Controls on Bacterial Productivity in Arctic Lakes and Streams

by

Heather E. Adams

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2010

Doctoral Committee:

Professor George W. Kling II, Chair Professor Paul V. Dunlap Professor Deborah E. Goldberg Professor Donald R. Zak Associate Professor Byron C. Crump, University of Maryland

View of the Brooks Range from I-8 inlet, 2005.

© Heather E. Adams

DEDICATION

In Memory of Bernice Somerville 1919-2007

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support of many people, particularly my family. My field work was made possible by the helping hands of those who overlapped with me during summers at Toolik Field Station from 2002-2007, from creating incubation chambers to hauling water samples and everything in between, including Jessica Spence, Alex Mettler, Ian Washbourne, Chris Crockett, and Scott Houghton. My molecular work would not have been possible without the welcoming people of Horn Point Laboratory, where I spent a cumulative six months, particularly Jude Apple, Erica Kiss, and Mike Malpezzi. The lifelong friends and colleagues I found in Alaska and Maryland shared experiences with me I will always remember fondly and in no small way helped shaped who I am today.

Likewise, I had the good fortune to work in a department with provocative professors and very knowledgeable staff. Julia Eussen, in particular, provided key support during much of my graduate tenure. Marc Ammerlaan and Jo Kurdziel inspired the way I think about teaching, while Earl Werner, Jeremy Semrau, and Inés Ibáñez continue to influence my scientific thinking though their insights shared during courses. From outside the university, I appreciate conversations with Sally MacIntyre and John Hobbie and I would also like to thank Josh Schimel and John Melack for preparing me during my time in their labs during my undergraduate career at the University of California, Santa Barbara.

iii

My fellow graduate students have kept me engaged and provided a support network far beyond my expectations. I would like to acknowledge Wendy Grus, Cori Richards, Tamara Convertino, and Jahi Chappell of my cohort, along with Tory Hendry, Rachel Vannette, and Susanna Messinger of the microbial reading group, but I am proud to count many other grad students among my friends and colleagues. The Kling lab has also become another extended family of sorts and I would like to thank Kristi Judd, Katy Keller, Mary Anne Evans, Lauren Yelen, Sarah Barbrow, Jasmine Crumsey, Ashley Larsen, Laura Brosius, Maria Dzul, Mark Brahce, Chris Wallace, Amanda Field, Amy Anstead, and especially Jen Kostrzewski for their copious advice over the years.

I would also like to acknowledge my dissertation committee, including Deborah Goldberg, Don Zak, and Paul Dunlap; each member has contributed their scientific viewpoint and shared much advice. Byron Crump has not only been a committee member, but also a collaborator for my dissertation work, and I highly value the experiences he has shared, particularly allowing me to work in his lab and learn through his example how to develop from postdoc to tenured faculty member. Last but not least, George Kling has advised me on every stage of this project, from writing grant proposals, and experimental design, to data management and writing papers. I truly appreciate his accessibility and patience with me over the years. Thank you all.

TABLE OF CONTENTS

DEDICATION	ii
ACKNOWLEDGEMENTS	iii
LIST OF FIGURES	viii
LIST OF TABLES	x
LIST OF APPENDICES	xi
ABSTRACT	. xii
CHAPTER I	1
Introduction to controls on aquatic bacterial activity	1
Figure	7
Literature Cited	8
CHAPTER II	. 10
Temperature controls on aquatic bacterial production and community dynamics in	
arctic lakes and streams	. 10
Abstract	. 10
Introduction	. 11
Methods	. 15
Site description	. 15
Field measurements	. 16
Temperature experiments	. 18
Community fingerprinting	. 19
Results	. 20
Temperature quotient	. 20
Temperature experiments	. 21
In situ responses of BP to temperature	. 23
Discussion	. 25
Conclusions	. 33
Acknowledgements	. 34
Tables	. 35
Figures	. 39
Appendix	. 46
Literature Cited	. 47
CHAPTER III	. 52
Interactions of temperature, nutrients, and community composition as controls on	
aquatic bacterial productivity	. 52
Abstract	. 52
Introduction	. 53
Methods	. 56
Study site	. 56
Field measurements	. 56

Mesocosm experiments	57
Results	61
Storm events, nutrients, and bacterial production	61
Mesocosms - activity	62
Mesocosms - communities	63
Discussion	65
Storm Events	65
Mesocosms - activity	66
Mesocosms – communities	68
Conclusions	70
Acknowledgements	71
Tables	72
Figures	76
Appendices	83
Literature Cited	86
CHAPTER IV	89
Metacommunity dynamics of bacteria	89
Abstract	89
Introduction	90
Methods	94
Study site	94
Field measurements	95
Transplant Experiments	98
Results	99
Differences in activity and community composition between sites	99
Transplant experiments	100
Lake Inputs	101
Discussion	104
Acknowledgements	107
Tables	109
Figures	112
Appendices	123
Literature Cited	127
CHAPTER V	130
Synthesis of controls on bacterial activity	130
Abstract	130
Introduction	131
Methods	134
Field Data	134
Model Development	134
Model Selection and Validation	136

Results	
Discussion	
Conclusions	
Acknowledgements	
Tables	
Figures	
Appendix	
Literature Cited	
APPENDICES	

LIST OF FIGURES

Figure

1.1.	Conceptual model of controls on aquatic bacterial activity	. 7
2.1.	Bacterial Q ₁₀ versus <i>in situ</i> collection temperature	39
2.2.	Bacterial production versus temperature from Toolik Inlet samples incubated at	
diffe	rent temperatures in Experiment A	40
2.3.	Bacterial production versus temperature from Toolik Inlet and Outlet samples	
incut	pated at different temperatures in Experiment B	41
2.4.	Non-metric multi-dimensional scaling (MDS) of Toolik Inlet DGGE community	
finge	erprints from post-incubation samples held at different temperatures from Experime	nt
A		42
2.5.	Non-metric MDS of DGGE community similarity from Experiment C	43
2.6.	Top panel: DOM UV absorbance at I-8 inlet and BP at I-8 inlet and outlet in 2003.	
Botto	om panel: Stream discharge and water temperature at Toolik Inlet in 2003	44
2.7.	Path model for I-series lakes in summers 2003-2006	45
3.1.	Sampling locations at Lake I-8 and Toolik Lake, Alaska.	76
3.2.	Toolik Inlet stream during summer 2004.	77
3.3.	Toolik Inlet BP and cell counts from the short-term experiment	78
3.4.	Longer duration two week nutrient addition with replication at I-8 inlet	79
3.5.	BP from the DOM manipulation experiment	30
3.6.	Bacterial cell counts versus BP at Day 14 of DOM manipulation experiment 8	31
3.7.	MDS plot of community similarity on collection (day 0) and day 2 for the short-ter	m
expe	riment in Figure 3.4	32
4.1a.	Sampling locations in the I-series catchment to Toolik Lake, Alaska	12
4.1b.	Lake spatial sampling sites at Lake I-8, Northern Alaska 11	13
4.2.	Bacterial Production at sites upstream and downstream of Lake I-811	14
4.3.	Dice similarity of DGGE bands at sites at Lake I-8 in summer 2003 11	15
4.4.	Dice similarity of sites at Lake I-8 in summer 2007 (dry year)11	16
4.5.	Early summer transplants at I-8 inlet and outlet from 5-9 Jul 05 (top) and 2-4 Jul 07	7
(bott	om)11	17
4.6.	Late summer transplants at I-8 inlet and outlet from 26-28 Jul 05 (top) and 1-3 Aug	5
06 (b	oottom)	18
4.7.	Thermistor data from summer 2003 11	19
4.8.	Modeled discharge at I-8 inlet (black line) and % similarity of bacterial communitie	es
at I-8	3 inlet and I-8 outlet in the summer of 2003 (gray bars)12	20
4.9.	Conductivity and pH depth profiles for the sampling transect in the western basin of	of
Lake	I-8 on 4 Jul 2007 12	21

4.10. NMDS of bacterial communities at Lake I-8 on 4 Jul 07 based on sample	
similarities	122
5.1. Sampling sites in the Lake I-8 catchment, Northern Alaska	147
5.2. BP at three sites downstream from each other during the summer season	148
5.3. NMDS plot of bacterial community similarity in 2003 at I-8 inlet and outlet	149
5.4. NMDS plot of bacterial community similarity at I-8 inlet and outlet in summer 2	007
	150

LIST OF TABLES

Table

2.1. ANOVA results from community similarity of samples from Figure 5	35
2.2. Number of unique OTUs found only at certain temperatures	36
2.3. Stream discharge and water temperature of Toolik Inlet from the ice-free summer	
season, generally measured from 15 June to 20 August except 20 June to 16 August in	
2003 and 21 June to 16 August in 2004	37
2.4. Path analysis results with asterisks indicating p-values: ***<0.001, **<0.01, and	
*<0.05	38
3.1. Tests of between-subjects effects for the impact of incubation temperature and	
nutrient addition on the % similarity of bacterial community composition between	
samples in the <i>short-term</i> experiment	72
3.2. Tests of between-subjects effects for DNA from the longer duration experiment at	: I-
8 inlet	73
3.3. Test of between-subjects effects for Bacterial DNA from day 14 of DOM	
manipulation experiment	74
3.4. Tests of between-subjects effects for DNA from community sensitivity experimen	ıt
performed at I-8 inlet and outlet	75
4.1. Habitat characteristics during transplant experiments 1	09
4.2. Water contribution to Lake I-8 for summer 2007 1	10
4.3. Water residence time for Lake I-8 and doubling times for I-8 inlet and outlet, base	d
on data from 2003-2007 1	11
5.1. Summary of parameter estimates from multiple regression of temperature, TDN,	
chla, and site identity as fixed effects controlling BP 1	44
5.2. Summary of parameter estimates from multiple regression of temperature, TDN,	
chla, TDP, and DOC as fixed effects controlling BP at each site1	45
5.3. Summary of parameter estimates from multiple regression of temperature, TDN,	
TDP, DOC, chla, and site identity as fixed effects controlling BP 1	46

LIST OF APPENDICES

Appendix

A.	Bacterial Production measurements for summers 2002-2007	154
B.	Dissolved Organic Matter for summers 2004-2007	190
C.	Cell counts for select experiments	200
D.	Data input for Chapter 2 path analysis	206
E.	Data input for Chapter 5 model	212
F.	Community Fingerprinting presence-absence data	216

ABSTRACT

Controls on Bacterial Productivity in Arctic Lakes and Streams

This dissertation investigates heterotrophic bacterial production in arctic lakes and streams in northern Alaska. Temperature, dissolved organic matter, and inorganic nutrients all control bacterial production, but interactions of these controls with each other and with bacterial community composition is poorly understood. These interactions were examined using lab and field observations and experiments to provide a better understanding of factors influencing bacterial activity in nature.

DNA analysis indicated that shifts in the composition of bacterial communities were driven more by temperature than by differences in dissolved organic matter source. Aquatic bacterial communities incubated at different temperatures had different rates of production, and two distinct optima (12 and 20 °C) were evident after three days. Therefore, predicting the impact of warmer temperature on bacterial productivity is more complex than simple Q_{10} responses, and requires consideration of the interaction with community composition.

Bacterial nutrient limitation and response to storm events (changes in water temperature and nutrient concentrations) were investigated in mesocosm experiments. Nutrient additions increased bacterial production up to seven times greater than the control, while warmer temperatures shortened the bacterial response time to added nutrients. Community composition shifted rapidly (2 days) in response to nutrient

xii

addition in all habitats, but exhibited habitat-specific responses to temperature. Although nutrients were more important, temperature and nutrient levels interact to control the onset and magnitude of increased bacterial growth and the corresponding shifts in community composition.

Metacommunity processes of species sorting (e.g., competition) and mass effects (dispersal) were investigated at an 18 ha area lake. Inlet and outlet community composition was most similar (61.5%) after large storm events, indicating the importance of dispersal. However, transplant experiments and DNA analyses indicated that resident lake populations out-compete many bacterial populations in stream water entering the lake. While mass effects may be important during storm events, species sorting appears to be the predominant mechanism controlling community composition and function. Despite being considered a single functional group, the heterotrophic bacteria examined here exhibit community-specific responses to drivers and shifts in dominant community members that occur on ecologically relevant time scales. This highlights the importance of community composition to productivity.

CHAPTER I

Introduction to controls on aquatic bacterial activity

To understand how ecosystems function it is necessary to determine controls on organismal activity. Specifically, we must investigate how abiotic factors interact with the mix of species that form a community and how this relationship controls activity. Examining these interactions within the context of short or long-term perturbations, such as storm events or climate change, is required to make robust predictions of changes in activity over time. Bacterial activity is particularly important to understand because bacteria are central to ecosystem function and to the cycling of carbon and nutrients. For example, bacteria mediate nutrient mineralization and decompose organic matter in both aquatic and terrestrial habitats. However, much of the focus in prior research has been on bacteria as larger functional groups, or only on single bacterial species (especially related to disease dynamics), and this research has overlooked the potential importance of how bacterial community composition both changes over time and interacts with environmental and ecological drivers to set limits on bacterial activity in nature.

Bacterial communities differ in their optimal temperature (Morita 1975), ability to use carbon substrates (Rublee 1992, Foreman and Covert 2003), and nutrient requirements (Van Wambeke et al. 2009), suggesting that community composition may control overall patterns of bacterial activity across a heterogeneous landscape. Such

heterogeneous landscapes vary with respect to the type of vegetation that provides carbon substrates, the density of lake and stream water, and the effects of aperiodic storm events that pulse carbon substrates, nutrients, and bacterial communities from land into the aquatic environment. Although these different potential controls on activity interact, the relative strength of the controls and the interactions in any particular environment are unknown.

In many systems, bacteria were historically thought to be primarily carbon limited (Wright and Hobbie 1966, Hobbie 1980). However, in laboratory assays and empirical studies both temperature and nutrients have been found to be important factors for bacterial production (Obrien et al. 1992, Kirchman and Rich 1997, Vadstein 2000). Organic carbon provides the basic energy source for heterotrophic bacteria, but its biochemical structure can be complex. To break down complex structures bacteria need to produce specific enzymes. At higher temperatures, the rates of reactions increase, which in turn increases the metabolic rate and the activity of bacterial enzymes and allows bacteria to break down more complex substrates (Pomeroy and Wiebe 2001). Additionally, bacteria require inorganic nutrients for both growth and enzyme production. When bacteria use complex carbon structures with low nutrient content, they need to increase the uptake of inorganic nutrients from the environment to sustain microbial activity (Findlay 2003).

I developed a conceptual model (**Fig. 1.1**) to reflect the relationships among various controls on bacterial production. Temperature can modify bacterial response to both dissolved organic matter (DOM) and inorganic nutrients (dashed arrows, **Fig. 1.1**). Streams bring nutrients and carbon subsidies from land into surface waters, and

variations in discharge change the supply rate of carbon and nutrients to bacteria in streams and lakes. Stream flow can also transport bacterial communities between habitats, impacting dispersal and community composition (gray shaded oval, Fig. 1.1). Water temperature and discharge are not directly linked in the conceptual model because they are often decoupled, particularly during cold storm events. While nutrients and DOM directly impact bacterial production, they are predicted to indirectly affect community composition. Judd et al. (2006) suggested that bacterial community composition responds directly to environmental factors and that shifts in composition need to occur before major differences in bacterial production occur. However, their conclusion is based on community-wide activity over a relatively long time scale (two weeks) as opposed to short time scale metabolic responses of individuals or populations. For example, if dispersal and predation (including viral lysis) are excluded as mechanisms for shifting community composition, the remaining mechanism for such shifts is the differential growth of bacterial populations. This differential growth is the result of competition between bacterial populations in response to environmental factors, and will directly alter community composition and eventual lead to differences in community-wide activity (two-headed arrow, Fig. 1.1). Understanding the operation and full extent of this mechanism is only possible by coupling the response in bacterial activity to environmental drivers with changes in community composition on very fine time scales (days).

Throughout this dissertation, experiments were performed on bacterial communities found in the water column because they are a mixture of bacteria from habitat types including soils, streams, and lakes. These bacterioplankton are being

dispersed between different habitats and therefore ideal for answering questions concerning species dispersal. Changes in community composition were documented using fingerprinting with denaturant gradient gel electrophoresis (DGGE) of an amplified section of 16s rRNA which is fairly conservative from an evolutionary standpoint. Communities were detected on a presence-absence basis; DGGE detects populations of ~1% or greater abundance. Given that changes in very rare populations are probably below detection, and the fact that the DGGE bands may (rarely) be constituted by two slightly different (~1 base pair) sequences, the shifts in community composition detected by DGGE are considered to be minimal (conservative) estimates of change.

It has been demonstrated that temperature can affect bacterial activity either directly by altering the kinetics of enzymatic reactions or indirectly by favoring populations with different metabolic capabilities (Feller et al. 1997, Russell 2000, D'Amico et al. 2006). In Chapter 2, both direct and indirect mechanisms of temperature control on bacterial activity are examined in laboratory incubations and *in situ* measurements across an arctic lake district upstream of Toolik Lake, Alaska.

Inorganic nutrients can limit bacterial production during conditions of pulsed nutrient supply (Vadstein 2000), low temperatures (Nedwell 1999), and large amounts of complex carbon sources (Hessen et al. 1994). All three conditions occur at my field site, indicating that nutrient limitation may be an important control. Although storm events flush in resources from upstream, cold storms decouple nutrient flushing from temperature increases. Because temperature potentially interacts with other controls on activity such as inorganic nutrient uptake and carbon use, the extent of these interactions is specifically examined in Chapter 3 (nutrient limitation and temperature). Here, field

measurements and laboratory experiments were conducted on samples from the inlet and outlet of Toolik Lake and a smaller upstream lake, Lake I-8. The overall metabolic response of bacteria to increasing temperature or nutrients was characterized, in conjunction with measuring the rates at which community composition shifted as well as the feedback of different community structure on community-wide activity.

To understand community-specific responses to the environment, I examined the bacterial community dynamics for Lake I-8. Shifts in bacterial community composition occur predominantly through predation, competition, and dispersal. Bacterial populations differ in their ability to process substrates, and differential growth rates eventually result in a change in dominance of populations within a community. This process of competition for resources within a habitat is referred to as the "species sorting" mechanism of community structure (Van der Gucht et al. 2007). For aquatic bacteria, dispersal occurs predominantly in unidirectional water flow from terrestrial or other upstream habitats into streams and lakes. "Mass effects" (dispersal) structure the community when introduced populations persist not because they are superior competitors but because of high dispersal rates (Lindstrom and Bergstrom 2004, Crump et al. 2007). Chapter 4 examines the balance of species sorting and mass effects and the resulting metacommunity dynamics of aquatic bacteria in the Lake I-8 catchment.

Shifts in community structure also feed back into levels of bacterial activity, making it difficult to determine the ultimate control on bacterial productivity in a natural habitat. Chapter 5 presents a predictive model of activity based on empirical data from the Lake I-8 catchment. Using a Bayesian approach, the predictive model incorporates

temperature, nutrients, and carbon as well as site identity and community composition as predictors of bacterial productivity.

Each chapter in this dissertation features a different approach to understanding the controls of environmental conditions on bacterial activity in arctic lakes and streams and highlights the importance of bacterial community composition. While understanding how a single control or factor affects bacteria is an important step to understanding functionality, in the natural environment factors interact in several ways. Storm events can decouple temperature and nutrients as well as bring in new carbon, nutrients, and bacterial communities from upstream. Additionally, bacterial populations each have a different response to environmental factors and compete with other bacterial populations. In this dissertation I show how various controls on bacterial activity interact, which controls are dominant in which situations, and how changes in community composition are both driven by changes in environment on very fast time scales and are integral in setting the levels of community-wide bacterial activity.

Figure

Figure 1.1. Conceptual model of controls on aquatic bacterial activity. Drivers within gray shaded ellipse are influenced by stream discharge. Dashed line indicates that temperature modifies bacterial activity in response to carbon (DOM) and nutrients.

Literature Cited

- Crump, B. C., H. E. Adams, J. E. Hobbie, and G. W. Kling. 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88:1365-1378.
- D'Amico, S., T. Collins, J. C. Marx, G. Feller, and C. Gerday. 2006. Psychrophilic microorganisms: challenges for life. Embo Reports **7**:385-389.
- Feller, G., J. L. Arpigny, E. Narinx, and C. Gerday. 1997. Molecular adaptations of enzymes from psychrophilic organisms. Comparative Biochemistry and Physiology a-Physiology 118:495-499.
- Findlay, S. 2003. Bacterial Response to Variation in Dissolved Organic Matter.*in* S. Findlay and R. L. Sinsabaugh, editors. Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier Science, San Diego Academic Press.
- Foreman, C. M. and J. S. Covert. 2003. Linkages between DOM composition and bacterial community structure.*in* S. Findlay and R. L. Sinsabaugh, editors. Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier Science, San Diego Academic Press.
- Hessen, D. O., K. Nygaard, K. Salonen, and A. Vahatalo. 1994. The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakes. Environment International **20**:67-76.
- Hobbie, J. E., editor. 1980. Limnology of Tundra Ponds. Dowden, Hutchinson & Ross.
- Judd, K. E., B. C. Crump, and G. W. Kling. 2006. Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068-2079.
- Kirchman, D. L. and J. H. Rich. 1997. Regulation of bacterial growth rates by dissolved organic carbon and temperature in the equatorial Pacific Ocean. Microbial Ecology 33:11-20.
- Lindstrom, E. S. and A. K. Bergstrom. 2004. Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time. Limnology and Oceanography 49:125-136.
- Morita, R. Y. 1975. Psychrophilic Bacteria. Bacteriological Reviews 39:144-167.
- Nedwell, D. B. 1999. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. Fems Microbiology Ecology **30**:101-111.
- Obrien, W. J., A. E. Hershey, J. E. Hobbie, M. A. Hullar, G. W. Kipphut, M. C. Miller, B. Moller, and J. R. Vestal. 1992. Control mechanisms of arctic lake ecosystems a limnocorral experiment. Hydrobiologia 240:143-188.
- Pomeroy, L. R. and W. J. Wiebe. 2001. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology **23**:187-204.
- Rublee, P. A. 1992. Community Structure and Bottom-up Regulation of Heterotrophic Microplankton in Arctic Lter Lakes. Hydrobiologia **240**:133-141.
- Russell, N. J. 2000. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles **4**:83-90.

- Vadstein, O. 2000. Heterotrophic, planktonic bacteria and cycling of phosphorus -Phosphorus requirements, competitive ability, and food web interactions. Pages 115-167 Advances in Microbial Ecology, Vol 16. Kluwer Academic / Plenum Publ, New York.
- Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J. M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman, and L. De Meester. 2007. The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences of the United States of America 104:20404-20409.
- Van Wambeke, F., J. F. Ghiglione, J. Nedoma, G. Mevel, and P. Raimbault. 2009. Bottom up effects on bacterioplankton growth and composition during summerautumn transition in the open NW Mediterranean Sea. Biogeosciences 6:705-720.
- Wright, R. T. and J. E. Hobbie. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology **47**:447-&.

CHAPTER II

Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams

Abstract

The impact of temperature on bacterial activity and community composition was investigated in arctic lakes and streams in northern Alaska. Aquatic bacterial communities incubated at different temperatures had different rates of production, as measured by ¹⁴C-leucine uptake, indicating that populations within the communities had different temperature optima. Samples from Toolik Lake inlet and outlet were collected at water temperatures of 14.2 and 15.9 °C, respectively, and subsamples incubated at temperatures ranging from 6 to 20 °C. After five days, productivity rates varied from 0.5 to ~13.7 μ g C/L/day and two distinct activity optima appeared at 12 and 20 °C. At these optima, activity was two to eleven-fold higher than at other incubation temperatures. The presence of two temperature optima indicates psychrophilic and psychrotolerant bacteria dominate under different conditions. Community fingerprinting via DGGE of 16S rRNA genes showed strong shifts in the composition of communities driven more by temperature than by differences in dissolved organic matter source; e.g., four and seven unique OTUs were found only at 2 and 25 °C, respectively, and not found at other incubation temperatures after five days. The impact of temperature on bacteria is complex, influencing both bacterial productivity and community composition. Path

analysis of measurements of 24 streams and lakes sampled across a catchment 12 times in 4 years indicates variable timing and strength of correlation between temperature and bacterial production, possibly due to bacterial community differences between sites. As indicated by both field and laboratory experiments, shifts in dominant community members can occur on ecologically relevant time scales (days), and have important implications for understanding the relationship of bacterial diversity and function.

Introduction

Bacteria are important organisms in ecosystems, performing the critical tasks of decomposing organic matter, regenerating nutrients, and forming the base of microbial food webs. The rates of these critical tasks can be modified by temperature, and understanding the bacterial response to temperature is necessary for understanding ecosystem function. For example, at higher temperatures, metabolic rates increase considerably and bacteria are able to break down organic substrates more rapidly (Pomeroy and Wiebe 2001) and increase secondary production (Kirchman and Rich 1997). Here I examine the links between temperature and ecosystem function as measured by aquatic bacterial production both directly and indirectly through alteration of bacterial community composition.

The metabolic activity of aquatic bacteria is directly limited by temperature in many systems. A strong relationship between bacterial-specific growth rate and temperature was found in a metadata analysis of 57 studies in freshwater, coastal, and marine habitats (White et al. 1991), and temperature limitation has been found in estuaries (Shiah and Ducklow 1994, Almeida et al. 2001, Almeida et al. 2007), sea grass beds (Danovaro and Fabiano 1995), rivers (Freese et al. 2006), coastal systems (Sherr et

al. 2001), marine systems (Longnecker et al. 2006), and lakes of various nutrient regimes (Sommaruga and Conde 1997, Simon and Wunsch 1998, Friedrich et al. 1999, Gurung and Urabe 1999, Ram et al. 2005, Vrede 2005) including high arctic lakes (Panzenbock et al. 2000). A few studies found that temperature is not limiting to bacteria; in these studies only small increases in temperature were tested (Ducklow et al. 1999), or it was found that carbon quality was more important (McKnight et al. 1993).

Temperature can also interact with carbon availability or substrate affinity to control bacterial activity. At colder temperatures, bacteria begin to lose substrate affinity, leading to carbon limitation despite available sources in the environment, possibly due to stiffening lipid membranes (Nedwell 1999). Wiebe et al. (1992) found that psychrophilic bacteria have an increased need for substrate at lower temperatures when tested from -1.5 to 35 °C. However, Yager and Deming (1999) found no enhanced substrate requirement by bacteria in arctic polynyas during incubations from -1 to 5 °C. Likewise, Kirchman et al. (2005) found that cold adapted bacteria have shown responses to temperature and carbon similar to those in temperate habitats, although leucine incorporation rates per cell did tend to be lower at lower temperatures within their experiments. Substrate affinity of bacterial enzymes is fundamental to activity, and elevated temperature increases activity provided there is ample substrate (carbon). Arctic aquatic systems receive relatively large amounts of terrestrial carbon subsidies which can increase the amount of bioavailable DOM, and thus with ample DOM it is likely that temperature constrains bacterial activity.

Bacterial response to temperature can go beyond a general metabolic effect and can be population or community specific. Psychrophiles grow optimally at temperatures

< 15 °C, with an upper cardinal temperature of 20 °C (Morita 1975), and are found in a wide range of environments such as the coastal Arctic Ocean (Connelly et al. 2006), sea ice (Kottmeier and Sullivan 1988, Huston et al. 2000), and Antarctic saline lakes (McMeekin and Franzmann 1988). Psychrotolerant bacteria are also found in cold habitats, but have higher optimal growth temperatures (~20 °C) and can withstand temperatures as low as -10 °C (Bowman et al. 1997, Bakermans et al. 2006). Psychrophilic and psychrotolerant bacteria respond differently to a given temperature based on functional constraints such as membrane fluidity and enzyme structure (Feller et al. 1997, Russell 2000, D'Amico et al. 2006). Both of these groups of bacteria are likely present in many regions, and their competition due to population-specific growth rates may also be controlled by temperature, resulting in measured community-specific temperature responses.

While individual cells shift their physiology to respond to temperature changes, the dominance of a population within a community will change based on competition between groups that have different growth rates at different temperatures or environmental conditions. Bacteria living at sub-optimal temperatures may be present, albeit at low densities or relatively inactive, but may increase in dominance when conditions become favorable. In natural communities, the observed optimal temperature for a community can shift seasonally (Tison et al. 1980), indicating shifts in abundance between bacterial populations with different optimal temperatures and substrate affinities (Ogilvie et al. 1997). A community should adapt to the temperature ranges for its habitat, given enough time for shifts in populations to occur.

The rate of changing environmental conditions is likely to impact both bacterial activity and community composition. Water temperatures change rapidly with storm events, leaving bacterial communities little time to adjust composition to populations with different temperature optima. Pettersson and Baath (2003) found in humic soil that the rate of community compositional change was not related to temperature, although bacterial activity still indicated temperature limitation in the soils. However, Upton et al. (1990) found that temperatures could determine outcomes of competition between different bacterial populations. The impact of changes in temperature is likely to be most immediate on productivity by acting directly on enzymatic reactions. Shifts in bacterial community composition in response to temperature should be slower because the dominance of bacteria results from differential growth rates between populations in response to environmental conditions. However, bacterial populations also vary in enzymatic capabilities and preferred carbon substrates in addition to preferred temperature ranges. Therefore, changes in community structure resulting from temperature changes will also change potential levels of activity.

Evidence of temperature limitation and coexistence of bacterial populations with different preferred temperatures leads to the question of how temperature impacts bacterial production (BP), both directly by affecting enzyme activity and other cellular functions and indirectly through shifts in community composition. In this chapter I show that the direct mechanism impacts BP at very short time scales (hours). The indirect mechanism operates through shifts in community composition, and I support my hypothesis that communities consist of bacterial populations that have different temperature optima (e.g., phylogenetically distinct psycrophilic and psychrotolerant

populations), resulting in multiple temperature optima for the community as a whole. I also demonstrate that communities shift dominant members based on water temperature, and these shifts can occur rapidly over periods of days.

Methods

Site description

Sites are located on the North Slope of Alaska, at the Toolik Field Station Arctic LTER (long-term ecological research) site. Toolik Lake is located at 68°38'00"N, 149°36'15"W at an elevation of 720 m, and has an ice-free season lasting from mid- June through September (O'Brien et al. 1997). The terrestrial system is largely tussock tundra with dwarf birch-willow riparian zones and wet sedge wetlands with large amounts of organic matter accumulation in histel soils (Chapin et al. 1995). The area has continuous permafrost and thaw depth typically varies from ~15 cm in June to a maximum of ~40 cm depth in August (data available at http://ecosystems.mbl.edu/ARC/). Due to the presence of continuous permafrost, there is very little water exchange between surface waters and deeper, frozen soils or aquifers. Snow melt in the spring and pulsed storm events throughout the summer bring terrestrial carbon subsidies into aquatic systems; this results in much higher bacterial production (BP) relative to primary production in lakes than is found in temperate systems (O'Brien et al. 1997).

The I-series catchment, the largest sub-basin of the Toolik Lake catchment, is 46.6 km^2 and contains ten lakes as well as the largest inlet to Toolik Lake, Toolik Inlet (see Kling et al., 2000 for further descriptions). Toolik Lake is a multi-basin lake draining a catchment of 66.9 km^2 , and has a single outlet (MacIntyre et al. 2006). Upstream, in a sub-basin of the I-series catchment, Lake I-8 (0.182 km² in area) was

sampled frequently, and has a large catchment area (29.1 km²) without upstream lakes. All of the lakes in the Toolik Lake catchment are oligotrophic, with mean primary productivity of 3.23 µmol C/L/day and mean summer chlorophyll *a* (chl) of 1.02 µg/L. There are typically 2-3 storm events during the summer season, post snow-melt, which carry terrestrial and upstream DOM into downstream habitats. Concentrations of DOC are typically much higher (~500 µM, Kling et al., 2000) than those found in coastal ocean areas (Ducklow et al. 1999), and storm events can have a large impact on DOM available downstream.

Field measurements

All I-series lakes and major inlet streams were sampled three times each summer from 2003 to 2006 over two-day periods (late June, mid-July, and early August) for BP, temperature, DOC, and chl; precise sampling locations followed Kling et al. (2000). Stream samples were collected in 2 L bottles from under the water surface but without disturbing the stream bottom, and lake samples were either taken from ~0.5 m depth by boat or at the lake outlet which represents an integrated sample of epilimnetic water (details in Kling et al., 2000). Lake I-8 inlet and outlet as well as Toolik Inlet were sampled weekly for DNA, BP, and temperature. Temperature was measured with a digital thermometer during sample collection. BP was measured immediately or within ~1 hr of field collection using ¹⁴C-labeled leucine uptake following Kirchman (1992) with an isotopic dilution of 1, resulting in a conversion factor of 1.55 kg C/mol. Each measure was calculated from the incubation of three unfiltered 10 mL subsamples (taken from 2 L collection bottles) and one 10 mL trichloroacetic acid (TCA) killed control with ¹⁴C leucine for approximately three hours before ending with addition of 5% TCA.

Samples were filtered onto 0.22 µm nitro-cellulose filters and extracted using ice-cold TCA. Filters were then dissolved with 1 mL ethylene glycol monoethyl ether in scintillation vials, and analyzed with a liquid scintillation counter (Packard Tri-Carb 2100TR) after the addition of 5 mL Scintisafe scintillation cocktail. The BP measurements had an average coefficient of variation (CV) of 18%. Ultraviolet (UV) absorbance of DOM was measured on unfiltered samples using a quartz cell with a 5 cm path length on a Shimadzu 1601-UV scanning spectrophotometer in the wavelength range of 220 to 400 nm. DOC samples were filtered through Whatman GF/F filters in the field, acidified to pH 3, and stored in the dark at 4 °C until analysis on a Shimadzu TOC 5000 using platinum-catalyzed high-temperature combustion to CO₂ followed by infrared detection. The chl samples were filtered onto Whatman GF/F filters in the field and kept dark until frozen upon returning from the field. After overnight freezing at ~20 °C, filters were extracted for 24 hrs with acetone, read on a Turner Designs 10 AU fluorometer configured with a chlorophyll optical kit (10-037R), and corrected for phaeopigment using acidification with HCl. Stream discharge and temperature were monitored every 30 minutes at Toolik Lake inlet using a Stevens PGIII Pulse Generator (and manual discharge measurements to generate a rating curve) and a Campbell Scientific Model 247 conductivity and temperature probe connected to a Campbell Scientific CR510 datalogger.

Path analysis of I-series data was conducted using a structural equation modeling program (AMOS 6.0) to calculate standardized regression coefficients; natural log transformations of BP, chl, and stream discharge measurements were performed to normalize input data when required and any discrepancies were addressed via maximum

likelihood. Temperature quotient (Q_{10}) was calculated for samples collected from Lake I-8 inlet and outlet on 3 July 2003 and at Toolik Inlet on 24 June, 1, 15, 22, July, and 5 August 2003. BP was measured in samples incubated at a range of temperatures within one hour of sample collection: Lake I-8 inlet and outlet samples were incubated at 6 and 16 °C and Toolik Inlet samples were incubated at 6, 9, 12, 14, 17 and 20 °C. The Q_{10} value was calculated as $Q_{10} = e^{10k}$ where k = slope of log-transformed R vs. T, where R = leucine incorporation rate (pmol/L/hr), and T = incubation temperature (°C) as described by Atkin et al. (2005).

Temperature experiments

Three experiments were conducted to test the influence of water temperature on BP and bacterial community composition. The experiments were performed in different years, were designed to answer different questions, and included different measurements; they are presented here in logical progression of answering our hypotheses. All experiments included temperature manipulations: experiment A measured BP and community composition, experiment B measured BP, and experiment C measured community composition. Experimental incubations used whole water collected from the field and partitioned to include 50% 1.0 μ m filtered water (used as the bacterial inoculum) with 50% 0.2 μ m filtered water (particle-free water, used as the DOM source). Treatment mesocosms were started within eight hours of water collection and kept in the dark in HDPE amber Nalgene bottles at set temperatures (+/- 1 °C). The starting time point of the incubations was considered to be the time of inoculation and collection times were within a few hours of 24 hours (1 day), 68 hours (2 days), or 116 hours (5 days) due to the length of time to required to sample all treatments (two to four hours). Filtration

intentionally excluded both grazers and larger primary producers, while dark incubation minimized photosynthesis; this was done to focus on the impacts of temperature and bacterial community composition. Experiment A was conducted from 26 to 31 July 2006. Three replicate bottles were collected in the field from Toolik Lake inlet and filtered as described above to result in each replicate having 1 L total volume. From each replicate, 40 mL sub-samples were taken at the end of 1, 3, and 5 days for BP measurement, and on the fifth day 500 mL was filtered for DNA analysis. Experiment B was performed on Toolik Lake inlet and outlet samples from 26 to 31 July 2004, with factorial combinations of bacterial inoculum and DOM source from each habitat for a total volume of 250 mL, with 40 mL sub-samples taken for BP after 1, 3, and 5 days (no DNA collected). Experiment C was set-up the same as experiment B and run from 28 June to 3 July 2004, but with a total 1 L volume and DNA collected on day 5. In summary, experiment A was fully replicated; experiments B and C were done first, without field replicates, but the time course of changes and the end-of-experiment BP and DNA results were similar in all three experiments and consistently support our conclusions.

Community fingerprinting

DNA samples were collected from the field and from laboratory mesocosms by filtering ~500 mL of sample through a 0.2 µm pore-size Sterivex filter. Filters were preserved using a DNA extraction buffer described by Crump et al. (2003) and stored at - 80 °C until extraction. Bacterial DNA was extracted using a phenol-chloroform extraction and PCR amplified using 357f with a G-C clamp and 519r universal 16S rRNA gene bacterial primers on a Bio-Rad thermocycler (Crump et al. 2003, 2007). The

amplified DNA was then separated using denaturant gradient gel electrophoresis (DGGE) with 8% acrylamide gels cast with a 30-40% to 50-70% gradient of urea and formamide. Standard lanes were created using a mixture of previously identified Toolik Lake clone isolates (Crump et al. 2003) and used to standardize within and between gels. Gels were run on a CBS scientific system for 18 to 24 hours at 75 volts and 65 °C. Imaging was performed with Quantity One software on a Chemi-Doc gel documentation system (Bio-Rad), and gel bands were identified using GelCompar software to create a presence-absence matrix as described by Crump and Hobbie (2005). Each band represents an operational taxonomic unit (OTU) of bacteria. Dice transformation (SPSS 14.0, 15.0) was used to condense presence-absence data into percent community similarities between samples. The software PROXCAL (SPSS Categories, v. 14.0, 15.0) was used to create multi-dimensional scaling (MDS) proximity graphs.

Results

Temperature quotient

Laboratory incubations indicated direct temperature control on bacterial activity at several sites. Bacteria from Toolik Inlet and Lake I-8 inlet and outlet increased in activity when incubated at higher temperatures; the calculated Q_{10} values for these sites ranged from 1.3 to 2.9 (**Fig. 2.1**). Q_{10} averages 1.5 for aquatic bacterial specific growth rates (Rivkin et al. 1996), and has been calculated as high as 4.8 for leucine incorporation rate of arctic bacteria (Bussmann 1999). At Lake I-8, Q_{10} was much higher for the inlet site (2.92) compared to the outlet (1.53) on the same collection date in July 2003. There was greater spatial than temporal variation; the Q_{10} for Toolik Inlet during summer 2005 had a range from 1.32 to 2.41 with an average SE (standard error of the mean) of 0.14, smaller than the range among the sites. The Q₁₀ values had a negative relationship with *in situ* collection temperature ($r^2 = 0.41$, p = 0.12,), and a positive relationship with other environmental variables such as pH ($r^2 = 0.64$, p = 0.03), conductivity ($r^2 = 0.36$, p = 0.15), and NO₃ ($r^2 = 0.36$, p = 0.29) but not with stream flow, DOC, TDN, DON, NH₄, or PO₄ ($r^2 < 0.3$ and p >0.2).

Temperature experiments

The importance of community composition was seen in re-growth experiments at different temperatures. In Experiment A, performed on water from Toolik Inlet, there was an initial, short-term (day 1) increase in activity at all temperatures (Fig. 2.2, top). However, by day 3 distinct peaks in activity developed only at 12 and 20 °C (Fig. 2.2, bottom). The same water and bacteria incubated at 8 and 16 °C had significantly lower BP than those incubated at 12 and 20 °C, and at 16 °C the activity actually declined from that measured on day 1. Experiment B produced similar results, but used a wider range of incubation temperatures (every 2 °C) at both the inlet and outlet of Toolik Lake. In this experiment all combinations of bacterial inoculum and DOM source water showed the development of multiple temperature optima over time (Fig. 2.3), suggesting that temperature was more important to growth than were the different DOM sources found at the lake inlet and outlet. Similar to Experiment A, peaks in activity were most distinct after 5 days and at 12 or 20 °C. There were, however, slight differences in activity among the treatments (inlet versus outlet DOM source water) after 5 days. These differences may be due to DOM chemistry or to community composition; the inlet and outlet communities were 66.7% similar at the time of field collection based on DGGE
banding patterns, and while the two sites had similar protein and phenolic concentrations the DOC concentration and DOM absorbance were slightly higher at Toolik Inlet.

Temperature also influenced bacterial community composition. Community fingerprinting performed on Experiment A, where Toolik Inlet samples were incubated at 8, 12, 16, and 20 °C and re-grown from a 50% inoculum for five days, indicated the development of more similar communities within a temperature treatment (Fig. 2.4). Replicates grown at the same temperature had 85 to 93% average similarity (1.1 to 6.8% standard deviation) while those grown at 8 and 20 °C had the lowest average similarity compared to each other (79% similarity after five days, 5.1% standard deviation). In Experiment C, when Toolik Lake inlet and outlet samples were combined in a factorial of inoculum and DOM source at temperatures of 2, 12, and 25 °C for five days, community fingerprinting again clustered samples by temperature (Fig. 2.5) within either the inlet or outlet community inoculum. At the end of the experiment, these bacterial communities had statistically more OTUs in common with other inocula from their same collection sites (starting community) or with samples incubated at the same temperature, despite incubation DOM source as indicated by ANOVA on pair-wise similarities and dummy variables representing incubation conditions (**Table 2.1**). As was first seen in experiment B, in this experiment the influence of temperature was clearly a stronger driver of community structure than was DOM source during the five day incubation period.

Psychrophilic and psychrotolerant bacterial populations were distinguished by BP peaks and by community similarity (DGGE) in laboratory incubations at different temperatures. While genomic sequences and structural differences may also distinguish these two populations, I assign the operational description of communities based on

optimal temperature of productivity. Within collection habitat, bacteria incubated at 2 °C had an average 69% similarity to those incubated at 12 °C and a slightly lower average similarity (58%) to those incubated at 25 °C, while the 12 °C and 25 °C incubations had an average 61% similarity at the end of Experiment C. Based on Morita's (1975) definition of cardinal temperature ranges, psychrophilic bacteria would be able to persist in the 2 and 12 °C incubations which had the highest similarity between temperatures, while psychrotolerant bacteria can survive at all tested temperatures and should dominate at 25 °C. Given these definitions and incubation temperatures, out of 79 total OTUs identified (**Table 2.2**) there were 4 to 12 detectable psychrophilic OTUs and 6 to 24 psychrotolerant OTUs within the environment at the time of sample collection.

In situ responses of BP to temperature

From 2003 to 2007, summer (mid-June through August) stream water temperatures at Toolik Inlet ranged from 4 to 19 °C, averaging 11 °C, with a mean daily temperature fluctuation of 3.5 °C that ranged from 0.4 to 10.4 °C diel change in water temperature. Stream discharge was also quite variable and ranged from 0.02 to 10.2 m^3 /sec (**Table 2.3**). Path analysis of discharge, temperature, and BP at Toolik Inlet (p < 0.001 for the entire model) for 2003-2006 showed a standardized correlation coefficient of 0.45 (p <0.001) for stream discharge (natural log transformed) on BP and of 0.25 (p = 0.053) for water temperature on BP. Upstream of Toolik Inlet at Lake I-8, path analysis of discharge, water temperature, and BP for 2003-2006 at both the inlet and outlet (p < 0.001) had a similar correlation between discharge and BP (β = 0.43, p < 0.001) and a higher correlation between temperature and BP (β = 0.60, p < 0.001). In this variable habitat, BP showed strong spatial and seasonal patterns across several sites and over longer time periods.

I-8 outlet BP was consistently higher than the inlet of I-8, but both the inlet and the outlet responded synchronously during most summer seasons (**Fig. 2.6**). In 2003, UV absorbance by DOM, an indicator of the extent of photo-degradation (Moran and Covert 2003), increased with the first summer rain event indicating freshly exposed DOM from terrestrial habitats. The BP initially increased along with UV absorbance; however, later storm events were accompanied by smaller increases in BP despite continued high UV absorbance of DOM (**Fig. 2.6**). Temperature was colder during these later rain events, and consequently temperature may have constrained the bacterial response at Lake I-8 in the later part of the season.

Data from three sampling surveys performed on lakes across the larger catchment also indicate that bacteria probably switched from carbon limitation in the early season to temperature limitation later in the season in 2003, but this pattern varied annually. Across the I-series catchment, path analysis (**Fig. 2.7**) of BP, temperature, DOC, and chl in all the lakes and inlet sites showed both a direct effect of temperature on BP and an indirect effect of temperature on BP through chl. The DOC concentrations were not statistically significant in our model for any of the sample sets examined (data not shown), and it is likely that chl reflects the labile portion of the DOC pool in our system. In 2003, 2004, and 2006, BP in the entire catchment correlated with chl in the early season (late June) before the first rain event ($\beta = 0.69$, **Table 2.4**). Later in the summer of 2003, temperature was the strongest correlate for BP ($\beta = 0.41$, **Table 2.4**), verifying that the patterns observed at Lake I-8 (**Fig. 2.6**) were synchronous across the larger

catchment. For the data set "all", the indirect pathway of temperature to chl to BP is statistically significant, as is the model as a whole (**Table 2.4**). However, separating lake and stream inlet sites into early, mid, and late summer seasons as well as by year indicates that the direct effect of temperature on BP is usually greater than the indirect effect through chl. Additionally, the beta coefficient for the direct effect of temperature on BP has a weak inverse correlation with temperature range among all sites in each of the I-series samplings, similar to the trend of higher Q_{10} at lower *in situ* temperatures. While the pattern of early season carbon limitation holds across several years, the strength of correlation of temperature with BP varies seasonally and annually in the Iseries catchment.

Discussion

Both field and laboratory experiments indicate variability in the temperature control on bacterial activity during the ice-free summer. Temperature dependence of BP (leucine incorporation) was directly measured with Q_{10} values greater than 1. However, despite the general indication of temperature limitation, the range in Q_{10} was quite large (**Fig. 2.1**) and varied both spatially and temporally. Such variation is commonly found; for example, Rivkin et al. (1996) calculated an average Q_{10} of 1.5 in a literature review of aquatic bacterial specific growth rate, while Bussmann (1999) measured a Q_{10} of 4.8 for leucine incorporation rate of arctic bacteria. Atkin and Tjoelker (2003) found that the Q_{10} of plant respiration decreases with increases in measurement temperature across biomes. They explained this difference across biomes as enzymatic capacity impacting temperature response at low temperature, and substrate supply constraining Q_{10} at higher temperatures. Shiah and Ducklow (1994) found temperature limitation to be more important than substrate limitation for specific growth rate of estuarine bacteria in colder (non-summer) seasons, with a high Q_{10} of 2.72. Similarly, Bridgeman et al. (2000) found that substrate supply of DOM constrained bacterial production at high temperatures, and that the quality of DOM, which influences enzymatic capacity, constrained BP at low temperatures. However, it is also possible that there is an enzymatic capacity of the entire community, where different populations adapted to processing different biochemical compounds (i.e., quality of DOM) comprise a range of capacity to enzymatically degrade DOM. In this case, shifts in community composition would be consistent with shifts in the enzymatic capacity of individuals or populations, and could explain the spatial and temporal variation in Q_{10} that I observed.

The spatial variation in Q_{10} was characterized by a negative relationship of Q_{10} with *in situ* temperature (**Fig. 2.1**, $r^2 = 0.41$; p = 0.12). This higher Q_{10} at lower temperature has been found in growth rates of estuarine bacteria (Hoch and Kirchman 1993) and is consistent with studies showing that cold-grown plants acclimatize with higher Q_{10} values (Atkin et al. 2005), and that soil respiration acclimatizes to warmer temperatures with lower Q_{10} values (Luo et al. 2001). This temperature acclimatization is analogous to changes in Q_{10} caused by shifts in bacterial communities with different enzymatic capacities, such as populations of psychrophilic or psychrotolerant bacteria. Populations also likely differ in optimal pH, which may explain the strong positive relationship between pH and Q_{10} . Therefore, the differences I observed in Q_{10} could be attributed to the differences I measured in bacterial community composition at different sites. For example, the Q_{10} at I-8 inlet was the highest (2.9) and had the lowest *in situ* temperature, while at I-8 outlet the Q_{10} was 1.5 and had one of the highest *in situ*

temperatures (**Fig. 2.1**). Furthermore, these two sites had very low community similarity at the time of measurement (18%) and, in fact, the bacterial communities at these two sites are consistently different and had a mean similarity of only 42% during the 2003 summer season.

The variation in bacterial response to temperature was seen not only among sites in environmental samples, but also within communities incubated at different temperatures. Multiple temperature optima developing within the same community indicate the presence of both psychrophilic and psychrotolerant bacteria within the initial community. This suggests that the inoculated bacterial populations best adapted to incubation temperatures out-compete other populations via increased growth. In both regrowth temperature experiments, the 12 and 20 °C treatments developed the highest BP relative to other incubation temperatures (**Figs. 2.2** and **2.3**). Since psychrophilic bacteria have optimal temperatures < 15 °C and maximal temperatures of < 20 °C (Morita 1975), the populations with optimal growth in our experiment of 12 °C can be characterized as psychrophilic and the populations, the relative dominance of psychrophilic and psychrotolerant. Under field conditions, the relative dominance of psychrophilic and psychrotolerant bacteria is likely to shift continuously toward the group whose optimal temperatures are closest to current water temperature, with BP shifting accordingly.

The DNA evidence also indicates shifts in dominance by different bacterial populations at different temperatures. Bacterial community fingerprints changed after incubation at different temperatures, within the relatively short time scale of five days. In both the temperature re-growth experiment at 8, 12, 16, and 20 °C (**Fig. 2.4**) and the incubations at 2, 12, and 25 °C (**Fig. 2.5**), populations shifted in dominance and the

community as a whole shifted in levels of productivity. There was no clear relationship between the total number of bands ("taxonomic diversity") and temperature. However, some OTUs in the community fingerprinting analysis (**Table 2.2**) were only present at certain temperatures, which indicate that certain OTUs in the community can only reach PCR-detectable levels when held at a constant low or high temperature.

The competitive interactions of psychrophilic and psychrotolerant groups of bacteria in response to temperature affect productivity because the groups have different levels of activity dependent on temperature. Bennet and Lenski (1997) found that E. coli acclimated at different temperatures were competitively superior at the temperature at which the bacterial populations had evolved. Rutter and Nedwell (1994) found that two psychrotolerant bacterial species differed in the rate of their response to changing temperature, with *Brevibacterium* sp. responding rapidly and *Hydrogenophaga pseudoflava* showing a time lag in growth after a temperature change. Under steady temperature conditions, or slow shifts in temperature, H. pseudoflava was able to outcompete the Brevibacterium, while Brevibacterium performed best when temperatures changed dramatically. This suggests that competition between psychrophilic and psychrotolerant bacteria may also be affected by the rates of temperature changes, not just the mean daily water temperature. Upton et al. (1990) also found that stable versus fluctuating temperatures could control the outcome of bacterial competition in Antarctic lake sediments, with greater diversity occurring under fluctuating temperatures. Using laboratory-bred *E. coli*, Cooper et al. (2001) found that cold-adapted bacteria did poorly when moved to higher temperatures, but that warmer-adapted bacteria did not suffer the same relative decrease when moved to colder temperatures. This implies that

psychrophilic bacteria are worse off at higher temperatures than psychrotolerant bacteria are at lower temperatures, potentially giving psychrotolerant bacteria the competitive edge during times when temperatures are warmer. Fluctuating temperatures, then, may allow the persistence of both types of bacteria.

In the field, bacterial communities are subject to daily changes in temperature as well as frequent changes in stream flow, which carries DOM and nutrients from upstream. At Toolik Inlet, both temperature and discharge were significantly related to BP for the path analysis of 2003-2006, even though all four years had very different temperature and storm event patterns (**Table 2.3**). Path analysis is useful for distinguishing between direct and indirect effects (Wright 1934) and standardized regression correlation coefficients (β) can be compared in different paths of effect within a specified model (e.g. **Fig. 2.7**) from driver to response variable. The path analysis (Table 4) showed that discharge had a larger effect (β coefficient = 0.45) than water temperature ($\beta = 0.25$) on BP, although the effect of discharge may be due to drivers of BP that co-vary with discharge such as DOM and nutrients. These results were similar to those found at Lake I-8 inlet and outlet, where path analysis of discharge, water temperature, and BP showed a strong correlation ($\beta = 0.60$) of water temperature and BP, probably related to consistent differences in temperature between the inlet and outlet of the lake.

Even though temperature was related to BP over all sites over all years, the specific response of sites varied from year to year. This variation is probably due to interactions of temperature with carbon availability, although nutrient availability, viral lysis, or grazing could also be important differences between sites. For example, at Lake

I-8 in the summer of 2003, bacterial production increased as DOM entered the system early in the summer when water temperatures were warm (Fig. 2.6). However, DOM absorbance (i.e., freshness or quality) remained high later in the summer but BP dropped; it appears that lower water temperatures during late summer storm events constrained the bacterial response to the available DOM by reducing the ability of bacteria to take up substrates. The impact of DOM quality on BP can also depend on the source and prior processing of DOM upslope (Judd et al. 2007), and the quality of DOM may vary among different storm events. In experiment B, the magnitude of response in BP at 12 and 20 °C in different DOM treatments may be due to differences in DOM absorbance or other unmeasured differences in DOM (Fig. 2.3), although replication would be needed to confirm this effect. Despite this potential variation, similar interactions between temperature and carbon limitation have been observed elsewhere. Rivkin et al. (1996) found empirical evidence of an inverse relationship between temperature and carbon limitation in a meta-analysis, and I found alternation of temperature and chl (a proxy for algal carbon source) as a significant effect on seasonal differences in BP within the path analysis. Kirschner and Velimirov (1997) also found that temperature and chl explained 69% of the seasonal variation in BP in the Danube River. Temperature and DOC accounted for 50% of the bacterial growth rate in the Greenland Sea (Middelboe and Lundsgaard 2003), and were correlated with bacterial abundance in the N. Adriatic Sea (Paoli et al. 2006). It is clear that both temperature and carbon are important controls of BP at individual sites in natural ecosystems.

The interaction between temperature and carbon limitation I observed at the individual site Lake I-8 was found also in all I-series streams and lakes in summer 2003

(**Table 2.4**). Summer rain events flush terrestrial carbon subsidies into the aquatic system, and because from 2003 to 2006 there was low flow (and warm water temperature) in the early summer season, BP was likely constrained by carbon availability; this was indicated by positive correlations of BP with chl (which reflects the labile portion of the DOC pool in our system; **Table 2.4**). Later in the summer, air and water temperatures often decline with rain events, and thus temperature constrains the metabolic activity of the bacteria and limits the response of BP to terrestrial carbon subsidies supplied by rain events. However, the pattern of a strong shift to temperature limitation late in the summer season was seen only in 2003, perhaps because this was the wettest and coolest year of the study and thus provided the strongest contrasts between potential temperature versus carbon limitation.

The variable effect of temperature on BP seen in the field results over all years may be due to (1) variation in chl, (2) the range of water temperature, or (3) differences in community composition among sites. The control by temperature across the catchment was indicated directly by correlations of temperature with BP and indirectly through chl. The indirect effect of temperature on BP through chl appears to be driven by results from stream sampling sites, where direct effects of temperature on chl were higher and statistically significant (**Table 2.4**). This correlation could be due to the covariance of temperature and light levels (through storms and cloudiness), and light is well known to impact algal productivity and autochthonous DOM in streams (Dodds 2007). However, the indirect effect for the pathway from temperature to BP was usually weak (beta values < 0.2), and stronger direct pathways from temperature to BP and chl to BP were more common.

The second possible explanation for the variation in control by temperature on BP may be related to the range of water temperature. Higher beta values for the direct effect of temperature on BP were calculated during time periods when catchment surface waters had lower ranges in temperature. More stable water temperatures would allow bacterial populations and communities time to respond physiologically to the current water temperature. This increased impact of temperature on BP during periods of more stable temperature is consistent in effect to the inverse relationship between Q_{10} and *in situ* temperature observed at Lake I-8 and Toolik Inlet. Storm events tend to have both less variable and lower temperatures, suggesting that the variation in trade-off between carbon versus temperature limitation may be due to the timing and magnitude of storm events.

Finally, I have shown that bacterial communities vary at sites across the catchment, and that different communities respond differentially to temperature. For example, community similarities among all sites in the catchment during July 2003 ranged from 23 to 95% and averaged 61% (see also (Crump et al. 2007)). The variation in communities reflects distances between sites as well as the degree of hydrologic connectivity and habitat similarity (Crump et al. 2007). As indicated by the laboratory experiments discussed above, bacterial communities shift when temperature changes, and the new communities may have either higher or lower BP depending on the specific community optimum (**Figs. 2.2, 2.3**). This interaction between temperature, community composition, and activity optima may partially explain the fact that the strong temperature dependence of BP measured in our lab experiments was weaker and more variable in the field observations.

The impact of temperature on bacteria community composition and activity has implications for the response to climate warming in the Arctic. If air temperatures increase 5 °C, lake temperatures are predicted to increase \sim 3 °C and the ice-free season to lengthen by seven weeks (Hobbie et al. 1999). Warmer, more stable temperature conditions would decrease the predominance of psychrophiles during the summer season and psychrotolerant bacteria may become dominant. However, psychrophilic marine bacteria have been shown to have enhanced heat tolerance at 17 °C under starvation conditions (Preyer and Oliver 1993), a possible mechanism of psychrophilic persistence in oligotrophic waters during conditions which should favor psychrotolerant bacteria. A shift to more psychrotolerant bacteria does not necessarily mean higher overall activity, because moderate warming of surface waters may depress psychrophilic activity but temperatures could still be too low for optimal activity of psychrotolerant bacteria as seen by the bi-modal responses in our temperature re-growth experiments. In other words, a shift of the average water temperature in aquatic habitats from 12 to 16 °C may actually result in lower bacterial activity (see Figs. 2.2, 2.3). This emphasizes the central role of shifts in bacterial community composition and their interactions with temperature in determining rates of activity in natural bacterial communities.

Conclusions

Temperature controls on aquatic bacteria are more complex than previously thought due to the interactions of changing temperature and rapid shifts in community composition. I found seasonal temperature limitation of bacterial activity across several spatial scales as well as multiple temperature optima of populations within bacterial communities. In addition, temperature plays a key role controlling bacterial community

dynamics because composition shifts rapidly with changing temperature. These shifts occur at ecologically relevant time scales (days), and bacterial community characteristics will ultimately constrain the potential bacterial production resulting from increasing temperatures or from changes in temperature variability.

Acknowledgements

A modified version of this chapter has been submitted to Environmental Microbiology. I thank Jen Kostrzewski, Jessica Spence, Maria Dzul, Amy Anstead, Chris Crockett, Amanda Field, Chris Wallace, Julie Allen, Brad Bate, Laura Brosius, Elizabeth Graham, Mike Kendrick, Luke Loken, Brendan O'Donnell, Caren Scott, Tyler Suelter and Lauren Yelen for help in the field. Jude Apple, Mary Anne Evans, Mark Brahce, Marcus Gay, Kristi Judd, Erica Kiss, Molly Marvel, Suzanne Randazzo, and Ian Washbourne, assisted in the laboratory. I also thank John Hobbie for valuable comments on this manuscript.

Research was performed at University of Alaska Fairbanks' Toolik Lake Research Station and DNA analyses were performed at University of Maryland Center for Environmental Sciences Horn Point Laboratory. Funding was provided by NSF-DEB 0639805, 0423385, 981022 and NSF-OPP 9911278, and by the University of Michigan (Rackham, Dept. of EEB, and Helen Olsen Brower Endowed Fellowship). The United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program provided partial funding to H. E. Adams. The EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA.

Tables

Table 2.1. ANOVA results from community similarity of samples from Figure 5. Community samples were scored as having either the same or different experimental conditions as their comparison samples (dummy variables). Similarity values used to create Figure 5 were then compared to the commonalities in conditions between samples. Starting community indicates whether or not both samples were collected at the inlet or at the outlet of Toolik Lake. Incubation temperature indicates if compared samples were both incubated at 2, 12, or 20 °C. The DOM source category indicates if both samples were incubated in 0.2µm-filtered DOM collected from the same site.

Between-Subjects Factors			
		Value Label	N
Starting Community	0	different	40
	1	same	33
Incubation Temperature	0	different	49
	1	same	24
DOM source	0	different	40
	1	same	33

Tests of Between-Subjects Effects

Dependent Variable: Ending community similarity

	Type III Sum of		Mean				
Source	Squares	df	Square	<u>F</u>	<u>Sig.</u>		
Corrected Model	1.36	6	0.23	23.49	0.00		
Intercept	19.9	1	19.9	2060	0.00		
Starting Community	1.02	1	1.02	105.8	0.00		
Incubation Temperature	0.22	1	0.22	23.14	0.00		
DOM source	< 0.01	1	< 0.01	0.02	0.89		
Community * Temperature	0.02	1	0.02	1.67	0.20		
Community * DOM source	< 0.01	1	< 0.01	0.01	0.94		
Temperature * DOM source	< 0.01	1	< 0.01	0.02	0.89		
Error	0.64	66	0.01				
Total	23.34	73					
Corrected Total	1.99	72					
	R Squared = $.681$ (Adjusted R Squared = $.652$)						

Table 2.2. Number of unique OTUs found only at certain temperatures. The DGGE bands are from samples incubated for five days at 2, 12, and 25 °C, out of 79 total identified bands (OTUs).

Temperature	# bands
Only at 2 °C	4
2 and 12 °C	8
Only at 12 °C	7
12 and 25 °C	12
Only at 25 °C	6
All temperatures	6

Table 2.3. Stream discharge and water temperature of Toolik Inlet from the ice-free summer season, generally measured from 15 June to 20 August except 20 June to 16 August in 2003 and 21 June to 16 August in 2004.

	Water temperature (°C)				Stream discharge (m ³ /sec)			
Year	Minimum	Mean	Maximum	Minimum	Mean	Maximum		
2003	4.6	9.6	19.3	0.04	1.65	9.01		
2004	6.8	12.2	18.7	0.12	1.24	7.03		
2005	5.0	11.2	18.9	0.02	0.31	3.22		
2006	4.6	10.7	14.7	0.18	0.86	3.33		
2007	8.3	12.9	18.8	0.01	0.31	2.83		

Table 2.4. Path analysis results with asterisks indicating p-values: ***<0.001, **<0.01, and *<0.05. Sample set "All" includes data from all I-series sampling from 2003-2006. Early, mid, and late season samples were split by month of collection date (June, July, or August). Standardized regression weights are equivalent to the standardized total and direct effects for temperature to chl, and chl to BP, while temperature to BP is only the direct effect. The indirect effects are for temperature to BP via chl. The DOC concentration was included in the model, but was not statistically significant for the sample sets analyzed.

				Standardized regression weights, p-value						
Sample set	n	X ²	p-value	Temp => Chl a		Chl a => BP		Temp=> BP		Indirect effects
all	283	46.848	***	0.280	***	0.247	***	0.009	0.884	0.069
all, lakes	120	18.785	***	-0.095	0.302	-0.002	0.98	-0.187	*	0.000
all, streams	163	27.583	***	0.396	***	0.181	*	0.12	0.142	0.072
all, early	93	12.993	**	-0.111	0.284	0.342	***	0.204	*	-0.038
all, mid	96	17.197	***	0.487	***	0.404	***	-0.189	0.085	0.196
all, late	94	8.842	*	0.493	***	0.119	0.312	-0.031	0.795	0.059
2003	70	3.638	0.162	0.308	**	0.468	***	0.169	0.111	0.052
2003, early	23	2.901	0.235	-0.173	0.411	0.694	***	0.276	0.062	-0.032
2003, mid	24	8.058	*	0.614	***	0.461	*	0.320	0.074	0.283
2003, late	23	0.471	0.790	0.370	0.062	0.317	0.066	0.406	*	0.117
2004	72	35.164	***	0.429	***	0.475	***	0.051	0.650	0.204
2004, early	24	1.906	0.386	0.308	0.121	0.543	**	0.010	0.956	0.167
2004, mid	24	6.514	*	0.620	***	0.264	0.233	0.335	0.130	0.093
2004, late	24	5.739	0.057	0.566	**	0.474	*	-0.066	0.770	0.142
2005	69	10.679	**	0.065	0.593	0.051	0.643	0.418	***	0.003
2005, early	22	5.843	0.054	0.105	0.630	0.037	0.855	0.281	0.163	0.004
2005, mid	24	4.557	0.102	0.512	**	0.123	0.573	0.280	0.199	0.063
2005, late	23	8.384	**	0.059	0.781	-0.123	0.541	0.145	0.472	-0.007
2006	72	1.024	0.599	0.134	0.257	0.190	0.091	0.277	*	0.026
2006, early	24	1.699	0.428	-0.021	0.921	0.483	**	0.266	0.119	-0.004
2006, mid	24	0.942	0.624	0.100	0.638	0.023	0.898	0.465	**	0.001
2006, late	24	2.406	0.300	0.564	**	-0.081	0.741	0.220	0.371	-0.046

Figures

Figure 2.1. Bacterial Q_{10} versus in situ collection temperature, $R^2 = 0.41$, p=0.12. Values of Q_{10} greater than 1 indicate temperature control of leucine incorporation. Error bars are +/- 1 standard error (SE, N=6, N=7 for 15 July 2005 sample), calculated from replicates of different temperature pairs within a Q_{10} measurement. SE is not calculated for I-8 inlet and I-8 outlet Q_{10} which were based on two incubation temperatures.

Figure 2.2. Bacterial production versus temperature from Toolik Inlet samples incubated at different temperatures in Experiment A. Bars indicate standard deviation of three replicates of each treatment. Letters indicate significantly different means via independent samples t-tests (p < 0.05).

Figure 2.3. Bacterial production versus temperature from Toolik Inlet and Outlet samples incubated at different temperatures in Experiment B. Initial collection temperatures at Toolik Inlet and Outlet were 14.2 and 15.9 °C, respectively, with a daily range 13.3 to 16.7 °C at the inlet.

Figure 2.4. Non-metric multi-dimensional scaling (MDS) of Toolik Inlet DGGE community fingerprints from post-incubation samples held at different temperatures from Experiment A. Proximity of samples indicates a higher degree of community similarity as indicated by overlap in OTUs determined by the DGGE banding patterns of PCR amplified products from 16S rRNA genes. Normalized Raw Stress = 0.0265.

Figure 2.5. Non-metric MDS of DGGE community similarity from Experiment C. Proximity of samples indicates a higher degree of community similarity as indicated by the banding patterns of OTUs. Closed symbols designate samples where bacterial communities were given DOM from their source habitat and open symbols designate samples with a DOM source from the opposite site. Black symbols indicate bacterial communities from Toolik Inlet and grey from Toolik Outlet. Normalized Raw Stress = 0.02054.

Figure 2.6. Top panel: DOM UV absorbance at I-8 inlet and BP at I-8 inlet and outlet in 2003. Bottom panel: Stream discharge and water temperature at Toolik Inlet in 2003.

Figure 2.7. Path model for I-series lakes in summers 2003-2006. Boxes indicate variables and circles are error terms associated with endogenous variables. Straight arrows indicate presumed causal relationships.

Appendix

Appendix 2.A. Map of stream sampling locations in the Toolik Lake and I-series catchment in Northern Alaska (modified from (Kling et al. 2000)).

Literature Cited

- Almeida, M. A., M. A. Cunha, and F. Alcantara. 2001. Factors influencing bacterial production in a shallow estuarine system. Microbial Ecology **42**:416-426.
- Almeida, M. A., M. A. Cunha, and J. M. Dias. 2007. Bacterial productivity distribution during a rainy year in an estuarine system. Microbial Ecology **53**:208-220.
- Atkin, O. K., D. Bruhn, and M. G. Tjoelker. 2005. Response of Plant Respiration to Changes in Temperature: Mechanisms and Consequences of Variation in Q10 values and Acclimation.*in* H. Lambers and M. Ribas-Carbo, editors. Plant Respiration: From Cell to Ecosystem. Springer, Dordrecht.
- Atkin, O. K. and M. G. Tjoelker. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science **8**:343-351.
- Bakermans, C., H. L. Ayala-del-rio, M. A. Ponder, T. Vishnivetskaya, D. Gilichinsky, M.
 F. Thomashow, and J. M. Tiedje. 2006. Psychrobacter cryohalolentis sp nov and Psychrobacter arcticus sp nov., isolated from Siberian permafrost. International Journal of Systematic and Evolutionary Microbiology 56:1285-1291.
- Bennett, A. F. and R. E. Lenski. 1997. Evolutionary adaptation to temperature .6. Phenotypic acclimation and its evolution in Escherichia coli. Evolution **51**:36-44.
- Bowman, J. P., S. A. McCammon, M. V. Brown, D. S. Nichols, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Applied and Environmental Microbiology 63:3068-3078.
- Bridgeman, T. B., C. D. Wallace, G. S. Carter, R. Carvajal, L. C. Schiesari, S. Aslam, E. Cloyd, D. Elder, A. Field, K. L. Schulz, P. M. Yurista, and G. W. Kling. 2000. A Limnological Survey of Third Sister Lake, Michigan with Historical Comparisons. Journal of Lake and Reservoir Management 16:253-267.
- Bussmann, I. 1999. Bacterial utilization of humic substances from the Arctic Ocean. Aquatic Microbial Ecology **19**:37-45.
- Chapin, F. S., G. R. Shaver, A. E. Giblin, K. J. Nadelhoffer, and J. A. Laundre. 1995. Responses of Arctic Tundra to Experimental and Observed Changes in Climate. Ecology **76**:694-711.
- Connelly, T. L., C. M. Tilburg, and P. L. Yager. 2006. Evidence for psychrophiles outnumbering psychrotolerant marine bacteria in the springtime coastal Arctic. Limnology and Oceanography 51:1205-1210.
- Cooper, V. S., A. F. Bennett, and R. E. Lenski. 2001. Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution 55:889-896.
- Crump, B. C., H. E. Adams, J. E. Hobbie, and G. W. Kling. 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology **88**:1365-1378.
- Crump, B. C. and J. E. Hobbie. 2005. Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnology and Oceanography **50**:1718-1729.
- Crump, B. C., G. W. Kling, M. Bahr, and J. E. Hobbie. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Applied and Environmental Microbiology 69:2253-2268.

- D'Amico, S., T. Collins, J. C. Marx, G. Feller, and C. Gerday. 2006. Psychrophilic microorganisms: challenges for life. Embo Reports **7**:385-389.
- Danovaro, R. and M. Fabiano. 1995. Seasonal and Interannual Variation of Bacteria in a Seagrass Bed of the Mediterranean-Sea - Relationship with Labile Organic-Compounds and Other Environmental-Factors. Aquatic Microbial Ecology 9:17-26.
- Dodds, W. K. 2007. Trophic state, eutrophication and nutrient criteria in streams. Trends in Ecology & Evolution 22:669-676.
- Ducklow, H., C. Carlson, and W. Smith. 1999. Bacterial growth in experimental plankton assemblages and seawater cultures from the Phaeocystis antarctica bloom in the Ross Sea, Antarctica. Aquatic Microbial Ecology **19**:215-227.
- Feller, G., J. L. Arpigny, E. Narinx, and C. Gerday. 1997. Molecular adaptations of enzymes from psychrophilic organisms. Comparative Biochemistry and Physiology a-Physiology 118:495-499.
- Findlay, S. 2003. Bacterial Response to Variation in Dissolved Organic Matter. *in S.* Findlay and R. L. Sinsabaugh, editors. Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier Science, San Diego Academic Press.
- Foreman, C. M. and J. S. Covert. 2003. Linkages between DOM composition and bacterial community structure.*in* S. Findlay and R. L. Sinsabaugh, editors. Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier Science, San Diego Academic Press.
- Freese, H. M., U. Karsten, and R. Schumann. 2006. Bacterial abundance, activity, and viability in the Eutrophic River Warnow, Northeast Germany. Microbial Ecology 51:117-127.
- Friedrich, U., M. Schallenberg, and C. Holliger. 1999. Pelagic bacteria-particle interactions and community-specific growth rates in four lakes along a trophic gradient. Microbial Ecology 37:49-61.
- Gurung, T. B. and J. Urabe. 1999. Temporal and vertical difference in factors limiting growth rate of heterotrophic bacteria in Lake Biwa. Microbial Ecology **38**:136-145.
- Hessen, D. O., K. Nygaard, K. Salonen, and A. Vahatalo. 1994. The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakes. Environment International **20**:67-76.
- Hobbie, J. E., editor. 1980. Limnology of Tundra Ponds. Dowden, Hutchinson & Ross.
- Hobbie, J. E., B. J. Peterson, N. Bettez, L. Deegan, W. J. O'Brien, G. W. Kling, G. W. Kipphut, W. B. Bowden, and A. E. Hershey. 1999. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Research 18:207-214.
- Hoch, M. P. and D. L. Kirchman. 1993. Seasonal and Interannual Variability in Bacterial Production and Biomass in a Temperate Estuary. Marine Ecology-Progress Series 98:283-295.
- Huston, A. L., B. B. Krieger-Brockett, and J. W. Deming. 2000. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environmental Microbiology **2**:383-388.

- Judd, K. E., B. C. Crump, and G. W. Kling. 2006. Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068-2079.
- Judd, K. E., B. C. Crump, and G. W. Kling. 2007. Bacterial responses in activity and community composition to photo-oxidation of dissolved organic matter from soil and surface waters. Aquatic Sciences 69:96-107.
- Kirchman, D. L. 1992. Incorporation of Thymidine and Leucine in the Sub-Arctic Pacific - Application to Estimating Bacterial Production. Marine Ecology-Progress Series 82:301-309.
- Kirchman, D. L., R. R. Malmstrom, and M. T. Cottrell. 2005. Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep-Sea Research Part Ii-Topical Studies in Oceanography 52:3386-3395.
- Kirchman, D. L. and J. H. Rich. 1997. Regulation of bacterial growth rates by dissolved organic carbon and temperature in the equatorial Pacific Ocean. Microbial Ecology 33:11-20.
- Kirschner, A. K. T. and B. Velimirov. 1997. A seasonal study of bacterial community succession in a temperate backwater system, indicated by variation in morphotype numbers, biomass, and secondary production. Microbial Ecology **34**:27-38.
- Kling, G. W., G. W. Kipphut, M. M. Miller, and W. J. O'Brien. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology **43**:477-497.
- Kottmeier, S. T. and C. W. Sullivan. 1988. Sea Ice Microbial Communities (Simco) .9. Effects of Temperature and Salinity on Rates of Metabolism and Growth of Autotrophs and Heterotrophs. Polar Biology **8**:293-304.
- Lindstrom, E. S. and A. K. Bergstrom. 2004. Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time. Limnology and Oceanography 49:125-136.
- Longnecker, K., B. F. Sherr, and E. B. Sherr. 2006. Variation in cell-specific rates of leucine and thymidine incorporation by marine bacteria with high and with low nucleic acid content off the Oregon coast. Aquatic Microbial Ecology **43**:113-125.
- Luo, Y. Q., S. Q. Wan, D. F. Hui, and L. L. Wallace. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature **413**:622-625.
- MacIntyre, S., J. O. Sickman, S. A. Goldthwait, and G. W. Kling. 2006. Physical pathways of nutrient supply in a small, ultraoligotrophic arctic lake during summer stratification. Limnology and Oceanography **51**:1107-1124.
- McKnight, D. M., R. L. Smith, R. A. Harnish, C. L. Miller, and K. E. Bencala. 1993. Seasonal Relationships between Planktonic Microorganisms and Dissolved Organic Material in an Alpine Stream. Biogeochemistry **21**:39-59.
- McMeekin, T. A. and P. D. Franzmann. 1988. Effect of Temperature on the Growth-Rates of Halotolerant and Halophilic Bacteria Isolated from Antarctic Saline Lakes. Polar Biology **8**:281-285.
- Middelboe, M. and C. Lundsgaard. 2003. Microbial activity in the Greenland Sea: role of DOC lability, mineral nutrients and temperature. Aquatic Microbial Ecology **32**:151-163.
- Moran, M. A. and J. S. Covert. 2003. Photochemically mediated linkages between dissolved organic matter and bacterioplankton. Pages 243-262. *in* S. E. G. Findlay

and R. L. Sinsabaugh, editors. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, San Diego.

- Morita, R. Y. 1975. Psychrophilic Bacteria. Bacteriological Reviews 39:144-167.
- Nedwell, D. B. 1999. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. Fems Microbiology Ecology **30**:101-111.
- O'Brien, W. J., M. Bahr, A. E. Hershey, J. E. Hobbie, G. W. Kipphut, G. W. Kling, H. Kling, M. McDonald, M. C. Miller, P. Rublee, and J. R. Vestal. 1997. The Limnology of Toolik Lake.*in* A. M. Milner and M. W. Oswood, editors. Freshwaters of Alaska: Ecological Syntheses. Springer, New York.
- Obrien, W. J., A. E. Hershey, J. E. Hobbie, M. A. Hullar, G. W. Kipphut, M. C. Miller, B. Moller, and J. R. Vestal. 1992. Control mechanisms of arctic lake ecosystems -A limnocorral experiment. Hydrobiologia 240:143-188.
- Ogilvie, B. G., M. Rutter, and D. B. Nedwell. 1997. Selection by temperature of nitratereducing bacteria from estuarine sediments: Species composition and competition for nitrate. Fems Microbiology Ecology **23**:11-22.
- Panzenbock, M., B. Mobes-Hansen, R. Albert, and G. J. Herndl. 2000. Dynamics of phyto- and bacterioplankton in a high Arctic lake on Franz Joseph Land archipelago. Aquatic Microbial Ecology 21:265-273.
- Paoli, A., P. Del Negro, and S. F. Umani. 2006. Temporal variability in bacterioplanktonic abundance in coastal waters of the Northern Adriatic Sea. Chemistry and Ecology 22:93-103.
- Pettersson, M. and E. Baath. 2003. The rate of change of a soil bacterial community after liming as a function of temperature. Microbial Ecology **46**:177-186.
- Pomeroy, L. R. and W. J. Wiebe. 2001. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology **23**:187-204.
- Preyer, J. M. and J. D. Oliver. 1993. Starvation-Induced Thermal Tolerance as a Survival Mechanism in a Psychrophilic Marine Bacterium. Applied and Environmental Microbiology 59:2653-2656.
- Ram, A. S. P., D. Boucher, T. Sime-Ngando, D. Debroas, and J. C. C. Romagoux. 2005. Phage bacteriolysis, protistan bacterivory potential, and bacterial production in a freshwater reservoir: Coupling with temperature. Microbial Ecology 50:64-72.
- Rivkin, R. B., M. R. Anderson, and C. Lajzerowicz. 1996. Microbial processes in cold oceans .1. Relationship between temperature and bacterial growth rate. Aquatic Microbial Ecology 10:243-254.
- Rublee, P. A. 1992. Community Structure and Bottom-up Regulation of Heterotrophic Microplankton in Arctic Lter Lakes. Hydrobiologia **240**:133-141.
- Russell, N. J. 2000. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles **4**:83-90.
- Rutter, M. and D. B. Nedwell. 1994. Influence of Changing Temperature on Growth-Rate and Competition between 2 Psychrotolerant Antarctic Bacteria - Competition and Survival in Non-Steady-State Temperature Environments. Applied and Environmental Microbiology 60:1993-2002.
- Sherr, E. B., B. F. Sherr, and T. J. Cowles. 2001. Mesoscale variability in bacterial activity in the Northeast Pacific Ocean off Oregon, USA. Aquatic Microbial Ecology 25:21-30.

- Shiah, F. K. and H. W. Ducklow. 1994. Temperature and Substrate Regulation of Bacterial Abundance, Production and Specific Growth-Rate in Chesapeake Bay, USA. Marine Ecology-Progress Series 103:297-308.
- Simon, M. and C. Wunsch. 1998. Temperature control of bacterioplankton growth in a temperate large lake. Aquatic Microbial Ecology **16**:119-130.
- Sommaruga, R. and D. Conde. 1997. Seasonal variability of metabolically active bacterioplankton in the euphotic zone of a hypertrophic lake. Aquatic Microbial Ecology **13**:241-248.
- Tison, D. L., D. H. Pope, and C. W. Boylen. 1980. Influence of Seasonal Temperature on the Temperature Optima of Bacteria in Sediments of Lake George, New-York. Applied and Environmental Microbiology **39**:675-677.
- Upton, A. C., D. B. Nedwell, and D. D. Wynnwilliams. 1990. The Selection of Microbial Communities by Constant or Fluctuating Temperatures. Fems Microbiology Ecology **74**:243-252.
- Vadstein, O. 2000. Heterotrophic, planktonic bacteria and cycling of phosphorus -Phosphorus requirements, competitive ability, and food web interactions. Pages 115-167 Advances in Microbial Ecology, Vol 16. Kluwer Academic / Plenum Publ, New York.
- Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J. M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman, and L. De Meester. 2007. The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences of the United States of America 104:20404-20409.
- Van Wambeke, F., J. F. Ghiglione, J. Nedoma, G. Mevel, and P. Raimbault. 2009. Bottom up effects on bacterioplankton growth and composition during summerautumn transition in the open NW Mediterranean Sea. Biogeosciences **6**:705-720.
- Vrede, K. 2005. Nutrient and temperature limitation of bacterioplankton growth in temperate lakes. Microbial Ecology **49**:245-256.
- White, P. A., J. Kalff, J. B. Rasmussen, and J. M. Gasol. 1991. The Effect of Temperature and Algal Biomass on Bacterial Production and Specific Growth-Rate in Fresh-Water and Marine Habitats. Microbial Ecology 21:99-118.
- Wiebe, W. J., W. M. Sheldon, and L. R. Pomeroy. 1992. Bacterial-growth in the cold evidence for an enhanced substrate requirement. Applied and Environmental Microbiology 58:359-364.
- Wright, S. 1934. The method of path coefficients. Annals of Mathematical Statistics **5**:161-215.
- Yager, P. L. and J. W. Deming. 1999. Pelagic microbial activity in an arctic polynya: Testing for temperature and substrate interactions using a kinetic approach. Limnology and Oceanography 44:1882-1893.

CHAPTER III

Interactions of temperature, nutrients, and community composition as controls on aquatic bacterial productivity

Abstract

Bacterial growth in aquatic habitats is likely to be nutrient limited where there are low temperatures, poor quality dissolved organic matter, and low nutrient supply. In the Arctic, pulses of nutrients flushed from soils in storm events act as important subsidies to oligotrophic lakes and streams. Bacterial nutrient limitation and the potential response of bacteria to storm events was investigated by manipulating both water temperature and inorganic nutrients in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments with samples collected from several arctic streams. Inorganic N and P additions increased bacterial production (¹⁴C-labelled leucine uptake) up to seven times over controls, and warmer incubation temperatures increased the speed of this bacterial response to added nutrients. Bacterial community composition, as indicated by fingerprinting 16S rRNA genes, shifted rapidly in response to changes in incubation temperature and the addition of inorganic nutrients. Bacterial cell number also increased in response to temperature and nutrient manipulations with cell-specific leucine incorporation initially increasing and then declining after two days. While the bacteria in these habitats responded to nutrient pulses with rapid changes in productivity, the water

temperature controlled the speed of metabolic response and affected the resultant change in bacterial community structure.

Introduction

Inorganic nutrient limitation of bacteria can be an important control of productivity in oligotrophic aquatic systems. Inorganic nutrient limitation of bacteria is determined by interactions with other factors including carbon quality, water temperature, and competition with other functional groups, such as primary producers, for shared limiting resources. Bacteria directly compete with primary producers for these nutrients in both organic and inorganic forms in addition to responding to algal C substrates. Cole et al. (1988) concluded that bacterial production in the water column and in sediments is broadly predictable via the supply or standing stock of organic matter. Yet, competition experiments with algae and bacteria show that bacteria can out-compete algae for nutrients at low concentrations (Cole 1982, Currie and Kalff 1984, Cotner and Wetzel 1992). This has led many researchers to assume that bacteria will not be limited by inorganic nutrients in situ (e.g., Kirchman 1994). Nevertheless, nutrient limitation of bacteria has been found in a wide variety of aquatic habitats including wetlands, rivers, lakes, and marine habitats (Morris and Lewis 1992, Mohamed et al. 1998, Waiser 2001, Castillo et al. 2003, Kuosa and Kaartokallio 2003).

Within habitats with substantial allochthonous DOM sources, carbon bioavailability is also likely to influence the degree of bacterial mineralization or nutrient competition between bacteria and algae or among bacterial populations (Jarvinen and Salonen 1998, Bernhardt and Likens 2002). For example, algal carbon is very labile, consisting of amino acids, lipids, carbohydrates, and other compounds easily broken

down and assimilated into bacterial biomass. Algal compounds are stoichiometrically similar to bacteria, while terrestrially-derived carbon has higher C:N and C:P ratios and is structurally more complex. These compounds require more or different extracellular enzymes to be broken down , particularly phenolics (Findlay 2003). The formation of enzymes is costly to bacteria, both energetically and in terms of N and P requirement. Thus, if the available carbon substrate is complex, bacteria may require inorganic nutrients to make the enzymes necessary to access non-algal carbon sources for energy, provided they possess such a capability (Hessen et al. 1994, Gasol et al. 2009).

Temperature is also limiting to bacteria (White et al. 1991, Panzenbock et al. 2000), and can interact with nutrient limitation. Bacterial response to nutrients has been linked to seasonal variations in temperature (Hall et al. 2009, Hoikkala et al. 2009) with degree of nutrient limitation varying with season and water temperature. Additionally, direct testing of temperature and nutrient effects often indicates co-limitation by these factors (Vrede 2005, Mindl et al. 2007, Sawstrom et al. 2007). Separating the effect of temperature and nutrients from their interactive effect is required to examine the relative effects of these drivers on bacterial activity and composition in natural habitats.

Pulsed nutrient supply can cause bacterial nutrient limitation due to the limited ability of bacteria to retain nutrients (Vadstein 2000). Nutrient pulses often occur during storm events. Storm events decouple temperature and nutrients as well as bring in carbon sources from upstream, making it difficult to predict bacterial response. During cold storm events, water temperatures are reduced but inputs of inorganic nutrients and terrestrially-derived DOM are elevated. Additionally, diurnal water temperature ranges at the study site in the Arctic vary at a magnitude similar to that found over the entire

summer season. This high variability of temperature and nutrients diminishes the ability of bacteria to shift to optimal activity for a given resource supply. Examining the effects of temperature and nutrient pulses on the time scale of storm events may allow for a more mechanistic understanding of the interaction of temperature and nutrient limitation, rather than investigation at the seasonal scale used in previous studies.

Bacterial communities contain populations with different metabolic capabilities and thus different potential responses to changing temperature and nutrients. Shifts in community composition occur as populations change in dominance in response to different optimal conditions or differential mortality. For example, several investigators have found correlations between bacterial community composition and resource supply in natural habitats (Pearce 2005, Yannarell and Triplett 2005, Xing and Kong 2007). Previously rare populations can increase in size in response to a new substrate (Szabo et al. 2007) and the new community may have the capability to access different substrates and may have different nutrient requirements, affecting both community structure and function.

What has not yet been determined is the interaction of temperature and nutrients with bacterial community structure in natural habitats. Individually, warmer temperatures and increased nutrients are predicted to increase bacterial productivity and select for communities that can reproduce fastest under those conditions. However, in highly variable environments, bacterial communities would be constrained to a physiological response, particularly if temperature and nutrients select for different bacterial populations, resulting in static communities are used here to isolate the response of

bacterial activity, growth rates, and community structure to temperature and pulsed nutrient supply.

