 
  120 25 126   120 25 136   120 25 149 
  140 25 122   140 25 133   140 25 145 
  160 25 119   160 25 130   160 25 143 
  180 25 117   180 25 128   180 25 141 
  200 25 115   200 25 126   200 25 139 
  100 30 129   100 30 138   100 30 160 
  120 30 125   120 30 134   120 30 156 
  140 30 121   140 30 131   140 30 152 
  160 30 118   160 30 128   160 30 150 
  180 30 116   180 30 126   180 30 148 
  200 30 114   200 30 124   200 30 146 
  100 35 128   100 35 139   100 35 166 
  120 35 124   120 35 135   120 35 163 
  140 35 120   140 35 132   140 35 159 
  160 35 117   160 35 129   160 35 157 
  180 35 115   180 35 126   180 35 154 
  200 35 113   200 35 124   200 35 153 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs Ds dt RT ys 
0.4 100 20 173 0.5 100 20 248 0.6 100 20 294 

  120 20 169   120 20 492   120 20 454 
  140 20 166   140 20 241   140 20 438 
  160 20 164   160 20 239   160 20 418 
  180 20 162   180 20 237   180 20 398 
  200 20 160   200 20 235   200 20 283 
  100 25 204   100 25 270   100 25 317 
  120 25 200   120 25 514   120 25 477 
  140 25 197   140 25 264   140 25 461 
  160 25 195   160 25 261   160 25 442 
  180 25 192   180 25 259   180 25 421 
  200 25 191   200 25 258   200 25 306 
  100 30 212   100 30 286   100 30 338 
  120 30 208   120 30 530   120 30 498 
  140 30 205   140 30 280   140 30 482 
  160 30 203   160 30 278   160 30 462 
  180 30 201   180 30 276   180 30 442 
  200 30 199   200 30 274   200 30 326 
  100 35 219   100 35 296   100 35 356 
  120 35 216   120 35 541   120 35 516 
  140 35 213   140 35 290   140 35 500 
  160 35 210   160 35 288   160 35 481 
  180 35 208   180 35 186   180 35 460 
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  200 35 206   200 35 284   200 35 345 
 
Total volume fraction γ′ = 50 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.1 100 20 131 0.2 100 20 143 0.3 100 20 151 

  120 20 127   120 20 138   120 20 147 
  140 20 123   140 20 135   140 20 144 
  160 20 120   160 20 132   160 20 141 
  180 20 118   180 20 130   180 20 138 
  200 20 115   200 20 128   200 20 136 
  100 25 130   100 25 141   100 25 163 
  120 25 126   120 25 136   120 25 158 
  140 25 122   140 25 133   140 25 155 
  160 25 119   160 25 130   160 25 152 
  180 25 117   180 25 128   180 25 150 
  200 25 114   200 25 125   200 25 148 
  100 30 129   100 30 139   100 30 170 
  120 30 125   120 30 134   120 30 166 
  140 30 121   140 30 131   140 30 163 
  160 30 118   160 30 128   160 30 160 
  180 30 115   180 30 126   180 30 158 
  200 30 113   200 30 124   200 30 156 
  100 35 128   100 35 140   100 35 173 
  120 35 123   120 35 136   120 35 169 
  140 35 120   140 35 132   140 35 165 
  160 35 117   160 35 129   160 35 163 
  180 35 114   180 35 127   180 35 160 
  200 35 112   200 35 125   200 35 158 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.4 100 20 198 0.5 100 20 283 0.6 100 20 166 

  120 20 194   120 20 280   120 20 347 
  140 20 191   140 20 277   140 20 329 
  160 20 189   160 20 274   160 20 341 
  180 20 186   180 20 272   180 20 156 
  200 20 185   200 20 270   200 20 144 
  100 25 232   100 25 305   100 25 367 
  120 25 228   120 25 301   120 25 548 
  140 25 225   140 25 298   140 25 530 
  160 25 222   160 25 296   160 25 542 
  180 25 220   180 25 294   180 25 357 
  200 25 218   200 25 292   200 25 356 
  100 30 243   100 30 324   100 30 391 
  120 30 239   120 30 320   120 30 572 
  140 30 236   140 30 317   140 30 554 
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  160 30 234   160 30 315   160 30 566 
  180 30 231   180 30 313   180 30 381 
  200 30 230   200 30 311   200 30 380 
  100 35 253   100 35 341   100 35 155 
  120 35 250   120 35 337   120 35 336 
  140 35 246   140 35 334   140 35 317 
  160 35 244   160 35 332   160 35 329 
  180 35 242   180 35 330   180 35 145 
  200 35 240   200 35 328   200 35 143 

 
Total volume fraction γ′ = 55 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.1 100 20 131 0.2 100 20 143 0.3 100 20 151 