Methods

Study site

Sites are located on the north slope of the Brooks Range, Alaska, at the Toolik Field Station Arctic LTER. Samples were collected from the inlet and outlet of lakes I-8 and Toolik. Toolik Lake is a multi-basin lake draining a catchment of 66.9 km² and has a single outlet. Two kilometers upstream of the main Toolik inlet stream is an 18 ha lake, Lake I-8, which has a large headwater stream inlet, I-8 inlet, and a single outlet, I-8 outlet (**Figure 3.1**) with average water temperatures of 9.4 and 12.3 °C, respectively, for summers 2003-2007. All of the lakes in the Toolik Lake catchment are oligotrophic, with mean primary productivity of 3.23 µmol C/L/day and mean chlorophyll *a* of 1.02 µg/L (Kling et al. 2000). Toolik Inlet water temperature ranges from 4.5 to ~19 °C during the summer season with a mean of 11.3 °C for 2003-2007 (Adams et al. In revision). There are frequently 2-3 storm events during the summer season, post snow-melt.

Field measurements

In order to detect patterns of bacterial response to nutrients and temperature variation *in situ*, bacterial production, DNA, temperature, and inorganic nutrients were sampled weekly at Toolik Inlet and Lake I-8 inlet and outlet from 2003-2006. Temperature was measured with a digital thermometer during sample collection. BP was measured using ¹⁴C labeled-leucine uptake following Kirchman (1994) with an isotopic dilution of 1. Each measure was calculated from the incubation with ¹⁴C leucine of three

unfiltered 10 mL subsamples and one 10 mL trichloroacetic acid (TCA) killed control for approximately three hours before ending with 5% TCA. Samples were filtered onto 0.2 µm nitro-cellulose filters and extracted using ice-cold 5% TCA. Filters were then placed in scintillation vials, dissolved using ethylene glycol monoethyl ether, and Scintisafe scintillation cocktail was added before counting on a liquid scintillation counter (Packard Tri-Carb 2100TR). Stream discharge and temperature were monitored at Toolik Lake inlet using a Stevens PGIII Pulse Generator and a Campbell Scientific Model 247 conductivity and temperature probe connected to a Campbell Scientific CR510 datalogger. Inorganic nutrient samples were filtered through ashed (450 °C) GF/F Whatman filters upon collection and stored at 4 $^{\circ}C$ (NH₄ and PO₄) or frozen (NO₃) until analysis. Ammonium concentrations were determined within 48 hours using a fluorometric OPA method (modified from (Holmes et al. 1999) and phosphate concentrations were determined within 48 hours spectrophotometrically using the molybdenum blue assay (Murphy and Riley 1962). Frozen nitrate samples were transported to Ann Arbor, Michigan, where they were analyzed on an Alpkem Flowsystem 3000 Autoanalyzer using flow injection with a cadmium reduction coil method modified from Armstrong et al. (1967).

Mesocosm experiments

Four experiments were conducted to test the impact of inorganic nutrients on bacterial production, growth rate, and community composition. Each experiment was a factorial design of manipulated temperature (12 and 17 °C) and nutrients with an inoculum of natural bacterial communities. Incubation temperatures were determined by summer mean and high water temperatures. The first experiment tested the response of
bacteria to low level nutrient additions over a 4 day period, and the other three experiments tested the response of bacteria to higher concentrations of nutrients for up to two weeks. For all experiments, water was collected in the field and filtered into size fractions in the laboratory to exclude grazers and to isolate DOM source. Incubations were set up within 4 hours of collection with 10% 1.0 μ m filtered water (bacterial inoculum) and 90% 0.2 μ m filtered water (DOM source) collected concurrently. Mesocosms were kept in the dark to ensure exclusion of photosynthesis and were in incubators or water baths set to treatment temperature +/- 1 °C.

The "*short-term experiment*" was conducted on samples from Toolik Inlet, starting on 22 June 2007. Three replicates of each treatment had total starting volumes of 3.2 L in 4 L cubitainers with inorganic nutrients added at a concentration typically observed during a storm event (1.5 μ M NH₄NO₃ and 0.25 μ M KH₂PO₄, **Fig. 3.2**, **Appendix 3.A**). BP was measured in all replicates and treatments at approximately 0, 2, 4, 6, 8, 10, 14, 21, 26, 32, 39, and 49 hours, and BP was also measured in the 12 °C treatments at 60, 72, 83, and 98 hours. DNA and cell counts were collected at 26 and 49 hours with the 12 °C treatments also collected at 72 and 98 hours.

For the other three experiments, inorganic nutrients were added at a higher concentration ($6.4 \mu M NH_4NO_3$ and $0.45 \mu M KH_2PO_4$) and the samples were incubated for longer time periods. The second experiment, the "*longer duration experiment*," was performed at I-8 inlet with samples collected on 27 June 2006 in order to test the longer term response of the bacteria to temperature and nutrients. Three 3-L replicates of each treatment were incubated in 4 L cubitainers. BP was measured at 2, 4, 6, 9, 11, and 14 days, and samples for DNA and cell counts were collected at 2, 4, 9, and 14 days.

The third experiment included a "*DOM manipulation*" combining bacteria and 0.2 μ m-filtered DOM from different sites to test for interactions of carbon source with temperature and nutrient limitation. This experiment was incubated for two weeks with a total volume of 1.25 L in 4L cubitainers. Water was collected from Lake I-8 inlet and outlet on 12 July 2005, with BP measured at 2, 4, 6, 9, 12, and 14 days while DNA and cell counts were measured from samples on day 14. DOM at I-8 inlet was characterized by DOM UV absorbance of 154.3, 705.5 μ M DOC, 0.76 mg protein/L, 1.16 μ M total phenolics, and 0.09 μ g phaeophytin-corrected chl a/L. DOM at I-8 outlet was characterized by DOM UV absorbance of 98.93, 513.9 μ M DOC, 0.57 mg protein/L, 0.65 μ M total phenolics, and 0.77 μ g phaeophytin-corrected chl a/L.

The fourth experiment examined "*community sensitivity*" and was performed on I-8 inlet and outlet water collected on 18 July 2006 to test if communities from different sites were similarly susceptible to temperature or nutrient manipulation. Temperature and nutrients again were manipulated factorially, with three 1 L replicates in acid-washed and 0.2 μ m filtered sample rinsed amber HDPE Nalgene bottles for each treatment. DNA and cell counts were collected on day 6 and 11 of the incubations.

Samples for cell counts in all experiments were preserved with 2.5% final concentration of gluteraldehyde and stored at 4 °C until analysis. Samples from 2005 were counted on a FACSCalibur (BD Biosciences) flow cytometer following del Giorgio et al. (1996). Sub-samples were stained with SYBR green in the dark for a minimum of 15 minutes (Marie et al. 1997, Lebaron et al. 1998). The concentration of beads in the standard 1 µm bead solution and concentration of cells in multiple confirmatory samples were measured by epifluorescence microscopy. Samples from 2006 and 2007 were

counted on a LSR II flow cytometer (BD Biosciences) as described by Ewart et al. (2008) with data acquired in log mode for at least 60 seconds and until 20,000 events were recorded, with the minimum green fluorescence (channel 200) set as the threshold.

DNA samples were collected from laboratory mesocosms by filtering ~500 mL of sample through a Sterivex-GP 0.2 µm filter. Filters were preserved using a DNA extraction buffer as described by Crump et al. (2003) and stored at -80 °C until extraction. DNA was extracted using a phenol-chloroform extraction, and PCR amplified using 357f with a G-C clamp and 519r universal 16S rDNA Bacterial primers on a Bio-Rad thermocycler (Crump et al. 2003, Crump et al. 2007). DNA was then separated using denaturant gradient gel electrophoresis (DGGE) with an 8% acrylamide gel cast with either a 40 to 60% or 35 to 55% gradient of urea and formamide. Standard lanes for standardizing within and between gels were created using a mixture of previously identified Toolik Lake clone isolates that were PCR amplified using the same primers (Crump et al. 2003). Gels were run on a Bio-rad system for 18 to 24 hours at 75 volts and 65 °C. Imaging was performed with Quantity One software on a Chemi-Doc gel documentation system (Bio-Rad), gel bands were identified using GelComparII software (Bionumerics) to create a presence-absence matrix as described by Crump and Hobbie (2005). Each band represents an operational taxonomic unit (OTU) of bacteria, although occasionally multiple sequences may be present within a band (Crump et al. 2003, Crump et al. 2004) or bacteria may differ in a more variable region of the 16S gene; therefore, changes detected here are considered to be a conservative index of shifts of community composition. Pairwise similarity values were calculated using the Dice equation (SPSS ver. 14, 15) in order to condense presence-absence data into percent community

similarities between samples. PROXCAL (SPSS Categories, ver. 14 and 15) was used to create non-metric multi-dimensional scaling (NMDS) graphs of sample similarities. Two-way between-subjects ANOVA was performed using SPSS (ver. 14, 16, and 17). The percent similarity between samples was designated as the dependent variable with categorical dummy variables indicating the same or different treatment types of incubation temperature or nutrient addition as predictors. Both normal distribution of data and homogeneity of variance were verified using a Shapiro-Wilk test (SPSS ver. 17) with data log-transformed where necessary. Two data sets were not able to be transformed to have homogeneity of variance and so the non-parametric Kruskal-Wallace test (SPSS ver. 17) was performed to verify the significance of ANOVA results.

Results

Storm events, nutrients, and bacterial production

During the summer of 2004, there were three large storm events characterized by rain and subsequent increases in stream discharge (> 4 m³/s) (**Fig. 3.2, top panel**). The events occurred on 9-15 July, 18-24 July, and 30 July- 7 August (two combined events). Ammonium concentrations at Toolik Inlet spiked either before or immediately after each of the three storm events, while phosphate concentrations increased only immediately after the first event and nitrate concentrations were diluted during these events (**Fig. 3.2, middle panel**). At Toolik Inlet, peaks in BP corresponded with the occurrence of the three storm events (**Fig. 3.2, bottom panel**). There was also a small increase of BP at the outlet of the lake after the first storm event. However, several environmental factors that may be driving these responses covaried, requiring direct testing with mesocosm experiments.

Mesocosms - activity

Several laboratory experiments were performed to determine bacterial response to increases in temperature and inorganic nutrients. The *short-term experiment* from Toolik Inlet showed increases in BP with temperature and nutrients, with warmer temperatures having the greatest impact after two days (**Fig. 3.3, top panel**). The largest treatment impact was the effect of temperature in the nutrient additions at 32 hours. In the 17 °C treatment, fertilized BP was 10.8 times greater than the fertilization at 12 °C. Similarly, the 17 °C treatment increased BP without a nutrient addition. After 26 hours, the 17 °C treatment had BP 9.8 times greater than the 12 °C treatment. The nutrient treatment increased BP in the 12 °C treatment to 6.1 times greater activity than the unfertilized 12 °C treatment at 84 hours. However, in the 17 °C treatment, the largest impact of nutrients was only 1.8-fold greater BP than the 12 °C treatment, at approximately 39 hours of incubation.

The number of bacterial cells in the *short-term experiment* also increased in response to temperature and nutrients. Cell counts increased roughly linearly or exponentially (**Fig. 3.3, middle panel**). Cell-specific leucine uptake also increased during the initial hours of the experiment, with increases detected earliest in the higher temperature treatments (**Fig. 3.3, bottom panel**). Maximum cell-specific leucine uptake was detected around 24-48 hours for the 17 °C treatments and 48-72 hours in the 12 °C, corresponding with peaks in BP.

When greater concentrations of nutrients were added in the *longer duration experiments* at the I-8 inlet and outlet, the initial response in BP (within two days) was greater in the nutrient treatments (**Figs. 3.4, 3.5**). Nutrient additions in the 17 °C

treatment increased BP to seven times greater than the unfertilized 17 °C treatment after two days. There was a similar response in the 12 °C treatments, but it took four days for fertilized bacteria to reach seven fold greater BP than the unfertilized 12 °C treatment (**Fig. 3.4**). In contrast to the *short-term experiment*, temperature had less impact over longer durations. The fertilized 17 °C treatment stimulated BP only 2.5 times greater than the fertilized 12 °C treatments and the unfertilized 17 °C treatment only increased BP 1.3 times greater than the unfertilized 12 °C treatment after two days. The difference in temperature effect may be due to community composition or other differences between the habitats used in the experiments.

Bacterial cell counts also increased during the *longer duration experiments*, and were much greater in incubations containing added nutrients regardless of temperature (**Fig. 3.4, middle panel**). Cell-specific leucine uptake decreased sharply in all incubations after two days while cell numbers increased, indicating that cell division predominated over individual cell growth (**Fig. 3.4**).

The initial increase of BP measured in treatments with warmer temperature and added nutrients occurred regardless of DOM source added to the inoculum (**Fig. 3.5**). By four days, the BP of nutrient treatments was similar regardless of incubation temperature in both the *DOM manipulation* and the *longer duration experiment*. In the *DOM manipulation* the greatest BP and cell counts were measured in the high temperature nutrient treatment after 14 days (**Fig. 3.6**).

Mesocosms - communities

Bacterial communities in the mesocosms shifted quickly in response to incubation temperature and nutrient addition. In the *short-term* experiment at Toolik Inlet,

detectable shifts occurred within two days. Two-way ANOVAs of percent similarity between bacterial communities in different treatments indicate that both temperature and nutrient addition were statistically significant indicators of percent similarity by day two of the experiment, with greater similarity within treatments than between treatments (**Table 3.1**). Pairwise similarities ranged from 36.4% similarity to 100% similarity throughout the experiment, with an average similarity of 78.9% similarity for day 1, 71.3% similarity for day 2, with 75.6% and 70.8% for days 3 and 4.

In the other experiments, nutrient additions also impacted community composition. When nutrient addition and temperature manipulation was repeated at I-8 inlet with replication during the *longer duration* experiment, the replicates grouped by both nutrients and temperature on the NMDS for days 2, 4, and 9 (Day 2 in Fig. 3.7, **Appendix 3.B, top and middle panel**). By day 14, the communities still group by nutrients, but not as clearly by temperature (Appendix 3.B, bottom panel). Throughout the experiment both nutrients and temperature are statistically significant predictors of community similarity, but the interaction term of temperature and nutrients ceases to be significant on day 14 (**Table 3.2**). Percent similarity of communities between treatments ranged from 41.8 to 98% for the dates sampled with an average similarity of 77.6% at 2 days, 75.9% at 4 days, 61.7% at 9 days, and 65.8% at 14 days. For the DOM *manipulation* experiment, the starting community was the only statistically significant predictor of community similarity at the end of the experiment (**Table 3.3**) but nutrient addition was nearly significant at the 95% level (p = 0.058) and the interaction term between starting community and nutrient addition was statistically significant (p =

0.007). Communities ranged from 36.8 to 90.5% similarity, with a mean of 60.6% similarity between treatments.

To test if either community used in the DOM experiment was more sensitive to nutrients or temperature, the communities at I-8 inlet and outlet were again manipulated with temperature and inorganic nutrients without a manipulation of DOM source, and DNA was sampled at 6 and 11 days. For the *community sensitivity* experiment, a two-way ANOVA for the inlet community indicated that temperature and nutrients were both statistically significant predictors of the similarity of community composition, with no significant interaction terms (**Table 3.4**). A similar analysis of the outlet community similarities indicated that only nutrient addition was a significant predictor of community similarity between samples. For this experiment, community similarities of samples ranged from 27.6 to 100% with an average similarity of 63.8% for the inlet communities on day 6, 69.2% on day 11, 67.3% for outlet communities on day 6, and 62.3% on day 11.

Discussion

Storm Events

Changes in stream discharge, nutrient concentrations, and BP were all synchronous in response to storm events in 2004 at Toolik Inlet (**Fig. 3.2**). Water temperature was inversely related to stream discharge but did not appear to constrain bacterial response to substrate additions washed in from soil water at these temperatures. DOC also increased with peaks in discharge, but after an initial three-fold increase with the first event, concentrations later in the summer varied by only ~20% (**Appendix 3.C**). While bacteria could be sensitive to small variations in DOC supply, the large pulses of

ammonium are readily available for bacterial uptake (Harder and Dijkhuizen 1983, Kirchman 1994). The ammonium could also enable the bacteria to access previously unavailable pools of carbon (Gasol et al. 2009). The covariance of discharge, nutrients, and DOC along with an inverse relationship with water temperature during the storm events makes it difficult to identify the main control of bacterial activity in natural systems, requiring the isolation of factors in experiments.

Mesocosms - activity

Both short and long term incubations of high and low nutrient additions indicate severe nutrient limitation of bacterial communities in the Toolik Lake region. Bacterial activity responded rapidly to added nutrients in all experiments. The nutrient treatment had a larger impact than temperature treatment in the high concentration additions. When fewer nutrients were added in the short-term experiment, higher incubation temperatures increased bacterial activity more quickly than did nutrients added at low concentrations. This indicates that nutrient concentrations at the upper range of those found in the environment are required to overcome the impacts of low temperatures on bacteria, with high nutrient treatments at different temperatures reaching similar magnitudes of activity during the incubations. This is in contrast with Vrede's (2005) finding that low temperatures superseded any other control, including P limitation. Temperature controlled the cellular response to added nutrients in all experiments, with higher temperatures increasing the speed at which activity increased. This is likely due to increased speed of biochemical reactions at warmer temperatures; increased response to nutrients at higher temperatures has been observed in other recent studies (Mindl et al. 2007, Sawstrom et al. 2007). The faster response to nutrients at higher temperature

occurred regardless of sampling location, initial community composition, or DOM source.

Cell counts for all of the experiments mirrored the corresponding BP measurements in which treatment had the largest impact on activity. The faster uptake of leucine per cell at the warmer temperatures is not surprising as temperature increases biological reactions, and increased growth with increased temperature has been documented in many systems (White et al. 1991, Adams et al. In revision). In contrast, when greater amounts of nutrients were added in the *longer duration* experiment, nutrient treatments resulted in both greater cell counts and higher cell-specific leucine uptake. The cell-specific uptake was particularly high two days into the experiment and rapidly declined afterwards, but cell counts spiked at four days; this sequence suggests that the bacteria reproduced after the initial physiological response to a pulse of nutrients.

Elevated cell-specific leucine uptake in nutrient treatments suggests elongation or growth in size of cells. Bacteria differ in size and shape by community and by growth stage (Lebaron et al. 2002). When nutrients are present, bacteria can delay cell division to take advantage of the resources and increase in size (Shiomi and Margolin 2007). This interpretation is supported by microscopic observations in our experiments which indicated a large number of long, filamentous bacteria in the nutrient addition treatments. It would appear that when large amounts of inorganic nutrients were added, both growth and reproduction of the filamentous portion of the bacterial community were stimulated, regardless of incubation temperature. The nitrate and phosphate concentrations added in these experiments are on the high end of the range of concentrations measured in the field but NH₄ was added at much higher concentrations. This may have preferentially

stimulated nitrifying bacteria that are capable of ammonia oxidation such as *Nitrosomonas* or *Nitrosococcus* in addition to the observed filamentous forms. The active fraction of a community can shift in response to nutrients (Van Wambeke et al. 2009) and stimulation of growth in only a subset of the community was reflected in the DGGE profiles of the experiments through shifts in community composition.

Mesocosms – communities

The fast response of bacteria to nutrient inputs was observed also in community dynamics. Both incubation temperature and nutrient addition changed community structure in as little as two days (Tables 3.1, 3.2, Fig. 3.7). This shift in structure also continued for the duration of the longer term experiments at I-8 inlet (Tables 3.2 and **3.4**). At some sites nutrients may be a stronger driver of community structure than temperature. Temperature was not a statistically significant predictor of community similarity when community and DOM source were manipulated along with temperature and nutrients (**Table 3.3**). The results from the DOM manipulation experiment led to the prediction that bacterial communities at I-8 inlet and outlet would respond differentially to temperature and nutrients. I-8 inlet communities were predicted to respond to nutrients more than temperature because the site usually has low nutrients and relatively large amounts of terrestrial carbon inputs in addition to more variable temperature. The bacterial communities at I-8 outlet were predicted to respond to water temperature but not nutrients because the site is less than two meters downstream of the lake where higher nutrient concentrations and algal carbon are found along with more consistent water temperature. The *community sensitivity* experiment indicated that both predictions were incorrect (Table 3.4). The communities from I-8 inlet responded to both temperature and

nutrient additions consistently in both the *community sensitivity* and *longer duration* experiments, while the I-8 outlet community responded to nutrients but not to temperature. Bertoni et al. (2008) also found community specific shifts in response to nutrient additions which may have reflected the *in situ* temperatures of different seasons. The different response of communities at the I-8 inlet and outlet to nutrient addition supports the hypothesis of community-specific nutrient limitation, but also suggests that natural site variability of temperature and nutrient concentrations are poor predictors of stability of community composition. Community-specific responses to temperature and nutrients are not limited to BP and cell counts, but also influence the stability of the community itself through population level competition.

In the natural environment, competition for nutrients occurs not only between bacterial populations but also with algae, especially for phosphorus. Given a pulse of NH₄ or PO₄ in a large run-off event, heterotrophic bacteria may be inferior competitors to phytoplankton due to a smaller storage capacity (Kirchman 1994, Vadstein 2000). Under conditions of uniform or moderately transient PO₄ supply, heterotrophic bacteria should be the best competitors for PO₄, followed by green algae, and then cyanobacteria (Vadstein 2000). The ability to store nutrients appears to be the most important factor in the outcome of competition; therefore, bacteria are expected to be more limited under conditions of pulsed nutrient supply. However, bacteria can also respond to algal exudates from increased primary production resulting from pulsed nutrient inputs. For example, at Toolik Lake in the summer of 2004, several pulses of BP occurred in the epilimnion; some pulses corresponded with inflowing nutrients from storm events and others followed the algal response to storm events (Evans et al. In prep.).

Water temperature also impacts bacterial response to nutrients, particularly when these two factors are decoupled during storm events. As observed during the mesocosm experiments, colder temperatures can delay or diminish bacterial response to pulsed inorganic nutrients and changing water temperature can shift bacterial communities to different populations than those stimulated by inorganic nutrients. Hall et al. (2009) also suggest that the bacterial response to temperature and nutrients changes seasonally, with summer and winter communities having different nutrient efficiencies relative to water temperature with warm adapted summer communities increasing nutrient use efficiency with warmer temperatures and the opposite pattern in winter communities. The interaction between temperature and response to nutrients must be accounted for when considering the impact of nutrient limitation and storm events on bacterial communities and the rest of the food web.

Conclusions

Aquatic bacteria in Northern Alaska can be nutrient limited, as predicted by the theory that large amounts of allochthonous carbon entering oligotrophic lakes and streams requires more nutrients for enzyme formation. Inorganic nutrient additions and increased temperature both increased bacterial productivity and growth rates rapidly, and habitat-specific shifts in community composition occurred within two days. This fast response of bacteria was also observed in the field following storm events during which discharge, ammonium, and BP peaked synchronously. Bacterial communities in these habitats can respond rapidly to nutrient pulses, particularly at higher temperatures, highlighting the importance of both temperature and community composition to the nutrient limitation of bacteria.

Acknowledgements

Field measurements and laboratory experiments were performed at the University of Alaska Fairbanks Toolik Lake Research Station and DNA analyses were performed at University of Maryland Center for Environmental Sciences Horn Point Laboratory. Cell counts from experiments conducted in 2006 and 2007 were performed by Craig Nelson at the University of California, Santa Barbara. I would like to thank Jessica Spence, Maria Dzul, Ashley Larsen, Alex Mettler, Amy Anstead, Chris Crockett, Amanda Field, Jen Kostrzewski, Chris Wallace, Sarah Barbrow, Lindsey Barske, Brad Bate, Laura Brosius, Elizabeth Graham, Mike Kendrick, Luke Loken, Brendan O'Donnell, Tyler Suelter and Lauren Yelen for help in the field. I also thank Jude Apple, Mary Anne Evans, Kristi Judd, Erica Kiss, Molly Marvel, Suzanne Randazzo, Carrie Solomon, and Ian Washbourne, for assistance in the laboratory. Jen Kostrzewski provided value comments for this chapter.

Funding was provided by NSF-DEB 0639805, 0423385, 981022 and NSF-OPP 9911278, and by the University of Michigan (Rackham, Dept. of EEB, and Helen Olsen Brower Endowed Fellowship). The United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program also provided funding to H. E. Adams.

Tables

Table 3.1. Tests of between-subjects effects for the impact of incubation temperature and nutrient addition on the % similarity of bacterial community composition between samples in the *short-term* experiment. Days 3 and 4 are for low temperature treatments only. *Kruskal-Wallace test confirms non-significance with .907 for temperature and .969 for nutrients.

Source	df	Sig.					
		1 day	2 days	3 days	4 days		
Corrected Model	3	.051	.000	.001	.020		
Intercept	1	.000	.000	.000	.000		
Temperature	1	.437*	.002				
Nutrients	1	.747*	.001	.001	.020		
Temperature * Nutrients	1	.006	.163				
	df						
Error		62	62	13	13		
Total		66	66	15	15		
Corrected Total		65	65	14	14		
Converse day 40 (Adjuste d D. Converse day 20) 4 desi							

Dependent Variable: Community Similarity

R Squared = .12 (Adjusted R Squared = .08) 1 day

R Squared = .25 (Adjusted R Squared = .21) 2 days

R Squared = .59 (Adjusted R Squared = .56) 3 days

R Squared = .35 (Adjusted R Squared = .30) 4 days

Table 3.2. Tests of between-subjects effects for similarity of bacterial community composition in the longer duration experiment at I-8 inlet.

		Sig.						
Source	df	2 days	4 days	9 days	14 days			
Corrected Model	3	.000	.000	.000	.000			
Intercept	1	.000	.000	.000	.000			
Temperature	1	.000	.022	.000	.002			
Nutrients	1	.000	.000	.000	.000			
Temperature * Nutrients	1	.001	.001	.003	.210			
Error	62							
Total	66							
Corrected Total	65							

Dependent Variable: Community Similarity

R Squared = .63 (Adjusted R Squared = .61) 2 days

R Squared = .62 (Adjusted R Squared = .60) 4 days R Squared = .53 (Adjusted R Squared = .51) 9 days

R Squared = .41 (Adjusted R Squared = .38) 14 days

Table 3.3. Test of between-subjects effects for similarity of bacterial community composition from day 14 of DOM manipulation experiment.

Dependent Variable: Community Similarity

Dependent variable. Community Similarity							
Source	df	Sig.					
Corrected Model	14	0.008					
Intercept	1	0.000					
Starting community	1	0.000					
DOM source	1	0.813					
Temperature	1	0.182					
Nutrients	1	0.058					
Starting community * Nutrients	1	0.007					
Error	105						
Total	120						
Corrected Total	119						

R Squared = .24 (Adjusted R Squared = .14)

Table 3.4. Tests of between-subjects effects for DNA from community sensitivity experiment performed at I-8 inlet and outlet. *Kruskal-Wallace test confirms significance with .619 for temperature and .000 for nutrients.

Source	df	Sig.					
		Inlet, 6	Outlet, 6	Inlet, 11	Outlet, 11		
Corrected Model	3	.000	.000	.000	.049		
Intercept	1	.000	.000	.000	.000		
Temperature	1	.000	.217*	.001	.088		
Nutrients	1	.000	.000*	.000	.037		
Temperature * Nutrients	1	.505	.622	.163	.097		
		df					
Error		51	42	62	41		
Total		55	46	66	45		
Corrected Total		54	45	65	44		

Dependent Variable: Community Similarity

R Squared = .44 (Adjusted R Squared = .41) Inlet 6 days R Squared = .66 (Adjusted R Squared = .64) Outlet 6 days R Squared = .49 (Adjusted R Squared = .46) Inlet 11 days R Squared = .18 (Adjusted R Squared = .12) Outlet 11 days

Figures

Figure 3.1. Sampling locations at Lake I-8 and Toolik Lake, Alaska.

Figure 3.2. Toolik Inlet stream during summer 2004. Top panel: Temperature (thin line) and stream discharge (thick line); center panel: NH_4 (•), PO_4 (•), and NO_3 (•); bottom panel: BP at Toolik Inlet (•) and Outlet (•).

Figure 3.3. Toolik Inlet BP and cell counts from the short-term experiment. Error bars are standard error of the mean. Original sample from Toolik Inlet designated by \blacksquare for number of cells. Top panel: bacterial production, middle panel: cell counts, and bottom panel: cell specific carbon uptake.

Figure 3.4. Longer duration two week nutrient addition with replication at I-8 inlet. Error bars are standard error of the mean of experimental replicates. Samples are designated by incubation temperature ($\blacktriangle = 12 \ ^{\circ}C$ and $\blacklozenge = 17 \ ^{\circ}C$) with open symbols for no nutrients added and closed symbols for nutrients added. Top panel: bacterial production, middle panel: cell counts, bottom panel: cell specific leucine uptake.

Figure 3.5. BP from the DOM manipulation experiment. 12 °C (\blacktriangle) and 17 °C (\blacklozenge) have open symbols to designate no nutrients added and closed symbols designate nutrient addition. Panel A is I-8 inlet community and DOM source, panel B is I-8 outlet community and DOM source, panel C is I-8 inlet community with outlet DOM source, panel D is I-8 outlet community with inlet DOM source. Error bars are standard error of the mean calculated from analytical replicates.

Figure 3.6. Bacterial cell counts versus BP at Day 14 of DOM manipulation experiment. Cell counts collected from original collection sites are designated by \blacksquare . Treatments are designated by incubation temperature ($\blacktriangle = 12 \ ^{\circ}C$ and $\blacklozenge = 17 \ ^{\circ}C$) with open symbols for no nutrients added and closed symbols for nutrients added. Symbols are grouped with respect to DOM source added.

Figure 3.7. NMDS plot of community similarity on collection (day 0) and day 2 for the *short-term* experiment in Figure 3.4. DNA collected from collection site is designated by \Box . Treatments are designated by incubation temperature ($\blacktriangle = 12 \text{ °C}$ and $\blacklozenge = 17 \text{ °C}$) with open symbols for no nutrients added and closed symbols for nutrients added shown here after 2 days incubation, normalized raw stress = 0.017.

Appendices

Appendix 3.A. Inorganic nutrient concentrations in summers 2003-2007.

		NH4 (μM)				NO3 (µM)			PO4 (μM)		
site	year	min	mean	max	min	mean	max	min	mean	max	
I-8 inlet	2003	0.00	0.41	1.98	0.31	0.88	2.14	0.01	0.07	0.24	
	2004	0.01	0.20	0.54	0.27	2.37	5.94	0.02	0.03	0.05	
	2005	0.10	0.26	0.65	0.79	4.33	8.55	0.00	0.04	0.07	
	2006	0.00	0.23	0.53	0.80	1.75	2.94	0.03	0.05	0.11	
	2007	0.00	0.60	3.89	0.95	8.77	19.00	0.02	0.07	0.26	
I-8 outlet	2003	0.00	0.24	1.52	0.03	0.26	0.73	0.02	0.07	0.33	
	2004	0.12	0.27	0.67	0.12	0.33	0.97	0.02	0.03	0.04	
	2005	0.12	0.31	0.49	0.00	0.30	0.70	0.00	0.04	0.06	
	2006	0.00	0.16	1.06	0.03	0.25	0.68	0.02	0.04	0.10	
	2007	0.00	0.30	0.73	0.07	0.17	0.46	0.03	0.05	0.10	
Toolik Inlet	2003	0.00	0.16	0.54	0.41	1.01	3.07	0.01	0.04	0.13	
	2004	0.04	0.48	2.42	0.16	1.39	5.33	0.02	0.04	0.16	
	2005	0.10	0.16	0.26	0.63	4.44	8.51	0.00	0.08	0.59	
	2006	0.00	0.73	3.46	0.15	0.62	1.58	0.02	0.04	0.13	
	2007	0.00	0.40	3.04	0.42	3.31	8.62	0.00	0.05	0.20	
Toolik Outlet	2004	0.05	0.21	0.66	0.00	0.04	0.16	0.02	0.04	0.10	

Appendix 3.B. NMDS for days 4, 9, 14 of longer duration experiment. Top panel is at four days with normalized raw stress = 0.008. Middle panel is at nine days with normalized raw stress = 0.016. Bottom panel is at fourteen days with normalized raw stress = 0.032. Treatments are designated by incubation temperature ($\blacktriangle = 12 \ ^{\circ}C$ and $\blacklozenge = 17 \ ^{\circ}C$) with open symbols for no nutrients added and closed symbols for nutrients added.

Appendix 3.C. DOC chemograph of Toolik Inlet in the summer of 2004.

Literature Cited

- Adams, H. E., B. C. Crump, and G. W. Kling. In revision. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams. Environmental Microbiology.
- Armstrong, F. A., C. R. Stearns, and J. D. Strickland. 1967. Measurement of upwelling and subsequent biological processes by means of Technicon Autoanalyzer and associated equipment. Deep-Sea Research **14**:381.
- Bernhardt, E. S. and G. E. Likens. 2002. Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology **83**:1689-1700.
- Bertoni, R., C. Callieri, E. Balseiro, and B. Modenutti. 2008. Susceptibility of bacterioplankton to nutrient enrichment of oligotrophic and ultraoligotrophic lake waters. Journal of Limnology **67**:120-127.
- Castillo, M. M., G. W. Kling, and J. D. Allan. 2003. Bottom-up controls on bacterial production in tropical lowland rivers. Limnology and Oceanography **48**:1466-1475.
- Cole, J. J. 1982. Interactions between bacteria and algae in aquatic ecosystems. Annual Review of Ecology and Systematics **13**:291-314.
- Cotner, J. B. and R. G. Wetzel. 1992. Uptake of dissolved inorganic and organic phosphorus-compounds by phytoplankton and bacterioplankton. Limnology and Oceanography **37**:232-243.
- Crump, B. C., H. E. Adams, J. E. Hobbie, and G. W. Kling. 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88:1365-1378.
- Crump, B. C. and J. E. Hobbie. 2005. Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnology and Oceanography **50**:1718-1729.
- Crump, B. C., C. S. Hopkinson, M. L. Sogin, and J. E. Hobbie. 2004. Microbial biogeography along an estuarine salinity gradient: Combined influences of bacterial growth and residence time. Applied and Environmental Microbiology 70:1494-1505.
- Crump, B. C., G. W. Kling, M. Bahr, and J. E. Hobbie. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Applied and Environmental Microbiology 69:2253-2268.
- Currie, D. J. and J. Kalff. 1984. A comparison of the abilities of fresh-water algae and bacteria to acquire and retain phosphorus. Limnology and Oceanography **29**:298-310.
- del Giorgio, P., D. F. Bird, Y. T. Prairie, and D. Planas. 1996. Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnology and Oceanography **41**:783-789.
- Evans, M. A., H. E. Adams, and G. W. Kling. In prep. Mixing vs. stratified lake conditions important in determining the effects of storm events on phytoplankton productivity.

- Ewart, C. S., M. K. Meyers, E. R. Wallner, D. J. McGillicuddy, and C. A. Carlson. 2008. Microbial dynamics in cyclonic and anticyclonic mode-water eddies in the northwestern Sargasso Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography 55:1334-1347.
- Findlay, S. 2003. Bacterial Response to Variation in Dissolved Organic Matter.*in* S. Findlay and R. L. Sinsabaugh, editors. Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier Science, San Diego Academic Press.
- Gasol, J. M., E. Vazquez-Dominguez, D. Vaque, S. Agusti, and C. M. Duarte. 2009. Bacterial activity and diffusive nutrient supply in the oligotrophic Central Atlantic Ocean. Aquatic Microbial Ecology 56:1-12.
- Hall, E. K., A. R. Dzialowski, S. M. Stoxen, and J. B. Cotner. 2009. The effect of temperature on the coupling between phosphorus and growth in lacustrine bacterioplankton communities. Limnology and Oceanography 54:880-889.
- Harder, W. and L. Dijkhuizen. 1983. Physiological-responses to nutrient limitation. Annual Review of Microbiology **37**:1-23.
- Hessen, D. O., K. Nygaard, K. Salonen, and A. Vahatalo. 1994. The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakes. Environment International **20**:67-76.
- Hoikkala, L., H. Aarnos, and R. Lignell. 2009. Changes in Nutrient and Carbon Availability and Temperature as Factors Controlling Bacterial Growth in the Northern Baltic Sea. Estuaries and Coasts 32:720-733.
- Holmes, R. M., A. Aminot, R. Kerouel, B. A. Hooker, and B. J. Peterson. 1999. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 56:1801-1808.
- Jarvinen, M. and K. Salonen. 1998. Influence of changing food web structure on nutrient limitation of phytoplankton in a highly humic lake. Canadian Journal of Fisheries and Aquatic Sciences **55**:2562-2571.
- Kirchman, D. L. 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecology **28**:255-271.
- Kling, G. W., G. W. Kipphut, M. M. Miller, and W. J. O'Brien. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology **43**:477-497.
- Kuosa, H. and H. Kaartokallio. 2003. Experimental evidence on nutrient and substrate limitation of Baltic Sea sea-ice algae and bacteria. Pages 1-10 *in* 3rd Baltic Sea Science Congress, Helsinki, Finland.
- Lebaron, P., N. Parthuisot, and P. Catala. 1998. Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Applied and Environmental Microbiology **64**:1725-1730.
- Lebaron, P., P. Servais, A. C. Baudoux, M. Bourrain, C. Courties, and N. Parthuisot. 2002. Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry. Aquatic Microbial Ecology **28**:131-140.
- Marie, D., F. Partensky, S. Jacquet, and D. Vaulot. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology 63:186-193.

- Mindl, B., A. M. Anesio, K. Meirer, A. J. Hodson, J. Laybourn-Parry, R. Sommaruga, and B. Sattler. 2007. Factors influencing bacterial dynamics along a transect from supraglacial runoff to proglacial lakes of a high Arctic glacieri (vol 7, pg 307, 2007). Fems Microbiology Ecology 59:762-762.
- Mohamed, M. N., J. R. Lawrence, and R. D. Robarts. 1998. Phosphorus limitation of heterotrophic biofilms from the Fraser River, British Columbia, and the effect of pulp mill effluent. Microbial Ecology 36:121-130.
- Morris, D. P. and W. M. Lewis. 1992. Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado. Limnology and Oceanography **37**:1179-1192.
- Murphy, J. and J. P. Riley. 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta **26**:31-&.
- Panzenbock, M., B. Mobes-Hansen, R. Albert, and G. J. Herndl. 2000. Dynamics of phyto- and bacterioplankton in a high Arctic lake on Franz Joseph Land archipelago. Aquatic Microbial Ecology 21:265-273.
- Pearce, D. A. 2005. The structure and stability of the bacterioplankton community in Antarctic freshwater lakes, subject to extremely rapid environmental change. Fems Microbiology Ecology **53**:61-72.
- Sawstrom, C., J. Laybourn-Parry, W. Graneli, and A. M. Anesio. 2007. Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments. Polar Biology **30**:1407-1415.
- Shiomi, D. and W. Margolin. 2007. A sweet sensor for size-conscious bacteria. Cell **130**:216-218.
- Szabo, K. E., P. O. B. Itor, S. Bertilsson, L. Tranvik, and A. Eiler. 2007. Importance of rare and abundant populations for the structure and functional potential of freshwater bacterial communities. Aquatic Microbial Ecology 47:1-10.
- Vadstein, O. 2000. Heterotrophic, planktonic bacteria and cycling of phosphorus -Phosphorus requirements, competitive ability, and food web interactions. Pages 115-167 Advances in Microbial Ecology, Vol 16. Kluwer Academic / Plenum Publ, New York.
- Van Wambeke, F., J. F. Ghiglione, J. Nedoma, G. Mevel, and P. Raimbault. 2009. Bottom up effects on bacterioplankton growth and composition during summerautumn transition in the open NW Mediterranean Sea. Biogeosciences 6:705-720.
- Vrede, K. 2005. Nutrient and temperature limitation of bacterioplankton growth in temperate lakes. Microbial Ecology **49**:245-256.
- Waiser, M. J. 2001. Nutrient limitation of pelagic bacteria and phytoplankton in four prairie wetlands. Archiv Fur Hydrobiologie **150**:435-455.
- White, P. A., J. Kalff, J. B. Rasmussen, and J. M. Gasol. 1991. The Effect of Temperature and Algal Biomass on Bacterial Production and Specific Growth-Rate in Fresh-Water and Marine Habitats. Microbial Ecology 21:99-118.
- Xing, P. and F. X. Kong. 2007. Intra-habitat heterogeneity of environmental factors regulating bacterioplankton community composition in Lake Taihu, China. Aquatic Microbial Ecology 48:113-122.
- Yannarell, A. C. and E. W. Triplett. 2005. Geographic and environmental sources of variation in lake bacterial community composition. Applied and Environmental Microbiology 71:227-239.

CHAPTER IV

Metacommunity dynamics of bacteria

Abstract

Metacommunity processes of species sorting and mass effects were investigated at the inlets and outlet of a small 18 ha lake in Northern Alaska. Bacterial communities were generally more stable over time in the lake and lake outlet as measured by high similarity of DNA fingerprinting during the summer season. Outlet and downstream communities were also generally more productive than those in the main lake inlet as measured by ¹⁴C-labelled leucine incorporation. Transplant experiments were performed using dialysis tubing to test if inlet bacteria were viable in the lake outlet habitat. All transplants resulted in inlet bacteria maintaining or increasing their productivity at the outlet habitat. Despite the apparent habitat suitability, low similarity of community composition between inlet and outlet communities indicates that either the inlet bacteria are dispersal limited by sequestration in bottom waters or dilution upon entering the lake, or the majority are outcompeted by populations resident in the lake. Transplanting the outlet bacterial community to the headwater stream inlet resulted in depressed productivity, regardless of different environmental conditions in either early or late summer season. This indicates that the bacterial communities that come to dominance

within the lake are less adapted to processing upstream carbon. A spatial survey of the lake and small inlets showed that all inlet communities clustered apart from the lake and outlet communities in a multidimensional plot of community similarity, suggesting that lake communities are distinct from the inlets and well mixed within the lake. The highest community similarity between inlet and outlet bacteria was measured after a very large rain event in 2003, with over 61% similarity (average non-storm similarities were 39%, \pm 8%). While mass effects may be important during storm events, species sorting by competition between stream inlet and lake populations appears to be the predominant mechanism structuring bacterial communities within the lake.

Introduction

Because many of the same processes structure plant, animal, and bacterial communities, metacommunity concepts can be applied to explain bacterial community patterns across landscapes. Both dispersal and competition, two mechanisms integral to metacommunity theory, impact the presence and dominance of populations within the community. In aquatic systems, bacterial communities can be dispersed in water that flows from terrestrial soils into lakes and streams, resulting in a mixture of communities and resources that may favor certain populations or alter overall community growth. Dormant and slow-growing bacterial cells can become active when their preferred carbon resource appears, and previously active cells may then be at a competitive disadvantage given the new mix of substrates.

Metacommunity theory contains four main perspectives which include mechanisms that act alone or interact within a habitat: patch dynamics, species sorting, mass effects, and neutral processes (Leibold et al. 2004). The patch dynamic perspective

defines habitat patches as identical with local species diversity limited by dispersal or species interactions and requires trade-offs in species traits for regional co-existence to occur (Mouquet et al. 2005). The species sorting perspective emphasizes spatial niche separation where low levels of dispersal allow communities to respond to local conditions (Leibold and Wilbur 1992). Mass effects are in contrast to species sorting; inferior competitors can persist in the community due to high levels of dispersal from other habitats (Urban 2004). The fourth perspective is neutral theory, which is usually applied to long-lived organisms where competitive exclusion happens on very long time scales and species are equivalent in traits such as dispersal and reproduction (Harte et al. 2005). Mass effects and species sorting are the two perspectives most easily applied to bacterial communities in aquatic habitats because bacteria have potentially high rates of immigration and emigration due to dispersal in water flow (Lindstrom and Bergstrom 2004), the environment is very heterogeneous, especially at the microbial scale (Scheffer et al. 2003), the communities can shift at very fast time scales (Judd et al. 2006, Van der Gucht et al. 2007), and bacterial populations differ in their growth rates and metabolic capabilities (Amon and Benner 1996, LaPara et al. 2002, Bertoni et al. 2008, Adams et al. In revision).

Time scale may influence whether mass effects or species sorting is most important in structuring the bacterial community. In lake catchments, the main mode of bacterial dispersal is unidirectional in downstream water flow of variable velocity from upstream soils, hyporheic zones, streams, and lakes, although atmospheric deposition can also disperse bacteria (Jones and McMahon 2009). Cells entrained in flowing water rely on the physical mixing of inflowing water within the new habitat to reach suitable

resources which may or may not have flowed in with their source water. In order for bacteria to establish in a new habitat, they must have a sufficient growth rate to both compete with other populations for resources as well as exceed passive emigration due to water flow through a habitat. Alternatively, new members can continually flush in from the upstream habitat. The physiological response of bacteria to new environmental conditions can be quite fast. For example, productivity can respond to changes in temperature within a couple of hours (Kirchman et al. 2005, Bertoni et al. 2008, Adams et al. In revision). Physiological responses may result from temporary responses by populations in the community, whereas community shifts due to species sorting may take longer than the bacterial populations remain in a habitat, particularly during a storm event with high water flow.

The mechanisms of community structuring at work in these habitats have consequences for processing of carbon and other resources across the landscape. Bacterial response to temperature and nutrient limiting conditions may be specific to the community assemblage present at a given time. For example, soil bacterial populations are transported into aquatic systems along with dissolved organic matter. Transported soil populations would mix in the streams, forming a new community which is likely to contain bacteria that are accustomed to processing the allochthonous carbon. However, resident lake communities may not be able to process terrestrial carbon due to a lack of enzymes that function to break down structural carbon. Judd et al. (2006) have shown that substrate "quality" depends on the community composition and its ability to process particular substrates. Compositional shifts of the community will occur in response to the new and different substrates, given enough time. Lake communities are also flushed

downstream into new habitats, and Crump et al. (2007) have shown a gradient of decreasing similarity in community structure with movement downstream. However, the implications of this shift in community composition on processing of carbon or other resources are not well known.

In aquatic ecosystems, the persistence of new bacterial populations which immigrate via water inputs will depend on both their ability to outcompete pre-existing populations and the intensity of dispersal into and out of the habitat. Bacterial populations that are best adapted to specific environmental conditions should dominate in habitats with those conditions if competition (species sorting) is the dominant mechanism structuring the community. Thus, when dispersal is low and species sorting dominates, community composition should be dissimilar in habitats with different environmental conditions. However, if dispersal is high and different habitats are linked hydrologically, then mass effects will produce greater similarity in community composition between habitats.

In this chapter I examine the natural variability of habitats and bacterial communities upstream and downstream of a small arctic lake, and determine the role of mass effects and species sorting processes in structuring bacterial communities. Four main questions guide the investigation. First, how do lakes impact habitat characteristics and bacterial communities? This is answered by comparing habitats upstream and downstream of a lake and determining the similarity of communities in these habitats when dispersal is low. Second, can inlet bacteria be active in the outlet (lake) habitat when competition with lake communities is removed? This is tested by transplant experiments using dialysis bags to determine whether mass effects would enable the
persistence of inlet bacteria in the outlet habitat. Third, do outlet communities adapted to lake DOM retain the ability to process upstream DOM, or has species sorting resulted in the loss of most bacterial populations with this ability? Lastly, how are bacteria entering in stream flow distributed in the lake? I used transects measuring environmental characteristics and bacterial communities to address this question.

Methods

Study site

Sites are located on the north slope of the Brooks Range, Alaska, at the Arctic LTER. Samples were collected from upstream, downstream, and within Lake I-8, which is located two kilometers upstream of Toolik Lake. Lake I-8 is 18.21 ha in area with a volume of 642,462 m³ and drains a catchment of 2910.3 ha. It is oligotrophic, with mean primary productivity of 1.45 μ mol C/L/day and mean chlorophyll *a* of 0.92 μ g/L (Kling et al. 2000). Lake I-8 has a predominant headwater inlet stream, sampled ~5 km upstream of the lake at the site I-8 HW, as well as at the inflow to the lake at site I-8 inlet. There are three smaller inlet streams, (I-8 NE inlet, I-8 SE inlet, and I-8 S inlet) which also flow into the lake, and a single outlet named I-8 outlet. Site I8-I9 is one km downstream of the lake outlet (**Fig. 4.1**). Water temperatures ranged from 3.3 to 18 °C and averaged 10.5 °C for summers 2003-2007 at I-8 inlet, and ranged from 5.8 to 18.4 °C and averaged 12.9 °C at I-8 outlet. There are frequently 2-3 storm events during the summer season, post snow-melt.

Field measurements

Bacterial production, bacterial community composition, temperature, and DOM were sampled weekly at Lake I-8 inlet, I-8 outlet, and at site I8-I9 in the summers of 2003-2007 (Fig. 4.1a). The smaller inlets to the lake were also sampled weekly during the summer of 2007. I-8 HW and the lake itself were sampled three times every summer, with weekly sampling of the lake occurring during the summer of 2003 and a more intense spatial sampling at 8 sites across the lake on 4 July 2007 (Fig. 4.1b). Stream water samples were collected from mid-stream while avoiding disturbance of bottom surfaces. Lake samples were collected using a Van Dorn, typically at the depths of 1 m (epilimnion) and 7 m (hypolimnion). Temperature was measured with a digital thermometer during sample collection. Conductivity was measured with a model 122 Orion conductivity meter and pH was measured with a model 210A Orion pH meter which was calibrated daily. Stream discharge and temperature were monitored at the sites using dataloggers (Onset StowAways and Hobos) as well as a Marsh-McBirney Flowmate discharge meter. Water residence time (WRT) of the lake was calculated by dividing the lake volume by the mean outlet stream discharge. Epilimnetic WRT was calculated using the lake volume less than 3m, the mean thermocline depth during the summer season. Time series temperature measurements in 2003 were obtained from the I-8 W station with seven Brancker TR 1050 self-contained temperature loggers (thermistors) at depths from 0 to 6 m. Isotherm depths were determined by linear interpolation of readings taken every 15 minutes. The thermistors had an accuracy of 0.002 °C and a time constant of <3 seconds.

Bacterial Production (BP) was measured using ¹⁴C labeled-leucine uptake following Kirchman (1992) with an isotopic dilution of 1. Each measure was calculated

from incubation with ¹⁴C leucine of three unfiltered 10 mL subsamples and one 10 mL trichloroacetic acid (TCA) killed control for approximately three hours before ending by adding TCA to a final concentration of 5% in the sample. Samples were filtered onto 0.2 μ m nitro-cellulose filters and extracted using 5 mL of ice-cold 5% TCA. Filters were then dissolved in scintillation vials using ethylene glycol monoethyl ether, and had Scintisafe scintillation cocktail added for counting on a liquid scintillation counter (Packard Tri-Carb 2100TR).

Dissolved organic matter (DOM) samples were filtered in the field through ashed GF/F Whatman filters and stored at 4 °C until analysis. Protein concentrations were determined within 48 hours using a colorimetric Bradford reagent assay (as modified by Judd 2002) and phenolic concentrations were determined within 48 hours spectrophotometrically using the Folin-Ciocalteu assay (Waterman and Mole 1994). DOC samples were acidified to pH 2 after filtration, and stored in the dark at 4 °C until analysis on a Shimadzu TOC 5000 using platinum-catalyzed high-temperature combustion to CO_2 followed by infrared detection. The chlorophyll *a* (chl) samples were filtered onto Whatman GF/F filters in the field and kept dark until frozen upon returning from the field. After overnight freezing at ~20 °C, filters were extracted for 24 hrs with acetone, read on a Turner Designs 10 AU fluorometer configured with a chlorophyll optical kit (10-037R), and corrected for phaeopigment using acidification with HCl.

Samples for cell counts were preserved with 2.5% final concentration of gluteraldehyde and stored at 4 °C until analysis. Samples from 2005 were counted on a FACSCalibur (BD Biosciences) flow cytometer following del Giorgio et al. (1996). Subsamples were stained with SYBR green nucleic acid stain in the dark for a minimum of

15 minutes (Marie et al. 1997, Lebaron et al. 1998). The concentration of the standard 1 μm bead solution and multiple confirmatory cell count samples were measured by epifluorescence microscopy. Samples from 2006 and 2007 were counted on a LSR II flow cytometer (BD Biosciences) as described by Ewart et al. (2008) with data acquired in log mode for at least 60 seconds and until 20,000 events were recorded, with the minimum green fluorescence (channel 200) set as the threshold. Cell doubling times were calculated with BP, average cell counts from environmental samples, and an experimentally determined conversion factor (20 fg C/cell) (Lee and Fuhrman 1987).

Bacterial community composition was measured with a fingerprinting technique applied to DNA samples. DNA samples were collected from the field by filtering ~500 mL of sample through a Sterivex 0.2 µm filter. Filters were preserved using a DNA extraction buffer as described by Crump et al. (2003) and stored at -80 °C until extraction. DNA was extracted using a phenol-chloroform extraction and pcr amplified using 357f with a G-C clamp and 519r universal 16S rDNA Bacterial primers on a Bio-Rad thermocycler (Crump et al. 2003, 2007). DNA was then separated using denaturant gradient gel electrophoresis (DGGE) with an 8% acrylamide gel cast with a 30-40% to 50-70% gradient of urea and formamide. Standard lanes were created using a mixture of previously identified Toolik Lake clone isolates (Crump et al. 2003) and used to standardize within and between gels. Gels were run on a Bio-rad system for 18 to 24 hours at 75 volts and 65 °C. Imaging was performed with Quantity One software on a Chemi-Doc gel documentation system (Bio-Rad), gel bands were identified using GelCompar software to create a presence-absence matrix as described by Crump and Hobbie (2005). Each band represents an operational taxonomic unit (OTU) of bacteria.

Dice transformation (SPSS 14.0 through 17.0) was used to condense presence-absence data into percent community similarities between samples. PROXCAL (SPSS Categories, versions 14.0 through 17.0) was used to create non-metric multi-dimensional scaling (NMDS) graphs of sample similarities. Two-tailed paired t-tests (Excel 2003) were used to compare the number of populations (bands) between sites.

Transplant Experiments

Transplantation of bacterial communities was performed to test activity in different habitats. Dialysis bags (Sigma dialysis tubing cellulose membrane, 76 mm flat width) were used to isolate bacterial communities from inputs of new members (Gasol et al. 2002). Substrates smaller than 12,000 M.W. diffuse across the tubing membrane in less than 18 hours, as confirmed with a diffusion test of ¹⁴C-labelled leucine (Appendix **4.A**), allowing exposure of the contained bacteria to ambient temperature and nutrient conditions. Bags were washed and soaked in DI water to remove excess glycerin for a minimum of 12 hours before use, no sections of tubing were used more than once, and nitrile gloves were worn when handling the bags. At each site, three (two in 2005) replicate samples of whole water were collected in acid-washed 1L opaque Nalgene bottles and either transported to another site within 15 minutes or immediately transferred to 45.7 cm sections of tubing and secured with custom wood closures (final volume 640 mL). Grazers were not removed for these experiments due to co-occurrence with particle attached bacteria. Filled bags were then secured to dowels with plastic ties within opentopped plastic covered metal cages of dimensions 70 x 55 x 55 cm. Cages were secured in streams using rebar. There were three replicate bags for each treatment and each bag was allowed to incubate in situ for two to four days. Upon collection, each bag's

contents were transferred to an acid-washed 1 L opaque Nalgene bottle from which 40 mL was used to measure bacterial production, 180 mL was filtered to measure chl, proteins, phenolics, and DOC, 10-15 mL was preserved for cell counts, and the remainder filtered to collect DNA.

Several transplant experiments were conducted at I-8 inlet and outlet. The first experiment presented here was performed on 18-21 July 2006 and consisted of incubating the I-8 inlet community at both the inlet and outlet sites, to test if the community flowing into the lake would still be viable downstream. The next experiments were conducted in the early part of the summer season on 5-9 July 2005 and 2-4 July 2007 and also included the incubation of the outlet community at both sites to test if the downstream community retained the ability to process carbon from upstream. The third set of experiments was conducted in the later portion of the summer on 26-28 July 2005 and 1-3 August 2006 and also consisted of transplantation of both inlet and outlet communities between sites in addition to controls incubated at their original habitat.

Results

Differences in activity and community composition between sites

Bacterial productivity (BP) was usually greater downstream of Lake I-8 compared to the lake inlet or headwater stream (**Fig. 4.2, Appendix 4.B.**). During the ice-free summer season, BP at I-8 HW in 2003-2007 averaged 4.29 μ g C/L/day (SD = 7.57, n = 15). Downstream at I-8 inlet, BP was lowest with an average of 2.12 μ g C/L/day (SD = 1.63, n = 56). However, I-8 outlet BP averaged 7.46 μ g C/L/day (SD = 3.75, n = 57). Greater BP was also present ~1 km downstream of Lake I-8 at site I8-I9 which averaged 4.75 μ g C/L/day (SD = 3.43, n = 50).

Community composition was also consistently different between sites upstream and downstream of the lake. In 2003, the bacterial community composition at I-8 inlet was generally variable with low similarity between summer samplings, averaging 45% (Fig. 4.3). Mid-lake and outlet communities were generally more stable with a similarity during the summer averaging 74 and 63%, respectively. When communities were compared by date, the lake and outlet samples (lake-out in Fig 4.3) had a very high similarity to each other with a mean of 79%. The inlet communities were less similar to the other two sites with average similarity by date of about 40%. In 2007, community similarity between sites was not as different, but showed a similar pattern. The lake community again had the highest similarity to the outlet at 66% and the inlet had the lowest similarity to the outlet with 47% (Fig. 4.4). The number of OTUs also differed between sites, with 19.6 ± 2.2 bands on average at the inlet and 25.5 ± 3.1 at the outlet in 2003 (p value = 0.003). The inlet also had significantly fewer populations than the outlet in 2007 with 11.7 \pm 2.6 bands found at the inlet and 17.9 \pm 3.7 at the outlet (p value = 0.01).

Transplant experiments

Bacteria transplanted between sites showed patterns in activity similar to those observed *in situ*. To test if bacteria flowing into the lake have the potential to be active in lake habitats, bacteria from the inlet were held in place or moved to the outlet. Bacteria from the inlet incubated at the inlet had a mean BP of 14.26 μ g C/L/day, and those transplanted to the outlet had a greater average BP of 19.63 μ g C/L/day but the difference

between outlet and inlet was not statistically significant. Equal or greater activity of the inlet community was observed in additional transplants when moved to the outlet in both the early (**Fig. 4.5**) and late (**Fig. 4.6**) summer season. Bacteria were also moved from the outlet to the inlet to test if the communities that developed across the lake can process stream inlet carbon. The outlet bacteria had depressed activity in both early and late summer season (**Figs. 4.5 and 4.6**). In the early season transplants, both inlet and outlet communities had similar activity despite incubation location, but the late season transplants indicated community-specific responses to the inlet habitat with higher activity measured in the incubated inlet community. For all transplant experiments, the outlet habitat had more chl *a*, and generally had warmer temperatures and more proteins and DOC than the inlet habitat (**Table 4.1**).

Lake Inputs

I-8 inlet is the largest contributor of water to the lake, and in 2007 it had the greatest contribution to inflow when total inflow was highest (**Table 4.2**). The other inlets to the lake were either ephemeral (I-8 SE inlet and I-8 E inlet) or had much lower flow compared to the main inlet. I-8 NE inlet did comprise over 36% of water inputs on 4 July 2007, possibly due to rainstorms only in that part of the catchment, but its flow was only 10.2 L/s. During wetter years, it is anticipated that I-8 inlet also comprises the majority of the water inputs due to its large catchment size of 1281 ha, which is 44% of the total catchment for Lake I-8

In order to determine the depth at which I-8 inlet water and bacteria enter the lake, a thermistor chain was deployed at the deep sampling site of the western basin (Lake I-8 W, **Fig. 4.7**). The summer of 2003 was relatively cold and wet with several large storm

events (**Table 2.3**, **Fig. 4.8**). During the summer, the lake had periods of stratification until the last week of July, as well as isothermal conditions for most of August and for brief periods earlier in the summer. The dark blue bars (**Fig. 4.7**) indicate the depth of inflows as calculated by density from temperature and conductivity. The depth of inflow varied throughout the summer, with base flow and early season run-off events intruding at the base of the epilimnion. The inflow occasionally entered a well-mixed water column or formed surface overflows. Deep intrusions to the very bottom of the hypolimnion were typically found in August when water temperatures were colder.

The spatial extent of inflow also affects bacterial dispersal into the lake. The degree to which the inflow mixes with the lake will affect the degree of mass effects impacting the bacterial community. Conductivity and pH profiles from the western sampling stations of the lake indicate that after the first small rain event of the season in 2007, the inflow signal intruded at the base of the epilimnion, around 3 m, but only at the southwest station which is closest to I-8 inlet (**Fig. 4.9**).

The length of time inflow persists in the habitat directly affects community dynamics by determining whether bacterial populations can reproduce fast enough to overcome potential dilution and dispersal farther downstream. Epilimnion water retention time averages ~9 days but can vary from <1 to 600 days, depending on stream discharge (**Table 4.3**). Previous estimates of WRT at this site were based on the lake area relationship between Lake I-8 and Toolik Lake (Kling et al. 2000, Crump et al. 2007) instead of direct measurements of discharge presented here. However, even large storm events do not sustain the shortest WRTs for a long period. Bacteria cell doubling times (DT) are also highly variable (**Table 4.3**). The fastest doubling time (0.4 days) is

shorter than the fastest WRT (0.8 days), but the wide range of doubling times indicates that WRT can be shorter than DT. The balance of DT compared to WRT affects the persistence of populations within the habitat. The percent of the number of populations unique to the outlet community ranged from 40-76% (mean 62%) in 2003 and 32 to 63% (mean 48%) of inlet populations were detected concurrently at the outlet. Overall community similarity between the inlet and outlet ranged from 29 to 62% (mean 42%) and was greatest after the largest storm event of 2003 (**Figs. 4.3, 4.8**). In 2007, 29 to 79% (mean of 60%) of populations at the outlet were unique to the outlet while 50 to 71% (mean of 59%) of populations in the inlet community were also found at the outlet.

Bacterial communities collected during the spatial sampling after the first small rain event in 2007 show clustering based on lotic or lentic habitat type (**Fig. 4.10**). Lake communities, including I-8 outlet, had a mean similarity to each other of 76.2% with a standard deviation (SD) of 8.7%. Inlet communities had a mean similarity to each other of 32.2% with a standard deviation of 29.9% and had only 27.5% average similarity to the lake communities (SD of 8.6%). The two inlet streams draining catchments south of the lake (I-8 inlet and I-8 S inlet) had two-thirds of their bacterial community members in common, while the I-8 NE inlet had very low similarity to the other two inlet sites (13.3% and 16.7% respectively). The inlet communities had higher similarity to each other when sampled on 18 June and 20 July, ranging from 20.7 to 63.2%. The I-8 inlet bacterial community was also more similar to lake communities at the west station and outlet on 21 June and 11 July with 66.9% and 63.2% mean similarities (SD of 4.5% and 9.1%, respectively) but was more distinct from lake communities when sampled on 8 August with only 23.9% similarity to the lake and outlet (SD of 5.6%).

Discussion

Both greater bacterial productivity and greater stability of community composition were observed at the outlet of Lake I-8 compared to the main inlet (**Figs. 4.3 and 4.4**). The lake has more labile carbon sources from autochthonous production as indicated by higher levels of chl *a* and proteins at the outlet than the inlet (**Table 4.1**). More bioavailable resources for the bacteria can increase production and may explain the consistently higher BP at the outlet. The lake also slows the transport of bacteria down the catchment. Given sufficient time, species sorting processes can dominate the community dynamics, and competition results in a downstream community that is best adapted to available carbon sources (Van der Gucht et al. 2007). Mass effects can disrupt the community composition in the lake when large storm events occur, resulting in similar communities at the inlet and outlet. In fact, after a large (estimated 4500 L/s) storm event in August of 2003, the community similarity of I-8 inlet and I-8 outlet was 61.5% compared to 36.7% similarity before the storm (**Fig. 4.8**).

When transplanted, bacteria from the inlet are viable at the outlet and have equal, if not greater, activity in the new habitat (**Figs. 4.5 and 4.6**). However, less than half of inlet bacterial populations usually persist at the outlet as indicated by the low similarity of inlet and outlet communities (**Figs. 4.3, 4.4, Appendix 4.B**). On the basis of these similarity results, the communities that develop in the lake and are detected at the outlet appear to be dominated by members that process lake carbon rather than the terrestrial carbon flowing in from upstream. Kritzberg et al. (2005) determined that a greater bacterial preference for autochthonous carbon, along with greater growth efficiencies, is likely in habitats with high levels of allochthonous (terrestrial) carbon. When outlet

communities were transplanted to the inlet habitat, they were less productive than at their original habitat, and in the late season were less productive than the inlet communities incubated at the same time (**Figs. 4.5, 4.6**). This indicates that the lake communities were no longer optimized to process upstream carbon, and that bacterial populations from the inlet are either outcompeted or diluted to low numbers within the new lake community. Although still viable in the lake, the inlet communities appear to be either poor competitors or potentially limited in their dispersal to the outlet habitat during low flow periods.

The dispersal of inlet communities into the lake is limited by the depth, spatial extent, and volume of stream inflow. While the main inlet does provide the majority of water to the lake (**Table 4.2**), this water may not extend far into the lake due to mixing or insufficient volume of inflow, as observed on 4 Jul 2007 (**Fig. 4.9**), or it may flow directly to the hypolimnion where it becomes isolated until the lake mixes deeply (**Fig. 4.7**). However, during large storm events, the inflow is very high, and concurrent cold conditions can create a well-mixed lake. Large storm events also decrease the WRT and short WRTs have been found in other systems to increase community similarity (Lindstrom and Bergstrom 2004). Both sufficient water volume and inflow penetration into the epilimnion would be required for mass effects to have a large impact on the outlet community, such as occurred around 30 Jul 2003 (**Fig. 4.7, Fig. 4.8**). However, storms of such magnitude are relatively rare, only 13% of summer storm events from 1991-2008 had a similar or greater magnitude (Arctic LTER data).

Bacterial communities are also dispersed to the outlet from smaller inlets and from within the lake itself. The inlets to the lake drain sub-catchments that differ in

vegetation and surface geomorphology, both of which impact bacterial communities and therefore the types of populations that can migrate downstream (Judd and Kling 2002). Most populations from the smaller inlets do not appear to persist in the lake, with very low similarities of inlet and lake communities. This is likely due to the small number of inlet bacterial cells becoming diluted within the lake, as seen also in other studies (Lindstrom and Bergstrom 2004). Lower population sizes can result in stochastic extinctions and can decrease the ability of new populations to compete with existing lake populations. Spatial sampling of the lake indicated a relatively well-mixed bacterial community and a high similarity between distant sites within the lake (**Fig. 4.10**). Chemical measures of lake water support this being a well mixed habitat (**Appendix 4.C**, **4.D**) with no evidence for a gradient of community composition along an allochthonous gradient such as that found in a much larger reservoir by Simek et al. (2001). This separation of communities in the inlet and lake again supports species sorting as the predominant driver of community dynamics at Lake I-8.

In Lake I-8, there is evidence of a continuum of importance between species sorting and mass effects as mechanisms structuring bacterial community composition, although the dominance of mass effects was rare and limited to large stream inflow events. Transplant experiments showed that although inlet communities can survive in the outlet habitat, outlet communities consist of many members that lack the ability to survive in the inlet habitat, particularly later in the summer season. The analysis of depth, spatial extent, and volume of water inflow determined the potential dispersal of inlet bacteria to the lake. The balance of biological growth rates (DTs) to physical WRT controls the persistence of inlet bacteria in the lake and outlet habitat, provided that water

inflow does not become entrained in the hypolimnion. Many members of the inlet populations will be mixed with the lake and outlet populations when WRT is short. WRT, along with environmental conditions, has been found to control the distribution of bacterial groups in other habitats as well (Lindstrom et al. 2005, Crump et al. 2007). If WRT is long, competition and predation will structure the community in the lake, and many inlet populations will not persist. Van der Gucht et al. (2007) suggest fast population growth rates and regular dispersal as a way for bacterial communities to track environmental conditions. In this system, bacteria have a faster average DT than the average WRT, suggesting that species sorting dominates while mass effects may be important only during aperiodic, large summer storm events.

Acknowledgements

Field measurements and laboratory experiments were performed at the University of Alaska Fairbanks Toolik Field Station. Several people assisted this project, including Jessica Spence, Maria Dzul, Alex Mettler, Christina Maki, Lauren Yelen, Christopher Wallace, and Scott Houghton. Ashley Larsen and Jen Kostrzewski assisted in tracking the influence of inflow and the contributions of the inlets to the lake. Jen Kostrzewski also helped quantify hydrologic effects and performed the analysis of the frequency of storm events. Sally MacIntyre from the University of California at Santa Barbara provided thermistor data from 2003. Bathymetric data and lake volume for Lake I-8 were collected by John Bonde of University of Minnesota Natural Resources Research Institute and by Andrew Balser of University of Alaska Fairbanks Toolik GIS Program. Molecular work was performed with the assistance of Byron Crump, Jude Apple, and Erika Kiss at the University of Maryland Center for Environmental Science Horn Point

Laboratory. Cell counts from experiments conducted in 2006 and 2007 were performed by Craig Nelson at the University of California, Santa Barbara. Ashley Larsen's work on the spatial sampling was part of her REU project, advised by H. E. Adams and G. Kling, in which she focused on the inputs of DOM to Lake I-8 and the effect on bacterial productivity. Funding was provided by NSF-DEB 0639805, 0423385, 981022 and NSF-OPP 9911278, by the University of Michigan (Rackham, Dept. of EEB, Whittaker Mentoring Fellowship, and Helen Olsen Brower Endowed Fellowship), and the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program.

Tables

Table 4.1. Habitat characteristics during transplant experiments. Transplant experiment collected on 9 Jul 05 was deployed 12 hours after conditions were measured on 5 Jul 05.

		Temp	BP (µg	Cond	pН	Chl a	Protein	Phenolics	DOC
Date	Site	(°C)	C/L/day)	(µS)		$(\mu g/L)$	(mg/L)	(µ M)	(µ M)
5 Jul 05	I-8 inlet	7	1.25	123.3	7.28	0.21	0.16	0.06	268.2
5 Jul 05	I-8 outlet	12.3	7.19	51.2	6.99	0.39	0.29	0.04	387.4
9 Jul 05	I-8 inlet	7.2	1.69	62.0	6.29	0.18	0.51	0.81	615
9 Jul 05	I-8 outlet	10.6	11.45	62.2	6.61	0.80	0.53	0.99	457.3
26 Jul 05	I-8 inlet	11.2	1.42	117.2	7.12	0.10	0.16	0.29	353.8
26 Jul 05	I-8 outlet	14.6	6.38	67.9	7.61	0.75	0.38	0.78	527.1
28 Jul 05	I-8 inlet	11	1.79	124.3	7.66	0.90	0.16	0.27	350.6
28 Jul 05	I-8 outlet	14.4	10.62	69.5	7.54	0.97	0.34	0.76	521.5
18 Jul 06	I-8 inlet	10.10	0.85	88.5	8.14	0.41	0.30	0.56	462.6
18 Jul 06	I-8 outlet	12.40	2.39	69.6	7.65	2.10	0.59	1.05	574.2
21 Jul 06	I-8 inlet	8.30	1.16	77.7	7.59	0.43	0.47	0.73	527.7
21 Jul 06	I-8 outlet	11.60	7.70	72.5	7.39	1.72	0.59	0.95	563.7
1 Aug 06	I-8 inlet	10.10	0.56	95.9	7.62	10.10	0.45	0.43	475.5
1 Aug 06	I-8 outlet	12.60	3.86	75.4	7.41	12.60	0.59	0.87	592.5
3 Aug 06	I-8 inlet	12.10	2.09	100.4	7.72	0.65	0.47	0.48	456.7
3 Aug 06	I-8 outlet	12.80	10.85	78.4	7.52	2.10	0.62	0.81	576.5
2 Jul 07	I-8 inlet	17.6	7.15	152.2	7.65	0.29	0.12	0.68	402.4
2 Jul 07	I-8 outlet	16.3	15.39	79	7.47	0.48	0.19	0.69	314.6
4 Jul 07	I-8 inlet	13.9	2.69	158	7.5	0.20	0.21	0.23	363.3
4 Jul 07	I-8 outlet	18.4	2.68	74.2	7.25	0.29	0.32	0.03	427.3

	%	Total inflow	Outflow			
Date	I-8 NE inlet	I-8 S inlet	I-8 SE inlet	I-8 inlet	(L/s)	(L/s)
16-Jun-07					9.8	32.7
18-Jun-07	6.4	5.1	1.0	87.4	24.4	34.4
21-Jun-07					8.5	32.1
29-Jun-07					42.0	41.9
4-Jul-07	36.1	6.4	n/a	57.5	28.3	27.1
11-Jul-07				11.2		17.9
16-Jul-07	14.1	8.8	0.8	76.3	318.8	47.8
20-Jul-07	10.0	8.2	1.2	80.6	134.3	161.7
28-Jul-07	7.7	6.8	1.3	84.2	48.3	50.7
3-Aug-07	5.1	4.0	0.3	90.5	502.1	618.6

Table 4.2. Water contribution to Lake I-8 for summer 2007. Outflow is stream discharge measured at the I-8 outlet. Total inflow is the sum of discharge rates for all lake inlets; inflows for dates 16, 21, and 29 June, and 11 July are based only on discharge measured at I-8 inlet.

Table 4.3. Water residence time (WRT) for Lake I-8 and doubling times (DT) for I-8 inlet and outlet, based on data from 2003-2007.

		Lake WRT (day	s)	E	Epilimnetic WRT (days)					
Year	Slow	Mean	Fast	Slov	v Mean	Fast				
2003	120.3	3.9	1.0	88.9	2.9	0.8				
2004	122.4	5.8	1.3	90.5	4.3	1.0				
2005	811.1	20.2	1.5	599.	8 14.9	1.1				
2006	39.0	9.4	2.1	28.9	6.9	1.5				
2007	328.0	23.4	2.7	242.	6 17.3	2.0				
Average	284.1	1 12.5 1.		210.1	1 9.3	1.3				
Site		Longest DT (d	ays)	Mean DT (d	ays) Shorte	Shortest DT (days)				
I-8 inlet		29.8		1.9		0.4				
I-8 outlet		12.4		0.9		0.4				

Figures

Figure 4.1a. Sampling locations in the I-series catchment to Toolik Lake, Alaska.

Figure 4.1b. Lake spatial sampling sites at Lake I-8, Northern Alaska. I-8 outlet is located at 394605.858 Easting 7613243.017 Northing on the UTM Zone 6 North, WGS84 coordinate system (149.59 °W, 68.61 °N). Larger inlet stream locations are also shown in Figure 4.1a.

Figure 4.2. Bacterial Production at sites upstream and downstream of Lake I-8 with symbols ● I-8 headwaters, ♦ I-8 inlet, ■ I-8 outlet, and ▲ I-8 to I-9.

Figure 4.3. Dice similarity of DGGE bands at sites at Lake I-8 in summer 2003. Error bars are standard error of the mean. Similarities at a single site (e.g. in-in) are similarities between sampling dates, whereas similarities between sites (e.g. in-lake) are pair-wise similarities between sites sampled on the same day. "In" designates the I-8 inlet stream, "out" designates the outlet stream, and "lake" designates samples collected from the lake water column at the I-8 West station.

Figure 4.4. Dice similarity of sites at Lake I-8 in summer 2007 (dry year). Error bars are standard error of the mean. Similarities at a single site (e.g. in-in) are similarities between sampling dates, whereas similarities between sites (e.g. in-lake) are pair-wise similarities between sites sampled on the same day.

Figure 4.5. Early summer transplants at I-8 inlet and outlet from 5-9 Jul 05 (top) and 2-4 Jul 07 (bottom), \blacklozenge inlet community, \square outlet community. Error bars are standard error of the mean.

Figure 4.6. Late summer transplants at I-8 inlet and outlet from 26-28 Jul 05 (top) and 1-3 Aug 06 (bottom), \blacklozenge inlet community, \square outlet community. Error bars are standard error of the mean.

Figure 4.7. Plot of isotherms in Lake I-8 from summer 2003. Bars indicate the depth at which the density of the water from I-8 inlet is the same as the water within the lake.

Figure 4.8. Modeled discharge at I-8 inlet (black line) and % similarity of bacterial communities at I-8 inlet and I-8 outlet in the summer of 2003 (gray bars). Discharge was modeled using the relationship of discharge between Toolik Lake inlet and I-8 inlet in 2005-2007. Highest DNA similarity between I-8 inlet and outlet was detected after a large rain event near the end of July.

Figure 4.9. Conductivity (top) and pH (bottom) depth profiles for the sampling transect in the western basin of Lake I-8 on 4 Jul 2007. I-8 southwest station (\bullet) clearly shows the influence of the main inlet stream in higher conductivity and lower pH, compared to the west (\square) and northwest (\triangle) stations.

Figure 4.10. NMDS of bacterial communities at Lake I-8 on 4 Jul 07 based on sample similarities. Inlets and outlet samples are indicated by \blacklozenge and lake samples by \blacksquare . All samples were collected from surface water (0.01 m for streams, 0.5 m for lake) unless otherwise noted. Normalized raw stress = 0.009.

Appendices

Appendix 4.A. Diffusion of ¹⁴C-leucine across dialysis bags. Upper line (\blacktriangle) is radioactivity of ¹⁴C-labeled leucine measured inside a dialysis bag, while the lower line is radioactivity measured in the fluid exterior of the bag (\blacksquare). Black solid lines are fitted to the curves with exponential equations (decay and increase, R² = 0.997 and 0.84), gray dashed lines are 95% confidence intervals. Error bars on data points are standard error of the mean.

Date	Samples	Similarity	
18 Jul 06	I-8 inlet	I-8 outlet	0.38
18 – 21 Jul 06	In/ in	In/out	0.77
21 Jul 06	I-8 inlet	I-8 outlet	0.56
1 Aug 06	I-8 inlet	I-8 outlet	0.51
1-3 Aug 06	In/in	In/out	0.74
1-3 Aug 06	Out/out	Out/in	0.90
3 Aug 06	I-8 inlet	I-8 outlet	0.55

Appendix 4.B. DNA similarity (1.0 = identical) between sites during transplant experiments and the impact of location on community composition (average similarity of control compared to location treatment).

Site	Time_hr_dst	Depth_m	Temp_C	Cond_uS	Нд	Alk_ueqL	DOC_uM	NH4_OPA_uM	PO4_uM	NO3_uM	TDN_uM	TDP_uM	Ca_uM	Mg_uM	Na_uM	K_uM	Si_uM	Oxygen_mgL	Chla_ugL
18 Inlet	9:55	0.01	13.9	158	7.5	1418	363.3	0.35	0.02	13.82	21.1	0.08	668	146	22.3	5.4	30.5		0.23
18 Inlet Northeast	9:15	0.01	11.3	208	7.53	1898	427.3	0.57	0.06	18.70	24.7	0.06	917	176	30.8	5.7	41.2		0.36
18 Inlet South	14:10	0.01	16.3	143.3	6.93	1379	405.9	0.54	0.07	1.86	13.5	0.11	639	114	20.4	4.4	38.0		0.41
18 Lake Central	11:08	0.5	17.8	68.4	7.57	633.3	447.4	0.26	0.04	0.06	10.8	0.09	308	66.3	12.8	7.4	16.5	8.43	1.01
I8 Lake East	10:32	0.5	17.9	68.7	7.78	650.5	456.4	0.34	0.04	0.12	12.2	0.11	309	66.3	13.4	7.7	15.9	8.74	1.02
18 Lake Northeast	10:15	0.5	18	68.8	7.85	645	444.1	0.48	0.03	0.21	12.1	0.11	312	67	13.2	7.8	15.8	8.78	0.94
l8 Lake Northwest	12:50	0.5	17.5	68.1	7.73	640.4	405.7	0.27	0.04	0.08	11.3	0.07	305	66.1	12.8	7.4	16.4	8.73	1.05
l8 Lake Southeast	10:44	0.5	18	69	7.8	634.3	429.3	0.44	0.07	0.20	12.5	0.10	311	67.5	27.8	9.2	19.1	8.80	0.65
l8 Lake Southwest	11:38	0.5	17.7	67.8	7.63	616.1	448	0.25	0.04	0.18	11.1	0.12	305	65.8	13.3	7.5	16.4	8.48	1.06
18 Lake West	12:12	0.5	17.6	67.8	7.76	647.2	391.1	0.28	0.03	0.11	11.7	0.08	305	66.2	12.9	7.4	16.5	8.69	0.97
18 Lake West	12:12	6	7.76	61.8	6.82	609.9	425.9	0.52	0.05	0.32	11.8	0.14	290	62.6	13.1	8.1	29.7	7.75	1.85
18 Outlet	11:00	0.01	18.4	74.2	7.25	622.3	393.5	0.67	0.04	0.46	12.1	0.11	316	68.5	13.1	7.5	17.9		0.34

Appendix 4.C. Limnological variables measured at Lake I-8 during the 4 Jul 07 intensive spatial sampling (see Kling et al. 2000 for methodology).

Appendix 4.D. NMDS of environmental data taken on 4 Jul 07. Proximities are based on Euclidean distances of temperature, conductivity, pH, alkalinity, DOC, NH4, PO4, NO3, TDN, TDP, Ca, Mg, Na, K, Si, and chl. Normalized raw stress is > 0.001.

Literature Cited

- Adams, H. E., B. C. Crump, and G. W. Kling. In revision. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams. Environmental Microbiology.
- Amon, R. M. W. and R. Benner. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography 41:41-51.
- Bertoni, R., C. Callieri, E. Balseiro, and B. Modenutti. 2008. Susceptibility of bacterioplankton to nutrient enrichment of oligotrophic and ultraoligotrophic lake waters. Journal of Limnology 67:120-127.
- Crump, B. C., H. E. Adams, J. E. Hobbie, and G. W. Kling. 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology **88**:1365-1378.
- Crump, B. C. and J. E. Hobbie. 2005. Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnology and Oceanography **50**:1718-1729.
- Crump, B. C., G. W. Kling, M. Bahr, and J. E. Hobbie. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Applied and Environmental Microbiology **69**:2253-2268.
- delGiorgio, P., D. F. Bird, Y. T. Prairie, and D. Planas. 1996. Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnology and Oceanography **41**:783-789.
- Ewart, C. S., M. K. Meyers, E. R. Wallner, D. J. McGillicuddy, and C. A. Carlson. 2008. Microbial dynamics in cyclonic and anticyclonic mode-water eddies in the northwestern Sargasso Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography 55:1334-1347.
- Gasol, J. M., M. Comerma, J. C. Garcia, J. Armengol, E. O. Casamayor, P. Kojecka, and K. Simek. 2002. A transplant experiment to identify the factors controlling bacterial abundance, activity, production, and community composition in a eutrophic canyon-shaped reservoir. Limnology and Oceanography 47:62-77.
- Harte, J., E. Conlisk, A. Ostling, J. L. Green, and A. B. Smith. 2005. A theory of spatial structure in ecological communities at multiple spatial scales. Ecological Monographs 75:179-197.
- Jones, S. E. and K. D. McMahon. 2009. Species-sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics. Environmental Microbiology 11:905-913.
- Judd, K. E., B. C. Crump, and G. W. Kling. 2006. Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068-2079.
- Judd, K. E. and G. W. Kling. 2002. Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow. Biogeochemistry **60**:213-234.
- Kirchman, D. L. 1992. Incorporation of Thymidine and Leucine in the Sub-Arctic Pacific - Application to Estimating Bacterial Production. Marine Ecology-Progress Series 82:301-309.

- Kirchman, D. L., R. R. Malmstrom, and M. T. Cottrell. 2005. Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep-Sea Research Part Ii-Topical Studies in Oceanography 52:3386-3395.
- Kling, G. W., G. W. Kipphut, M. M. Miller, and W. J. O'Brien. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology 43:477-497.
- Kritzberg, E. S., J. J. Cole, M. M. Pace, and W. Graneli. 2005. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquatic Microbial Ecology 38:103-111.
- LaPara, T. M., T. Zakharova, C. H. Nakatsu, and A. Konopka. 2002. Functional and structural adaptations of bacterial communities growing on particulate substrates under stringent nutrient limitation. Microbial Ecology **44**:317-326.
- Lebaron, P., N. Parthuisot, and P. Catala. 1998. Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Applied and Environmental Microbiology **64**:1725-1730.
- Lee, S. and J. A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology 53:1298-1303.
- Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, and A. Gonzalez. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601-613.
- Leibold, M. A. and H. M. Wilbur. 1992. Interactions between food-web structure and nutrients on pond organisms. Nature **360**:341-343.
- Lindstrom, E. S. and A. K. Bergstrom. 2004. Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time. Limnology and Oceanography **49**:125-136.
- Lindstrom, E. S., M. P. Kamst-Van Agterveld, and G. Zwart. 2005. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Applied and Environmental Microbiology **71**:8201-8206.
- Marie, D., F. Partensky, S. Jacquet, and D. Vaulot. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology 63:186-193.
- Mouquet, N., V. Belrose, J. A. Thomas, G. W. Elmes, R. T. Clarke, and M. E. Hochberg. 2005. Conserving community modules: A case study of the endangered lycaenid butterfly Maculinea alcon. Ecology 86:3160-3173.
- Scheffer, M., S. Rinaldi, J. Huisman, and F. J. Weissing. 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491:9-18.
- Simek, K., J. Armengol, M. Comerma, J. C. Garcia, P. Kojecka, J. Nedoma, and J. Hejzlar. 2001. Changes in the epilimnetic bacterial community composition, production, and protist-induced mortality along the longitudinal axis of a highly eutrophic reservoir. Microbial Ecology 42:359-371.

- Urban, M. C. 2004. Disturbance heterogeneity determines freshwater metacommunity structure. Ecology **85**:2971-2978.
- Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J. M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman, and L. De Meester. 2007. The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences of the United States of America 104:20404-20409.
- Waterman, P. G. and S. Mole. 1994. Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Boston.
CHAPTER V

Synthesis of controls on bacterial activity

Abstract

Bacterial production has been demonstrated within this dissertation to be controlled by both environmental factors and bacterial community composition. Several Bayesian models were created using five summers of data from lakes and streams in Northern Alaska to measure the relative effects of these drivers. Site identity was found to be an important variable in the models, whereas the importance of other drivers such as temperature, chlorophyll a, total dissolved nitrogen, total dissolved phosphorus, and dissolved organic carbon varied greatly. The removal of site identity increased the strength of relationships between environmental variables and bacterial production, indicating that included variables could mask co-varying unmeasured drivers. Non-zero parameter estimates for an index of community composition indicated that community composition can be included in models of community-level bacterial production in natural systems and may account for differences in production between sites. Discerning the interaction of community composition and environmental variables is integral to understanding the controls on bacterial production in natural habitats.

Introduction

Bacterial production can be controlled by temperature (White et al. 1991), nutrients (Vadstein 2000), organic matter (Findlay et al. 2003), and community composition (Foreman and Covert 2003). Throughout this dissertation, these different controls on bacterial productivity have been examined and their interactions tested both in the field and through experimentation. Here, I develop a predictive model of activity, incorporating empirical data from an arctic lake catchment.

As discussed in Chapter 2, populations within the bacterial community near Toolik Lake, Alaska, have different optimal temperatures, which are detectible when the community is held at different temperatures for as little as 3 days. Immediate responses of the whole community to temperature are roughly linear and Q_{10} (increase in activity with increase in temperature) from different sites and dates is negatively correlated with *in situ* temperature ($r^2 = 0.41$) (Adams et al. In revision).

Stream discharge also affects bacterial activity, but indirectly by transporting upstream nutrients, DOM, and new community members. In general, discharge is inversely correlated with temperature in the Arctic, because summer storms tend to have cooler air temperatures. At Toolik Inlet, both temperature and discharge were significantly related to BP for 2003-2006, even though all four years had very different temperature and storm event frequency and intensity. Path Analysis (Amos software 16.0) indicated that discharge had a larger coefficient ($\beta = 0.45$) than water temperature ($\beta = 0.25$) at Toolik Inlet, although the effect of discharge may be due to drivers of BP that co-vary with discharge such as DOM and nutrients. At Lake I-8 inlet and outlet, path analysis results of discharge, water temperature, and BP were similar to that seen at

Toolik Inlet; there was a strong correlation ($\beta = 0.60$) of water temperature and BP, probably related to consistent differences in temperature between the inlet and outlet of the lake.