  120 20 126   120 20 138   120 20 147 
  140 20 123   140 20 135   140 20 144 
  160 20 120   160 20 132   160 20 141 
  180 20 117   180 20 129   180 20 138 
  200 20 115   200 20 127   200 20 136 
  100 25 130   100 25 140   100 25 168 
  120 25 125   120 25 136   120 25 163 
  140 25 121   140 25 132   140 25 160 
  160 25 118   160 25 129   160 25 157 
  180 25 116   180 25 127   180 25 155 
  200 25 114   200 25 125   200 25 153 
  100 30 128   100 30 140   100 30 177 
  120 30 124   120 30 136   120 30 173 
  140 30 120   140 30 132   140 30 169 
  160 30 117   160 30 129   160 30 167 
  180 30 115   180 30 127   180 30 164 
  200 30 112   200 30 124   200 30 162 
  100 35 127   100 35 142   100 35 180 
  120 35 123   120 35 138   120 35 176 
  140 35 119   140 35 134   140 35 172 
  160 35 116   160 35 132   160 35 170 
  180 35 113   180 35 129   180 35 167 
  200 35 111   200 35 127   200 35 165 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.4 100 20 227 0.5 100 20 163 0.6 100 20 167 

  120 20 223   120 20 159   120 20 405 
  140 20 220   140 20 156   140 20 161 
  160 20 217   160 20 154   160 20 159 
  180 20 215   180 20 152   180 20 157 
  200 20 213   200 20 150   200 20 155 
  100 25 255   100 25 159   100 25 163 



  120

  120 25 251   120 25 155   120 25 400 
  140 25 248   140 25 152   140 25 157 
  160 25 245   160 25 150   160 25 154 
  180 25 243   180 25 148   180 25 152 
  200 25 241   200 25 146   200 25 151 
  100 30 268   100 30 156   100 30 159 
  120 30 264   120 30 152   120 30 396 
  140 30 261   140 30 149   140 30 153 
  160 30 258   160 30 146   160 30 150 
  180 30 256   180 30 144   180 30 148 
  200 30 254   200 30 142   200 30 147 
  100 35 280   100 35 153   100 35 155 
  120 35 276   120 35 149   120 35 393 
  140 35 273   140 35 146   140 35 149 
  160 35 270   160 35 143   160 35 147 
  180 35 268   180 35 141   180 35 145 
  200 35 266   200 35 139   200 35 143 

 
Total volume fraction γ′ = 60 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.1 100 20 130 0.2 100 20 142 0.3 100 20 151 

  120 20 125   120 20 137   120 20 146 
  140 20 121   140 20 134   140 20 143 
  160 20 118   160 20 131   160 20 140 
  180 20 116   180 20 128   180 20 138 
  200 20 113   200 20 126   200 20 135 
  100 25 128   100 25 140   100 25 181 
  120 25 124   120 25 135   120 25 177 
  140 25 120   140 25 131   140 25 174 
  160 25 117   160 25 128   160 25 171 
  180 25 114   180 25 126   180 25 168 
  200 25 112   200 25 124   200 25 166 
  100 30 127   100 30 140   100 30 185 
  120 30 123   120 30 136   120 30 181 
  140 30 119   140 30 132   140 30 177 
  160 30 116   160 30 129   160 30 175 
  180 30 113   180 30 126   180 30 172 
  200 30 111   200 30 124   200 30 170 
  100 35 126   100 35 143   100 35 201 
  120 35 121   120 35 139   120 35 196 
  140 35 118   140 35 135   140 35 193 
  160 35 115   160 35 132   160 35 190 
  180 35 112   180 35 129   180 35 188 
  200 35 110   200 35 127   200 35 185 



  121

ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.4 100 20 158 0.5 100 20 163 0.6 100 20 168 

  120 20 154   120 20 159   120 20 164 
  140 20 150   140 20 156   140 20 161 
  160 20 147   160 20 154   160 20 159 
  180 20 145   180 20 152   180 20 157 
  200 20 143   200 20 150   200 20 155 
  100 25 285   100 25 159   100 25 163 
  120 25 281   120 25 155   120 25 159 
  140 25 277   140 25 152   140 25 156 
  160 25 275   160 25 150   160 25 154 
  180 25 272   180 25 147   180 25 152 
  200 25 270   200 25 145   200 25 150 
  100 30 300   100 30 156   100 30 159 
  120 30 296   120 30 152   120 30 155 
  140 30 293   140 30 149   140 30 152 
  160 30 290   160 30 146   160 30 150 
  180 30 287   180 30 144   180 30 148 
  200 30 285   200 30 142   200 30 146 
  100 35 148   100 35 152   100 35 155 
  120 35 144   120 35 149   120 35 152 
  140 35 141   140 35 145   140 35 149 
  160 35 138   160 35 143   160 35 147 
  180 35 136   180 35 141   180 35 145 
  200 35 134   200 35 138   200 35 143 

 
Total volume fraction γ′ = 65 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.1 100 20 128 0.2 100 20 140 0.3 100 20 163 

  120 20 123   120 20 136   120 20 159 
  140 20 120   140 20 132   140 20 155 
  160 20 116   160 20 129   160 20 152 
  180 20 114   180 20 126   180 20 150 
  200 20 111   200 20 124   200 20 148 
  100 25 127   100 25 138   100 25 191 
  120 25 122   120 25 134   120 25 187 
  140 25 118   140 25 130   140 25 183 
  160 25 115   160 25 127   160 25 180 
  180 25 112   180 25 124   180 25 178 
  200 25 110   200 25 122   200 25 175 
  100 30 125   100 30 141   100 30 196 
  120 30 121   120 30 137   120 30 191 
  140 30 117   140 30 133   140 30 188 
  160 30 114   160 30 130   160 30 185 