Bacterial productivity is also limited by inorganic nutrients and DOM which are the basic substrates needed for bacterial growth. Pulsed inorganic nutrient supply, such as that found during storm events, can interact with temperature limitation to affect both BP and bacterial community composition at these sites (Chapter 3). Storm events also bring in DOM from upstream; however, not all portions of the DOM pool are bioavailable (Findlay et al. 2003). For example, BP is better correlated with chlorophyll a (chla) concentrations than with DOC at the catchment scale due to the large amounts of terrestrial carbon that enters the aquatic habitat in the study system (path analysis, Chapter 2). Additionally, not all communities are adapted to the same types of DOM. I transplanted upstream inlet bacteria and lake outlet bacteria and determined that in the early season, all communities are more active downstream of the lake (where there is the addition of presumably more labile carbon from lake algae) but later in the summer, the inlet bacteria are equally active at either site. The depressed activity of the outlet bacteria at the inlet indicates that the community formed at the lake outlet cannot process much of the terrestrial carbon from upstream (Chapter 4). Laboratory experiments manipulating temperature, DOM source, and inorganic nutrient supply (Chapters 2 and 3) also indicate the importance of community composition, with populations shifting rapidly in dominance in response to drivers. Communities that have enough time to respond to environmental variables by shifting in composition may then have a different potential BP for changing conditions.

Multiple regression has been frequently used to examine controls on BP in natural habitats, although modeling approaches for bacteria have focused on either modeling the food web (Ducklow 1994, Hopkinson and Vallino 1994, Allen et al. 2002, Polimene et al. 2006) or modeling laboratory responses to variation in substrates (Oneill et al. 1989). Zubkov et al. (2004) developed one of the few models incorporating population level dynamics of different bacterial groups and was based on laboratory experimentation. In multiple regressions, DOC explains BP in some lakes with large amounts of terrestrial carbon inputs (Agren et al. 2008), but BP in other lakes is better explained by chla (Letarte and Pinelalloul 1991) and primary productivity (Chrost and Siuda 2006) or temperature and nutrients (Ameryk et al. 2005). A few investigators have also examined spatial patterns of BP. Shiah et al. (2003) found spatial variation in control of BP by temperature and substrate supply and Truu et al. (1996) found that covariation of environmental variables and spatial structure better explained BP than each alone. Bacterial community composition is rarely included in these models, although when included in a multiple regression in soil systems, community composition has been found to control processes (Balser and Firestone 2005).

Within this dissertation, modeling efforts have focused primarily on path analysis using field measurements of BP, temperature, stream discharge, chla, and DOC concentrations. However, it is also necessary to examine the effect of unmeasured site characteristics as well as community composition in order to understand patterns of community-level processes at larger spatial scales. Bayesian methods are used here to determine the relationship of community composition and environmental factors in determining bacterial productivity.

Methods

Field Data

Data are environmental samples of water temperature (temp), total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), dissolved organic carbon (DOC), chlorophyll a (chla), and bacterial production (BP). Samples were collected weekly during the ice-free summer season at three sites in the Toolik Lake watershed in Northern Alaska from 2003-2007, a headwater stream (I-8 inlet), lake outlet (I-8 outlet), and farther downstream (I8-I9) (**Fig. 5.1**). Measurements were performed as described by Adams (Chapter 4) and Kling et al. (2000). Results from previous step-wise linear multiple regression using SPSS (v. 16.0) and path analysis using AMOS (v. 16.0) were used to narrow down the potential model inputs out of a larger set of biologically relevant drivers.

Bacterial community composition was determined by the comparison of banding patterns of denaturant gradient gel electrophoresis of 16S rRNA genes (Crump et al. 2003, 2007). Coordinates from a PROXCAL (SPSS 14, 17) generated NMDS plot of Dice transformed sample similarities of DNA from I-8 inlet and I-8 outlet in 2003 and 2007 were then used as a proxy for community composition within the relevant model.

Model Development

The basic model (model 1) is a generalized linear model of BP of sample i with the fixed effects (μ_i) of site, temp, TDN, and chla. Site identity and its associated parameter may account for unmeasured differences between sites such as pH, redox

potential, or oxygen. The fixed effects are in the form of a multiple linear regression indicated by the likelihood and equation:

$$BP_i \sim Lognormal(\mu_i, \tau)$$

 $\mu_i = \alpha * site_i + \beta * temp_i + \gamma * TDN_i + \lambda * chla_i$

Posterior densities of the parameters were calculated using Gibbs sampling, a type of Markov Chain Monte Carlo algorithm (WinBUGs 3.0.3). Missing data for chla were estimated using a prior uniform distribution based on the entire data range. Data for the rest of the chla data set were also estimated but were constrained to a range based on measurement error. Prior gamma distributions were used for parameters known to be positive, while normal or uniform distributions were used for all others.

> $\alpha \sim \text{Normal} (0, 0.0001)$ $\beta \sim \text{Normal} (0, 0.0001)$ $\gamma \sim \text{Normal} (0, 0.0001)$ $\lambda \sim \text{Normal} (0, 0.0001)$ $\tau \sim \text{Gamma} (0.01, 0.01)$

Sites were incorporated as a fixed effect rather than as a random effect because the sites are different in potentially important ways. The three sites are in the same watershed (**Fig. 5.1**), however, the two closest sites, I-8 inlet and I-8 outlet, are most diverse in physical characteristics, BP (**Fig. 5.2**), and bacterial community composition despite proximity, and therefore site is incorporated without a mechanistic function such as distance.

Additional parameters of TDP and DOC were added to the model (model 2) to determine if the predictive power of the model could be improved. Model 2 was also run on each site independently as well as all sites together (alpha parameter and site variables removed) to test if and how the other included parameters were site specific. Community composition (Figs. 5.3 and 5.4) was added to the model (model 3) to test if the fixed effect of site could be explained by community composition differences rather than by environmental differences between sites. Coordinates from dimensions 1 and 2 (dim1 and dim2) of NMDS plots of community similarity between sites were used to distinguish bacterial communities in the model. Due to a limited data set, community composition was only modeled for I-8 inlet and I-8 outlet in 2003 and 2007 for a preliminary test of this modeling approach. Prior normal distributions were used for all additional parameters.

Model 2:

$$\mu_i = \alpha * site_i + \beta * temp_i + \gamma * TDN_i + \lambda * chla_i + \delta * TDP_i + \epsilon * DOC_i$$

$$\delta \sim Normal (0, 0.0001)$$

$$\epsilon \sim Normal (0, 0.0001)$$

.

<u>.</u>.

Model 3:

$$\mu_i = \alpha * site_i + \beta * temp_i + \gamma * TDN_i + \lambda * chla_i + \delta * TDP_i + \epsilon * DOC_i + \iota * Dim1_i + \kappa * Dim2_i$$

ι ~ Normal (0, 0.0001) κ ~ Normal (0, 0.0001)

Model Selection and Validation

Each model was run for a minimum of 20,000 (up to 100,000) iterations with three chains. Parameter convergence was verified by examination of the smoothness of the density curves of parameter estimations as well as the decrease of autocorrelation during the model run. The deviance information criterion (DIC) was used as the comparison of the model fit between different model formulations using the same data set. Site was initially included in the model as a random effect, but the DIC (723.4) did not significantly differ from the model including site as a direct effect (722.9). Log

transforms were also tested as variations of the model for chla, DOC, TDN, and TDP, but parameters failed to converge in the smaller data sets (2003 and 2007) and initial parameters were not able to generate for the larger data set (2003-2007). Additional models including the incorporation of Michaelis- Menten dynamics and Monod equations or multivariate normal prior distribution of parameters were tested, but the parameters did not converge, despite running the models for over 1 million iterations. Non-convergence indicates that these mechanistic functions do not fit the community-wide response of BP in the field despite their ability to predict the responses of bacterial populations in laboratory cultures. Their application to mixed populations has long been in question (Wetzel 1994).

Results

The first model is a linear multiple regression which includes temperature, TDN, chla, and site as predictors of BP. Parameter estimates of environmental variables in this model had 95% confidence intervals which overlap with zero although TDN differed from zero by at least 1 standard deviation (SD) (**Table 5.1**). Site parameters were positive and had different values for each site (0.76 to 2.09), indicating that an additional factor not included in the model differed between sites and explains patterns of BP.

The addition of TDP and DOC as fixed effects into the second model improved the parameter estimates. Temperature, TDN, and DOC all had 95% CIs that did not overlap with zero (**Table 5.1**). Chla had parameter estimates different from zero within 1 SD. The site parameter estimates decreased for all three sites (-0.06 to 1.2). As in the previous model, the parameter for I-8 inlet was smallest out of the three and was not different from zero, while I-8 outlet was the largest, reflecting the greatest difference in

BP between the two sites (dif1, **Table 5.1**). The differences in site parameters were significant in both models and the addition of TDP and DOC did not change the parameter difference between I-8 inlet and I8-I9.

The removal of the site variable within the model increased the significance of the environmental parameters, but differences in environmental parameters were found when data sets from each site were run independently (**Table 5.2**). The 95% CI for all environmental parameter estimates were different from zero when the three sites were included without site identity. The parameter estimate for temperature increased (farther away from zero), and both chla and TDP changed from a negative to a positive parameter estimate. When data from each site was run in isolation, the magnitudes of parameters were different between sites. Both temperature and DOC had parameter estimates with a 95% CI that did not include zero and TDN was only different from zero at I-8 outlet (**Table 5.2**).

A subset of data from 2003 and 2007 at I-8 inlet and outlet were used in order to compare model 2 to model 3, with site identity restored as a variable. Focusing the model on one year at two sites yields different parameter estimates. The second model was modified to run on the environmental factors of this smaller data set. Again, the sites had different parameter estimates from each other (**Table 5.3**) but both 95% CI and standard deviation overlap with zero. In fact, for the smaller data sets, only parameter distributions for chla in 2003 and DOC in 2007 have the least overlap with zero.

NMDS dimensions of bacterial community similarity (**Fig. 5.3**) were added to model 3, and tested on the smaller subsets from 2003 and 2007 at I-8 inlet and outlet. Site parameter estimates again had 95% CI which overlapped with zero, although I-8

outlet in 2003 and both sites in 2007 were different from zero within 1 SD (**Table 5.3**). The estimates for the parameters of bacterial community indices were the only environmental variable in 2007 that had parameter estimates different from zero.

Discussion

The multiple regressions of BP, site, chla, temperature, and TDN indicate the importance of site differences for predicting BP. The three sites in model 1, I-8 inlet, I-8 outlet, and I8-I9, are all connected hydrologically, but differ in some way in addition to chla, temperature, and TDN. These differences are significant enough to impact BP, with particularly lower BP at I-8 inlet compared to the downstream sites (**Fig. 5.2**). This observation has been made previously (Chapter 4) but is verified by the differences in the alpha parameters of the model and the non-zero values of dif1, dif2, and dif3, which compare the alpha parameters between sites (**Table 5.1**).

While the parameters used in model 1 were indicated by a previous step-wise multiple regression to have the strongest effect on BP, TDP and DOC are also thought to be biologically important. Model 2 included these parameters which resulted in a decrease in the estimates of site parameters (closer to zero). The addition of TDP and DOC explained some of the variation previously contained within the site variables. In other words, some of the differences in BP between sites can also be explained by differences in TDP and DOC. The addition of more biologically relevant environmental factors such as redox potential or pH may further decrease the site parameters (alphas) and explain more of the variance of BP.

The impact of site identity was also seen when the site variable was removed from the model. All parameter estimates were different from zero, suggesting that unmeasured

site differences may be correlated with these variables, inflating the strength of their relationship with BP. When data from each site was run individually, parameter estimates were more similar to those from the full version of model 2 which included site identity. Each site differed in parameter estimates, similar to the variation found in the path analysis of Chapter 2, where strength of drivers varied based on habitat type or year.

Spatial or temporal variation of strength of environmental drivers on BP could be due to differences in bacterial community compositions. Community composition can shift quickly and be very different despite close proximity, as found in Chapters 2-4. Incorporating a composite measure of bacterial community composition was only possible for two years at two sites because samples must be compared on the same NMDS, and therefore the same DGGE comparison. Consequently, model 2 was tested on the smaller data sets of years 2003 and 2007 at I-8 inlet and I-8 outlet for comparison of model parameters with and without community composition. The smaller data set resulted in temperature and TDN parameter estimates closer to zero in both years compared to the models run with all three sites, suggesting that either bacteria at I8-I9 had a stronger relationship with temperature and TDN, or that the controls on BP can vary from year to year. Yearly variation is also evident in the difference of parameter estimates in 2003 compared to 2007. In 2003, lambda (chla) was farther from zero than in 2007, while epsilon (DOC) was farther from zero in 2007 than in 2003. Likewise, dif1, the difference between site parameters, is farther from zero in 2003 than in 2007. This suggests that the overall site difference between I-8 inlet and I-8 outlet varied in some respect more in 2003 than in 2007. Yearly variation in importance of controls has been also indicated by path analysis of BP at the catchment scale (Chapter 2).

When the dimensions of the NMDS of bacterial community similarities were added to the model, the dimensions differed in the magnitude of their parameter estimates. In NMDS, the first dimension should account for the majority of community differences between habitats, and in 2003, dim1 does have a parameter estimate greater than dim2. However, in 2007, the pattern is reversed, and dim2 is farther from zero than dim1, and also differs from zero by at least 1 SD. Interestingly, many of the other environmental parameter estimates became closer to zero in model 3 and their decreased importance may reflect community specific responses to those environmental variables.

Analysis of residuals of the models was performed to determine potential relationships not included in the model. Both models 1 and 2 run with the full data set and by site indicate that residuals have no relationship with BP.h (predicted BP), day of year, nitrate, ammonium, or phosphate. However, both models 2 and 3 run with the smaller data set (2003 and 2007) have residuals that increase in variance compared to predicted BP, indicating potential non-linear relationships. The presence of outliers in some of the environmental data may be responsible for the appearance of a non-linear relationship. Log transformation of data prior to running the models reduced the magnitude of some residuals, but residuals still showed increasing variance with increasing predicted BP. The exclusion of samples with outliers did not remedy the pattern and increased the number of iterations required to converge, if at all. The smaller data sets are limited to 15-17 sampling dates and it is likely that the inclusion of a larger data set would result in more robust parameter estimates and diminish the impact of data outliers.

This modeling investigation of different environmental factors and community composition as controls on BP has highlighted the importance of unmeasured site characteristics as well as community composition across the catchment. Although stepwise multiple regression had previously indicated that temperature, TDN, and chla would be the best predictors of BP, this exploration of modeling highlighted the importance of spatial variation and community composition, as well as verifying the potential for interannual variation in the importance of controls. Non-linear relationships of environmental variables and BP may describe individual bacterial populations, but community-wide responses appear to be better described by multiple regression. Further exploration of community compositional changes in natural habitats may allow for a broader predictive model that merges both community dynamics and a variable habitat.

Conclusions

Throughout this dissertation, the interaction of environmental factors, community composition, and bacterial productivity has been examined through various approaches and at different temporal and spatial scales. Laboratory mesocosm experiments examined the effect of temperature and nutrients and short time scales on both communities and bacterial production. Transplant experiments *in situ* isolated the mechanisms of metacommunity dynamics. Field measurements from the scale of a single site up to an entire lake district have been used to develop both path analysis and Bayesian models. Throughout these investigations, the importance of bacterial community composition has been evident, even at short time scales. The feedback between bacterial productivity and community composition clearly controls the observed impact of environmental drivers on bacterial production, and future efforts to predict or

understand bacterial productivity necessitates the consideration of community composition.

Acknowledgements

This model was developed as a part of the course NRE 501: Analysis and Modeling of Ecological Data with Inés Ibáñez at the University of Michigan School of Natural Resources and Environment. Field data was collected with the assistance of many field assistants of the Land-Water research group of the Toolik Lake Arctic LTER. DNA was analyzed at the lab of Byron Crump at the University of Maryland Center for Environmental Studies Horn Point Laboratory. The United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program provided funding to H. E. Adams. The EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA.

Tables

Table 5.1. Summary of parameter estimates from multiple regression of temperature, TDN, chla, and site identity as fixed effects controlling BP. Model 1 includes data from summers 2003-2007; model 2 also incorporates TDP and DOC.

	,	Mean	± SD (95% CI)
Variable	Parameter	Model 1 (2003-2007)	Model 2 (2003-2007)
I-8 inlet	alpha[1]	$0.76 \pm 0.26 \ (0.27, \ 1.27)$	-0.06 ± 0.38 (-0.81, 0.67)
I-8 outlet	alpha[2]	$2.09 \pm 0.32 \ (1.46, 2.73)$	$1.20 \pm 0.44 \ (0.33, 2.05)$
I8-I9	alpha[3]	$1.52\pm 0.31\ (0.91,\ 2.15)$	0.70± 0.42 (-0.13, .51)
Temp	beta	0.02 ± 0.02 (-0.02, 0.06)	$0.045 \pm 0.02 \ (0.01, \ 0.08)$
TDN	gamma	$-0.03 \pm 0.01 \ (0.04, -0.01)$	-0.03 ± 0.01 (-0.04, -0.02)
chla	lambda	$-0.10 \pm 0.12 \ (-0.33, \ 0.14)$	-0.116 ± 0.11 (-0.33, 0.11)
TDP	delta	n/a	-0.23 ± 0.37 (-0.94, 0.49)
DOC	epsilon	n/a	$0.001 \pm 4.38\text{E-}04 \ (4.80\text{E-}04, 0.002)$
dif1	alpha[1]- alpha[2]	-1.32 ± 0.16 (-1.65,-1.00)	-1.26 ± 0.16 (-1.58, -0.95)
dif2	alpha[2]- alpha[3]	$0.56 \pm 0.14 \ (0.29, \ 0.84)$	$0.50 \pm 0.14 \ (0.23, \ 0.77)$
dif3	alpha[3]- alpha[1]	$0.76 \pm 0.15 \ (0.46, 1.06)$	$0.76 \pm 0.15 \ (0.47, 1.06)$
precision	tau	$2.07 \pm 0.24 \; (1.63, 2.55)$	2.17 ± 0.25 (1.71, 2.70)

Table 5.2.	Summary of parameter	estimates from	multiple regression	of temperature,	TDN, chla	a, TDP, and D	OC as f	ixed effects
controlling	BP at each site (Model 2	2, 2003-2007).						

			Mean ± SD (95% CI)									
Variable	Parameter	I-8 inlet	I-8 outlet	I8-I9	All sites							
Temp	beta	$0.12 \pm 0.02 \ (0.08, \ 0.17)$	$0.08 \pm 0.02 \ (0.04, \ 0.11)$	$0.04 \pm 0.02 \ (0.003, \ 0.08)$	$0.08 \pm 0.01 \; (0.06, 0.10)$							
TDN	gamma	-0.10 ± 0.02 (-0.14, -0.06)	-0.02 ± 0.01 (-0.04,	0.03 ± 0.01 (-0.04, -0.01)	-0.03 ± 0.007 (-0.05, -0.02)							
			-0.004)									
chla	lambda	0.13 ± 0.22 (-0.31, 0.55)	-0.27 ± 0.14 (-0.55, 0.02)	0.13 ± 0.27 (-0.40, 0.66)	$0.29 \pm 0.12 \; (0.06, 0.51)$							
TDP	delta	1.15± 2.36 (-3.49, 5.79)	-0.31 ± 0.34 (-0.99, 0.36)	$-0.24 \pm 3.95 (-8.11, 7.39)$	0.20 ± 3.41 E-04 (4.54E-04,							
					0.002)							
DOC	epsilon	0.001±5.38E-04 (3.70E-04,	$0.003 \pm 6.178 \text{E-}04 \ (0.002,$	$0.002 \pm 6.66 \text{E-}04 \ (0.001,$	0.001 ± 3.41 E-04 (4.54E-04,							
		0.002)	0.004)	0.004)	0.002)							
precision	tau	2.56± 0.52 (1.65, 3.68)	2.70 ± 0.55 (1.74, 3.88)	$2.01 \pm 0.44 \ (1.26, 2.96)$	$1.62 \pm 0.19 (1.27, 2.01)$							

Table 5.3. Summary of parameter estimates from multiple regression of temperature, TDN, TDP, DOC, chla, and site identity as fixed effects controlling BP. Model 3 also adds community composition as reduced to the first two dimensions of NMDS plots of community similarity between sites.

-				Mean ± S	D (95% CI)	
	Variable	Parameter	Model 2 (2003)	Model 3 (2003 + DNA)	Model 2 (2007)	Model 3 (2007 + DNA)
	I-8 inlet	alpha[1]	-0.07 ± 2.27 (-4.98, 4.06)	$1.99 \pm 2.47 (-2.82, 6.91)$	2.05 ± 3.27 (-4.47, 8.5)	7.63 ± 5.00 (-2.97, 17.52)
	I-8	alpha[2]	1.41 ± 2.22 (-3.38, 5.46)	$4.02 \pm 2.64 (-1.08, 9.25)$	3.14 ± 3.71 (-4.25, 10.42)	8.79 ± 5.44 (-2.75, 19.61)
	outlet					
	Temp	beta	-0.03 ± 0.08 (-0.19, 0.14)	-0.06 ± 0.11 (-0.29, 0.14)	0.02 ± 0.15 (-0.26, 0.31)	-0.22 ± 0.21 (-0.65, 0.23)
	TDN	gamma	-0.014 ± 0.03 (-0.07,	-0.02 ± 0.03 (-0.08, -0.04)	0.02 ± 0.09 (-0.15, 0.19)	0.07 ± 0.09 (-0.11, 0.24)
			0.04)			
	chla	lambda	0.48 ± 0.52 (-0.65, 1.44)	-0.07 ± 0.70 (-1.56, 1.17)	$-0.19 \pm 0.49 (-1.15, 0.79)$	-0.31 ± 0.49 (-1.28, 0.68)
	TDP	delta	-3.21 ± 18.69 (-38.82,	-12.2 ± 20.61 (-53.32, 29.89)	0.21 ± 0.68 (-1.13, 1.56)	0.22 ± 0.73 (-1.23, 1.67)
			34.63)			
14	DOC	epsilon	$4.97\text{E-}04 \pm 0.002 \ (-0.003,$	$-3.76E-04 \pm 0.002$ (-0.004,	-0.004 ± 0.004 (-0.01, 0.004)	-0.01 ± 0.01 (-0.02, 0.002)
σ			0.004)	0.003)		
	Dim1	iota	n/a	$1.27 \pm 1.31 (-1.25, 3.89)$	n/a	$-0.83 \pm 0.87 (-2.56, 0.93)$
	Dim2	kappa	n/a	0.53 ± 1.44 (-2.39, 3.32)	n/a	1.08 ± 0.77 (-0.49, 2.60)
	dif1	alpha[1]- alpha[2]	-1.48 ± 0.58 (-2.65, -0.32)	2.04 ± 1.53 (-5.07, 0.93)	$-1.09 \pm 1.11 (-3.26, 1.14)$	$-1.16 \pm 1.21 (-3.56, 1.28)$
	precision	tau	$1.12 \pm 0.57 \ (0.34, 2.52)$	$1.23 \pm 0.69 \ (0.32, 2.83)$	$2.01 \pm 0.95 \ (0.59, 4.24)$	$2.40 \pm 1.30 \ (0.56, 5.54)$

Figures

Figure 5.1. Sampling sites in the Lake I-8 catchment, Northern Alaska.

Figure 5.2. BP at three sites downstream from each other during the summer season. Bacterial Production at sites upstream and downstream of Lake I-8. \bullet I-8 inlet, I-8 outlet, and \times I-8 to I-9, for summers 2003-2007.

Figure 5.3. NMDS plot of bacterial community similarity in 2003 at I-8 inlet (\blacklozenge) and outlet (\Box). Normalized raw stress value = 0.05.

Figure 5.4. NMDS plot of bacterial community similarity at I-8 inlet (\blacklozenge) and outlet (\Box) in summer 2007. Normalized raw stress value = 0.04.

Appendix

Appendix 5.A. WinBUGs code.

#Linear model of BP with chla (estimated missing values), temperature, TDN, TDP, and DOC and site as fixed effects, plus coordinates of bacterial community composition NMDS.

model

```
{
                        for(i in 1:17) {
                                               # loop number is based on number of samples
                               BP[i]~dlnorm(mu[i],tau) #likelihood
                               mu[i])<-
alpha[Site[i]]+beta*temp[i]+gamma*TDN[i]+lambda*chlaEst[i]+delta*TDP[i]+epsilon*DOC[i]+
iota*Dim1[i]+kappa*Dim2[i]
                               BP.h[i]~dlnorm(mu[i],tau) #predictions
                               residuals[i]<-BP[i]-BP.h[i]
                               chlaEst[i]~dunif(chlalower[i],chlaupper[i])
                        }
for (i in 1:2) { #1:3 for models run with all three sites
alpha[i]~dnorm(0,0.0001) # fixed effects
}
beta~dnorm(0,0.0001)
gamma~dnorm(0,0.0001)
lambda~dnorm(0,0.0001)
delta~dnorm(0,0.0001) #not used in model 1
epsilon~dnorm(0,0.0001) #not used in model 1
iota~dnorm(0,0.0001) # used in model 3 only
kappa~dnorm(0,0.0001) # used in model 3 only
dif1<-alpha[1]-alpha[2]
dif2<-alpha[2]-alpha[3] #used for data sets from all three sites
dif3<-alpha[3]-alpha[1] #used for data sets from all three sites
tau^{dgamma(0.01,0.01)}
                }
#Initial values
list(alpha = c(1,1), \#c(1,1,1) for models run with all three sites
beta = 0,
gamma = 0,
lambda =0,
delta =0, #not used in model 1
epsilon =0, #not used in model 1
iota=0, # used in model 3 only
kappa=0, # used in model 3 only
tau = 1)
```

Literature Cited

- Adams, H. E., B. C. Crump, and G. W. Kling. In revision. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams. Environmental Microbiology.
- Agren, A., M. Berggren, H. Laudon, and M. Jansson. 2008. Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. Freshwater Biology 53:964-972.
- Allen, J. I., P. J. Somerfield, and J. Siddorn. 2002. Primary and bacterial production in the Mediterranean Sea: a modelling study. Journal of Marine Systems 33:473-495.
- Ameryk, A., B. Podgorska, and Z. Witek. 2005. The dependence between bacterial production and environmental conditions in the Gulf of Gdansk. Oceanologia 47:27-45.
- Balser, T. C. and M. K. Firestone. 2005. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395-415.
- Chrost, R. J. and W. Siuda. 2006. Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnology and Oceanography 51:749-762.
- Crump, B. C., H. E. Adams, J. E. Hobbie, and G. W. Kling. 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88:1365-1378.
- Crump, B. C., G. W. Kling, M. Bahr, and J. E. Hobbie. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Applied and Environmental Microbiology **69**:2253-2268.
- Ducklow, H. W. 1994. Modeling the microbial food-web. Microbial Ecology 28:303-319.
- Findlay, S. E. G., R. L. Sinsabaugh, W. V. Sobczak, and M. Hoostal. 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography 48:1608-1617.
- Foreman, C. M. and J. S. Covert. 2003. Linkages between DOM composition and bacterial community structure.*in* S. Findlay and R. L. Sinsabaugh, editors. Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier Science, San Diego Academic Press.
- Hopkinson, C. S. and J. J. Vallino. 1994. Toward the development of generally applicable models of the microbial loop in aquatic ecosystems. Microbial Ecology 28:321-326.
- Kling, G. W., G. W. Kipphut, M. M. Miller, and W. J. O'Brien. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology **43**:477-497.
- Letarte, Y. and B. Pinelalloul. 1991. Relationships between bacterioplankton production and limnological variables - necessity of bacterial size considerations. Limnology and Oceanography **36**:1208-1216.

- Oneill, R. V., D. L. Deangelis, J. J. Pastor, B. J. Jackson, and W. M. Post. 1989. Multiple nutrient limitations in ecological models. Ecological Modelling **46**:147-163.
- Polimene, L., J. I. Allen, and M. Zavatarelli. 2006. Model of interactions between dissolved organic carbon and bacteria in marine systems. Aquatic Microbial Ecology **43**:127-138.
- Shiah, F. K., G. C. Gong, and C. C. Chen. 2003. Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep-Sea Research Part Ii-Topical Studies in Oceanography 50:1295-1309.
- Truu, J., T. Noges, K. Kunnis, and M. Truu. 1996. Incorporation of spatial structure into the analysis of relationships between environment and marine microbiological parameters. Pages 283-288 in International PELAG Symposium. Kluwer Academic Publ, Helsinki, Finland.
- Vadstein, O. 2000. Heterotrophic, planktonic bacteria and cycling of phosphorus -Phosphorus requirements, competitive ability, and food web interactions. Pages 115-167 Advances in Microbial Ecology, Vol 16. Kluwer Academic / Plenum Publ, New York.
- Wetzel, R. L. 1994. Modeling the microbial loop an estuarine modelers perspective. Microbial Ecology **28**:331-334.
- White, P. A., J. Kalff, J. B. Rasmussen, and J. M. Gasol. 1991. The Effect of Temperature and Algal Biomass on Bacterial Production and Specific Growth-Rate in Fresh-Water and Marine Habitats. Microbial Ecology 21:99-118.
- Zubkov, M. V., J. I. Allen, and B. M. Fuchs. 2004. Coexistence of dominant groups in marine bacterioplankton community - a combination of experimental and modelling approaches. Journal of the Marine Biological Association of the United Kingdom 84:519-529.

Appendix	Appendix A. Bacterial Production measurements for summers 2002-2007.							
			Time		Water	Incubation	Bacterial	
sortchem	Site	Date	received	Depth	temp.	temp.	Production	
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)	
n/a	Toolik shore	15-Jun-03		0.01		2.0	13.62	
2003-0532	Toolik Main	16-Jun-03		3		2.0	10.14	
2003-0536	Toolik Main	16-Jun-03		14		2.0	10.58	
2003-0539	Toolik Inlet	17-Jun-03	9:00	0.01		2.0	11.19	
2003-0239	Toolik Inlet	20-Jun-03	18:00	0.01		11.0	1.42	
2003-0242	18-19	20-Jun-03	15:40	0.01	10.5	10.5	2.21	
2003-0243	17-19	20-Jun-03	16:22	0.01	12.2	12.2	1.33	
2003-0568	I8 in	21-Jun-03	14:40	0.01	14.1	14.1	0.34	
2003-0569	I8 out	21-Jun-03	15:10	0.01	6.5	14.1	2.89	
2003-0573	Toolik	23-Jun-03	9:30	1		2.0	5.62	
2003-0574	Toolik	23-Jun-03	10:00	3		2.0	8.43	
2003-0575	Toolik	23-Jun-03	10:30	5		2.0	7.89	
2003-0576	Toolik	23-Jun-03	11:00	8		2.0	7.78	
2003-0577	Toolik	23-Jun-03	11:30	12		2.0	7.32	
2003-0578	Toolik	23-Jun-03	12:00	16		2.0	2.52	
2003-0288	12-13	24-Jun-03	9:30	0.01	14.8	8.0	0.78	
2003-0290	11-13	24-Jun-03	9:30	0.01	8.0	8.0	0.85	
2003-0293	I4-I5 (I5 in)	24-Jun-03	16:00	0.01	12.3	12.3	1.01	
2003-0296	I6 HW in	24-Jun-03	15:15	0.01	9.2	9.2	0.36	
2003-0299	I6 West in	24-Jun-03	18:00	0.01	8.1	2.0	0.44	
2003-0302	18 Headwaters	24-Jun-03	10:45	0.01	5.9	5.9	0.22	
2003-0594	11	24-Jun-03	12:10	1	5.9	5.4	1.24	
2003-0595	11	24-Jun-03	12:10	3	4.9	5.4	1.72	
2003-0596	12	24-Jun-03	10:45	1	5.4	5.0	0.90	
2003-0597	12	24-Jun-03	10:45	3	4.7	5.0	1.22	
2003-0598	13	24-Jun-03	12:50	1	14.4	14.4	2.83	
2003-0599	13	24-Jun-03	12:50	3	7.4	14.4	5.23	
2003-0600	14	24-Jun-03	13:55	1	10.4	6.6	0.91	
2003-0601	14	24-Jun-03	13:55	3	6.6	6.6	2.16	
2003-0603	15	24-Jun-03	18:00	3	4.8	2.0	1.95	
2003-0604	I6 HW	24-Jun-03	15:10	1	6.0	6.0	1.98	
2003-0295	15-16	25-Jun-03	9:50	0.01	8.0	8.0	1.34	
2003-0301	17-19	25-Jun-03	16:15	0.01	13.9	13.7	1.99	
2003-0303	18 In	25-Jun-03	14:15	0.01	16.0	16.0	0.14	
2003-0304	18 Out	25-Jun-03	15:20	0.01	14.0	14.0	0.52	
2003-0305	18-19	25-Jun-03	16:15	0.01	13.8	2.0	0.61	
2003-0306	MWL	25-Jun-03	16:30	0.01	8.7	8.7	0.93	
2003-0308	Swamp In	25-Jun-03	17:00	0.01	11.9	11.9	0.35	
2003-0310	Toolik Inlet	25-Jun-03	16:45	0.01	14.0	6.6	1.41	
2003-0611	16	25-Jun-03	11:45	1	7.1	7.0	1.77	
2003-0612	16	25-Jun-03	11:45	3	6.9	7.0	1.94	
2003-0613	17	25-Jun-03	13:05	1	11.4	8.9	2.23	
2003-0614	17	25-Jun-03	13:05	3	6.4	8.9	0.50	
2003-0615	18	25-Jun-03	15:30	1	13.2	10.2	6.22	
2003-0616	18	25-Jun-03	15:30	3	7.2	10.2	4.64	
2003-0617	Iswamp	25-Jun-03	14:50	1	13.4	11.2	1.31	
2003-0618	Iswamp	25-Jun-03	14:50	3	9.0	11.2	1.18	

		_	Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2003-0619	Iminus	25-Jun-03	10:35	1	3.89	3.9	2.03
2003-0620	Iminus	25-Jun-03	10:35	3	3.87	3.9	2.15
2003-0191	Toolik	27-Jun-03		1		4.0	4.22
2003-0192	Toolik	27-Jun-03		3		4.0	4.90
2003-0193	Toolik	27-Jun-03		5		4.0	4.54
2003-0194	Toolik	27-Jun-03		8		4.0	4.71
2003-0195	Toolik	27-Jun-03		12		4.0	4.12
2003-0196	Toolik	27-Jun-03		16		4.0	3.94
2003-0245	Toolik Inlet	27-Jun-03		0.01		4.0	1.53
2003-0248	18-19	27-Jun-03		0.01		4.0	1.73
2003-0249	17-19	27-Jun-03		0.01		4.0	3.06
2003-0622	l8 in	1-Jul-03		0.01	14.5	14.5	0.73
2003-0623	I8 out	1-Jul-03		0.01	15.2	15.2	1.28
2003-0627	l8 in	3-Jul-03		0.01		6.0	3.34
2003-0627	18 in	3-Jul-03		0.01		16.0	9.74
2003-0628	I8 out	3-Jul-03		0.01		6.0	9.57
2003-0628	I8 out	3-Jul-03		0.01		16.0	14.67
2003-0198	Toolik	4-Jul-03		1		4.0	7.46
2003-0199	Toolik	4-Jul-03		3		4.0	9.15
2003-0200	Toolik	4-Jul-03		5		4.0	7.35
2003-0201	Toolik	4-Jul-03		8		4.0	8.89
2003-0202	Toolik	4-Jul-03		12		4.0	8.76
2003-0203	Toolik	4-Jul-03		16		4.0	7.77
2003-0251	Toolik Inlet	4-Jul-03		0.01		4.0	10.64
2003-0254	18-19	4-Jul-03		0.01		4.0	6.45
2003-0255	17-19	4-Jul-03		0.01		4.0	13.95
2003-0647	18	5-Jul-03		1	13.5	13.5	4 59
2003-0648	18	5-Jul-03		3	11.8	11.8	7 43
2000-0040	18	5-Jul-03		7	82	82	3.87
2003-0650	18 In	5-Jul-03		0.01	11.8	11.8	2 22
2003-0651		5-Jul-03		0.01	14.4	14.4	7 77
2000-0001	18 In	10-Jul-03		0.01	11.9	14.4	1.87
2000-0001	18	10-Jul-03		0.01	15.4	11.5	2 78
2000 0002	18	10-Jul-03		3	13.4	13.4	6.69
2000-0000		10-Jul-03		0.01	13.4	13.4	8.00
2000 0004	Toolik	11-Jul-03		0.01	12.86	12.0	8.01
2000 0200	Toolik	11-Jul-03		1	12.00	12.0	7 33
2000 0200	Toolik	11-Jul-03		3	12.00	12.0	8.83
2003-0200	Toolik	11_Jul_03		5	10.59	12.0	5.33
2003-0207	Toolik	11-Jul-03		5	10.53	12.0	4 36
2003-0207	Toolik	11-Jul-03		3	7.8	10.0	4.30
2003-0200	Toolik	11. Jul_02		10	1.0	0.0	2.05
2003-0203	Toolik	11. Jul_02		12	5.9	0.0	4 20
2003-0210	Toolik	11. 101.02		10	5.0	0.0 5 0	4.30
2003-0210	Toolik Inlot	11 JUL 03		0.04	10.0	0.0 10 F	1.03
2003-0237		11 JUL 03		0.01	12.2	13.3	7.05
2003-0200		11 JUL 03		0.01	12.2	14.0	1.00
2003-0201	11-13	15 JUL 00	40.00	0.01	13	14.2	4.76
2003-0312	11-13	10-Jul-03	10:30	0.01	9.3	9.0	1.86

		_	Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2003-0314	12-13	15-Jul-03	10:30	0.01	7	6.6	0.81
2003-0319	15-16	15-Jul-03	17:50	0.01	11.1	11.1	2.67
2003-0320	I6 HW in	15-Jul-03	15:55	0.01	4.5	4.6	0.14
2003-0326	18 Headwaters	15-Jul-03	10:00	0.01	2.8	3.5	0.29
2003-0793	12	15-Jul-03	11:45	1		7.9	0.51
2003-0794	12	15-Jul-03	11:45	13		5.7	0.84
2003-0791	11	15-Jul-03	13:00	1		8.5	0.62
n/a	11	15-Jul-03	13:00	8.5		7.1	1.79
2003-0795	13	15-Jul-03	14:00	1		8.9	3.59
2003-0797	14	15-Jul-03	15:45	1		8.4	2.22
2003-0801	I6 west HW	15-Jul-03	16:30	1		9.5	1.08
n/a	I6 west HW	15-Jul-03	16:30	5.5		6.8	3.68
2003-0317	I4-I5 (I5 in)	16-Jul-03		0.01			1.47
2003-0323	I6 West in	16-Jul-03	11:15	0.01	4.3	5.5	0.15
2003-0325	17-19	16-Jul-03	16:15	0.01	8.6	8.1	1.27
2003-0327	18 In	16-Jul-03	14:30	0.01	3.8	5.7	0.61
2003-0328	18 Out	16-Jul-03	15:00	0.01	7.8	7.5	4.27
2003-0329	18-19	16-Jul-03	16:15	0.01	8	7.8	2.68
2003-0330	MWL	16-Jul-03	16:30	0.01	6	6.4	0.13
2003-0332	Swamp In	16-Jul-03	17:15	0.01	9.4	9.3	0.93
2003-0334	Toolik Inlet	16-Jul-03	17:00	0.01	7.7	9.3	2.08
2003-0799	15	16-Jul-03	10:20	1		9.5	2.49
n/a	15	16-Jul-03	10:20	7.5		9.2	1.37
2003-0805	16	16-Jul-03	12:20	1		7.5	1.90
n/a	16	16-Jul-03	12:20	7.5		6.5	1.74
2003-0807	17	16-Jul-03	14:10	1		7.6	3.06
n/a	17	16-Jul-03	14:10	9.5		6	1.74
2003-0809	18	16-Jul-03	15:15	1		6.7	1.07
n/a	18	16-Jul-03	15:15	7.5		7.1	1.62
2003-0811	Iswamp	16-Jul-03	16:15	1		7.9	2.17
2003-0213	Toolik	18-Jul-03	9:17	3			6.11
2003-0217	Toolik	18-Jul-03	10:00	16			3.47
2003-0779	I8incub in/in	20-Jul-03		0.01	6	6	16.73
2003-0780	18 incub out/out	20-Jul-03		0.01	6	6	8.23
2003-0781	18 incub in/out	20-Jul-03		0.01	6	6	6.98
2003-0782	18 incub out/in	20-Jul-03		0.01	6	6	45.13
2003-0783	18 incub in/in	20-Jul-03		0.01	16	16	27.15
2003-0784	18 incub out/out	201ul-0.3		0.01	16	16	24 74
2003-0785	I8 In	22-Jul-03		0.01			1.52
2003-0786	18	22-Jul-03		1			5.06
2003-0788	18	22 Jul-03		3			3 20
2003-0789	18	22-Jul-03		7			<u> </u>
2003-0703	I8 Out	22-001-03		0.01			5 30
2003-0790	Toolik	25- Jul-03	۵.02	0.01	11 7	10	6.52
2003-0220	Toolik	25-34-03	9.07	0	0.7	12	2 40
2003-0222	Toolik	25-541-03	9.30	16	9.1	9.3	3.40
2003-0224	Toolik Inlot	25-541-03	10:20	0.04	0.0	C.U	1.04
2003-0209		20-JUI-03	12:30	0.01	10.1	10.1	2.74
2003-0272	10-19	∠ວ-Jul-03	1	0.01	10.6	10.1	2.91

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2003-0273	17-19	25-Jul-03		0.01	11.7	12	5.17
2003-0907	18 In	29-Jul-03		0.01	7.8	7.8	1.42
2003-0908	I8 Out	29-Jul-03		0.01	7.4	7.4	5.13
2003-0911	18 In	31-Jul-03		0.01	4.8	4.8	0.42
2003-0912	18	31-Jul-03		1	7.6	7.6	1.81
2003-0913	18	31-Jul-03		3	6.9	6.9	2.71
2003-0914	18	31-Jul-03		7	6.9	6.9	2.20
2003-0915	I8 Out	31-Jul-03		0.01	6.4	6.4	3.39
2003-0227	Toolik	1-Aug-03	9:30	3	8.9	8.9	3.95
2003-0231	Toolik	1-Aug-03	10:10	16	6.5	8.1	2.82
2003-0275	Toolik Inlet	1-Aug-03	12:08	0.01	6.9	11.5	3.42
2003-0278	18-19	1-Aug-03	9:43	0.01	6.4	10.2	5.78
2003-0279	17-19	1-Aug-03	10:08	0.01	7.3	10.2	2.61
2003-0336	11-13	5-Aug-03	10:15	0.01	7.9	7.2	0.70
2003-0338	12-13	5-Aug-03	10:15	0.01	7.2	7.2	1.25
2003-0343	15-16	5-Aug-03	17:50	0.01	9.4	7.3	0.75
2003-0344	I6 HW in	5-Aug-03	17:50	0.01	5.8	6.5	0.02
lakes	12	5-Aug-03	11:45	1		5.8	1.01
n/a	12	5-Aug-03	11:45	14		4.2	0.79
lakes	11	5-Aug-03	13:40	1		7.8	1.08
n/a	11	5-Aug-03	13:40	8.5		7.8	0.98
lakes	13	5-Aug-03	14:50	1		7.3	0.81
lakes	14	5-Aug-03	16:00	1		7.2	1.58
lakes	I6 west HW	5-Aug-03	18:00	1		6.5	1.43
n/a	I6 west HW	5-Aug-03	18:00	6		7.7	1.05
2003-0347	I6 West	5-Aug-03	17:50	0.01	6.1	6.5	0.32
2003-0349	17-19	5-Aug-03	17:15	0.01	9.3	9.3	0.68
2003-0350	18 Headwaters	5-Aug-03	10:05	0.01	4.9	4.9	0.42
2003-0351	18 In	5-Aug-03	14:30	0.01	6.5	6.5	0.53
2003-0352	I8 Out	5-Aug-03	15:05	0.01	7.7	7.7	2.54
2003-0353	18-19	5-Aug-03	17:10	0.01	8.1	8.1	1.89
2003-0354	MWL	5-Aug-03	17:10	0.01	8.6	8.1	1.34
2003-0356	Swamp In	5-Aug-03	14:30	0.01	7.7	7.7	1.15
2003-0358	Toolik Inlet	5-Aug-03	18:15	0.01	9	9	1.77
lakes	15	6-Aug-03	11:00	1		9.1	2.27
n/a	15	6-Aug-03	11:00	8		9.1	2.03
lakes	16	6-Aug-03	13:30	1		11.3	2.09
n/a	16	6-Aug-03	13:30	7.5		11.3	2.55
lakes	17	6-Aug-03	15:15	1		10.1	2.46
n/a	17	6-Aug-03	15:15	10		10.1	3.19
lakes	18	6-Aug-03	16:10	1		9.3	3.38
n/a	18	6-Aug-03	16:10	7		8.1	5.20
lakes	Iswamp	6-Aug-03	17:25	1		9.5	2.37
2003-0234	Toolik	8-Aug-03	0:00	3			3.96
2003-0238	Toolik	8-Aug-03	0:00	16			4.22
n/a	18 incub in/in	8-Aug-03	13:45		12	12	50.73
n/a	18 incub out/out	8-Aug-03	13:45		12	12	23.26
n/a	18 incub in/out	8-Aug-03	13:45		12	12	10.92

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	18 incub out/in	8-Aug-03	13:45	0	12	12.0	22.08
2003-0921	18 In	12-Aug-03	12:11	0.01	3.3	3.3	1.33
2003-0922	18	12-Aug-03	11:25	1	6.8	6.8	4.51
2003-0923	18	12-Aug-03	11:46	3	5.3	5.3	3.66
2003-0925	I8 Out	12-Aug-03	13:01	0.01	5.8	5.8	2.95
n/a	Toolik	15-Aug-03	0:00	3	7.8	7.8	1.70
n/a	Toolik	15-Aug-03	0:00	8	7.6	7.8	1.33
n/a	Toolik	15-Aug-03	0:00	16	7.2	7.2	2.71
n/a	Toolik Inlet	15-Aug-03	0:00	0.01	7.0	7.2	3.54
n/a	18-19	15-Aug-03	0:00	0.01	6.1	6.1	4.22
n/a	17-19	15-Aug-03	0:00	0.01	8.4	8.4	4.16
2003-1018	18 incub in/in	17-Aug-03	0:00		12.0	12.0	10.34
2003-1019	18 incub out/out	17-Aug-03	0:00		12.0	12.0	17.25
2003-1020	18 incub in/out	17-Aug-03	0:00		12.0	12.0	10.61
2003-1021	18 incub out/in	17-Aug-03	0:00		12.0	12.0	12.56
2004-0137	Toolik	18-Jun-04	9:16	1	5.5		2.56
2004-0138	Toolik	18-Jun-04	9:30	3	5.5		4.60
2004-0139	Toolik	18-Jun-04	9:45	5	5.4		4.22
2004-0140	Toolik	18-Jun-04	10:00	8	5.3		4.93
2004-0141	Toolik	18-Jun-04	10:10	12	5.3		2.40
2004-0142	Toolik	18-Jun-04	10:30	16	5.2		4.21
2004-0134	17-19	18-Jun-04	0:00	0.01	15.0	16.0	3.39
2004-0133	18-19	18-Jun-04	0:00	0.01	15.4	16.0	3.31
2004-0130	Toolik Inlet	18-Jun-04	0:00	0.01	14.5	16.0	1.63
2004-0158	12-13	22-Jun-04	9.15	0.01	13.5	13.5	7 16
2004-0156	11-13	22-Jun-04	9.15	0.01	11.7	11.7	1.10
2004-0170	I8 Headwaters	22-Jun-04	10.20	0.01	10.4	11.7	3 79
2004-0667	12	22 Jun-04	10:20	0.01	16.1	16.1	1 35
2004-0665	12	22 Jun-04	12.15	1	13.2	13.2	2.86
2004-0669	13	22 Jun-04	12:10	1	16.1	16.2	9.79
2004-0671	14	22 Jun-04	14:35	1	15.8	16.1	9.86
2004-0162	15-16	22 Jun-04	15:45	0.01	14.1	14.2	3.05
2004-0102	16 HW/ In	22 Jun-04	15:45	0.01	0.6	9.6	5.05
2004-0104	I6 Woot	23-3011-04 22 Jun 04	15.45	0.01	11.5	12.2	1 71
2004-0107		22-Jun 04	16.10	0.01	15.6	15.5	0.35
2004-0077	14.15	22-Jun 04	17.15	0.01	15.0	10.5	12.01
2004-0101	14-15	22-Jun 04	19:25	0.01	10.2	14.2	12.01
2004-0075		22-Jun 04	10:25	1		17.5	1.29
2004-0073	17	23-Jun 04	11.00	1	17.0	17.5	0.78
2004-0079	17 19 In	23-Jun 04	12:00	0.01	12.0	17.5	0.70
2004-0171		23-Jun 04	12.00	0.01	15.0	10.1	F 21
2004-0172		23-Jun 04	12.20	0.01	15.0	10.5	5.51
2004-0683		23-Jun-04	12.20	1	15.0	15.1	5.20
2004-0681	i Swamp	23-Jun-04	13:35	1	40.4	19.1	2.94
2004-0174		∠3-Jun-04	14:45	0.01	10.4	10.4	0.42
2004-01/6	Swamp in	23-Jun-04	14:45	0.01	12.7	13.7	1.11
2004-0169	17-19	23-Jun-04	14:45	0.01	17.6	17.6	1.93
2004-01/3	IN-IN	23-Jun-04	14:45	0.01	17.3	17.6	2.14
2004-0178	I oolik Inlet	23-Jun-04	16:30	0.01	14.5	14.5	0.54

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2004-0186	Toolik	25-Jun-04	9:15	1	12.5	12.5	5.26
2004-0187	Toolik	25-Jun-04	9:30	3	9.6	9.6	5.50
2004-0188	Toolik	25-Jun-04	9:40	5	8.0	8.0	7.62
2004-0189	Toolik	25-Jun-04	9:50	8	6.4	6.5	5.12
2004-0190	Toolik	25-Jun-04	10:10	12	5.4	5.2	3.36
2004-0191	Toolik	25-Jun-04	10:15	16	5.2	5.2	3.55
2004-0686	Toolik Inlet	28-Jun-04	10:05	0.01	14.9	14.5	1.28
2004-0687	Toolik Outlet	28-Jun-04	11:00	0.01	15.2	14.5	1.52
2004-0713	18 Inlet	29-Jun-04	10:15	0.01	13.4	13.4	2.81
2004-0714	18 Outlet	29-Jun-04	11:00	0.01	17.5	17.5	12.02
n/a	HEA 25 blue	29-Jun-04	14:00	0.01	n/a	25	2.51
n/a	HEA 25 green	29-Jun-04	14:00	0.01	n/a	25	2.19
n/a	HEA 25 yellow	29-Jun-04	14:00	0.01	n/a	25	1.36
n/a	HEA 25 white	29-Jun-04	14:00	0.01	n/a	25	1.41
n/a	HEA 20 blue	29-Jun-04	14:45	0.01	n/a	20	2.66
n/a	HEA 20 green	29-Jun-04	14:45	0.01	n/a	20	2.77
n/a	HEA 20 yellow	29-Jun-04	14:45	0.01	n/a	20	1.17
n/a	HEA 20 white	29-Jun-04	14:45	0.01	n/a	20	1.08
n/a	HEA 18 blue	29-Jun-04	15:15	0.01	n/a	18	2.78
n/a	HEA 18 green	29-Jun-04	15:15	0.01	n/a	18	1.91
n/a	HEA 18 yellow	29-Jun-04	15:15	0.01	n/a	18	0.78
n/a	HEA 18 white	29-Jun-04	15:15	0.01	n/a	18	0.64
n/a	HEA 14 blue	29-Jun-04	16:10	0.01	n/a	14	1.69
n/a	HEA 14 green	29-Jun-04	16:10	0.01	n/a	14	1.66
n/a	HEA 14 yellow	29-Jun-04	16:10	0.01	n/a	14	0.68
n/a	HEA 14 white	29-Jun-04	16:10	0.01	n/a	14	0.55
n/a	HEA 12 blue	29-Jun-04	16:35	0.01	n/a	12	1.99
n/a	HEA 12 green	29-Jun-04	16:35	0.01	n/a	12	2.50
n/a	HEA 12 yellow	29-Jun-04	16:35	0.01	n/a	12	1.27
n/a	HEA 12 white	29-Jun-04	16:35	0.01	n/a	12	0.68
n/a	HEA 10 blue	29-Jun-04	17:00	0.01	n/a	10	0.79
n/a	HEA 10 green	29-Jun-04	17:00	0.01	n/a	10	0.87
n/a	HEA 10 yellow	29-Jun-04	17:00	0.01	n/a	10	0.19
n/a	HEA 10 white	29-Jun-04	17:00	0.01	n/a	10	0.22
n/a	HEA 8 blue	29-Jun-04	18:10	0.01	n/a	8	0.49
n/a	HEA 8 green	29-Jun-04	18:10	0.01	n/a	8	0.53
n/a	HEA 8 yellow	29-Jun-04	18:10	0.01	n/a	8	0.28
n/a	HEA 8 white	29-Jun-04	18:10	0.01	n/a	8	0.28
n/a	HEA 6 blue	29-Jun-04	18:40	0.01	n/a	6	0.84
n/a	HEA 6 green	29-Jun-04	18:40	0.01	n/a	6	0.97
n/a	HEA 6 yellow	29-Jun-04	18:40	0.01	n/a	6	0.41
n/a	HEA 6 white	29-Jun-04	18:40	0.01	n/a	6	0.31
n/a	HEA 2 blue	29-Jun-04	18:55	0.01	n/a	2	0.08
n/a	HEA 2 green	29-Jun-04	18:55	0.01	n/a	2	0.16
n/a	HEA 2 yellow	29-Jun-04	18:55	0.01	n/a	2	0.09
n/a	HEA 2 white	29-Jun-04	18:55	0.01	n/a	2	0.10
n/a	HEA 6 blue	1-Jul-04	11:30	0.01	n/a	6	2.10
n/a	HEA 6 green	1-Jul-04	11:30	0.01	n/a	6	2.12

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	HEA 6 yellow	1-Jul-04	11:30	0.01	n/a	6	1.77
n/a	HEA 6 white	1-Jul-04	11:30	0.01	n/a	6	1.34
n/a	HEA 12 blue	1-Jul-04	11:55	0.01	n/a	12	2.70
n/a	HEA 12 green	1-Jul-04	11:55	0.01	n/a	12	3.30
n/a	HEA 12 yellow	1-Jul-04	11:55	0.01	n/a	12	3.05
n/a	HEA 12 white	1-Jul-04	11:55	0.01	n/a	12	2.07
n/a	HEA 20 blue	1-Jul-04	12:10	0.01	n/a	20	3.07
n/a	HEA 20 green	1-Jul-04	12:10	0.01	n/a	20	2.98
n/a	HEA 20 yellow	1-Jul-04	12:10	0.01	n/a	20	2.49
n/a	HEA 20 white	1-Jul-04	12:10	0.01	n/a	20	1.64
n/a	HEA 8 blue	1-Jul-04	13:38	0.01	n/a	8	1.13
n/a	HEA 8 green	1-Jul-04	13:38	0.01	n/a	8	1.29
n/a	HEA 8 yellow	1-Jul-04	13:38	0.01	n/a	8	1.61
n/a	HEA 8 white	1-Jul-04	13:38	0.01	n/a	8	1.03
n/a	HEA 14 blue	1-Jul-04	14:20	0.01	n/a	14	2.65
n/a	HEA 14 green	1-Jul-04	14:20	0.01	n/a	14	2.84
n/a	HEA 14 yellow	1-Jul-04	14:20	0.01	n/a	14	2.32
n/a	HEA 14 white	1-Jul-04	14:20	0.01	n/a	14	1.36
n/a	HEA 25 blue	1-Jul-04	13:30	0.01	n/a	25	10.28
n/a	HEA 25 green	1-Jul-04	13:30	0.01	n/a	25	4.23
n/a	HEA 25 yellow	1-Jul-04	13:30	0.01	n/a	25	5.37
n/a	HEA 25 white	1-Jul-04	13:30	0.01	n/a	25	3.67
n/a	HEA 2 blue	1-Jul-04	14:45	0.01	n/a	2	0.37
n/a	HEA 2 green	1-Jul-04	14:45	0.01	n/a	2	0.29
n/a	HEA 2 yellow	1-Jul-04	14:45	0.01	n/a	2	0.13
n/a	HEA 2 white	1-Jul-04	14:45	0.01	n/a	2	0.10
n/a	HEA 10 blue	1-Jul-04	15:35	0.01	n/a	10	1.11
n/a	HEA 10 green	1-Jul-04	15:35	0.01	n/a	10	1.34
n/a	HEA 10 yellow	1-Jul-04	15:35	0.01	n/a	10	1.00
n/a	HEA 10 white	1-Jul-04	15:35	0.01	n/a	10	0.78
n/a	HEA 18 blue	1-Jul-04	15:45	0.01	n/a	18	3.40
n/a	HEA 18 green	1-Jul-04	15:45	0.01	n/a	18	2.59
n/a	HEA 18 yellow	1-Jul-04	15:45	0.01	n/a	18	2.60
n/a	HEA 18 white	1-Jul-04	15:45	0.01	n/a	18	2.44
2004-0245	Toolik	2-Jul-04	9:20	1	15.1	15.1	13.52
2004-0246	Toolik	2-Jul-04	9:35	3	13.2	13.2	13.75
2004-0247	Toolik	2-Jul-04	9:50	5	9.6	9.6	9.26
2004-0248	Toolik	2-Jul-04	10:25	8	6.4	6.0	6.19
2004-0249	Toolik	2-Jul-04	10:45	12	5.6	6.0	7.79
2004-0250	Toolik	2-Jul-04	11:00	16	5.3	6.0	8.27
2004-0242	17-19	2-Jul-04	9:57	0.01	9.3	15.9	4.23
2004-0241	18-19	2-Jul-04	10:09	0.01	17.0	17.0	3.74
2004-0238	Toolik Inlet	2-Jul-04	11:55	0.01	16.1	16.1	4.25
2004-0734	HEA 25 blue	3-Jul-04	11:45	0.01	n/a	25	21.75
2004-0735	HEA 25 green	3-Jul-04	11:45	0.01	n/a	25	3.59
2004-0736	HEA 25 yellow	3-Jul-04	11:45	0.01	n/a	25	0.74
2004-0737	HEA 25 white	3-Jul-04	11:45	0.01	n/a	25	9.06
2004-0746	HEA 14 blue	3-Jul-04	12:25	0.01	n/a	14	3.42

		_	Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2004-0747	HEA 14 green	3-Jul-04	12:25	0.01	n/a	14	3.27
2004-0748	HEA 14 yellow	3-Jul-04	12:25	0.01	n/a	14	1.85
2004-0749	HEA 14 white	3-Jul-04	12:25	0.01	n/a	14	8.31
2004-0758	HEA 8 blue	3-Jul-04	11:55	0.01	n/a	8	31.89
2004-0759	HEA 8 green	3-Jul-04	11:55	0.01	n/a	8	1.63
2004-0760	HEA 8 yellow	3-Jul-04	11:55	0.01	n/a	8	1.72
2004-0761	HEA 8 white	3-Jul-04	11:55	0.01	n/a	8	1.41
2004-0738	HEA 20 blue	3-Jul-04	13:15	0.01	n/a	20	164.29
2004-0739	HEA 20 green	3-Jul-04	13:15	0.01	n/a	20	36.23
2004-0740	HEA 20 yellow	3-Jul-04	13:15	0.01	n/a	20	3.42
2004-0741	HEA 20 white	3-Jul-04	13:15	0.01	n/a	20	7.97
2004-0750	HEA 12 blue	3-Jul-04	13:30	0.01	n/a	12	4.10
2004-0751	HEA 12 green	3-Jul-04	13:30	0.01	n/a	12	4.32
2004-0752	HEA 12 yellow	3-Jul-04	13:30	0.01	n/a	12	3.94
2004-0753	HEA 12 white	3-Jul-04	13:30	0.01	n/a	12	4.00
2004-0762	HEA 6 blue	3-Jul-04	13:48	0.01	n/a	6	1.71
2004-0763	HEA 6 green	3-Jul-04	13:48	0.01	n/a	6	1.45
2004-0764	HEA 6 yellow	3-Jul-04	13:48	0.01	n/a	6	1.00
2004-0765	HEA 6 white	3-Jul-04	13:48	0.01	n/a	6	4.36
2004-0742	HEA 18 blue	3-Jul-04	14:02	0.01	n/a	18	4.76
2004-0743	HEA 18 green	3-Jul-04	14:02	0.01	n/a	18	2.72
2004-0744	HEA 18 yellow	3-Jul-04	14:02	0.01	n/a	18	2.51
2004-0745	HEA 18 white	3-Jul-04	14:02	0.01	n/a	18	2.45
2004-0754	HEA 10 blue	3-Jul-04	14:35	0.01	n/a	10	1.43
2004-0755	HEA 10 green	3-Jul-04	14:35	0.01	n/a	10	0.81
2004-0756	HEA 10 yellow	3-Jul-04	14:35	0.01	n/a	10	0.45
2004-0757	HEA 10 white	3-Jul-04	14:35	0.01	n/a	10	0.72
2004-0766	HEA 2 blue	3-Jul-04	14:55	0.01	n/a	2	0.31
2004-0767	HEA 2 green	3-Jul-04	14:55	0.01	n/a	2	0.25
2004-0768	HEA 2 yellow	3-Jul-04	14:55	0.01	n/a	2	0.23
2004-0769	HEA 2 white	3-Jul-04	14:55	0.01	n/a	2	0.12
2004-0770	18 Inlet	5-Jul-04	14:10	0.01	12.2	12.7	4.37
2004-0771	18 Outlet	5-Jul-04	15:00	0.01	17.8	18.2	11.61
n/a	Toolik Inlet (9 mL)	5-Jul-04	16:55	0.01		12	4.91
n/a	RWT- 1 ppm	5-Jul-04	16:52	0.01		12	5.50
n/a	RWT- 100 ppm	5-Jul-04	16:57	0.01		12	4.65
n/a	RWT- 1000 ppm	5-Jul-04	17:01	0.01		12	4.60
n/a	CuCl2- 1M	5-Jul-04	17:12	0.01		12	4.18
n/a	CuCl2- 2M	5-Jul-04	17:12	0.01		12	5.84
n/a	Toolik Inlet (10 mL)	5-Jul-04	17:12	0.01		12	5.35
2004-0303	Toolik	9-Jul-04	11:45	1	13.5	13.5	6.03
2004-0304	Toolik	9-Jul-04	11:02	3	13.5	13.5	7.11
2004-0305	Toolik	9-Jul-04	7:12	5	9.3	9.0	4.23
2004-0306	Toolik	9-Jul-04	17:02	8	8.7	9.0	4.20
2004-0307	Toolik	9-Jul-04	11:02	12	5.5	5.5	3.13
2004-0308	Toolik	9-Jul-04	6:57	16	5.3	5.5	3.22
2004-0300	17-19	9-Jul-04	10:45	0.01	11.4	11.4	0.34
2004-0299	18-19	9-Jul-04	10:20	0.01	12.6	12.6	0.63

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2004-0296	Toolik Inlet	9-Jul-04	13:00	0.01	10.9	11.4	7.11
n/a	Toolik	10-Jul-04	0:00	1	11.8	11.2	6.82
n/a	Toolik	10-Jul-04	0:00	5	11.2	11.2	4.82
n/a	Toolik	10-Jul-04	0:00	8	8.1	8.0	4.97
2004-0910	Toolik Inlet Bay	11-Jul-04	0:00	1	11.2	11.0	14.13
2004-0911	Toolik Inlet Bay	11-Jul-04	0:00	5	9.0	8.0	12.95
2004-0912	Toolik Inlet Bay	11-Jul-04	0:00	8	7.4	8.0	10.36
2004-0907	Toolik	11-Jul-04	0:00	1	11.8	11.0	11.03
2004-0908	Toolik	11-Jul-04	0:00	5	10.3	11.0	11.97
2004-0909	Toolik	11-Jul-04	0:00	8	8.2	8.0	9.18
2004-0913	Toolik Inlet Bay	12-Jul-04	9:41	1	11.6	11.6	8.96
2004-0915	Toolik Inlet Bay	12-Jul-04	10:15	3	9.5	9.5	10.45
2004-0914	Toolik Inlet Bay	12-Jul-04	10:00	5	10.1	10.1	5.38
2004-0917	Toolik	12-Jul-04	10:30	1	12.2	11.6	6.36
2004-0918	Toolik	12-Jul-04	10:40	3	11.9	11.6	5.37
2004-0919	Toolik	12-Jul-04	10:50	5	10.5	10.1	5.30
2004-0922	Toolik	12-Jul-04	11:00	6	9.7	9.5	9.27
2004-0920	Toolik	12-Jul-04	11:03	8	7.0	7.0	4.38
2004-0921	Toolik	12-Jul-04	11:15	12	5.8	6.0	2.05
2004-0927	Toolik Inlet	12-Jul-04	9:55	0.01	9.9	10.1	10.51
2004-0928	Toolik Outlet	12-Jul-04	10:35	0.01	12.6	12.6	4.55
2004-0324	12-13	13-Jul-04	9:20	0.01	10.8	10.8	2.61
2004-0322	11-13	13-Jul-04	9:20	0.01	11.9	11.9	2.11
2004-0336	18 Headwaters	13-Jul-04	10:20	0.01	6.9	7.8	1.25
2004-1135	12	13-Jul-04	10:20	1	12.5	11.9	1.99
2004-1133	11	13-Jul-04	11:40	1	12.9	12.7	4.46
2004-1137	13	13-Jul-04	12:20	1	13.0	12.7	9.64
2004-1139	14	13-Jul-04	13:35	1	13.2	15.3	8.77
2004-0329	15-16	13-Jul-04	15:30	0.01	14.3	14.3	8.79
2004-0333	l6 West	13-Jul-04	15:30	0.01	10.1	10.9	0.95
2004-0330	I6 HW In	13-Jul-04	15:30	0.01	10.6	10.9	1.24
2004-1143	I6 HW	13-Jul-04	15:35	1	13.6	13.6	4.59
2004-0327	14-15	13-Jul-04	16:30	0.01	13.5	16.3	52.64
2004-1141	15	13-Jul-04	18:10	1	13.6	11.2	8.41
2004-1145	16	14-Jul-04	10:00	1	13.3	13.7	3.50
2004-1147	17	14-Jul-04	11:05	1	13.1	13.7	5.78
2004-0337	18 In	14-Jul-04	11:50	0.01	10.4	10.4	1.82
2004-0338	I8 Out	14-Jul-04	12:05	0.01	11.8	12.3	12.34
2004-1149	18	14-Jul-04	12:45	1	11.2	12.0	14.38
2004-0342	Swamp In	14-Jul-04	13:30	0.01	14.9	14.9	4 22
2004-1151	L Swamp	14-Jul-04	13:50	1	12.8	12.7	8 26
2004-0335	17-19	14101-04	14:55	0.01	14 4	14.4	4 10
2004-0339	18-19	14- Jul-04	14:50	0.01	12.3	12.3	4.10
2004-0340	MWI	14-101-04	15.07	0.01	10.2	10.2	1 15
2004-0340	Toolik Inlet	14- lul_04	16.10	0.01	10.2	12.5	2.15
2004-0044	Toolik	14- lul_04	0.10	0.01	1/ 2	12.5	£ 91
2004-0303	Toolik	14- Jul-04	0.00	2	19.0	12.0	11.64
2004-0304	Toolik	14- Jul-04	0.00	5	11.4	12.0	13.04
2004 0303	TOOM	1 + Jui-04	0.00	5	11.0	12.0	15.24

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2004-0966	Toolik Inlet Bay	14-Jul-04	0:00	3	12.1	12.0	15.81
2004-1018	Toolik Inlet Bay	16-Jul-04	8:30	1	13.9	13.2	7.71
2004-1019	Toolik Inlet Bay	16-Jul-04	8:40	3	11.8	11.9	11.16
2004-1020	Toolik Inlet Bay	16-Jul-04	9:13	8	7.4	7.5	7.35
2004-0352	Toolik	16-Jul-04	9:35	1	14.2	14.9	9.05
2004-0353	Toolik	16-Jul-04	9:55	3	12.2	13.2	8.80
2004-0354	Toolik	16-Jul-04	10:15	5	10.8	11.9	7.55
2004-0355	Toolik	16-Jul-04	10:26	8	7.1	8.5	2.80
2004-0356	Toolik	16-Jul-04	10:30	12	5.9	7.5	2.59
2004-0345	Toolik Inlet	16-Jul-04	8:30	0.01	12.3	11.9	7.45
n/a	Toolik Outlet	16-Jul-04	8:45	0.01	13.7	13.2	2.99
2004-1086	18 In	19-Jul-04	11:35	0.01	8.3	8.3	6.08
2004-1087	I8 Out	19-Jul-04	12:30	0.01	11.5	11.5	13.64
2004-1168	Toolik Inlet Bay	23-Jul-04	9:10	1	13.6	13.6	6.54
2004-1169	Toolik Inlet Bay	23-Jul-04	9:20	5	10.6	10.6	8.35
2004-1170	Toolik Inlet Bay	23-Jul-04	9:30	8	7.5	7.5	5.39
2004-0411	Toolik	23-Jul-04	10:00	1	14.3	13.6	6.75
2004-0412	Toolik	23-Jul-04	10:10	3	13.2	13.6	14.36
2004-0413	Toolik	23-Jul-04	10:20	5	12.0	12.0	15.02
2004-0414	Toolik	23-Jul-04	10:30	8	7.4	7.5	3.56
2004-0415	Toolik	23-Jul-04	10:40	12	6.1	6.0	2.57
2004-0416	Toolik	23-Jul-04	10:50	16	5.7	6.0	3.00
2004-0408	17-19	23-Jul-04	11:36	0.01	14.7	14.7	8.89
2004-0407	18-19	23-Jul-04	10:50	0.01	12.6	12.6	11.70
2004-0404	Toolik Inlet	23-Jul-04	12:33	0.01	13.7	14.7	7.30
2004-1171	Toolik Inlet	26-Jul-04	10:20	0.01	14.1	15.0	1.05
2004-1172	Toolik Outlet	26-Jul-04	9:40	0.01	15.4	15.0	1.21
n/a	HEA 20 blue	27-Jul-04	12:45	0.01	n/a	20.0	6.61
n/a	HEA 20 green	27-Jul-04	12:45	0.01	n/a	20.0	3.43
n/a	HEA 20 yellow	27-Jul-04	12:45	0.01	n/a	20.0	3.99
n/a	HEA 20 white	27-Jul-04	12:45	0.01	n/a	20.0	5.40
n/a	HEA 14 blue	27-Jul-04	13:30	0.01	n/a	14.0	2.41
n/a	HEA 14 green	27-Jul-04	13:30	0.01	n/a	14.0	2.13
n/a	HEA 14 yellow	27-Jul-04	13:30	0.01	n/a	14.0	1.79
n/a	HEA 14 white	27-Jul-04	13:30	0.01	n/a	14.0	2.23
n/a	HEA 8 blue	27-Jul-04	12:55	0.01	n/a	8.0	1.19
n/a	HEA 8 green	27-Jul-04	12:55	0.01	n/a	8.0	0.66
n/a	HEA 8 yellow	27-Jul-04	12:55	0.01	n/a	8.0	0.87
n/a	HEA 8 white	27-Jul-04	12:55	0.01	n/a	8.0	1.00
n/a	HEA 18 blue	27-Jul-04	13:35	0.01	n/a	18.0	3.82
n/a	HEA 18 green	27-Jul-04	13:35	0.01	n/a	18.0	3.12
n/a	HEA 18 yellow	27-Jul-04	13:35	0.01	n/a	18.0	3.07
n/a	HEA 18 white	27-Jul-04	13:35	0.01	n/a	18.0	3.98
n/a	HEA 12 -1L blue	27-Jul-04	14:15	0.01	n/a	12.0	4.78
n/a	HEA 12 -1L green	27-Jul-04	14:15	0.01	n/a	12.0	3.24
n/a	HEA 12 -1L yellow	27-Jul-04	14:15	0.01	n/a	12.0	4.11
n/a	HEA 12 -1L white	27-Jul-04	14:15	0.01	n/a	12.0	4.40
n/a	HEA 12 blue	27-Jul-04	14:18	0.01	n/a	12.0	4.09

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	HEA 12 green	27-Jul-04	14:18	0.01	n/a	12.0	2.94
n/a	HEA 12 yellow	27-Jul-04	14:18	0.01	n/a	12.0	2.97
n/a	HEA 12 white	27-Jul-04	14:18	0.01	n/a	12.0	4.02
n/a	HEA 16 blue	27-Jul-04	15:35	0.01	n/a	16.0	3.71
n/a	HEA 16 green	27-Jul-04	15:35	0.01	n/a	16.0	3.12
n/a	HEA 16 yellow	27-Jul-04	15:35	0.01	n/a	16.0	2.78
n/a	HEA 16 white	27-Jul-04	15:35	0.01	n/a	16.0	3.98
n/a	HEA 10 blue	27-Jul-04	15:45	0.01	n/a	10.0	1.71
n/a	HEA 10 green	27-Jul-04	15:45	0.01	n/a	10.0	1.35
n/a	HEA 10 yellow	27-Jul-04	15:45	0.01	n/a	10.0	1.31
n/a	HEA 10 white	27-Jul-04	15:45	0.01	n/a	10.0	1.72
n/a	HEA 6 blue	27-Jul-04	14:50	0.01	n/a	6.0	0.77
n/a	HEA 6 green	27-Jul-04	14:50	0.01	n/a	6.0	0.60
n/a	HEA 6 yellow	27-Jul-04	14:50	0.01	n/a	6.0	0.45
n/a	HEA 6 white	27-Jul-04	14:50	0.01	n/a	6.0	0.57
2004-1178	18 Inlet	28-Jul-04	12:00	0.01	9.8	9.9	2.98
2004-1179	18 Outlet	28-Jul-04	13:00	0.01	13.9	13.4	6.23
n/a	HEA 20 blue	29-Jul-04	11:00	0.01	n/a	20.0	9.14
n/a	HEA 20 green	29-Jul-04	11:00	0.01	n/a	20.0	5.68
n/a	HEA 20 yellow	29-Jul-04	11:00	0.01	n/a	20.0	4.77
n/a	HEA 20 white	29-Jul-04	11:00	0.01	n/a	20.0	9.52
n/a	HEA 14 blue	29-Jul-04	11:55	0.01	n/a	14.0	5.03
n/a	HEA 14 green	29-Jul-04	11:55	0.01	n/a	14.0	3.49
n/a	HEA 14 yellow	29-Jul-04	11:55	0.01	n/a	14.0	2.69
n/a	HEA 14 white	29-Jul-04	11:55	0.01	n/a	14.0	4.44
n/a	HEA 8 blue	29-Jul-04	11:10	0.01	n/a	8.0	1.54
n/a	HEA 8 green	29-Jul-04	11:10	0.01	n/a	8.0	1.41
n/a	HEA 8 yellow	29-Jul-04	11:10	0.01	n/a	8.0	1.34
n/a	HEA 8 white	29-Jul-04	11:10	0.01	n/a	8.0	1.38
n/a	HEA 18 blue	29-Jul-04	12:05	0.01	n/a	18.0	8.36
n/a	HEA 18 green	29-Jul-04	12:05	0.01	n/a	18.0	5.47
n/a	HEA 18 yellow	29-Jul-04	12:05	0.01	n/a	18.0	4.52
n/a	HEA 18 white	29-Jul-04	12:05	0.01	n/a	18.0	5.88
n/a	HEA 12 -1L blue	29-Jul-04	12:55	0.01	n/a	12.0	7.41
n/a	HEA 12 -1L green	29-Jul-04	12:55	0.01	n/a	12.0	4.59
n/a	HEA 12 -1L yellow	29-Jul-04	12:55	0.01	n/a	12.0	4.70
n/a	HEA 12 -1L white	29-Jul-04	12:55	0.01	n/a	12.0	4.15
n/a	HEA 12 blue	29-Jul-04	13:05	0.01	n/a	12.0	6.51
n/a	HEA 12 green	29-Jul-04	13:05	0.01	n/a	12.0	3.93
n/a	HEA 12 yellow	29-Jul-04	13:05	0.01	n/a	12.0	3.88
n/a	HEA 12 white	29-Jul-04	13:05	0.01	n/a	12.0	4.73
n/a	HEA 16 blue	29-Jul-04	13:35	0.01	n/a	16.0	5.13
n/a	HEA 16 green	29-Jul-04	13:35	0.01	n/a	16.0	4.40
n/a	HEA 16 yellow	29-Jul-04	13:35	0.01	n/a	16.0	3.60
n/a	HEA 16 white	29-Jul-04	13:35	0.01	n/a	16.0	5.29
n/a	HEA 10 blue	29-Jul-04	13:40	0.01	n/a	10.0	2.73
n/a	HEA 10 green	29-Jul-04	13:40	0.01	n/a	10.0	1.81
n/a	HEA 10 yellow	29-Jul-04	13:40	0.01	n/a	10.0	1.81

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	HEA 10 white	29-Jul-04	13:40	0.01	n/a	10.0	2.30
n/a	HEA 6 blue	29-Jul-04	13:48	0.01	n/a	6.0	0.83
n/a	HEA 6 green	29-Jul-04	13:48	0.01	n/a	6.0	0.81
n/a	HEA 6 yellow	29-Jul-04	13:48	0.01	n/a	6.0	1.29
n/a	HEA 6 white	29-Jul-04	13:48	0.01	n/a	6.0	0.86
2004-0469	Toolik	30-Jul-04	9:13	1	14.2	14.2	10.26
2004-0470	Toolik	30-Jul-04	9:35	3	14.0	14.2	12.55
2004-0471	Toolik	30-Jul-04	9:47	5	11.6	12.0	9.22
2004-0472	Toolik	30-Jul-04	10:05	8	8.0	8.0	2.94
2004-0473	Toolik	30-Jul-04	10:17	12	6.1	6.1	2.40
2004-0474	Toolik	30-Jul-04	10:25	16	5.7	6.1	2.77
2004-0466	17-19	30-Jul-04	0:00	0.01	12.7	12.7	6.03
2004-0465	18-19	30-Jul-04	0:00	0.01	12.5	12.5	7.57
2004-0462	Toolik Inlet	30-Jul-04	0:00	0.01	12.1	12.5	5.45
2004-1211	HEA 20 blue	31-Jul-04	10:50	0.01	n/a	20.0	12.13
2004-1212	HEA 20 green	31-Jul-04	10:50	0.01	n/a	20.0	15.01
2004-1213	HEA 20 yellow	31-Jul-04	10:50	0.01	n/a	20.0	4.13
2004-1214	HEA 20 white	31-Jul-04	10:50	0.01	n/a	20.0	11.94
2004-1215	HEA 14 blue	31-Jul-04	11:25	0.01	n/a	14.0	5.04
2004-1216	HEA 14 green	31-Jul-04	11:25	0.01	n/a	14.0	2.96
2004-1217	HEA 14 yellow	31-Jul-04	11:25	0.01	n/a	14.0	3.47
2004-1218	HEA 14 white	31-Jul-04	11:25	0.01	n/a	14.0	4.38
2004-1219	HEA 8 blue	31-Jul-04	10:55	0.01	n/a	8.0	2.28
2004-1220	HEA 8 green	31-Jul-04	10:55	0.01	n/a	8.0	1.19
2004-1221	HEA 8 yellow	31-Jul-04	10:55	0.01	n/a	8.0	1.49
2004-1222	HEA 8 white	31-Jul-04	10:55	0.01	n/a	8.0	1.46
2004-1223	HEA 18 blue	31-Jul-04	11:35	0.01	n/a	18.0	6.86
2004-1224	HEA 18 green	31-Jul-04	11:35	0.01	n/a	18.0	4.45
2004-1225	HEA 18 yellow	31-Jul-04	11:35	0.01	n/a	18.0	3.25
2004-1226	HEA 18 white	31-Jul-04	11:35	0.01	n/a	18.0	5.65
2004-1227	HEA 12 -1L blue	31-Jul-04	11:55	0.01	n/a	12.0	7.49
2004-1228	HEA 12 -1L green	31-Jul-04	11:55	0.01	n/a	12.0	4.71
2004-1229	HEA 12 -1L yellow	31-Jul-04	11:55	0.01	n/a	12.0	5.39
2004-1230	HEA 12 -1L white	31-Jul-04	11:55	0.01	n/a	12.0	5.36
2004-1231	HEA 12 blue	31-Jul-04	12:00	0.01	n/a	12.0	16.36
2004-1232	HEA 12 green	31-Jul-04	12:00	0.01	n/a	12.0	6.40
2004-1233	HEA 12 yellow	31-Jul-04	12:00	0.01	n/a	12.0	10.00
2004-1234	HEA 12 white	31-Jul-04	12:00	0.01	n/a	12.0	12.67
2004-1235	HEA 16 blue	31-Jul-04	12:20	0.01	n/a	16.0	3.66
2004-1236	HEA 16 green	31-Jul-04	12:20	0.01	n/a	16.0	3.56
2004-1237	HEA 16 yellow	31-Jul-04	12:20	0.01	n/a	16.0	2.92
2004-1238	HEA 16 white	31-Jul-04	12:20	0.01	n/a	16.0	4.77
2004-1239	HEA 10 blue	31-Jul-04	12:25	0.01	n/a	10.0	2.21
2004-1240	HEA 10 green	31-Jul-04	12:25	0.01	n/a	10.0	1.68
2004-1241	HEA 10 yellow	31-Jul-04	12:25	0.01	n/a	10.0	1.46
2004-1242	HEA 10 white	31-Jul-04	12:25	0.01	n/a	10.0	2.29
2004-1243	HEA 6 blue	31-Jul-04	12:30	0.01	n/a	6.0	1.52
2004-1244	HEA 6 green	31-Jul-04	12:30	0.01	n/a	6.0	0.75
			Time		Water	Incubation	Bacterial
-----------	------------------	-----------	----------	-------	---------	------------	--------------
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2004-1245	HEA 6 yellow	31-Jul-04	12:30	0.01	n/a	6.0	0.59
2004-1246	HEA 6 white	31-Jul-04	12:30	0.01	n/a	6.0	1.09
2004-0490	12-13	3-Aug-04	10:50	0.01	9.1	9.1	1.16
2004-0488	11-13	3-Aug-04	10:50	0.01	10.3	10.3	1.19
2004-0502	18 Headwaters	3-Aug-04	11:50	0.01	5.5	5.5	1.39
2004-1356	12	3-Aug-04	11:50	1	10.7	10.3	3.02
2004-1354	11	3-Aug-04	13:10	1	11.7	12.2	5.85
2004-1358	13	3-Aug-04	13:50	1	9.8	9.7	4.88
2004-1360	14	3-Aug-04	15:10	1	10.6	10.2	8.17
2004-0495	15-16	3-Aug-04	16:35	0.01	11.7	12.4	4.47
2004-0499	I6 West	3-Aug-04	16:35	0.01	8.3	7.9	1.06
2004-0496	I6 HW In	3-Aug-04	16:35	0.01	7.9	7.9	0.67
2004-1362	I6 HW	3-Aug-04	16:50	1	11.7	11.7	3.70
2004-0493	14-15	3-Aug-04	17:50	0.01	12.7	12.0	11.33
2004-1364	15	4-Aug-04	10:05	1	11.0	11.1	3.94
2004-1366	16	4-Aug-04	12:00	1	11.0	12.4	2.75
2004-1368	17	4-Aug-04	13:10	1	11.4	12.4	4.84
2004-0503	18 In	4-Aug-04	14:15	0.01	10.5	10.5	1.70
2004-0504	18 Out	4-Aug-04	14:30	0.01	8.5	8.5	6.56
2004-1370	18	4-Aug-04	14:40	1	8.4	8.5	7.41
2004-0508	Swamp In	4-Aug-04	16:10	0.01	14.4	14.4	5.33
2004-1372	Iswamp	4-Aug-04	16:00	1	10.9	10.5	5.01
2004-0501	17-19	4-Aug-04	17:20	0.01	13.0	19.0	3.07
2004-0505	18-19	4-Aug-04	17:25	0.01	9.4	19.0	12.87
2004-0506	MWL	4-Aug-04	17:30	0.01	10.8	10.9	0.91
2004-0510	Toolik Inlet	4-Aug-04	18:05	0.01	10.7	10.9	6.42
2004-0518	Toolik	6-Aug-04	9:15	1	11.7	11.7	7.36
2004-0519	Toolik	6-Aug-04	9:30	3	11.0	10.3	9.09
2004-0520	Toolik	6-Aug-04	9:40	5	10.3	10.3	7.34
2004-0521	Toolik	6-Aug-04	9:50	8	9.1	9.1	6.73
2004-0522	Toolik	6-Aug-04	10:10	12	6.4	5.9	2.44
2004-0523	Toolik	6-Aug-04	10:15	16	5.9	5.9	2.47
2004-0515	17-19	6-Aug-04	10:37	0.01	12.6	13.0	5.18
2004-0514	18-19	6-Aug-04	10:14	0.01	10.9	10.3	7.21
2004-0511	Toolik Inlet	6-Aug-04	11:57	0.01	13.7	13.0	5.12
2004-1326	18 Inlet	9-Aug-04	10:55	0.01	11.2	11.4	9.02
2004-1327	18 Outlet	9-Aug-04	12:00	0.01	11.5	11.8	12.28
2004-1404	Toolik Inlet	11-Aug-04	14:50	0.01	13.9	13.5	3.81
2004-1405	Toolik Outlet	11-Aug-04	14:30	0.01	13.5	13.5	6.20
n/a	HEA 6 blue- A	12-Aug-04	14:25	0.01	n/a	6.3	0.70
n/a	HEA 6 green	12-Aug-04	14:25	0.01	n/a	6.3	-0.74
n/a	HEA 6 yellow	12-Aug-04	14:25	0.01	n/a	6.3	0.43
n/a	HEA 6 white	12-Aug-04	14:25	0.01	n/a	6.3	-0.33
n/a	HEA 6 blue- B	12-Aua-04	14:25	0.01	n/a	6.3	-0.39
n/a	HEA 6 blue- C	12-Aua-04	14:25	0.01	n/a	6.3	0.05
n/a	HEA 12 blue- A	12-Aua-04	15:35	0.01	n/a	12.4	3.31
n/a	HEA 12 green- A	12-Aug-04	15:35	0.01	n/a	12.4	2.30
n/a	HEA 12 yellow- A	12-Aug-04	15:35	0.01	n/a	12.4	0.05

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	HEA 12 white- A	12-Aug-04	15:35	0.01	n/a	12.4	1.75
n/a	HEA 12 blue- B	12-Aug-04	15:35	0.01	n/a	12.4	1.37
n/a	HEA 12 green- B	12-Aug-04	15:35	0.01	n/a	12.4	0.99
n/a	HEA 12 yellow-B	12-Aug-04	15:35	0.01	n/a	12.4	0.16
n/a	HEA 12 white-B	12-Aug-04	15:35	0.01	n/a	12.4	1.37
n/a	HEA 12 blue- C	12-Aug-04	15:35	0.01	n/a	12.4	2.41
n/a	HEA 12 green- C	12-Aug-04	15:35	0.01	n/a	12.4	2.85
n/a	HEA 12 yellow- C	12-Aug-04	15:35	0.01	n/a	12.4	1.11
n/a	HEA 12 white- C	12-Aug-04	15:35	0.01	n/a	12.4	1.60
n/a	HEA 20 blue- A	12-Aug-04	14:35	0.01	n/a	20.1	6.25
n/a	HEA 20 green	12-Aug-04	14:35	0.01	n/a	20.1	2.81
n/a	HEA 20 yellow	12-Aug-04	14:35	0.01	n/a	20.1	1.87
n/a	HEA 20 white	12-Aug-04	14:35	0.01	n/a	20.1	3.28
n/a	HEA 20 blue- B	12-Aug-04	14:35	0.01	n/a	20.1	5.50
n/a	HEA 20 blue- C	12-Aug-04	14:35	0.01	n/a	20.1	5.01
2004-0577	Toolik	13-Aug-04	9:10	1	12.7	12.7	8.84
2004-0578	Toolik	13-Aug-04	9:20	3	12.7	12.7	7.88
2004-0579	Toolik	13-Aug-04	9:30	5	12.6	12.6	6.34
2004-0580	Toolik	13-Aug-04	9:40	8	11.8	12.6	7.48
2004-0581	Toolik	13-Aug-04	9:55	12	6.6	6.6	1.58
2004-0582	Toolik	13-Aug-04	10:05	16	6.1	6.6	2.16
2004-0574	17-19	13-Aug-04	0:00	0.01	13.0	13.0	7.35
2004-0573	18-19	13-Aug-04	0:00	0.01	12.1	12.1	7.51
2004-0570	Toolik Inlet	13-Aug-04	0:00	0.01	13.1	13.0	4.76
n/a	18 In benthic water	11-Aug-04	13:00	0.01		12.0	80.02
n/a	18 In benthic scrubs	11-Aug-04	13:00	0.01		12.0	80.02
n/a	18 In benthic rock	11-Aug-04	13:00	0.01		12.0	83.53
n/a	18 In benthic TCA only	11-Aug-04	13:00	0.01		12.0	83.53
n/a	18 Out benthic water	11-Aug-04	13:00	0.01		12.0	118.90
n/a	18 Out benthic scrubs	11-Aug-04	13:00	0.01		12.0	118.90
n/a	18 Out benthic whole rock	11-Aug-04	13:00	0.01		12.0	135.68
n/a	18 Out benthic TCA only	11-Aug-04	13:00	0.01		12.0	135.68
n/a	18 In benthic post scrub	11-Aug-04	13:00	0.01		12.0	11.48
n/a	I8 Out benthic post scrub	11-Aug-04	13:00	0.01		12.0	11.48
n/a	HEA 6 blue- A	14-Aug-04	14:05	0.01	n/a	6.3	3.06
n/a	HEA 6 green	14-Aug-04	14:05	0.01	n/a	6.3	6.59
n/a	HEA 6 yellow	14-Aug-04	14:05	0.01	n/a	6.3	2.79
n/a	HEA 6 white	14-Aug-04	14:05	0.01	n/a	6.3	6.61
n/a	HEA 6 blue- B	14-Aug-04	14:05	0.01	n/a	6.3	3.66
n/a	HEA 6 blue- C	14-Aug-04	14:05	0.01	n/a	6.3	4.95
n/a	HEA 12 blue- A	14-Aug-04	15:10	0.01	n/a	11.9	4.99
n/a	HEA 12 green- A	14-Aug-04	15:10	0.01	n/a	11.9	2.57
n/a	HEA 12 vellow- A	14-Aug-04	15:10	0.01	n/a	11.9	2.04
n/a	HEA 12 white- A	14-Aug-04	15:10	0.01	n/a	11.9	2.54
n/a	HEA 12 blue- B	14-Aug-04	15:10	0.01	n/a	11.9	3.80
n/a	HEA 12 green- B	14-Aug-04	15:10	0.01	n/a	11.9	2.49
n/a	HEA 12 vellow-B	14-Aug-04	15:10	0.01	n/a	11.9	1.59
n/a	HEA 12 white-B	14-Aua-04	15:10	0.01	n/a	11.9	2.68

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	HEA 12 blue- C	14-Aug-04	15:10	0.01	n/a	11.9	4.11
n/a	HEA 12 green- C	14-Aug-04	15:10	0.01	n/a	11.9	2.62
n/a	HEA 12 yellow- C	14-Aug-04	15:10	0.01	n/a	11.9	1.68
n/a	HEA 12 white- C	14-Aug-04	15:10	0.01	n/a	11.9	2.46
n/a	HEA 20 blue- A	14-Aug-04	14:15	0.01	n/a	20.4	12.21
n/a	HEA 20 green	14-Aug-04	14:15	0.01	n/a	20.4	5.72
n/a	HEA 20 yellow	14-Aug-04	14:15	0.01	n/a	20.4	4.10
n/a	HEA 20 white	14-Aug-04	14:15	0.01	n/a	20.4	6.79
n/a	HEA 20 blue- B	14-Aug-04	14:15	0.01	n/a	20.4	111.63
n/a	HEA 20 blue- C	14-Aug-04	14:15	0.01	n/a	20.4	9.42
2004-1511	18 Inlet	16-Aug-04	10:20	0.01	10.4	10.4	3.36
2004-1512	18 Outlet	16-Aug-04	10:55	0.01	13.0	13.0	10.38
2004-1513	HEA 12 blue- A	16-Aug-04	14:00	0.01	n/a	12.3	5.95
2004-1514	HEA 12 green- A	16-Aug-04	14:00	0.01	n/a	12.3	3.64
2004-1515	HEA 12 yellow- A	16-Aug-04	14:00	0.01	n/a	12.3	2.95
2004-1516	HEA 12 white- A	16-Aug-04	14:00	0.01	n/a	12.3	2.87
2004-1517	HEA 12 blue- B	16-Aug-04	14:00	0.01	n/a	12.3	5.39
2004-1518	HEA 12 green- B	16-Aug-04	14:00	0.01	n/a	12.3	3.24
2004-1519	HEA 12 yellow-B	16-Aug-04	14:00	0.01	n/a	12.3	1.43
2004-1520	HEA 12 white-B	16-Aug-04	14:00	0.01	n/a	12.3	1.86
2004-1521	HEA 12 blue- C	16-Aug-04	14:00	0.01	n/a	12.3	5.92
2004-1522	HEA 12 green- C	16-Aug-04	14:00	0.01	n/a	12.3	2.70
2004-1523	HEA 12 yellow- C	16-Aug-04	14:00	0.01	n/a	12.3	2.16
2004-1524	HEA 12 white- C	16-Aug-04	14:00	0.01	n/a	12.3	3.03
2005-0817	I8-in	21-Jun-05	14:30	0.01	11.3	12.0	2.17
2005-0818	l8-out	21-Jun-05	15:40	0.01	12.4	12.6	10.58
n/a	blue, 12 deg C	23-Jun-05	21:20	0.01	13.0	13.0	6.75
n/a	green, 12 deg C	23-Jun-05	21:20	0.01	13.0	13.0	6.45
n/a	yellow, 12 deg C	23-Jun-05	21:20	0.01	13.0	13.0	14.30
n/a	white, 12 deg C	23-Jun-05	21:20	0.01	13.0	13.0	10.49
n/a	blue, 12 deg C, N+P	23-Jun-05	21:20	0.01	13.0	13.0	131.55
n/a	green, 12 deg C, N+P	23-Jun-05	21:20	0.01	13.0	13.0	111.95
n/a	yellow, 12 deg C, N+P	23-Jun-05	21:20	0.01	13.0	13.0	72.79
n/a	white, 12 deg C, N+P	23-Jun-05	21:20	0.01	13.0	13.0	73.95
n/a	blue, 17 deg C	23-Jun-05	21:20	0.01	17.0	17.0	9.82
n/a	green, 17 deg C	23-Jun-05	21:20	0.01	17.0	17.0	9.17
n/a	yellow, 17 deg C	23-Jun-05	21:20	0.01	17.0	17.0	23.29
n/a	white, 17 deg C	23-Jun-05	21:20	0.01	17.0	17.0	20.51
n/a	blue, 17 deg C, N+P	23-Jun-05	21:20	0.01	17.0	17.0	163.23
n/a	green, 17 deg C, N+P	23-Jun-05	21:20	0.01	17.0	17.0	165.81
n/a	yellow, 17 deg C, N+P	23-Jun-05	21:20	0.01	17.0	17.0	127.75
n/a	white, 17 deg C, N+P	23-Jun-05	21:20	0.01	17.0	17.0	156.38
2005-0233	Toolik Main	24-Jun-05	9:20	1	10.5	10.0	5.61
2005-0234	Toolik Main	24-Jun-05	9:35	3	10.3	10.0	7.13
2005-0235	Toolik Main	24-Jun-05	9:40	5	10.1	10.0	6.46
2005-0236	Toolik Main	24-Jun-05	9:50	8	9.0	9.0	4.86
2005-0237	Toolik Main	24-Jun-05	10:00	12	5.0	5.0	4.18
2005-0238	Toolik Main	24-Jun-05	10:14	16	4.7	5.0	4.59

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2005-0230	17-19	24-Jun-05	13:30	0.01	11.2	12.0	4.07
2005-0229	18-19	24-Jun-05	13:30	0.01	12.5	12.0	2.68
2005-0226	Toolik Inlet	24-Jun-05	13:30	0.01	11.5	12.0	2.93
n/a	Toolik Inlet, 6 deg C	24-Jun-05	15:08	0.01	11.5	6.0	2.42
n/a	Toolik Inlet, 8 deg C	24-Jun-05	15:08	0.01	11.5	8.0	2.42
n/a	Toolik Inlet, 10 deg C	24-Jun-05	15:08	0.01	11.5	10.0	2.86
n/a	Toolik Inlet, 14 deg C	24-Jun-05	15:08	0.01	11.5	14.0	2.89
n/a	Toolik Inlet, 17 deg C	24-Jun-05	15:08	0.01	11.5	17.0	3.59
n/a	Toolik Inlet, 21 deg C	24-Jun-05	15:08	0.01	11.5	21.0	3.52
2005-0252	11-13	28-Jun-05	9:30	0.01	11.4	11.8	4.27
2005-0254	12-13	28-Jun-05	9:30	0.01	11.8	11.8	4.64
2005-0266	I8 HW	28-Jun-05	10:50	0.01	13.3	13.3	15.95
2005-0886	12	28-Jun-05	10:50	1	11.7	11.4	5.02
2005-0884	11	28-Jun-05	12:00	1	14.7	14.3	5.64
2005-0888	13	28-Jun-05	12:45	1	16.2	16.4	11.81
2005-0890	14	28-Jun-05	13:50	1	16.9	16.4	15.53
2005-0259	15-16	28-Jun-05	15:15	0.01	16.2	15.7	9.77
2005-0896	I6 HW	28-Jun-05	15:50	1	15.7	15.7	8.41
2005-0257	14-15	28-Jun-05	16:45	0.01	17.4	17.5	5.73
2005-0892	15	28-Jun-05	18:15	1	15.8	16.0	13.09
2005-0894	16	29-Jun-05	10:00	1	16.1	15.7	11.60
2005-0898	17	29-Jun-05	11:10	1	17.1	16.9	15.42
2005-0267	18 in	29-Jun-05	12:15	0.01	18.0	18.4	123.66
2005-0900	18	29-Jun-05	12:30	1	17.1	18.4	23.29
2005-0268	I8 out	29-Jun-05	12:20	0.01	18.4	18.4	11.90
2005-0272	I swamp in	29-Jun-05	14:10	0.01	17.8	17.8	9.55
2005-0902	Iswamp	29-Jun-05	13:50	1	17.5	17.8	18.45
2005-0265	17-19	29-Jun-05	15:55	0.01	19.7	20.8	12.25
2005-0269	18-19	29-Jun-05	15:55	0.01	20.8	20.8	14.00
2005-0270	MWL	29-Jun-05	15:50	0.01	14.5	14.5	11.99
2005-0274	Toolik Inlet	29-Jun-05	17:00	0.01	19.4	19.4	22.96
2005-0300	Toolik Main	1-Jul-05	9:25	1	15.2	14.0	4.29
2005-0301	Toolik Main	1-Jul-05	9:50	3	14.3	14.0	12.99
2005-0302	Toolik Main	1-Jul-05	10:00	5	11.4	11.4	8.34
2005-0303	Toolik Main	1-Jul-05	10:10	8	9.1	9.1	6.36
2005-0304	Toolik Main	1-Jul-05	10:20	12	5.7	5.7	4.32
2005-0305	Toolik Main	1-Jul-05	10:30	16	4.9	5.7	4.06
2005-0297	17-19	1-Jul-05	11:30	0.01	12.5	12.0	1.07
2005-0296	18-19	1-Jul-05	11:30	0.01	11.9	12.0	0.48
n/a	Toolik Inlet, 6 deg C	1-Jul-05	11:45	0.01	11.1	5.7	1.31
n/a	Toolik Inlet, 9 deg C	1-Jul-05	11:45	0.01	11.1	9.1	1.09
2005-0293	Toolik Inlet, 12 deg C	1-Jul-05	11:45	0.01	11.1	12.0	2.04
n/a	Toolik Inlet, 14 deg C	1-Jul-05	11:45	0.01	11.1	14.0	2.85
n/a	Toolik Inlet, 17 deg C	1-Jul-05	11:45	0.01	11.1	17.0	2.95
n/a	Toolik Inlet, 20 deg C	1-Jul-05	11:45	0.01	11.1	20.0	3.85
2005-0947	I8 in	5-Jul-05	13:26	0.01	7.0	7.0	1.25
2005-0948	l8 out	5-Jul-05	13:50	0.01	12.3	13.5	7.19
2005-0963	I8 in	7-Jul-05	14:20	0.01	7.3	7.3	4.31

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2005-0964	I8 out	7-Jul-05	17:19	0.01	12.0	12.0	13.99
2005-0965	blue bag rep A	7-Jul-05	14:20	0.01	7.3	7.3	11.52
2005-0966	blue bag rep B	7-Jul-05	14:20	0.01	7.3	7.3	11.04
2005-0967	white bag rep A	7-Jul-05	14:20	0.01	7.3	7.3	4.98
2005-0968	white bag rep B	7-Jul-05	14:20	0.01	7.3	7.3	4.37
2005-0356	Toolik	8-Jul-05	9:28	1	11.1	11.1	6.30
2005-0357	Toolik	8-Jul-05	9:40	3	11.1	11.1	3.04
2005-0358	Toolik	8-Jul-05	9:56	5	11.1	11.1	5.38
2005-0359	Toolik	8-Jul-05	10:06	8	10.3	10.3	6.39
2005-0360	Toolik	8-Jul-05	10:21	12	5.9	5.9	5.43
2005-0361	Toolik	8-Jul-05	10:35	16	5.2	5.9	1.54
2005-0353	17-19	8-Jul-05	13:00	0.01	10.7	10.1	4.30
2005-0352	18-19	8-Jul-05	13:00	0.01	11.9	11.8	12.43
2005-0349	Toolik Inlet	8-Jul-05	13:30	0.01	10.1	10.1	4.93
2005-0991	l8 in	9-Jul-05	11:30	0.01	7.2	7.2	1.69
2005-0992	l8 out	9-Jul-05	13:30	0.01	10.6	10.6	11.45
2005-0993	blue bag rep A	9-Jul-05	11:30	0.01	7.2	7.2	12.64
2005-0994	blue bag rep B	9-Jul-05	11:30	0.01	7.2	7.2	16.28
2005-0995	green bag rep A	9-Jul-05	13:30	0.01	10.6	10.6	10.16
2005-0996	green bag rep B	9-Jul-05	13:30	0.01	10.6	10.6	56.49
2005-0997	yellow bag rep A	9-Jul-05	13:30	0.01	10.6	10.6	30.50
2005-0998	yellow bag rep B	9-Jul-05	13:30	0.01	10.6	10.6	13.51
2005-0999	white bag rep A	9-Jul-05	11:30	0.01	7.2	7.2	9.90
2005-1000	white bag rep B	9-Jul-05	11:30	0.01	7.2	7.2	13.69
2005-1001	mystery bag	9-Jul-05	13:30	0.01	10.6	10.6	57.33
2005-1050	l8 in	12-Jul-05	10:15	0.01	4.7	4.7	1.70
2005-1051	l8 out	12-Jul-05	10:50	0.01	9.2	9.2	6.99
n/a	blue, 12 deg C	14-Jul-05	20:00	0.01	12.0	12.0	4.53
n/a	green, 12 deg C	14-Jul-05	20:00	0.01	12.0	12.0	4.19
n/a	yellow, 12 deg C	14-Jul-05	20:00	0.01	12.0	12.0	1.96
n/a	white, 12 deg C	14-Jul-05	20:00	0.01	12.0	12.0	1.71
n/a	blue, 12 deg C, N+P	14-Jul-05	20:00	0.01	12.0	12.0	20.47
n/a	green, 12 deg C, N+P	14-Jul-05	20:00	0.01	12.0	12.0	31.22
n/a	yellow, 12 deg C, N+P	14-Jul-05	20:00	0.01	12.0	12.0	9.31
n/a	white, 12 deg C, N+P	14-Jul-05	20:00	0.01	12.0	12.0	14.80
n/a	blue, 17 deg C	14-Jul-05	20:40	0.01	17.0	17.0	15.32
n/a	green, 17 deg C	14-Jul-05	20:40	0.01	17.0	17.0	10.20
n/a	yellow, 17 deg C	14-Jul-05	20:40	0.01	17.0	17.0	3.68
n/a	white, 17 deg C	14-Jul-05	20:40	0.01	17.0	17.0	3.77
n/a	blue, 17 deg C, N+P	14-Jul-05	20:40	0.01	17.0	17.0	157.36
n/a	green, 17 deg C, N+P	14-Jul-05	20:40	0.01	17.0	17.0	168.41
n/a	yellow, 17 deg C, N+P	14-Jul-05	20:40	0.01	17.0	17.0	118.19
n/a	white, 17 deg C, N+P	14-Jul-05	20:40	0.01	17.0	17.0	121.07
2005-0402	Toolik	15-Jul-05	9:10	1	12.1	12.0	4.31
2005-0403	Toolik	15-Jul-05	9:25	3	11.6	12.0	5.37
2005-0404	Toolik	15-Jul-05	9:45	5	10.7	10.1	3.39
2005-0405	Toolik	15-Jul-05	10:00	8	10.1	10.1	6.29
2005-0406	Toolik	15-Jul-05	10:15	12	6.0	6.0	2.83

Sortchem Site Date received Depth temp. temp. temp. production 2005-0407 Toolik 15-Jul-05 10:33 16 5.2 6.0 3 2005-0399 17-19 15-Jul-05 13:20 0.01 12.6 12.0 1 2005-0398 18-19 15-Jul-05 13:20 0.01 11.3 12.0 1 n/a Toolik Inlet, 6 deg C 15-Jul-05 12:04 0.01 11.8 6.0 1 n/a Toolik Inlet, 10 deg C 15-Jul-05 12:04 0.01 11.8 8.0 0 n/a Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 10.1 1 2005-0395 Toolik Inlet, 14 deg C 15-Jul-05 12:04 0.01 11.8 14.0 1 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 14.0 1 n/a Toolik Inlet, 20 deg C 16-Jul-05 20:10		o.,		Time	D (1	Water	Incubation	Bacterial
Image: Control (hr) (m) (deg C) (ug C L/d) 2005-0407 Toolik 15-Jul-05 10:33 16 5.2 6.0 5.2 2005-0399 I7-I9 15-Jul-05 13:20 0.01 12.6 12.0 1 2005-0398 I8-I9 15-Jul-05 13:20 0.01 11.3 12.0 9 n/a Toolik Inlet, 6 deg C 15-Jul-05 12:04 0.01 11.8 6.0 9 n/a Toolik Inlet, 8 deg C 15-Jul-05 12:04 0.01 11.8 8.0 0 n/a Toolik Inlet, 10 deg C 15-Jul-05 12:04 0.01 11.8 10.1 9 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 14.0 17.0 n/a Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 14.0 17.0 n/a Toolik Inlet, 20 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12.0	ortchem	Site	Date	received	Depth	temp.	temp.	Production
2005-0407 Toolik 15-Jul-05 10:33 16 5.2 6.0 5.2 2005-0399 I7-I9 15-Jul-05 13:20 0.01 12.6 12.0 1 2005-0398 I8-I9 15-Jul-05 13:20 0.01 11.3 12.0 9 n/a Toolik Inlet, 6 deg C 15-Jul-05 12:04 0.01 11.8 6.0 n/a Toolik Inlet, 8 deg C 15-Jul-05 12:04 0.01 11.8 8.0 0 n/a Toolik Inlet, 10 deg C 15-Jul-05 12:04 0.01 11.8 10.1 9 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 10.1 9 n/a Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 10.0 9 n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 10.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 1				(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2005-0399 I7-19 15-Jul-05 13:20 0.01 12.6 12.0 1 2005-0398 I8-19 15-Jul-05 13:20 0.01 11.3 12.0 1 n/a Toolik Inlet, 6 deg C 15-Jul-05 12:04 0.01 11.8 6.0 n/a Toolik Inlet, 8 deg C 15-Jul-05 12:04 0.01 11.8 8.0 1 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 10.1 1 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 10.1 1 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 14.0 1 n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 14.0 1 n/a Toolik Inlet, 20 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12.0 n/a green, 12 deg C 16-Jul-05 20:10 0.01	005-0407	Toolik	15-Jul-05	10:33	16	5.2	6.0	2.46
2005-0398 I8-I9 15-Jul-05 13:20 0.01 11.3 12.0 13:20 n/a Toolik Inlet, 6 deg C 15-Jul-05 12:04 0.01 11.8 6.0 n/a Toolik Inlet, 8 deg C 15-Jul-05 12:04 0.01 11.8 6.0 n/a Toolik Inlet, 10 deg C 15-Jul-05 12:04 0.01 11.8 8.0 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 10.1 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 10.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 14.0 n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 17.0 n/a Blue, 12 deg C 16-Jul-05 20:10 0.01 11.8 20.0 12.0 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12.0 12.0 12.0	005-0399	17-19	15-Jul-05	13:20	0.01	12.6	12.0	11.49
n/a Toolik Inlet, 6 deg C 15-Jul-05 12:04 0.01 11.8 6.0 n/a Toolik Inlet, 8 deg C 15-Jul-05 12:04 0.01 11.8 8.0 0 n/a Toolik Inlet, 10 deg C 15-Jul-05 12:04 0.01 11.8 10.1 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 12.0 n/a Toolik Inlet, 14 deg C 15-Jul-05 12:04 0.01 11.8 14.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 14.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 17.0 n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 20.0 20.1 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12.0 n/a yellow, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 12.0 <	005-0398	18-19	15-Jul-05	13:20	0.01	11.3	12.0	9.73
n/a Toolik Inlet, 8 deg C 15-Jul-05 12:04 0.01 11.8 8.0 n/a Toolik Inlet, 10 deg C 15-Jul-05 12:04 0.01 11.8 10.1 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 10.1 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 12.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 14.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 17.0 n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 20.0 20.0 n/a blue, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12.0 n/a yellow, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12.0 n/a white, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 16.0	/a	Toolik Inlet, 6 deg C	15-Jul-05	12:04	0.01	11.8	6.0	1.06
n/a Toolik Inlet, 10 deg C 15-Jul-05 12:04 0.01 11.8 10.1 2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 12.0 n/a Toolik Inlet, 14 deg C 15-Jul-05 12:04 0.01 11.8 14.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 14.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 17.0 n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 20.0 2 n/a Toolik Inlet, 20 deg C 16-Jul-05 20:10 0.01 12.0 12.0 1 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12.0 n/a yellow, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 12.0 n/a green, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 14.9	/a	Toolik Inlet, 8 deg C	15-Jul-05	12:04	0.01	11.8	8.0	0.93
2005-0395 Toolik Inlet, 12 deg C 15-Jul-05 12:04 0.01 11.8 12.0 n/a Toolik Inlet, 14 deg C 15-Jul-05 12:04 0.01 11.8 14.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 14.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 17.0 n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 20.0 1 n/a blue, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 1 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 1 n/a wellow, 12 deg C 16-Jul-05 20:10 0.01 12.0 14.0	/a	Toolik Inlet, 10 deg C	15-Jul-05	12:04	0.01	11.8	10.1	1.56
n/a Toolik Inlet, 14 deg C 15-Jul-05 12:04 0.01 11.8 14.0 n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 17.0 n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 17.0 n/a blue, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 1 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12.0 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12.0 n/a white, 12 deg C 16-Jul-05 20:10 0.01 12.0 <t< td=""><td>005-0395</td><td>Toolik Inlet, 12 deg C</td><td>15-Jul-05</td><td>12:04</td><td>0.01</td><td>11.8</td><td>12.0</td><td>1.71</td></t<>	005-0395	Toolik Inlet, 12 deg C	15-Jul-05	12:04	0.01	11.8	12.0	1.71
n/a Toolik Inlet, 17 deg C 15-Jul-05 12:04 0.01 11.8 17.0 n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 20.0 1 n/a blue, 12 deg C 16-Jul-05 20:10 0.01 12.0 1 1 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 1 1 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 1 n/a yellow, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 1 n/a white, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 1 n/a blue, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 16 n/a green, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 14 n/a green, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 13/a	/a	Toolik Inlet, 14 deg C	15-Jul-05	12:04	0.01	11.8	14.0	1.69
n/a Toolik Inlet, 20 deg C 15-Jul-05 12:04 0.01 11.8 20.0 1 n/a blue, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 11 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12 12 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 12 1	/a	Toolik Inlet, 17 deg C	15-Jul-05	12:04	0.01	11.8	17.0	1.60
n/a blue, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 1 n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 14.0 14.0 12.0 12.0 12.0 14.0 12.0 12.0 12.0 14.0 12.0 12.0 12.0 13.0 12.0 13.0 12.0 13.0 12.0 13.0	/a	Toolik Inlet, 20 deg C	15-Jul-05	12:04	0.01	11.8	20.0	2.36
n/a green, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 n/a yellow, 12 deg C 16-Jul-05 20:10 0.01 12.0 16.0 12.0 12.0 12.0 12.0 14.0 14.0 12.0 12.0 12.0 14.0 14.0 14.0 12.0 12.0 14.0 14.0 14.0 12.0 12.0 14.0 14.0 14.0 12.0 12.0 13.0 14.0 14.0 12.0 12.0 13.0 14.0 14.0	/a	blue, 12 deg C	16-Jul-05	20:10	0.01	12.0	12.0	11.65
n/a yellow, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 n/a white, 12 deg C 16-Jul-05 20:10 0.01 12.0 16.0 10.0 12.0 12.0 12.0 16.0 10.0 12.0 12.0 12.0 16.0 10.0 12.0 12.0 12.0 16.0 10.0 12.0 12.0 12.0 16.0 10.0 12.0 12.0 14.0 10.0 12.0 12.0 14.0 14.0 14.0 12.0 12.0 13.0 14.0 12.0 12.0 13.0 12.0 13.0 12.0 13.0 12.0 13.0 12.0 13.0 12.0 13.0 13.0 14.0 12.0 13.0	/a	green, 12 deg C	16-Jul-05	20:10	0.01	12.0	12.0	8.75
n/a white, 12 deg C 16-Jul-05 20:10 0.01 12.0 12.0 n/a blue, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 16.0 n/a green, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 16.0 n/a green, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 16.0 n/a yellow, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 14.0 n/a white, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 14.0 n/a white, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 3.4 n/a green, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 17.0 n/a yellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 4.0 n/a white, 17 deg C 16-Jul-05 20:50 0.01	/a	yellow, 12 deg C	16-Jul-05	20:10	0.01	12.0	12.0	2.36
n/a blue, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 16-Jul-05 n/a green, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 16-Jul-05 n/a yellow, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 14-Jul-05 n/a white, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 14-Jul-05 n/a white, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 13-Jul-05 n/a blue, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 3-Jul-05 n/a green, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 17.0 n/a yellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 4-Jul-05 n/a white, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 4-Jul-05	/a	white, 12 deg C	16-Jul-05	20:10	0.01	12.0	12.0	3.25
n/a green, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 16 n/a yellow, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 14 n/a white, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 14 n/a white, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 13.0 n/a blue, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 34 n/a green, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 14 n/a yellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 14 n/a wellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 4	/a	blue, 12 deg C, N+P	16-Jul-05	20:10	0.01	12.0	12.0	166.80
n/a yellow, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 14.0 n/a white, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 12.0 13.0 n/a blue, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 3.0 n/a green, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 17.0 n/a yellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 17.0 n/a wellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 17.0 n/a wellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 17.0	/a	green, 12 deg C, N+P	16-Jul-05	20:10	0.01	12.0	12.0	161.16
n/a white, 12 deg C, N+P 16-Jul-05 20:10 0.01 12.0 13. n/a blue, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 3. n/a green, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 18. n/a yellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 18. n/a wellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 4. n/a white, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 4.	/a	yellow, 12 deg C, N+P	16-Jul-05	20:10	0.01	12.0	12.0	149.67
n/a blue, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 3 n/a green, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 11 n/a yellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 14 n/a white, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 4	/a	white, 12 deg C, N+P	16-Jul-05	20:10	0.01	12.0	12.0	134.64
n/a green, 17 deg C 16-Jul-05 20:50 0.01 17.0<	/a	blue, 17 deg C	16-Jul-05	20:50	0.01	17.0	17.0	34.36
n/a yellow, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 n/a white, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0 4	/a	green, 17 deg C	16-Jul-05	20:50	0.01	17.0	17.0	15.71
n/a white, 17 deg C 16-Jul-05 20:50 0.01 17.0 17.0	/a	yellow, 17 deg C	16-Jul-05	20:50	0.01	17.0	17.0	4.23
	/a	white, 17 deg C	16-Jul-05	20:50	0.01	17.0	17.0	9.34
n/a blue, 17 deg C, N+P 16-Jul-05 20:50 0.01 17.0 17.0 16	/a	blue, 17 deg C, N+P	16-Jul-05	20:50	0.01	17.0	17.0	163.35
n/a green, 17 deg C, N+P 16-Jul-05 20:50 0.01 17.0 17.0 14	/a	green, 17 deg C, N+P	16-Jul-05	20:50	0.01	17.0	17.0	144.68
n/a yellow, 17 deg C, N+P 16-Jul-05 20:50 0.01 17.0 17.0 18	/a	yellow, 17 deg C, N+P	16-Jul-05	20:50	0.01	17.0	17.0	183.25
n/a white, 17 deg C, N+P 16-Jul-05 20:50 0.01 17.0 17.0 16	/a	white, 17 deg C, N+P	16-Jul-05	20:50	0.01	17.0	17.0	165.29
n/a blue, 12 deg C 18-Jul-05 20:00 0.01 12.0 12.0 2	/a	blue, 12 deg C	18-Jul-05	20:00	0.01	12.0	12.0	21.72
n/a green, 12 deg C 18-Jul-05 20:00 0.01 12.0 12.0 1	/a	green, 12 deg C	18-Jul-05	20:00	0.01	12.0	12.0	11.42
n/a yellow, 12 deg C 18-Jul-05 20:00 0.01 12.0 12.0	/a	yellow, 12 deg C	18-Jul-05	20:00	0.01	12.0	12.0	2.22
n/a white, 12 deg C 18-Jul-05 20:00 0.01 12.0 12.0	/a	white, 12 deg C	18-Jul-05	20:00	0.01	12.0	12.0	3.02
n/a blue, 12 deg C, N+P 18-Jul-05 20:00 0.01 12.0 12.0 13:	/a	blue, 12 deg C, N+P	18-Jul-05	20:00	0.01	12.0	12.0	132.76
n/a green, 12 deg C, N+P 18-Jul-05 20:00 0.01 12.0 12.0 13	/a	green, 12 deg C, N+P	18-Jul-05	20:00	0.01	12.0	12.0	135.63
n/a vellow, 12 deg C, N+P 18-Jul-05 20:00 0.01 12.0 12.0 9	/a	vellow, 12 deg C, N+P	18-Jul-05	20:00	0.01	12.0	12.0	98.69
n/a white. 12 deg C. N+P 18-Jul-05 20:00 0.01 12.0 12.0 11:	/a	white, 12 deg C, N+P	18-Jul-05	20:00	0.01	12.0	12.0	113.39
n/a blue. 17 deg C 18-Jul-05 20:40 0.01 17.0 17.0 3	/a	blue. 17 deg C	18-Jul-05	20:40	0.01	17.0	17.0	33.83
n/a green. 17 deg C 18-Jul-05 20:40 0.01 17.0 17.0 17	/a	areen. 17 dea C	18-Jul-05	20:40	0.01	17.0	17.0	18.28
n/a vellow. 17 deg C 18-Jul-05 20:40 0.01 17.0 17.0	/a	vellow. 17 deg C	18-Jul-05	20:40	0.01	17.0	17.0	4.68
n/a white 17 deg C 18-Jul-05 20:40 0.01 17.0 17.0 1/	/a	white, 17 deg C	18-Jul-05	20:40	0.01	17.0	17.0	12.09
n/a blue, 17 deg C. N+P 18-Jul-05 20:40 0.01 17.0 17.0 15	/a	blue. 17 deg C. N+P	18-Jul-05	20:40	0.01	17.0	17.0	150.37
n/a green, 17 deg C, N+P 18-Jul-05 20:40 0.01 17.0 17.0 14	/a	areen. 17 dea C. N+P	18-Jul-05	20:40	0.01	17.0	17.0	149.79
n/a vellow 17 deg C. N+P 18-Jul-05 20:40 0.01 17.0 17.0 7/	/a	vellow, 17 deg C, N+P	18-Jul-05	20:40	0.01	17.0	17.0	79.02
n/a white 17 deg C N+P 18-Jul-05 20:40 0.01 17.0 17.0 14	/a	white 17 deg C N+P	18-Jul-05	20:40	0.01	17.0	17.0	148 84
2005-0421 11-13 19-Jul-05 9:00 0.01 11.1 11.1 11.1	005-0421	11-13	19-Jul-05	9.00	0.01	11.0	11.0	2 39
2005-0423 12-13 19-141-05 9:00 0.01 11.5 11.1	005-0423	12-13	19-101-05	9.00	0.01	11.5	11.1	2.00
2005-0435 I8 Headwaters 19- Jul-05 0:50 0.01 6.7 6.7	005-0435	18 Headwaters	19-101-05	0.00 Q·50	0.01	67	67	1 12
2005-1150 I2 19- IU-05 10:10 1 13.7 12.6 /	005-1150	12	19-101-05	10.10	1	13.7	12.6	2.13
	005-1148	11	19-101-05	12.10	1	13.7	12.0	2.30
	005 1150	13	19-101-05	12.00	1	13.0	13.7	4 35

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2005-1154	14	19-Jul-05	13:40	1	14.4	13.7	6.52
2005-0428	15-16	19-Jul-05	15:10	0.01	14.3	14.6	3.63
2005-0432	I6 West	19-Jul-05	15:10	0.01	9.2	13.7	0.82
2005-0429	I6 HW In	19-Jul-05	15:10	0.01	10.3	13.7	1.77
lakes	I6 HW	19-Jul-05	15:41	1	13.8	14.6	3.97
2005-0426	14-15	19-Jul-05	16:43	0.01	15.1	14.0	4.82
lakes	15	19-Jul-05	18:00	1	14.1	14.0	8.23
lakes	16	20-Jul-05	10:20	1	13.3	13.6	2.28
lakes	17	20-Jul-05	11:05	1	13.3	13.6	4.96
2005-0436	18 In	20-Jul-05	12:20	0.01	10.6	10.6	0.59
lakes	18	20-Jul-05	12:30	1	12.3	12.6	7.62
2005-0437	18 Out	20-Jul-05	13:00	0.01	12.6	12.6	5.88
2005-0441	I swamp In	20-Jul-05	14:15	0.01	13.7	13.7	0.47
lakes	I swamp	20-Jul-05	14:10	1	13.2	13.7	6.78
2005-0434	17-19	20-Jul-05	15:45	0.01	14.8	14.3	1.78
2005-0438	18-19	20-Jul-05	15:45	0.01	14.3	14.3	3.72
2005-0439	MWL	20-Jul-05	15:55	0.01	9.2	9.2	0.60
2005-0443	Toolik Inlet	20-Jul-05	16:35	0.01	13.9	13.9	1.58
n/a	blue, 12 deg C	21-Jul-05	20:15	0.01	12.0	12.0	22.28
n/a	green, 12 deg C	21-Jul-05	20:15	0.01	12.0	12.0	10.75
n/a	vellow, 12 deg C	21-Jul-05	20:15	0.01	12.0	12.0	1.40
n/a	white, 12 deg C	21-Jul-05	20:15	0.01	12.0	12.0	3.92
n/a	blue, 12 deg C, N+P	21-Jul-05	20:15	0.01	12.0	12.0	158.68
n/a	areen, 12 deg C, N+P	21-Jul-05	20:15	0.01	12.0	12.0	124.98
n/a	vellow, 12 deg C, N+P	21-Jul-05	20:15	0.01	12.0	12.0	154.08
n/a	white, 12 deg C, N+P	21-Jul-05	20:15	0.01	12.0	12.0	56.57
n/a	blue, 17 deg C	21-Jul-05	20:45	0.01	17.0	17.0	16.04
n/a	areen, 17 deg C	21-Jul-05	20:45	0.01	17.0	17.0	4.73
n/a	yellow, 17 deg C	21-Jul-05	20:45	0.01	17.0	17.0	4.25
n/a	white, 17 deg C	21-Jul-05	20:45	0.01	17.0	17.0	8.68
n/a	blue, 17 deg C, N+P	21-Jul-05	20:45	0.01	17.0	17.0	127.65
n/a	green, 17 deg C, N+P	21-Jul-05	20:45	0.01	17.0	17.0	51.20
n/a	yellow, 17 deg C, N+P	21-Jul-05	20:45	0.01	17.0	17.0	40.48
n/a	white, 17 deg C, N+P	21-Jul-05	20:45	0.01	17.0	17.0	90.66
2005-0469	Toolik	22-Jul-05	9:20	1	12.8	12.8	7.38
2005-0470	Toolik	22-Jul-05	9:40	3	12.8	12.8	7.53
2005-0471	Toolik	22-Jul-05	9:57	5	12.7	12.8	6.79
2005-0472	Toolik	22-Jul-05	10:10	8	11.7	12.0	6.66
2005-0473	Toolik	22-Jul-05	10:18	12	6.0	6.0	1.99
2005-0474	Toolik	22-Jul-05	10:30	16	5.5	6.0	2.41
2005-0466	17-19	22-Jul-05	13:00	0.01	13.5	14.0	4.74
2005-0465	18-19	22-Jul-05	13:00	0.01	12.7	12.0	4.48
n/a	Toolik Inlet, 6 deg C	22-Jul-05	13:00	0.01	12.9	5.5	0.57
n/a	Toolik Inlet, 9 deg C	22-Jul-05	13:00	0.01	12.9	9.0	1.05
2005-0462	Toolik Inlet, 12 deg C	22-Jul-05	13:00	0.01	12.9	12.0	1.32
n/a	Toolik Inlet, 14 deg C	22-Jul-05	13:00	0.01	12.9	14.0	1.13
n/a	Toolik Inlet, 17 deg C	22-Jul-05	13:00	0.01	12.9	17.0	1.32
n/a	Toolik Inlet, 20 deg C	22-Jul-05	13:00	0.01	12.9	20.0	1.37

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	blue, 12 deg C	24-Jul-05	20:30	0.01	12.0	12.0	18.16
n/a	green, 12 deg C	24-Jul-05	20:30	0.01	12.0	12.0	7.55
n/a	yellow, 12 deg C	24-Jul-05	20:30	0.01	12.0	12.0	2.09
n/a	white, 12 deg C	24-Jul-05	20:30	0.01	12.0	12.0	5.39
n/a	blue, 12 deg C, N+P	24-Jul-05	20:30	0.01	12.0	12.0	105.38
n/a	green, 12 deg C, N+P	24-Jul-05	20:30	0.01	12.0	12.0	46.60
n/a	yellow, 12 deg C, N+P	24-Jul-05	20:30	0.01	12.0	12.0	107.86
n/a	white, 12 deg C, N+P	24-Jul-05	20:30	0.01	12.0	12.0	22.17
n/a	blue, 17 deg C	24-Jul-05	21:00	0.01	17.0	17.0	22.83
n/a	green, 17 deg C	24-Jul-05	21:00	0.01	17.0	17.0	8.64
n/a	yellow, 17 deg C	24-Jul-05	21:00	0.01	17.0	17.0	6.93
n/a	white, 17 deg C	24-Jul-05	21:00	0.01	17.0	17.0	9.25
n/a	blue, 17 deg C, N+P	24-Jul-05	21:00	0.01	17.0	17.0	135.12
n/a	green, 17 deg C, N+P	24-Jul-05	21:00	0.01	17.0	17.0	56.45
n/a	yellow, 17 deg C, N+P	24-Jul-05	21:00	0.01	17.0	17.0	38.45
n/a	white, 17 deg C, N+P	24-Jul-05	21:00	0.01	17.0	17.0	78.98
2005-1229	l8 in	26-Jul-05	10:25	0.01	11.2	11.2	1.42
2005-1230	I8 out	26-Jul-05	12:02	0.01	14.6	14.6	6.38
n/a	blue, 12 deg C	26-Jul-05	19:50	0.01	12.0	12.0	22.27
n/a	green, 12 deg C	26-Jul-05	19:50	0.01	12.0	12.0	10.29
n/a	yellow, 12 deg C	26-Jul-05	19:50	0.01	12.0	12.0	2.64
n/a	white, 12 deg C	26-Jul-05	19:50	0.01	12.0	12.0	5.07
n/a	blue, 12 deg C, N+P	26-Jul-05	19:50	0.01	12.0	12.0	100.19
n/a	green, 12 deg C, N+P	26-Jul-05	19:50	0.01	12.0	12.0	68.18
n/a	yellow, 12 deg C, N+P	26-Jul-05	19:50	0.01	12.0	12.0	15.48
n/a	white, 12 deg C, N+P	26-Jul-05	19:50	0.01	12.0	12.0	12.48
n/a	blue, 17 deg C	26-Jul-05	20:30	0.01	17.0	17.0	28.58
n/a	green, 17 deg C	26-Jul-05	20:30	0.01	17.0	17.0	15.38
n/a	yellow, 17 deg C	26-Jul-05	20:30	0.01	17.0	17.0	10.31
n/a	white, 17 deg C	26-Jul-05	20:30	0.01	17.0	17.0	18.75
n/a	blue, 17 deg C, N+P	26-Jul-05	20:30	0.01	17.0	17.0	173.88
n/a	green, 17 deg C, N+P	26-Jul-05	20:30	0.01	17.0	17.0	94.41
n/a	yellow, 17 deg C, N+P	26-Jul-05	20:30	0.01	17.0	17.0	71.48
n/a	white, 17 deg C, N+P	26-Jul-05	20:30	0.01	17.0	17.0	103.83
2005-1231	l8 in	28-Jul-05	10:21	0.01	11.0	11.0	1.79
2005-1232	I8 out	28-Jul-05	12:02	0.01	14.4	14.4	10.62
2005-1235	blue bag rep A	28-Jul-05	10:30	0.01	11.0	11.0	11.61
2005-1236	blue bag rep B	28-Jul-05	10:30	0.01	11.0	11.0	5.35
2005-1239	green bag rep A	28-Jul-05	12:15	0.01	14.4	14.4	12.50
2005-1240	green bag rep B	28-Jul-05	12:15	0.01	14.4	14.4	16.30
2005-1237	yellow bag rep A	28-Jul-05	12:15	0.01	14.4	14.4	9.07
2005-1238	yellow bag rep B	28-Jul-05	12:15	0.01	14.4	14.4	25.18
2005-1233	white bag rep A	28-Jul-05	10:30	0.01	11.0	11.0	4.05
2005-1234	white bag rep B	28-Jul-05	10:30	0.01	11.0	11.0	2.47
2005-0513	Toolik	29-Jul-05	9:30	1	14.5	14.5	5.08
2005-0514	Toolik	29-Jul-05	9:40	3	14.5	14.5	4.05
2005-0515	Toolik	29-Jul-05	9:53	5	13.8	13.8	7.68
2005-0516	Toolik	29-Jul-05	10:05	8	12.5	12.5	5.82

_		_	Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2005-0517	Toolik	29-Jul-05	10:20	12	7.6	7.6	1.80
2005-0518	Toolik	29-Jul-05	10:30	16	6.7	6.1	1.66
2005-0510	17-19	29-Jul-05	10:00	0.01	11.5	11.0	1.94
2005-0509	18-19	29-Jul-05	10:30	0.01	10.5	11.0	1.55
2005-0506	Toolik Inlet	29-Jul-05	13:30	0.01	11.1	11.0	0.92
2005-1262	l8 in	30-Jul-05	11:00	0.01	8.0	8.0	0.79
2005-1263	I8 out	30-Jul-05	13:30	0.01	13.7	13.7	3.79
2005-1266	blue bag rep A	30-Jul-05	11:00	0.01	8.0	8.0	0.45
2005-1267	blue bag rep B	30-Jul-05	11:00	0.01	8.0	8.0	0.57
2005-1270	green bag rep A	30-Jul-05	13:30	0.01	13.7	13.7	0.64
2005-1271	green bag rep B	30-Jul-05	13:30	0.01	13.7	13.7	0.44
2005-1268	yellow bag rep A	30-Jul-05	13:30	0.01	13.7	13.7	0.72
2005-1269	yellow bag rep B	30-Jul-05	13:30	0.01	13.7	13.7	1.84
2005-1264	white bag rep A	30-Jul-05	11:00	0.01	8.0	8.0	0.68
2005-1265	white bag rep B	30-Jul-05	11:00	0.01	8.0	8.0	0.68
2005-1327	18 in	2-Aug-05	10:15	0.01	9.0	9.0	1.59
2005-1328	I8 out	2-Aug-05	12:00	0.01	13.2	13.2	7.39
2005-1331	blue bag rep A	2-Aug-05	10:15	0.01	9.0	9.0	12.68
2005-1332	blue bag rep B	2-Aug-05	10:15	0.01	9.0	9.0	8.56
2005-1333	green bag rep A	2-Aug-05	12:00	0.01	13.2	13.2	8.82
2005-1334	green bag rep B	2-Aug-05	12:00	0.01	13.2	13.2	14.24
2005-1335	vellow bag rep A	2-Aug-05	12:00	0.01	13.2	13.2	12.11
2005-1336	vellow bag rep B	2-Aug-05	12:00	0.01	13.2	13.2	8.98
2005-1329	white bag rep A	2-Aug-05	10:15	0.01	9.0	9.0	16 70
2005-1330	white bag rep B	2-Aug-05	10:15	0.01	9.0	9.0	3.50
n/a	BCF 1	3-Aug-05	9.00	0.01	8.3	12.0	0.84
n/a	BCF 2	3-Aug-05	11:05	0.01	n/a	12.0	0.90
n/a	BCF 3	3-Aug-05	13.07	0.01	n/a	12.0	1 48
n/a	BCF 4	3-Aug-05	15:04	0.01	n/a	12.0	1.89
n/a	BCF 5	3-Aug-05	17:05	0.01	n/a	12.0	2.75
n/a	BCF 6	3-Aug-05	19:04	0.01	n/a	12.0	3.48
n/a	BCF 7	3-Aug-05	22:04	0.01	n/a	12.0	5.86
n/a	BCF 8	4-Aug-05	1:02	0.01	n/a	12.0	9.23
n/a	BCE 9	4-Aug-05	4.05	0.01	n/a	12.0	16.16
n/a	BCF 10	4-Aug-05	7:03	0.01	n/a	12.0	22.57
n/a	BCF 11	4-Aug-05	9.02	0.01	n/a	12.0	28.31
2005-0571	Toolik	5-Aug-05	9.25	1	13.2	13.2	5.56
2005-0572	Toolik	5-Aug-05	9:33	. 3	13.2	13.2	8.07
2005-0573	Toolik	5-Aug-05	0:00 9:44	5	13.1	13.2	8.06
2005-0574	Toolik	5-Aug-05	10.00	8	12.6	12.3	6.00
2005-0575	Toolik	5-Aug-05	10:00	12	6.4	6.4	2 13
2005-0575	Toolik	5-Aug-05	10.10	12	5.7	6.4	2.10
2005-0570		5-Aug-05	12:20	0.01	11.2	12.0	2.24
2005-0500	17-13	5-Aug-05	12:30	0.01	10.0	12.0	1.76
2000-0007 n/a		5-Aug-05	12.30	0.01	10.9	12.0	1.70
n/a		5 Aug 05	13.00	0.01	11.7	0.0	1.11
2005 0564	Toolik Inlet, 9 deg C	5 Aug 05	13.00	0.01	11.7	9.0	1.00
2000-0004	Toolik Inlet, 12 deg C	5-Aug-05	13:00	0.01	11.7	12.0	1.08
n/a	TOOIIK INIET, 14 deg C	5-Aug-05	13:00	0.01	11./	14.0	2.42

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	Toolik Inlet, 17 deg C	5-Aug-05	13:00	0.01	11.7	17.0	2.54
n/a	Toolik Inlet, 20 deg C	5-Aug-05	13:00	0.01	11.7	20.0	3.12
2005-0578	11-13	9-Aug-05	9:10	0.01	9.9	9.9	3.56
2005-0580	12-13	9-Aug-05	9:10	0.01	9.7	9.9	2.72
2005-0592	18 Headwaters	9-Aug-05	10:20	0.01	10.4	12.6	3.08
lakes	12	9-Aug-05	10:10	1	11.6	12.6	2.35
lakes	11	9-Aug-05	11:30	1	12.6	14.7	4.36
lakes	13	9-Aug-05	12:10	1	12.8	12.3	8.32
lakes	14	9-Aug-05	13:15	1	13.2	12.6	9.04
2005-0585	15-16	9-Aug-05	14:50	0.01	14.5	14.1	1.28
2005-0586	I6 HW In	9-Aug-05	14:50	0.01	11.3	11.3	5.32
lakes	I6 HW	9-Aug-05	14:50	1	13.4	14.1	3.43
2005-0583	14-15	9-Aug-05	16:05	0.01	15.0	15.0	3.06
lakes	15	9-Aug-05	17:00	1	13.7	15.0	7.91
lakes	16	10-Aug-05	9:45	1	13.6	13.3	4.12
lakes	17	10-Aug-05	10:45	1	13.6	13.3	5.61
2005-0593	18 In	10-Aug-05	11:50	0.01	13.3	13.3	1.52
lakes	18	10-Aug-05	12:00	1	13.8	13.3	5.14
2005-0594	18 Out	10-Aug-05	12:00	0.01	16.3	16.3	5.85
2005-0598	I swamp In	10-Aug-05	13:15	0.01	14.4	14.4	1.51
lakes	Iswamp	10-Aug-05	13:15	1	14.2	14.4	4.93
2005-0591	17-19	10-Aug-05	14:40	0.01	16.7	16.7	3.39
2005-0595	18-19	10-Aug-05	14:45	0.01	17.4	16.7	2.44
2005-0596	MWL	10-Aug-05	14:45	0.01	11.6	11.6	0.76
2005-0600	Toolik Inlet	10-Aug-05	15:20	0.01	17.5	17.5	6.12
2005-0626	Toolik	12-Aug-05	9:30	1	14.3	14.3	5.68
2005-0627	Toolik	12-Aug-05	9:40	3	13.6	13.6	4.05
2005-0628	Toolik	12-Aug-05	9:45	5	13.0	13.0	6.91
2005-0629	Toolik	12-Aug-05	9:55	8	12.6	13.0	5.49
2005-0630	Toolik	12-Aug-05	10:10	12	7.3	7.3	1.78
2005-0631	Toolik	12-Aug-05	10:25	16	5.9	5.9	1.67
2005-0623	17-19	12-Aug-05	12:30	0.01	12.9	13.0	4.47
2005-0622	18-19	12-Aug-05	12:30	0.01	12.4	12.0	1.06
2005-0619	Toolik Inlet	12-Aug-05	12:30	0.01	12.1	12.0	5.47
2005-1431	18 in	15-Aug-05	10:15	0.01	9.8	9.8	1.84
2005-1432	I8 out	15-Aug-05	11:00	0.01	15.1	15.1	9.65
2005-0682	Toolik	18-Aug-05	9:30	1	13.3	13.3	6.06
2005-0683	Toolik	18-Aug-05	9:40	3	13.3	13.3	7.54
2005-0684	Toolik	18-Aug-05	9:55	5	13.2	13.3	7.59
2005-0685	Toolik	18-Aug-05	10:10	8	12.6	12.6	4.47
2005-0686	Toolik	18-Aug-05	10:25	12	6.7	6.7	1.85
2005-0687	Toolik	18-Aug-05	10:35	16	5.8	5.8	1.81
2005-0675	Toolik Inlet	18-Aug-05	11:20	0.01	8.3	8.3	2.79
2006-0110	I1 into I3	21-Jun-06	11:20	0.01	8.4	7.3	2.89
2006-0112	I2 into I3	21-Jun-06	11:45	0.01	11.6	11.2	3.24
2006-0124	18 Headwaters	21-Jun-06	10:00	0.01	7.0	7.0	3.14
2006-0693	12	21-Jun-06	0:00	1	4.8	7.0	3.01
2006-0691	11	21-Jun-06	0:00	1	6.1	9.2	3.90

a artah ara	Site	Dete	Time	Donth	Water	Incubation	Bacterial Broduction
sortchem	Site	Date		Depth	temp.	temp.	Production
0000 0005	10	01 1	(nr) 0.00	(m)	(aeg C)	(deg C)	(ug C L/day)
2006-0695	13	21-Jun-06	0:00	1	11.4	11.5	7.69
2006-0697	14	21-Jun-06	0:00	1	5.0	12.5	0.53
2006-0117	15 into 16	21-Jun-06	14:00	0.01	8.9	9.9	2.22
2006-0121		21-Jun-06	14:30	0.01	9.9	9.9	0.64
2006-0703	16 HW	21-Jun-06	0:00	1	9.1	9.9	2.65
2006-0118	I6 HW Inlet	21-Jun-06	15:15	0.01	9.8	9.9	0.57
2006-0115	I4 into I5	21-Jun-06	13:05	0.01	9.6	9.0	4.81
2006-0699	15	21-Jun-06	0:00	1	9.9	9.0	4.76
2006-0701	16	22-Jun-06	0:00	1	8.8	10.3	2.67
2006-0705	17	22-Jun-06	0:00	1	9.2	10.4	1.58
2006-0125	18 Inlet	22-Jun-06	9:45	0.01	9.3	10.7	1.38
2006-0677	18	22-Jun-06	0:00	1	10.5	10.7	9.28
2006-0126	18 Outlet	22-Jun-06	10:00	0.01	10.8	10.7	6.10
2006-0130	I Swamp Inlet	22-Jun-06	10:30	0.01	10.3	13.1	2.22
2006-0679	I Swamp	22-Jun-06	0:00	1	11.3	13.1	3.06
2006-0123	17 into 19	22-Jun-06	11:15	0.01	11.6	12.0	3.25
2006-0127	18 into 19	22-Jun-06	11:30	0.01	11.9	12.0	2.99
2006-0128	Milkyway Lower	22-Jun-06	11:50	0.01	8.1	10.1	1.13
2006-0132	Toolik Inlet	22-Jun-06	13:41	0.01	12.2	12.1	3.62
2006-0144	Toolik	23-Jun-06	9:15	1	7.0	7.0	1.92
2006-0146	Toolik	23-Jun-06	9:30	3	5.9	5.9	3.20
2006-0147	Toolik	23-Jun-06	9:45	5	5.2	5.9	3.08
2006-0148	Toolik	23-Jun-06	9:55	8	4.0	4.0	2.40
2006-0149	Toolik	23-Jun-06	10:05	12	3.7	4.0	2.59
2006-0150	Toolik	23-Jun-06	10:10	16	3.4	4.0	2.45
2006-0720	18 Inlet	27-Jun-06	11:00	0.01	7.8	7.8	2.14
2006-0721	18 Outlet	27-Jun-06	10:15	0.01	11.6	11.6	2.62
n/a	b 12C	29-Jun-06	21:32	0.01	12.0	12.0	11.88
n/a	g 12C	29-Jun-06	21:32	0.01	12.0	12.0	12.50
n/a	y12C	29-Jun-06	21:32	0.01	12.0	12.0	12.21
n/a	b NP 12C	29-Jun-06	21:45	0.01	12.0	12.0	62.12
n/a	g NP 12C	29-Jun-06	21:45	0.01	12.0	12.0	44.79
n/a	v NP 12C	29-Jun-06	21:45	0.01	12.0	12.0	32.06
n/a	b 17C	29-Jun-06	22:14	0.01	17.0	17.0	14.14
n/a	a 17C	29-Jun-06	22:14	0.01	17.0	17.0	18.57
n/a	v 17C	29-Jun-06	22:14	0.01	17.0	17.0	14.79
n/a	b NP 17C	29-Jun-06	22:14	0.01	17.0	17.0	145.80
n/a	a NP 17C	29-Jun-06	22:14	0.01	17.0	17.0	104.06
n/a	v NP17C	29-Jun-06	22:14	0.01	17.0	17.0	91.14
2006-0184	I8 Inlet	30-Jun-06	10:45	0.01	9.0	9.0	1 41
2006-0185	I8 Outlet	30-Jun-06	11.10	0.01	11.6	11.6	9.15
2006-0183	17 into 19	30- Jun-06	11:45	0.01	12.6	11.0	4 49
2006-0182	I8 into I9	30- Jun-06	12.00	0.01	11.0	11.0	4.49
2006-0178	Toolik Inlet	30- lun-06	1/-20	0.01	12.0	0.0	7.35
2006-0170	Toolik	30-Jun 06	0.00	0.01	10.0	10.0	2.30
2000-0190	Toolik	30-Jun 06	0.00	۱ د	10.9	10.0	5.94
2000-0191	Toolik	30-Jun 00	0.00	5 F	10.0	10.0	5.44
2000-0192	Toolik	30-Jun-00	0.00	5	0.3	0.3	5.14
2006-0193	TOOLIK	30-Jun-06	0:00	8	5.3	8.0	5.65

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2006-0194	Toolik	30-Jun-06	0:00	12	4.5	8.0	5.54
2006-0195	Toolik	30-Jun-06	0:00	16	4.1	8.0	4.77
n/a	b 12C	1-Jul-06	21:02	0.01	12.0	12.0	11.05
n/a	g 12C	1-Jul-06	21:02	0.01	12.0	12.0	16.88
n/a	y12C	1-Jul-06	21:02	0.01	12.0	12.0	15.11
n/a	b NP 12C	1-Jul-06	21:02	0.01	12.0	12.0	103.75
n/a	g NP 12C	1-Jul-06	21:02	0.01	12.0	12.0	105.05
n/a	y NP 12C	1-Jul-06	21:02	0.01	12.0	12.0	91.01
n/a	b 17C	1-Jul-06	21:32	0.01	17.0	17.0	22.23
n/a	g 17C	1-Jul-06	21:32	0.01	17.0	17.0	9.45
n/a	y 17C	1-Jul-06	21:32	0.01	17.0	17.0	15.77
n/a	b NP 17C	1-Jul-06	21:32	0.01	17.0	17.0	124.42
n/a	g NP 17C	1-Jul-06	21:32	0.01	17.0	17.0	83.99
n/a	y NP17C	1-Jul-06	21:32	0.01	17.0	17.0	122.30
n/a	b 12C	3-Jul-06	21:13	0.01	12.0	12.0	35.28
n/a	g 12C	3-Jul-06	21:13	0.01	12.0	12.0	37.19
n/a	y12C	3-Jul-06	21:13	0.01	12.0	12.0	32.75
n/a	b NP 12C	3-Jul-06	21:13	0.01	12.0	12.0	138.39
n/a	g NP 12C	3-Jul-06	21:13	0.01	12.0	12.0	140.25
n/a	v NP 12C	3-Jul-06	21:13	0.01	12.0	12.0	133.09
n/a	b 17C	3-Jul-06	21:42	0.01	17.0	17.0	31.93
n/a	a 17C	3-Jul-06	21:42	0.01	17.0	17.0	19.46
n/a	v 17C	3-Jul-06	21:42	0.01	17.0	17.0	30.75
n/a	b NP 17C	3-Jul-06	21:42	0.01	17.0	17.0	170.67
n/a	a NP 17C	3-Jul-06	21:42	0.01	17.0	17.0	93.20
n/a	v NP17C	3-Jul-06	21:42	0.01	17.0	17.0	157.71
n/a	b 12C	6-Jul-06	21:08	0.01	12.0	12.0	30.18
n/a	a 12C	6-Jul-06	21:08	0.01	12.0	12.0	31.16
n/a	v12C	6-Jul-06	21:08	0.01	12.0	12.0	28.93
n/a	b NP 12C	6-Jul-06	21:08	0.01	12.0	12.0	145.53
n/a	a NP 12C	6-Jul-06	21:08	0.01	12.0	12.0	84.44
n/a	v NP 12C	6-Jul-06	21:08	0.01	12.0	12.0	76.09
n/a	b 17C	6-Jul-06	21:40	0.01	17.0	17.0	12.22
n/a	a 17C	6-Jul-06	21:40	0.01	17.0	17.0	10.33
n/a	v 17C	6-Jul-06	21:40	0.01	17.0	17.0	19.17
n/a	b NP 17C	6-Jul-06	21:40	0.01	17.0	17.0	22.80
n/a	a NP 17C	6-Jul-06	21:40	0.01	17.0	17.0	32.14
n/a	v NP17C	6-Jul-06	21:40	0.01	17.0	17.0	74.52
2006-0233	I8 Inlet	7-Jul-06	10.20	0.01	7.8	7.8	1.57
2006-0234	I8 Outlet	7-Jul-06	10:54	0.01	10.7	10.7	7.05
2006-0232	17 into 19	7-Jul-06	11.35	0.01	10.7	10.7	3 32
2006-0232	I8 into I9	7-101-06	11:50	0.01	10.7	10.7	5.02
2000-0201	Toolik Inlet	7-101-06	12.15	0.01		10.5	4 91
2000-0221	Toolik	7- 101-00	0.00	0.01		10.5	4.JT
2000-0239	Toolik	7. 101.00	0.00	۱ د			0.37
2000-0240	Toolik	7. 101.00	0.00	5			0.01
2000-0241	Toolik	7. 101.00	0.00	0			2 24
2000-0242	Toolik	7 101-00	0.00	40			3.24
2000-0243	TUUIIK	7-JUI-06	0:00	12			4.79

			Time	D (1	Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2006-0244	Toolik	7-Jul-06	0:00	16			4.78
n/a	b 12C	8-Jul-06	20:58	0.01	12.0	12.0	26.43
n/a	g 12C	8-Jul-06	20:58	0.01	12.0	12.0	29.14
n/a	y12C	8-Jul-06	20:58	0.01	12.0	12.0	25.84
n/a	b NP 12C	8-Jul-06	20:58	0.01	12.0	12.0	158.81
n/a	g NP 12C	8-Jul-06	20:58	0.01	12.0	12.0	38.56
n/a	y NP 12C	8-Jul-06	20:58	0.01	12.0	12.0	38.70
n/a	b 17C	8-Jul-06	21:27	0.01	17.0	17.0	17.79
n/a	g 17C	8-Jul-06	21:27	0.01	17.0	17.0	19.51
n/a	y 17C	8-Jul-06	21:27	0.01	17.0	17.0	23.29
n/a	b NP 17C	8-Jul-06	21:27	0.01	17.0	17.0	38.18
n/a	g NP 17C	8-Jul-06	21:27	0.01	17.0	17.0	42.16
n/a	y NP17C	8-Jul-06	21:27	0.01	17.0	17.0	67.35
n/a	b 12C	11-Jul-06	21:33	0.01	12.0	12.0	12.53
n/a	g 12C	11-Jul-06	21:33	0.01	12.0	12.0	23.37
n/a	y12C	11-Jul-06	21:33	0.01	12.0	12.0	18.77
n/a	b NP 12C	11-Jul-06	21:33	0.01	12.0	12.0	38.87
n/a	g NP 12C	11-Jul-06	21:33	0.01	12.0	12.0	37.27
n/a	y NP 12C	11-Jul-06	21:33	0.01	12.0	12.0	32.34
n/a	b 17C	11-Jul-06	22:05	0.01	17.0	17.0	15.98
n/a	g 17C	11-Jul-06	22:05	0.01	17.0	17.0	9.70
n/a	v 17C	11-Jul-06	22:05	0.01	17.0	17.0	18.22
n/a	b NP 17C	11-Jul-06	22:05	0.01	17.0	17.0	49.55
n/a	a NP 17C	11-Jul-06	22:05	0.01	17.0	17.0	46.38
n/a	v NP17C	11-Jul-06	22:05	0.01	17.0	17.0	59.22
2006-0284	Toolik	12-Jul-06	0:00	1	12.9	11.4	7.15
2006-0285	Toolik	12-Jul-06	0:00	3	11.4	11.4	8.57
2006-0286	Toolik	12-Jul-06	0:00	5	10.4	6.2	5.26
2006-0287	Toolik	12-Jul-06	0:00	8	6.2	6.2	4.61
2006-0288	Toolik	12-Jul-06	0:00	12	5.0	4.6	2.42
2006-0289	Toolik	12-Jul-06	0:00	16	4.6	4.6	2.72
2006-0291	I1 into I3	13-Jul-06	8:55	0.01	11.6	11.6	2.91
2006-0293	12 into 13	13-Jul-06	8:55	0.01	12.4	11.6	6.69
2006-0305	18 Headwaters	13-Jul-06	9:50	0.01	7.6	7.6	1.17
2006-0881	12	13-Jul-06	9:50	1	12.7	12.4	2.62
2006-0879	11	13-Jul-06	11:15	1	13.0	14.0	3.71
2006-0883	13	13-Jul-06	11:50	1	13.6	14.0	8.69
2006-0885	14	13-Jul-06	12:55	1	13.6	13.9	11.55
2006-0298	15 into 16	13-Jul-06	14.19	0.01	13.7	13.8	2 03
2006-0302	I6 Inlet West	13-Jul-06	14.10	0.01	9.0	9.8	0.50
2006-0299	I6 HW/ Inlet	13- Jul-06	14.10	0.01	0.0	9.0	1.69
2006-0891		13-Jul-06	14.10	0.01	13.6	13.8	3.60
2000-0296	Id into 15	13-Jul-06	15:40	0.01	1/ 8	14.0	4 17
2000-0290	15	13-501-00	16.40	0.01	14.0	14.0	7 20
2000-0007	16	14. 101.06	10.00	1	12.1	14.0	Т.29 Л Л Л Л
2000-0009	17	14-501-00	11.30	1	12.1	14.1	4.47
2000-0093	17 18 Inlot	14-JUI-06	11.20	0.01	13.4	14.1	5.09
2000-0300		14-JUI-06	12.00	0.01	9.7	9.7	1.04
2000-0895	10	14-JUI-06	12:35	1	12.5	13.1	7.49

Site Date received Depth temp. temp. <t< th=""><th>_</th><th></th><th>_</th><th>Time</th><th></th><th>Water</th><th>Incubation</th><th>Bacterial</th></t<>	_		_	Time		Water	Incubation	Bacterial
IB Outlet Im (m) (deg C) (deg	sortchem	Site	Date	received	Depth	temp.	temp.	Production
2006-0307 IB Outlet 14-Jul-06 13:2 0.01 13:1 13:1 11:03 2006-0311 ISwamp Intet 14-Jul-06 13:20 1 13:1 12:2 3:43 2006-0311 ISwamp Intet 14-Jul-06 14:00 0.01 13:8 13:8 4:43 2006-0301 Bino 19 14-Jul-06 14:00 0.01 13:4 13:8 4:24 2006-0302 Milkyway Lower 14-Jul-06 14:00 0.01 13:4 13:8 4:24 2006-0303 Binlet 18-Jul-06 10:32 0.01 13:0 13:0 3:6 2006-0353 IS outlet 21-Jul-06 10:05 0.01 11:0 12:0 9:41 2006-0353 IS outlik 12 21-Jul-06 10:05 0.01 18:3 8:5 15:63 2006-0354 Isolik Intet 21-Jul-06 10:05 0.01 8:3 8:5 15:63 2006-0313 Inel X 21-Jul-06 10:05 0.01				(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2006-0391 ISwamp 14-Jul-06 13:15 0.01 12.2 12.2 3.43 2006-0304 IF into 19 14-Jul-06 14:00 0.01 13.8 13.8 4.43 2006-0304 IB into 19 14-Jul-06 14:00 0.01 13.4 13.8 4.43 2006-0308 IB into 19 14-Jul-06 14:00 0.01 13.4 13.8 4.24 2006-0313 Toolik Intet 14-Jul-06 15:00 0.01 13.0 13.0 3.86 2006-0304 IB outet 18-Jul-06 10:32 0.01 12.4 12.4 2.24 2006-0354 IB outet 21-Jul-06 10:15 0.01 11.0 12.0 9.43 2006-0354 IB outet 21-Jul-06 10:55 0.01 11.0 12.0 9.43 2006-0315 Inte B 21-Jul-06 9.50 0.01 8.3 8.5 15.63 2006-0316 Inte B 21-Jul-06 9.50 0.01 8.3 <td>2006-0307</td> <td>18 Outlet</td> <td>14-Jul-06</td> <td>12:20</td> <td>0.01</td> <td>13.1</td> <td>13.1</td> <td>11.03</td>	2006-0307	18 Outlet	14-Jul-06	12:20	0.01	13.1	13.1	11.03
2006-0397 I Swamp 14-Jul-06 14-Jul-06 14-00 0.01 13.8 13.8 4.3 2006-0308 I8 into 19 14-Jul-06 14:00 0.01 13.8 13.8 4.33 2006-0309 Milkyway Lower 14-Jul-06 14:00 0.01 13.7 8.7 2.47 2006-0315 Dolk Intet 18-Jul-06 9:38 0.01 10.1 10.1 10.1 10.4 2006-0354 B Intet 21-Jul-06 0:01 8.3 8.5 1.42 2006-0354 B Intet 21-Jul-06 10:15 0.01 11.6 12.0 9.41 2006-0352 B Intet 21-Jul-06 10:45 0.01 10.0 12.0 4.97 2006-0351 Bintet 21-Jul-06 10:45 0.01 8.3 8.5 15.63 2006-0316 Intel A 21-Jul-06 0.01 8.3 8.5 19.00 2006-0316 Intel A 21-Jul-06 0.01 11.6 12.0	2006-0311	I Swamp Inlet	14-Jul-06	13:15	0.01	12.2	12.2	3.43
2006-0304 IY into 19 14-Jul-06 14-00 0.01 13.8 13.8 4.4.3 2006-0308 Milkyway Lower 14-Jul-06 14.00 0.01 13.4 13.8 4.24 2006-0308 Milkyway Lower 14-Jul-06 14.00 0.01 8.7 7.2.47 2006-0309 IB Inlet 14-Jul-06 16.00 0.01 13.0 13.0 3.86 2006-0308 IB Inlet 18-Jul-06 10.32 0.01 12.4 12.4 2.92 2006-0353 IB Inlet 21-Jul-06 10.32 0.01 10.8 8.5 1.42 2006-0353 IV into 19 21-Jul-06 10.40 0.01 10.0 12.0 9.44 2006-0351 Intel A 21-Jul-06 10.55 0.01 8.3 8.5 15.63 2006-0315 Intel A 21-Jul-06 10.15 0.01 11.6 12.0 12.7 2006-0316 Intel A 21-Jul-06 10.01 11.6 12.0	2006-0897	I Swamp	14-Jul-06	13:20	1	13.1	12.2	6.16
2006-0308 IB into 19 14-Jul-06 14-00 0.01 13.4 13.8 4.2.42 2006-0303 Toolik Intet 14-Jul-06 15:00 0.01 13.0 3.66 2006-0313 Toolik Intet 18-Jul-06 9:38 0.01 10.1 10.1 10.4 2006-0399 IB Inlet 18-Jul-06 0:38 0.01 13.3 8.5 1.4.2 2006-0354 IB outlet 21-Jul-06 10:15 0.01 11.6 12.0 9.41 2006-0354 IB intel 21-Jul-06 10:05 0.01 10.0 12.0 4.83 2006-0351 IB intel A 21-Jul-06 10.05 0.01 8.3 8.5 15.63 2006-0314 Intel A 21-Jul-06 9.50 0.01 8.3 8.5 15.63 2006-0916 outlet A 21-Jul-06 10.15 0.01 11.6 12.0 15.67 2006-0916 outlet A 21-Jul-06 10.015 0.01 11.6 <	2006-0304	17 into 19	14-Jul-06	14:00	0.01	13.8	13.8	4.13
2006-0309 Mikyway Lower 14-Jul-06 14:00 0.01 8.7 8.7 2.47 2006-0399 I8 Inlet 14-Jul-06 15:00 0.01 10.1 10.1 10.4 2006-0399 I8 Inlet 18-Jul-06 9:38 0.01 10.1 10.1 10.1 2006-0351 I8 Outlet 21-Jul-06 10:32 0.01 11.6 12.0 4.29 2006-0352 I8 Intel 21-Jul-06 10:40 0.01 10.9 12.0 5.83 2006-0351 Trinto I9 21-Jul-06 10:40 0.01 10.0 12.0 7.83 2006-0351 Inlet A 21-Jul-06 9:50 0.01 8.3 8.5 16.63 2006-0915 Inlet A 21-Jul-06 9:50 0.01 8.3 8.5 19.00 2006-0916 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 15.27 2006-0916 outlet A 21-Jul-06 0:00 3 12.1	2006-0308	18 into 19	14-Jul-06	14:00	0.01	13.4	13.8	4.24
2006-0313 Toolik Inlet 14-Jul-06 15:00 0.01 13.0 13.0 3.96 2006-0399 I8 Inlet 18-Jul-06 9:38 0.01 10.1 10.1 2006-0354 I8 Inlet 21-Jul-06 9:38 0.01 8.3 8.5 1.42 2006-0353 I7 Into I9 21-Jul-06 10:45 0.01 11.6 12.0 9.41 2006-0352 I8 Into I9 21-Jul-06 10:55 0.01 11.0 12.0 9.43 2006-0351 Intel A 21-Jul-06 10:55 0.01 1.0 12.0 4.97 2006-0314 Intel A 21-Jul-06 9:50 0.01 8.3 8.5 18.15 2006-0915 Intel C 21-Jul-06 10:15 0.01 11.6 12.0 15.52 2006-0917 outlet C 21-Jul-06 10:15 0.01 11.6 12.0 15.52 2006-0917 outlet C 21-Jul-06 10:00 1 12.1 12.0	2006-0309	Milkyway Lower	14-Jul-06	14:00	0.01	8.7	8.7	2.47
2006-0999 B Inlet 18-Jul-06 9:38 0.01 10.1 10.1 10.14 2006-0354 B Inlet 21-Jul-06 10:32 0.01 8.4 2.9 2006-0355 IB Outlet 21-Jul-06 10:15 0.01 11.6 12.0 5.83 2006-0355 IB Outlet 21-Jul-06 10:15 0.01 11.9 12.0 5.83 2006-0353 Trinto I9 21-Jul-06 10:55 0.01 10.0 12.0 4.83 2006-0348 Toolik Inlet 21-Jul-06 11:20 0.01 0.0 12.0 4.83 2006-0913 Inlet A 21-Jul-06 9:50 0.01 8.3 8.5 15.63 2006-0916 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 4.52 2006-0917 outlet B 21-Jul-06 10:15 0.01 11.6 12.0 4.52 2006-0361 Toolik 21-Jul-06 0:00 5 12.1 12.0	2006-0313	Toolik Inlet	14-Jul-06	15:00	0.01	13.0	13.0	3.96
2006-0900 I8 Outlet 18-Jul-06 10:32 0.01 12.4 12.4 2.92 2006-0354 I8 Inlet 21-Jul-06 9:38 0.01 8.3 8.5 1.42 2006-0355 I8 Outlet 21-Jul-06 10:15 0.01 11.0 12.0 9.81 2006-0385 I8 intol 9 21-Jul-06 10:55 0.01 11.0 12.0 4.83 2006-0381 Toolk Inlet 21-Jul-06 9:50 0.01 8.3 8.5 15.63 2006-0915 inlet A 21-Jul-06 9:50 0.01 8.3 8.5 19.00 2006-0916 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0917 outlet B 21-Jul-06 10:015 0.01 11.6 12.0 15.32 2006-0361 Toolik 21-Jul-06 0:00 12.1 12.0 8.64 2006-0362 Toolik 21-Jul-06 0:00 12.1 12.0 4.69	2006-0899	18 Inlet	18-Jul-06	9:38	0.01	10.1	10.1	1.04
2006-0354 18 Intert 21-Jul-06 9:38 0.01 8.3 8.5 1.42 2006-0355 18 Outlet 21-Jul-06 10:40 0.01 11.6 12.0 9.41 2006-0352 18 into 19 21-Jul-06 10:55 0.01 11.0 12.0 9.83 2006-0334 Toolik Inlet 21-Jul-06 11:50 0.01 8.3 8.5 15.63 2006-0915 inlet A 21-Jul-06 9:50 0.01 8.3 8.5 19.00 2006-0915 inlet C 21-Jul-06 10:15 0.01 11.6 12.0 27.90 2006-0916 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0917 outlet B 21-Jul-06 10:00 3 12.1 12.0 4.62 2006-0361 Toolik 21-Jul-06 0:00 1 12.1 12.0 4.62 2006-0363 Toolik 21-Jul-06 0:00 1 2.1	2006-0900	18 Outlet	18-Jul-06	10:32	0.01	12.4	12.4	2.92
2006-0355 I8 Outlet 21-Jul-06 10:15 0.01 11.6 12.0 9.41 2006-0353 I7 into I9 21-Jul-06 10:55 0.01 10.0 12.0 5.83 2006-0348 Toolik Inlet 21-Jul-06 11:50 0.01 0.0 12.0 4.97 2006-0913 inlet A 21-Jul-06 9:50 0.01 8.3 8.5 15.63 2006-0915 inlet C 21-Jul-06 9:50 0.01 8.3 8.5 19.00 2006-0915 inlet C 21-Jul-06 10:15 0.01 11.6 12.0 27.80 2006-0916 outlet C 21-Jul-06 10:015 0.01 11.6 12.0 15.62 2006-0360 Toolik 21-Jul-06 0:00 12.1 12.0 8.64 2006-0361 Toolik 21-Jul-06 0:00 12.1 12.0 8.64 2006-0362 Toolik 21-Jul-06 0:00 12.1 12.0 8.64	2006-0354	18 Inlet	21-Jul-06	9:38	0.01	8.3	8.5	1.42
2006-0353 I7 into I9 21-Jul-06 10:40 0.01 10.9 12.0 5.83 2006-0352 I8 into I9 21-Jul-06 11:20 0.01 1.0.0 12.0 4.97 2006-0343 indet A 21-Jul-06 9:50 0.01 8.3 8.5 15.63 2006-0914 indet A 21-Jul-06 9:50 0.01 8.3 8.5 19.00 2006-0915 indet C 21-Jul-06 10:15 0.01 11.6 12.0 27.90 2006-0917 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0917 outlet C 21-Jul-06 10:00 1 12.1 12.0 6.8.2 2006-0361 roolik 21-Jul-06 0:00 3 12.1 12.0 6.22 2006-0362 roolik 21-Jul-06 0:00 12 5.4 6.9 2.76 2006-0364 roolik 21-Jul-06 0:00 10 1.21 12.0 </td <td>2006-0355</td> <td>18 Outlet</td> <td>21-Jul-06</td> <td>10:15</td> <td>0.01</td> <td>11.6</td> <td>12.0</td> <td>9.41</td>	2006-0355	18 Outlet	21-Jul-06	10:15	0.01	11.6	12.0	9.41
2006-0352 IB into I9 21-Jul-06 10:55 0.01 11.0 12.0 7.09 2006-0348 Toolik Inlet 21-Jul-06 9:50 0.01 8.3 8.5 15.63 2006-0913 inlet A 21-Jul-06 9:50 0.01 8.3 8.5 18.15 2006-0915 inlet C 21-Jul-06 9:50 0.01 8.3 8.5 19.00 2006-0915 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0916 outlet B 21-Jul-06 10:15 0.01 11.6 12.0 15.87 2006-0360 Toolik 21-Jul-06 0:00 3 12.1 12.0 8.64 2006-0361 Toolik 21-Jul-06 0:00 12 5.4 6.9 2.26 2006-0362 Toolik 21-Jul-06 0:00 12 5.4 6.9 2.76 2006-0364 Toolik 21-Jul-06 0:00 12 5.4 6.9	2006-0353	17 into 19	21-Jul-06	10:40	0.01	10.9	12.0	5.83
2006-0348 Toolik Inlet 21-Jul-06 11:20 0.01 0.0 12.0 4.97 2006-0913 inlet A 21-Jul-06 9:50 0.01 8.3 8.5 15.63 2006-0915 inlet B 21-Jul-06 9:50 0.01 8.3 8.5 19.00 2006-0916 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 27.90 2006-0917 outlet B 21-Jul-06 10:15 0.01 11.6 12.0 8.52 2006-0301 Toolik 21-Jul-06 10:00 0.1 12.1 12.0 8.64 2006-0361 Toolik 21-Jul-06 0:00 13 12.1 12.0 6.22 2006-0362 Toolik 21-Jul-06 0:00 18 9.2 6.9 3.20 2006-0363 Toolik 21-Jul-06 0:00 12 5.4 6.9 2.76 2006-0365 Toolik 21-Jul-06 16:00 0.01 7.0 8.0	2006-0352	I8 into I9	21-Jul-06	10:55	0.01	11.0	12.0	7.09
2006-0913 inlet A 21-Jul-06 9:50 0.01 8.3 8.5 15.63 2006-0915 inlet C 21-Jul-06 9:50 0.01 8.3 8.5 19.00 2006-0916 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 227.90 2006-0916 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0917 outlet C 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0300 Toolik 21-Jul-06 0:00 3 12.1 12.0 8.44 2006-0362 Toolik 21-Jul-06 0:00 3 12.1 12.0 4.99 2006-0363 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-0364 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-014 Toolik 21-Jul-06 16:04 0.01 7.0 8.0 <	2006-0348	Toolik Inlet	21-Jul-06	11:20	0.01	0.0	12.0	4.97
2006-0914 inlet B 21-Jul-06 9:50 0.01 8.3 8.5 8.15 2006-0915 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 27.90 2006-0917 outlet B 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0917 outlet C 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0360 Toolik 21-Jul-06 0:00 1 12.1 12.0 8.64 2006-0361 Toolik 21-Jul-06 0:00 3 12.1 12.0 6.92 2006-0362 Toolik 21-Jul-06 0:00 8 9.2 6.9 3.20 2006-0363 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-0365 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-0365 Toolik 21-Jul-06 16:04 0.01 7.0 8.0 1.2	2006-0913	inlet A	21-Jul-06	9:50	0.01	8.3	8.5	15.63
2006-0915 inlet C 21-Jul-06 9:50 0.01 8.3 8.5 19.00 2006-0916 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 27.90 2006-0917 outlet C 21-Jul-06 10:15 0.01 11.6 12.0 15.87 2006-0918 outlet C 21-Jul-06 0:00 1 12.1 12.0 8.64 2006-0361 Toolik 21-Jul-06 0:00 3 12.1 12.0 8.64 2006-0362 Toolik 21-Jul-06 0:00 8 9.2 6.9 3.20 2006-0364 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-0365 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-0365 Toolik 21-Jul-06 16:04 0.01 7.0 8.0 1.20 n'a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 1.20	2006-0914	inlet B	21-Jul-06	9:50	0.01	8.3	8.5	8.15
2006-0916 outlet A 21-Jul-06 10:15 0.01 11.6 12.0 27.90 2006-0917 outlet B 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0918 outlet C 21-Jul-06 10:15 0.01 11.6 12.0 15.67 2006-0361 Toolik 21-Jul-06 0:00 3 12.1 12.0 8.64 2006-0361 Toolik 21-Jul-06 0:00 3 12.1 12.0 6.22 2006-0363 Toolik 21-Jul-06 0:00 8 9.2 6.9 3.20 2006-0363 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-0365 Toolik 21-Jul-06 116:04 0.01 7.0 8.0 1.72 2006-1014 Toolik Inlet 26-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2	2006-0915	inlet C	21-Jul-06	9:50	0.01	8.3	8.5	19.00
2006-0917 outlet B 21-Jul-06 10:15 0.01 11.6 12.0 15.32 2006-0918 outlet C 21-Jul-06 10:15 0.01 11.6 12.0 15.67 2006-0360 Toolik 21-Jul-06 0:00 3 12.1 12.0 8.64 2006-0361 Toolik 21-Jul-06 0:00 3 12.1 12.0 4.99 2006-0363 Toolik 21-Jul-06 0:00 8 9.2 6.9 3.20 2006-0364 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-0365 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-1014 Toolik Inlet 26-Jul-06 9:10 0.01 12.1 12.0 4.07 n/a 8C B 27-Jul-06 16:04 0.01 7.0 8.0 1.20 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 <td>2006-0916</td> <td>outlet A</td> <td>21-Jul-06</td> <td>10:15</td> <td>0.01</td> <td>11.6</td> <td>12.0</td> <td>27.90</td>	2006-0916	outlet A	21-Jul-06	10:15	0.01	11.6	12.0	27.90
2006-0918 outlet C 21-Jul-06 10:15 0.01 11.6 12.0 15.67 2006-0360 Toolik 21-Jul-06 0:00 3 12.1 12.0 8.64 2006-0361 Toolik 21-Jul-06 0:00 3 12.1 12.0 6.22 2006-0363 Toolik 21-Jul-06 0:00 5 12.1 12.0 4.99 2006-0364 Toolik 21-Jul-06 0:00 16 4.9 2.76 2006-0365 Toolik 21-Jul-06 0:00 16 4.9 6.9 2.76 2006-0365 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-1014 Toolik Inlet 26-Jul-06 16:04 0.01 7.0 8.0 1.56 n/a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C C 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/	2006-0917	outlet B	21-Jul-06	10:15	0.01	11.6	12.0	15.32
2006-0360 Toolik 21-Jul-06 0:00 1 12.1 12.0 8.64 2006-0361 Toolik 21-Jul-06 0:00 3 12.1 12.0 6.22 2006-0362 Toolik 21-Jul-06 0:00 5 12.1 12.0 4.99 2006-0363 Toolik 21-Jul-06 0:00 8 9.2 6.9 3.20 2006-0364 Toolik 21-Jul-06 0:00 12 5.4 6.9 2.76 2006-0365 Toolik Inlet 26-Jul-06 9:10 0.01 12.1 12.0 4.07 n/a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 1.56 n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 3.33	2006-0918	outlet C	21-Jul-06	10:15	0.01	11.6	12.0	15.67
2006-0361 Toolik 21-Jul-06 0:00 3 12.1 12.0 6.22 2006-0362 Toolik 21-Jul-06 0:00 5 12.1 12.0 4.99 2006-0363 Toolik 21-Jul-06 0:00 8 9.2 6.9 3.20 2006-0364 Toolik 21-Jul-06 0:00 12 5.4 6.9 2.76 2006-0365 Toolik Inlet 26-Jul-06 0:00 16 4.9 6.9 1.72 2006-1014 Toolik Inlet 26-Jul-06 16:04 0.01 7.0 8.0 1.56 n/a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.99 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33	2006-0360	Toolik	21-Jul-06	0:00	1	12.1	12.0	8.64
2006-0362 Toolik 21-Jul-06 0:00 5 12.1 12.0 4.99 2006-0363 Toolik 21-Jul-06 0:00 8 9.2 6.9 3.20 2006-0364 Toolik 21-Jul-06 0:00 12 5.4 6.9 2.76 2006-0365 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-1014 Toolik Inlet 26-Jul-06 9:10 0.01 12.1 12.0 4.07 n/a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 1.50 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/	2006-0361	Toolik	21-Jul-06	0:00	3	12.1	12.0	6.22
2006-0363 Toolik 21-Jul-06 0:00 8 9.2 6.9 3.20 2006-0364 Toolik 21-Jul-06 0:00 12 5.4 6.9 2.76 2006-0365 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-1014 Toolik Inlet 26-Jul-06 9:10 0.01 12.1 12.0 4.07 n/a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 1.56 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a <td>2006-0362</td> <td>Toolik</td> <td>21-Jul-06</td> <td>0:00</td> <td>5</td> <td>12.1</td> <td>12.0</td> <td>4.99</td>	2006-0362	Toolik	21-Jul-06	0:00	5	12.1	12.0	4.99
2006-0364 Toolik 21-Jul-06 0:00 12 5.4 6.9 2.76 2006-0365 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-0365 Toolik Inlet 26-Jul-06 9:10 0.01 12.1 12.0 4.07 n/a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 1.56 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 0.56 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C C 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a	2006-0363	Toolik	21-Jul-06	0:00	8	9.2	6.9	3.20
2006-0365 Toolik 21-Jul-06 0:00 16 4.9 6.9 1.72 2006-1014 Toolik Inlet 26-Jul-06 9:10 0.01 12.1 12.0 4.07 n/a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 1.56 n/a 8C B 27-Jul-06 16:04 0.01 7.0 8.0 1.20 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 0.56 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 4.99 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a	2006-0364	Toolik	21-Jul-06	0:00	12	5.4	6.9	2.76
2006-1014 Toolik Inlet 26-Jul-06 9:10 0.01 12.1 12.0 4.07 n/a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 1.56 n/a 8C B 27-Jul-06 16:04 0.01 7.0 8.0 1.20 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 0.56 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 16:29 0.01 16.6 16.5 4.33 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a	2006-0365	Toolik	21-Jul-06	0:00	16	4.9	6.9	1.72
n/a 8C A 27-Jul-06 16:04 0.01 7.0 8.0 1.56 n/a 8C B 27-Jul-06 16:04 0.01 7.0 8.0 1.20 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 0.56 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C B 27-Jul-06 15:34 0.01 12.2 12.2 4.99 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 2.89 n/a 20C	2006-1014	Toolik Inlet	26-Jul-06	9:10	0.01	12.1	12.0	4.07
n/a 8C B 27-Jul-06 16:04 0.01 7.0 8.0 1.20 n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 0.56 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C B 27-Jul-06 15:34 0.01 12.2 12.2 4.99 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 2.89 n/a 16C D 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 2	n/a	8C A	27-Jul-06	16:04	0.01	7.0	8.0	1.56
n/a 8C C 27-Jul-06 16:04 0.01 7.0 8.0 2.77 n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 0.56 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C B 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 4.99 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.44 n/a 16C D 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a <t< td=""><td>n/a</td><td>8C B</td><td>27-Jul-06</td><td>16:04</td><td>0.01</td><td>7.0</td><td>8.0</td><td>1.20</td></t<>	n/a	8C B	27-Jul-06	16:04	0.01	7.0	8.0	1.20
n/a 8C D 27-Jul-06 16:04 0.01 7.0 8.0 0.56 n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C B 27-Jul-06 15:34 0.01 12.2 12.2 4.99 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 4.33 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C D 27-Jul-06 16:29 0.01 16.6 16.5 2.89 n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a	n/a	8C C	27-Jul-06	16:04	0.01	7.0	8.0	2.77
n/a 12C A 27-Jul-06 15:34 0.01 12.2 12.2 4.78 n/a 12C B 27-Jul-06 15:34 0.01 12.2 12.2 4.99 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 4.99 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 4.33 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 2.89 n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a	n/a	8C D	27-Jul-06	16:04	0.01	7.0	8.0	0.56
n/a 12C B 27-Jul-06 15:34 0.01 12.2 12.2 4.99 n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 4.33 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.44 n/a 16C D 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a	n/a	12C A	27-Jul-06	15:34	0.01	12.2	12.2	4.78
n/a 12C C 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 3.33 n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 4.33 n/a 16C B 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.44 n/a 16C D 27-Jul-06 16:29 0.01 16.6 16.5 2.89 n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 <td>n/a</td> <td>12C B</td> <td>27-Jul-06</td> <td>15:34</td> <td>0.01</td> <td>12.2</td> <td>12.2</td> <td>4.99</td>	n/a	12C B	27-Jul-06	15:34	0.01	12.2	12.2	4.99
n/a 12C D 27-Jul-06 15:34 0.01 12.2 12.2 0.67 n/a 16C A 27-Jul-06 16:29 0.01 16.6 16.5 4.33 n/a 16C B 27-Jul-06 16:29 0.01 16.6 16.5 4.33 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C D 27-Jul-06 16:29 0.01 16.6 16.5 2.89 n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C B 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.26 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 <td>n/a</td> <td>12C C</td> <td>27-Jul-06</td> <td>15:34</td> <td>0.01</td> <td>12.2</td> <td>12.2</td> <td>3.33</td>	n/a	12C C	27-Jul-06	15:34	0.01	12.2	12.2	3.33
n/a 16C A 27-Jul-06 16:29 0.01 16.6 16:5 4.33 n/a 16C B 27-Jul-06 16:29 0.01 16.6 16:5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16:5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C D 27-Jul-06 16:29 0.01 16.6 16.5 5.44 n/a 16C D 27-Jul-06 15:29 0.01 16.6 16.5 2.89 n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.30 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 <td>n/a</td> <td>12C D</td> <td>27-Jul-06</td> <td>15:34</td> <td>0.01</td> <td>12.2</td> <td>12.2</td> <td>0.67</td>	n/a	12C D	27-Jul-06	15:34	0.01	12.2	12.2	0.67
n/a 16C B 27-Jul-06 16:29 0.01 16.6 16:5 5.94 n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.94 n/a 16C D 27-Jul-06 16:29 0.01 16.6 16.5 5.44 n/a 16C D 27-Jul-06 16:29 0.01 16.6 16.5 5.44 n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C B 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 I8 Inlet 28-Jul-06 10:30 0.01 11.0 12.0 3.32 2006-0398 I7 into I9 28-Jul-06 11:35 0.01 13.7 14.0 13.65	n/a	16C A	27-Jul-06	16:29	0.01	16.6	16.5	4.33
n/a 16C C 27-Jul-06 16:29 0.01 16.6 16.5 5.44 n/a 16C D 27-Jul-06 16:29 0.01 16.6 16.5 5.44 n/a 16C D 27-Jul-06 16:29 0.01 16.6 16.5 2.89 n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C B 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 7.26 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 I8 Inlet 28-Jul-06 10:30 0.01 11.0 12.0 3.32 2006-0398 I7 into I9 28-Jul-06 11:10 0.01 13.7 14.0 4.88	n/a	16C B	27-Jul-06	16:29	0.01	16.6	16.5	5.94
n/a 16C D 27-Jul-06 16:29 0.01 16.6 16.5 2.89 n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C B 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 7.26 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 I8 Inlet 28-Jul-06 10:30 0.01 11.0 12.0 3.32 2006-0398 I7 into I9 28-Jul-06 11:10 0.01 13.7 14.0 4.88 2006-0397 I8 into I9 28-Jul-06 11:50 0.01 14.0 4.0 2006-	n/a	16C C	27-Jul-06	16:29	0.01	16.6	16.5	5.44
n/a 20C A 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C B 27-Jul-06 15:48 0.01 17.6 20.0 6.00 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 7.26 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 I8 Inlet 28-Jul-06 10:30 0.01 11.0 12.0 3.32 2006-0400 I8 Outlet 28-Jul-06 11:10 0.01 13.7 14.0 13.65 2006-0398 I7 into I9 28-Jul-06 11:35 0.01 14.0 4.88 2006-0397 I8 into I9 28-Jul-06 11:50 0.01 14.0 7.01 2006-0393	n/a	16C D	27-Jul-06	16:29	0.01	16.6	16.5	2.89
n/a 20C B 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.22 n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.26 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 I8 Inlet 28-Jul-06 10:30 0.01 11.0 12.0 3.32 2006-0400 I8 Outlet 28-Jul-06 11:10 0.01 13.7 14.0 13.65 2006-0398 I7 into I9 28-Jul-06 11:35 0.01 15.0 14.0 4.88 2006-0397 I8 into I9 28-Jul-06 11:50 0.01 14.0 9.19 2006-0393 Toolik Inlet 28-Jul-06 12:10 0.01 0.0 14.0 7.01	n/a	20C A	27-Jul-06	15:48	0.01	17.6	20.0	6.00
n/a 20C C 27-Jul-06 15:48 0.01 17.6 20.0 7.26 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 7.26 n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 I8 Inlet 28-Jul-06 10:30 0.01 11.0 12.0 3.32 2006-0400 I8 Outlet 28-Jul-06 11:10 0.01 13.7 14.0 13.65 2006-0398 I7 into I9 28-Jul-06 11:35 0.01 15.0 14.0 4.88 2006-0397 I8 into I9 28-Jul-06 11:50 0.01 14.0 9.19 2006-0393 Toolik Inlet 28-Jul-06 12:10 0.01 0.0 14.0 7.01	n/a	20C B	27-Jul-06	15:48	0.01	17.6	20.0	7.22
n/a 20C D 27-Jul-06 15:48 0.01 17.6 20.0 3.30 2006-0399 I8 Inlet 28-Jul-06 10:30 0.01 11.0 12.0 3.32 2006-0400 I8 Outlet 28-Jul-06 11:10 0.01 13.7 14.0 13.65 2006-0398 I7 into I9 28-Jul-06 11:35 0.01 15.0 14.0 4.88 2006-0397 I8 into I9 28-Jul-06 11:50 0.01 14.5 14.0 9.19 2006-0393 Toolik Inlet 28-Jul-06 12:10 0.01 0.0 14.0 7.01	n/a	20C C	27-Jul-06	15:48	0.01	17.6	20.0	7.26
Initial Initial <thinitial< th=""> <th< td=""><td>n/a</td><td>20C D</td><td>27-Jul-06</td><td>15:48</td><td>0.01</td><td>17.6</td><td>20.0</td><td>3.30</td></th<></thinitial<>	n/a	20C D	27-Jul-06	15:48	0.01	17.6	20.0	3.30
2006-0400 I8 Outlet 28-Jul-06 11:10 0.01 13.7 14.0 13.65 2006-0398 I7 into I9 28-Jul-06 11:35 0.01 15.0 14.0 4.88 2006-0397 I8 into I9 28-Jul-06 11:50 0.01 14.0 9.19 2006-0393 Toolik lolet 28-Jul-06 12:10 0.01 14.0 7.01	2006-0399	I8 Inlet	28-Jul-06	10:30	0.01	11.0	12.0	3.32
2006-0398 I7 into I9 28-Jul-06 11:35 0.01 15.0 14.0 4.88 2006-0397 I8 into I9 28-Jul-06 11:50 0.01 14.5 14.0 9.19 2006-0393 Toolik lolet 28-Jul-06 11:50 0.01 14.0 9.19	2006-0400	I8 Outlet	28-101-06	11.10	0.01	13.7	14.0	13.65
2006-0397 I8 into I9 28-Jul-06 11:50 0.01 14.0 14.0 9.19 2006-0393 Toolik Inlet 28-Jul-06 12:10 0.01 0.0 14.0 7.0	2006-0398	17 into 19	28-101-06	11.75	0.01	15.0	14.0	10.00 4 88
2006-0393 Toolik Inlet 28-Jul-06 12:10 0.01 0.0 14.0 7.01	2006-0397	I8 into I9	28-101-06	11.55	0.01	14.5	14.0	q 10
	2006-0393	Toolik Inlet	28-Jul-06	12.10	0.01	0.0	14.0	7 01