  122

  180 30 111   180 30 127   180 30 182 
  200 30 109   200 30 125   200 30 180 
  100 35 124   100 35 144   100 35 200 
  120 35 120   120 35 139   120 35 196 
  140 35 116   140 35 135   140 35 192 
  160 35 113   160 35 132   160 35 189 
  180 35 110   180 35 130   180 35 186 
  200 35 108   200 35 127   200 35 184 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.4 100 20 157 0.5 100 20 163 0.6 100 20 167 

  120 20 153   120 20 159   120 20 163 
  140 20 149   140 20 155   140 20 160 
  160 20 146   160 20 153   160 20 158 
  180 20 144   180 20 150   180 20 156 
  200 20 142   200 20 149   200 20 154 
  100 25 153   100 25 158   100 25 162 
  120 25 149   120 25 154   120 25 158 
  140 25 146   140 25 151   140 25 155 
  160 25 143   160 25 149   160 25 153 
  180 25 140   180 25 146   180 25 151 
  200 25 138   200 25 144   200 25 149 
  100 30 150   100 30 144   100 30 158 
  120 30 146   120 30 155   120 30 154 
  140 30 142   140 30 151   140 30 151 
  160 30 140   160 30 148   160 30 149 
  180 30 137   180 30 145   180 30 147 
  200 30 135   200 30 143   200 30 145 
  100 35 147   100 35 152   100 35 155 
  120 35 143   120 35 148   120 35 151 
  140 35 140   140 35 145   140 35 148 
  160 35 137   160 35 142   160 35 146 
  180 35 135   180 35 140   180 35 144 
  200 35 132   200 35 138   200 35 142 

 
Total volume fraction γ′ = 70 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.1 100 20 125 0.2 100 20 138 0.3 100 20 148 

  120 20 121   120 20 134   120 20 143 
  140 20 117   140 20 130   140 20 140 
  160 20 114   160 20 127   160 20 137 
  180 20 111   180 20 124   180 20 134 
  200 20 109   200 20 122   200 20 132 
  100 25 124   100 25 136   100 25 145 
  120 25 119   120 25 131   120 25 140 



  123

  140 25 116   140 25 128   140 25 137 
  160 25 112   160 25 125   160 25 134 
  180 25 110   180 25 122   180 25 131 
  200 25 107   200 25 120   200 25 129 
  100 30 123   100 30 141   100 30 142 
  120 30 118   120 30 137   120 30 138 
  140 30 114   140 30 133   140 30 134 
  160 30 111   160 30 130   160 30 131 
  180 30 109   180 30 127   180 30 128 
  200 30 106   200 30 125   200 30 126 
  100 35 122   100 35 141   100 35 140 
  120 35 117   120 35 136   120 35 135 
  140 35 113   140 35 133   140 35 132 
  160 35 110   160 35 130   160 35 129 
  180 35 107   180 35 127   180 35 126 
  200 35 105   200 35 125   200 35 124 
ft/fs ds dt RT ys ft/fs ds dt RT ys ft/fs ds dt RT ys 
0.4 100 20 155 0.5 100 20 161 0.6 100 20 165 

  120 20 151   120 20 157   120 20 161 
  140 20 147   140 20 154   140 20 158 
  160 20 144   160 20 151   160 20 156 
  180 20 142   180 20 149   180 20 154 
  200 20 140   200 20 147   200 20 152 
  100 25 152   100 25 157   100 25 160 
  120 25 147   120 25 153   120 25 157 
  140 25 144   140 25 149   140 25 154 
  160 25 141   160 25 147   160 25 151 
  180 25 138   180 25 144   180 25 149 
  200 25 136   200 25 142   200 25 147 
  100 30 149   100 30 153   100 30 157 
  120 30 144   120 30 149   120 30 153 
  140 30 141   140 30 146   140 30 150 
  160 30 138   160 30 143   160 30 147 
  180 30 135   180 30 141   180 30 145 
  200 30 133   200 30 139   200 30 143 
  100 35 146   100 35 150   100 35 153 
  120 35 142   120 35 146   120 35 149 
  140 35 138   140 35 143   140 35 146 
  160 35 135   160 35 140   160 35 144 
  180 35 133   180 35 138   180 35 142 
  200 35 131   200 35 136   200 35 140 

 
 

Summary of largest yield strength for a given total volume fraction and population ratio: 



 

Total Volume Fraction 
ft/fs 30 35 40 45 50 55 60 65 70 

0.1 126 128 130 131 131 131 130 128 125 
0.2 136 139 141 142 143 143 142 144 141 
0.3 367 148 156 166 173 177 201 200 148 
0.4 324 405 203 219 253 280 300 157 155 
0.5 289 371 446 541 341 163 163 163 161 
0.6 292 354 427 516 572 405 168 167 165 
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