		_	Time	_	Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2006-0404	Toolik	28-Jul-06	0:00	1	13.9	13.9	8.70
2006-0406	Toolik	28-Jul-06	0:00	3	13.0	13.9	8.68
2006-0407	Toolik	28-Jul-06	0:00	5	11.7	12.0	8.37
2006-0408	Toolik	28-Jul-06	0:00	8	9.0	12.0	7.02
2006-0409	Toolik	28-Jul-06	0:00	12	5.6	5.1	2.28
2006-0410	Toolik	28-Jul-06	0:00	16	5.1	5.1	3.24
n/a	8C A	29-Jul-06	15:16	0.01	8.0	8.0	3.22
n/a	8C B	29-Jul-06	15:16	0.01	8.0	8.0	4.96
n/a	8C C	29-Jul-06	15:16	0.01	8.0	8.0	4.23
n/a	8C D	29-Jul-06	15:16	0.01	8.0	8.0	1.01
n/a	12C A	29-Jul-06	14:29	0.01	12.0	12.0	8.15
n/a	12C B	29-Jul-06	14:29	0.01	12.0	12.0	7.00
n/a	12C C	29-Jul-06	14:29	0.01	12.0	12.0	6.56
n/a	12C D	29-Jul-06	14:29	0.01	12.0	12.0	2.77
n/a	16C A	29-Jul-06	15:39	0.01	16.5	16.5	3.28
n/a	16C B	29-Jul-06	15:39	0.01	16.5	16.5	3.71
n/a	16C C	29-Jul-06	15:39	0.01	16.5	16.5	4.18
n/a	16C D	29-Jul-06	15:39	0.01	16.5	16.5	1.66
n/a	20C A	29-Jul-06	14:52	0.01	20.7	20.7	10.69
n/a	20C B	29-Jul-06	14:52	0.01	20.7	20.7	9.36
n/a	20C C	29-Jul-06	14:52	0.01	20.7	20.7	8.35
n/a	20C D	29-Jul-06	14:52	0.01	20.7	20.7	6.07
n/a	8C A	31-Jul-06	17:25	0.01	7.5	8.0	2.24
n/a	8C B	31-Jul-06	17:25	0.01	7.5	8.0	1.15
n/a	8C C	31-Jul-06	17:25	0.01	7.5	8.0	2.08
n/a	8C D	31-Jul-06	17:25	0.01	7.5	8.0	2.96
n/a	12C A	31-Jul-06	16:53	0.01	12.0	12.0	6.32
n/a	12C B	31-Jul-06	16:53	0.01	12.0	12.0	4.71
n/a	12C C	31-Jul-06	16:53	0.01	12.0	12.0	3.26
n/a	12C D	31-Jul-06	16:53	0.01	12.0	12.0	2.62
n/a	16C A	31-Jul-06	17:47	0.01	16.5	16.5	2.01
n/a	16C B	31-Jul-06	17:47	0.01	16.5	16.5	3.36
n/a	16C C	31-Jul-06	17:47	0.01	16.5	16.5	4.07
n/a	16C D	31-Jul-06	17:47	0.01	16.5	16.5	1.25
n/a	20C A	31-Jul-06	17:04	0.01	19.5	19.5	5.32
n/a	20C B	31-Jul-06	17:04	0.01	19.5	19.5	5.22
n/a	20C C	31-Jul-06	17:04	0.01	19.5	19.5	3.41
n/a	20C D	31-Jul-06	17:04	0.01	19.5	19.5	3.76
2006-1023	18 Inlet	1-Aug-06	13:40	0.01	10.1	10.1	0.68
2006-1024	18 Outlet	1-Aug-06	15:20	0.01	12.6	12.6	4.72
2006-1050	18 Inlet	3-Aug-06	14:15	0.01	12.1	12.0	2.15
2006-1051	18 Outlet	3-Aug-06	15:06	0.01	12.8	12.0	11.18
2006-1052	in/in A	3-Aug-06	14:45	0.01	12.1	12.0	29.67
2006-1053	in/in B	3-Aug-06	14:45	0.01	12.1	12.0	27.02
2006-1054	in/in C	3-Aug-06	14:45	0.01	12.1	12.0	26.83
2006-1055	in/out A	3-Aug-06	15:30	0.01	12.8	12.0	27.93
2006-1056	in/out B	3-Aug-06	15:30	0.01	12.8	12.0	37.83
2006-1057	in/out C	3-Aug-06	15:30	0.01	12.8	12.0	30.74

		_	Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2006-1058	out/out A	3-Aug-06	15:25	0.01	12.8	12.0	20.22
2006-1059	out/out B	3-Aug-06	15:25	0.01	12.8	12.0	24.31
2006-1060	out/out C	3-Aug-06	15:25	0.01	12.8	12.0	26.94
2006-1061	out/in A	3-Aug-06	14:30	0.01	12.1	12.0	5.94
2006-1062	out/in B	3-Aug-06	14:30	0.01	12.1	12.0	2.45
2006-1063	out/in C	3-Aug-06	14:30	0.01	12.1	12.0	5.15
2006-0448	18 Inlet	4-Aug-06	10:02	0.01	9.2	12.0	0.99
2006-0449	18 Outlet	4-Aug-06	10:50	0.01	13.2	12.0	4.17
2006-0447	17 into 19	4-Aug-06	11:33	0.01	13.2	12.0	1.78
2006-0446	18 into 19	4-Aug-06	12:00	0.01	13.2	12.0	2.75
2006-0442	Toolik Inlet	4-Aug-06	14:16	0.01	13.5	12.0	3.81
2006-0454	Toolik	4-Aug-06	9:40	1	13.5	12.0	3.29
2006-0455	Toolik	4-Aug-06	9:40	3	13.5	12.0	3.09
2006-0456	Toolik	4-Aug-06	9:46	5	13.1	12.0	1.78
2006-0457	Toolik	4-Aug-06	9:55	8	8.0	12.0	1.23
2006-0458	Toolik	4-Aug-06	10:12	12	5.8	5.5	1.50
2006-0459	Toolik	4-Aug-06	10:20	16	5.3	5.5	1.70
2006-0523	Toolik	8-Aug-06	0:00	1			2.63
2006-0524	Toolik	8-Aug-06	0:00	3			2.64
2006-0525	Toolik	8-Aug-06	0:00	5			3.46
2006-0526	Toolik	8-Aug-06	0:00	8			3.34
2006-0527	Toolik	8-Aug-06	0:00	12			2.78
2006-0528	Toolik	8-Aug-06	0:00	16			1.95
2006-0488	I1 into I3	9-Aug-06	9:30	0.01	9.0	9.0	1.34
2006-0490	I2 into I3	9-Aug-06	9:30	0.01	7.3	7.3	1.75
2006-0502	18 Headwaters	9-Aug-06	10:40	0.01	3.7	3.7	1.53
2006-1115	12	9-Aug-06	10:40	1	11.9	12.6	1.34
2006-1113	11	9-Aug-06	11:40	1	12.1	12.6	2.53
2006-1117	13	9-Aug-06	12:20	1	11.3	12.6	4.50
2006-1119	14	9-Aug-06	13:25	1	11.9	12.5	3.92
2006-0495	I5 into I6	9-Aug-06	14:40	0.01	13.1	12.8	3.86
2006-0499	I6 Inlet West	9-Aug-06	14:40	0.01	7.8	7.8	1.80
2006-0496	I6 HW Inlet	9-Aug-06	14:40	0.01	9.1	7.8	13.39
2006-1125	I6 HW	9-Aug-06	14:45	1	12.2	12.8	1.87
2006-0493	I4 into I5	9-Aug-06	15:45	0.01		12.5	6.90
2006-1121	15	9-Aug-06	17:00	1	12.4	12.5	3.38
2006-1123	16	10-Aug-06	10:00	1	12.0	12.5	2.05
2006-1127	17	10-Aug-06	10:35	1	11.9	12.5	2.11
2006-0504	18 Inlet	10-Aug-06	10:45	0.01	8.5	8.5	1.54
2006-1129	18	10-Aug-06	12:00	1	10.6	10.8	5.73
2006-0503	18 Outlet	10-Aug-06	12:00	0.01	10.8	10.8	5.57
2006-0508	I Swamp Inlet	10-Aug-06	13:00	0.01	11.0	11.0	2.70
2006-1131	I Swamp	10-Aug-06	13:10	1	10.3	11.0	2.49
2006-0501	17 into 19	10-Aug-06	14:10	0.01	10.8	10.8	1.59
2006-0505	18 into 19	10-Aug-06	14:10	0.01	10.7	10.8	4.09
2006-0506	Milkyway Lower	10-Aug-06	14:10	0.01	7.5	7.5	3.11
2006-0510	Toolik Inlet	10-Aug-06	14:50	0.01	10.7	10.7	5.00
2007-0105	18 inlet	16-Jun-07	16:54	0.01	14.0	14.0	3.81

		_	Time	_	Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2007-0106	18 outlet	16-Jun-07	17:57	0.01	11.7	11.7	4.64
2007-0104	17-19	16-Jun-07	18:50	0.01	13.9	13.9	2.51
2007-0103	18-19	16-Jun-07	18:50	0.01	13.9	13.9	2.77
2007-0100	Toolik Inlet	16-Jun-07	19:48	0.01	13.4	13.4	3.46
2007-0134	11-13	20-Jun-07	9:08	0.01	11.3	11.3	2.14
2007-0136	12-13	20-Jun-07	9:08	0.01	12.3	12.3	2.39
lakes	12	20-Jun-07	9:45	1	9.9	16.1	0.92
lakes	11	20-Jun-07	11:10	1	12.4	13.5	1.46
lakes	13	20-Jun-07	11:50	1	12.4	13.2	2.70
2007-0148	18 HW	20-Jun-07	11:58	0.01	9.5	9.9	2.27
lakes	14	20-Jun-07	13:00	1	15.4	15.4	2.83
2007-0142	I6 HW in	20-Jun-07	14:46	0.01	8.8	8.8	1.07
lakes	16 HW	20-Jun-07	14:46	1	14.3	14.3	1.77
lakes	15	20-Jun-07	17:00	1	13.0	19.7	7.45
2007-0139	14-15	20-Jun-07	19:23	0.01	15.4	16.5	2.67
2007-0145	l6 west inlet	21-Jun-07	8:34	0.01	10.5	10.5	2.55
2007-0141	15-16	21-Jun-07	9:17	0.01	9.6	9.7	1.28
lakes	16	21-Jun-07	9:45	1	12.9	16.0	2.20
lakes	17	21-Jun-07	10:37	1	15.3	16.0	5.66
2007-0149	18 inlet	21-Jun-07	11:27	0.01	13.5	13.5	2.56
2007-0150	18 outlet	21-Jun-07	12:30	0.01	15.9	15.9	5.19
lakes	18	21-Jun-07	12:52	1	15.3	16.8	4.88
2007-0154	I swamp in	21-Jun-07	13:33	0.01	14.0	14.0	1.93
lakes	Iswamp	21-Jun-07	14:17	1	16.5	17.0	3.06
2007-0147	17-19	21-Jun-07	15:01	0.01	17.8	17.8	6.84
2007-0151	18-19	21-Jun-07	15:03	0.01	17.8	17.8	4.50
2007-0152	MWL	21-Jun-07	15:35	0.01	11.2	11.2	2.98
2007-0156	Toolik Inlet	21-Jun-07	16:09	0.01	16.5	16.5	5.41
n/a	12C A	22-Jun-07	11:58	0.01	12.0	12.0	0.47
n/a	12C B	22-Jun-07	11:58	0.01	12.0	12.0	0.45
n/a	12C C	22-Jun-07	11:58	0.01	12.0	12.0	0.53
n/a	12C NP A	22-Jun-07	11:58	0.01	12.0	12.0	0.66
n/a	12C NP B	22-Jun-07	11:58	0.01	12.0	12.0	0.86
n/a	12C NP C	22-Jun-07	11:58	0.01	12.0	12.0	0.63
n/a	17C A	22-Jun-07	12:14	0.01	17.0	17.0	1.22
n/a	17C B	22-Jun-07	12:14	0.01	17.0	17.0	0.51
n/a	17C C	22-Jun-07	12:14	0.01	17.0	17.0	1.03
n/a	17C NP A	22-Jun-07	12:14	0.01	17.0	17.0	0.51
n/a	17C NP B	22-Jun-07	12:14	0.01	17.0	17.0	0.41
n/a	17C NP C	22-Jun-07	12:14	0.01	17.0	17.0	0.47
n/a	12C A	22-Jun-07	14:13	0.01	12.0	12.0	0.63
n/a	12C B	22-Jun-07	14:13	0.01	12.0	12.0	0.34
n/a	12C C	22-Jun-07	14:13	0.01	12.0	12.0	0.45
n/a	12C NP A	22-Jun-07	14.13	0.01	12.0	12.0	0.19
n/a	12C NP B	22-Jun-07	14:13	0.01	12.0	12.0	0.52
n/a	12C NP C	22-Jun-07	14:13	0.01	12.0	12.0	0.55
n/a	17C A	22-Jun-07	14:43	0.01	17.0	17.0	0.88
n/a	17C B	22-Jun-07	14:43	0.01	17.0	17.0	0.59
L			0	0.01	0	0	0.00

a antak ana	C ite	Dete	Time	Dawth	Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	17C C	22-Jun-07	14:43	0.01	17.0	17.0	0.96
n/a	17C NP A	22-Jun-07	14:43	0.01	17.0	17.0	0.53
n/a	17C NP B	22-Jun-07	14:43	0.01	17.0	17.0	0.31
n/a	17C NP C	22-Jun-07	14:43	0.01	17.0	17.0	0.48
n/a	12C A	22-Jun-07	16:17	0.01	12.0	12.0	0.17
n/a	12C B	22-Jun-07	16:17	0.01	12.0	12.0	0.26
n/a	12C C	22-Jun-07	16:17	0.01	12.0	12.0	0.21
n/a	12C NP A	22-Jun-07	16:17	0.01	12.0	12.0	0.06
n/a	12C NP B	22-Jun-07	16:17	0.01	12.0	12.0	0.33
n/a	12C NP C	22-Jun-07	16:17	0.01	12.0	12.0	0.62
n/a	17C NP A	22-Jun-07	16:51	0.01	17.0	17.0	0.41
n/a	17C NP B	22-Jun-07	16:51	0.01	17.0	17.0	0.22
n/a	17C NP C	22-Jun-07	16:51	0.01	17.0	17.0	0.74
n/a	17C A	22-Jun-07	16:51	0.01	17.0	17.0	1.02
n/a	17C B	22-Jun-07	16:51	0.01	17.0	17.0	0.74
n/a	17C C	22-Jun-07	16:51	0.01	17.0	17.0	1.38
n/a	12C A	22-Jun-07	18:25	0.01	12.0	12.0	0.58
n/a	12C B	22-Jun-07	18:25	0.01	12.0	12.0	0.40
n/a	12C C	22-Jun-07	18:25	0.01	12.0	12.0	0.46
n/a	12C NP A	22-Jun-07	18:25	0.01	12.0	12.0	0.52
n/a	12C NP B	22-Jun-07	18:25	0.01	12.0	12.0	0.68
n/a	12C NP C	22-Jun-07	18:25	0.01	12.0	12.0	0.05
n/a	17C A	22-Jun-07	18:45	0.01	17.0	17.0	1 33
n/a	17C B	22-Jun-07	18:45	0.01	17.0	17.0	0.79
n/a	170.0	22 Jun-07	18:45	0.01	17.0	17.0	1.56
n/a	17C NP A	22 Jun-07	18:45	0.01	17.0	17.0	0.88
n/a		22-Jun 07	10.45	0.01	17.0	17.0	0.00
n/a		22-Jun 07	10.45	0.01	17.0	17.0	0.03
n/a	17C NF C	22-Jun 07	20:10	0.01	17.0	17.0	0.62
n/a	12C R	22-Jun 07	20.10	0.01	12.0	12.0	0.39
11/a	12C B	22-Jun-07	20.10	0.01	12.0	12.0	0.30
n/a	120 U	22-Jun-07	20.10	0.01	12.0	12.0	0.37
n/a	120 NP A	22-Jun-07	20:10	0.01	12.0	12.0	0.19
n/a	120 NP B	22-Jun-07	20:10	0.01	12.0	12.0	0.44
n/a	12C NP C	22-Jun-07	20:10	0.01	12.0	12.0	0.48
n/a	17C A	22-Jun-07	20:55	0.01	17.0	17.0	1.77
n/a	1/C B	22-Jun-07	20:55	0.01	17.0	17.0	0.91
n/a	17C C	22-Jun-07	20:55	0.01	17.0	17.0	2.48
n/a	17C NP A	22-Jun-07	20:55	0.01	17.0	17.0	0.80
n/a	17C NP B	22-Jun-07	20:55	0.01	17.0	17.0	0.64
n/a	17C NP C	22-Jun-07	20:55	0.01	17.0	17.0	0.70
n/a	12C A	22-Jun-07	22:38	0.01	12.0	12.0	0.49
n/a	12C B	22-Jun-07	22:38	0.01	12.0	12.0	0.48
n/a	12C C	22-Jun-07	22:38	0.01	12.0	12.0	0.46
n/a	12C NP A	22-Jun-07	22:38	0.01	12.0	12.0	0.27
n/a	12C NP B	22-Jun-07	22:38	0.01	12.0	12.0	0.60
n/a	12C NP C	22-Jun-07	22:38	0.01	12.0	12.0	0.63
n/a	17C A	22-Jun-07	23:10	0.01	17.0	17.0	1.39
n/a	17C B	22-Jun-07	23:10	0.01	17.0	17.0	0.82

o o wto b o wo	C ite	Data	Time	Dawth	Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	17C C	22-Jun-07	23:10	0.01	17.0	17.0	1.99
n/a	17C NP A	22-Jun-07	23:10	0.01	17.0	17.0	0.69
n/a	17C NP B	22-Jun-07	23:10	0.01	17.0	17.0	0.41
n/a	17C NP C	22-Jun-07	23:10	0.01	17.0	17.0	0.57
n/a	12C A	23-Jun-07	1:23	0.01	12.0	12.0	0.38
n/a	12C B	23-Jun-07	1:23	0.01	12.0	12.0	0.47
n/a	12C C	23-Jun-07	1:23	0.01	12.0	12.0	0.50
n/a	12C NP A	23-Jun-07	1:23	0.01	12.0	12.0	0.20
n/a	12C NP B	23-Jun-07	1:23	0.01	12.0	12.0	0.54
n/a	12C NP C	23-Jun-07	1:23	0.01	12.0	12.0	0.61
n/a	17C A	23-Jun-07	2:02	0.01	17.0	17.0	2.70
n/a	17C B	23-Jun-07	2:02	0.01	17.0	17.0	2.25
n/a	17C C	23-Jun-07	2:02	0.01	17.0	17.0	4.09
n/a	17C NP A	23-Jun-07	2:02	0.01	17.0	17.0	1.60
n/a	17C NP B	23-Jun-07	2:02	0.01	17.0	17.0	0.92
n/a	17C NP C	23-Jun-07	2:02	0.01	17.0	17.0	1.70
n/a	12C A	23-Jun-07	9:23	0.01	12.0	12.0	0.68
n/a	12C B	23-Jun-07	9:23	0.01	12.0	12.0	0.95
n/a	12C C	23-Jun-07	9:23	0.01	12.0	12.0	0.91
n/a	12C NP A	23-Jun-07	9:23	0.01	12.0	12.0	0.35
n/a	12C NP B	23-Jun-07	9.23	0.01	12.0	12.0	1 02
n/a	12C NP C	23-Jun-07	9.23	0.01	12.0	12.0	0.93
n/a	17C A	23-Jun-07	10:05	0.01	17.0	17.0	5.09
n/a	17C B	23-Jun-07	10:05	0.01	17.0	17.0	5.05
n/a	170.0	23- Jun-07	10:05	0.01	17.0	17.0	11.86
n/a	17C NP A	23-Jun-07	10:05	0.01	17.0	17.0	5 23
n/a		23-Jun 07	10:05	0.01	17.0	17.0	2.53
n/a		23-Jun 07	10:05	0.01	17.0	17.0	2.33
n/a	17C NF C	23-Jun 07	10.05	0.01	17.0	17.0	4.79
n/a	12C R	23-Jun 07	13.49	0.01	12.0	12.0	1.21
11/a	12C B	23-Jun 07	13.49	0.01	12.0	12.0	1.21
n/a	120 U	23-Jun-07	13.49	0.01	12.0	12.0	1.00
n/a	120 NP A	23-Jun-07	13.49	0.01	12.0	12.0	0.51
n/a	120 NP B	23-Jun-07	13:49	0.01	12.0	12.0	1.87
n/a	12C NP C	23-Jun-07	13:49	0.01	12.0	12.0	1.42
n/a	17C A	23-Jun-07	14:02	0.01	17.0	17.0	9.79
n/a	1/C B	23-Jun-07	14:02	0.01	17.0	17.0	11.32
n/a	1/00	23-Jun-07	14:02	0.01	17.0	17.0	14.06
n/a	17C NP A	23-Jun-07	14:18	0.01	17.0	17.0	12.40
n/a	17C NP B	23-Jun-07	14:18	0.01	17.0	17.0	6.75
n/a	17C NP C	23-Jun-07	14:18	0.01	17.0	17.0	6.06
n/a	12C A	23-Jun-07	19:17	0.01	12.0	12.0	1.74
n/a	12C B	23-Jun-07	19:17	0.01	12.0	12.0	2.74
n/a	12C C	23-Jun-07	19:17	0.01	12.0	12.0	2.19
n/a	12C NP A	23-Jun-07	19:17	0.01	12.0	12.0	0.91
n/a	12C NP B	23-Jun-07	19:17	0.01	12.0	12.0	1.94
n/a	12C NP C	23-Jun-07	19:17	0.01	12.0	12.0	2.00
n/a	17C A	23-Jun-07	19:34	0.01	17.0	17.0	8.00
n/a	17C B	23-Jun-07	19:34	0.01	17.0	17.0	8.95

o o rito h o m	Site	Data	Time	Donth	Water	Incubation	Bacterial Broduction
sonchem	Site	Date		Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	17C C	23-Jun-07	19:34	0.01	17.0	17.0	16.64
n/a	17C NP A	23-Jun-07	19:34	0.01	17.0	17.0	18.96
n/a	17C NP B	23-Jun-07	19:34	0.01	17.0	17.0	15.94
n/a	17C NP C	23-Jun-07	19:34	0.01	17.0	17.0	17.16
n/a	12C A	24-Jun-07	2:52	0.01	12.0	12.0	3.21
n/a	12C B	24-Jun-07	2:52	0.01	12.0	12.0	4.42
n/a	12C C	24-Jun-07	2:52	0.01	12.0	12.0	4.60
n/a	12C NP A	24-Jun-07	2:52	0.01	12.0	12.0	2.48
n/a	12C NP B	24-Jun-07	2:52	0.01	12.0	12.0	6.49
n/a	12C NP C	24-Jun-07	2:52	0.01	12.0	12.0	4.68
n/a	17C A	24-Jun-07	3:20	0.01	17.0	17.0	13.95
n/a	17C B	24-Jun-07	3:20	0.01	17.0	17.0	18.85
n/a	17C C	24-Jun-07	3:20	0.01	17.0	17.0	22.81
n/a	17C NP A	24-Jun-07	3:20	0.01	17.0	17.0	18.55
n/a	17C NP B	24-Jun-07	3:20	0.01	17.0	17.0	43.54
n/a	17C NP C	24-Jun-07	3:20	0.01	17.0	17.0	39.56
n/a	12C A	24-Jun-07	12:55	0.01	12.0	12.0	6.34
n/a	12C B	24-Jun-07	12:55	0.01	12.0	12.0	6.44
n/a	12C C	24-Jun-07	12:55	0.01	12.0	12.0	6.46
n/a	12C NP A	24-Jun-07	12:55	0.01	12.0	12.0	9.70
n/a	12C NP B	24-Jun-07	12:55	0.01	12.0	12.0	10.95
n/a	12C NP C	24-Jun-07	12:55	0.01	12.0	12.0	13.72
n/a	17C A	24-Jun-07	13:25	0.01	17.0	17.0	16.62
n/a	17C B	24-Jun-07	13:25	0.01	17.0	17.0	19.30
n/a	17C C	24-Jun-07	13:25	0.01	17.0	17.0	18.09
n/a	17C NP A	24-Jun-07	13:25	0.01	17.0	17.0	21.43
n/a	17C NP B	24-Jun-07	13.25	0.01	17.0	17.0	40 77
n/a	17C NP C	24-Jun-07	13.25	0.01	17.0	17.0	31.05
n/a	12C A	24-Jun-07	23:35	0.01	12.0	12.0	5.88
n/a	12C B	24-Jun-07	23:35	0.01	12.0	12.0	6.66
n/a	120.0	24-Jun-07	23.35	0.01	12.0	12.0	5.83
n/a	120 0 120 NP A	24- Jun-07	20:00	0.01	12.0	12.0	16 33
n/a	120 NP B	24- Jun-07	20:00	0.01	12.0	12.0	21 51
n/a	120 NP C	24- Jun-07	20:00	0.01	12.0	12.0	15.78
n/a	17C A	24 Jun-07	0.08	0.01	12.0	17.0	16.07
n/a	17C B	24-Jun-07	0.00	0.01	17.0	17.0	14.58
n/a	17C C	24-Jun-07	0.00	0.01	17.0	17.0	14.30
n/a		24-Jun-07	0.00	0.01	17.0	17.0	20.53
n/a		24-Jun-07	0.00	0.01	17.0	17.0	20.33
11/a		24-Jun-07	0.00	0.01	17.0	17.0	32.70
n/a	17C NP C	24-Jun-07	0.06	0.01	17.0	17.0	23.40
n/a	120 A	25-Jun-07	12:00	0.01	12.0	12.0	7.79
n/a	12C B	25-Jun-07	12:00	0.01	12.0	12.0	7.84
n/a	1200	25-Jun-07	12:00	0.01	12.0	12.0	7.99
n/a	12C NP A	25-Jun-07	12:00	0.01	12.0	12.0	72.48
n/a	12C NP B	25-Jun-07	12:00	0.01	12.0	12.0	26.64
n/a	12C NP C	25-Jun-07	12:00	0.01	12.0	12.0	31.60
n/a	17C A	25-Jun-07	12:40	0.01	17.0	17.0	16.24
n/a	17C B	25-Jun-07	12:40	0.01	17.0	17.0	15.37

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
n/a	17C C	25-Jun-07	12:40	0.01	17.0	17.0	17.84
n/a	17C NP A	25-Jun-07	12:40	0.01	17.0	17.0	20.06
n/a	17C NP B	25-Jun-07	12:40	0.01	17.0	17.0	32.48
n/a	17C NP C	25-Jun-07	12:40	0.01	17.0	17.0	24.46
n/a	12C A	25-Jun-07	22:39	0.01	12.0	12.0	4.27
n/a	12C B	25-Jun-07	22:39	0.01	12.0	12.0	2.60
n/a	12C C	25-Jun-07	22:39	0.01	12.0	12.0	3.40
n/a	12C NP A	25-Jun-07	22:39	0.01	12.0	12.0	41.92
n/a	12C NP B	25-Jun-07	22:39	0.01	12.0	12.0	11.28
n/a	12C NP C	25-Jun-07	22:39	0.01	12.0	12.0	9.61
n/a	17C A	25-Jun-07	23:08	0.01	17.0	17.0	9.99
n/a	17C B	25-Jun-07	23:08	0.01	17.0	17.0	6.41
n/a	17C C	25-Jun-07	23:08	0.01	17.0	17.0	6.69
n/a	17C NP A	25-Jun-07	23:08	0.01	17.0	17.0	9.47
n/a	17C NP B	25-Jun-07	23:08	0.01	17.0	17.0	20.03
n/a	17C NP C	25-Jun-07	23:08	0.01	17.0	17.0	20.11
n/a	12C A	26-Jun-07	13:56	0.01	12.0	12.0	12.73
n/a	12C B	26-Jun-07	13:56	0.01	12.0	12.0	10.39
n/a	12C C	26-Jun-07	13:56	0.01	12.0	12.0	8.91
n/a	12C NP A	26-Jun-07	13:56	0.01	12.0	12.0	63.35
n/a	12C NP B	26-Jun-07	13:56	0.01	12.0	12.0	15.70
n/a	12C NP C	26-Jun-07	13:56	0.01	12.0	12.0	24 71
n/a	17C A	26-Jun-07	14:35	0.01	17.0	17.0	10.93
n/a	17C B	26-Jun-07	14:35	0.01	17.0	17.0	8.14
n/a	17C C	26-Jun-07	14:35	0.01	17.0	17.0	10.05
n/a	17C NP A	26-Jun-07	14:35	0.01	17.0	17.0	22.67
n/a	17C NP B	26-Jun-07	14:35	0.01	17.0	17.0	32.85
n/a	17C NP C	26-Jun-07	14:35	0.01	17.0	17.0	21.35
2007-0158	Toolik Main	22-Jun-07	15:29	1	11.1	11.0	4.20
2007-0159	Toolik Main	22-Jun-07	15:52	3	10.9	10.9	4.07
2007-0160	Toolik Main	22-Jun-07	15:59	5	7.5	7.5	3.22
2007-0161	Toolik Main	22-Jun-07	16:19	8	5.9	5.9	2.91
2007-0162	Toolik Main	22-Jun-07	16:37	12	5.3	5.3	5.03
2007-0163	Toolik Main	22-Jun-07	16:58	16	4.8	5.3	2 79
2007-0709	17-19	27-Jun-07	14:05	0.01	13.9	13.9	2.00
2007-0700	18-19	27-Jun-07	14:30	0.01	13.2	13.2	1 48
2007-0328	l8 inlet	29-Jun-07	10:45	0.01	13.2	13.2	1.40
2007-0329		29- Jun-07	11.40	0.01	15.7	10.0	8 35
2007-0327	17-19	29- Jun-07	13.30	0.01	14.0	15.0	2.89
2007-0326	18-19	29 Jun-07	12.20	0.01	15.4	15.0	2.03
2007-0320	Toolik Inlot	29-Jun 07	14.20	0.01	10.4	15.0	2.00
2007-0323		29-Jun 07	10.10	0.01	. 15.4	15.0	4.20
2007-0710	transplant IS IO B	29-Jun 07	10.10	0.01	15.4	15.0	7.40
2007-0719		29-Jun 07	10.10	0.01	15.4	15.0	22.10
2007-0724	transplant 17 10 @ 10 10 A	28-JUN-07	10.10	0.01	15.4	15.0	22.19
2007-0721	transplant 17 19 @ 10-19 A	28-JUN-07	10.10	0.01	15.4	15.0	0.90
2007-0722	Toolik Main	29-Jun-07	10.10	0.01	10.4	10.0	0.//
2007-0332		29-Jun-07	10:00	1	12.9	12.9	ö.34
2007-0333	I OOIIK IVIAIN	∠9-Jun-07	10:14	3	12.5	12.9	7.20

Bote Date Received Depth Refine Refine <threfine< th=""> <threfine< th=""></threfine<></threfine<>	tehom	Sito	Data	Time	Donth	Water	Incubation	Bacterial Production
Image: Control (Inf) (Inf) </th <th>tchem</th> <th>Sile</th> <th>Dale</th> <th></th> <th>Depth (m)</th> <th>(den C)</th> <th>(deg C)</th> <th></th>	tchem	Sile	Dale		Depth (m)	(den C)	(deg C)	
2007-0334 Toolik Main 29-Jun-07 10:28 5 10.5 2007-0335 Toolik Main 29-Jun-07 10:32 8 7.3 10.5 2007-0336 Toolik Main 29-Jun-07 10:32 8 7.3 10.5 2007-0336 Toolik Main 29-Jun-07 10:59 16 6.5 6.5 2007-030 17-19 2-Jul-07 12:05 0.01 14.8 14.8 2007-0712 transplant 17-19 B 2-Jul-07 12:05 0.01 14.8 14.8 2 2007-0714 transplant 17-19 C 2-Jul-07 12:05 0.01 14.8 14.8 2 2007-0714 transplant 18-19 @ 17-19 A 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0715 transplant 18-19 @ 17-19 C 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0726 transplant 18-19 @ 17-19 C 2-Jul-07 13:00 0.01 16.3 14.8 1 2007-0727	7 000 4		00 1 07	(nr)	(m)	(deg C)	(deg C)	(ug C L/day)
2007-0335 Toolik Main 29-Jun-07 10:32 8 7.3 10.5 2007-0336 Toolik Main 29-Jun-07 10:43 12 6.5 6.5 2007-0337 Toolik Main 29-Jun-07 10:59 16 6.5 6.5 2007-0730 I7-I9 2-Jul-07 12:05 0.01 14.8 14.8 2007-0712 transplant I7-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 2 2007-0713 transplant I7-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 2 2007-0714 transplant I8-I9 @ I7-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0715 transplant I8-I9 @ I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 6 2007-0717 transplant I8-I9 @ I7-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 7 2007-0725 transplant I8-I9 @ I7-I9 C 2-Jul-07 13:00 0.01 16.3 16.3<	07-0334		29-Jun-07	10:28	5	10.5	10.5	4.32
2007-0336 Toolik Main 29-Jun-07 10:43 12 6.5 6.5 2007-0337 Toolik Main 29-Jun-07 10:59 16 6.5 6.5 2007-0337 Toolik Main 29-Jun-07 10:59 16 6.5 6.5 2007-0730 I7-I9 2-Jul-07 12:05 0.01 14.8 14.8 7 2007-0713 transplant I7-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 2 2007-0714 transplant I8-I9 @ 17-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0715 transplant I8-I9 @ 17-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 6 2007-0717 transplant I8-I9 @ 17-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0725 transplant I8-I9 @ 17-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 7 2007-0726 transplant I8-I9 B 2-Jul-07 13:00 0.01 16.3	07-0335	Toolik Main	29-Jun-07	10:32	8	7.3	10.5	1.66
2007-0337 Toolik Main 29-Jun-07 10:59 16 6.5 6.5 2007-0730 I7-I9 2-Jul-07 12:05 0.01 14.8 14.8 2007-0712 transplant I7-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 7 2007-0713 transplant I7-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 2 2007-0714 transplant I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 2 2007-0715 transplant I8-I9 @ I7-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 5 2007-0716 transplant I8-I9 @ I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 6 2007-0717 transplant I8-I9 @ I7-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 7 2007-0725 transplant I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 2 2007-0727 transplant I8-I9 B 2-Jul-07 13:00 0.01	07-0336	Toolik Main	29-Jun-07	10:43	12	6.5	6.5	1.52
2007-0730 I7-I9 2-Jul-07 12:05 0.01 14.8 14.8 2007-0712 transplant I7-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 7 2007-0713 transplant I7-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 14.8 2007-0714 transplant I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 14.8 2007-0715 transplant I8-I9 @ I7-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 14.8 2007-0716 transplant I8-I9 @ I7-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 14.8 2007-0717 transplant I8-I9 @ I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 14.8 2007-0717 transplant I8-I9 @ I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 14.8 2007-0725 transplant I8-I9 @ Z-Jul-07 13:00 0.01 16.3 16.3 2 2007-0728 transplant I7-I9 @ I8-I9 A 2-Jul-0	07-0337	I oolik Main	29-Jun-07	10:59	16	6.5	6.5	2.22
2007-0712 transplant 17-19 A 2-Jul-07 12:05 0.01 14.8 14.8 7 2007-0713 transplant 17-19 B 2-Jul-07 12:05 0.01 14.8 14.8 2 2007-0714 transplant 17-19 C 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0715 transplant 18-19 @ 17-19 A 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0716 transplant 18-19 @ 17-19 B 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0717 transplant 18-19 @ 17-19 C 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0731 18-19 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0725 transplant 18-19 A 2-Jul-07 13:00 0.01 16.3 16.3 7 2007-0726 transplant 18-19 C 2-Jul-07 13:00 0.01 16.3 16.3 1 2007-0728 transplant 17-19 @ 18-19 A <	07-0730	17-19	2-Jul-07	12:05	0.01	14.8	14.8	1.53
2007-0713 transplant I7-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 2 2007-0714 transplant I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0715 transplant I8-I9 @ I7-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 5 2007-0716 transplant I8-I9 @ I7-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 6 2007-0717 transplant I8-I9 @ I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 14 2007-0731 I8-I9 2-Jul-07 12:05 0.01 14.8 14.8 14 2007-0725 transplant I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 7 2007-0726 transplant I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 2 2007-0728 transplant I7-I9 @ I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 3 2007-0729 transplant I7-I9 @ I8-I9 C	07-0712	transplant I7-I9 A	2-Jul-07	12:05	0.01	14.8	14.8	74.57
2007-0714 transplant I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0715 transplant I8-I9 @ I7-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 5 2007-0716 transplant I8-I9 @ I7-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 66 2007-0717 transplant I8-I9 @ I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 14 2007-0731 I8-I9 2-Jul-07 13:00 0.01 16.3 16.3 7 2007-0726 transplant I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 8 2007-0726 transplant I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 8 2007-0727 transplant I8-I9 B 2-Jul-07 13:00 0.01 16.3 16.3 4 2007-0728 transplant I7-I9 @ I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 3 2007-0732 transplant I7-I9 @ I8-I9 C	07-0713	transplant I7-I9 B	2-Jul-07	12:05	0.01	14.8	14.8	26.22
2007-0715 transplant I8-I9 @ I7-I9 A 2-Jul-07 12:05 0.01 14.8 14.8 5 2007-0716 transplant I8-I9 @ I7-I9 B 2-Jul-07 12:05 0.01 14.8 14.8 66 2007-0717 transplant I8-I9 @ I7-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 14.8 14.8 2007-0717 transplant I8-I9 @ I7-I9 C 2-Jul-07 13:00 0.01 16.3 14.8 14.8 2007-0725 transplant I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 7 2007-0726 transplant I8-I9 B 2-Jul-07 13:00 0.01 16.3 16.3 8 2007-0727 transplant I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 2 2007-0728 transplant I7-I9 @ I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 3 2007-0723 transplant I7-I9 @ I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 3 20	07-0714	transplant I7-I9 C	2-Jul-07	12:05	0.01	14.8	14.8	17.30
2007-0716transplant I8-I9 @ I7-I9 B2-Jul-0712:050.0114.814.8662007-0717transplant I8-I9 @ I7-I9 C2-Jul-0712:050.0114.814.812007-0731I8-I92-Jul-0713:000.0116.314.812007-0725transplant I8-I9 A2-Jul-0713:000.0116.316.372007-0726transplant I8-I9 B2-Jul-0713:000.0116.316.382007-0727transplant I8-I9 C2-Jul-0713:000.0116.316.322007-0728transplant I7-I9 @ I8-I9 A2-Jul-0713:000.0116.316.342007-0729transplant I7-I9 @ I8-I9 B2-Jul-0713:000.0116.316.312007-0723transplant I7-I9 @ I8-I9 C2-Jul-0713:000.0116.316.332007-0732I8 inlet2-Jul-0713:000.0116.316.332007-0733I8 outlet2-Jul-0717:230.0117.617.02007-0751I8 inlet4-Jul-079:550.0113.913.922007-0754transplant I8-in /in A4-Jul-0710:150.0113.913.922007-0754transplant I8-in C4-Jul-0710:150.0113.913.912007-0755transplant I8-out at in A4-Jul-0710:150.0113.913.912007-0762tra	07-0715	transplant I8-I9 @ I7-I9 A	2-Jul-07	12:05	0.01	14.8	14.8	51.82
2007-0717 transplant I8-I9 0 17-I9 C 2-Jul-07 12:05 0.01 14.8 14.8 1 2007-0731 I8-I9 2-Jul-07 13:00 0.01 16.3 14.8 1 2007-0725 transplant I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 7 2007-0726 transplant I8-I9 B 2-Jul-07 13:00 0.01 16.3 16.3 8 2007-0727 transplant I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 8 2007-0728 transplant I7-I9 @ I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 4 2007-0729 transplant I7-I9 @ I8-I9 B 2-Jul-07 13:00 0.01 16.3 16.3 16 2007-0723 transplant I7-I9 @ I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 3 2007-0732 I8 inlet 2-Jul-07 15:55 0.01 17.6 17.0 2007-0751 I8 inlet </td <td>07-0716</td> <td>transplant 18-19 @ 17-19 B</td> <td>2-Jul-07</td> <td>12:05</td> <td>0.01</td> <td>14.8</td> <td>14.8</td> <td>62.61</td>	07-0716	transplant 18-19 @ 17-19 B	2-Jul-07	12:05	0.01	14.8	14.8	62.61
2007-0731I8-I92-Jul-0713:000.0116.314.82007-0725transplant I8-I9 A2-Jul-0713:000.0116.316.372007-0726transplant I8-I9 B2-Jul-0713:000.0116.316.382007-0727transplant I8-I9 C2-Jul-0713:000.0116.316.382007-0728transplant I7-I9 @ I8-I9 A2-Jul-0713:000.0116.316.342007-0729transplant I7-I9 @ I8-I9 B2-Jul-0713:000.0116.316.342007-0723transplant I7-I9 @ I8-I9 C2-Jul-0713:000.0116.316.332007-0732I8 inlet2-Jul-0715:550.0117.617.02007-0733I8 outlet2-Jul-0717:230.0116.817.012007-0751I8 inlet4-Jul-079:550.0113.913.922007-0754transplant I8-in/in A4-Jul-0710:150.0113.913.922007-0755transplant I8-in C4-Jul-0710:150.0113.913.912007-0762transplant I8-out at in A4-Jul-0710:150.0113.913.91)7-0717	transplant I8-I9 @ I7-I9 C	2-Jul-07	12:05	0.01	14.8	14.8	16.16
2007-0725transplant I8-I9 A2-Jul-0713:000.0116.316.372007-0726transplant I8-I9 B2-Jul-0713:000.0116.316.382007-0727transplant I8-I9 C2-Jul-0713:000.0116.316.322007-0728transplant I7-I9 @ I8-I9 A2-Jul-0713:000.0116.316.342007-0729transplant I7-I9 @ I8-I9 B2-Jul-0713:000.0116.316.312007-0723transplant I7-I9 @ I8-I9 C2-Jul-0713:000.0116.316.332007-0732transplant I7-I9 @ I8-I9 C2-Jul-0713:000.0116.316.332007-0732transplant I7-I9 @ I8-I9 C2-Jul-0715:550.0117.617.02007-0733I8 inlet2-Jul-0715:550.0117.617.02007-0751I8 inlet4-Jul-079:550.0113.913.92007-0753transplant I8-in/in A4-Jul-0710:150.0113.913.92007-0754transplant I8-in B4-Jul-0710:150.0113.913.92007-0755transplant I8-in C4-Jul-0710:150.0113.913.92007-0762transplant I8-out at in A4-Jul-0710:150.0113.913.92007-0762transplant I8-out at in A4-Jul-0710:150.0113.913.9	07-0731	18-19	2-Jul-07	13:00	0.01	16.3	14.8	0.89
2007-0726 transplant I8-I9 B 2-Jul-07 13:00 0.01 16.3 16.3 88 2007-0727 transplant I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 20 2007-0728 transplant I7-I9 @ I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 20 2007-0728 transplant I7-I9 @ I8-I9 B 2-Jul-07 13:00 0.01 16.3 16.3 4 2007-0729 transplant I7-I9 @ I8-I9 B 2-Jul-07 13:00 0.01 16.3 33 2007-0723 transplant I7-I9 @ I8-I9 C 2-Jul-07 15:55 0.01 17.6 17.0 17.0 2007-0733 I8 outlet 2-Jul-07 17:23 0.01 16.8 17.0 1 2007-0753 transplant I8-in/in A 4-Jul-07 10:15<	07-0725	transplant I8-I9 A	2-Jul-07	13:00	0.01	16.3	16.3	78.34
2007-0727 transplant I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 2 2007-0728 transplant I7-I9 @ I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 4 2007-0729 transplant I7-I9 @ I8-I9 B 2-Jul-07 13:00 0.01 16.3 16.3 4 2007-0729 transplant I7-I9 @ I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 1 2007-0723 transplant I7-I9 @ I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 3 2007-0723 transplant I7-I9 @ I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 3 2007-0732 I8 inlet 2-Jul-07 15:55 0.01 17.6 17.0 2007-0733 I8 outlet 2-Jul-07 17:23 0.01 16.8 17.0 1 2007-0751 I8 inlet 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0754 transplant I8-in R 4-Jul-07 <t< td=""><td>07-0726</td><td>transplant I8-I9 B</td><td>2-Jul-07</td><td>13:00</td><td>0.01</td><td>16.3</td><td>16.3</td><td>86.88</td></t<>	07-0726	transplant I8-I9 B	2-Jul-07	13:00	0.01	16.3	16.3	86.88
2007-0728 transplant I7-I9 @ I8-I9 A 2-Jul-07 13:00 0.01 16.3 16.3 4 2007-0729 transplant I7-I9 @ I8-I9 B 2-Jul-07 13:00 0.01 16.3 16.3 1 2007-0729 transplant I7-I9 @ I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 1 2007-0723 transplant I7-I9 @ I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 3 2007-0732 I8 inlet 2-Jul-07 15:55 0.01 17.6 17.0 1 2007-0733 I8 outlet 2-Jul-07 17:23 0.01 16.8 17.0 1 2007-0751 I8 inlet 4-Jul-07 9:55 0.01 13.9 13.9 2 2007-0753 transplant I8-in/in A 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0754 transplant I8-in B 4-Jul-07 10:15 0.01 13.9 13.9 2007-0755 transplant I8-in C 4-Jul-07 10:1	07-0727	transplant 18-19 C	2-Jul-07	13:00	0.01	16.3	16.3	20.26
2007-0729 transplant I7-I9 @ I8-I9 B 2-Jul-07 13:00 0.01 16.3 16.3 1 2007-0723 transplant I7-I9 @ I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 3 2007-0723 transplant I7-I9 @ I8-I9 C 2-Jul-07 15:55 0.01 17.6 17.0 2007-0732 I8 inlet 2-Jul-07 17:23 0.01 16.8 17.0 2007-0733 I8 outlet 2-Jul-07 17:23 0.01 16.8 17.0 1 2007-0751 I8 inlet 4-Jul-07 9:55 0.01 13.9 13.9 2 2007-0753 transplant I8-in/in A 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0754 transplant I8-in B 4-Jul-07 10:15 0.01 13.9 13.9 2007-0755 transplant I8-in C 4-Jul-07 10:15 0.01 13.9 13.9 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9	07-0728	transplant 17-19 @ 18-19 A	2-Jul-07	13:00	0.01	16.3	16.3	46.10
2007-0723 transplant I7-I9 @ I8-I9 C 2-Jul-07 13:00 0.01 16.3 16.3 33 2007-0732 I8 inlet 2-Jul-07 15:55 0.01 17.6 17.0 17.0 2007-0733 I8 outlet 2-Jul-07 17:23 0.01 16.8 17.0 1 2007-0733 I8 outlet 2-Jul-07 17:23 0.01 16.8 17.0 1 2007-0753 I8 inlet 4-Jul-07 9:55 0.01 13.9 13.9 2 2007-0753 transplant I8-in/in A 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0754 transplant I8-in B 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0755 transplant I8-in C 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9 1	07-0729	transplant I7-I9 @ I8-I9 B	2-Jul-07	13:00	0.01	16.3	16.3	19.51
2007-0732 I8 inlet 2-Jul-07 15:55 0.01 17.6 17.0 2007-0733 I8 outlet 2-Jul-07 17:23 0.01 16.8 17.0 1 2007-0733 I8 outlet 2-Jul-07 17:23 0.01 16.8 17.0 1 2007-0751 I8 inlet 4-Jul-07 9:55 0.01 13.9 13.9 2007-0753 transplant I8-in/in A 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0754 transplant I8-in B 4-Jul-07 10:15 0.01 13.9 13.9 2007-0755 transplant I8-in C 4-Jul-07 10:15 0.01 13.9 13.9 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9	07-0723	transplant I7-I9 @ I8-I9 C	2-Jul-07	13:00	0.01	16.3	16.3	34.01
2007-0733 I8 outlet 2-Jul-07 17:23 0.01 16.8 17.0 1 2007-0751 I8 inlet 4-Jul-07 9:55 0.01 13.9 13.9 2007-0753 transplant I8-in/in A 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0754 transplant I8-in B 4-Jul-07 10:15 0.01 13.9 13.9 2007-0755 transplant I8-in C 4-Jul-07 10:15 0.01 13.9 13.9 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9	07-0732	18 inlet	2-Jul-07	15:55	0.01	17.6	17.0	7.15
2007-0751 I8 inlet 4-Jul-07 9:55 0.01 13.9 13.9 2007-0753 transplant I8-in/in A 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0753 transplant I8-in/in A 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0754 transplant I8-in B 4-Jul-07 10:15 0.01 13.9 13.9 2007-0755 transplant I8-in C 4-Jul-07 10:15 0.01 13.9 13.9 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9	07-0733	18 outlet	2-Jul-07	17:23	0.01	16.8	17.0	15.39
2007-0753 transplant I8-in/in A 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0754 transplant I8-in B 4-Jul-07 10:15 0.01 13.9 13.9 2 2007-0755 transplant I8-in C 4-Jul-07 10:15 0.01 13.9 13.9 2007-0755 transplant I8-in C 4-Jul-07 10:15 0.01 13.9 13.9 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9 1	07-0751	18 inlet	4-Jul-07	9:55	0.01	13.9	13.9	2.69
2007-0754 transplant I8-in B 4-Jul-07 10:15 0.01 13.9 13.9 2007-0755 transplant I8-in C 4-Jul-07 10:15 0.01 13.9 13.9 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9	07-0753	transplant I8-in/in A	4-Jul-07	10:15	0.01	13.9	13.9	20.57
2007-0755 transplant I8-in C 4-Jul-07 10:15 0.01 13.9 13.9 2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9 1	07-0754	transplant I8-in B	4-Jul-07	10:15	0.01	13.9	13.9	9.28
2007-0762 transplant I8-out at in A 4-Jul-07 10:15 0.01 13.9 13.9 1	07-0755	transplant I8-in C	4-Jul-07	10:15	0.01	13.9	13.9	9.91
	07-0762	transplant I8-out at in A	4-Jul-07	10:15	0.01	13.9	13.9	12.98
2007-0763 transplant I8-out at in B 4-Jul-07 10:15 0.01 13.9 13.9 13.9	07-0763	transplant I8-out at in B	4-Jul-07	10:15	0.01	13.9	13.9	7.86
2007-0764 transplant I8-out at in C 4-Jul-07 10:15 0.01 13.9 13.9	07-0764	transplant I8-out at in C	4-Jul-07	10:15	0.01	13.9	13.9	5.73
2007-0752 I8 outlet 4-Jul-07 11:00 0.01 18.4 13.9)7-0752	I8 outlet	4-Jul-07	11:00	0.01	18.4	13.9	2.68
2007-0759 transplant I8-out A 4-Jul-07 11:20 0.01 18.4 18.4 4	07-0759	transplant I8-out A	4-Jul-07	11:20	0.01	18.4	18.4	41.51
2007-0760 transplant I8-out B 4-Jul-07 11:20 0.01 18.4 18.4 3	07-0760	transplant I8-out B	4-Jul-07	11:20	0.01	18.4	18.4	38.00
2007-0761 transplant I8-out C 4-Jul-07 11:20 0.01 18.4 18.4 7	07-0761	transplant I8-out C	4-Jul-07	11:20	0.01	18.4	18.4	70.85
2007-0756 transplant I8-in at out A 4-Jul-07 11:20 0.01 18.4 18.4 9	07-0756	transplant I8-in at out A	4-Jul-07	11:20	0.01	18.4	18.4	96.99
2007-0757 transplant I8-in at out B 4-Jul-07 11:20 0.01 18.4 18.4 2	07-0757	transplant I8-in at out B	4-Jul-07	11:20	0.01	18.4	18.4	23.17
2007-0758 transplant I8-in at out C 4-Jul-07 11:20 0.01 18.4 18.4 2	07-0758	transplant I8-in at out C	4-Jul-07	11:20	0.01	18.4	18.4	20.04
2007-0384 I7-I9 6-Jul-07 10:10 0.01 15.9 15.9	07-0384	17-19	6-Jul-07	10:10	0.01	15.9	15.9	2.68
2007-0383 I8-I9 6-Jul-07 10:30 0.01 16.2 15.9	07-0383	18-19	6-Jul-07	10:30	0.01	16.2	15.9	1.97
2007-0380 Toolik Inlet 6-Jul-07 13:22 0.01 15.5 15.5	07-0380	Toolik Inlet	6-Jul-07	13:22	0.01	15.5	15.5	4.13
2007-0389 Toolik Main 6-Jul-07 9:50 1 17.4 17.4 1	07-0389	Toolik Main	6-Jul-07	9:50	1	17.4	17.4	12.23
2007-0390 Toolik Main 6-Jul-07 10:26 3 16.1 17.4 1	07-0390	Toolik Main	6-Jul-07	10:26	3	16.1	17.4	18.21
2007-0391 Toolik Main 6-Jul-07 10:37 5 11.0 13.5	07-0391	Toolik Main	6-Jul-07	10:37	5	11.0	13.5	6.10
2007-0392 Toolik Main 6-Jul-07 10:47 8 6.5 13.5	07-0392	Toolik Main	6-Jul-07	10:47	8	6.5	13.5	5.22
2007-0393 Toolik Main 6-Jul-07 10:58 12 5.2 7.6	07-0393	Toolik Main	6-Jul-07	10:58	12	5.2	7.6	2.85
2007-0394 Toolik Main 6-Jul-07 11:04 16 5.2 7.6	07-0394	Toolik Main	6-Jul-07	11.04	16	5.2	7.6	5 53
2007-0401 11-13 10-101-07 8:40 0.01 11.1 10.6 5	07-0401	11-13	10-101-07	R•∕/∩	0.01	11 1	10.6	5.55
	07-0300	12-13	10-101-07	8.40	0.01	10.6	10.0	6 13
	29	12	10-101-07	0.40	0.01	17.0	10.0	1 02
2007-0413 I8 HW 10-1627 10.25 0.01 12.9 12.9	0.0 07-0/12	18 HW/	10-301-07	3.47 10.25	0.01	17.9	10.4	נט.ו דס דר
lakee 11 10-10107 10.23 0.01 12.0 12.0 2	20	11	10-301-07	11.20	0.01	12.0	12.0	21.01

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
lakes	13	10-Jul-07	12:39	1	18.5	19.2	5.41
lakes	14	11-Jul-07	9:24	1	18.1	18.5	5.80
2007-0407	I6 HW in	11-Jul-07	10:05	0.01	6.8	7.4	0.55
2007-0404	14-15	11-Jul-07	10:30	0.01	14.2	15.7	10.76
lakes	15	11-Jul-07	10:30	1	17.7	15.7	2.29
2007-0406	15-16	11-Jul-07	12:49	0.01	13.5	13.5	6.04
lakes	I6 HW	11-Jul-07	12:49	1	17.7	18.5	4.50
2007-0410	I6 W in	11-Jul-07	12:49	0.01	13.2	13.5	7.34
lakes	16	11-Jul-07	13:20	1	17.6	18.5	4.21
lakes	17	11-Jul-07	14:06	1	17.7	18.1	7.77
2007-0414	18 inlet	11-Jul-07	15:10	0.01	14.8	14.8	1.44
lakes	18	11-Jul-07	15:20	1	17.9	18.5	10.90
2007-0419	I swamp in	11-Jul-07	15:55	0.01	16.0	16.0	4.88
lakes	I swamp	11-Jul-07	16:03	1	17.9	18.3	10.55
2007-0415	I8 outlet	11-Jul-07	16:45	0.01	18.2	18.3	2.38
2007-0412	17-19	11-Jul-07	16:52	0.01	17.9	16.0	5.39
2007-0416	18-19	11-Jul-07	16:59	0.01	19.8	18.5	7.54
2007-0417	MWL	11-Jul-07	17:28	0.01	13.5	13.5	1.41
2007-0421	Toolik Inlet	11-Jul-07	17:50	0.01	16.1	16.1	3.97
2007-0425	Toolik Main	13-Jul-07	10:05	1	17.3	17.3	10.44
2007-0426	Toolik Main	13-Jul-07	10:31	3	17.0	17.3	9.22
2007-0427	Toolik Main	13-Jul-07	10:50	5	11.2	11.2	4.78
2007-0428	Toolik Main	13-Jul-07	11:00	8	7.2	7.2	1.65
2007-0429	Toolik Main	13-Jul-07	11:09	12	5.8	5.8	0.73
2007-0430	Toolik Main	13-Jul-07	11:15	16	5.2	5.8	0.70
2007-0830	I8 NE inlet	20-Jul-07	9:20	0.01	6.8	6.8	1.09
2007-0829	I8 SE inlet	20-Jul-07	9:54	0.01	10.1	9.2	1.30
2007-0828	I8 S Inlet	20-Jul-07	10:14	0.01	9.2	9.2	0.97
2007-0473	18 inlet	20-Jul-07	10:57	0.01	13.5	13.5	3.03
2007-0474	I8 outlet	20-Jul-07	11:44	0.01	16.9	16.9	12.11
2007-0472	17 into 19	20-Jul-07	12:23	0.01	15.8	17.8	5.29
2007-0471	18 into 19	20-Jul-07	12:26	0.01	17.8	17.8	6.95
2007-0468	Toolik Inlet	20-Jul-07	13:37	0.01	16.5	16.5	0.34
2007-0477	Toolik Main	20-Jul-07	10:25	1	17.4	17.4	0.66
2007-0478	Toolik Main	20-Jul-07	10:35	3	17.3	17.4	6.74
2007-0479	Toolik Main	20-Jul-07	10:47	5	13.1	13.1	4.69
2007-0480	Toolik Main	20-Jul-07	10:57	8	7.5	7.5	2.17
2007-0481	Toolik Main	20-Jul-07	11:08	12	5.8	5.3	1.03
2007-0482	Toolik Main	20-Jul-07	11:25	16	5.3	5.3	0.87
2007-0517	18 inlet	27-Jul-07	10:05	0.01	11.9	11.9	1.71
2007-0518	I8 outlet	27-Jul-07	10:50	0.01	16.9	16.9	11.86
2007-0516	I7 into I9	27-Jul-07	11:40	0.01	14.4	11.9	3.00
2007-0515	18 into 19	27-Jul-07	11:40	0.01	14.8	16.9	1.89
2007-0512	Toolik Inlet	27-Jul-07	13:07	0.01	14.9	15.4	3.57
2007-0521	Toolik Main	27-Jul-07	9:40	1	17.0	16.9	2.45
2007-0522	Toolik Main	27-Jul-07	10:08	3	16.9	16.9	4.39
2007-0523	Toolik Main	27-Jul-07	10:22	5	14.8	14.8	1.80
2007-0524	Toolik Main	27-Jul-07	10:39	8	7.5	7.5	2.84

			Time		Water	Incubation	Bacterial
sortchem	Site	Date	received	Depth	temp.	temp.	Production
			(hr)	(m)	(deg C)	(deg C)	(ug C L/day)
2007-0525	Toolik Main	27-Jul-07	10:52	12	5.6	5.3	1.68
2007-0526	Toolik Main	27-Jul-07	10:59	16	5.3	5.3	1.73
2007-0302	Toolik Inlet	2-Aug-07	11:45	0.5	14.0	14.0	8.61
2007-0559	18 outlet	3-Aug-07	10:20	0.01	15.1	15.1	4.69
2007-0908	I8 NE inlet	3-Aug-07	11:12	0.01	7.6	7.6	1.50
2007-0909	18 SE inlet	3-Aug-07	11:58	0.01	10.8	10.8	2.50
2007-0910	I8 S inlet	3-Aug-07	12:37	0.01	9.8	9.8	1.21
2007-0558	18 inlet	3-Aug-07	13:00	0.01	10.8	9.4	2.33
2007-0557	I7 into I9	3-Aug-07	13:45	0.01	16.1	16.1	16.48
2007-0556	18 into 19	3-Aug-07	13:45	0.01	15.6	16.1	9.33
2007-0553	Toolik Inlet	3-Aug-07	15:55	0.01	15.3	15.3	8.56
2007-0562	Toolik Main	3-Aug-07	10:11	1	15.7	16.0	5.46
2007-0563	Toolik Main	3-Aug-07	10:19	3	15.6	16.0	5.76
2007-0564	Toolik Main	3-Aug-07	10:25	5	15.2	10.0	5.21
2007-0565	Toolik Main	3-Aug-07	10:36	8	7.7	10.0	3.47
2007-0566	Toolik Main	3-Aug-07	10:42	12	5.8	5.2	2.25
2007-0567	Toolik Main	3-Aug-07	10:49	16	5.2	5.2	3.11
2007-0581	I1 into I3	7-Aug-07	9:45	0.01	11.7	11.7	1.62
2007-0583	I2 into I3	7-Aug-07	9:45	0.01	9.1	11.7	1.29
lakes	12	7-Aug-07	10:30	1	13.7	13.8	0.98
2007-0595	I8 HW	7-Aug-07	11:40	0.01	4.9	4.9	0.86
lakes	11	7-Aug-07	11:40	1	14.2	14.5	2.63
lakes	13	7-Aug-07	12:30	1	13.3	13.8	4.87
lakes	14	7-Aug-07	13:30	1	13.8	13.8	6.72
lakes	I6 HW	7-Aug-07	15:00	1	13.7	13.7	3.09
2007-0586	I4 into I5	7-Aug-07	16:00	0.01	13.0	13.7	8.90
lakes	15	7-Aug-07	17:25	1	14.3	16.0	4.99
2007-0589	I6 HW inlet	7-Aug-07	17:25	0.01	8.7	8.5	1.68
lakes	16	8-Aug-07	9:20	1	0.0	0.0	3.15
2007-0588	I5 into I6	8-Aug-07	10:05	0.01	11.1	11.1	2.90
2007-0592	I6 west inlet	8-Aug-07	10:05	0.01	5.8	5.8	0.90
lakes	17	8-Aug-07	10:30	1	13.3	13.3	3.91
2007-0596	18 inlet	8-Aug-07	11:50	0.01	7.8	7.8	0.66
lakes	18	8-Aug-07	12:32	1	10.6	10.4	3.88
2007-0597	18 outlet	8-Aug-07	12:32	0.01	10.4	10.4	3.97
2007-0601	I swamp inlet	8-Aug-07	13:25	0.01	12.3	11.2	2.13
lakes	I swamp	8-Aug-07	13:25	1	11.1	11.1	4.71
2007-0594	I7 into I9	8-Aug-07	14:50	0.01	12.0	12.0	4.81
2007-0598	18 into 19	8-Aug-07	14:50	0.01	11.4	12.0	5.77
2007-0599	Milky Way Lower	8-Aug-07	15:31	0.01	8.5	8.5	3.17
2007-0603	Toolik Inlet	8-Aug-07	16:09	0.01	11.9	11.9	6.20
2007-0607	Toolik Main	9-Aug-07	14:35	1	14.2	14.2	5.29
2007-0608	Toolik Main	9-Aug-07	14:46	3	14.0	14.2	6.25
2007-0609	Toolik Main	9-Aug-07	15:00	5	13.3	13.3	7.27
2007-0610	Toolik Main	9-Aug-07	15:12	8	7.9	7.9	2.83
2007-0611	Toolik Main	9-Aug-07	15:29	12	5.8	5.8	1.72
2007-0612	Toolik Main	9-Aug-07	15:40	16	5.4	5.4	2.00

Appendix	Appendix B. Dissolved Organic Matter for summers 2004-2007										
Sortchem	Site	Date	Time	Temperature (deg C)	DOM (UV abs)	DOC (uM)	Total Proteins (mg/L)	Total Phenolics (uM)	Phaeophytin corrected chl a (ug chl a/L)	Activity Phenol Oxidase (umol/h/mL)	Activity Peroxidase (umol/h/mL)
2004-0649	18 Inlet	15-Jun-04	10:30	14.30	41.3	260.8	0.05	0.83	0.16	0.002	0.002
2004-0650	18 Outlet	15-Jun-04	12:00	10.60	59.6	302.3	0.29	0.86	2.02	0.001	0.000
2004-0134	17-19	18-Jun-04	14:03	15.00	57.7	339.1	0.31	0.86	0.40	0.001	0.000
2004-0133	18-19	18-Jun-04	14:42	15.40	51.8	284.1	0.21	0.87	0.37	0.002	0.000
2004-0130	Toolik Inlet	18-Jun-04	16:40	14.50	44.5	723.4	0.17	0.84	0.51	0.001	0.000
2004-0169	17-19	23-Jun-04	14:45	17.60	59.3	351	0.29	0.88	0.28	0.002	0.000
2004-0173	18-19	23-Jun-04	14:45	17.30	44.0	286.3	0.16	0.84	0.42	0.002	0.000
2004-0178	Toolik Inlet	23-Jun-04	16:30	14.50	42.2	272	0.11	0.82	0.29	0.002	0.001
2004-0183	17-19	25-Jun-04		15.00	56.4	342.5	0.23	0.88	0.23	0.006	0.004
2004-0182	18-19	25-Jun-04		14.10	40.3	262	0.17	0.82	0.45	0.006	-0.002
2004-0179	Toolik Inlet	25-Jun-04	10.05	14.80	39.7	257.7	0.16	0.83	0.25	0.002	0.003
2004-0686	Toolik Inlet	28-Jun-04	10:05	14.90	40.5	257.9	0.17	0.84	1.48	0.022	0.018
2004-0687	Toolik Outlet	28-Jun-04	11:00	15.20	68.4	384.4	0.16	0.96	0.68	0.002	0.000
2004-0713	18 Inlet	29-Jun-04	10:15	13.40	40.1	296.1	0.01	0.85	0.56	0.001	0.000
2004-0714	18 Outlet	29-Jun-04	11:00	17.50	53.8	321.2	0.31	0.84	0.42	0.001	0.000
2004-0242	17-19	2-Jul-04	9:57	9.30	58.7	359.4	0.15	0.84	0.42	0.002	0.000
2004-0241	18-19 Taalih halat	2-Jul-04	10:09	17.00	41.7	259.5	0.14	0.77	0.66	0.002	0.000
2004-0238		2-Jul-04	11:55	16.10	35.3	245.9	0.11	0.77	0.50	0.001	0.000
2004-0770		5-Jul-04	14:10	12.20	32.8	200.3	0.02	0.76	0.17	0.002	-0.001
2004-0771	18 Outlet	5-JUI-04	15:00	17.80	52.9	316	0.22	0.82	0.51	0.002	0.000
2004-0300	17-19	9-Jul-04	10:45	11.40	67.1	391.8	0.36	0.88	0.69	0.002	0.000
2004-0299	18-19 Taalik kalat	9-Jul-04	10:20	12.60	54.0	316.8	0.22	0.83	1.52	0.001	0.000
2004-0296		9-Jul-04	13:00	10.90	53.9	323.8	0.27	0.84	1.34	0.002	0.001
2004-0337		14-Jul-04	11:50	10.40	113.1	551.3	0.44	1.01	0.06	0.003	0.000
2004-0338		14-Jul-04	12:05	11.80	140.1	627.3	0.56	1.13	0.26	0.002	0.000
2004-0335	17-19	14-Jul-04	14:55	14.40	89.3	491.3	0.41	0.96	0.23	0.001	0.000
2004-0339	18-19 Taalik kalat	14-JUI-04	14:50	12.30	133.2	614.6	0.57	1.12	0.37	0.002	0.000
2004-0344		14-Jul-04	10:10	13.40	108.3	516.6	0.37	1.01	0.49	0.001	0.000
2004-1086		19-Jul-04	12:20	0.30	100.9	707.9 601.0	0.00	0.95	0.31	0.002	0.000
2004-1007	Toolik Outlot	22 101 04	12.30	15.00	127.2	445.4	0.77	0.05	1.40	0.002	0.000
2004-1118		22-Jul-04	11.26	14.70	101.5	445.4	0.00	0.71	0.28	0.001	0.000
2004-0408	17-19	23-Jul-04	10.50	12.60	120.0	499.4	0.00	0.75	0.20	0.001	0.000
2004-0407	Toolik Inlet	23-Jul-04	12.33	13.70	01.1	520.7	0.90	0.01	0.42	0.001	0.000
2004-0404	Toolik Inlet	20-04-04	10.20	14.20	90.7	320.7	0.74	0.71	0.25	0.001	0.000
2004-1171		26- Jul-04	9.40	15 00	80 2	414 434 A	0.01	0.71		0.001	0.000
2004-1178	18 Inlet	28-Jul-04	12.00	9.80	83.5	456.4	0.65	0.60	0 20	0.001	0.000
2004-1170		28- Jul-04	13.00	13.00	112 3	550.9	0.00	0.03	0.62	0.001	0.000
2004-0466	17-19	30-Jul-04	10.00	12 70	91 A	509.2	0.70	0.02	0.02	0.001	0.000
2004-0465	18-19	30 lul-04		12.70	105.6	536	0.73	0.72	0.20	0.001	0.000
2004-0462	Toolik Inlet	30-Jul-04		12.10	93.6	496	0.42	0.76	0.26	0.002	0.000
2004-0503	18 In	4-Aug-04	14:15	10.50	141.6	656.5	0.60	0.92	0.06	0.003	0.000

Sortchem	Site	Date	Time	Temperature (deg C)	DOM (UV abs)	DOC (uM)	Total Proteins (mg/L)	Total Phenolics (uM)	Phaeophytin corrected chl a (ug chl a/L)	Activity Phenol Oxidase (umol/h/mL)	Activity Peroxidase (umol/h/mL)
2004-0504	l8 Out	4-Aug-04	14:30	8.50	135.6	635.4	0.64	0.90	0.48	0.001	0.000
2004-0501	17-19	4-Aug-04	17:20	13.00	122.3	601.7	0.67	0.86	0.56	0.001	0.000
2004-0505	18-19	4-Aug-04	17:25	9.40	134.1	622.9	0.60	0.91	0.36	0.000	0.000
2004-0510	Toolik Inlet	4-Aug-04	18:05	10.70	123.3	594.3	0.52	0.92	0.39	0.001	0.000
2004-0515	17-19	6-Aug-04	10:37	12.60	100.7	517.6	0.61	0.62	0.56	0.001	0.000
2004-0514	18-19	6-Aug-04	10:14	10.90	122.1	572.4	0.80	0.66	0.37	0.001	0.000
2004-0511	Toolik Inlet	6-Aug-04	11:57	13.70	106.7	524	0.72	0.63	0.55	0.001	0.000
2004-1326	18 Inlet	9-Aug-04	10:55	11.20	94.0	563.9	0.55	0.57	0.13	0.001	0.000
2004-1327	18 Outlet	9-Aug-04	12:00	11.50	123.3	640.9	0.71	0.67	0.56	0.001	0.000
2004-1404	Toolik Inlet	11-Aug-04	14:50	13.90	95.6	541.3	0.59	0.59	0.48	0.001	0.000
2004-1405	Toolik Outlet	11-Aug-04	14:30	13.50	88.7	519.5	0.46	0.59	0.97	0.001	0.000
2004-1379	Toolik Outlet	12-Aug-04		0.00	84.5	551.5	0.57	0.56	1.29	0.001	0.000
2004-0574	17-19	13-Aug-04		13.00	93.5	476	0.57	0.66	0.54	0.001	0.000
2004-0573	18-19	13-Aug-04		12.10	106.0		0.49	0.61	0.79	0.001	0.000
2004-0570	Toolik Inlet	13-Aug-04		13.10	88.0	466.5	0.52	0.55	0.54	0.001	0.000
2004-1511	18 Inlet	16-Aug-04			113.7	714.8	0.60	0.60	0.16	0.002	0.000
2004-1512	18 Outlet	16-Aug-04			112.2	684.3	0.62	0.63	1.04	0.001	0.000

2005-0817 IB-in 21-Jun-05 14:30 46.0 0.048 314.1 0.582 0.32 0.1817 2005-0230 I7-I9 24-Jun-05 13:30 61.7 0.054 34.94 0.680 0.481 7.98 2005-0220 IR-I9 24-Jun-05 13:30 61.7 0.054 34.94 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.65 1.50 51.1 0.045 33.7 0.527 0.647 0.32 0.1505 2005-0267 I8 in 29-Jun-05 12:15 38.6 0.019 29.56 0.60 0.199 0.435 0.07 0.1979 2005-0247 IR-I9 29-Jun-05 15:55 50.2 203.6 0.425 0.30 1.660 2005-0247 I7-I9 1-Jul-05 11:30 49.1 286.3 0.401 0.03 2004 203.0 0.44 0.03 2005-0247 I8 in 5-Jul-05 13:26 37.1	Sortchem	Site	Date	Time	DOM (UV abs)	abs@440nm	DOC (nM)	Total Proteins (mg/L)	Total Phenolics (uM)	Phaeophytin corrected chl a (ug chl a/L)
2005-02818 IB-out 21-Jun-05 15:40 75.6 0.054 306.9 0.80 0.48 1.7999 2005-0220 IR-19 24-Jun-05 13:30 53.5 0.049 299.6 0.771 0.30 2005-0226 Toolik Inlet 24-Jun-05 13:30 63.5 0.049 299.6 0.771 0.30 2005-0226 I8 Im 29-Jun-05 12:15 38.6 0.019 29.52 0.845 0.1794 2005-0265 IF-19 29-Jun-05 15:55 66.8 390.5 0.597 0.62 0.483 2005-0269 I8-19 29-Jun-05 17:55 50.2 293.6 0.425 0.34 1.4505 2005-0274 Toolik Inlet 1-Jul-05 11:30 65.6 367.7 0.680 0.024 0.33 2005-0296 I8-19 1-Jul-05 11:32 40.1 266.3 0.443 0.01 2005-0961 I8 out 7-Jul-05 13:20 67.6 387.4 0.290	2005-0817	18-in	21-Jun-05	14:30	46.0	0.049	314.1	0.582	0.32	0.1817
2005-0230 I7-19 24-Jun-05 13:30 61.7 0.054 349.4 0.44 0.48 2005-0226 Toolik Inlet 24-Jun-05 13:30 53.5 0.049 299.6 0.771 0.30 2005-0226 Toolik Inlet 24-Jun-05 10:50 51.1 0.045 333.7 0.527 0.28 0.1505 2005-0266 I8 nm 29-Jun-05 12:20 68.6 0.044 399.2 0.34 0.771 0.78 2005-0265 IF-19 29-Jun-05 15:55 50.8 380.5 0.597 0.62 0.443 2005-0267 Toolik Inlet 29-Jun-05 17:00 38.6 263.8 0.525 0.30 0.1674 2005-0297 I7-19 1-Jul-05 11:43 40.1 286.3 0.401 0.03 2005-0293 Toolik Inlet 1-Jul-05 11:42 40.1 286.3 0.441 0.041 2005-0294 I8 out 5-Jul-05 14:20 153.3 0.032	2005-0818	I8-out	21-Jun-05	15:40	75.6	0.045	396.9	0.809	0.48	1.7999
2005-0229 I8-19 24-Jun-05 13:30 53.5 0.049 299.6 0.771 0.30 2005-0226 Toolik Inlet 24-Jun-05 13:30 48.0 0.022 297.2 0.647 0.32 2005-0266 I8 HW 29-Jun-05 12:15 38.6 0.019 295.0 0.190 0.1794 2005-0267 I8 in 29-Jun-05 12:20 68.6 0.044 399.2 0.345 0.07 0.1979 2005-0267 I8-19 29-Jun-05 15:55 66.8 300.5 0.597 0.62 0.043 2005-0274 Toolik Inlet 29-Jun-05 17:30 49.1 266.3 0.441 0.03 2005-0274 I8-19 1-Jul-05 11:30 49.1 266.3 0.443 0.01 0.03 2005-0247 I8 in 5-Jul-05 13:20 67.6 387.4 0.290 0.04 3324 2005-0947 I8 in 7-Jul-05 14:20 153.3 0.032 756.3 <td>2005-0230</td> <td>17-19</td> <td>24-Jun-05</td> <td>13:30</td> <td>61.7</td> <td>0.054</td> <td>349.4</td> <td>0.544</td> <td>0.48</td> <td></td>	2005-0230	17-19	24-Jun-05	13:30	61.7	0.054	349.4	0.544	0.48	
2005-0226 Toolik Inlet 24-Jun-05 13:30 48.0 0.022 297.2 0.647 0.32 2005-0267 I8 in 29-Jun-05 12:15 38.6 0.019 295.6 0.527 0.28 0.1505 2005-0267 I8 out 29-Jun-05 12:15 38.6 0.044 399.2 0.345 0.07 0.1979 2005-0265 I7-19 29-Jun-05 15:55 50.2 293.6 0.425 0.441 1.4505 2005-0264 I8-19 1-Jul-05 11:30 65.6 367.7 0.880 0.33 2005-0297 I7-19 1-Jul-05 11:30 49.1 286.3 0.401 0.03 2005-0293 Toolik Inlet 1-Jul-05 11:30 49.1 286.3 0.443 0.01 2005-0294 I8 out 5-Jul-05 13:26 37.1 286.2 0.768 0.444 0.532 2005-0964 I8 out 7-Jul-05 14:20 15.30 0.032 353.4 0.25	2005-0229	18-19	24-Jun-05	13:30	53.5	0.049	299.6	0.771	0.30	
2005-0266 IB HW 28-Jun-05 10:50 51.1 0.045 333.7 0.527 0.280 0.1505 2005-0267 IB in 29-Jun-05 12:15 38.6 0.019 295.0 0.500 0.19 0.1794 2005-0268 IF-19 29-Jun-05 15:55 50.2 293.6 0.425 0.34 1.4505 2005-0269 IB-19 29-Jun-05 17:00 38.6 263.8 0.525 0.30 1.674 2005-0297 I7-19 1-Jul-05 11:30 65.6 367.7 0.680 0.03 2005-0293 Toolik Inlet 1-Jul-05 11:30 49.1 286.3 0.441 0.03 2005-0294 IB in 5-Jul-05 13:26 37.1 288.2 0.156 0.06 0.2144 2005-0944 IB out 5-Jul-05 14:20 153.3 0.022 353.1 0.405 0.324 2005-0964 IB out 7-Jul-05 14:20 73.0 0.043 354.4	2005-0226	Toolik Inlet	24-Jun-05	13:30	48.0	0.022	297.2	0.647	0.32	
2005-0267 IB in 29-Jun-05 12:15 38.6 0.019 295.00 0.500 0.190 2005-0265 I7-I9 29-Jun-05 15:55 66.8 390.5 0.557 0.62 0.0483 2005-0265 IR-I9 29-Jun-05 15:55 50.2 293.6 0.425 0.34 1.4505 2005-0267 Toolik Inlet 29-Jun-05 17:00 38.6 263.8 0.525 0.30 0.1674 2005-0297 I7-19 1-Jul-05 11:30 49.1 286.3 0.443 0.01 2005-0293 Toolik Inlet 1-Jul-05 11:30 49.1 286.3 0.443 0.01 2005-0293 Toolik Inlet 1-Jul-05 13:26 37.1 286.3 0.433 0.01 2005-0948 I8 out 7-Jul-05 14:20 15.3 0.022 75.6 0.483 0.44 0.5374 2005-0964 I8 out 7-Jul-05 14:20 43.9 0.018 335.4 0.422 <td< td=""><td>2005-0266</td><td>I8 HW</td><td>28-Jun-05</td><td>10:50</td><td>51.1</td><td>0.045</td><td>333.7</td><td>0.527</td><td>0.28</td><td>0.1505</td></td<>	2005-0266	I8 HW	28-Jun-05	10:50	51.1	0.045	333.7	0.527	0.28	0.1505
2005-0268 I8 out 29-Jun-05 12:20 68.6 0.044 399.2 0.345 0.07 0.1793 2005-0265 I7-I9 29-Jun-05 15:55 66.8 390.5 0.629 0.425 0.34 1.4505 2005-0274 Toolik Inlet 29-Jun-05 17:00 38.6 263.8 0.525 0.30 0.1674 2005-0297 I7-I9 1-Jul-05 11:30 65.6 367.7 0.680 0.03 2005-0293 Toolik Inlet 1-Jul-05 11:45 40.1 266.3 0.443 -0.01 2005-02947 I8 in 5-Jul-05 13:50 67.6 387.4 0.290 0.04 0.332 2005-0963 I8 in 7-Jul-05 14:20 153.3 0.032 756.3 0.793 1.44 0.108 2005-0964 I8 out 7-Jul-05 14:20 153.3 0.018 353.4 0.405 0.66 0.585 2005-0967 white bag rep A 7-Jul-05 14:20	2005-0267	l8 in	29-Jun-05	12:15	38.6	0.019	295.6	0.500	0.19	0.1794
2005-0265 I7-19 29-Jun-05 15:55 66.8 330.5 0.597 0.62 0.0483 2005-0269 I8-19 29-Jun-05 17:00 38.6 263.8 0.425 0.34 1.4505 2005-0274 Toolik Inlet 29-Jun-05 17:00 38.6 263.8 0.401 0.03 2005-0296 I8-19 1-Jul-05 11:30 65.6 367.7 0.680 0.03 2005-0293 Toolik Inlet 1-Jul-05 11:45 40.1 266.3 0.443 -0.01 2005-0947 I8 in 5-Jul-05 13:26 37.1 268.2 0.156 0.06 0.2144 2005-0948 I8 out 5-Jul-05 14:20 153.3 0.032 766.3 0.733 1.44 0.1089 2005-0964 I8 out 7-Jul-05 14:20 43.9 0.018 335.4 0.222 0.15 2005-0967 white bag rep A 7-Jul-05 14:20 73.2 467.7 0.457 0.47	2005-0268	I8 out	29-Jun-05	12:20	68.6	0.044	399.2	0.345	0.07	0.1979
2005-0269 I8-19 29-Jun-05 15:55 50.2 293.6 0.425 0.34 1.4505 2005-0297 Trolik Inlet 29-Jun-05 17:00 38.6 263.8 0.525 0.30 0.1674 2005-0297 I7-19 1-Jul-05 11:30 65.6 367.7 0.680 0.03 2005-0293 Toolik Inlet 1-Jul-05 11:30 49.1 266.3 0.443 -0.01 2005-0294 I8 in 5-Jul-05 13:26 37.1 268.2 0.156 0.06 0.2144 2005-0948 I8 out 5-Jul-05 13:26 37.1 268.2 0.156 0.06 0.2144 2005-0964 I8 out 7-Jul-05 14:20 153.3 0.033 394.8 0.44 0.5374 2005-0965 blue bag rep A 7-Jul-05 14:20 43.9 0.018 335.4 0.23 0.15 2005-0353 I7-19 8-Jul-05 13:00 70.2 393.8 0.382 0.44	2005-0265	17-19	29-Jun-05	15:55	66.8		390.5	0.597	0.62	0.0483
2005-0274 Toolik Inlet 29-Jun-05 17:00 38.6 263.8 0.525 0.30 0.1674 2005-0297 I7-19 1-Jul-05 11:30 65.6 367.7 0.680 0.03 2005-0293 Toolik Inlet 1-Jul-05 11:30 49.1 286.3 0.441 0.01 2005-0293 Toolik Inlet 1-Jul-05 11:45 40.1 268.2 0.166 0.60 0.2144 2005-0948 I8 out 5-Jul-05 13:50 67.6 387.4 0.290 0.04 0.3924 2005-0964 I8 out 7-Jul-05 14:20 153.3 0.032 756.3 0.793 1.44 0.108 2005-0964 I8 out 7-Jul-05 14:20 83.9 0.024 353.1 0.405 0.66 0.2385 2005-0966 blue bag rep A 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0352 I8-19 8-Jul-05 13:30 71.5 394.65 0.382	2005-0269	18-19	29-Jun-05	15:55	50.2		293.6	0.425	0.34	1.4505
2005-0297 I7-19 1-Jul-05 11:30 65.6 367.7 0.680 0.03 2005-0296 I8-19 1-Jul-05 11:30 49.1 286.3 0.401 0.03 2005-0293 Toolik Inlet 1-Jul-05 11:45 40.1 268.2 0.166 0.06 0.2144 2005-0947 I8 in 5-Jul-05 13:26 37.1 268.2 0.166 0.024 0.324 2005-0963 I8 in 7-Jul-05 14:20 153.3 0.032 756.3 0.793 1.44 0.108 2005-0964 I8 out 7-Jul-05 14:20 83.9 0.024 353.1 0.405 0.66 0.2385 2005-0965 blue bag rep A 7-Jul-05 14:20 73.2 467.7 0.477 0.457 0.47 2005-0968 white bag rep B 7-Jul-05 13:00 70.2 393.8 0.385 0.44 2005-0352 I8-19 8-Jul-05 13:30 71.5 394.65 0.382 <td< td=""><td>2005-0274</td><td>Toolik Inlet</td><td>29-Jun-05</td><td>17:00</td><td>38.6</td><td></td><td>263.8</td><td>0.525</td><td>0.30</td><td>0.1674</td></td<>	2005-0274	Toolik Inlet	29-Jun-05	17:00	38.6		263.8	0.525	0.30	0.1674
2005-0296 I8-19 1-Jul-05 11:30 49.1 286.3 0.401 0.03 2005-0293 Toolik Inlet 1-Jul-05 11:45 40.1 268.2 0.156 0.06 0.2144 2005-0947 I8 in 5-Jul-05 13:26 37.1 268.2 0.156 0.04 0.3924 2005-0963 I8 in 7-Jul-05 14:20 153.3 0.032 756.3 0.793 1.44 0.1089 2005-0964 I8 out 7-Jul-05 14:20 83.9 0.024 353.1 0.405 0.66 0.2585 2005-0966 blue bag rep A 7-Jul-05 14:20 72.0 0.043 451 0.571 0.31 0.5514 2005-0967 white bag rep B 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0353 I7-19 8-Jul-05 13:00 70.2 393.8 0.385 0.44 2005-0352 I8-19 8-Jul-05 13:30 71.5 394.65 <td< td=""><td>2005-0297</td><td>17-19</td><td>1-Jul-05</td><td>11:30</td><td>65.6</td><td></td><td>367.7</td><td>0.680</td><td>0.03</td><td></td></td<>	2005-0297	17-19	1-Jul-05	11:30	65.6		367.7	0.680	0.03	
2005-0293 Toolik Inlet 1-Jul-05 11:45 40.1 256.3 0.43 -0.01 2005-0947 I8 in 5-Jul-05 13:26 37.1 268.2 0.156 0.06 0.2144 2005-0948 I8 out 5-Jul-05 13:50 67.6 387.4 0.290 0.04 0.3924 2005-0963 I8 in 7-Jul-05 14:20 153.3 0.032 756.3 0.793 1.44 0.1089 2005-0965 blue bag rep A 7-Jul-05 14:20 43.9 0.018 335.4 0.232 0.15 2005-0966 blue bag rep A 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0968 white bag rep B 7-Jul-05 13:00 89.3 475.9 0.586 0.59 2005-0352 I8-19 8-Jul-05 13:00 70.2 393.8 0.382 0.43 2005-0391 I8 in 9-Jul-05 13:30 71.5 394.65 0.526 0.99 0.7978	2005-0296	18-19	1-Jul-05	11:30	49.1		286.3	0.401	0.03	
2005-0947 I8 in 5-Jul-05 13:26 37.1 268.2 0.156 0.06 0.2144 2005-0948 I8 out 5-Jul-05 13:50 67.6 387.4 0.290 0.04 0.3924 2005-0963 I8 in 7-Jul-05 14:20 153.3 0.032 756.3 0.793 1.44 0.1089 2005-0965 blue bag rep A 7-Jul-05 14:20 83.9 0.024 353.1 0.405 0.66 0.2585 2005-0966 blue bag rep A 7-Jul-05 14:20 72.0 0.043 451 0.571 0.31 0.5514 2005-0967 white bag rep B 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0353 17-19 8-Jul-05 13:00 89.3 475.9 0.586 0.59 2005-0349 Toolik Inlet 8-Jul-05 13:30 71.5 394.65 0.382 0.43 2005-0992 I8 out 9-Jul-05 11:30 52.1 384.5	2005-0293	Toolik Inlet	1-Jul-05	11:45	40.1		256.3	0.443	-0.01	
2005-0948 I8 out 5-Jul-05 13:50 67.6 387.4 0.290 0.04 0.3924 2005-0963 I8 in 7-Jul-05 14:20 153.3 0.032 756.3 0.793 1.44 0.1089 2005-0964 I8 out 7-Jul-05 17:19 81.6 0.033 394.8 0.683 0.44 0.5374 2005-0966 blue bag rep A 7-Jul-05 14:20 43.9 0.018 335.4 0.222 0.15 2005-0967 white bag rep A 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0968 white bag rep B 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0353 17-19 8-Jul-05 13:00 89.3 475.9 0.586 0.59 2005-0352 I8-19 8-Jul-05 13:30 71.5 394.65 0.382 0.43 2005-0991 I8 in 9-Jul-05 11:30 52.1 384.5 0.242 0.22 0.1516 2005-0992 I8 out 9-Jul-05 13:30 82.7	2005-0947	l8 in	5-Jul-05	13:26	37.1		268.2	0.156	0.06	0.2144
2005-0963 I8 in 7-Jul-05 14:20 153.3 0.032 756.3 0.793 1.44 0.1089 2005-0964 I8 out 7-Jul-05 17:19 81.6 0.033 394.8 0.683 0.44 0.5374 2005-0966 blue bag rep A 7-Jul-05 14:20 83.9 0.024 353.1 0.405 0.66 0.2585 2005-0966 blue bag rep A 7-Jul-05 14:20 72.0 0.043 451 0.571 0.31 0.5514 2005-0968 white bag rep B 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0353 I7-19 8-Jul-05 13:00 89.3 475.9 0.586 0.59 2005-0349 Toolik Inlet 8-Jul-05 13:30 71.5 394.65 0.382 0.43 2005-0992 I8 out 9-Jul-05 11:30 52.1 384.5 0.242 0.22 0.1516 2005-0992 I8 out 9-Jul-05 13:30 48.7	2005-0948	18 out	5-Jul-05	13:50	67.6		387.4	0.290	0.04	0.3924
2005-0964 IB out 7-Jul-05 17:19 81.6 0.033 394.8 0.683 0.44 0.5374 2005-0965 blue bag rep A 7-Jul-05 14:20 83.9 0.024 353.1 0.405 0.06 0.2585 2005-0966 blue bag rep A 7-Jul-05 14:20 72.0 0.043 451 0.571 0.31 0.5514 2005-0968 white bag rep B 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0353 I7-19 8-Jul-05 13:00 89.3 475.9 0.586 0.59 2005-0352 I8-19 8-Jul-05 13:00 70.2 393.8 0.385 0.44 2005-0349 Toolik Inlet 8-Jul-05 13:30 71.5 394.65 0.382 0.43 2005-0991 I8 in 9-Jul-05 11:30 124.2 615 0.509 0.7978 2005-0992 I8 out 9-Jul-05 11:30 52.1 384.5 0.242 0.22	2005-0963	l8 in	7-Jul-05	14:20	153.3	0.032	756.3	0.793	1.44	0.1089
2005-0965 blue bag rep A 7-Jul-05 14:20 83.9 0.024 353.1 0.405 0.06 0.2585 2005-0966 blue bag rep B 7-Jul-05 14:20 43.9 0.018 335.4 0.232 0.15 2005-0967 white bag rep A 7-Jul-05 14:20 72.0 0.043 451 0.571 0.31 0.5514 2005-0968 white bag rep B 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0353 I7-I9 8-Jul-05 13:00 70.2 393.8 0.385 0.44 2005-0349 Toolik Inlet 8-Jul-05 13:30 71.5 394.65 0.382 0.43 2005-0991 I8 in 9-Jul-05 11:30 124.2 615 0.509 0.81 0.1847 2005-0992 I8 out 9-Jul-05 11:30 52.1 384.5 0.242 0.22 0.156 2005-0993 blue bag rep A 9-Jul-05 13:30 48.7 0.015 <t< td=""><td>2005-0964</td><td>I8 out</td><td>7-Jul-05</td><td>17:19</td><td>81.6</td><td>0.033</td><td>394.8</td><td>0.683</td><td>0.44</td><td>0.5374</td></t<>	2005-0964	I8 out	7-Jul-05	17:19	81.6	0.033	394.8	0.683	0.44	0.5374
2005-0966 blue bag rep B 7-Jul-05 14:20 43.9 0.018 335.4 0.232 0.15 2005-0967 white bag rep A 7-Jul-05 14:20 72.0 0.043 451 0.571 0.31 0.5514 2005-0968 white bag rep B 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0353 17-19 8-Jul-05 13:00 70.2 393.8 0.385 0.44 2005-0352 18-19 8-Jul-05 13:30 71.5 394.65 0.382 0.43 2005-0391 18 in 9-Jul-05 11:30 124.2 615 0.509 0.81 0.1847 2005-0992 18 out 9-Jul-05 11:30 52.1 384.5 0.242 0.22 0.150 0.2414 2005-0993 blue bag rep A 9-Jul-05 11:30 50.5 372.6 0.159 0.15 0.2414 2005-0996 green bag rep A 9-Jul-05 13:30 49.1 0.042 360	2005-0965	blue bag rep A	7-Jul-05	14:20	83.9	0.024	353.1	0.405	0.06	0.2585
2005-0967 white bag rep A 7-Jul-05 14:20 72.0 0.043 451 0.571 0.31 0.5514 2005-0968 white bag rep B 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0353 17-19 8-Jul-05 13:00 89.3 475.9 0.586 0.59 2005-0352 18-19 8-Jul-05 13:00 70.2 393.8 0.385 0.44 2005-0391 18 in 9-Jul-05 11:30 124.2 615 0.509 0.81 0.1847 2005-0992 18 out 9-Jul-05 11:30 52.1 384.5 0.242 0.22 0.156 2005-0993 blue bag rep A 9-Jul-05 11:30 50.5 372.6 0.159 0.15 0.2414 2005-0994 blue bag rep B 9-Jul-05 13:30 48.7 0.015 370.1 0.256 0.32 1.0259 2005-0996 green bag rep A 9-Jul-05 13:30 69.4 440.2 0.44	2005-0966	blue bag rep B	7-Jul-05	14:20	43.9	0.018	335.4	0.232	0.15	
2005-0968 white bag rep B 7-Jul-05 14:20 73.2 467.7 0.457 0.47 2005-0353 I7-19 8-Jul-05 13:00 89.3 475.9 0.586 0.59 2005-0352 I8-19 8-Jul-05 13:00 70.2 393.8 0.385 0.44 2005-0394 Toolik Inlet 8-Jul-05 13:30 71.5 394.65 0.509 0.81 0.1847 2005-0991 I8 in 9-Jul-05 11:30 124.2 615 0.509 0.81 0.1847 2005-0992 I8 out 9-Jul-05 11:30 52.1 384.5 0.242 0.22 0.1516 2005-0994 blue bag rep A 9-Jul-05 11:30 50.5 372.6 0.159 0.15 0.2414 2005-0995 green bag rep A 9-Jul-05 13:30 48.7 0.015 370.1 0.256 0.32 1.0259 2005-0997 yellow bag rep A 9-Jul-05 13:30 69.4 440.2 0.446 0	2005-0967	white bag rep A	7-Jul-05	14:20	72.0	0.043	451	0.571	0.31	0.5514
2005-0353 I7-I9 8-Jul-05 13:00 89.3 475.9 0.586 0.59 2005-0352 I8-I9 8-Jul-05 13:00 70.2 393.8 0.385 0.44 2005-0349 Toolik Inlet 8-Jul-05 13:30 71.5 394.65 0.382 0.43 2005-0991 I8 in 9-Jul-05 11:30 124.2 615 0.509 0.81 0.1847 2005-0992 I8 out 9-Jul-05 11:30 52.1 384.5 0.242 0.22 0.1516 2005-0994 blue bag rep A 9-Jul-05 11:30 50.5 372.6 0.159 0.15 0.2414 2005-0995 green bag rep A 9-Jul-05 13:30 48.7 0.015 370.1 0.256 0.32 1.0259 2005-0996 green bag rep A 9-Jul-05 13:30 49.1 0.042 360.4 0.244 0.33 1.6925 2005-0997 yellow bag rep A 9-Jul-05 13:30 69.4 440.2 0.446 0.42 0.8721 2005-0998 yellow bag rep A 9-Jul-05	2005-0968	white bag rep B	7-Jul-05	14:20	73.2		467.7	0.457	0.47	
2005-035218-198-Jul-0513:0070.2393.80.3850.442005-0349Toolik Inlet8-Jul-0513:3071.5394.650.3820.432005-0991I8 in9-Jul-0511:30124.26150.5090.810.18472005-0992I8 out9-Jul-0513:3082.7457.30.5260.990.79782005-0993blue bag rep A9-Jul-0511:3052.1384.50.2420.220.15162005-0994blue bag rep B9-Jul-0513:3048.70.015370.10.2560.321.02592005-0995green bag rep A9-Jul-0513:3048.70.015370.10.2560.321.02592005-0996green bag rep A9-Jul-0513:3049.10.042360.40.440.331.69252005-0997yellow bag rep A9-Jul-0513:3066.6430.50.2530.570.42852005-0998yellow bag rep A9-Jul-0511:3071.54770.4010.560.3852005-0999white bag rep A9-Jul-0511:3075.14778.10.3590.400.36192005-1000white bag rep B9-Jul-0511:3075.14778.10.3590.400.36192005-1050I8 in12-Jul-0510:15154.3705.50.7581.160.08942005-1051I8 out12-Jul-0510:5098.9513.90.565	2005-0353	17-19	8-Jul-05	13:00	89.3		475.9	0.586	0.59	
2005-0349Toolik Inlet8-Jul-0513:3071.5394.650.3820.432005-0991I8 in9-Jul-0511:30124.26150.5090.810.18472005-0992I8 out9-Jul-0513:3082.7457.30.5260.990.79782005-0993blue bag rep A9-Jul-0511:3052.1384.50.2420.220.15162005-0994blue bag rep B9-Jul-0511:3050.5372.60.1590.150.24142005-0995green bag rep A9-Jul-0513:3048.70.015370.10.2560.321.02592005-0996green bag rep B9-Jul-0513:3049.10.042360.40.2440.331.69252005-0997yellow bag rep A9-Jul-0513:3069.4440.20.4460.420.87212005-0998yellow bag rep B9-Jul-0511:3071.547770.4010.560.3852005-0999white bag rep A9-Jul-0511:3075.14778.10.3590.400.36192005-1000white bag rep B9-Jul-0511:3075.14778.10.3590.400.36192005-1001mystery bag9-Jul-0510:15154.3705.50.7581.160.08942005-1050I8 in12-Jul-0510:15154.3705.50.7581.160.08942005-0399I7-1915-Jul-0513:2092.2518.7	2005-0352	18-19	8-Jul-05	13:00	70.2		393.8	0.385	0.44	
2005-099118 in9-Jul-0511:30124.26150.5090.810.18472005-0992I8 out9-Jul-0513:3082.7457.30.5260.990.79782005-0993blue bag rep A9-Jul-0511:3052.1384.50.2420.220.15162005-0994blue bag rep B9-Jul-0511:3050.5372.60.1590.150.24142005-0995green bag rep A9-Jul-0513:3048.70.015370.10.2560.321.02592005-0996green bag rep B9-Jul-0513:3049.10.042360.40.2440.331.69252005-0997yellow bag rep A9-Jul-0513:3069.4440.20.4460.420.87212005-0998yellow bag rep B9-Jul-0511:3071.54770.4010.560.3852005-0999white bag rep A9-Jul-0511:3075.1478.10.3590.400.36192005-1000white bag rep B9-Jul-0513:3069.3442.70.2250.540.91092005-1000white bag rep B9-Jul-0513:3069.3442.70.2250.540.91092005-1001mystery bag9-Jul-0513:3069.3442.70.2250.540.91092005-1050I8 in12-Jul-0510:5098.9513.90.5650.650.76812005-0399I7-I915-Jul-0513:2092.2 <t< td=""><td>2005-0349</td><td></td><td>8-Jul-05</td><td>13:30</td><td>/1.5</td><td></td><td>394.65</td><td>0.382</td><td>0.43</td><td>0.4047</td></t<>	2005-0349		8-Jul-05	13:30	/1.5		394.65	0.382	0.43	0.4047
2005-099218 out9-Jul-0513:3082.7457.30.5260.990.79782005-0993blue bag rep A9-Jul-0511:3052.1384.50.2420.220.15162005-0994blue bag rep B9-Jul-0511:3050.5372.60.1590.150.24142005-0995green bag rep A9-Jul-0513:3048.70.015370.10.2560.321.02592005-0996green bag rep A9-Jul-0513:3049.10.042360.40.2440.331.69252005-0997yellow bag rep A9-Jul-0513:3069.4440.20.4460.420.87212005-0998yellow bag rep B9-Jul-0513:3066.6430.50.2530.570.42852005-0999white bag rep A9-Jul-0511:3071.54770.4010.560.3852005-1000white bag rep B9-Jul-0511:3075.1478.10.3590.400.36192005-1001mystery bag9-Jul-0513:3069.3442.70.2250.540.91092005-1050I8 in12-Jul-0510:15154.3705.50.7581.160.08942005-0399I7-1915-Jul-0513:2092.2518.70.4790.642005-0398I8-1915-Jul-0513:20116.70.034570.60.6150.852005-0398I8-1915-Jul-0513:20116.70.034570.	2005-0991	18 in	9-Jul-05	11:30	124.2		615	0.509	0.81	0.1847
2005-0993blue bag rep A9-Jul-0511:3052.1384.50.2420.220.17162005-0994blue bag rep B9-Jul-0511:3050.5372.60.1590.150.24142005-0995green bag rep A9-Jul-0513:3048.70.015370.10.2560.321.02592005-0996green bag rep B9-Jul-0513:3049.10.042360.40.2440.331.69252005-0997yellow bag rep A9-Jul-0513:3069.4440.20.4460.420.87212005-0998yellow bag rep B9-Jul-0513:3066.6430.50.2530.570.42852005-0999white bag rep A9-Jul-0511:3071.54770.4010.560.3852005-1000white bag rep B9-Jul-0511:3075.1478.10.3590.400.36192005-1001mystery bag9-Jul-0513:3069.3442.70.2250.540.91092005-1050I8 in12-Jul-0510:15154.3705.50.7581.160.08942005-1051I8 out12-Jul-0513:2092.2518.70.4790.642005-0398I8-I915-Jul-0513:20116.70.034570.60.6150.852005-0398I8-I915-Jul-0513:20116.70.034570.60.6150.85	2005-0992	18 OUt	9-Jul-05	13:30	82.7		457.3	0.526	0.99	0.7978
2005-0994bitle bag rep B9-Jul-0511.3050.3372.60.1590.150.24142005-0995green bag rep A9-Jul-0513:3048.70.015370.10.2560.321.02592005-0996green bag rep B9-Jul-0513:3049.10.042360.40.2440.331.69252005-0997yellow bag rep A9-Jul-0513:3069.4440.20.4460.420.87212005-0998yellow bag rep B9-Jul-0513:3066.6430.50.2530.570.42852005-0999white bag rep A9-Jul-0511:3071.54770.4010.560.3852005-1000white bag rep B9-Jul-0511:3075.1478.10.3590.400.36192005-1001mystery bag9-Jul-0513:3069.3442.70.2250.540.91092005-1050I8 in12-Jul-0510:15154.3705.50.7581.160.08942005-1051I8 out12-Jul-0510:5098.9513.90.5650.650.76812005-0399I7-I915-Jul-0513:2092.2518.70.4790.642005-0398I8-I915-Jul-0513:20116.70.034570.60.6150.852005-0398I8-I915-Jul-0513:20116.70.034570.60.6150.85	2005-0993	blue bag rep A	9-Jui-05	11:30	52.1		364.5	0.242	0.22	0.1516
2005-0995 green bag rep A 9-Jul-05 13:30 48.7 0.013 370.1 0.236 0.32 1.0239 2005-0996 green bag rep B 9-Jul-05 13:30 49.1 0.042 360.4 0.244 0.33 1.6925 2005-0997 yellow bag rep A 9-Jul-05 13:30 69.4 440.2 0.446 0.42 0.8721 2005-0998 yellow bag rep B 9-Jul-05 13:30 66.6 430.5 0.253 0.57 0.4285 2005-0999 white bag rep A 9-Jul-05 11:30 71.5 477 0.401 0.56 0.385 2005-1000 white bag rep B 9-Jul-05 11:30 75.1 478.1 0.359 0.40 0.3619 2005-1001 mystery bag 9-Jul-05 13:30 69.3 442.7 0.225 0.54 0.9109 2005-1050 I8 in 12-Jul-05 10:15 154.3 705.5 0.758 1.16 0.894 2005-1051 I8 out 12-J	2005-0994		9-Jul-05	12:20	30.5	0.015	372.0	0.159	0.15	1.0250
2005-0996 green bag rep B 9-Jul-05 13:30 69.4 440.2 0.446 0.42 0.8721 2005-0997 yellow bag rep A 9-Jul-05 13:30 69.4 440.2 0.446 0.42 0.8721 2005-0998 yellow bag rep B 9-Jul-05 13:30 66.6 430.5 0.253 0.57 0.4285 2005-0999 white bag rep A 9-Jul-05 11:30 71.5 477 0.401 0.56 0.385 2005-1000 white bag rep B 9-Jul-05 11:30 75.1 478.1 0.359 0.40 0.3619 2005-1001 mystery bag 9-Jul-05 13:30 69.3 442.7 0.225 0.54 0.9109 2005-1050 I8 in 12-Jul-05 10:15 154.3 705.5 0.758 1.16 0.0894 2005-1051 I8 out 12-Jul-05 10:50 98.9 513.9 0.565 0.65 0.7681 2005-0399 I7-I9 15-Jul-05 13:20 92.2 <td>2005-0995</td> <td>green bag rep A</td> <td>9-Jul-05</td> <td>12.30</td> <td>40.7</td> <td>0.015</td> <td>370.1</td> <td>0.230</td> <td>0.32</td> <td>1.0209</td>	2005-0995	green bag rep A	9-Jul-05	12.30	40.7	0.015	370.1	0.230	0.32	1.0209
2005-0997 yellow bag rep R 9-301-05 13:30 66.4 440.2 0.440 0.42 0.872 2005-0998 yellow bag rep B 9-Jul-05 13:30 66.6 430.5 0.253 0.57 0.4285 2005-0999 white bag rep A 9-Jul-05 11:30 71.5 477 0.401 0.56 0.385 2005-1000 white bag rep B 9-Jul-05 11:30 75.1 478.1 0.359 0.40 0.3619 2005-1001 mystery bag 9-Jul-05 13:30 69.3 442.7 0.225 0.54 0.9109 2005-1050 I8 in 12-Jul-05 10:15 154.3 705.5 0.758 1.16 0.0894 2005-1051 I8 out 12-Jul-05 10:50 98.9 513.9 0.565 0.65 0.7681 2005-0399 I7-I9 15-Jul-05 13:20 92.2 518.7 0.479 0.64 2005-0398 I8-I9 15-Jul-05 13:20 116.7 0.034 570.6 0.615 0.85	2005-0990	yileen bag rep b	9-301-05	12.20	49.1	0.042	440.2	0.244	0.33	0.9721
2005-0998 yellow bag rep B 9-Jul-05 11:30 71.5 477 0.401 0.56 0.385 2005-1000 white bag rep B 9-Jul-05 11:30 75.1 477 0.401 0.56 0.385 2005-1000 white bag rep B 9-Jul-05 11:30 75.1 478.1 0.359 0.40 0.3619 2005-1001 mystery bag 9-Jul-05 13:30 69.3 442.7 0.225 0.54 0.9109 2005-1050 I8 in 12-Jul-05 10:15 154.3 705.5 0.758 1.16 0.0894 2005-1051 I8 out 12-Jul-05 10:50 98.9 513.9 0.565 0.65 0.7681 2005-0399 I7-I9 15-Jul-05 13:20 92.2 518.7 0.479 0.64 2005-0398 I8-I9 15-Jul-05 13:20 116.7 0.034 570.6 0.615 0.85	2005-0997	yellow bag rep A	9-Jul-05	12.30	66.6		440.2	0.440	0.42	0.0721
2005-0399 White bag rep B 9-Jul-05 11:30 71:3 477 0.401 0.303 0.303 2005-1000 white bag rep B 9-Jul-05 11:30 75.1 478.1 0.359 0.40 0.3619 2005-1001 mystery bag 9-Jul-05 13:30 69.3 442.7 0.225 0.54 0.9109 2005-1050 I8 in 12-Jul-05 10:15 154.3 705.5 0.758 1.16 0.0894 2005-1051 I8 out 12-Jul-05 10:50 98.9 513.9 0.565 0.65 0.7681 2005-0399 I7-I9 15-Jul-05 13:20 92.2 518.7 0.479 0.64 2005-0398 I8-I9 15-Jul-05 13:20 116.7 0.034 570.6 0.615 0.85	2005-0998	white bag rep A	9-Jul-05	11.30	71.5		430.3	0.200	0.57	0.4205
2005-1000 mile bag top D 0.001 00 11.00 10.11 410.11 0.005 0.40 0.001 00 2005-1001 mystery bag 9-Jul-05 13:30 69.3 442.7 0.225 0.54 0.9109 2005-1050 I8 in 12-Jul-05 10:15 154.3 705.5 0.758 1.16 0.0894 2005-1051 I8 out 12-Jul-05 10:50 98.9 513.9 0.565 0.65 0.7681 2005-0399 I7-I9 15-Jul-05 13:20 92.2 518.7 0.479 0.64 2005-0398 I8-I9 15-Jul-05 13:20 116.7 0.034 570.6 0.615 0.85	2005-0999	white bag rep R	9-Jui-05 9- Jui-05	11.30	75.1		478 1	0.401	0.00	0.303
2005-1051 III, factry bag 0.501 05 10.50 051.51 051.51 0.225 0.54 0.9108 2005-1050 I8 in 12-Jul-05 10:15 154.3 705.5 0.758 1.16 0.0894 2005-1051 I8 out 12-Jul-05 10:50 98.9 513.9 0.565 0.65 0.7681 2005-0399 I7-I9 15-Jul-05 13:20 92.2 518.7 0.479 0.64 2005-0398 I8-I9 15-Jul-05 13:20 116.7 0.034 570.6 0.615 0.85	2005-1000	mystery bag	9_ lul_05	13.30	60.2		442.7	0.333	0.40	0.0019
2005-1051 I8 out 12-Jul-05 10:10 104:0 100:0 0.700 1.10 0.0834 2005-1051 I8 out 12-Jul-05 10:50 98.9 513.9 0.565 0.65 0.7681 2005-0399 I7-I9 15-Jul-05 13:20 92.2 518.7 0.479 0.64 2005-0398 I8-I9 15-Jul-05 13:20 116.7 0.034 570.6 0.615 0.85	2005-1001	I8 in	12- Jul-05	10.00	154 2		705 5	0.223	1 16	0.0804
2005-0399 I7-I9 15-Jul-05 13:20 92.2 518.7 0.479 0.64 2005-0398 I8-I9 15-Jul-05 13:20 116.7 0.034 570.6 0.615 0.85	2005-1050	I8 out	12-Jul-05	10.13	98.0		513.0	0.565	0.65	0 7681
2005-0398 18-19 15-Jul-05 13:20 16.7 0.034 570.6 0.615 0.85 0005-0398 18-19 15-Jul-05 13:20 116.7 0.034 570.6 0.615 0.85	2005-0300	17-19	15- Jul-05	13.20	02.3		518.7	0 470	0.64	0.1001
	2005-0395	18-19	15-Jul-05	13.20	116 7	0.034	570.6	0.479	0.04	
12005-0395 LOOIIK INIET 15101-05 12:04 99.6 0.028 510.7 0.542 0.73	2005-0395	Toolik Inlet	15-Jul-05	12.04	99.6	0.028	510.7	0.542	0.00	
2005-0436 I8 In 20-Jul-05 12:20 78.9 0.019 431 0.454 0.58 0.0611	2005-0436	l8 In	20-Jul-05	12:20	78.9	0.019	431	0.454	0.58	0.0611

Sortchem Site Site Date Time DOM (UV abs) DOM (UV abs) DOM (UV abs) DOM (UV abs) Total Proteins (mg/L)	I OTAI F TRENOIICS (UM) Phaeophytin corrected (ug chl a/L)
2005-0437 I8 Out 20-Jul-05 13:00 111.0 0.014 546.2 0.639 1	0.5234
2005-0434 7-I9 20-Jul-05 15:45 79.9 0.037 437.3 0.469 0	0.168
2005-0438 I8-I9 20-Jul-05 15:45 102.0 0.036 514.8 0.526 1	05 0.5152
2005-0443 Toolik Inlet 20-Jul-05 16:35 82.9 0.026 456.8 0.400 0	0.544
2005-0466 17-19 22-Jul-05 13:00 75.5 0.018 427.8 0.404 0	32
2005-0465 18-19 22-Jul-05 13:00 97.2 0.036 496.9 0.490 1	8
2005-0462 Toolik Inlet, 12 deg C 22-Jul-05 13:00 77.1 0.025 430.7 0.348 0	91
2005-1229 I8 in 26-Jul-05 10:25 56.0 0.014 353.8 0.164 0	0.0961
2005-1230 I8 out 26-Jul-05 12:02 103.4 0.01 527.1 0.377 0	8 0.7542
2005-1231 I8 in 28-Jul-05 10:21 52.5 0.034 350.6 0.159 0	0.9025
2005-1232 I8 out 28-Jul-05 12:02 100.8 0.044 521.5 0.336 0	6 0.9684
2005-1235 blue bag rep A 28-Jul-05 10:30 52.3 409.3 0.237 0	0.0991
2005-1236 blue bag rep B 28-Jul-05 10:30 52.3 387.2 0.272 0	0.035
2005-1239 green bag rep A 28-Jul-05 12:15 63.1 677.1 0.146 0	88 0.1132
2005-1240 green bag rep B 28-Jul-05 12:15 64.0 613.5 0.252 0	7 0.0876
2005-1237 yellow bag rep A 28-Jul-05 12:15 105.8 631.2 0.337 0	1.0003
2005-1238 yellow bag rep B 28-Jul-05 12:15 106.0 861.2 0.363 0	1.09
2005-1233 white bag rep A 28-Jul-05 10:30 95.0 541.9 0.245 0	68 0.8593
2005-1234 white bag rep B 28-Jul-05 10:30 93.1 577.3 0.247 0	0 0.7869
2005-0510 I7-I9 29-Jul-05 10:00 71.5 0.032 408.2 0.259 0	6
2005-0509 I8-I9 29-Jul-05 10:30 80.5 0.033 448.8 0.308 0	59
2005-0506 Toolik Inlet 29-Jul-05 13:30 59.4 0.024 365.05 0.219 0	34
2005-1262 I8 in 30-Jul-05 11:00 48.3 0.018 335 0.041 0	0.1427
2005-1263 I8 out 30-Jul-05 13:30 99.8 0.043 523.6 0.223 0	5 1.2156
2005-1266 blue bag rep A 30-Jul-05 11:00 55.0 460.2 0.051 0	0.0824
2005-1267 blue bag rep B 30-Jul-05 11:00 56.9 544.3 0.063 0	63 0.1145
2005-1270 green bag rep A 30-Jul-05 13:30 70.7 562.1 0.156 0	61 0.1734
2005-1271 green bag rep B 30-Jul-05 13:30 67.4 502.2 0.013 0	2 0.0696
2005-1268 yellow bag rep A 30-Jul-05 13:30 103.5 603.6 0.291 0	1.7053
2005-1269 Yellow bag rep B 30-Jul-05 13:30 101.3 562.8 0.395 0	3 1.8207
2005-1264 White bag rep A 30-Jul-05 11:00 84.1 488.6 0.123 0	7 4 0040
2005-1265 White bag rep B 30-Jul-05 11:00 84.0 511.9 0.247 0	
2005-1327 18 ln 2-Aug-05 10:15 44.1 0.015 313.6 0.114 0	1 0.277
2005-1326 18 0ut 2-Aug-05 12:00 97.9 0.042 512 0.344 0	
2005-1332 blue bag rep R 2-Aug-05 10.15 30.2 340.4 0.162 0	5 0 2224
2005 1332 blue bag rep b 2 - Aug 05 10.13 45.0 303.7 0.330 0	0.5221
2005-1332 green bag rep R 2-Aug-05 12:00 12:3 400.0 0.349 0	8 1 0644
2005-1335 vellow bag rep Δ 2-Δυσ-05 12:00 06:5 401.5 0.207 0	1 0104
2005-1336 vellow bag rep B 2-Aug-05 12:00 50.0 021.3 0.400 0	0 2 0386
2005-1329 white bag rep A 2-Aug-05 10:15 72 7 434 7 0 220 0	0 2.0000
2005-1330 white bag rep B 2-Aug-05 10:15 82.9 449.7 0.300 0	ie 2.0000

Sortchem	Site	Date	Time	DOM (UV abs)	abs@440nm	DOC (uM)	Total Proteins (mg/L)	Total Phenolics (uM)	Phaeophytin corrected chl a (ug chl a/L)
2005-0568	17-19	5-Aug-05	12:30	71.8	0.034	382.9	0.364	0.53	
2005-0567	18-19	5-Aug-05	12:30	73.5	0.028	416.9	0.291	0.60	
2005-0564	Toolik Inlet	5-Aug-05	13:00	51.1	0.019	333.9	0.186	0.47	
2005-0593	l8 in	10-Aug-05	11:50	39.1	0.014	288.2	0.073	0.25	0.1649
2005-0594	I8 out	10-Aug-05	12:00	94.0	0.037	503.3	0.392	0.72	0.6141
2005-0591	17-19	10-Aug-05	14:40	72.8	0.036	373.6	0.409	0.44	0.1855
2005-0595	18-19	10-Aug-05	14:45	69.7	0.026	411.2	0.251	0.39	0.4781
2005-0600	Toolik Inlet	10-Aug-05	15:20	48.2	0.018	319.2	0.158	0.29	1.1332
2005-0623	17-19	12-Aug-05	12:30	74.7	0.036	374.1	0.377	0.35	
2005-0622	18-19	12-Aug-05	12:30	67.8	0.025	404.4	0.225	0.45	
2005-0619	Toolik Inlet	12-Aug-05	12:30	45.3	0.014	311.55	0.073	0.29	
2005-1431	l8 in	15-Aug-05	10:15	36.8	0.01	300	0.074	0.17	0.305
2005-1432	18 out	15-Aug-05	11:00	90.0	0.034	501.9	0.325	0.51	0.9767

Sortchem	Site	Date	Time	Temperature (deg C)	DOM (UV abs)	abs@254nm	abs@280nm	abs@440nm	DOC (nM)	Total Proteins (mg/L)	Total Phenolics (uM)	Phaeophytin corrected chl a (ug chl a/L)	Sugars (uM)
2006-0125	18 Inlet	22-Jun-06	12:30	11.1	111.6	1.21	0.84	0.03	697.5	0.56	1.27	0.22	17.76
2006-0126	18 Outlet	22-Jun-06	12:45	10.7	112.6	1.22	0.85	0.04	709.9	0.91	1.42	1.64	15.24
2006-0123	17 into 19	22-Jun-06	15:00	12.6	95.0	1.04	0.72	0.03	607.8	0.65	1.03	0.43	17.81
2006-0127	18 into 19	22-Jun-06	15:10	11.9	108.9	1.18	0.83	0.03	670	0.92	1.31	1.55	20.63
2006-0132	Toolik Inlet	22-Jun-06	15:45	12.2	97.8	1.06	0.74	0.03	606.4	0.81	1.19	0.90	15.81
2006-0720	18 Inlet	27-Jun-06	11:00	7.8	132.6	1.42	0.99	0.04	777.4	1.10	1.70	0.36	15.12
2006-0721	18 Outlet	27-Jun-06	10:15	11.6	114.7	1.24	0.87	0.04	696	0.97	1.44	2.49	10.99
2006-0184	18 Inlet	30-Jun-06	10:45	9.0	103.1	1.11	0.78	0.04	618.2	0.77	0.98	0.81	12.45
2006-0185	18 Outlet	30-Jun-06	11:10	11.6	112.6	1.22	0.85	0.04	687.9	0.99	1.38	2.35	9.09
2006-0183	I7 into I9	30-Jun-06	11:45	12.6	70.4	0.78	0.53	0.02	491.5	0.68	0.54	0.32	8.60
2006-0182	18 into 19	30-Jun-06	12:00	11.9	107.3	1.17	0.81	0.03	664.5	0.88	1.21	1.34	10.70
2006-0178	Toolik Inlet	30-Jun-06	14:20	12.0	91.2	0.99	0.69	0.03	569.75	0.87	0.91	0.77	13.17
2006-0233	18 Inlet	7-Jul-06	10:20	7.8	88.0	0.96	0.66	0.02	559.6	0.70	0.81	0.32	7.88
2006-0234	18 Outlet	7-Jul-06	10:54	10.7	106.1	1.16	0.80	0.03	647.7	0.83	1.22	0.86	10.10
2006-0232	I7 into I9	7-Jul-06	11:35	10.7	76.9	0.85	0.58	0.02	544.6	0.59	0.73	0.34	15.64
2006-0231	18 into 19	7-Jul-06	11:50	7.8	99.9	1.09	0.76	0.03	640.3	0.84	1.12	0.88	12.59
2006-0227	Toolik Inlet	7-Jul-06	12:15	10.4	87.6	0.96	0.66	0.03	579.8	0.74	0.87	0.70	8.91
2006-0306	18 Inlet	14-Jul-06	12:00	9.7	87.2	0.95	0.66	0.02	556.3	0.73	0.90	0.41	13.67
2006-0307	18 Outlet	14-Jul-06	12:20	13.1	96.0	1.05	0.73	0.03	598	0.77	1.08	1.33	11.03
2006-0304	17 into 19	14-Jul-06	14:00	13.8	68.7	0.76	0.52	0.02	467.9	0.70	0.63	0.30	10.11
2006-0308	18 into 19	14-Jul-06	14:00	13.4	91.7	1.01	0.70	0.02	576.5	0.76	1.00	0.82	11.66
2006-0313	Toolik Inlet	14-Jul-06	15:00	13.0	80.1	0.88	0.61	0.02	518.2	0.77	0.89	0.77	9.10
2006-0899	18 Inlet	18-Jul-06	9:38	10.1	68.8	0.75	0.52	0.02	462.6	0.30	0.56	0.41	4.19
2006-0900	18 Outlet	18-Jul-06	10:32	12.4	94.4	1.03	0.72	0.03	574.2	0.59	1.05	2.10	11.36
2006-0354	18 Inlet	21-Jul-06	9:38	8.3	82.1	0.89	0.62	0.02	527.7	0.47	0.73	0.43	12.05
2006-0355	18 Outlet	21-Jul-06	10:15	11.6	88.0	0.97	0.67	0.02	563.7	0.59	0.95	1.72	13.70
2006-0353	17 into 19	21-Jul-06	10:40	10.9	74.3	0.82	0.56	0.02	511.7	0.48	0.74	2.04	6.15
2006-0352	18 into 19	21-Jul-06	10:55	11.0	85.6	0.94	0.65	0.02	547.1	0.54	0.88	1.67	4.36
2006-0348	Toolik Inlet	21-Jul-06	11:20	10.5	80.6	0.61	0.61	0.02	512.6	0.46	0.78	1.01	3.87
2006-0913	inlet A	21-Jul-06	9:50	8.3	71.1	0.76	0.53	0.02	452.7	0.45	0.61	0.35	
2006-0914	inlet B	21-Jul-06	9:50	8.3	71.7	0.77	0.54	0.02	460.6	0.44	0.60	0.29	
2006-0915	inlet C	21-Jul-06	9:50	8.3	71.2	0.77	0.53	0.02	456.6	0.46	0.83	0.97	
2006-0916	outlet A	21-Jul-06	10:15	11.6	77.3	0.84	0.58	0.02	484.6	0.46	0.71	0.93	•
2006-0917	outlet B	21-Jul-06	10:15	11.6	80.5	0.87	0.60	0.02	502	0.51	0.86	1.59	•
2006-0918	outlet C	21-Jul-06	10:15	11.6	76.2	0.83	0.58	0.02	484.4	0.44	0.84	2.38	
2006-1014	I oolik Inlet	26-Jul-06	9:10	12.1	89.8	0.98	0.68	0.03	552.2	0.77	1.09	0.50	6.04
2006-0399	18 Inlet	28-Jul-06	10:30	11.0	85.8	0.94	0.65	0.02	543.8	0.56	1.07	0.28	1.44
2006-0400	18 Outlet	28-Jul-06	11:10	13.7	97.5	1.07	0.74	0.03	603.4	0.72	1.39	0.80	4.85
2006-0398	17 into 19	28-Jul-06	11:35	15.0	78.5	0.87	0.60	0.02	518.7	0.67	0.91	0.46	1.42
2006-0397	18 Into 19	28-Jul-06	11:50	14.5	94.4	1.04	0.72	0.03	575.7	0.52	1.08	1.12	5.23
2006-0393	I OOLK INIET	28-Jul-06	12:10	14.4	84.2	0.93	0.64	0.02	540.5	0.63	0.97	0.70	4.10
2006-1023	ið inlet	1-Aug-06	13:40	10.1	72.4	0.79	0.55	0.02	475.5	0.45	0.43	0.91	1.07

Sortchem	Site	Date	Time	Temperature (deg C)	DOM (UV abs)	abs@254nm	abs@280nm	abs @440nm	DOC (uM)	Total Proteins (mg/L)	Total Phenolics (uM)	Phaeophytin corrected chl a (ug chl a/L)	Sugars (uM)
2006-1024	18 Outlet	1-Aug-06	15:20	12.6	93.0	1.02	0.71	0.03	592.5	0.59	0.87	1.52	4.24
2006-1050	18 Inlet	3-Aug-06	14:15	12.1	69.9	0.80	0.54	0.02	456.7	0.47	0.48	0.65	8.67
2006-1051	18 Outlet	3-Aug-06	15:06	12.8	86.4	0.98	0.67	0.02	576.5	0.62	0.81	2.10	2.60
2006-1052	in/in A	3-Aug-06	14:45	12.1	67.7	0.77	0.53	0.02	559.1	0.56	0.49	0.47	
2006-1053	in/in B	3-Aug-06	14:45	12.1	71.3	0.80	0.55	0.03	564.8	0.50	0.55	0.30	•
2006-1054	in/in C	3-Aug-06	14:45	12.1	67.0	0.77	0.52	0.02	567.8	0.36	0.50	0.29	
2006-1055	in/out A	3-Aug-06	15:30	12.8	71.4	0.82	0.56	0.03	572.8	0.51	0.54	0.41	
2006-1056	in/out B	3-Aug-06	15:30	12.8	74.7	0.85	0.58	0.04	611.1	0.53	0.60	0.69	
2006-1057	in/out C	3-Aug-06	15:30	12.8	71.7	0.82	0.56	0.03	594.4	0.46	0.57	0.36	
2006-1058	out/out A	3-Aug-06	15:25	12.8	90.6	1.03	0.70	0.03	719.5	0.65	0.96	1.89	
2006-1059	out/out B	3-Aug-06	15:25	12.8	90.9	1.03	0.70	0.03	718.6	0.63	0.96	1.67	
2006-1060	out/out C	3-Aug-06	15:25	12.8	91.0	1.03	0.71	0.04	728.9	0.74	0.98	1.71	
2006-1061	out/in A	3-Aug-06	14:30	12.1	92.9	1.02	0.70	0.03	690.8	0.65	0.97	1.85	
2006-1062	out/in B	3-Aug-06	14:30	12.1	95.5	1.04	0.72	0.03	640.1	0.61	0.91	1.80	
2006-1063	out/in C	3-Aug-06	14:30	12.1	92.3	1.00	0.70	0.03	653.8	0.78	0.88	2.74	
2006-0448	18 Inlet	4-Aug-06	10:02	9.2	75.0	0.81	0.56	0.04	471	0.58	0.46	0.14	6.57
2006-0449	18 Outlet	4-Aug-06	10:50	13.2	93.8	1.02	0.71	0.03	571.5	0.72	0.88	0.90	7.03
2006-0447	17 into 19	4-Aug-06	11:33	13.2	70.7	0.78	0.54	0.02	486.1	0.62	0.53	0.16	1.67
2006-0446	18 into 19	4-Aug-06	12:00	13.2	86.3	0.95	0.66	0.02	546.3	0.61	0.76	0.62	5.33
2006-0442	Toolik Inlet	4-Aug-06	14:16	13.5	72.9	0.80	0.55	0.02	487.2	0.57	0.59	0.40	7.35
2006-0504	18 Inlet	10-Aug-06		8.5	90.4	0.99	0.68	0.04	591.2	0.87	0.91	1.83	9.88
2006-0503	18 Outlet	10-Aug-06		10.8	85.0	0.93	0.65	0.04	564.8	0.95	0.88	0.54	9.11
2006-0501	I7 into I9	10-Aug-06		10.8	84.4	0.94	0.64	0.03	584.4	0.82	0.89	0.33	7.07
2006-0505	18 into 19	10-Aug-06		10.7	82.8	0.91	0.63	0.02	552	0.85	0.84	1.31	8.07
2006-0510	Toolik Inlet	10-Aug-06		10.7	82.7	0.90	0.63	0.02	545.3	0.92	0.81	1.12	11.21

Sortchem	Site	Date	Time	Temperature (deg C)	Total Proteins (mg/L)	Total Phenolics (uM)	Phaeophytin corrected chl a (ug chl a/L)
2007-0105	l8 in	16-Jun-07	16:54	14	0.17	0.123	0.20
2007-0106	l8 out	16-Jun-07	18:00	11.7	0.50	0.234	1.94
2007-0104	17-19	16-Jun-07	18:50	13.9	0.38	0.222	0.10
2007-0103	18-19	16-Jun-07	19:20	13.9	0.25	0.150	1.07
2007-0100	Toolik Inlet	16-Jun-07	20:42	13.4	0.25	0.156	0.18
2007-0704	l8 in	18-Jun-07	16:24	17.3	0.23	0.117	0.20
2007-0705	18 out	18-Jun-07	17:03	14	0.36	0.231	1.23
2007-0706	18 in Northeast	18-Jun-07	14:03	14.8	0.42	0.081	0.16
2007-0707	18 in Southeast	18-Jun-07	14:52	14.2	0.22	0.216	0.46
2007-0708	I8 in South	18-Jun-07	15:36	14.2	0.20	0.156	0.13
2007-0148	I8 HW	20-Jun-07	9:50	9.5	0.18	0.162	0.08
2007-0149	l8 in	21-Jun-07	11:27	13.5	0.00	0.078	0.08
2007-0150	I8 out	21-Jun-07	12:39	15.9	0.30	0.195	0.95
2007-0147	17-19	21-Jun-07	14:01	17.8	0.36	0.204	0.08
2007-0151	18-19	21-Jun-07	14:22	17.8	0.30	0.138	0.08
2007-0156	Toolik Inlet	21-Jun-07	16:10	16.5	0.17	0.144	0.22
2007-0711	Toolik Inlet	22-Jun-07	6:20	10.5	0.17	0.117	0.16
2007-0709	17-19	27-Jun-07	14:05	13.9	0.30	0.195	0.20
2007-0710	18-19	27-Jun-07	14:40	13.2	0.16	0.108	0.47
2007-0328	l8 in	29-Jun-07	10:46	13.3	0.18	0.066	0.26
2007-0329	I8 out	29-Jun-07	11:15	15.7	0.25	0.054	0.82
2007-0721	Transplant I7-I9 at I8-I9 A	29-Jun-07	10:10	15.4	0.32	0.042	0.20
2007-0722	Transplant I7-I9 at I8-I9 B	29-Jun-07	10:10	15.4	0.37	-0.013	0.22
2007-0718	Transplant I8-I9 A	29-Jun-07	10:10	15.4	0.21	-0.016	0.28
2007-0719	Transplant I8-I9 B	29-Jun-07	10:10	15.4	0.18	-0.025	0.17
2007-0720	Transplant I8-I9 C	29-Jun-07	10:10	15.4	0.36	-0.040	1.56
2007-0327	17-19	29-Jun-07	12:50	14.9	0.37	0.033	0.06
2007-0326	18-19	29-Jun-07	12:28	15.4	0.27	-0.016	0.15
2007-0323	Toolik Inlet	29-Jun-07	16:30		0.16	0.033	0.22
2007-0730	17-19	2-Jul-07	12:05	14.8	0.37	0.698	0.14
2007-0731	18-19	2-Jul-07	13:00	16.3	0.23	0.671	0.18
2007-0712	Transplant I7-I9 A	2-Jul-07	12:05	14.8	0.55	0.060	0.14
2007-0728	Transplant I7-I9 at I8-I9 A	2-Jul-07	13:00	16.3	0.29	0.584	0.18
2007-0729	Transplant I7-I9 at I8-I9 B	2-Jul-07	13:00	16.3	0.34	0.746	0.10
2007-0723	Transplant I7-I9 at I8-I9 C	2-Jul-07	13:00	16.3	0.39	-0.019	0.20
2007-0713	Transplant I7-I9 B	2-Jul-07	12:05	14.8	0.00	0.081	0.09
2007-0714	Transplant I7-I9 C	2-Jul-07	12:05	14.8	0.32	0.048	0.13
2007-0725	Transplant I8-I9 A	2-Jul-07	13:00	16.3	0.19	-0.052	0.21
2007-0715	Transplant I8-I9 at I7-I9 A	2-Jul-07	12:05	14.8	0.55	0.020	0.19
2007-0716	Transplant I8-I9 at I7-I9 B	2-Jul-07	12:05	14.8	0.23	-0.046	0.16
2007-0717	Transplant I8-I9 at I7-I9 C	2-Jul-07	12:05	14.8	0.18	-0.040	0.13

Sortchem	Site	Date	Time	Temperature (deg C)	Total Proteins (mg/L)	Total Phenolics (uM)	Phaeophytin corrected chl a (ug chl a/L)
2007-0726	Transplant I8-I9 B	2-Jul-07	13:00	16.3	0.16	0.011	0.11
2007-0727	Transplant 18-19 C	2-Jul-07	13:00	16.3	0.22	-0.040	0.53
2007-0732	18 in	2-Jul-07	15:55	14.8	0.12	0.683	0.29
2007-0733	18 out	2-Jul-07	17:23	16.3	0.19	0.692	0.48
2007-0751	18 in	4-Jul-07	9:55	13.9	0.21	0.231	0.20
2007-0752	18 out	4-Jul-07	11:00	18.4	0.32	0.027	0.29
2007-0753	Transplant I8 in A	4-Jul-07	10:15	13.9	0.14	0.662	0.10
2007-0754	Transplant I8 in B	4-Jul-07	10:15	13.9	0.37	-0.046	0.12
2007-0755	Transplant I8 in C	4-Jul-07	10:15	13.9	0.36	-0.034	0.14
2007-0756	Transplant I8 in at I8 out A	4-Jul-07	10:15	18.4	0.36	-0.007	0.09
2007-0757	Transplant I8 in at I8 out B	4-Jul-07	10:15	18.4	0.21	0.005	0.06
2007-0758	Transplant I8 in at I8 out C	4-Jul-07	10:15	18.4	0.34	-0.025	0.10
2007-0759	Transplant I8 out A	4-Jul-07	11:20	18.4	0.40	0.048	0.35
2007-0760	Transplant I8 out B	4-Jul-07	11:20	18.4	0.51	0.084	0.35
2007-0761	Transplant I8 out C	4-Jul-07	11:20	18.4	0.66	0.054	0.88
2007-0762	Transplant I8 out at I8 in A	4-Jul-07	11:20	13.9	0.50	0.048	0.29
2007-0763	Transplant I8 out at I8 in B	4-Jul-07	11:20	13.9	0.26	0.057	0.27
2007-0764	Transplant I8 out at I8 in C	4-Jul-07	11:20	13.9	0.28	0.072	0.26
2007-0765	18 in Northeast	4-Jul-07	9:15		0.26	0.252	0.31
2007-0767	18 in South	4-Jul-07	14:10		0.48	0.213	0.35
2007-0768	18 Lake Northeast	4-Jul-07	10:15		0.54	0.084	0.82
2007-0769	18 Lake East	4-Jul-07	10:32		0.55	0.153	0.88
2007-0770	18 Lake Southeast	4-Jul-07	10:44		0.57	0.123	0.56
2007-0771	18 Lake Central	4-Jul-07	11:08		0.51	0.123	0.87
2007-0772	18 Lake Southwest	4-Jul-07	11:38		0.52	0.234	0.92
2007-0773	18 Lake West	4-Jul-07	12:12		0.67	0.240	0.84
2007-0774	18 Lake West	4-Jul-07	12:12		0.54	0.162	1.60
2007-0775	18 Lake Northwest	4-Jul-07	12:50		0.51	0.195	0.90
2007-0384	17-19	6-Jul-07	10:00				0.04
2007-0383	18-19	6-Jul-07	10:30				0.27
2007-0380	Toolik Inlet	6-Jul-07	13:23				0.22
2007-0413	I8 HW	10-Jul-07	8:50		-0.03		1.19
2007-0414		11-Jul-07	13:52		-0.13	0.756	0.17
2007-0415		11-Jul-07	15:49		0.09	0.645	1.75
2007-0412	17-19	11-Jul-07	17:00		0.20	0.496	0.84
2007-0416		11-Jul-07	16:29		-0.05	0.332	0.20
2007-0421		11-Jul-07	18:30		-0.09	0.173	0.27
2007-0783		16-Jul-07	10:45		0.12	0.176	0.51
2007-0784	IO UUI	16-Jul-07	11:17		0.13	0.260	0.94
2007-0785		10-JUI-07	13:30		0.32	0.620	0.62
2007-0786	in South	16-Jul-07	12:35		0.12	0.648	0.21

Sortchem	Site	Date	Time	Temperature (deg C)	Total Proteins (mg/L)	Total Phenolics (uM)	Phaeophytin corrected chl a (ug chl a/L)
2007-0787	18 in Southeast	16-Jul-07	12:56		0.03	0.350	0.31
2007-0796	Toolik Inlet	16-Jul-07	18:30		0.03	0.170	0.28
2007-0473	l8 in	20-Jul-07			0.17	0.340	0.50
2007-0474	l8 out	20-Jul-07			0.23	0.335	0.87
2007-0830	I8 in NE	20-Jul-07			0.20	0.292	-0.10
2007-0828	I8 in S	20-Jul-07			0.24	0.344	-0.16
2007-0829	I8 in SE	20-Jul-07			0.28	0.368	0.23
2007-0472	17-19	20-Jul-07			0.31	0.373	0.16
2007-0471	18-19	20-Jul-07			0.21	0.302	0.55
2007-0468	Toolik Inlet	20-Jul-07			0.03	0.349	0.44
2007-0844	l8 in	23-Jul-07			0.10	0.373	0.45
2007-0845	18 out	23-Jul-07			0.52	0.323	0.08
2007-0846	18 in South	23-Jul-07			0.21	0.358	0.06
2007-0847	18 in Southeast	23-Jul-07			0.27	0.358	0.40
2007-0848	18 in Northeast	23-Jul-07			0.15	0.194	0.09
2007-0849	18 HW	23-Jul-07			0.32	0.293	
2007-0517	18 in	27-Jul-07	10:18				0.03
2007-0518	18 out	27-Jul-07	11:02				1.78
2007-0516	17-19	27-Jul-07	11:36				0.18
2007-0515	18-19	27-Jul-07	11:57				0.29
2007-0512	Toolik Inlet	27-Jul-07	14:26				0.19
2007-0869	18 in	28-Jul-07			0.11	0.197	0.18
2007-0868	18 out	28-Jul-07			0.08	0.274	0.84
2007-0870	18 in Northeast	28-Jul-07			0.17	0.168	0.19
2007-0871	18 in Southeast	28-Jul-07			0.23	0.312	0.57
2007-0872	I8 in South	28-Jul-07			0.20	0.264	0.07
2007-0873	18 Lake	28-Jul-07			0.20	0.259	1.08
2007-0558	l8 in	3-Aug-07			0.51	0.54	0.11
2007-0559	18 out	3-Aug-07			0.26	0.26	0.95
2007-0908	18 in Northeast	3-Aug-07			0.30	0.25	0.26
2007-0909	18 in Southeast	3-Aug-07			0.34	0.28	0.24
2007-0910	I8 in South	3-Aug-07			0.37	0.29	0.08

age age <th>Appendix C. Cell co</th> <th>ounts for</th> <th>select</th> <th>t experime</th> <th>ent</th> <th>s.</th> <th></th>	Appendix C. Cell co	ounts for	select	t experime	ent	s.	
bile repB 7-Jul-05 transplant 7095500 8591870 bile repB 7-Jul-05 transplant 7095500 8591870 White repB 7-Jul-05 transplant 2167183 4796878 B in 9-Jul-05 transplant 1110676 5284983 B out 9-Jul-05 transplant 1877939 2839213 green repA 9-Jul-05 transplant 3289367 2815011 green repB 9-Jul-05 transplant 328936 5913028 green repB 9-Jul-05 transplant 328936 5913028 green repB 9-Jul-05 transplant 328936 5913028 yellow repB 9-Jul-05 transplant 2280145 3745043 white repB 9-Jul-05 nut expt 618798 2569831 B in 26-Jul-05 nut expt 1618798 2569831 B in 26-Jul-05 nut expt 171477 73823 green 12C 26-Jul-05 nut expt 17167					е		лГ
B T-U-05 transplant 705500 8591870 blue repB 7-Jul-05 transplant 7095500 8591870 B in 9-Jul-05 transplant 2167183 4796878 B out 9-Jul-05 transplant 1110676 5284983 B out 9-Jul-05 transplant 196367 5671333 blue repA 9-Jul-05 transplant 1877939 2839213 green repA 9-Jul-05 transplant 3638154 4451896 green repB 9-Jul-05 transplant 3638154 4451896 yellow repB 9-Jul-05 transplant 2806406 412934 B in 26-Jul-05 nut expt 618798 2569831 B out 26-Jul-05 nut expt 1594933 4337050 Jrane L2C 26-Jul-05 nut expt 117430 9540452 yellow 12C 26-Jul-05 nut expt 1174730 125024 yellow 12C 26-Jul-05 nut expt 1117430 1250					typ		lls/
Eg eg<	ole la				ole	,∎I	ပိ
blue repB 7-Ju-05 transplant 709500 551870 white repB 7-Ju-05 transplant 2671183 4796878 IB in 9-Jul-05 transplant 1110676 5284983 IB out 9-Jul-05 transplant 116076 5284983 Ibue repA 9-Jul-05 transplant 1969367 2815011 Due repB 9-Jul-05 transplant 2200321 3058598 green repA 9-Jul-05 transplant 328954 521651 yellow repA 9-Jul-05 transplant 2280321 3058598 5913208 yellow repB 9-Jul-05 transplant 2280456 3745043 white repB 9-Jul-05 transplant 2860490 4129934 IB in 26-Jul-05 nut expt 618798 2569831 yellow 12C 26-Jul-05 nut expt 171430 1954067 white repB 9-Jul-05 nut expt 1114562 181959 yellow 12C 26-Jul-05 nut expt </td <td>and a second sec</td> <td>ate</td> <td>me</td> <td></td> <td>amp</td> <td></td> <td>otal</td>	and a second sec	ate	me		amp		otal
Dub repB 7-Jul-05 transplant 7/05500 8591870 IB in 9-Jul-05 transplant 217183 796878 IB out 9-Jul-05 transplant 1110676 5284983 IB out 9-Jul-05 transplant 1969367 2815011 blue repA 9-Jul-05 transplant 1867739 2839213 green repA 9-Jul-05 transplant 2200321 3058598 green repA 9-Jul-05 transplant 363154 4451896 yellow repB 9-Jul-05 transplant 2260156 3745043 white repB 9-Jul-05 transplant 2660490 4129934 IB on 26-Jul-05 nut expt 349734 615195 green 12C 26-Jul-05 nut expt 349734 615195 green 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 477167 736233 green 17C 26-Jul-05 nut expt 573340	, w	Ď	Ξ	tur a rate at	ŝ	ΞŎ	Ĕ
Write reps 7-JUI-05 transplant 2671183 4749637 I8 in 9-JUI-05 transplant 1110676 5284983 I8 out 9-JUI-05 transplant 1969367 2815011 blue repA 9-JUI-05 transplant 1877939 2839213 green repA 9-JUI-05 transplant 2200321 3058598 green repB 9-JUI-05 transplant 2266156 3745043 yellow repA 9-JUI-05 transplant 2266156 3745043 white repB 9-JUI-05 transplant 2266156 3745043 White repA 9-JUI-05 nut expt 1594933 4337050 blue 12C 26-JUI-05 nut expt 349734 615195 green 12C 26-JUI-05 nut expt 11066580 1819659 yellow 12C 26-JUI-05 nut expt 1066580 1819659 yellow 17C 26-JUI-05 nut expt 699691 1077638 green 17C 26-JUI-05 nut expt		7-Jul-05		transplant		7095500	8591870
Bit in 9-Jul-05 transplant 11107/6 324485 Bout 9-Jul-05 transplant 1969367 2815011 blue repA 9-Jul-05 transplant 1877939 2839213 green repA 9-Jul-05 transplant 2200321 3058598 green repB 9-Jul-05 transplant 4328398 5913028 yellow repA 9-Jul-05 transplant 4328938 5913028 white repA 9-Jul-05 transplant 2286156 3745043 white repB 9-Jul-05 nut expt 618798 2669831 B in 26-Jul-05 nut expt 349734 615195 green r12C 26-Jul-05 nut expt 1066580 1819659 yellow 12C 26-Jul-05 nut expt 1066580 1819659 yellow 12C 26-Jul-05 nut expt 470767 736233 green 17C 26-Jul-05 nut expt 1066580 1819659 yellow 12C 26-Jul-05 nut expt 6771430 </td <td></td> <td>7-Jul-05</td> <td></td> <td>transplant</td> <td></td> <td>20/1183</td> <td>4796878</td>		7-Jul-05		transplant		20/1183	4796878
Bound 3-Jul-05 transplant 213/36 36/133 blue repA 9-Jul-05 transplant 1899367 2815011 blue repB 9-Jul-05 transplant 2200321 3068958 green repA 9-Jul-05 transplant 3638154 4451896 yellow repA 9-Jul-05 transplant 3879564 5216519 white repA 9-Jul-05 transplant 2260126 3745043 white repB 9-Jul-05 transplant 2266156 3745043 white repB 9-Jul-05 nut expt 618798 2569831 I8 out 26-Jul-05 nut expt 1594933 4337050 blue 12C 26-Jul-05 nut expt 1117430 1954067 yellow 12C 26-Jul-05 nut expt 1065300 1819659 y12NP 26-Jul-05 nut expt 477167 736233 blue 17C 26-Jul-05 nut expt 624496 1008360 yellow 17C 26-Jul-05 nut expt 6243066 <td></td> <td>9-Jul-05</td> <td></td> <td>transplant</td> <td></td> <td>2157297</td> <td>5671222</td>		9-Jul-05		transplant		2157297	5671222
blue repR 9-Jul-05 transplant 150300 281301 green repA 9-Jul-05 transplant 2200321 3058598 green repB 9-Jul-05 transplant 2200321 3058598 green repB 9-Jul-05 transplant 3638154 4451896 green repB 9-Jul-05 transplant 2266156 3745043 white repA 9-Jul-05 transplant 22660400 4129334 Bin 26-Jul-05 nut expt 1594933 4337050 blue 12C 26-Jul-05 nut expt 349734 615195 green 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 1066580 1819659 yellow 12C 26-Jul-05 nut expt 107638 1277632 green 17C 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 624409 6781369 y17NP 26-Jul-05 nut expt 503160	lo out	9-Jul-05		transplant		210/30/	2815011
Dide repD ByJuho5 transplant 107733 203313 green repA 9-Juho5 transplant 3638154 4451896 green repB 9-Juho5 transplant 3638154 4451896 yellow repA 9-Juho5 transplant 220321 305898 white repA 9-Juho5 transplant 226616 51750 white repB 9-Juho5 transplant 22660490 412934 I8 in 26-Juho5 nut expt 618798 2569831 I8 out 26-Juho5 nut expt 154933 4337050 blue 12C 26-Juho5 nut expt 343734 615195 yellow 12C 26-Juho5 nut expt 111743 1954067 white 12C 26-Juho5 nut expt 1066580 1819659 y12NP 26-Juho5 nut expt 477167 736233 blue 17C 26-Juho5 nut expt 639490 1077638 green 17C 26-Juho5 nut expt 524406 1008300 <td>blue repA</td> <td>9-Jul-05</td> <td></td> <td>transplant</td> <td></td> <td>1909307</td> <td>2010011</td>	blue repA	9-Jul-05		transplant		1909307	2010011
green repB 9-Jul-05 transplant 228032 053030 yellow repA 9-Jul-05 transplant 333154 445189 yellow repB 9-Jul-05 transplant 333154 445189 white repA 9-Jul-05 transplant 2286156 3745043 white repB 9-Jul-05 transplant 2286156 3745043 i8 in 26-Jul-05 nut expt 618798 2569831 i8 out 26-Jul-05 nut expt 1594933 4337050 blue 12C 26-Jul-05 nut expt 343734 615195 green 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 477167 736233 green 17C 26-Jul-05 nut expt 477167 736233 green 17C 26-Jul-05 nut expt 524406 1008360 green 17C 26-Jul-05 nut expt 524406	areen renå	9-Jul-05		transplant		2200321	3058598
glow repA 9-Jul-05 transplant 9000000000000000000000000000000000000	green renR	9-Jul-05		transplant		3638154	4451896
Jamma Park Bounds Bounds <thbounds< th=""> <thbounds< th=""> Bound</thbounds<></thbounds<>	vellow repA	9-Jul-05		transplant		4328938	5913028
John Ope Jul-05 transplant 2286156 3745043 white repB 9-Jul-05 transplant 2266166 3745043 IB in 26-Jul-05 nut expt 618798 2569831 IB out 26-Jul-05 nut expt 1594933 4337050 blue 12C 26-Jul-05 nut expt 3749734 615195 green 12C 26-Jul-05 nut expt 373128 652448 yellow 12C 26-Jul-05 nut expt 11066580 1819659 y12NP 26-Jul-05 nut expt 583391 1250524 w12NP 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 888716 1240849 wellow 17C 26-Jul-05 nut expt 5724409 6781369 y17NP 26-Jul-05 nut expt 1114562 1888910 y17NP 26-Jul-05 nut expt 1802005 538490 y17NP 26-Jul-05 nut expt 1802005 538490	vellow repR	9-Jul-05		transplant		3879564	5216519
white repB 9-Jul-05 transplant 2660490 4129934 I8 in 26-Jul-05 nut expt 618798 2569831 I8 out 26-Jul-05 nut expt 1594933 4337050 blue 12C 26-Jul-05 nut expt 349734 615195 green 12C 26-Jul-05 nut expt 373128 652448 yellow 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 1066580 1819659 y12NP 26-Jul-05 nut expt 477167 736233 blue 17C 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 6199691 107838 yellow 17C 26-Jul-05 nut expt 5724409 6781369 g17NP 26-Jul-05 nut expt 5703160 8430825 j17NP 26-Jul-05 nut expt 5503160 8430825 j8 out 28-Jul-05 transplant 2436214 4225400<	white repA	9-Jul-05		transplant		2286156	3745043
IB in 26-Jul-05 nut expt 618798 256931 I8 out 26-Jul-05 nut expt 1594933 4337050 blue 12C 26-Jul-05 nut expt 349734 615195 green 12C 26-Jul-05 nut expt 373128 652448 yellow 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 583391 1250524 w12NP 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 88716 1240849 yellow 17C 26-Jul-05 nut expt 624906 1008360 b17NP 26-Jul-05 nut expt 5724409 6781369 y17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 302016 430825 I8 out 28-Jul-05 transplant 2436214 4225400 <td>white repB</td> <td>9-Jul-05</td> <td></td> <td>transplant</td> <td></td> <td>2660490</td> <td>4129934</td>	white repB	9-Jul-05		transplant		2660490	4129934
IB out 26-Jul-05 nut expt 1594933 4337050 blue 12C 26-Jul-05 nut expt 349734 615195 green 12C 26-Jul-05 nut expt 373128 652448 yellow 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 1066580 1819659 y12NP 26-Jul-05 nut expt 699611 177638 green 17C 26-Jul-05 nut expt 699611 177638 green 17C 26-Jul-05 nut expt 888716 1240849 wellow 17C 26-Jul-05 nut expt 624906 1008360 b17NP 26-Jul-05 nut expt 5724409 6781389 g17NP 26-Jul-05 nut expt 180205 5884900 v17NP 26-Jul-05 nut expt 5503160 8430825 I8 in 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2436214 4225400	18 in	26-Jul-05		nut expt		618798	2569831
blue 12C 26-Jul-05 nut expt 349734 615195 green 12C 26-Jul-05 nut expt 373128 652448 yellow 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 1066580 1819659 y12NP 26-Jul-05 nut expt 693391 1250524 w12NP 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 888716 1240849 yellow 17C 26-Jul-05 nut expt 624906 1008360 b17NP 26-Jul-05 nut expt 572409 6781369 g17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 5503160 8430825 18 in 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 3646718 4998036	18 out	26-Jul-05		nut expt		1594933	4337050
green 12C 26-Jul-05 nut expt 373128 652448 yellow 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 1066580 1819659 y12NP 26-Jul-05 nut expt 583391 125052 w12NP 26-Jul-05 nut expt 477167 736233 blue 17C 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 888716 1240849 yellow 17C 26-Jul-05 nut expt 624906 108360 b17NP 26-Jul-05 nut expt 5724409 6781369 g17NP 26-Jul-05 nut expt 1802005 5384990 w17NP 26-Jul-05 nut expt 5503160 8430825 18 in 28-Jul-05 transplant 274643 4953355 blue A 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 3046718 4998036	blue 12C	26-Jul-05		nut expt		349734	615195
yellow 12C 26-Jul-05 nut expt 1117430 1954067 white 12C 26-Jul-05 nut expt 1066580 1819659 y12NP 26-Jul-05 nut expt 583391 1250524 w12NP 26-Jul-05 nut expt 477167 736233 blue 17C 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 1114562 1858901 white 17C 26-Jul-05 nut expt 5724409 6781369 g17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 3027506 49813092 y17NP 26-Jul-05 nut expt 5503160 8430825 18 in 28-Jul-05 transplant 975800 3184325 18 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2436214 4225400 green B 28-Jul-05 transplant 2436214 42257971<	green 12C	26-Jul-05		nut expt		373128	652448
white 12C 26-Jul-05 nut expt 1066580 1819659 y12NP 26-Jul-05 nut expt 583391 1250524 w12NP 26-Jul-05 nut expt 477167 736233 blue 17C 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 888716 1240849 yellow 17C 26-Jul-05 nut expt 624906 1008360 b17NP 26-Jul-05 nut expt 5724409 6781369 y17NP 26-Jul-05 nut expt 180205 5384990 y17NP 26-Jul-05 nut expt 180205 5384990 y17NP 26-Jul-05 nut expt 180205 5384990 y17NP 26-Jul-05 nut expt 1804825 18 8430825 18 18 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 24080	yellow 12C	26-Jul-05		nut expt		1117430	1954067
y12NP 26-Jul-05 nut expt 583391 1250524 w12NP 26-Jul-05 nut expt 477167 736233 blue 17C 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 888716 1240849 yellow 17C 26-Jul-05 nut expt 1114562 1858901 white 17C 26-Jul-05 nut expt 624906 1008360 b17NP 26-Jul-05 nut expt 5724409 6781369 g17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 5503160 8430825 18 in 28-Jul-05 transplant 975800 3184325 18 out 28-Jul-05 transplant 2417963 495355 blue B 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 3030301 4527971 green B 28-Jul-05 transplant 2694287 3420275	white 12C	26-Jul-05		nut expt		1066580	1819659
w12NP 26-Jul-05 nut expt 477167 736233 blue 17C 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 888716 1240849 yellow 17C 26-Jul-05 nut expt 624906 1008360 b17NP 26-Jul-05 nut expt 5724409 6781369 g17NP 26-Jul-05 nut expt 1802005 5384990 w17NP 26-Jul-05 transplant 975800 3184325 I8 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 303301 4527971 green B 28-Jul-05 transplant 2694287 3420275	y12NP	26-Jul-05		nut expt		583391	1250524
blue 17C 26-Jul-05 nut expt 699691 1077638 green 17C 26-Jul-05 nut expt 888716 1240849 yellow 17C 26-Jul-05 nut expt 1114562 1858901 white 17C 26-Jul-05 nut expt 572409 6781369 g17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 1802005 5384990 w17NP 26-Jul-05 nut expt 5503160 8430825 18 in 28-Jul-05 transplant 975800 3184325 18 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 2436214 4225400 green B 28-Jul-05 transplant 240618 4998036 yellow A 28-Jul-05 transplant 3646718 4998036 yellow B 28-Jul-05 transplant 2694287	w12NP	26-Jul-05		nut expt		477167	736233
green 17C 26-Jul-05 nut expt 888716 1240849 yellow 17C 26-Jul-05 nut expt 1114562 1858901 white 17C 26-Jul-05 nut expt 624906 1008360 b17NP 26-Jul-05 nut expt 5724409 6781369 g17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 180205 5384990 w17NP 26-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2417963 4953355 blue B 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 3646718 4998036 yellow A 28-Jul-05 transplant 2694287 3420275	blue 17C	26-Jul-05		nut expt		699691	1077638
yellow 17C 26-Jul-05 nut expt 1114562 1858901 white 17C 26-Jul-05 nut expt 624906 1008360 b17NP 26-Jul-05 nut expt 5724409 6781369 g17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 1802005 5384990 w17NP 26-Jul-05 nut expt 5503160 8430825 I8 in 28-Jul-05 transplant 975800 3184325 I8 out 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 2640214 4225400 green B 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 2694287	green 17C	26-Jul-05		nut expt		888716	1240849
white 17C 26-Jul-05 nut expt 624906 1008360 b17NP 26-Jul-05 nut expt 5724409 6781369 g17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 3027506 4981309 w17NP 26-Jul-05 nut expt 5503160 8430825 I8 in 28-Jul-05 transplant 975800 3184325 I8 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 2436214 4225400 green B 28-Jul-05 transplant 3030301 4527971 green B 28-Jul-05 transplant 2908290 4056464 yellow A 28-Jul-05 transplant 2694287 3420275 white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 215020 291	yellow 17C	26-Jul-05		nut expt		1114562	1858901
b17NP 26-Jul-05 nut expt 5724409 6781369 g17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 1802005 5384990 w17NP 26-Jul-05 nut expt 5503160 8430825 I8 in 28-Jul-05 transplant 975800 3184325 I8 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 2436214 4225400 green B 28-Jul-05 transplant 303301 4527971 green B 28-Jul-05 transplant 3046718 4998036 yellow A 28-Jul-05 transplant 2608290 4056464 yellow B 28-Jul-05 transplant 2694287 3420275 white A 28-Jul-05 transplant 215020 2916835 18 in 30-Jul-05 transplant 2168425 4715	white 17C	26-Jul-05		nut expt		624906	1008360
g17NP 26-Jul-05 nut expt 3027506 4981309 y17NP 26-Jul-05 nut expt 1802005 5384990 w17NP 26-Jul-05 nut expt 5503160 8430825 I8 in 28-Jul-05 transplant 975800 3184325 I8 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 303301 4527971 green B 28-Jul-05 transplant 3646718 4998036 yellow A 28-Jul-05 transplant 2694287 3420275 white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 2115020 2916835 I8 in 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 212042 32	b17NP	26-Jul-05		nut expt		5724409	6781369
y17NP 26-Jul-05 nut expt 1802005 5384990 w17NP 26-Jul-05 nut expt 5503160 8430825 I8 in 28-Jul-05 transplant 975800 3184325 I8 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2282585 3176430 blue B 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 30301 4527971 green B 28-Jul-05 transplant 3046718 4998036 yellow A 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 2694287 3420275 white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 2115020 2916835 I8 in 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2170265 <t< td=""><td>g17NP</td><td>26-Jul-05</td><td></td><td>nut expt</td><td></td><td>3027506</td><td>4981309</td></t<>	g17NP	26-Jul-05		nut expt		3027506	4981309
w17NP 26-Jul-05 nut expt 5503160 8430825 I8 in 28-Jul-05 transplant 975800 3184325 I8 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2282585 3176430 blue B 28-Jul-05 transplant 2282585 3176430 green A 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 303301 4527971 green B 28-Jul-05 transplant 3046718 4998036 yellow A 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 2694287 3420275 white A 28-Jul-05 transplant 211502 2916835 I8 in 30-Jul-05 transplant 2168635 1680673 I8 out 30-Jul-05 transplant 2170265 2920629 blue A 30-Jul-05 transplant 2170265	y17NP	26-Jul-05		nut expt		1802005	5384990
I8 in 28-Jul-05 transplant 975800 3184325 I8 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2282585 3176430 blue B 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 3303301 4527971 green B 28-Jul-05 transplant 3646718 4998036 yellow A 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 2694287 3420275 white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 215020 2916835 I8 in 30-Jul-05 transplant 2168635 1680673 I8 out 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 228865 2927049 green A 30-Jul-05 transplant 3229053	w17NP	26-Jul-05		nut expt		5503160	8430825
I8 out 28-Jul-05 transplant 2417963 4953355 blue A 28-Jul-05 transplant 2282585 3176430 blue B 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 330301 4527971 green B 28-Jul-05 transplant 3646718 4998036 yellow A 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 2694287 3420275 white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 215020 2916835 18 in 30-Jul-05 transplant 218025 4715170 blue A 30-Jul-05 transplant 2184258 4715170 blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 3212744	18 in	28-Jul-05		transplant		975800	3184325
blue A 28-Jul-05 transplant 2282585 3176430 blue B 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 330301 4527971 green B 28-Jul-05 transplant 3646718 4998036 yellow A 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 2694287 3420275 white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 2115020 2916835 18 in 30-Jul-05 transplant 218605 1680673 18 out 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 321274 4291281 yellow A 30-Jul-05 transplant 3212042	18 out	28-Jul-05		transplant		2417963	4953355
blue B 28-Jul-05 transplant 2436214 4225400 green A 28-Jul-05 transplant 330301 4527971 green B 28-Jul-05 transplant 3646718 4998036 yellow A 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 3631100 4623029 white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 2115020 2916835 18 in 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2184258 4715170 blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 3212744 4291281 yellow A 30-Jul-05 transplant 3212042<	blue A	28-Jul-05		transplant		2282585	3176430
green A 28-Jul-05 transplant 3303301 4527971 green B 28-Jul-05 transplant 3646718 4998036 yellow A 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 2604287 3420275 white A 28-Jul-05 transplant 2694287 3420275 white B 30-Jul-05 transplant 2115020 2916835 18 out 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 3212744 4291281 yellow A 30-Jul-05 transplant 32120	blue B	28-Jul-05		transplant		2436214	4225400
green B 28-Jul-05 transplant 3646718 4998036 yellow A 28-Jul-05 transplant 2908290 4056464 yellow B 28-Jul-05 transplant 3631100 4623029 white A 28-Jul-05 transplant 3631100 4623029 white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 215020 2916835 I8 in 30-Jul-05 transplant 215020 2916835 I8 out 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2170265 2920629 blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 3212744 4291281 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 </td <td>green A</td> <td>28-Jul-05</td> <td></td> <td>transplant</td> <td></td> <td>3303301</td> <td>4527971</td>	green A	28-Jul-05		transplant		3303301	4527971
yellow A28-Jul-05transplant29082904056464yellow B28-Jul-05transplant36311004623029white A28-Jul-05transplant26942873420275white B28-Jul-05transplant21150202916835I8 in30-Jul-05transplant5686351680673I8 out30-Jul-05transplant21842584715170blue A30-Jul-05transplant21702652920629blue B30-Jul-05transplant20288652927049green A30-Jul-05transplant32290534244331green B30-Jul-05transplant25248263649447yellow A30-Jul-05transplant32120424381264white A30-Jul-05transplant32120424381264white B30-Jul-05transplant27818893504648I8 in2-Aug-05transplant5916691856724I8 out2-Aug-05transplant20667072810222blue A2-Aug-05transplant20494832800538	green B	28-Jul-05		transplant		3646718	4998036
yellow B 28-Jul-05 transplant 3631100 4623029 white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 2115020 2916835 I8 in 30-Jul-05 transplant 568635 1680673 I8 out 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2184258 4715170 blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 2028865 2927049 green B 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 2524826 3649447 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 27414509<	yellow A	28-Jul-05		transplant		2908290	4056464
white A 28-Jul-05 transplant 2694287 3420275 white B 28-Jul-05 transplant 2115020 2916835 I8 in 30-Jul-05 transplant 568635 1680673 I8 out 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2170265 2920629 blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 2524826 3649447 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2781889 <td>yellow B</td> <td>28-Jul-05</td> <td></td> <td>transplant</td> <td></td> <td>3631100</td> <td>4623029</td>	yellow B	28-Jul-05		transplant		3631100	4623029
white B 28-Jul-05 transplant 2115020 2916835 I8 in 30-Jul-05 transplant 568635 1680673 I8 out 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2184258 4715170 blue B 30-Jul-05 transplant 2170265 2920629 blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 2524826 3649447 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2781889 3504648 I8 in 2-Aug-05 transplant 591669	white A	28-Jul-05		transplant		2694287	3420275
18 in 30-Jul-05 transplant 568635 1680673 18 out 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2170265 2920629 blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 2524826 3649447 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 3212042 4381264 White B 30-Jul-05 transplant 2781889 3504648 18 in 2-Aug-05 transplant 591669 1856724 18 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707	white B	28-Jul-05		transplant		2115020	2916835
18 out 30-Jul-05 transplant 2184258 4715170 blue A 30-Jul-05 transplant 2170265 2920629 blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 3229053 4244331 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2781889 3504648 18 in 2-Aug-05 transplant 591669 1856724 18 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 204948	18 in	30-Jul-05		transplant		568635	1680673
blue A 30-Jul-05 transplant 2170265 2920629 blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 2524826 3649447 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2781889 3504648 I8 in 2-Aug-05 transplant 591669 1856724 I8 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483	18 out	30-Jul-05		transplant		2184258	4715170
blue B 30-Jul-05 transplant 2028865 2927049 green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 2524826 3649447 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2781889 3504648 I8 in 2-Aug-05 transplant 591669 1856724 I8 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483 2800538	blue A	30-Jul-05		transplant		2170265	2920629
green A 30-Jul-05 transplant 3229053 4244331 green B 30-Jul-05 transplant 2524826 3649447 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2781889 3504648 I8 in 2-Aug-05 transplant 591669 1856724 I8 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483 2800538	blue B	30-Jul-05		transplant		2028865	2927049
green B 30-Jul-05 transplant 2524826 3649447 yellow A 30-Jul-05 transplant 3212744 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2781889 3504648 I8 in 2-Aug-05 transplant 591669 1856724 I8 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483 2800538	green A	30-Jul-05		transplant		3229053	4244331
yellow A 30-Jul-05 transplant 3212/44 4291281 yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 3212042 4381264 white B 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2781889 3504648 I8 in 2-Aug-05 transplant 591669 1856724 I8 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483 2800538	green B	30-Jul-05		transplant		2524826	3649447
yellow B 30-Jul-05 transplant 3212042 4381264 white A 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2441509 3272024 white B 30-Jul-05 transplant 2781889 3504648 I8 in 2-Aug-05 transplant 591669 1856724 I8 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483 2800538	yellow A	30-JUI-05		transplant		3212744	4291281
white B 30-Jul-05 transplant 2441509 32/2024 white B 30-Jul-05 transplant 2781889 3504648 I8 in 2-Aug-05 transplant 591669 1856724 I8 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483 2800538		30-Jul-05		transplant		3212042	4381264
willie b 30-Jul-05 transplant 2781889 3504648 18 in 2-Aug-05 transplant 591669 1856724 18 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483 2800538	white R	30-JUI-05		transplant		2441509	3212024
Itemsplant Series 1856724 I8 out 2-Aug-05 transplant 1864564 3835618 blue A 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483 2800538		30-JUI-05		transplant		501660	1956704
blue A 2-Aug-05 transplant 1004504 3835018 blue B 2-Aug-05 transplant 2066707 2810222 blue B 2-Aug-05 transplant 2049483 2800538		2-Aug-05		transplant		1864564	3825610
blue B 2-Aug-05 transplant 2000/07 2010222		2-Aug-05		transplant		2066707	2810222
	blue B	2-Aug-05		transplant		2000707	2800538

Sample	Date	Time		Sample type	HDNA Cells/mL	Total Cells/mL
green A	2-Aug-05		transplant		4198908	5278398
green B	2-Aug-05		transplant		4577302	5659559
yellow A	2-Aug-05		transplant		2231195	3353909
yellow B	2-Aug-05		transplant		2106243	3169719
white A	2-Aug-05		transplant		4504089	5245466
white B	2-Aug-05		transplant		2841792	3511703
BCF 1	3-Aug-05	9:00	BCF		232046	504347
BCF 2	3-Aug-05	11:05	BCF		168182	482993
BCF 3	3-Aug-05	13:07	BCF		222226	550138
BCF 4	3-Aug-05	15:04	BCF		2/2//5	620292
BCF 5	3-Aug-05	17:05	BCF		260838	592170
BCF 6	3-Aug-05	19:04	BCF		315059	683699
BCF 7	3-Aug-05	22:04	BCF		293939	632965
BCF 8	4-Aug-05	1:02	BCF		396768	762549
BCF 9	4-Aug-05	4:05	BCF		523523	850050
BCF 10	4-Aug-05	7:03	BCF		614492	944348
Sample	Date Date	Lime		Sample type	Conservative Cells/mL	Liberal Cells/mL
b 12C		21:32	nut expt	•,	5618	106342
g 12C	29-Jun-06	21:32	nut expt		5531	102519
y 12C	29-Jun-06	21:32	nut expt		5879	85150
b NP 12C	29-Jun-06	21:45	nut expt		7293	168421
g NP 12C	29-Jun-06	21:45	nut expt		14088	226294
y NP 12C	29-Jun-06	21:45	nut expt		8069	136623
b 17C	29-Jun-06	22:14	nut expt		6767	155737
g 17C	29-Jun-06	22:14	nut expt		3090	116797
y 17C	29-Jun-06	22:14	nut expt		2640	135333
b NP 17C	29-Jun-06	22:14	nut expt		4381	354992
g NP 17C	29-Jun-06	22:14	nut expt		5360	274301
y NP 17C	29-Jun-06	22:14	nut expt		7319	320441
b 12C	1-Jul-06	21:02	nut expt		6816	255553
g 12C	1-Jul-06	21:02	nut expt		8137	301695
y 12C	1-Jul-06	21:02	nut expt		10939	285864
b NP 12C	1-Jul-06	21:02	nut expt		70134	969976
g NP 12C	1-Jul-06	21:02	nut expt		18800	612270
y NP 12C	1-Jul-06	21:02	nut expt		16390	521766
b 17C	1-Jul-06	21:32	nut expt		10548	344562
g 17C	1-Jul-06	21:32	nut expt		6651	218770
y 17C	1-Jul-06	21:32	nut expt		60549	434761
b NP 17C	1-Jul-06	21:32	nut expt		120938	723529
g NP 17C	1-Jul-06	21:32	nut expt		435691	709373
y NP 17C	1-Jul-06	21:32	nut expt		514458	1217899
b 12C	6-Jul-06	21:08	nut expt		48703	429818
g 12C	6-Jul-06	21:08	nut expt		18380	368999
y 12C	6-Jul-06	21:08	nut expt		42922	401238
b NP 12C	6-Jul-06	21:08	nut expt		295179	1231584
g NP 12C	6-Jul-06	21:08	nut expt		413110	761136
y NP 12C	6-Jul-06	21:08	nut expt		357270	670426
b 17C	6-Jul-06	21:40	nut expt		21205	326136
Sample	Date	Time	Sample type	Conservative Cells/mL	Liberal Cells/mL	
-----------------	------------	---------	---------------	--------------------------	---------------------	
g 17C	6-Jul-06	21:40	nut expt	16333	312199	
y 17C	6-Jul-06	21:40	nut expt	29793	401438	
b NP 17C	6-Jul-06	21:40	nut expt	204249	456728	
g NP 17C	6-Jul-06	21:40	nut expt	206914	510922	
y NP 17C	6-Jul-06	21:40	nut expt	497280	902088	
b 12C	11-Jul-06	21:33	nut expt	22528	262786	
g 12C	11-Jul-06	21:33	nut expt	32362	347913	
y 12C	11-Jul-06	21:33	nut expt	16077	260909	
b NP 12C	11-Jul-06	21:33	nut expt	167142	405818	
a NP 12C	11-Jul-06	21:33	nut expt	204179	579797	
v NP 12C	11-Jul-06	21:33	nut expt	211682	533324	
b 17C	11-Jul-06	22:05	nut expt	28764	329121	
g 17C	11-Jul-06	22:05	nut expt	49055	397759	
y 17C	11-Jul-06	22.05	nut expt	36802	441531	
b NP 17C	11-Jul-06	22.05	nut expt	327404	738072	
g NP 17C	11-Jul-06	22:05	nut expt	274743	614087	
y NP 17C	11-Jul-06	22:05	nut expt	500710	913044	
in/in A	21- Jul-06	22.00	transplant	217012	313313	
in/in B	21-Jul-06		transplant	370675	466143	
in/in C	21-Jul-06		transplant	450828	5/2502	
in/out A	21-501-00		transplant	439020	534567	
in/out R	21-Jul-06		transplant	267719	490726	
in/out B	21-Jul-06		transplant	412619	409730 559244	
in/out C	21-Jul-06			110972	222706	
inlet NR 12C D	24-Jul-06		in vs out DNA	2/11/08	222790	
inlet NF 12C D	24-Jul-06		In vs out DNA	241100	107011	
inlet ND 17C D	24-Jul-06		In vs out DNA	202144	272722	
	24-Jul-06		In vs out DNA	102270	205044	
outlet NR 12C D	24-Jul-00		in vs out DNA	00657	102000	
outlet 17C D	24-Jul-06		in vs out DNA	02007	193000	
	24-Jul-06		in vs out DNA	30900	F00007	
inlet 120 D	24-Jul-06		In vs out DNA	346491	120101	
	29-Jul-06		In vs out DNA	84371	139184	
inlet NF 12C D	29-Jul-06		in vs out DNA	40/013	206426	
inlet ND 17C D	29-Jul-06		In vs out DNA	T44047	200120	
	29-Jul-06		In VS OULDINA	502204	602971	
	29-Jul-06		In vs out DNA	00040	118533	
outlet NP 12C D	29-Jul-06		In vs out DNA	291412	517191	
	29-Jul-06		In vs out DNA	103592	222303	
inter 120 A	29-Jul-06		In vs out DNA	1083032	1498116	
	29-Jul-06	-	In vs out DNA	106569	219078	
Inlet NP 12C A	29-Jul-06	-	In vs out DNA	463753	547789	
	29-Jul-06	-	In vs out DNA	131448	209881	
INIET NP 17C A	29-Jui-06		In vs out DNA	518291	577507	
outlet 12C A	29-Jul-06	-	in vs out DNA	128740	328548	
outlet NP 12C A	29-Jul-06		in vs out DNA	251220	405655	
	29-Jul-06		In vs out DNA	135483	393412	
	29-Jul-06	4 4 4 -	In vs out DNA	50/98/	706961	
in/in A	3-Aug-06	14:45	uansplant	32/382	450219	
in/in B	3-Aug-06	14:45	transplant	380593	513297	
	3-Aug-06	14:45	transplant	389992	528837	
In/out A	3-Aug-06	15:30	transplant	320049	500876	
In/out B	3-Aug-06	15:30	transplant	229729	418845	
in/out C	3-Aug-06	15:30	transplant	423352	502925	

out/in A 3-Aug-06 14:30 transplant 578319 809484 out/out A 3-Aug-06 15:25 transplant 478064 958839 out/out B 3-Aug-06 15:25 transplant 540315 998444 out/out C 3-Aug-06 15:25 transplant 49934 911491 12C A 22-Jun-07 16:17 nut expt 11313 154401 12C NP A 22-Jun-07 16:17 nut expt 109812 120742 12C NP A 22-Jun-07 16:17 nut expt 138865 105483 12C NP A 22-Jun-07 16:51 nut expt 18781 274419 17C NP A 22-Jun-07 16:51 nut expt 96844 105918 17C A 22-Jun-07 16:51 nut expt 96862 74409 17C C 22-Jun-07 16:51 nut expt 98730 106254 17C C 22-Jun-07 16:51 nut expt 42356 73574 12C A <th>Sample</th> <th>Date</th> <th>Time</th> <th>Cample time</th> <th>Conservative Cells/mL</th> <th>Liberal Cells/mL</th>	Sample	Date	Time	Cample time	Conservative Cells/mL	Liberal Cells/mL
out/ont B 3-Aug-06 14:30 transplant 578009 827424 out/out B 3-Aug-06 15:25 transplant 487064 958339 out/out C 3-Aug-06 15:25 transplant 499934 911491 12C A 22-Jun-07 16:17 nut expt 136131 154640 12C B 22-Jun-07 16:17 nut expt 101783 110500 12C NP A 22-Jun-07 16:17 nut expt 193865 105463 12C NP B 22-Jun-07 16:17 nut expt 183860 227948 17C NP A 22-Jun-07 16:51 nut expt 18781 274409 17C NP C 22-Jun-07 16:51 nut expt 96844 105918 17C A 22-Jun-07 16:51 nut expt 106278 119143 17C B 22-Jun-07 16:51 nut expt 120340 127723 12C A 22-Jun-07 20:10 nut expt 7398 8346 12C C	out/in A	3-Aug-06	14:30	transplant	578319	809484
out/out A 3-Aug-06 15:25 transplant 447064 95833 out/out C 3-Aug-06 15:25 transplant 540315 998444 out/out C 3-Aug-06 15:25 transplant 49934 99394 911491 12C A 22-Jun-07 16:17 nut expt 136131 154640 12C NP A 22-Jun-07 16:17 nut expt 19886 105463 12C NP A 22-Jun-07 16:17 nut expt 198860 227948 17C NP A 22-Jun-07 16:51 nut expt 68862 74409 17C NP C 22-Jun-07 16:51 nut expt 89730 108254 17C C 22-Jun-07 16:51 nut expt 89730 108254 17C C 22-Jun-07 16:51 nut expt 88347 103478 12C AP 22-Jun-07 20:10 nut expt 8814 97998 12C NP A 22-Jun-07 20:10 nut expt 54361 68557	out/in B	3-Aug-06	14:30	transplant	578009	827424
out/out B 3-Aug-06 15:25 transplant 540315 998444 out/out C 3-Aug-06 15:25 transplant 499934 911491 12C A 22-Jun-07 16:17 nut expt 123282 14922 12C C 22-Jun-07 16:17 nut expt 101783 110500 12C NP A 22-Jun-07 16:17 nut expt 103851 105463 12C NP C 22-Jun-07 16:51 nut expt 187781 274419 17C NP B 22-Jun-07 16:51 nut expt 96844 105918 17C A 22-Jun-07 16:51 nut expt 96844 105918 17C A 22-Jun-07 16:51 nut expt 108254 73574 12C A 22-Jun-07 20:10 nut expt 98844 9798 12C C 22-Jun-07 20:10 nut expt 77198 88347 12C C P 22-Jun-07 20:10 nut expt 75941 82662 12C NP A	out/out A	3-Aug-06	15:25	transplant	487064	958839
out/out C 3-Aug-06 15:25 transplant 499934 911491 12C A 22-Jun-07 16:17 nut expt 136131 154640 12C B 22-Jun-07 16:17 nut expt 101783 110500 12C NP A 22-Jun-07 16:17 nut expt 109812 120742 12C NP B 22-Jun-07 16:17 nut expt 183860 22748 17C NP A 22-Jun-07 16:51 nut expt 187781 274409 17C NP A 22-Jun-07 16:51 nut expt 106278 119143 17C NP C 22-Jun-07 16:51 nut expt 89730 108254 17C A 22-Jun-07 16:51 nut expt 89730 108254 17C A 22-Jun-07 20:10 nut expt 98144 9798 12C C 22-Jun-07 20:10 nut expt 98144 9798 12C NP A 22-Jun-07 20:10 nut expt 58148 65479 12C NP A	out/out B	3-Aug-06	15:25	transplant	540315	998444
12C A 22-Jun-07 16:17 nut expt 136131 154640 12C B 22-Jun-07 16:17 nut expt 123282 149922 12C C 22-Jun-07 16:17 nut expt 193685 105463 12C NP A 22-Jun-07 16:17 nut expt 198680 227948 12C NP A 22-Jun-07 16:51 nut expt 198680 227948 17C NP A 22-Jun-07 16:51 nut expt 68862 74409 17C NP C 22-Jun-07 16:51 nut expt 68862 74409 17C A 22-Jun-07 16:51 nut expt 68356 73574 12C A 22-Jun-07 16:51 nut expt 62356 73574 12C A 22-Jun-07 20:10 nut expt 88184 9798 12C NP B 22-Jun-07 20:10 nut expt 58128 65479 12C NP B 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Ju	out/out C	3-Aug-06	15:25	transplant	499934	911491
12C B 22-Jun-07 16:17 nut expt 123282 149922 12C C 22-Jun-07 16:17 nut expt 19385 105463 12C NP B 22-Jun-07 16:17 nut expt 19812 120742 12C NP C 22-Jun-07 16:51 nut expt 187781 274419 17C NP A 22-Jun-07 16:51 nut expt 96844 105918 17C NP B 22-Jun-07 16:51 nut expt 96844 105918 17C A 22-Jun-07 16:51 nut expt 89730 108254 17C C 22-Jun-07 16:51 nut expt 98176 103478 12C A 22-Jun-07 20:10 nut expt 98176 103478 12C NP A 22-Jun-07 20:10 nut expt 88184 9798 12C NP A 22-Jun-07 20:10 nut expt 58128 65479 17C A 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-J	12C A	22-Jun-07	16:17	nut expt	136131	154640
12C C 22-Jun-07 16:17 nut expt 101783 110500 12C NP B 22-Jun-07 16:17 nut expt 19886 105463 12C NP B 22-Jun-07 16:17 nut expt 183860 227948 17C NP A 22-Jun-07 16:51 nut expt 187781 274419 17C NP B 22-Jun-07 16:51 nut expt 98844 105918 17C NP C 22-Jun-07 16:51 nut expt 98844 105918 17C A 22-Jun-07 16:51 nut expt 80730 108254 17C C 22-Jun-07 16:51 nut expt 98176 103478 12C A 22-Jun-07 20:10 nut expt 98176 103478 12C NP A 22-Jun-07 20:10 nut expt 81849 9798 12C NP A 22-Jun-07 20:10 nut expt 53691 68557 12C NP A 22-Jun-07 20:55 nut expt 75941 826262 17C A	12C B	22-Jun-07	16:17	nut expt	123282	149922
12C NP A 22-Jun-07 16:17 nut expt 93685 105463 12C NP C 22-Jun-07 16:17 nut expt 108812 120742 12C NP C 22-Jun-07 16:17 nut expt 183860 227948 17C NP B 22-Jun-07 16:51 nut expt 96844 105918 17C AP C 22-Jun-07 16:51 nut expt 96874 108254 17C A 22-Jun-07 16:51 nut expt 89730 108254 17C C 22-Jun-07 10:51 nut expt 89730 108254 17C C 22-Jun-07 20:10 nut expt 98176 103478 12C B 22-Jun-07 20:10 nut expt 88184 9798 12C NP A 22-Jun-07 20:10 nut expt 58128 65479 12C NP C 22-Jun-07 20:55 nut expt 75941 82662 17C A 22-Jun-07 20:55 nut expt 75941 82662 17C A 22	12C C	22-Jun-07	16:17	nut expt	101783	110500
12C NP B 22-Jun-07 16:17 nut expt 109812 120742 12C NP C 22-Jun-07 16:51 nut expt 183860 227948 17C NP A 22-Jun-07 16:51 nut expt 18682 74409 17C NP B 22-Jun-07 16:51 nut expt 96844 105918 17C A 22-Jun-07 16:51 nut expt 89730 108254 17C C 22-Jun-07 16:51 nut expt 89730 108254 17C C 22-Jun-07 20:10 nut expt 98176 103478 12C A 22-Jun-07 20:10 nut expt 88184 9798 12C NP A 22-Jun-07 20:10 nut expt 58128 65479 12C NP B 22-Jun-07 20:55 nut expt 75941 8262 17C A 22-Jun-07 20:55 nut expt 7988 88046 17C C 22-Jun-07 20:55 nut expt 90814 9824 17C NP A 22-Jun-	12C NP A	22-Jun-07	16:17	nut expt	93685	105463
12C NP C 22-Jun-07 16:17 nut expt 183860 227948 17C NP A 22-Jun-07 16:51 nut expt 187781 274419 17C NP B 22-Jun-07 16:51 nut expt 98844 105918 17C NP C 22-Jun-07 16:51 nut expt 98644 105918 17C A 22-Jun-07 16:51 nut expt 62356 73574 12C A 22-Jun-07 10:51 nut expt 98176 103478 12C A 22-Jun-07 20:10 nut expt 98176 103478 12C A 22-Jun-07 20:10 nut expt 77198 88347 12C NP A 22-Jun-07 20:10 nut expt 75941 82662 17C A 22-Jun-07 20:55 nut expt 75941 82662 17C NP A 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 10927 118669 17C NP A 22	12C NP B	22-Jun-07	16:17	nut expt	109812	120742
17C NP A 22-Jun-07 16:51 nut expt 187781 274419 17C NP B 22-Jun-07 16:51 nut expt 68862 74409 17C NP C 22-Jun-07 16:51 nut expt 96844 105918 17C A 22-Jun-07 16:51 nut expt 106278 119143 17C B 22-Jun-07 16:51 nut expt 62356 73574 12C C 22-Jun-07 20:10 nut expt 98176 103478 12C NP A 22-Jun-07 20:10 nut expt 88184 97998 12C NP A 22-Jun-07 20:10 nut expt 58128 665479 12C NP A 22-Jun-07 20:10 nut expt 78985 88046 17C A 22-Jun-07 20:55 nut expt 78985 88046 17C NP C 22-Jun-07 20:55 nut expt 78985 88046 17C NP A 22-Jun-07 20:55 nut expt 90814 98824 17C NP B <t< td=""><td>12C NP C</td><td>22-Jun-07</td><td>16:17</td><td>nut expt</td><td>183860</td><td>227948</td></t<>	12C NP C	22-Jun-07	16:17	nut expt	183860	227948
17C NP B 22-Jun-07 16:51 nut expt 68862 74409 17C NP C 22-Jun-07 16:51 nut expt 96844 105918 17C A 22-Jun-07 16:51 nut expt 106278 119143 17C B 22-Jun-07 16:51 nut expt 62356 73574 12C A 22-Jun-07 20:10 nut expt 98176 103478 12C C 22-Jun-07 20:10 nut expt 98176 103478 12C NP A 22-Jun-07 20:10 nut expt 88184 9798 12C NP A 22-Jun-07 20:10 nut expt 7541 88262 17C A 22-Jun-07 20:55 nut expt 7898 88046 17C C 22-Jun-07 20:55 nut expt 78945 88046 17C C 22-Jun-07 20:55 nut expt 78985 88046 17C NP A 22-Jun-07 20:55 nut expt 58640 65657 10927 118669	17C NP A	22-Jun-07	16:51	nut expt	187781	274419
17C NP C 22-Jun-07 16:51 nut expt 96844 105918 17C A 22-Jun-07 16:51 nut expt 106278 119143 17C B 22-Jun-07 16:51 nut expt 89730 108254 17C C 22-Jun-07 16:51 nut expt 62366 73574 12C A 22-Jun-07 20:10 nut expt 98176 103478 12C C 22-Jun-07 20:10 nut expt 88184 97998 12C NP A 22-Jun-07 20:10 nut expt 63691 68557 12C NP C 22-Jun-07 20:55 nut expt 75941 82662 17C B 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 10927 118669 17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP B 22-Jun-07 12:35 nut expt 54399 581442 12C A 23-Jun-07	17C NP B	22-Jun-07	16:51	nut expt	68862	74409
17C A 22-Jun-07 16:51 nut expt 106278 119143 17C B 22-Jun-07 16:51 nut expt 89730 108254 17C C 22-Jun-07 16:51 nut expt 62356 73574 12C A 22-Jun-07 20:10 nut expt 120430 127723 12C B 22-Jun-07 20:10 nut expt 88184 97998 12C C 22-Jun-07 20:10 nut expt 63691 665479 17C A 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 90814 98824 17C NP A 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 12:3 nut expt 54399 581422 12C NP C	17C NP C	22-Jun-07	16:51	nut expt	96844	105918
17C B 22-Jun-07 16:51 nut expt 89730 108254 17C C 22-Jun-07 16:51 nut expt 62356 73574 12C A 22-Jun-07 20:10 nut expt 120430 127723 12C B 22-Jun-07 20:10 nut expt 98176 103478 12C C 22-Jun-07 20:10 nut expt 98176 103478 12C NP A 22-Jun-07 20:10 nut expt 63691 68557 12C NP C 22-Jun-07 20:55 nut expt 58128 68479 17C A 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 110927 118669 17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP C 22-Jun-07 20:55 nut expt 96844 65667 Toolik Inlet 22-Jun-07 123 nut expt 160557 111292 12C C <td>17C A</td> <td>22-Jun-07</td> <td>16:51</td> <td>nut expt</td> <td>106278</td> <td>119143</td>	17C A	22-Jun-07	16:51	nut expt	106278	119143
17C C 22-Jun-07 16:51 nut expt 62356 73574 12C A 22-Jun-07 20:10 nut expt 120430 127723 12C B 22-Jun-07 20:10 nut expt 98176 103478 12C C 22-Jun-07 20:10 nut expt 98176 103478 12C NP A 22-Jun-07 20:10 nut expt 88184 9798 12C NP A 22-Jun-07 20:10 nut expt 63691 68557 12C NP C 22-Jun-07 20:55 nut expt 58128 65479 17C A 22-Jun-07 20:55 nut expt 78985 88046 17C P 22-Jun-07 20:55 nut expt 78985 88046 17C NP A 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 20:55 nut expt 58460 65067 Toolik Inlet 22-Jun-07 12:3 nut expt 54399 581442 12C A 23-Jun-07 1:23 nut expt 63685 68943 12C NP A	17C B	22-Jun-07	16:51	nut expt	89730	108254
12C A 22-Jun-07 20:10 nut expt 120430 127723 12C B 22-Jun-07 20:10 nut expt 98176 103478 12C C 22-Jun-07 20:10 nut expt 88184 97998 12C NP A 22-Jun-07 20:10 nut expt 75941 88347 12C NP C 22-Jun-07 20:55 nut expt 58128 66479 17C A 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 78985 88046 17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP A 22-Jun-07 20:55 nut expt 90814 9824 17C NP C 22-Jun-07 20:55 nut expt 54399 581442 12C A 23-Jun-07 1:23 nut expt 54399 581442 12C A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A	17C C	22-Jun-07	16:51	nut expt	62356	73574
12C B 22-Jun-07 20:10 nut expt 98176 103478 12C C 22-Jun-07 20:10 nut expt 88184 97998 12C NP A 22-Jun-07 20:10 nut expt 77198 88347 12C NP B 22-Jun-07 20:10 nut expt 58128 65479 17C A 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 94057 100892 17C NP A 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 12:25 nut expt 543999 581442 12C A 23-Jun-07 1:23 nut expt 105057 111292 12C C 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07<	12C A	22-Jun-07	20:10	nut expt	120430	127723
12C C 22-Jun-07 20:10 nut expt 88184 97998 12C NP A 22-Jun-07 20:10 nut expt 77198 88347 12C NP B 22-Jun-07 20:10 nut expt 63691 68557 12C NP C 22-Jun-07 20:10 nut expt 58128 65479 17C A 22-Jun-07 20:55 nut expt 78985 88046 17C B 22-Jun-07 20:55 nut expt 110927 118669 17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP B 22-Jun-07 20:55 nut expt 94057 100892 17C NP C 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 1:23 nut expt 58640 65067 100ik Inlet 22-Jun-07 1:23 nut expt 48490 35280 12C A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 2	12C B	22-Jun-07	20:10	nut expt	98176	103478
12C NP A 22-Jun-07 20:10 nut expt 77198 88347 12C NP B 22-Jun-07 20:10 nut expt 63691 68557 12C NP C 22-Jun-07 20:10 nut expt 58128 65479 17C A 22-Jun-07 20:55 nut expt 78985 88046 17C B 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 94057 100892 17C NP A 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 20:55 nut expt 543999 581442 12C A 23-Jun-07 1:23 nut expt 105057 111292 12C A 23-Jun-07 1:23 nut expt 84840 135280 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 80655 74190 17C A 23-Jun-07	12C C	22-Jun-07	20:10	nut expt	88184	97998
12C NP B 22-Jun-07 20:10 nut expt 63691 68557 12C NP C 22-Jun-07 20:10 nut expt 58128 65479 17C A 22-Jun-07 20:55 nut expt 75941 82662 17C B 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 110927 118669 17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP B 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 6:23 nut expt 543999 581442 12C A 23-Jun-07 1:23 nut expt 105057 111292 12C B 23-Jun-07 1:23 nut expt 84900 89754 12C NP A 23-Jun-07 1:23 nut expt 63685 68493 12C NP A 23-Jun-07 1:23 nut expt 63685 68493 12C NP A 23-Jun	12C NP A	22-Jun-07	20:10	nut expt	77198	88347
12C NP C 22-Jun-07 20:10 nut expt 58128 65479 17C A 22-Jun-07 20:55 nut expt 75941 82662 17C B 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 94057 100892 17C NP A 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 20:55 nut expt 543999 581442 12C A 22-Jun-07 6:23 nut expt 12840 135280 12C B 23-Jun-07 1:23 nut expt 105057 111292 12C C 23-Jun-07 1:23 nut expt 84900 89754 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 66565 74190 17C A 23-Jun-07 2:02 nut expt 903814 9289 17C B 23-Jun-07	12C NP B	22-Jun-07	20:10	nut expt	63691	68557
Troc A 22-Jun-07 20:55 nut expt 75941 82662 17C B 22-Jun-07 20:55 nut expt 78985 88046 17C C 22-Jun-07 20:55 nut expt 78985 88046 17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP B 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 6:23 nut expt 543999 581442 12C A 23-Jun-07 1:23 nut expt 105057 111292 12C B 23-Jun-07 1:23 nut expt 105057 111292 12C C 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 80685 68943 12C NP C 23-Jun-07 2:02 nut expt 80655 74190 17C A 23-Jun-07 <td>12C NP C</td> <td>22-Jun-07</td> <td>20:10</td> <td>nut expt</td> <td>58128</td> <td>65479</td>	12C NP C	22-Jun-07	20:10	nut expt	58128	65479
Tro N List of the set of t	17C A	22-Jun-07	20:55	nut expt	75941	82662
TYC C 22-Jun-07 20:55 nut expt 110927 118669 17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP B 22-Jun-07 20:55 nut expt 94057 100892 17C NP C 22-Jun-07 20:55 nut expt 940457 100892 17C NP C 22-Jun-07 20:55 nut expt 940457 100892 12C A 23-Jun-07 1:23 nut expt 543999 581442 12C A 23-Jun-07 1:23 nut expt 105057 111292 12C C 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 2:02 nut expt 75194 80351 17C A 23-	17C B	22-Jun-07	20:55	nut expt	78985	88046
17C NP A 22-Jun-07 20:55 nut expt 94057 100892 17C NP B 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 6:23 nut expt 58640 65067 Toolik Inlet 22-Jun-07 6:23 nut expt 543999 581442 12C A 23-Jun-07 1:23 nut expt 128840 135280 12C B 23-Jun-07 1:23 nut expt 84900 89754 12C C 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 80685 68943 12C NP C 23-Jun-07 1:20 nut expt 80655 74190 17C A 23-Jun-07 2:02 nut expt 80511 10290 107461 17C NP A 23-Jun-07 2:02 nut expt 96419 102981	17C C	22-Jun-07	20:55	nut expt	110927	118669
17C NP B 22-Jun-07 20:55 nut expt 90814 98824 17C NP C 22-Jun-07 20:55 nut expt 58640 65067 Toolik Inlet 22-Jun-07 6:23 nut expt 543999 581442 12C A 23-Jun-07 1:23 nut expt 128840 135280 12C B 23-Jun-07 1:23 nut expt 105057 111292 12C C 23-Jun-07 1:23 nut expt 84900 89754 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:20 nut expt 63685 68943 12C NP C 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 96419 102981 17C NP A	17C NP A	22-Jun-07	20:55	nut expt	94057	100892
17C NP C 22-Jun-07 20:55 nut expt 58640 65067 Toolik Inlet 22-Jun-07 6:23 nut expt 543999 581442 12C A 23-Jun-07 1:23 nut expt 128840 135280 12C B 23-Jun-07 1:23 nut expt 105057 111292 12C C 23-Jun-07 1:23 nut expt 84900 89754 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 63685 68943 12C NP A 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 100290 107461 17C NP A 23-Jun-07 2:02 nut expt 102981 176525 17C NP A	17C NP B	22-Jun-07	20:55	nut expt	90814	98824
Toolik Inlet 22-Jun-07 6:23 nut expt 543999 581442 12C A 23-Jun-07 1:23 nut expt 128840 135280 12C B 23-Jun-07 1:23 nut expt 105057 111292 12C C 23-Jun-07 1:23 nut expt 84900 89754 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 63685 68943 12C NP B 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 66565 74190 17C A 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 96419 102981 17C NP A 23-Jun-07 2:02 nut expt 96419 102981 17C NP A 23-Jun-07 </td <td>17C NP C</td> <td>22-Jun-07</td> <td>20:55</td> <td>nut expt</td> <td>58640</td> <td>65067</td>	17C NP C	22-Jun-07	20:55	nut expt	58640	65067
12C A 23-Jun-07 1:23 nut expt 128840 135280 12C B 23-Jun-07 1:23 nut expt 105057 111292 12C C 23-Jun-07 1:23 nut expt 84900 89754 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP A 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 66565 74190 17C A 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 96419 102981 17C NP A 23-Jun-07 2:02 nut expt 96419 102981 17C NP C 23-Jun-07 2:02 nut expt 1064855 191545 12C A 23-Jun-07	Toolik Inlet	22-Jun-07	6:23	nut expt	543999	581442
12C B 23-Jun-07 1:23 nut expt 105057 111292 12C C 23-Jun-07 1:23 nut expt 84900 89754 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP B 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 66565 74190 17C A 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 96419 102981 17C NP A 23-Jun-07 2:02 nut expt 86507 92293 17C NP C 23-Jun-07 2:02 nut expt 164855 191545 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C A 23-Jun-07	12C A	23-Jun-07	1:23	nut expt	128840	135280
12C C 23-Jun-07 1:23 nut expt 84900 89754 12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP B 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 2:02 nut expt 63685 68943 12C NP C 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 96419 102981 17C NP A 23-Jun-07 2:02 nut expt 86507 92293 17C NP C 23-Jun-07 2:02 nut expt 164855 191545 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C A 23-Jun-07	12C B	23-Jun-07	1:23	nut expt	105057	111292
12C NP A 23-Jun-07 1:23 nut expt 80884 87906 12C NP B 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 66565 74190 17C A 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 96419 102981 17C NP A 23-Jun-07 2:02 nut expt 86507 92293 17C NP B 23-Jun-07 2:02 nut expt 164855 191545 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP A 23-Jun-0	12C C	23-Jun-07	1:23	nut expt	84900	89754
12C NP B 23-Jun-07 1:23 nut expt 63685 68943 12C NP C 23-Jun-07 1:23 nut expt 66565 74190 17C A 23-Jun-07 2:02 nut expt 86565 74190 17C A 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 96419 102981 17C NP A 23-Jun-07 2:02 nut expt 86507 92293 17C NP B 23-Jun-07 2:02 nut expt 70494 75925 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C C 23-Jun-07 13:49 nut expt 106032 150470 12C NP A 23-Jun-07 <td>12C NP A</td> <td>23-Jun-07</td> <td>1:23</td> <td>nut expt</td> <td>80884</td> <td>87906</td>	12C NP A	23-Jun-07	1:23	nut expt	80884	87906
12C NP C 23-Jun-07 1:23 nut expt 66565 74190 17C A 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 96419 10290 107461 17C NP A 23-Jun-07 2:02 nut expt 96419 102981 17C NP B 23-Jun-07 2:02 nut expt 96419 102981 17C NP C 23-Jun-07 2:02 nut expt 96419 102981 17C NP C 23-Jun-07 2:02 nut expt 96455 191545 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B <td>12C NP B</td> <td>23-Jun-07</td> <td>1:23</td> <td>nut expt</td> <td>63685</td> <td>68943</td>	12C NP B	23-Jun-07	1:23	nut expt	63685	68943
12C Nr 6 23-Jun-07 2:02 nut expt 87115 95395 17C A 23-Jun-07 2:02 nut expt 87115 95395 17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 100290 107461 17C NP A 23-Jun-07 2:02 nut expt 96419 102981 17C NP B 23-Jun-07 2:02 nut expt 96419 102981 17C NP C 23-Jun-07 2:02 nut expt 70494 75925 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 190906 105117 12C C 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 136032 150470 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt	12C NP C	23-Jun-07	1.23	nut expt	66565	74190
17C B 23-Jun-07 2:02 nut expt 75194 80351 17C C 23-Jun-07 2:02 nut expt 100290 107461 17C NP A 23-Jun-07 2:02 nut expt 96419 102981 17C NP A 23-Jun-07 2:02 nut expt 96419 102981 17C NP A 23-Jun-07 2:02 nut expt 96419 102981 17C NP C 23-Jun-07 2:02 nut expt 86507 92293 17C NP C 23-Jun-07 2:02 nut expt 70494 75925 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 133537 147602 12C C 23-Jun-07 13:49 nut expt 136032 150470 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C A <td>17C A</td> <td>23-Jun-07</td> <td>2:02</td> <td>nut expt</td> <td>87115</td> <td>95395</td>	17C A	23-Jun-07	2:02	nut expt	87115	95395
17C C 23-Jun-07 2:02 nut expt 100290 107461 17C NP A 23-Jun-07 2:02 nut expt 96419 102981 17C NP B 23-Jun-07 2:02 nut expt 96419 102981 17C NP C 23-Jun-07 2:02 nut expt 86507 92293 17C NP C 23-Jun-07 2:02 nut expt 86507 92293 17C NP C 23-Jun-07 2:02 nut expt 70494 75925 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 99096 105117 12C C 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 102643 164052 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C	17C B	23-Jun-07	2:02	nut expt	75194	80351
17C NP A 23-Jun-07 2:02 nut expt 96419 102981 17C NP B 23-Jun-07 2:02 nut expt 86507 92293 17C NP C 23-Jun-07 2:02 nut expt 86507 92293 17C NP C 23-Jun-07 2:02 nut expt 70494 75925 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 99096 105117 12C C 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 102643 164052 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 177527 185778 1	17C C	23-Jun-07	2.02	nut expt	100290	107461
17C NP B 23-Jun-07 2:02 nut expt 86507 92293 17C NP C 23-Jun-07 2:02 nut expt 70494 75925 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 99096 105117 12C C 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 102643 164052 12C NP C 23-Jun-07 13:49 nut expt 102643 164052 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 17889 <	17C NP A	23-Jun-07	2.02	nut expt	96419	102981
17C NP C 23-Jun-07 2:02 nut expt 70494 75925 12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 99096 105117 12C C 23-Jun-07 13:49 nut expt 99096 105117 12C C 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 12643 164052 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 129241 135240 17C B 23-Jun-07 14:02 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 17889 17C NP A 23-Jun-07 14:18 nut expt 160818 166703 17	17C NP B	23-Jun-07	2:02	nut expt	86507	92293
12C A 23-Jun-07 13:49 nut expt 164855 191545 12C B 23-Jun-07 13:49 nut expt 99096 105117 12C C 23-Jun-07 13:49 nut expt 99096 105117 12C C 23-Jun-07 13:49 nut expt 99096 105117 12C C 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 102643 164052 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C B 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 178889 17C NP B 23-Jun-07 14:18 nut expt 160818 166703	17C NP C	23-Jun-07	2:02	nut expt	70494	75925
12C B 23-Jun-07 13:49 nut expt 99096 105117 12C B 23-Jun-07 13:49 nut expt 99096 105117 12C C 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 102643 164052 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C B 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 178889 17C NP B 23-Jun-07 14:18 nut expt 160818 166733	12C A	23-Jun-07	13:49	nut expt	164855	191545
12C D 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 133537 147602 12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 1023643 164052 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C B 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 178889 17C NP B 23-Jun-07 14:18 nut expt 160818 166703	120 A	23-Jun-07	13.49	nut expt	99096	105117
12C NP A 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 106032 150470 12C NP B 23-Jun-07 13:49 nut expt 102343 164052 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C B 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 129241 135240 17C NP A 23-Jun-07 14:18 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 178889 17C NP B 23-Jun-07 14:18 nut expt 160818 166793	120.0	23-Jun-07	13.49	nut expt	133537	147602
12C NP B 23-Jun-07 13:49 nut expt 123643 164052 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 102716 142519 17C B 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 178889 17C NP B 23-Jun-07 14:18 nut expt 160818 166703	120 0 120 NP A	23-Jun-07	13.49	nut expt	106032	150470
120 NF D 20 out of 10.40 htt expt 120040 httexpt 101402 12C NP C 23-Jun-07 13:49 nut expt 102716 142519 17C A 23-Jun-07 14:02 nut expt 141600 150110 17C B 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 178889 17C NP B 23-Jun-07 14:18 nut expt 160818 166703	12C NP B	23-Jun-07	13.49	nut expt	123643	164052
17C A 23-Jun-07 14:02 nut expt 141600 150110 17C B 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 129241 135240 17C NP A 23-Jun-07 14:18 nut expt 177527 185778 17C NP B 23-Jun-07 14:18 nut expt 172197 178889	12C NP C	23-Jun-07	13.40	nut expt	102716	142510
17C B 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 129241 135240 17C C 23-Jun-07 14:02 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 178889 17C NP B 23-Jun-07 14:18 nut expt 160818 166793	17C A	23-Jun-07	14.02	nut expt	141600	150110
17C C 23-Jun-07 14:02 nut expt 177527 185778 17C NP A 23-Jun-07 14:18 nut expt 172197 178889 17C NP B 23-Jun-07 14:18 nut expt 160818 166793	17C B	23-Jun-07	14.02	nut expt	1202/1	135240
17C NP A 23-Jun-07 14:18 nut expt 172197 178889 17C NP B 23-Jun-07 14:18 nut expt 160818 166703	17C C	23 Jun_07	14.02		177507	185779
17C NP B 23-Jun-07 14:18 nut expt 160818 166703	17C NP A	23-Jun-07	14.02		172107	178880
	17C NP B	23-Jun-07	14.10	nut expt	160818	166702

Sample	Date	Time	Sample type	Conservative Cells/mL	Liberal Cells/mL
17C NP C	23-Jun-07	14:18	nut expt	139222	146571
12C A	24-Jun-07	12:55	nut expt	394509	404042
12C B	24-Jun-07	12:55	nut expt	189682	196716
12C C	24-Jun-07	12:55	nut expt	195679	204330
12C NP A	24-Jun-07	12:55	nut expt	363603	374540
12C NP B	24-Jun-07	12:55	nut expt	221466	230527
12C NP C	24-Jun-07	12:55	nut expt	174980	182349
17C A	24-Jun-07	13:25	nut expt	346606	357320
17C B	24-Jun-07	13:25	nut expt	300100	307521
17C C	24-Jun-07	13:25	nut expt	297978	308521
17C NP A	24-Jun-07	13:25	nut expt	368226	376034
17C NP B	24-Jun-07	13:25	nut expt	462803	470738
17C NP C	24-Jun-07	13:25	nut expt	349436	358439
12C A	25-Jun-07	12:00	nut expt	409975	419204
12C B	25-Jun-07	12:00	nut expt	285549	293604
12C C	25-Jun-07	12:00	nut expt	309861	322251
12C NP A	25-Jun-07	12:00	nut expt	629611	637340
12C NP B	25-Jun-07	12:00	nut expt	403960	411954
12C NP C	25-Jun-07	12:00	nut expt	377803	384849
17C A	25-Jun-07	12:40	nut expt	456868	468623
17C B	25-Jun-07	12:40	nut expt	377419	388230
170.0	25-Jun-07	12:40	nut expt	406499	417729
17C NP A	25-Jun-07	12:40	nut expt	500301	513625
17C NP B	25-Jun-07	12:40	nut expt	609041	622801
	25-Jun-07	12:40	nut expt	464842	474359
12C A	26- Jun-07	12.40	nut expt	6/5768	658201
120 A	26- Jun-07	13.50		282075	312066
120 0	26- Jun-07	13.50		262073	206020
12C NP A	26- Jun-07	13.50		666650	694045
12C NP B	26-Jun-07	13.50		376683	408463
	26- Jun-07	13.50		508372	526750
12C NF C	20-Jun 07	14.25	nut expt	356660	376915
17C B	26- Jun-07	14.35		304633	331/30
170 0	26- Jun-07	14.35		307274	/173/7
	20-Jun 07	14.33	nut expt	161214	417347
	26-Jun 07	14.33	nut expt	575666	402012
	26-Jun 07	14.30	nut expt	407947	510551
transplant IZ IQ A	20-Jul-07	14.30	transplant	497047	1091205
	2-Jul-07	12.05	transplant	570750	740005
transplant 17-19 B	2-Jul 07	12:05	transplant	3/6/30	740000
	2-Jul-07	12.05	transplant	492070	017671
	2-Jul-07	12.05	transplant	642600	917071
	2-Jul-07	12.05	transplant	200824	049400
transplant 18-19 at 17-19 C	2-Jul-07	12:05	transplant	299824	351656
transplant 18-19 A	2-Jul-07	13:00	transplant	551383	582175
transplant I8-19 B	2-Jul-07	13:00	transplant	386993	41/4/1
	2-Jul-07	13:00	transplant	344393	3/9/13
transplant 17-19 at 18-19 A	2-Jul-07	13:00	transplant	1222420	1284100
transplant 17-19 at 18-19 B	2-Jul-07	13:00	transplant	6158/2	664/25
transplant 17-19 at 18-19 C	2-Jul-07	13:00	transplant	1085569	113/60/
transplant I8-in A	4-Jul-07		transplant	1068071	1093/60
transplant I8-in B	4-Jul-07		transplant	1310043	1396105
transplant I8-in C	4-Jul-07		transplant	986810	1010090
transplant I8-out at in A	4-Jul-07		transplant	1230972	1273265

Sample	Date	Time		Sample type	Conservative Cells/mL	Liberal Cells/mL
transplant I8-out at in B	4-Jul-07		transplant		952812	988376
transplant I8-out at in C	4-Jul-07		transplant		1268014	1313155
transplant I8-out A	4-Jul-07		transplant		1395359	1446512
transplant I8-out B	4-Jul-07		transplant		1342998	1397757
transplant I8-out C	4-Jul-07		transplant		1877341	1942828
transplant I8-in at out A	4-Jul-07		transplant		1821658	1847767
transplant I8-in at out B	4-Jul-07		transplant		1037980	1085295
transplant I8-in at out C	4-Jul-07		transplant		1113793	1140730

Appendix	D. Data input	for Chapt	er 2 pa	th and	alysi	is					
Sortchem	Site	Date	Season	Year	water type	BP (ug C/L/d)	chla (ug/L)	Temp (deg C)	DOC (uM)	In (BP)	In(Chla)
2003-0288	12-13	24-Jun-03	early	2003	S	0.781	0.49	14.8	584.554	-0.25	-0.71
2003-0290	I1-I3	24-Jun-03	early	2003	S	0.851	0.48	8	440.06	-0.16	-0.73
2003-0293	14-15	24-Jun-03	early	2003	S	1.006	0.18	12.3	452.106	0.01	-1.7
2003-0296	I6 HW in	24-Jun-03	early	2003	S	0.356	0.3	9.2	334.138	-1.03	-1.2
2003-0299	I6 West in	24-Jun-03	early	2003	S	0.441	0.13	8.1	371.152	-0.82	-2.04
2003-0302	18 Headwaters	24-Jun-03	early	2003	S	0.22	0.12	5.9	351.927	-1.52	-2.16
2003-0594	11	24-Jun-03	early	2003	L	1.237	1.3	5.3	415.038	0.21	0.27
2003-0596	12	24-Jun-03	early	2003	L	0.895	2.2	5.4	503.124	-0.11	0.79
2003-0598	13	24-Jun-03	early	2003	L	2.833	0.7	14.4	406.637	1.04	-0.36
2003-0600	14	24-Jun-03	early	2003	L	0.907	1.81	10.4	443.144	-0.1	0.59
2003-0603	15	24-Jun-03	early	2003	L	1.947	2.69	4.8	535.059	0.67	0.99
2003-0604	I6 HW	24-Jun-03	early	2003	L	1.985	0.8	6	380.879	0.69	-0.22
2003-0301	17-19	25-Jun-03	early	2003	s	1.989	0.23	13.9	453.604	0.69	-1.48
2003-0303	18 In	25-Jun-03	early	2003	s	0.135	0.17	11.9	523.074	-2	-1.77
2003-0304	18 Out	25-Jun-03	early	2003	S	0.524	1.64	13.2	459.846	-0.65	0.49
2003-0305	18-19	25-Jun-03	early	2003	S	0.61	0.31	13.8	706.829	-0.49	-1.18
2003-0306	MWL	25-Jun-03	early	2003	s	0.927	0.25	8.7	331.772	-0.08	-1.4
2003-0308	Swamp In	25-Jun-03	early	2003	s	0.351	0.24	11.9	416.154	-1.05	-1.41
2003-0310	Toolik Inlet	25-Jun-03	early	2003	s	1.413	0.19	14	440.497	0.35	-1.64
2003-0611	16	25-Jun-03	early	2003	L	1.767	2.72	7.1	472.979	0.57	1
2003-0613	17	25-Jun-03	early	2003	L	2.23	1.66	11.4	508.992	0.8	0.51
2003-0615	18	25-Jun-03	early	2003	L	6.219	7.31	13.2	382.67	1.83	1.99
2003-0617	I Swamp	25-Jun-03	early	2003	L	1.306	0.86	13.4	457.29	0.27	-0.15
2003-0312	11-13	15-Jul-03	mid	2003	S	1.863	0.18	9.3	412.596	0.62	-1.71
2003-0314	12-13	15-Jul-03	mid	2003	s	0.805	0.21	7	658.081	-0.22	-1.57
2003-0317	14-15	15-Jul-03	mid	2003	s	1.466	0.56	11	546.855	0.38	-0.57
2003-0319	15-16	15-Jul-03	mid	2003	S	2.669	0.5	11.1	514.96	0.98	-0.69
2003-0320	I6 HW in	15-Jul-03	mid	2003	S	0.138	0.03	4.5	535.557	-1.98	-3.66
2003-0326	18 Headwaters	15-Jul-03	mid	2003	s	0.29	0.13	2.8	689.789	-1.24	-2.05
2003-0791	11	15-Jul-03	mid	2003	L	0.615	1.05	8.5	698.698	-0.49	0.05
2003-0793	12	15-Jul-03	mid	2003	L	0.514	1.13	7.9	769.449	-0.67	0.13
2003-0795	13	15-Jul-03	mid	2003	L	3.591	0.72	8.9	524.894	1.28	-0.33
2003-0797	14	15-Jul-03	mid	2003	L	2.22	1.34	8.4	733.112	0.8	0.3
2003-0801	I6 west HW	15-Jul-03	mid	2003	L	1.075	0.76	9.5	409.858	0.07	-0.27
2003-0323	I6 West in	16-Jul-03	mid	2003	S	0.146	0.02	4.3	623.44	-1.92	-3.7
2003-0325	17-19	16-Jul-03	mid	2003	S	1.273	0.18	8.6	560.025	0.24	-1.72
2003-0327	18 In	16-Jul-03	mid	2003	S	0.612	0.06	3.8	622.941	-0.49	-2.85
2003-0328	18 Out	16-Jul-03	mid	2003	S	4.274	0.5	7.8	559.83	1.45	-0.69
2003-0329	18-19	16-Jul-03	mid	2003	S	2.678	0.06	8	564.401	0.99	-2.81
2003-0330	MWL	16-Jul-03	mid	2003	S	0.128	0.07	6	527.411	-2.06	-2.7
2003-0332	Swamp In	16-Jul-03	mid	2003	S	0.934	0.18	9.4	486.446	-0.07	-1.71
2003-0334	Toolik Inlet	16-Jul-03	mid	2003	S	2.085	0.42	7.7	585.526	0.73	-0.87
2003-0799	15	16-Jul-03	mid	2003	L	2.486	0.81	9.5	522.651	0.91	-0.21
2003-0805	16	16-Jul-03	mid	2003	L	1.902	0.75	7.5	493.427	0.64	-0.29
2003-0807	17	16-Jul-03	mid	2003	L	3.062	0.83	7.6	498.875	1.12	-0.19
2003-0809	18	16-Jul-03	mid	2003	L	1.071	0.96	6.7	583.213	0.07	-0.04

ortchem	ę	ate	ason	ar	ater type	P (ug L/d)	ıla (ug/L)	emp (deg	OC (uM)	(BP)	(Chla)
<u>ა</u>			Š	₹	Š		cr Cr	⊭ິ ບິ 7 0	<u>ă</u>	<u>2</u>	<u>n</u>
2003-0811	Iswamp	T6-JUI-03	mia	2003	L C	2.17	0.41	7.9	536.301	0.77	-0.89
2003-0330	11-13	5-Aug-03	late	2003	3 6	0.704	0.2	0.Z	419.000	-0.35	-1.03
2003-0338	12-13	5-Aug-03	late	2003	о с	0.749	0.01	0.0	547.009	0.22	-5.03
2003-0343	15-10 16 HW/ in	5-Aug-03	late	2003	с С	0.740	0.03	5.8	480 886	-0.29	-1.04
2003-0347	I6 West	5-Aug-03	late	2003	9 9	0.010	0.00	6.1	540 248	-1 13	-2 59
2003-0347	10 West	5-Aug-03	late	2003	о 1	1 083	0.00	7.8	<u>447</u> 477	0.08	-0.19
2003-0929	12	5-Aug-03	late	2003	1	1.003	0.00	5.8	579 176	0.00	-0.28
2000-0020	13	5-Aug-03	late	2003	1	0.812	0.4	7.3	547,965	-0.21	-0.91
2003-0933	14	5-Aug-03	late	2000	1	1 575	0.89	7.2	601 35	0.45	-0.12
2003-0937	I6 west HW	5-Aug-03	late	2000	1	1 434	0.00	6.5	431 071	0.40	-0.71
2003-0349	17-19	6-Aug-03	late	2003	S	0.682	0.15	8.6	508.807	-0.38	-1.88
2003-0350	18 Headwaters	6-Aug-03	late	2003	S	0.418	0.11	4 7	509 424	-0.87	-2.2
2003-0351	l8 In	6-Aug-03	late	2003	s	0.527	0.1	4.6		-0.64	-2.28
2003-0352	I8 Out	6-Aug-03	late	2003	s	2.54	0.22	6.7	. 540.001	0.93	-1.51
2003-0353	18-19	6-Aug-03	late	2003	S	1.886	0.17	7.8	554.455	0.63	-1.79
2003-0354	MWL	6-Aug-03	late	2003	S	1.339	0.43	6.7	523.129	0.29	-0.86
2003-0356	Swamp In	6-Aug-03	late	2003	S	1.153	0.16	7.5	637.414	0.14	-1.83
2003-0358	Toolik Inlet	6-Aug-03	late	2003	s	1.766	0.2	8.2	501.248	0.57	-1.6
2003-0935	15	6-Aug-03	late	2003	L	2.27	0.84	9.1	552.195	0.82	-0.17
2003-0939	16	6-Aug-03	late	2003	L	2.088	0.86	11.3	514.384	0.74	-0.15
2003-0941	17	6-Aug-03	late	2003	L	2.456	0.78	10.1	507.847	0.9	-0.25
2003-0943	18	6-Aug-03	late	2003	L	3.384	0.12	9.3	542.646	1.22	-2.11
2003-0945	Iswamp	6-Aug-03	late	2003	L	2.367	0.13	9.5	513.23	0.86	-2.04
2004-0158	12-13	22-Jun-04	early	2004	s	0.594	1.1	13.5	579.2	-0.52	0.09
2004-0156	11-13	22-Jun-04	early	2004	S	0.5	1.12	11.7	391.4	-0.69	0.11
2004-0170	18 Headwaters	22-Jun-04	early	2004	s	0.238	0.48	10.4	324.8	-1.43	-0.74
2004-0667	12	22-Jun-04	early	2004	L	0.144	1.05	16.1	490.7	-1.94	0.05
2004-0665	11	22-Jun-04	early	2004	L	1.024	1.12	13.2	370.3	0.02	0.11
2004-0669	13	22-Jun-04	early	2004	L	1.338	1.18	16.1	361.6	0.29	0.17
2004-0671	14	22-Jun-04	early	2004	L	2.313	1.25	15.8	402.3	0.84	0.22
2004-0162	15-16	22-Jun-04	early	2004	S	0.277	0.58	14.1	473.1	-1.28	-0.55
2004-0164	I6 HW In	23-Jun-04	early	2004	s	1.875	0.98	9.6	340.3	0.63	-0.02
2004-0167	I6 West	22-Jun-04	early	2004	S	0.159	0.11	11.5	373.8	-1.84	-2.18
2004-0677	I6 HW	22-Jun-04	early	2004	L	0.104	0.73	15.6	344.8	-2.27	-0.31
2004-0161	14-15	22-Jun-04	early	2004	S	2.673	0.43	15.2	428.4	0.98	-0.85
2004-0673	15	22-Jun-04	early	2004	L	0.586	1.34	14	487.9	-0.53	0.29
2004-0675	16	23-Jun-04	early	2004	L	0.153	1.3	13.6	434.4	-1.88	0.26
2004-0679	17	23-Jun-04	early	2004	L	0.43	0.8	17.9	426	-0.84	-0.23
2004-0171	18 In	23-Jun-04	early	2004	S	0.22	0.34	13	325.3	-1.51	-1.09
2004-0172	18 Out	23-Jun-04	early	2004	S	0.678	1.9	15.6	342.6	-0.39	0.64
2004-0683	18	23-Jun-04	early	2004	L	2.193	2.49	15	322.4	0.79	0.91
2004-0681	I Swamp	23-Jun-04	early	2004	L	0.552	0.87	16.2	343	-0.59	-0.14
2004-0174	MWL	23-Jun-04	early	2004	S	0.044	0.22	10.4	314.1	-3.12	-1.51
2004-0176	Swamp In	23-Jun-04	early	2004	S	0.193	0.28	12.7	360.9	-1.65	-1.26
2004-0169	17-19	23-Jun-04	early	2004	S	0.45	0.42	17.6	353.7	-0.8	-0.87
2004-0173	18-19	23-Jun-04	early	2004	S	0.368	0.57	17.3	288.9	-1	-0.56
2004-0178	Toolik Inlet	23-Jun-04	early	2004	S	0.022	0.36	14.5	274.6	-3.83	-1.03

chem				son		er type	d)	(ng/L)	p (deg	(Mu) ;	(P)	hla)
Sort	Site	Date		Seas	rear	vate	3P (chla	rem C)	000	n (B	n(C
2004-0324	12-13	13-Jul-04	mid	20	04 5	5	0.148	0.46	10.8	584	-1.91	-0.78
2004-0322	11-13	13-Jul-04	mid	20	04 5	S	0.059	0.51	11.9	389.2	-2.82	-0.68
2004-0336	18 Headwaters	13-Jul-04	mid	20	04 5	S	0.122	0.05	6.9	584.1	-2.1	-3.01
2004-1135	12	13-Jul-04	mid	20	04 L	-	0.501	0.81	12.5	539.7	-0.69	-0.21
2004-1133	11	13-Jul-04	mid	20	04 L	-	0.208	0.74	12.9	413.7	-1.57	-0.31
2004-1137	13	13-Jul-04	mid	20	04 L	-	0.158	0.62	13	591.5	-1.84	-0.48
2004-1139	14	13-Jul-04	mid	20	04 L	-	0.339	1.09	13.2	521.4	-1.08	0.08
2004-0329	15-16	13-Jul-04	mid	20	04 8	S	0.313	0.33	14.3	495.3	-1.16	-1.11
2004-0333	I6 West	13-Jul-04	mid	20	04 8	S	0.028	0.1	10.1	611.3	-3.57	-2.28
2004-0330	I6 HW In	13-Jul-04	mid	20	04 8	5	0.18	0.09	10.6	514.4	-1.71	-2.4
2004-1143	I6 HW	13-Jul-04	mid	20	04 L	-	1.249	0.47	13.6	377.5	0.22	-0.75
2004-0327	14-15	13-Jul-04	mid	20	04 8	S	1.95	0.4	13.5	524.1	0.67	-0.91
2004-1141	15	13-Jul-04	mid	20	04 L	-	0.511	0.85	13.6	490.6	-0.67	-0.16
2004-1145	16	14-Jul-04	mid	20	04 L	-	0.137	0.81	13.3	465.4	-1.99	-0.22
2004-1147	17	14-Jul-04	mid	20	04 L	-	0.76	0.98	13.1	459.2	-0.27	-0.02
2004-0337	18 In	14-Jul-04	mid	20	04 8	S	0.118	0.08	10.4	554.1	-2.13	-2.55
2004-0338	18 Out	14-Jul-04	mid	20	04 8	S	1.307	0.29	11.8	630.1	0.27	-1.23
2004-1149	18	14-Jul-04	mid	20	04 L	-	0.677	1.8	11.2	629.5	-0.39	0.59
2004-0342	Swamp In	14-Jul-04	mid	20	04 8	S	0.405	0.27	14.9	458.1	-0.9	-1.33
2004-1151	I Swamp	14-Jul-04	mid	20	04 L	-	0.362	0.87	12.8	477.4	-1.02	-0.15
2004-0335	17-19	14-Jul-04	mid	20	04 8	S	0.157	0.29	14.4	494.1	-1.85	-1.24
2004-0339	18-19	14-Jul-04	mid	20	04 8	S	0.21	0.43	12.3	617.4	-1.56	-0.85
2004-0340	MWL	14-Jul-04	mid	20	04 8	S	0.124	0.06	10.2	507.6	-2.09	-2.83
2004-0344	Toolik Inlet	14-Jul-04	mid	20	04 8	S	0.277	0.54	13.4	519.5	-1.28	-0.61
2004-0490	12-13	3-Aug-04	late	20	04 5	5	0.44	0.44	9.1	670.9	-0.82	-0.82
2004-0488	11-13	3-Aug-04	late	20	04 8	5	0.488	0.26	10.3	444.6	-0.72	-1.34
2004-0502	I8 Headwaters	3-Aug-04	late	20	04 8	S	0.107	0.26	5.5	669.7	-2.24	-1.35
2004-1356	12	3-Aug-04	late	20	04 L	-	0.908	1.12	10.7	658.1	-0.1	0.12
2004-1354	11	3-Aug-04	late	20	04 L	-	0.556	1.17	11.7	525.7	-0.59	0.16
2004-1358	13	3-Aug-04	late	20	04 L	-	0.174	0.78	9.8	668	-1.75	-0.25
2004-1360	14	3-Aug-04	late	20	04 L	-	0.712	0.69	10.6	561.1	-0.34	-0.37
2004-0495	15-16	3-Aug-04	late	20	04 8	S	0.834	1.09	11.7	567.9	-0.18	0.08
2004-0499	I6 West	3-Aug-04	late	20	04 8	6	0.459	0.06	8.3	701.4	-0.78	-2.78
2004-0496	I6 HW In	3-Aug-04	late	20	04 8	5	0.141	0.12	7.9	543.8	-1.96	-2.12
2004-1362	I6 HW	3-Aug-04	late	20	04 L	-	0.451	1.68	11.7	672.1	-0.8	0.52
2004-0493	14-15	3-Aug-04	late	20	04 8	S	4.08	1.5	12.7	677	1.41	0.4
2004-1364	15	4-Aug-04	late	20	04 L	-	0.333	1.18	11	627.2	-1.1	0.17
2004-1366	16	4-Aug-04	late	20	04 L	-	0.197	1.22	11	606.2	-1.62	0.2
2004-1368	17	4-Aug-04	late	20	04 L	-	0.485	1.37	11.4	587	-0.72	0.32
2004-0503	18 In	4-Aug-04	late	20	04 8	S	0.068	0.1	10.5	659.3	-2.68	-2.28
2004-0504	18 Out	4-Aug-04	late	20	04 8	5	1.44	0.65	8.5	638.2	0.36	-0.43
2004-1370	18	4-Aug-04	late	20	04 L	-	0.519	0.65	8.4	733.2	-0.66	-0.43
2004-0508	Swamp In	4-Aug-04	late	20	04 8	5	0.486	1.04	14.4	502.4	-0.72	0.04
2004-1372	Iswamp	4-Aug-04	late	20	04 L	-	0.482	0.83	10.9	658.7	-0.73	-0.18
2004-0501	17-19	4-Aug-04	late	20	04 8	5	0.11	0.75	13	604.5	-2.21	-0.29
2004-0505	18-19	4-Aug-04	late	20	04 8	5	3.015	0.49	9.4	625.7	1.1	-0.71
2004-0506	MWL	4-Aug-04	late	20	04 8	5	0.143	0.18	10.8	512.3	-1.95	-1.73
2004-0510	Toolik Inlet	4-Aug-04	late	20	04 8	3	0.441	0.5	10.7	597.2	-0.82	-0.69

chem			uo		r type	(I Br	(ng/L)	o (deg	(Mn)	P)	la)
orto	lite	ate	eas	'ear	vate	8P (u	hla	emp (;	00	n (B	JCF
2005-0252	11-13	28-Jun-05	early	≻ 2005	s S	0.704	0.23	11.4	358	-0.35	-1.45
2005-0254	12-13	28-Jun-05	early	2005	S	0.385	0.32	11.8	503.2	-0.95	-1.14
2005-0266	I8 HW	28-Jun-05	early	2005	S	1.458	0.26	13.3	334.5	0.38	-1.34
2005-0886	12	28-Jun-05	early	2005	L	0.404	0.57	11.7	500.6	-0.91	-0.56
2005-0884	11	28-Jun-05	early	2005	L	0.621	0.53	14.7	387.9	-0.48	-0.63
2005-0888	13	28-Jun-05	early	2005	L	0.797	0.74	16.2	452.7	-0.23	-0.3
2005-0890	14	28-Jun-05	early	2005	L	1.241	0.98	16.9	485.5	0.22	-0.02
2005-0259	15-16	28-Jun-05	early	2005	S	0.612	1.76	16.2	447.6	-0.49	0.56
2005-0896	I6 HW	28-Jun-05	early	2005	L	0.505	0.47	15.7	375.9	-0.68	-0.76
2005-0257	14-15	28-Jun-05	early	2005	S	0.505	0.82	17.4	445.8	-0.68	-0.2
2005-0892	15	28-Jun-05	early	2005	L	0.437	0.65	15.8	502.2	-0.83	-0.43
2005-0894	16	29-Jun-05	early	2005	L	1.298	0.45	16.1	439.1	0.26	-0.8
2005-0898	17	29-Jun-05	early	2005	L	1.096	0.47	17.1	429.7	0.09	-0.76
2005-0267	18 in	29-Jun-05	early	2005	S	21.977	0.25	18	296.4	3.09	-1.4
2005-0900	18	29-Jun-05	early	2005	L	3.485	0.98	17.1	409.6	1.25	-0.02
2005-0268	l8 out	29-Jun-05	early	2005	s	2.384	0.41	18.4	400	0.87	-0.88
2005-0272	I swamp in	29-Jun-05	early	2005	s	0.099	0.13	17.8	382	-2.31	-2.04
2005-0902	I swamp	29-Jun-05	early	2005	L	0.707	0.73	17.5	377.7	-0.35	-0.31
2005-0265	17-19	29-Jun-05	early	2005	s	1.497	0.12	19.7	391.3	0.4	-2.11
2005-0269	18-19	29-Jun-05	early	2005	S	1.063	1.65	20.8	294.5	0.06	0.5
2005-0270	MWL	29-Jun-05	early	2005	s	0.337	0.36	14.5	275	-1.09	-1.03
2005-0274	Toolik Inlet	29-Jun-05	early	2005	S	3.172	0.26	19.4	264.6	1.15	-1.36
2005-0421	11-13	19-Jul-05	mid	2005	S	0.112	0.49	11.1	381.4	-2.19	-0.71
2005-0423	12-13	19-Jul-05	mid	2005	S	0.309	0.73	11.5	565.8	-1.18	-0.31
2005-0435	I8 Headwaters	19-Jul-05	mid	2005	S	0.19	0.18	6.7	473.2	-1.66	-1.72
2005-1150	12	19-Jul-05	mid	2005	L	0.288	0.63	13.7	526.8	-1.24	-0.46
2005-1148	11	19-Jul-05	mid	2005	L	0.113	0.54	13.6	399.6	-2.18	-0.62
2005-1152	13	19-Jul-05	mid	2005	L	1.367	0.61	13.9	515.1	0.31	-0.49
2005-1154	14	19-Jul-05	mid	2005	L	0.237	1.05	14.4	593.5	-1.44	0.05
2005-0428	15-16	19-Jul-05	mid	2005	S	0.169	0.36	14.3	498.5	-1.78	-1.01
2005-0432	I6 West	19-Jul-05	mid	2005	S	0.199	0.14	9.2	474.9	-1.62	-1.98
2005-0429	I6 HW In	19-Jul-05	mid	2005	S	0.033	0.32	10.3	467.9	-3.41	-1.15
2005-1587	I6 HW	19-Jul-05	mid	2005	L	0.313	0.54	13.8	427.5	-1.16	-0.62
2005-0426	14-15	19-Jul-05	mid	2005	S	1.229	0.65	15.1	536.6	0.21	-0.43
2005-1157	15	19-Jul-05	mid	2005	L	2.087	0.74	14.1	500.1	0.74	-0.3
2005-1403	16	20-Jul-05	mid	2005	L	1.178	0.45	13.3	460.6	0.16	-0.8
2005-1405	17	20-Jul-05	mid	2005	L	0.802	0.9	13.3	445.9	-0.22	-0.11
2005-0436	18 In	20-Jul-05	mid	2005	S	0.188	0.16	10.6	432.3	-1.67	-1.86
2005-1407	18	20-Jul-05	mid	2005	L	0.101	1.3	12.3	550.7	-2.29	0.26
2005-0437	18 Out	20-Jul-05	mid	2005	S	2.459	0.78	12.6	547.5	0.9	-0.24
2005-0441	I swamp In	20-Jul-05	mid	2005	S	0.114	0.25	13.7	420.3	-2.17	-1.39
2005-1409	I swamp	20-Jul-05	mid	2005	L	0.972	0.79	13.2	440.7	-0.03	-0.24
2005-0434	17-19	20-Jul-05	mid	2005	S	0.161	0.25	14.8	438.6	-1.83	-1.38
2005-0438	18-19	20-Jul-05	mid	2005	5	0.389	0.72	14.3	516.1	-0.94	-0.33
2005-0439		∠0-Jul-05	mid	2005	3 0	0.083	0.55	9.2	3/3.8	-2.49	-0.6
2005-0443		20-Jul-05		2005	3 0	0.163	0.75	13.9	458.1	-1.81	-0.29
2005-0578	11-13	9-Aug-05	late	2005	о С	0.406	1.04	9.9	334.5	-0.9	0.04
2005-0580	12-13	9-Aug-05	late	2005	5	0.038	2.08	9.7	515.3	-3.26	0.73

Sortchem	Site	Date	Season	Year	vater type	3P (ug C/L/d)	chla (ug/L)	Femp (deg C)	DOC (uM)	n (BP)	n(Chla)
2005-0592	I8 Headwaters	9-Aug-05	late	2005	s	0.189	0.5	10.4	3 08.6	-1.66	-0.7
2005-1417	12	9-Aug-05	late	2005	L	0.3	0.95	11.6	522.6	-1.21	-0.05
2005-1415	11	9-Aug-05	late	2005	L	0.906	0.99	12.6	397.7	-0.1	-0.01
2005-1419	13	9-Aug-05	late	2005	L	0.621	1.35	12.8	519.6	-0.48	0.3
2005-1421	14	9-Aug-05	late	2005	L	0.542	1.73	13.2	552.8	-0.61	0.55
2005-0585	15-16	9-Aug-05	late	2005	s	0.143	0.38	14.5	438.9	-1.95	-0.96
2005-0586	I6 HW In	9-Aug-05	late	2005	S	2.857	0.15	11.3	422.8	1.05	-1.88
2005-1413	I6 HW	9-Aug-05	late	2005	L	0.042	0.65	13.4	382.3	-3.18	-0.43
2005-0583	14-15	9-Aug-05	late	2005	s	0.255	1.24	15	486.5	-1.37	0.22
2005-1584	15	9-Aug-05	late	2005	L	2.517	1.25	13.7	524.5	0.92	0.22
2005-1452	16	10-Aug-05	late	2005	L	1.839	1.25	13.6	462	0.61	0.22
2005-1469	17	10-Aug-05	late	2005	L	0.188	1.39	13.6	432.4	-1.67	0.33
2005-0593	18 In	10-Aug-05	late	2005	s	0.381	0.25	13.3	288.7	-0.97	-1.39
2005-1471	18	10-Aug-05	late	2005	L	3.426	1.74	13.8	503.6	1.23	0.55
2005-0594	18 Out	10-Aug-05	late	2005	S	0.602	0.91	16.3	503.9	-0.51	-0.1
2005-0598	I swamp In	10-Aug-05	late	2005	s	0.41	0.26	14.4	319.5	-0.89	-1.34
2005-1473	I swamp	10-Aug-05	late	2005	L	1.573	1.54	14.2	394.5	0.45	0.43
2005-0591	17-19	10-Aug-05	late	2005	s	0.193	0.33	16.7	374.1	-1.64	-1.1
2005-0595	18-19	10-Aug-05	late	2005	s	0.772	0.63	17.4	411.8	-0.26	-0.46
2005-0596	MWL	10-Aug-05	late	2005	S	0.143	0.69	11.6	286.9	-1.94	-0.37
2005-0600	Toolik Inlet	10-Aug-05	late	2005	s	0.32	1.26	17.5	319.7	-1.14	0.23
2006-0110	I1 into I3	21-Jun-06	early	2006	S	0.418	0.69	7.3	425.8	-0.87	-0.37
2006-0112	I2 into I3	21-Jun-06	early	2006	S	0.213	0.47	11.2	531.8	-1.55	-0.75
2006-0124	I8 Headwaters	21-Jun-06	early	2006	S	0.393	0.15	7	737.6	-0.93	-1.88
2006-0693	12	21-Jun-06	early	2006	L	0.169	0.95	4.8	523.8	-1.78	-0.05
2006-0691	11	21-Jun-06	early	2006	L	0.122	0.91	6.1	384.1	-2.1	-0.09
2006-0695	13	21-Jun-06	early	2006	L	0.667	0.95	11.4	543.9	-0.4	-0.05
2006-0697	14	21-Jun-06	early	2006	L	0.173	4.23	10.3	572.1	-1.75	1.44
2006-0117	I5 into I6	21-Jun-06	early	2006	S	1.433	1.25	8.9	543.8	0.36	0.23
2006-0121	I6 Inlet West	21-Jun-06	early	2006	S	0.228	0.19	9.9	701.4	-1.48	-1.64
2006-0703	I6 HW	21-Jun-06	early	2006	L	1.074	1.46	9.1	429	0.07	0.38
2006-0118	I6 HW Inlet	21-Jun-06	early	2006	S	0.158	0.1	9.8	553.7	-1.84	-2.29
2006-0115	I4 into I5	21-Jun-06	early	2006	S	0.687	2.48	9.6	589	-0.38	0.91
2006-0699	15	21-Jun-06	early	2006	L	1.289	4.07	7.7	533.1	0.25	1.4
2006-0701	16	22-Jun-06	early	2006	L	0.204	1.26	8.8	754.3	-1.59	0.23
2006-0705	17	22-Jun-06	early	2006	L	0.529	1.09	9.2	762.4	-0.64	0.09
2006-0125	18 Inlet	22-Jun-06	early	2006	S	0.25	0.22	11.1	699.1	-1.39	-1.5
2006-0677	18	22-Jun-06	early	2006	L	0.624	1.99	10.5	1011.7	-0.47	0.69
2006-0126	18 Outlet	22-Jun-06	early	2006	S	2.201	1.64	10.7	711.5	0.79	0.5
2006-0130	I Swamp Inlet	22-Jun-06	early	2006	S	0.416	0.52	13.1	488.3	-0.88	-0.65
2006-0679	I Swamp	22-Jun-06	early	2006	L	1.655	0.52	11.3	822.1	0.5	-0.65
2006-0123	I7 into I9	22-Jun-06	early	2006	S	0.394	0.43	12.6	609.4	-0.93	-0.85
2006-0127	18 into 19	22-Jun-06	early	2006	S	2.484	1.55	11.9	671.7	0.91	0.44
2006-0128	MVVL	22-Jun-06	early	2006	S	0.095	0.31	10.1	579	-2.35	-1.17
2006-0132		22-Jun-06	early	2006	S	1.131	3.18	12.2	608.1	0.12	1.16
2006-0291	11 into 13	13-Jul-06	mid	2006	S	0.347	0.86	11.6	424.3	-1.06	-0.15
2006-0293	I2 into I3	13-Jul-06	mid	2006	S	0.465	0.63	12.4	581.9	-0.76	-0.46
2006-0305	18 Headwaters	13-Jul-06	mid	2006	S	0.21	0.23	7.6	596.7	-1.56	-1.47

tchem	0	e	tson	-	ter type	(b/ (b/	a (ug/L)	np (deg	C (uM)	BP)	Chla)
Sor	Site	Dat	Sea	Yea	wat	BP C/L	chla	Ten C)	DO) ul	ln(C
2006-0881	12	13-Jul-06	mid	2006	L	0.056	0	12.7	553.4	-2.88	•
2006-0879	11	13-Jul-06	mid	2006	L	1.076	0.88	13	416.5	0.07	-0.13
2006-0883	13	13-Jul-06	mid	2006	L	0.882	0.82	13.6	525.4	-0.13	-0.2
2006-0885	14	13-Jul-06	mid	2006	L	0.485	0.81	13.6	593.9	-0.72	-0.21
2006-0298	I5 into I6	13-Jul-06	mid	2006	s	1.215	0.47	13.7	532.4	0.19	-0.76
2006-0302	I6 Inlet West	13-Jul-06	mid	2006	s	0.106	1.11	9	495.3	-2.24	0.1
2006-0299	I6 HW Inlet	13-Jul-06	mid	2006	S	0.351	5.69	9.8	562.3	-1.05	1.74
2006-0891	I6 HW	13-Jul-06	mid	2006	L	0.8	1.11	13.6	443.4	-0.22	0.1
2006-0296	14 into 15	13-Jul-06	mid	2006	S	0.783	0.65	14.8	603.6	-0.24	-0.44
2006-0887	15	13-Jul-06	mid	2006	L	1.741	0.57	13.1	391.4	0.55	-0.56
2006-0889	16	14-Jul-06	mid	2006	L	0.797	0.99	13.1	511.6	-0.23	-0.01
2006-0893	17	14-Jul-06	mid	2006	L	0.366	0.96	13.4	553.6	-1	-0.04
2006-0306	18 Inlet	14-Jul-06	mid	2006	S	0.206	0.41	9.7	557.9	-1.58	-0.89
2006-0895	18	14-Jul-06	mid	2006	L	2.309	1.28	12.5	607.7	0.84	0.25
2006-0307	18 Outlet	14-Jul-06	mid	2006	S	1.336	1.33	13.1	599.7	0.29	0.28
2006-0311	I Swamp Inlet	14-Jul-06	mid	2006	S	0.633	0.26	12.2	442.3	-0.46	-1.35
2006-0897	I Swamp	14-Jul-06	mid	2006	L	1.26	1.06	13.1	473.8	0.23	0.06
2006-0304	17 into 19	14-Jul-06	mid	2006	S	0.91	0.3	13.8	469.6	-0.09	-1.2
2006-0308	18 into 19	14-Jul-06	mid	2006	S	0.604	0.82	13.4	578.2	-0.5	-0.2
2006-0309	MWL	14-Jul-06	mid	2006	S	1.137	0.37	8.7	403.7	0.13	-0.99
2006-0313	Toolik Inlet	14-Jul-06	mid	2006	S	1.012	0.77	13	519.8	0.01	-0.26
2006-0488	I1 into I3	9-Aug-06	late	2006	S	0.578	1.13	9	435.1	-0.55	0.12
2006-0490	I2 into I3	9-Aug-06	late	2006	S	0.54	0.46	7.3	689.8	-0.62	-0.77
2006-0502	I8 Headwaters	9-Aug-06	late	2006	S	0.206	0.16	3.7	679.3	-1.58	-1.81
2006-1115	12	9-Aug-06	late	2006	L	0.124	0.95	11.9	588.85	-2.09	-0.05
2006-1113	11	9-Aug-06	late	2006	L	0.766	0.59	12.1	439.45	-0.27	-0.53
2006-1117	13	9-Aug-06	late	2006	L	0.23	0.7	11.3	567.5	-1.47	-0.36
2006-1119	14	9-Aug-06	late	2006	L	1.576	0.99	11.9	612	0.45	-0.01
2006-0495	I5 into I6	9-Aug-06	late	2006	S	0.568	1.04	13.1	573.4	-0.56	0.04
2006-0499	16 Inlet West	9-Aug-06	late	2006	S	1.033	0.26	7.8	618.1	0.03	-1.36
2006-0496	I6 HW Inlet	9-Aug-06	late	2006	S	2.098	0.25	9.1	573.3	0.74	-1.38
2006-1125	I6 HW	9-Aug-06	late	2006	L	1.109	0.69	12.2	460	0.1	-0.37
2006-0493	14 into 15	9-Aug-06	late	2006	S	1.789	2.23	11.8	646.9	0.58	0.8
2006-1121	15	9-Aug-06	late	2006	L	2.384	0.65	12.4	561.25	0.87	-0.43
2006-1123	16	10-Aug-06	late	2006	L	0.805	1.22	12	532.75	-0.22	0.2
2006-1127	17	10-Aug-06	late	2006	L	0.527	1.2	11.9	517.8	-0.64	0.18
2006-0504	18 Inlet	10-Aug-06	late	2006	S	0.283	1.83	8.5	592.4	-1.26	0.61
2006-1129	18	10-Aug-06	late	2006	L	1.837	0.55	10.6	569.7	0.61	-0.6
2006-0503	18 Outlet	10-Aug-06	late	2006	S	0.995	0.54	10.8	565.9	-0.01	-0.61
2006-0508	I Swamp Inlet	10-Aug-06	late	2006	S	0.661	0.59	11	484.6	-0.41	-0.53
2006-1131	I Swamp	10-Aug-06	late	2006	L	0.444	1.35	10.3	594.9	-0.81	0.3
2006-0501	17 into 19	10-Aug-06	late	2006	S	0.207	0.33	10.8	585.6	-1.57	-1.1
2006-0505	18 into 19	10-Aug-06	late	2006	S	1.188	1.31	10.7	553.2	0.17	0.27
2006-0506	MWL	10-Aug-06	late	2006	S	1.257	0.47	7.5	423.2	0.23	-0.75
2006-0510	Toolik Inlet	10-Aug-06	late	2006	S	1.689	1.12	10.7	546.4	0.52	0.12

Appendix	E. D	ata fo	or Cha	pter 5	mode	1.							
Date	order	Site[]	temp[]	BP[]	TDN[]	chlalower[]	chlaupper[]	TDP[]	DocI	chla[]	l]EON	NH4[]	PO4[]
21-Jun-03	1	1	14.1	0.34	22.2	0.001	2.5	0.07	407.8	NA	1.36	0	0.24
25-Jun-03	2	1	16	0.14	41.3	0.13	0.15	0.11	524.5	0.14	1.42	0.24	0.01
1-Jul-03	3	1	14.5	0.73	28.6	0.001	2.5	0.10	362.3	NA	2.14	0.32	0.07
5-Jul-03	4	1	11.8	2.22	27.9	0.001	2.5	0.10	590.6	NA	0.83	0.05	0.04
10-Jul-03	5	1	11.9	1.87	23.6	0.001	2.5	0.14	576	NA	0.99	0.99	0.06
16-Jul-03	6	1	3.8	0.61	19.5	0.07	0.09	0.08	624.4	0.08	0.33	0.09	0.02
22-Jul-03	7	1	13	1.52	22.3	0.001	2.5	0.08	485	NA	0.34	0.19	0.04
29-Jul-03	8	1	7.8	1.42	18.7	0.001	2.5	0.09	573.2	NA	NA	NA	
31-Jul-03	9	1	4.8	0.42	23.6	0.001	2.5	0.10	544.7	NA	0.55	0.13	0.04
5-Aug-03	10	1	6.5	0.53	29.3	0.08	0.1	0.07	1296.7	0.09	0.5	0.16	0.07
12-Aug-03	11	1	3.3	1.33	16.9	0.001	2.5	0.09	642.9	NA	0.31	1.98	0.10
23-Jun-04	12	1	13	1.42	16.3	0.26	0.28	0.05	325.3	0.27	4.6	0.08	0.02
29-Jun-04	13	1	13.4	2.81	14	0.55	0.57	0.04	298.8	0.56	4.48	0.09	0.04
5-Jul-04	14	1	12.2	4.37	13.6	0.16	0.18	0.02	267.8	0.17	5.94	0.01	0.02
14-Jul-04	15	1	10.4	1.82	12.4	0.05	0.07	0.08	554.1	0.06	1.02	0.15	0.04
19-Jul-04	16	1	8.3	6.08	17.9	0.3	0.32	0.09	709.1	0.31	0.27	0.41	0.04
28-Jul-04	17	1	9.8	2.98	15.8	0.28	0.3	0.06	457.4	0.29	0.93	0.19	0.03
4-Aug-04	18	1	10.5	1.7	12.6	0.05	0.07	0.06	659.3	0.06	0.27	0.24	0.05
9-Aug-04	19	1	11.2	9.02	11.7	0.12	0.14	0.06	567.2	0.13	0.76	0.13	0.03
16-Aug-04	20	1	10.4	3.36	14.4	0.15	0.17	0.06	720.4	0.16	0.53	0.54	0.04
21-Jun-05	21	1	11.3	2.17	12.8	0.17	0.19	0.10	314.8	0.18	5.16	0.05	0.04
5-Jul-05	22	1	7	1.25	14.1	0.2	0.22	0.09	268.6	0.21	7.15	0.05	0.04
7-Jul-05	23	1	7.3	4.31	19.8	0.001	2.5	0.20	757.8	NA	1.94	0.23	0.04
9-Jul-05	24	1	7.2	1.69	16.7	0.17	0.19	0.16	616.6	0.18	2.01	0.25	0.02
12-Jul-05	25	1	4.7	1.7	17.7	0.08	0.1	0.17	707.1	0.09	0.79	0.65	0.04
20-Jul-05	26	1	10.6	0.59	13.4	0.05	0.07	0.11	432.3	0.06	1.58	0.25	0.05
26-Jul-05	27	1	11.2	1.42	12	0.09	0.11	0.10	354.6	0.1	3.33	0.09	0.05
28-Jul-05	28	1	11	1.79	13	0.89	0.91	0.11	351.4	0.9	3.57	0.39	0.04
30-Jul-05	29	1	8	0.79	11.8	0.13	0.15	0.06	335.8	0.14	3.88	0.07	0.04
2-Aug-05	30	1	9	1.59	11.3	0.27	0.29	0.13	314.5	0.28	4.75	0.11	0.04
10-Aug-05	31	1	13.3	1.52	16.4	0.15	0.17	0.08	288.7	0.16	6.51	0.44	0.00
15-Aug-05	32	1	9.8	1.84	14.9	0.3	0.32	0.07	300.7	0.31	7.1	0.34	0.07
22-Jun-06	33	1	9.3	1.38	18	0.21	0.23	0.13	699.1	0.22	1.18	0	0.04
27-Jun-06	34	1	7.8	2.14	18.8	0.35	0.37	0.12	778.7	0.36	0.83	0.53	0.03
30-Jun-06	35	1	9	1.41	16.6	0.8	0.82	0.15	619.9	0.81	1.45	0.22	0.03
7-Jul-06	36	1	7.8	1.57	15.2	0.31	0.33	0.10	561.3	0.32	1.35	0	0.04
14-Jul-06	37	1	9.7	1.64	16.5	0.4	0.42	0.09	557.9	0.41	1.39	0	0.04
18-Jul-06	38	1	10.1	1.04	14.1	0.4	0.42	0.15	463.8	0.41	2.54	0.47	0.04
21-Jul-06	39	1	8.3	1.42	17.1	0.42	0.44	0.13	529.4	0.43	1.88	0.09	0.11
28-Jul-06	40	1	11	3.32	16.9	0.27	0.29	0.14	545.4	0.28	1.83	0.32	0.03
1-Aug-06	41	1	10.1	0.68	15.1	0.9	0.92	0.08	473.15	0.91	2.71	0	0.03
3-Aug-06	42	1	12.1	2.15	15.5	0.64	0.66	0.07	458.05	0.65	2.94	0.29	0.04
4-Aug-06	43	1	9.2	0.99	17.6	0.13	0.15	0.15	472.1	0.14	2.49	0.09	0.10
10-Aug-06	44	1	8.5	1.54	16.6	1.82	1.84	0.13	592.4	1.83	1.59	0.47	0.04
16-Jun-07	45	1	14	3.81	16.1	0.23	0.25	0.15	332.2	0.24	7.62	0.61	0.26
21-Jun-07	46	1	13.5	2.56	20.6	0.08	0.1	0.09	441.9	0.09	11.73	0.11	0.05
29-Jun-07	47	1	13.3	1.77	24.9	0.3	0.32	0.08	474.8	0.31	19	0	0.05

						er[]	er∏						
ite	der	te[]	[]du		[]N	lalow	laupp	Dao		la[]	03[]	14 []	04[]
	<u>5</u>	Si	te	8	<u> </u>	Ch Ch	ch Ch	<u> </u>	<u>ă</u>		ž	Ż	P
2-Jul-07	48	1	17.6	7.15	22.7	0.33	0.35	0.08	402.4	0.34	14.34	3.89	0.12
4-Jul-07	49 50	1	13.9	2.09	21.1	0.22	0.24	0.06	303.3	0.23	10.62	0.35	0.02
11-Jul-07	50	1	14.0	1.44	10.1	0.19	0.21	0.05	414.7	0.2	10.00	0.06	0.05
20-Jul-07	51	1	13.5	3.03	10.4	0.57	0.59	0.12	431.9	0.56	4.25	0.54	0.00
27-5ui-07	52	1	10.9	2 2 2 2	14.3	0.03	0.03	0.07	620.2	0.04	1 42	0.04	0.02
8-Aug-07	54	1	7.8	2.33	16.4	0.12	0.14	0.13	600.2	0.13	0.95	0.09	0.07
21- lup-03	55	י ר	6.5	2.80	78.8	0.21	2.5	0.12	635.2	0.22 NA	0.33	0.02	0.04
25- Jun-03	56	2	14	0.52	31.1	1 43	1 45	0.10	461.3	1 44	0.73	0	0.00
1-Jul-03	57	2	15.2	1 28	22.4	0.001	2.5	0.12	389.9	NA	0.12	0.38	0.02
5-Jul-03	58	2	14.4	7 77	24.4	0.001	2.5	0.10	495.8	NA	0.04	0.03	0.07
10-Jul-03	59	2	13.5	8 91	25.1	0.001	2.5	0.10	543.7	NA	0.00	0.00	0.02
16-Jul-03	60	2	7.8	4 27	21.6	0.001	0.01	0.10	561.3	0	0.00	0.09	0.00
22-Jul-03	61	2	14.7	5.3	16.3	0.001	2.5	0.08	528.7	NA	0.13	0.00	0.07
29-Jul-03	62	2	74	5 13	10.0	0.001	2.5	0.00	593.2	NA	NA	NA	0.02
31-Jul-03	63	2	6.4	3 39	19.2	0.001	2.5	0.00	577	NA	0 44	0.07	0.06
5-Aug-03	64	2	77	2 54	28.9	0.001	0.25	0.08	541 5	0.24	0.45	0.08	0.00
12-Aug-03	65	2	5.8	2.04	14	0.001	2.5	0.08	565	NA	0.40	1.52	0.08
23-Jun-04	66	2	15.6	5.31	11 1	1.38	1 4	0.08	342.6	1 39	0.42	0.26	0.02
29-Jun-04	67	2	17.5	12.02	11.1	0.41	0.43	0.06	323.9	0.42	0.27	0.3	0.04
5-Jul-04	68	2	17.8	11.61	12.3	0.5	0.52	0.05	317.5	0.51	0.97	0.67	0.04
14-Jul-04	69	2	11.8	12.34	11.4	0.25	0.27	0.08	630.1	0.26	0.23	0.14	0.03
19-Jul-04	70	2	11.5	13.64	15.2	1.39	1.41	0.06	603.1	1.4	0.31	0.43	0.03
28-Jul-04	71	2	13.9	6.23	16.1	0.61	0.63	0.06	551.1	0.62	0.12	0.14	0.02
4-Aug-04	72	2	8.5	6.56	13.6	0.47	0.49	0.88	638.2	0.48	0.26	0.18	0.04
9-Aug-04	73	2	11.5	12.28	13.6	0.55	0.57	0.06	644.2	0.56	0.23	0.12	0.03
16-Aug-04	74	2	13	10.38	12.8	1.03	1.05	0.05	690	1.04	0.18	0.23	0.04
21-Jun-05	75	2	12.4	10.58	10.6	1.79	1.81	0.15	397.6	1.8	0.32	0.3	0.05
29-Jun-05	76	2	18.4	11.9	11.4	0.19	0.21	0.14	400	0.2	0.43	0.48	0.03
5-Jul-05	77	2	12.3	7.19	13.7	0.38	0.4	0.12	388.7	0.39	0.52	0.49	0.04
7-Jul-05	78	2	12	13.99	10.7	0.53	0.55	0.11	396.3	0.54	0.28	0.12	0.04
9-Jul-05	79	2	10.6	11.45	12.2	0.79	0.81	0.16	458.8	0.8	0.51	0.25	0.03
12-Jul-05	80	2	9.2	6.99	13.2	0.76	0.78	0.12	515.4	0.77	0.7	0.37	0.02
20-Jul-05	81	2	12.6	5.88	16.9	0.51	0.53	0.12	547.5	0.52	0.24	0.14	0.05
26-Jul-05	82	2	14.6	6.38	12.3	0.74	0.76	0.11	527.9	0.75	0.16	0.2	0.04
28-Jul-05	83	2	14.4	10.62	12.9	0.96	0.98	0.14	522.4	0.97	0.14	0.48	0.05
30-Jul-05	84	2	13.7	3.79	13.1	1.21	1.23	0.10	524.5	1.22	0.16	0.19	0.04
2-Aug-05	85	2	13.2	7.39	12.1	1.07	1.09	0.15	512.9	1.08	0	0.42	0.06
10-Aug-05	86	2	16.3	5.85	16.4	0.6	0.62	0.13	503.9	0.61	0.2	0.28	0.00
15-Aug-05	87	2	15.1	9.65	12.6	0.001	2.5	0.12	502.5	NA	0.23	0.26	0.06
22-Jun-06	88	2	10.8	6.1	16.9	1.63	1.65	0.17	711.5	1.64	0.07	0	0.03
27-Jun-06	89	2	11.6	2.62	15.6	2.48	2.5	0.11	697.3	2.49	0.15	NA	0.03
30-Jun-06	90	2	11.6	9.15	16.7	2.34	2.36	0.17	689.6	2.35	0.05	0	0.02
7-Jul-06	91	2	10.7	7.05	15.7	0.85	0.87	0.12	649.4	0.86	0.13	0	0.03
14-Jul-06	92	2	13.1	11.03	15.2	1.32	1.34	0.11	599.7	1.33	0.03	0	0.04
18-Jul-06	93	2	12.4	2.92	12.9	2.09	2.11	0.13	575.4	2.1	0.06	0.26	0.02
21-Jul-06	94	2	11.6	9.41	14.7	1.71	1.73	0.12	565.4	1.72	0.32	0.02	0.09
28-Jul-06	95	2	13.7	13.65	15.4	0.79	0.81	0.13	605	0.8	0.27	0.32	0.03

						er[]	er[]						
ate	rder	ite[]	[]dwa	DI	[]ND	hlalow	hlaupp	DPD	00	hla[]	03[]	H4[]	04[]
<u>م</u> 1-Aug-06	ō 96	9	بع 12.6	0 4 72	<u>⊢</u> 14	<u>ວ</u> 151	<u>ס</u> 153	<u>⊢</u> 0.09	0 586 75	152	0.34	Z 0 12	∟ 0.02
3-Aug-06	97	2	12.8	11.18	15.2	2.09	2.11	0.07	574.2	2.1	0.29	0	0.03
4-Aug-06	98	2	13.2	4.17	14.9	0.89	0.91	0.12	572.7	0.9	0.14	0.02	0.07
10-Aug-06	99	2	10.8	5.57	14.9	0.53	0.55	0.12	565.9	0.54	0.43	0.21	0.10
16-Jun-07	100	2	11.7	4.64	11.9	2.23	2.25	0.16	451.2	2.24	0.16	0.19	0.10
21-Jun-07	101	2	15.9	5.19	12.8	1.09	1.11	0.13	420.5	1.1	0.08	0.22	0.05
29-Jun-07	102	2	15.7	8.35	11.4	0.93	0.95	0.11	398.4	0.94	0.11	0.05	0.04
2-Jul-07	103	2	16.8	15.39	14	0.55	0.57	0.11	442.4	0.56	0.27	0.06	0.10
4-Jul-07	104	2	18.4	2.68	12.1	0.33	0.35	0.11	393.5	0.34	0.46	0.67	0.04
11-Jul-07	105	2	18.2	2.38	14.7	2.01	2.03	0.08	452.2	2.02	0.09	0.04	0.08
20-Jul-07	106	2	16.9	12.11	10.7	1	1.02	0.10	444.7	1.01	0.11	0	0.05
27-Jul-07	107	2	16.9	11.86	10.8	2.05	2.07	0.10	463.7	2.06	0.08	0.34	0.03
3-Aug-07	108	2	15.1	4.69	13.2	1.09	1.11	0.13	459.6	1.1	0.07	0.73	0.03
8-Aug-07	109	2	10.4	3.97	14.4	0.73	0.75	1.83	605.9	0.74	0.29	0.29	0.03
20-Jun-03	110	3	10.5	2.21	32.9	0.001	2.5	0.11	427.4	NA	1.07	0	0.03
25-Jun-03	111	3	13.8	0.61	101.6	0.25	0.27	0.10	708.4	0.26	1.92	0	0.02
27-Jun-03	112	3	15.4	1.73	15.9	0.001	2.5	0.07	322.7	NA	2.39	0.29	0.02
4-Jul-03	113	3	12.4	6.45	15.6	0.001	2.5	0.10	371.9	NA	0.55	0.1	0.04
11-Jul-03	114	3	12.2	7.85	21.9	0.001	2.5	0.16	523.4	NA	0.43	0.27	0.06
16-Jul-03	115	3	8	2.68	22.6	0.3	0.32	0.14	565.9	0.31	0.3	0.15	0.03
25-Jul-03	116	3	10.6	2.91	20.2	0.001	2.5	0.07	503.1	NA	0.79	0.07	0.05
1-Aug-03	117	3	6.4	5.78	0	0.001	2.5	0.06	49.5	NA	0.63	0.08	0.04
5-Aug-03	118	3	8.1	1.89	21.2	0.27	0.29	0.08	555.9	0.28	0.56	0.03	0.06
15-Aug-03	119	3	6.1	4.22	23.6	0.001	2.5	0.12	564.4	NA	0.66	0.09	0.06
18-Jun-04	120	3	15.4	3.31	10.4	0.36	0.38	0.05	286.7	0.37	2.71	0.15	0.04
23-Jun-04	121	3	17.3	2.14	10.5	0.41	0.43	0.04	288.9	0.42	3.62	0.07	0.02
2-Jul-04	122	3	17	3.74	11.6	0.65	0.67	0.04	262.1	0.66	3.79	0.2	0.03
9-Jul-04	123	3	12.6	0.63	9.6	1.51	1.53	0.07	319.5	1.52	0.68	0.09	0.03
14-Jul-04	124	3	12.3	4.61	12.8	0.36	0.38	0.10	617.4	0.37	0.34	0.12	0.06
23-Jul-04	125	3	12.6	11.7	12.3	0.001	2.5	0.06	974.9	NA	0.58	0.11	0.04
30-Jul-04	126	3	12.5	7.57	10.5	0.38	0.4	0.06	538.8	0.39	0.53	0.18	0.03
4-Aug-04	127	3	9.4	12.87	13.5	0.35	0.37	0.06	625.7	0.36	0.28	0.16	0.04
6-Aug-04	128	3	10.9	7.21	11.3	0.36	0.38	0.08	575.2	0.37	0.39	0.34	0.06
13-Aug-04	129	3	12.1	7.51	19.3	0.78	0.8	0.07	521.6	0.79	1.14	0.17	0.04
24-Jun-05	130	3	12.5	2.68	14.9	0.001	2.5	0.10	300.2	NA	7.86	0.1	0.06
29-Jun-05	131	3	20.8	14	18.8	1.44	1.46	0.09	294.5	1.45	12.04	0.38	0.04
1-Jul-05	132	3	11.9	0.48	17.5	0.001	2.5	0.09	287.1	NA	11	0.16	0.05
8-Jul-05	133	3	11.9	12.43	10.5	0.001	2.5	0.13	394.6	NA	0.46	0.17	0.09
15-Jul-05	134	3	11.3	9.73	14.8	0.001	2.5	0.12	571.9	NA	0.41	0.2	0.00
20-Jul-05	135	3	14.3	3.72	14.1	0.51	0.53	0.11	516.1	0.52	1.15	0.12	0.04
22-Jul-05	136	3	12.7	4.48	14.5	0.001	2.5	0.12	498.2	NA	1.67	0.17	0.05
29-Jul-05	137	3	10.5	1.55	14.7	0.001	2.5	0.11	450.1	NA	3.06	0.19	0.05
5-Aug-05	138	3	10.9	1.76	12.1	0.001	2.5	0.09	417.5	NA	2.89	0.26	0.05
10-Aug-05	139	3	17.4	2.44	12.1	0.47	0.49	0.13	411.8	0.48	3.31	0.06	0.00
12-Aug-05	140	3	12.4	1.06	13	0.001	2.5	0.10	405	NA	2.69	0.18	0.03
22-Jun-06	141	3	11.9	2.99	15	1.54	1.56	0.14	671.7	1.55	0.21	0	0.03
30-Jun-06	142	3	11.9	4.99	16.4	1.33	1.35	0.13	666.1	1.34	0.36	0.15	0.03
7-Jul-06	143	3	10.7	5.08	15.5	0.87	0.89	0.11	642	0.88	0.53	0	0.03

,			T						<u>г г</u>				
Date	order	Site[]	temp[]	BP[]	[]NOT	chlalower[]	chlaupper[]	TDP[]	Doc[]	chla[]	N03[]	NH4[]	P04[]
14-Jul-06	144	3	13.4	4.24	14.3	0.81	0.83	0.10	578.2	0.82	0.54	0	0.03
21-Jul-06	145	3	11	7.09	15.2	1.66	1.68	0.12	548.8	1.67	0.69	0.03	0.13
28-Jul-06	146	3	14.5	9.19	15.4	1.11	1.13	0.14	577.3	1.12	0.74	0.18	0.04
4-Aug-06	147	3	13.2	2.75	18.8	0.61	0.63	0.13	547.4	0.62	1.13	0.22	0.03
10-Aug-06	148	3	10.7	4.09	14.8	1.3	1.32	0.11	553.2	1.31	0.75	0.18	0.04
16-Jun-07	149	3	13.9	2.77	14.8	1.23	1.25	0.17	353	1.24	6.2	0.44	0.04
21-Jun-07	150	3	17.8	4.5	17.6	0.09	0.11	0.11	332.5	0.1	9.41	0.45	0.11
27-Jun-07	151	3	13.2	1.48	15.6	0.54	0.56	0.10	367.7	0.55	7.22	0.18	0.03
29-Jun-07	152	3	15.4	2.08	15.6	0.17	0.19	0.06	357.9	0.18	5.99	0.11	0.04
2-Jul-07	153	3	16.3	0.89	15.9	0.2	0.22	0.07	314.6	0.21	8.09	0.34	0.09
6-Jul-07	154	3	16.2	1.97	17.7	0.3	0.32	0.05	300.4	0.31	11.68	0.5	0.08
11-Jul-07	155	3	19.8	7.54	19	0.23	0.25	0.05	307.4	0.24	12.63	0.28	0.08
20-Jul-07	156	3	17.8	6.95	12.4	0.63	0.65	0.11	460	0.64	0.91	0	0.04
27-Jul-07	157	3	14.8	1.89	11.3	0.34	0.36	0.10	409.5	0.35	3.7	0	0.02
3-Aug-07	158	3	15.6	9.33	11.1	0.97	0.99	0.10	439.2	0.98	0.25	0.39	0.02
8-Aug-07	159	3	11.4	5.77	14.3	0.49	0.51	0.08	548.1	0.5	0.39	0.63	0.02

Appendi	x I	F.	Co	m	mu	nit	y I	Fin	gei	rpr	int	ing	g pr	res	enc	ce-	abs	sen	ice	da	.ta								
	l8 1m 6 Aug 03	l8 out 6 Aug 03	l8 out 21 Jun 03	l8 in 25 Jun 03	l8 out 25 Jun 03	l8 in 1 Jul 03	l8 out 1 Jul 03	l8 1m 6 Aug 03	l8 in 5 Jul 03	l8 1m 5 Jul 03	l8 3m 5 Jul 03	l8 7m 5 Jul 03	l8 out 5 Jul 03	l8 in 10 Jul 03	l8 1m 6 Aug 03	l8 out 10 Jul 03	l8 in 16 Jul 03	l8 out 16 Jul 03	l8 in 22 Jul 03	l8 3m 22 Jul 03	l8 7m 22 Jul 03	l8 1m 6 Aug 03	l8 out 22 Jul 03	l8 in 31 Jul 03	l8 out 31 Jul 03	l8 in 6 Aug 03	l8 1m 12 Aug 03	l8 7m 14 Aug 03	l8 1m 6 Aug 03
dgge:14.7	1	1	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
dgge:15.4	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	1	1	1	0
dgge:16.6	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
dgge:18.0	1	1	0	1	0	1	1	1	0	0	0	0	0	0	1	1	0	1	0	0	0	1	1	0	0	0	0	0	1
dgge:20.2	0	1	1	0	1	0	1	0	0	1		1	0	0	1	1	0	1	0	0	0	0	1	0	0	0	0	0	
dgge:21.2	1	1	0	1	1	1	1	0	1	1		1	1	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	
dgge:22.0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	0	1	0	0	0	1	0	
dgge:23.3	1	1	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	0	
dgge:24.2	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
dgge:25.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
dgge:26.2	1	1		1	1	1	1	1	0	1		1	1	0	1	1	1	1	0	1	1	1	1	0	1	0	1	1	$\frac{1}{2}$
dgge:27.5	0	0	0		0	1	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	
dgge:29.4					0	0		1	0						1		0		1	1	1	1	1		1	1			
dgge:30.9	0	0	0	1	1	0	1	1	0	1	1	1	1	0	0	0		1	0	1	1	1	1	1	1	1	1	0	
dago:32.0	0	0	1	1	1	1		0	0					0			0	0		0	0	0	0	0	0	1	-		
dage:32.3	1	1		0	1	0	1	1	0	1	1	1	1	0	1	1	0	1	1	1	1	1	1	0	1	0	1	1	1
dage:35.1 *	0	0		1	0	1	0	0	1	0		0	0	1	0		0	0	0	1	1	0	0	1	0	1	0		
dage:35.1	0	0	0	0	1	0	0	0	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
dage:35.5	0	0	0	0	0	0	0	0	0		1		1	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0
dage:37.6	0	0	1	0	1	1	0	0	1	0	0	0	0	1	0		0	0	1	0	0	0	0	0	0	0	0	0	0
dggc:37.0	1	1	0	1	1	0	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1
daae:39.7	0	0	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:40.2 *	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:40.7 *	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
dgge:41.5	0	0	1	0	0	0	1	0	0	1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	1	0
dgge:42.4	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:43.2	1	0	0	0	1	1	1	0	1	1	1	1	0	1	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0
dgge:44.3	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	0	1	1	1
dgge:45.7	0	0	1	0	1	1	1	0	0	1	1	1	1	1	0	1	0	1	1	1	1	0	0	0	0	1	0	0	1
dgge:47.1	1	1	0	1	0	1	0	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	0	1	1	0	1	1	1
dgge:48.0	0	0	0	0	1	0	1	0	1	1	0	0	1	0	0	0	1	0	1	1	0	0	1	1	1	1	0	1	0
dgge:48.8	0	1	0	0	1	0	1	1	0	1	1	1	0	0	1	1	0	1	0	1	1	1	1	0	1	0	1	1	1
dgge:49.9	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0	1	0	0	0	0	1	1	0
dgge:50.7	1	1	0	1	1	0	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
dgge:51.9	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:53.3	1	1	0	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:55.3	1	1	1	0	1	0	0	1	1	1	1	1	0	1	1	0	1	0	0	1	1	1	1	1	1	0	1	1	1
dgge:56.2	1	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	1	0	0
dgge:57.2	0	0	0	0	1	0	1	1	1	1	1	1	1	0	1	1	0	1	0	1	1	1	1	1	0	1	1	1	0
dgge:57.9	0	1	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
dgge:58.5	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	1	1	0	1	0	1	0	0	0	1
dgge:59.3	0	0	0	0	0	0	0	1	0	1	1	0	1	1	1	0	0	1	1	1	1	0	1	1	0	1	1	1	0
dgge:60.3	1	1	1	0	0	1	0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	1	1	0	1	0	1	1	1
dgge:62.1	1	1	1	0	1	0	1	1	0	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	0	1	1	1
dgge:64.4	1	0	0	0	0	1	0	0	1	1	1	0	1	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0
dgge:65.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0
dgge:67.3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
dgge:68.2 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
dgge:68.6	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	1	0	0	0	0	1	0	1	0	1	1	0
dgge:69.1	1	1	0	0	1	1	1	1	0	1	1	1	1	0	1	1	0	1	0	1	1	1	1	0	1	0	1	1	1

	I8 1m 6 Aug 03	I8 out 6 Aug 03	I8 out 21 Jun 03	l8 in 25 Jun 03	18 out 25 Jun 03	18 in 1 Jul 03	18 out 1 Jul 03	I8 1m 6 Aug 03	18 in 5 Jul 03	18 1m 5 Jul 03	l8 3m 5 Jul 03	18 7m 5 Jul 03	I8 out 5 Jul 03	18 in 10 Jul 03	I8 1m 6 Aug 03	I8 out 10 Jul 03	18 in 16 Jul 03	I8 out 16 Jul 03	18 in 22 Jul 03	18 3m 22 Jul 03	18 7m 22 Jul 03	l8 1m 6 Aug 03	18 out 22 Jul 03	18 in 31 Jul 03	I8 out 31 Jul 03	I8 in 6 Aug 03	I8 1m 12 Aug 03	I8 7m 14 Aug 03	l8 1m 6 Aug 03
dgge:70.3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:71.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	1	0	0
dgge:72.2 *	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
dgge:73.2	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1	1	0	0	1	1	0	0	1	0	1	1	0	0
dgge:74.0 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
dgge:75.2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
dgge:76.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0
dgge:78.3	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
dgge:79.1	0	0	1	0	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

											33					
	D	in 3 Jul 03	out 3 Jul 03	A	В	c	Е	D	Ŀ	in 29 Jul 03	out 29 Jul 0	Ð	т		ſ	۵
	<u>∞</u>	8	18	18	<u>®</u>	18	18	18	<u>8</u>	<u>®</u>	8	18	<u>®</u>	18	8	≌
dgge:10.6	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1
dgge:12.4	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
dgge:13.8	1	0	0	0	0	1	0	1	1	0	0	0	0	0	0	1
dgge:15.7	0	0	1	0	1	0	0	1	0	1	1	0	0	1	0	0
dgge:16.7	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0
dgge:18.0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	0	0
dgge:20.1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0
dgge:21.3	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
dgge:23.2	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1	0
dgge:23.8 *	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:24.2	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:25.0 *	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0
dgge:25.4	0	1	1	1	1	0	1	0	0	0	0	0	0	0	1	0
dgge:27.0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
dgge:28.0	1	0	1	0	1	0	0	1	0	1	0	0	1	0	1	1
dgge:29.1 *	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
dgge:29.9	0	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0
dgge:31.3	0	0	1	0	1	1	1	0	1	1	0	1	1	1	0	0
dgge:32.8	1	1	0	1	1	1	1	1	1	0	0	1	0	0	0	1
dgge:34.0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	0
dgge:35.2	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1
dgge:36.3	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1
dgge:37.1	0	0	1	0	0	0	1	0	0	0	1	1	1	0	1	0
dgge:38.6	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0
dgge:39.6 *	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0
dgge:40.0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1
dgge:40.3 *	0	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0
dgge:41.3 *	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
dgge:41.9	0	1	0	1	0	0	0	0	0	0	0	0	1	1	0	0
dgge:43.8	0	1	0	1	0	0	0	0	0	1	1	0	1	1	0	0
dgge:44.9	1	0	1	0	1	1	0	1	0	1	0	0	0	0	0	1
dgge:45.7	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
dgge:46.6	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0
dgge:47.4 ^	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
dgge:47.8	0	0	1	1	0	0	0	0	1	0	1	0	0	0	0	0
dgge:49.6	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0
agge:49.9 *	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
agge:50.8	0	1	0	0	0	0	0	1	0	1	1	0	0	0	0	0
agge:51.3 *	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
agge:53.0 *	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
agge:53.5	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1	0
agge:54.7	0	1	0	1	0	0	1	0	1	0	0	1	1	1	1	0
agge:55.3 *	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0
agge:56.5	0	1	0	0	0	0	0	0	1	0	0	0	1	1	1	0
agge:57.5	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0
agge:58.8	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0

	18 D	18 in 3 Jul 03	l8 out 3 Jul 03	I8 A	I8 B	18 C	18 E	18 D	18 F	l8 in 29 Jul 03	18 out 29 Jul 03	18 G	I8 H	181	l8 J	18 D
dgge:61.2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0
dgge:62.3 *	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:62.8	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	0
dgge:64.1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
dgge:65.4	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
dgge:67.4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:68.6	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0

	I7-l9 4 Jul 03	17-19 20 Jun 03	18-19 20 Jun 03	I7-l9 25 Jun 03	Toolik Inlet 25 Jun 03	I7-19 27 Jun 03	18-19 27 Jun 03	17-19 4 Jul 03	Toolik Inlet 27 Jun 03	Toolik Inlet 4 Jul 03	I7-19 11 Jul 03	18-19 11 Jul 03	17-19 16 Jul 03	Toolik Inlet 16 Jul 03	17-19 4 Jul 03	17-19 25 Jul 03	Toolik Inlet 25 Jul 03	I7-l9 1 Aug 03	I8-I9 1 Aug 03	I7-I9 6 Aug 03	l8-l9 6 Aug 03	17-19 4 Jul 03	Toolik Inlet 6 Aug 03	Toolik Inlet 14 Aug 03	I7-l9 15 Aug 03	I8-I9 15 Aug 03	Toolik Inlet 15 Aug 03	Toolik Inlet 14 Jul 03	I7-19 4 Jul 03
dgge:13.4	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:14.2	0	0	1	0	1	1	1	0	1	1	1	1	1	1	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1
dgge:15.3	0	0	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
dgge:17.6	0	1	0	1	1	1	0	1	0	1	0	0	0	1	1	1	1	0	1	1	0	0	1	1	1	0	0	1	0
dgge:18.8	0	0	1	0	1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	0	0	0	0	1	1
dgge:19.5 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
dgge:20.2	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	0	0	0	1	1	0	1
dgge:21.0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0
dgge:22.8	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:23.9	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
dgge:25.0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:26.2	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:27.7	0	1	0	0	1	1	1	0	0	0	0	0	1	0	1	1	1	0	1	0	0	0	0	0	0	1	0	1	0
dgge:28.9	0	0	0	0	0	0	1	0	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	1	1	0	1
dgge:29.5 *	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:30.5	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:31.4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:32.2	0	0	0	0	0	0	1	0	1	0	0	1	0	1	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0
dage:32.9	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
daae:33.7	0	1	1	1	1	1	0	1	1	0	1	1	1	1	0	1	1	1	0	1	0	0	1	1	1	1	1	1	0
dgge:34.5 *	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:35.2	0	0	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
dgge:36.0	0	1	0	0	0	1	1	1	0	1	0	0	1	0	0	1	0	0	1	1	1	1	0	0	0	1	1	1	1
dgge:36.6	0	1	1	1	0	0	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
dgge:38.2	0	1	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	0
dgge:39.0	1	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	1	1
dgge:39.8 *	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:40.4	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	0	0	0	1	0	1	0	0	0	0
dgge:41.3	0	0	1	0	0	1	1	1	0	0	1	0	0	0	1	0	0	1	0	1	0	1	1	0	0	0	0	1	1
dgge:41.9	1	1	1	1	1	0	0	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	0	0	1	0	1	1	1
dgge:42.9	0	1	0	0	0	1	0	0	0	1	1	1	1	1	0	1	1	1	0	1	0	0	1	1	1	0	0	1	0
dgge:43.8	0	1	1	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	1	0	1	0
dgge:45.2	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	1	1	1	0	0	0	1	1	0	1
dgge:46.1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0
dgge:47.0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	1	1	1	0	1	0	0	1	1	1	0	1	1
dgge:47.8	1	0	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	0	1	1	1	0	1
dgge:48.6	0	1	0	1	1	0	1	0	0	1	1	1	0	1	0	0	1	0	1	1	1	1	1	0	1	1	1	1	1
dgge:49.6	0	0	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
dgge:50.3 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:51.4	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:51.9 *	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:52.9	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
dgge:53.6	0	1	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1
dgge:55.1	0	0	0	0	0	1	0	1	1	1	0	0	1	1	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0
dgge:56.1	1	0	0	0	1	0	1	0	1	1	1	1	0	1	1	0	1	0	1	0	0	1	1	0	0	1	1	1	1
dgge:57.1	0	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	0	0	0	1	1
dgge:57.4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0
dgge:58.4	0	1	0	1	0	1	0	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0	0	1	1	1	1
dgge:60.1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:60.7 *	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

) 4 Jul 03) 20 Jun 03) 20 Jun 03) 25 Jun 03	lik Inlet 25 Jun 03) 27 Jun 03) 27 Jun 03) 4 Jul 03	lik Inlet 27 Jun 03	lik Inlet 4 Jul 03) 11 Jul 03) 11 Jul 03) 16 Jul 03	lik Inlet 16 Jul 03) 4 Jul 03) 25 Jul 03	lik Inlet 25 Jul 03) 1 Aug 03	0 1 Aug 03) 6 Aug 03) 6 Aug 03) 4 Jul 03	lik Inlet 6 Aug 03	lik Inlet 14 Aug 03) 15 Aug 03	15 Aug 03	lik Inlet 15 Aug 03	lik Inlet 14 Jul 03) 4 Jul 03
	3 - 2	31-21	5 - 8	3 1- 21	Too	17-19	3 - 8	3 I- 2I	²	Too	31-21	3 I- 8I	31-21	Too	3 I- 21	5i-2i	Too	17-19	5 - 8	3 i- 2i	18-I0	3 I- 2I	Too	Too	3 I- 2I	5 - 8	100 T	100 1	ši-2i
dgge:61.7	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
dgge:62.5	0	0	0	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1	1	1	1	0	1	1	1	1	1	1	0
dgge:63.7	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
dgge:64.6	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
dgge:65.4	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
dgge:66.6	0	1	0	1	1	0	1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1
dgge:67.1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:67.9	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0
dgge:68.5	0	1	0	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	1	0
dgge:69.4	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:70.2	0	0	0	0	0	1	1	1	1	0	1	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0
dgge:71.2	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	0	0	1	0
dgge:72.8	0	0	1	0	1	0	1	0	0	0	0	0	0	0	1	1	1	0	1	1	1	1	0	1	0	0	1	0	1
dgge:73.3	0	0	0	1	1	1	0	1	1	1	0	1	1	1	0	1	0	1	0	0	0	0	1	0	1	0	1	1	0
dgge:74.5	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0
dgge:75.3	0	0	0	0	1	0	0	0	1	1	1	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	1
dgge:77.2	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
dgge:79.2	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
dgge:80.6	0	0	0	0	1	0	1	0	0	1	1	1	0	1	0	1	1	0	1	0	1	1	1	0	0	1	1	1	1
dgge:81.1	0	0	0	1	1	1	0	1	1	1	1	1	1	1	0	1	0	1	0	1	0	0	0	1	1	0	0	1	1
dgge:82.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:84.8	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:86.1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	0

	B 2C 3 Jul 04	TLM ladder	TLM ladder	G 2C 3 Jul 04	Y 2C 3 Jul 04	W 2C 3 Jul 04	B 12C 3 Jul 04	G 12C 3 Jul 04	TLM ladder	Y 12C 3 Jul 04	W 12C 3 Jul 04	B 25C 3 Jul 04	G 25C 3 Jul 04	Y 25C 3 Jul 04	TLM ladder	W 25C 3 Jul 04	B 12C 31 Jul 04	G 12 C 31 Jul 04	Y 12C 31 Jul 04	W 12C 31 Jul 04	TLM ladder	12C 7-21 Aug 04	25C 7-21 Aug 04	T. inlet 28 Jun 04	T. outlet 28 Jun 04	T. inlet 26 Jul 04	TLM ladder	TLM ladder	T. outlet 26 Jul 04
dgge:6.6	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0
dgge:8.2	1	0	0	1	0	0	1	1	0	1	0	0	0	1	0	0	1	1	0	0	0	1	1	0	0	1	0	0	0
dgge:9.7	1	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	0	1	1	0	0	0	0	0	0
dgge:11.1	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	1	1	1	0	1	1	0	1	0	0	0	0
dgge:11.9	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
dgge:13.0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
dgge:13.8	1	0	0	1	1	1	0	1	0	1	1	1	1	1	0	1	1	1	1	1	0	1	1	0	1	1	0	0	0
dgge:14.9 *	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
dgge:15.8	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0
dgge:17.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	1	1	1	0	0	0	0	1	0	0
dgge:18.6	0	0	0	0	1	1	0	0	1	1	1	0	0	1	0	0	1	1	1	1	1	1	1	0	1	0	0	0	1
dgge:19.4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
dgge:20.7	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	1	0	1	0	0	0	0	0	1	1	0
dgge:21.3	1	1	1	1	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	1	1	0
dgge:22.6	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	1	1	1	1	0	0	1	0	1	0	0
dgge:23.4	1	1	1	1	0	0	1	1	1	0	0	1	1	0	1	0	1	1	1	1	1	0	0	0	0	1	1	1	1
dgge:23.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
dgge:24.1	0	1	1	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0
dgge:25.0 *	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
dgge:25.6	1	1	0	1	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	1	1	0	0	1	1	1	1	1
dgge:26.3	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	0	1	1	1	1	0	1	1	1	1	1	0	0	1
dgge:26.7	1	0	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0
dgge:28.0	1	1	0	1	0	0	0	1	1	0	0	1	1	1	0	0	0	0	0	0	1	1	1	0	1	1	1	0	0
dgge:28.9	1	1	1	1	0	0	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:29.8	0	0	1	0	1	1	0	0	0	0	1	0	0	0	1	0	1	1	1	1	0	1	1	0	1	1	1	1	1
dgge:30.5	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
dgge:31.4	1	1	1	1	1	0	1	1	1	0	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:32.3	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	0	1	0	0	1	1	0
dgge:33.2	0	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	1	1	0
dgge:33.9	0	1	1	0	1	1	0	0	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:34.5	0	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	1	1
dgge:35.1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:36.1	0	0	1	0	0	0	1	1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:36.7	0	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	0	1	1	0
dgge:37.1 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0
dgge:37.8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:38.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	1	0	0	0
dgge:39.4	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	1	1	1
dgge:40.3	0	1	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	0	1	1	1	0	0	1	0	0	1	1	0
dgge:41.5	0	1	1	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	1	0	1	1	1	1	1	1	0
dgge:42.1	0	0	0	0	0	0	1	1	0	1	1	1	1	1	0	1	1	1	0	1	0	1	1	0	1	1	0	0	0
dgge:42.5 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0

	B 2C 3 Jul 04	TLM ladder	TLM ladder	G 2C 3 Jul 04	Y 2C 3 Jul 04	W 2C 3 Jul 04	B 12C 3 Jul 04	G 12C 3 Jul 04	TLM ladder	Y 12C 3 Jul 04	W 12C 3 Jul 04	B 25C 3 Jul 04	G 25C 3 Jul 04	Y 25C 3 Jul 04	TLM ladder	W 25C 3 Jul 04	B 12C 31 Jul 04	G 12 C 31 Jul 04	Y 12C 31 Jul 04	W 12C 31 Jul 04	TLM ladder	12C 7-21 Aug 04	25C 7-21 Aug 04	T. inlet 28 Jun 04	T. outlet 28 Jun 04	T. inlet 26 Jul 04	TLM ladder	TLM ladder	T. outlet 26 Jul 04
dgge:43.1	0	1	1	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1	1	0	1	1	0
dgge:44.1	0	1	1	0	1	1	0	0	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
dgge:45.1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	0	1
dgge:45.7	0	1	1	0	1	1	0	0	1	1	1	0	0	1	1	1	0	0	0	0	1	1	0	0	1	0	1	1	0
dgge:46.6	0	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	1	1	0
dgge:47.4 *	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0
dgge:47.9	1	0	0	1	1	1	1	1	0	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
dgge:48.7	0	0	0	0	1	1	0	0	0	1	1	0	0	1	0	1	0	0	1	1	0	1	0	0	1	1	0	0	1
dgge:49.9	1	1	1	0	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	1	0	1	0	1	1	1	0
dgge:50.2 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
dgge:50.7	0	1	1	0	1	0	1	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1
dgge:51.4	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	1	0	1	1	0	1	0	0	0	0	0
dgge:52.4	0	0	1	1	1	1	1	1	0	1	0	0	0	1	0	1	0	1	1	1	0	0	1	0	1	0	0	0	0
dgge:53.4	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	0	0	1	1	1	0
dgge:54.4	0	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1
dgge:54.9 *	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
dgge:55.5	1	1	1	1	0	0	1	1	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1	0
dgge:56.4	0	1	1	0	1	1	0	0	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
dgge:57.3	0	0	0	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
dgge:58.7	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1
dgge:59.8	1	0	0	0	0	0	0	1	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
dgge:60.6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:61.3	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:62.2	0	0	0	1	0	0	0	0	0	1	1	0	0	1	0	0	1	0	1	1	0	1	1	1	1	0	0	0	0
dgge:63.0	0	1	1	0	1	1	0	0	1	1	1	1	1	0	1	0	1	1	1	1	1	0	1	1	1	1	1	1	0
dgge:63.8	1	0	1	1	0	0	1	1	0	0	1	1	1	1	0	1	0	0	0	0	0	1	1	1	1	0	0	0	1
dgge:64.9	0	1	1	0	0	0	1	0	1	1	0	0	0	0	1	0	1	1	1	1	1	1	1	0	0	1	1	1	1
dgge:65.6 *	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:66.2	0	1	1	0	1	1	1	1	1	1	1	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:67.7	0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	1	0	0	1	1	0	1	1	1	0	1	0	0	0
dgge:68.5	0	1	1	0	1	1	0	0	1	1	1	0	0	0	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1
dgge:69.9	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0
dgge:70.6	0	1	1	0	0	1	0	0	1	1	1	0	0	0	1	0	0	0	1	1	1	1	0	0	1	0	1	_1	0
dgge:71.6	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	1	1	1	1	0	0	1	0	0	0	0	0	0
dgge:72.0 *	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
dgge:72.5	0	1	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:73.3	0	1	1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	1	1	1	0	0	1	1	1	1	1
dgge:74.1	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	1	1	0	0	0	0	1
dgge:75.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	1	0	0	0
dgge:75.7 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:77.4	0	1	1	0	0	0	0	0	1	1	0	0	0	1	1	0	1	1	0	1	1	1	1	0	1	1	1	1	0
dgge:78.6	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0	0

	B 2C 3 Jul 04	TLM ladder	TLM ladder	G 2C 3 Jul 04	Y 2C 3 Jul 04	W 2C 3 Jul 04	B 12C 3 Jul 04	G 12C 3 Jul 04	TLM ladder	Y 12C 3 Jul 04	W 12C 3 Jul 04	B 25C 3 Jul 04	G 25C 3 Jul 04	Y 25C 3 Jul 04	TLM ladder	W 25C 3 Jul 04	B 12C 31 Jul 04	G 12 C 31 Jul 04	Y 12C 31 Jul 04	W 12C 31 Jul 04	TLM ladder	12C 7-21 Aug 04	25C 7-21 Aug 04	T. inlet 28 Jun 04	T. outlet 28 Jun 04	T. inlet 26 Jul 04	TLM ladder	TLM ladder	T. outlet 26 Jul 04
dgge:79.2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0
dgge:81.5	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0
dgge:84.6	0	0	0	0	1	1	0	0	0	1	1	0	0	1	0	1	0	0	1	1	0	1	1	1	1	1	0	0	1
dgge:88.7	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	1	1	1	0	1	1	1	1	1	0	0	0

	LM ladder	inlet 18 Jun 04	inlet 23 Jun 04	inlet 28 Jun 04	. outlet 28 Jun 04	inlet 1 Jul 04	inlet 9 Jul 04	LM ladder	inlet 12 Jul 04	. outlet 12 Jul 04	inlet 14 Jul 04	inlet 16 Jul 04	. outlet 16 Jul 04	inlet 23 Jul 04	LM ladder	inlet 26 Jul 04	. outlet 26 Jul 04	inlet 30 Jul 04	inlet 4 Aug 04	inlet 11 Aug 04	. outlet 11 Aug 04	LM ladder	inlet 13 Aug 04	LM ladder	LM ladder
dage:8.1		-	–	-	–	-		1	1	1	- -	<u> </u>		1	F	–	F	⊢ ∩	- -	–	–	1	F		
dgge:0.1	1	1	1	1	0	0	0	1	-	0	0	0	1	1	1	1	1	1	1	1	0	1	1	1	-
dgge:11.2	1	1	1	1	0	0	0	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	1		-
dgge:12.3	1	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	1	0	0	0	0	0	1	- 0	- 1
agge:13.7	1	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	-1	1
agge:14.8	0	0	0	0	0	0	0	0	0	1	1	1	0	1	0	1	1	1	1	1	0	0	1	0	0
agge:15.7	0	0	0	0	0	1	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
agge:16.6	1	1	1	0	0	0	0	1	0	0	1	0	1	0	1	1	0	1	1	0	0	1	1	1	1
agge:17.2	1	0	0	0	0	1	1	1	1	0	1	1	0	0	1	0	0	0	0	0	0	1	0	1	1
dgge:18.3	1	1	1	1	0	1	1	1	0	0	1	0	0	1	1	0	0	0	0	0	0	1	1	1	1
dgge:19.0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	0	1	
dgge:19.8	1	1	1	1	1	0	1	1	0	0	0	0	1	0	1	0	1	1	1	1	0	1	1	1	1
dgge:20.4	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	0	0	0	0	1	0	1	0
dgge:21.2 *	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:21.8	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	1	0	1	1	1	1
dgge:23.0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:24.0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	1	1	0	1
dgge:24.8 *	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0	1	0	0
dgge:25.6 *	1	1	1	1	1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0
dgge:26.8	1	1	1	0	0	0	0	1	1	0	1	1	0	0	1	0	1	0	0	0	1	1	1	1	1
dgge:27.5	0	0	0	0	1	0	1	0	1	0	1	1	0	0	0	0	0	1	1	1	0	0	1	0	0
dgge:28.6	1	0	0	1	1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	0	0	1	1	1	1
dgge:29.7	1	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:31.0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1
dgge:32.0	1	1	1	0	1	0	1	1	1	0	0	1	0	1	1	1	1	0	0	0	0	1	0	1	1
dgge:32.9	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:33.6	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:34.6	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1	0	1	0	1	0	0	0	0
dgge:35.5	1	1	1	1	0	1	1	1	0	0	0	1	0	1	1	1	0	1	1	1	1	1	1	1	1
dgge:36.6	1	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
dgge:37.2 *	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:37.6	0	1	1	1	1	0	1	0	0	0	0	0	1	0	0	0	1	1	1	1	1	0	0	0	0
dgge:38.2 *	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:38.6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
dgge:39.5	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	1	1	1	1	1	1	1	1
dgge:40.3	1	0	0	0	1	0	1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1
dgge:41.6	1	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	0	1	0	0	0	1	0	1	1
dgge:42.4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
dgge:43.6	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
dgge:44.7	1	1	1	1	1	1	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:45.7	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0
dgge:46.7	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:47.5	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0
dgge:48.4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
dgge:49.2	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	1	1	1	1	1	1	1
dgge:50.0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
dgge:51.1	1	1	0	1	0	0	0	1	0	0	1	1	1	1	1	1	0	1	0	0	0	1	1	1	1
dgge:52.8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:53.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
dgge:54.2	0	0	0	0	0	0	1	0	1	1	1	1	0	1	0	1	1	1	1	1	1	0	0	0	0
dgge:54.9	1	1	1	0	1	1	1	1	1	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1
dgge:56.0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0

	TLM ladder	T. inlet 18 Jun 04	T. inlet 23 Jun 04	T. inlet 28 Jun 04	T. outlet 28 Jun 04	T. inlet 1 Jul 04	T. inlet 9 Jul 04	TLM ladder	T. inlet 12 Jul 04	T. outlet 12 Jul 04	T. inlet 14 Jul 04	T. inlet 16 Jul 04	T. outlet 16 Jul 04	T. inlet 23 Jul 04	TLM ladder	T. inlet 26 Jul 04	T. outlet 26 Jul 04	T. inlet 30 Jul 04	T. inlet 4 Aug 04	T. inlet 11 Aug 04	T. outlet 11 Aug 04	TLM ladder	T. inlet 13 Aug 04	TLM ladder	TLM ladder
dgge:57.1	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1	1
dgge:58.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	0	0
dgge:59.2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:60.2	1	0	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:60.9	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0
dgge:62.9	0	0	1	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:64.5	1	0	0	0	1	0	1	1	1	0	1	1	0	0	1	1	0	1	0	0	0	1	1	1	1
dgge:73.0 *	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:78.8	0	0	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	0	0

			0	U	NP	C NP			NP	NP		0	с			NP	C NP	C NP	S NP		ul 05	Jul 05	ul 05	Jul 05	
	_	12C	n 120	v 12	12C	n 120	~	9 12C	w 12	912C	17C	n 170	w 17	9 17C	~	17C	n 170	w 17	¢170	+	12 JI	t 12 .	26 Jı	t 26 .	2
	ΓŴ	lue	reel	ello	lue	reel	LM2	/hite	ello	∕hite	lue	reel	ello	∕hite	LM3	lue	reel	ello	/hite	LM2	a in	s ou	Ľ.	3 ou	LM
dage:26.7	н о	q 0	0 0	<u>~</u> 0	q	0 0	н 0	≥ 0	0 V	×	q 0	0	<u>></u>	<u>></u> 0	- Ч	q 0	0	<u>ح</u>	≤ 0	о Т	8 0	<u>ש</u> 0	1	<u>w</u>	н 0
dage:31.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
dage:35.9	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	1
dage:39 1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	. 1	1	1	1	0	1	0		0	0	1
dage:40.7	0	1		1	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dage:42.9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1
dage:44.2	0	1	1	1	1	1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0
dage:45.0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	0	1	0	1
dage:46.1	1	1	0	1	1	0	1	1	1	1	1	0	0	0	1	0	0	0	0	1	1	0	0	0	1
dage:47.0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1
dage:47.9	1	0	0	0	0	0	1	0	0	1	1	0	0	1	1	1	1	0	0	1	1	1	0	0	1
dgge:48.6	1	0	0	0	0	0	1	0	0	1	1	0	1	0	1	0	1	1	1	1	1	1	0	1	1
dgge:49.2	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	0	0	0	0	1	1	0	1	0	1
dgge:50.0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:51.1	1	0	0	0	0	0	1	0	0	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1
dgge:52.4	0	1	1	1	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	0	0
dgge:53.1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1
dgge:53.7	0	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0
dgge:55.1	0	0	0	1	1	1	0	1	1	1	1	1	1	1	0	0	0	1	1	0	1	1	1	1	0
dgge:55.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
dgge:56.1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:57.3 *	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	1	0	0
dgge:57.7	1	0	1	0	1	0	1	0	0	1	1	0	0	0	1	1	0	0	1	1	0	0	0	0	1
dgge:58.6	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	1	1	0	0	0	0	0	1	0
dgge:59.7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:60.6	1	0	0	0	0	0	1	1	1	1	1	0	1	0	1	0	0	0	0	1	0	1	0	0	1
dgge:60.9	0	1	1	1	1	1	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	0	1	1	1
dgge:61.9	1	0	0	0	0	1	1	0	1	1	1	1	0	0	1	1	0	0	0	1	0	0	1	0	1
dgge:63.1	0	0	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	1	0	0	0	1	0	0	0
dgge:64.2	0	1	1	1	1	1	0	1	1	1	1	1	0	1	0	1	1	1	1	0	0	0	0	0	0
dgge:64.8	1	0	0	0	0	1	1	0	0	0	0	1	0	1	1	1	1	0	0	1	0	1	0	0	1
dgge:65.5	1	0	0	0	0	1	1	0	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:66.2	1	0	0	0	0	1	1	1	1	0	0	1	1	1	1	1	1	1	0	1	0	1	0	1	1
dgge:67.6	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0
dgge:68.7	1	0	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	0	1	0	0	1
dgge:69.5	1	1	1	1	1	1	1	1	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0
dgge:70.4	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	1	1	1	1	0	0	1	0	0	0
dgge:71.4	1	0	0	0	0	1	1	0	1	0	0	1	0	0	0	0	1	1	1	0	0	0	0	0	0
dgge:72.3	1	0	0	1	1	0	1	1	1	1	0	0	1	1	1	0	0	0	0	1	0	1	0	0	1
dgge:72.8 *	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
dgge:73.6	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	1	0	0	0	1	0	1	0	0	1
dgge:74.3	1	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:75.5	1	1	0	0	0	1	1	0	1	0	0	0	1	1	1	1	0	1	1	1	0	1	0	0	1
dgge:76.8	0	0	0	0	0	0	1	0	1	1	0	1	0	0	0	0	0	0	1	1	0	1	0	0	1
dgge:77.8	1	0	0	0	0	1	1	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	0	0	1
dgge:79.1	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1
agge:80.8	1	1	0	1	0	1	1	1	1	1	0	0	0	1	1	1	0	1	1	1	0	1	0	0	1
agge:82.6	1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	1	0	1	0	1	0	0	0	0	1
agge:84.5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
agge:85.5	1	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	1
ugge:87.3	0	U	0	0	0	0	0	0	0	0	1	1	1	1	0	0	U	0	0	0	0	0	0	0	0
ugge:88.7	0	U	U	U	U	1	U	U	U	U	U	U	U	U	U	1	U	U	U	U	U	1	U	U	U

	TLM ladder 1	l8-in 18 Jul 06	IN 12A 24 Jul 06	IN 12B 24 Jul 06	IN 12C 24 Jul 06	TLM ladder 2	IN 12D 24 Jul 06	IN 12NPA 24 Jul 06	IN 12NPB 24 Jul 06	IN 12NPC 24 Jul 06	TLM ladder 3	IN 12NPD 24 Jul 06	IN 17A 24 Jul 06	IN 17B 24 Jul 06	IN 17D 24 Jul 06	TLM ladder 4	IN 17NPA 24 Jul 06	IN 17NPB 24 Jul 06	IN 17NPC 24 Jul 06	IN 17NPD 24 Jul 06	TLM ladder 5
dgge:31.0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:36.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0
dgge:37.5	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:40.6	1	0	1	0	1	1	0	1	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:41.3	1	1	0	1	0	1	0	0	0	1	1	0	0	1	0	1	1	1	1	0	1
dgge:43.8	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:45.6	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:46.8	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:47.7	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:49.7	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:50.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
dgge:52.4	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:53.2	0	1	0	0	0	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0
dgge:54.1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	1	1	0
dgge:55.1	1	0	1	1	1	1	0	1	0	1	0	0	1	1	0	1	1	1	1	0	1
dgge:56.1	0	0	1	1	1	0	1	1	1	0	0	1	1	1	1	0	0	0	0	0	0
dgge:57.4	0	0	1	1	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	0
dgge:58.6	0	0	1	1	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	1
dgge:59.7	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0
dgge:60.8	0	1	0	1	1	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0
dgge:61.9	0	0	1	1	1	0	1	1	0	0	0	0	1	1	1	0	0	0	0	0	0
dgge:62.8	1	0	1	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1
dgge:64.0	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0
dgge:65.1	0	1	1	1	1	0	0	1	1	1	0	1	1	1	0	0	1	1	1	0	0
dgge:66.5	0	1	1	1	1	1	0	1	1	1	1	0	1	1	0	1	1	1	1	0	1
dgge:68.2	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1
dgge:69.0 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0
dgge:69.9	0	1	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	1	1	0
dgge:71.3	1	1	0	1	0	0	0	1	1	0	0	0	0	0	1	1	0	1	0	1	1
dgge:72.1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	0	0	0	1	1	1	0
dgge:73.2	0	1	1	1	0	1	1	1	1	1	0	1	1	1	1	0	1	0	0	0	0
dgge:75.7	0	1	0	0	0	0	0	1	1	1	0	1	0	0	0	1	1	1	1	1	1
dgge:77.1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
dgge:77.7 *	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1
dgge:78.4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
dgge:79.7	0	0	1	1	1	0	1	1	1	1	1	0	0	0	1	0	0	0	0	0	0
dgge:80.4	1	1	0	0	0	0	1	0	0	0	1	1	1	1	1	1	0	0	0	0	1
dgge:81.8	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	rLM ladder 1	8-out 18 Jul 06	out 12A 24 Jul 06	out 12B 24 Jul 06	out 12D 24Jul 06	FLM ladder 2	out 12NPA 24 Jul 06	out 12NPB 24 Jul 06	out 12NPC 24 Jul 06	out 12NPD 24 Jul 06	rLM ladder 3	out 17A 24 Jul 06	out 17B 24 Jul 06	out 17D 24 Jul 06	rLM ladder 4	out 17NPA 24 Jul 06	out 17NPB 24 Jul 06	out 17NPC 24 Jul 06	out 17NPD 24 Jul 06	FLM ladder 5
dgge:31.1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1
dgge:35.6	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	1	1	1	0	0
dgge:37.6	0	1	1	1	0	1	0	0	0	0	1	1	1	0	1	0	0	0	0	1
dgge:40.6	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1
dgge:41.2	1	1	0	0	0	1	0	1	0	0	1	0	0	0	1	1	1	1	0	0
dgge:43.3	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1
dgge:43.9	0	1	1	1	0	0	0	1	1	1	0	1	1	0	1	1	1	1	0	1
dgge:46.3	0	0	0	0	1	0	1	1	1	1	0	0	0	1	0	0	0	0	1	0
dgge:47.0	1	1	1	1	0	1	0	0	0	0	1	1	1	0	1	0	0	0	0	1
dgge:48.0	0	1	0	0	1	0	1	1	1	1	0	1	0	1	0	0	0	0	1	0
dgge:49.1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:50.8	1	1	0	0	0	1	1	0	0	0	1	0	1	0	1	0	0	0	0	1
dgge:53.0	1	0	0	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1
dgge:54.2	1	1	0	0	0	1	1	1	1	1	1	0	0	0	1	1	1	1	1	0
dgge:55.2	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1
dgge:56.0 *	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
dgge:56.9	0	1	1	1	0	0	1	1	1	1	0	1	1	0	0	1	1	1	0	0
dgge:58.3	1	1	0	0	0	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1
dgge:59.3	1	1	0	0	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1
dgge:60.3	1	1	1	1	0	0	1	1	1	1	0	1	1	0	0	1	1	1	1	1
dgge:61.4	0	0	1	1	0	0	0	1	1	0	0	1	1	1	0	1	1	1	0	0
dgge:62.8	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	1	0	1
dgge:63.4	0	1	1	1	0	0	0	1	1	0	0	1	1	1	0	1	1	1	1	0
dgge:64.2	0	1	1	1	0	0	1	0	1	1	0	1	1	0	0	0	0	0	0	0
dgge:65.3	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:66.3	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1
dgge:68.1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1
dgge:68.9	1	1	1	1	0	1	0	0	1	0	0	1	1	0	0	0	0	0	0	1
dgge:70.0	0	1	1	1	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1
dgge:70.9	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	1	0	1
dgge:72.3	1	1	1	1	1	1	1	0	0	1	1	1	1	1	0	0	0	0	0	1
dgge:73.6	1	1	0	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1
dgge:74.6	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1
dgge:75.6	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
dgge:77.1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	0	1	1	1	1	0
dgge:77.8 *	1	1	1	1	0	1	1	1	1	1	0	1	1	0	0	1	1	1	0	0

	LM ladder 1	i 12A 29 Jul 06	12B 29 Jul 06	12C 29 Jul 06	12D 29 Jul 06	LM ladder 2	12NPA 29 Jul 06	12NPB 29 Jul 06	12NPC 29 Jul 06	12NPD 29 Jul 06	LM ladder 3	17A 29 Jul 06	17B 29 Jul 06	17C 29 Jul 06	17D 29 Jul 06	LM ladder 4	17NPA 29 Jul 06	17NPB 29 Jul 06	17NPC 29 Jul 06	17NPD 29 Jul 06	LM ladder 5
dage:27.3	⊢ 0	ri 1	.⊑ 1	_⊑. 1	<u>ة.</u> 0	⊢	<u>ة.</u> 0	<u>ة.</u> 0	<u>ت</u> . 0	<u>≓</u> . 0	н 0	<u>ة.</u> 1	.⊑ 1	.⊑ 1	<u>≓</u> .	<u>н</u>	<u>ב</u> .	.⊑ 1	≓. 0	<u>=</u> .	<u>н</u>
dggc:27.3	1	0	0	0	0	1	0	0	0	0	1	1	0	1	0	1	0	0	0	0	1
dgge:31.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	0
dgge:36.5	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	1	1	0	1
dage:38.0	1	1	1	1	0	1	0	0	0	0	1	1	1	1	0	1	0	0	0	0	1
dage:39.2	0	0			0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
dgge:40.5	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	0	0	0	0	1
dgge:41.2	1	1	0	0	0	1	1	0	0	0	1	1	0	0	0	1	0	0	1	0	1
dgge:41.6	0	1	1	1	1	0	0	1	1	0	0	1	1	1	1	0	1	1	1	1	0
dgge:43.1	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
dgge:43.9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:45.4	0	1	0	0	1	1	0	0	0	0	1	1	1	1	1	1	0	0	1	0	1
dgge:47.1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:48.0 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
dgge:48.9	0	0	0	0	0	0	1	1	1	0	0	1	1	1	1	0	1	1	1	0	0
dgge:49.6 *	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:50.3	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	1	0
dgge:52.4 *	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:53.0	0	1	1	0	0	0	1	1	1	1	0	0	0	1	1	0	1	0	1	1	0
dgge:54.1	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:55.0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1
dgge:55.6	0	1	1	1	1	1	1	0	1	1	1	0	0	1	1	1	0	0	0	0	1
dgge:56.9	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	0	0
dgge:57.8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
dgge:58.6	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
dgge:59.3	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:60.1	0	1	1	1	1	0	1	1	1	0	0	1	0	1	1	0	1	1	1	0	0
dgge:61.8	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	0
dgge:62.9	1	0	0	0	0	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1
dgge:64.0	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	0	1	1	0
dgge:65.1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	0
dgge:65.8 *	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:66.4	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1
dgge:67.4	1	0	0	0	0	1	1	0	0	1	1	0	0	0	0	1	0	0	0	1	1
dgge:68.0	1	1	0	1	1	1	0	0	0	1	1	1	1	0	1	1	0	0	1	0	1
dgge:68.9	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
dgge:69.8	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	1	0	1	1	0
ugge:70.7	1	1	0	1	1	1	0	0	1	0	1	U 1	1	0	1	T A	0	0	0	1	1 0
dgge:71.7	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
uyye.12.3	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4	1	1	1	1	-
ugge:73.5	1	T O	T O	1	1	1	1	1	1	1	T O	1	1	0	1	1	1	T O	1	0	1
dgge:75.2	1 4	0	0	0	T O	1	0	0	0	0	1	1	1	1	1	1	1	0	1	0	1
dage:76.2	1	0	י 0	1	0	1	1	1	1	1	۱ ۵	1	1	1	1	1	۱ ۵	1	1	1	- 1
dage:76 7	1	1	1	1	1	1	1	1	1	1	1	' 1	1	1	1	1	1	1	1	0	1
															•			•		~	

	TLM ladder 1	in 12A 29 Jul 06	in 12B 29 Jul 06	in 12C 29 Jul 06	in 12D 29 Jul 06	TLM ladder 2	in 12NPA 29 Jul 06	in 12NPB 29 Jul 06	in 12NPC 29 Jul 06	in 12NPD 29 Jul 06	TLM ladder 3	in 17A 29 Jul 06	in 17B 29 Jul 06	in 17C 29 Jul 06	in 17D 29 Jul 06	TLM ladder 4	in 17NPA 29 Jul 06	in 17NPB 29 Jul 06	in 17NPC 29 Jul 06	in 17NPD 29 Jul 06	TLM ladder 5
dgge:77.7	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	0	0	1	0	0
dgge:78.5	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1
dgge:79.5	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0
dgge:80.9	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	0	1
dgge:82.2	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	TLM ladder 1	out 12A 29 Jul 06	out 12B 29 Jul 06	out 12D 29 Jul 06	TLM ladder 2	out 12NPA 29 Jul 06	out 12NPB 29 Jul 06	out 12NPC 29 Jul 06	out 12NPD 29 Jul 06	TLM ladder 3	out 17A 29 Jul 06	out 17B 29 Jul 06	out 17D 29 Jul 06	TLM ladder 4	out 17NPA 29 Jul 06	out 17NPB 29 Jul 06	out 17NPC 29 Jul 06	out 17NPD 29 Jul 06	TLM ladder 5
dgge:31.1	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1
dgge:33.2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:35.6	0	1	1	0	0	0	1	0	0	0	0	0	0	0	1	0	1	1	0
dgge:37.5	1	1	1	0	1	0	0	0	0	1	1	1	0	1	0	1	0	0	1
dgge:40.6	1	0	0	0	1	1	0	0	1	1	0	0	0	1	1	1	1	0	1
dgge:41.1	1	1	1	0	1	0	1	0	0	1	1	1	0	1	1	0	0	1	1
dgge:42.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
dgge:43.1	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1
dgge:43.9	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:44.9	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
dgge:46.0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	0	0	1	1
dgge:46.9	1	1	1	0	1	0	0	0	0	1	1	1	0	1	1	1	1	0	1
dgge:47.8	0	1	1	1	0	1	1	0	1	0	1	1	1	0	0	1	1	1	0
dgge:48.8	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0
dgge:49.8	1	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1
dgge:50.7	1	0	1	1	1	0	0	0	0	1	0	0	1	1	1	0	1	0	1
dgge:51.3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0
dgge:52.8	1	0	0	1	1	1	0	0	1	1	0	0	1	1	0	0	0	1	1
dgge:53.6	1	0	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1
dgge:54.4	1	0	0	1	1	0	0	0	0	1	0	0	1	1	1	1	1	0	1
dgge:55.2	1	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0	0	0	1
dgge:56.1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
dgge:57.0	0	1	1	1	0	1	1	1	0	0	1	1	1	0	1	1	1	0	0
dgge:58.4	1	1	0	0	1	1	0	1	1	1	0	0	0	1	0	0	0	1	1
dgge:59.2	1	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1
dgge:60.2	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0	0	1	1	1
dgge:61.5	0	1	1	1	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0
dgge:62.7	1	1	1	0	1	1	1	0	1	1	1	1	0	1	1	0	1	0	1
dgge:63.3	0	0	0	1	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0
dgge:64.2	0	1	1	1	0	1	1	0	1	1	1	1	1	1	0	1	1	1	1
dgge:65.1	1	0	0	0	1	1	0	0	1	0	0	0	0	0	1	0	0	0	0
dgge:66.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:68.0	1	1	1	0	1	0	0	0	0	0	1	1	0	1	1	1	1	1	1
dgge:69.0	1	1	1	0	1	1	0	0	1	1	1	1	1	0	0	0	0	0	1
dgge:70.8	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:71.9	1	0	0	0	1	0	0	0	1	1	0	0	0	1	1	1	1	1	1
dgge:73.0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
dgge:73.6	1	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1
dgge:76.2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:78.0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
dgge:79.5	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0
dgge:80.6	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0

	'LM ladder	3-in 27 Jun 06	2A 29 Jun 06	2B 29 Jun 06	2C 29 Jun 06	LM ladder.	2 NPA 29 Jun 06	2 NPB 29 Jun 06	2 NPC 29 Jun 06	LM ladder	7A 29 Jun 06	7B 29 Jun 06	7C 29 Jun 06	LM ladder.	7 NPA 29 Jun 06	7 NPB 29 Jun 06	7 NPC 29 Jun 06	LM ladder
daae:6.6	-	<u> </u>	1	1	1	–	-	1	1	- -	-	1	-	–	-	-	-	
dage:7.5	0	1	1	1	1	0	1	1	1	0	0	1	0	0	1	0	1	0
dage:10.7	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	1
dage:14.7	0	0	0	0	1	0	1	1	1	0	0	0	0	0	1	1	1	0
dage:16.5	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
dage:18.0	1	1	0	0	1	1	0	1	1	1	1	1	0	1	1	1	1	1
dgge:19.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
dgge:22.4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:23.8	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
dgge:26.1	1	1	0	0	0	1	0	0	1	1	0	0	0	1	1	0	1	1
dgge:27.5	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
dgge:29.4	1	0	1	1	1	1	0	1	1	1	0	1	1	1	1	1	0	1
dgge:30.7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:33.2	1	1	0	0	1	1	0	1	1	1	0	0	0	1	0	0	0	1
dgge:34.3	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:35.5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:36.8	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
dgge:38.0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:39.0	0	0	1	1	1	0	1	1	1	0	0	0	0	0	1	1	1	0
dgge:41.1	1	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:43.0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
dgge:44.4	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:45.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:47.4	1	1	0	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1
dgge:48.3	1	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1
dgge:48.9	0	1	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
dgge:50.2	0	1	1	1	1	0	1	1	1	0	0	0	0	0	1	0	1	0
dgge:51.6	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
dgge:52.7	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:53.4	1	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:54.7	0	1	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
dgge:56.0	0	1	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
dgge:57.1	1	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:57.9	0	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
dgge:58.5	0	0	1	1	1	0	1	1	1	0	0	0	1	0	1	1	1	0
dgge:59.5	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	0
dgge:60.1	0	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
dgge:60.6	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
dgge:61.6	1	1	0	0	0	1	1	1	1	1	0	0	0	1	0	0	0	0
dgge:63.2	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0
dgge:63.8	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:65.2	0	0	1	1	1	0	1	1	1	0	1	1	1	0	0	0	0	0
dgge:66.0 ^	1	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
agge:67.6	1	1	0	0	0	1	1	0	1	1	0	0	1	1	1	1	1	1
dgge:69.0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1
agge:69.8	U	1	0	0	0	0	U	U	0	0	0	0	0	0	0	0	0	0
agge:70.4	1	1	0	0	0	1	1	0	1	1	0	0	0	1	0	1	0	1
agge:71.6	U	1	0	0	0	0	U	0	0	0	0	0	0	0	0	0	0	0
agge:72.5	0	1	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
ugge:74.0	1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1	0
agge:75.4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
agge:76.6	1	0	1	1	1	0	0	0	0	1	0	0	0	1	0	0	0	1

	TLM ladder	18-in 27 Jun 06	12A 29 Jun 06	12B 29 Jun 06	12C 29 Jun 06	TLM ladder	12 NPA 29 Jun 06	12 NPB 29 Jun 06	12 NPC 29 Jun 06	TLM ladder	17A 29 Jun 06	17B 29 Jun 06	17C 29 Jun 06	TLM ladder	17 NPA 29 Jun 06	17 NPB 29 Jun 06	17 NPC 29 Jun 06	TLM ladder
dgge:77.0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
dgge:79.9	1	0	1	1	1	1	0	0	0	1	1	1	1	1	0	0	0	1
dgge:81.7	0	1	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
dgge:84.6	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0
dgge:85.7	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
dgge:88.4	1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1

						06	06	06						06	06	06	
	der	I 06	I 06	I 06	der	lul 1	lul 1	lul 1	der	I 06	I 06	I 06	der	lul 1	lul 1	lul 1	der
	lado	1 Ju	l Ju	l Ju	lado	, ۲	, B	ပွဲ	lado	l Ju	l Ju	l Ju	lado	, ۲	, B	ò	lado
	Σ	2A `	2B 、	SC (Σ	2 NI	2 NI	2 NI	Σ	7A `	78、	7C 、	Σ	NI NI	NI NI	NI Z	Σ
dage:14.3	_ ⊢	÷	, (;	H 0	.	- <u>-</u>	÷	⊢	1		1.	⊢			-	- -
dgge:14.0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
dage:17.6	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1
dage:22.5	0	1	1	0	0	1	1	1	0	1	1	. 1	0	1	1	1	0
dage:23.5	0	1	0	0	0	1	1	1	1	1	1	1	0	1	1	1	0
dage:26.0	1	1	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1
dgge:27.4	0	1	1	0	0	1	0	1	0	1	1	1	0	0	0	0	0
dgge:29.6	1	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1
dgge:30.7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:31.5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
dgge:33.0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:34.7	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	1
dgge:36.0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1
dgge:36.9	0	1	1	1	0	1	1	1	1	0	0	0	0	1	1	1	0
dgge:38.7	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1
dgge:41.1	1	0	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1
dgge:42.5	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
dgge:43.2	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
dgge:44.4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:45.4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:47.3	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:48.6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:50.1	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
dgge:51.5	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
dgge:52.7	1	0	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1
dgge:53.5	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:54.8	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	0
dgge:56.0	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	0
dgge:57.2	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
dgge:58.6	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	0
dgge:59.4	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	0
dgge:60.0	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
dgge:61.6	1	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	1
dgge:64.0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:67.1	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0	0	0
dgge:68.1	1	0	1	0	0	1	1	1	1	0	0	0	1	1	1	1	1
dgge:69.3	1	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
dgge:70.5	1	0	0	0	1	0	1	1	1	0	0	0	1	0	1	0	1
dgge:72.8	1	0	0	0	0	1	0	0	1	0	0	0	1	1	1	1	0
dgge:75.7	0	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0
dgge:77.0	1	0	0	0	0	1	1	1	0	1	0	0	1	0	0	0	0
dgge:78.3	0	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1	0
dgge:79.9	0	0	0	0	1	0	0	0	1	0	1	0	0	1	1	0	1
dgge:81.5	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1
dgge:82.9	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
dgge:83.8	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
dgge:85.0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
dgge:86.3	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:87.8	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1
dgge:90.1	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	0
dgge:93.3	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1

					9	90	90					90	90	90					90	90	90					90	90	90	
	r	90	90	90	ul 0	Ц	Jul (ŗ	90	90	90	Jul (Jul (Jul (F	90	0 0	90 I	Jul	Jul	Jul	L	06	90	06	Jul	Jul	Jul	L
	dde) ul	Inl	Jul	6 J	36.	C 6.	dde) ul (Jul	In	٩6.	36,	36.	dde	٦u	Jul	Jul	11	3 11	31	dde	Jul	٦u	Jul	11	3 11	5	dde
	M la	٩6.	36.	0.	٩P	NPE	NPC	M la	٩6.	36.	0	NP/	NPE	NPC	МIа	11	3 11	311	NP/	NPE	NPC	M la	11	3 11	3 11	NP/	NPE	NPC	M la
	TL	12/	12E	120	121	12	12	F	17/	17	ţ	17	17	17	F	12/	12E	120	12	12	12	F	17/	17	170	17	17	17	F
dgge:17.6	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	0	1	1	0	1	1	0	0	0	1
dgge:19.1	0	1	0	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
agge:20.4	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
agge:22.2	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	0	1	1	0	1	1	1	1	1	1	0
dgge:23.8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	0	1
dage:27.2	1	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	1	1		1	
dgge:27.2	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	
dago:20.6	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	1	1	0	0	1	1	0	1
dgge:29.0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dage:33.2	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	-	0	۰ ۱	-	0	1	0	0	0	0		0	1
dage:33.8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
dage:35.0	0	0	0	0	0	0	۰ ۱	0	0	0	0	0	0	1	0	0	0	۰ ۱	0	0	0	0	0	1	0	0		0	
dage:36.1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	
dage:36.9	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
dage:37.9	0	0	0	0	0	0	0	1	1	0	0	1	1	0	1	1	1	1	0	1	1	1	0	1	0	1	1	1	1
dage:39.0	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
dage:30.8	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	1	1	0	0	0	0	1	1	1	0
dage:33.0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	1
dgge:41.0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dage:44.3	0	0	0	0	0	0	0	0	0	0	0	0	0		1	0	0	0	0	0	0	1		0		0	0	0	1
dage:45.9	0	0	0	0	1	1	1	1	0	0	0	1	1	1	0	0	0	0	1	1	1	1	1	0	0	1	1	1	1
dgge: 10.0	1	0	0	0	0	1	1	1	1	1	1	0	0	1	1	1	1	0	0	0	1	1	1	1	1	1	0	1	1
dage:48.6	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0	1		1	1	1	. 1	0	1	1		0	0	0	0
dage:50.4	0	0	0	0	1	1	1	0	1	1	1	1	1	1	0	1	1	1	0	0	. 1	0	1	0	0	1	1	1	0
daae:51.5	0	1	1	1	0	0	0	1	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
daae:52.5	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	1	0	0	0	0	0	1
daae:53.4	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
dgge:54.6	0	1	1	1	0	0	1	0	1	1	1	0	0	0	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0
dgge:55.7	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
dgge:57.0	0	1	1	1	0	0	0	1	0	0	0	0	1	1	1	0	0	0	1	0	0	1	0	0	0	0	0	1	1
dgge:57.9	0	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
dgge:59.0	1	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0
dgge:60.0	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0
dgge:61.7	0	0	0	0	1	0	1	1	0	0	0	1	1	1	1	0	0	0	1	1	1	1	0	0	0	1	1	1	1
dgge:63.4	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
dgge:64.0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	0
dgge:65.1	0	1	1	1	0	0	0	1	0	0	0	1	1	0	0	1	1	1	1	1	1	0	1	0	0	1	1	0	0
dgge:66.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	1	1	1	1	1	0
dgge:68.0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0	0	0	1	1	0	1
dgge:69.4	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	0	0	1	1	0	1	1	1	1	1
dgge:70.5	0	0	0	1	1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
dgge:71.9	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0
dgge:73.3	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	1	1	1	0	0	0	1	0	0	0	0	0	0
dgge:75.1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	0	1	1	0	1	1	1	1	1	1	0
dgge:76.6	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
dgge:79.2	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	0	0	1	1	0	1	1	0	0	0	1	0	1
dgge:81.5	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0
dgge:83.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
dgge:84.5	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1	0	0	0	0	0	0	1	0
dgge:86.0	0	0	1	1	1	1	1	0	0	0	0	0	0	1	0	0	1	0	1	1	1	0	0	0	0	0	0	1	0
dgge:87.9	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
dgge:89.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	0

1																						
dage:10.6	TLM ladder1	⊃ T. inlet 26 Jul 06	0 8A	0 8B	0 8C	0 8D	TLM ladder2	o 12A	o 12B	o 12C	0 12D	TLM ladder3	0 16A	0 16B	₀ 16C	o 16D	→ TLM ladder4	0 20A	0 20B	20C	20D	TLM ladder5
dgge:10.0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dggc:12.2	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1
dage: 10.1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dggc:20.0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dggc:22.2	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	0	0	0	0	1
dgge:23.4	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0
dggc:24.4	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:23.0	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1
dgge:27.0	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	1
dgge:29.0	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1
dgge:30.0	-	1	0	-	0	0	0	-	-	1	0	-	1	1	1	0	1	1	1	0	0	
dgge:31.0	0	1	1	1	1	0	0	1	1	1	0	0	1	1	1	0	1	1	1	1	0	0
dgge:32.9	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:33.9	1	1	1	1	1	0	1	1	1	1	0	1	1	0	1	0	1	1	1	1	0	1
dgge:34.9	0	1	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	0	0	0	0	
dage:36.8	1	0	0	0	0	0	1	0	1	1	0	1	0	0	0	0	1	0	0	0	0	1
dage:38.4	1	1	0	0	0	0	1	1	1	1	0	1	1	0	1	0	1	1	1	1	0	1
dgge:00.4	1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:40.0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dggc:40.0	0	1	1	1	0	0	0	1	1	1	0	0	1	1	1	0	0	1	1	1	0	0
dggc:42.5	1	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dggc:44.7	1	0	1	1	1	0	1	1	1	1	0	0	1	1	1	0	1	1	1	1	0	1
dggc:45.0	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
dgge:40.0	0	1	1	1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	1	1	0	0
dage:48.1	0	. 1	0	1	1	0	0	1	1	1	0	0	1	1	. 1	0	0	0	0	0	0	0
dage:49.8	1	1	1	1		0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1
dage:50.4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dage:51.6	0	1	1	1	1	0	1	1	1	1	0	0	1	1	1	0	0	1	1	1	0	0
dage:53.8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
dage:54.4	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	0	0	1
dgge:55.8	0	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0
dgge:56.6	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:57.9	0	1	1	0	1	0	0	1	1	0	0	0	1	1	1	0	0	1	1	0	0	1
dgge:59.0	1	1	0	0	0	0	1	0	0	0	0	1	1	1	0	0	1	0	0	0	0	1
dgge:61.2	1	1	1	1	0	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1
dgge:62.8	1	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1	1	0	0	0	1	0
dgge:63.7	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1
dgge:66.5	1	1	0	0	0	0	1	0	1	1	0	1	0	0	0	0	1	0	0	0	0	1
dgge:69.4	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1
dgge:70.7	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
dgge:72.5	0	1	1	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
dgge:73.8	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	0	0	1
dgge:74.6	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	1	1	0	0
dgge:77.5	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
dgge:87.8	1	1	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
dgge:89.8	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	LM ladder 1	-in 1 Aug 06	-out 1 Aug 06	/in A 3 Aug 06	/in B 3 Aug 06	LM ladder 2	/in C 3 Aug 06	/out A 3 Aug 06	/out B 3 Aug 06	/out C 3 Aug 06	LM ladder 3	ut/out A 3 Aug 06	ut/out B 3 Aug 06	ut/out C 3 Aug 06	ut/in A 3 Aug 06	LM ladder 4	ut/in B 3 Aug 06	-in 3 Aug 06	-out 3 Aug 06	LM ladder 5		
--------------------------	-------------	--------------	---------------	----------------	----------------	-------------	----------------	-----------------	-----------------	-----------------	-------------	-------------------	-------------------	-------------------	------------------	-------------	------------------	--------------	---------------	-------------		
dago:2.8	F	8	8	Ľ.	Ľ.	F	Ë.	Ľ.	i.	E.	F	0	0	0	0	Ч	•	<u>8</u>	8	-		
dgge:3.0	1	0	1	0	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1		
dgge:7.1	1	0	1	0	0	1	0	0	0	0	1	1	1	1	1	1	1	1	- 1	1		
dgge:10.3	1	1	0	1	1	1	1	1	1	1	1	0	0	0	0	1	0	1	0	1		
dage:11.2	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1		
dggc:13.0	1	1	1	0	0	1	0	0	0	0	1	0	0	0	0	1	0	1	1	1		
dggc: 14.5 dage: 14.9	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	0		
dgge:14.5	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0		
dage:18.3	. 1	1	1	0	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1		
dgge:10.0	0	0	1	1	1	0	1	1	1	1	0	1	1		1	0	1	0	1	0		
dage:20.7	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1	1	0	0		
dgge:21.2 *	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1		
dgge:22.1	1	0	1	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	1	0		
dgge:22.9	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	1	0	1	0		
dgge:24.1	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1		
dgge:24.6 *	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0		
dgge:25.3	1	0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	1		
dgge:26.9	1	0	1	0	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1		
dgge:27.7	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	1	0	1	0	1		
dgge:28.4	0	1	0	0	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0		
dgge:29.6	0	0	0	1	1	0	1	0	0	0	0	1	1	1	1	0	1	1	0	0		
dgge:30.8	0	0	1	1	1	0	1	1	1	1	0	0	0	0	0	0	0	1	0	0		
dgge:31.5	1	1	0	0	0	1	1	0	0	0	1	1	1	1	1	1	1	1	0	1		
dgge:32.3	1	0	1	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	1		
dgge:33.6	0	1	1	0	0	0	1	1	1	1	0	0	0	0	1	0	1	0	1	0		
dgge:34.3 *	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0		
dgge:35.2 *	0	1	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	1	0	0		
dgge:36.1	1	0	1	0	0	1	0	0	0	0	1	1	1	1	1	1	1	0	1	1		
dgge:37.9	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	0		
dgge:38.9	0	1	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	1	0	0		
dgge:40.4	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	1	1	1		
dgge:40.8	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	0	0		
dgge.42.3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
dgge:43.6	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	0		
dgge:44.0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
dgge:40.0	1	1	0	0	1	1	0	1	1	0	1	0	0	0	0	0	0	1	- 1			
dgge:47.2	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
dgge:40.0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
dgge: 10.0 dgge:50.7	1	1	1	0	0	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1		
dage:51.9	1	1	1	0	0	1	1	1	1	1	1	0	. 1	0	. 1	1	1	1	1	0		
dage:53.1	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0		
dgge:54.0	1	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1		
dgge:56.4	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1		
dgge:58.4	0	1	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	1	0	0		
dgge:61.5	1	0	1	0	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1		
dgge:63.0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0		
dgge:63.6	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0		
dgge:64.2	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0		
dgge:65.5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1		
dgge:67.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		

	TLM ladder 1	l8-in 1 Aug 06	l8-out 1 Aug 06	in/in A 3 Aug 06	in/in B 3 Aug 06	TLM ladder 2	in/in C 3 Aug 06	in/out A 3 Aug 06	in/out B 3 Aug 06	in/out C 3 Aug 06	TLM ladder 3	out/out A 3 Aug 06	out/out B 3 Aug 06	out/out C 3 Aug 06	out/in A 3 Aug 06	TLM ladder 4	out/in B 3 Aug 06	l8-in 3 Aug 06	l8-out 3 Aug 06	TLM ladder 5
dgge:76.1	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	1	1	1	0
dgge:77.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
dgge:84.4	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	1	0	1	0
dgge:86.0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0
dgge:87.0	1	1	1	0	0	1	1	1	0	0	0	1	1	1	1	0	1	1	1	0
dgge:90.4	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
dgge:92.5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:94.1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:98.8	0	0	1	0	0	0	0	1	0	0	0	1	1	1	1	0	1	0	1	0

		9	06		1 06	I 06	106		Jul 06	Jul 06	Jul 06		6	06	
	dder 1	8 Jul 0	18 Jul	dder 2	21 Ju	: 21 Ju	: 21 Ju	dder 3	r a 21	F B 21	LC 21	dder 4	1 Jul 0	21 Jul	dder 5
	TLM la	18-in 1	8-out	TLM la	IN/IN A	IN/IN B	IN/IN C	TLM la		LNO/NI	LNO/NI	TLM la	l8-in 2 [,]	l8-out	TLM la
dgge:19.2	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1
dgge:22.0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
dgge:28.4	1	0	1	1	0	0	0	1	0	0	0	1	0	1	1
dgge:32.4	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1
dgge:33.4	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:35.8	1	0	0	1	1	1	1	1	1	1	1	1	0	0	1
dgge:37.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:39.9	1	0	0	1	1	1	1	1	1	1	1	1	0	0	1
dgge:41.6	1	0	1	1	0	0	0	1	0	0	0	1	0	1	1
dgge:42.9	1	0	1	0	0	0	0	0	0	0	0	0	1	1	0
dgge:43.9	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
dgge:45.4	1	0	0	1	0	0	0	1	0	0	0	1	0	1	1
dgge:46.1	1	0	1	1	0	0	0	1	1	1	1	1	0	1	1
dgge:46.9	0	0	1	0	1	1	1	0	1	1	1	0	1	1	0
dgge:48.7	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
dgge:49.4	0	1	1	0	1	1	1	0	1	1	1	0	0	1	0
dgge:50.4	1	0	0	1	1	1	1	1	0	0	0	1	0	0	1
dgge:51.8	1	0	1	1	1	0	1	1	1	1	1	1	0	1	1
dgge:52.8	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1
dgge:53.9	0	0	1	0	1	1	1	0	1	1	1	0	1	0	0
dgge:55.4	0	0	1	0	1	0	1	0	1	0	0	0	1	1	0
dgge:57.2	1	0	1	1	1	1	1	1	1	1	1	1	0	1	0
dgge:58.5	1	1	1	0	1	0	1	1	1	0	0	1	1	1	0
dgge:59.7	1	1	0	1	0	0	0	1	1	1	1	1	0	1	1
dgge:60.9	0	0	1	0	1	1	1	0	0	1	1	1	1	1	0
dgge:62.1	1	1	1	1	1	1	1	1	1	0	0	1	0	0	1
dgge:63.5	1	0	1	1	0	0	0	1	0	0	0	0	0	1	1
dgge:65.2	0	0	1	0	0	0	0	0	0	0	1	0	1	1	0
dgge:66.2	0	1	1	0	1	1	1	0	1	1	0	0	0	1	0
dgge:68.0	0	1	1	0	1	1	1	0	1	1	1	0	1	0	0
dgge:71.2	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
dgge:72.2	0	0	0	0	0	0	1	0	0	0	1	0	1	1	1
dgge:73.4	1	0	0	1	1	1	0	1	1	1	0	1	0	0	1
dgge:75.2	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0
dgge:77.2	1	0	1	1	0	0	0	1	1	1	1	1	0	1	1
dgge:78.2	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
dgge:81.4	0	0	0	0	1	1	1	0	0	0	1	0	0	0	0
dgge:82.7	0	0	1	0	1	1	1	0	1	1	1	0	1	1	0
dgge:84.9	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
dgge:88.8	0	0	0	0	1	1	1	0	1	1	1	0	0	1	0
dgge:90.3	1	0	1	1	0	0	0	1	0	0	0	1	0	1	0
dgge:95.5	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0

	TLM ladder	l8-in 16 Jun 07	l8-out 16 Jun 07	l8-in 18 Jun 07	l8-out 18 Jun 07	18-NE inlet 18 Jun 07	18-SE inlet 18 Jun 07	TLM ladder	18-S inlet 18 Jun 07	l8-in 29 Jun 07	l8-out 29 Jun 07	l8-in 4 Jul 07	l8-out 4 Jul 07	18-NE inlet 4 Jul 07	TLM ladder	18-S inlet 4 Jul 07	18-NE 4 Jul 07	18-E 4 Jul 07	l8-SE 4 Jul 07	18-Cen 4 Jul 07	18-NW 4 Jul 07	TLM ladder	l8-W 0.5m 4 Jul 07
dgge:13.6	0	0	0	0	0	0	0	.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
dgge:19.1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
dgge:22.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0
dgge:24.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:26.2	1	0	0	0	0	0	0	1	0	0	1	0	1	0	1	0	1	1	1	1	1	1	1
dgge:29.4	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	1	0	1	0	1	0
dgge:30.3	1	1	1	1	1	1	0	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	1
dgge:31.1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	0
dgge:32.6	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0
dgge:33.3	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:34.9	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	1	1	0
dgge:36.1	1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	1	1	1	1	1	0	0
dgge:36.8	0	0	0	1	0	0	0	1	0	0	1	1	1	0	1	0	1	1	1	1	1	1	1
dgge:38.2	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0
dgge:39.6	1	0	1	1	1	0	0	1	0	0	1	0	1	0	1	0	1	1	1	1	1	1	1
dgge:40.7	1	0	1	0	1	1	0	1	0	0	1	0	1	0	1	0	1	1	1	1	1	1	0
dgge:41.9	0	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	1	1	0	1
dgge:43.1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0
dgge:44.1	1	0	1	0	1	0	1	1	1	0	1	0	1	0	1	0	1	1	1	1	1	1	0
dgge:44.6	0	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0	0
dgge:45.2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
dgge:46.4	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	1	1	1	1	1	0	1
dgge:47.1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:48.1	1	1	0	1	0	0	0	1	0	1	0	1	0	0	1	1	0	1	0	1	1	1	0
dgge:49.0	1	0	1	0	1	1	0	1	0	0	1	0	1	0	1	0	1	1	1	1	1	1	1
dgge:49.8	1	0	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	0
dgge:50.7	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	1	1	1	0	0
dgge:51.6	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0
dgge:52.1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
dgge:52.8	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	0	1	1	1	1	1	1	1
dgge:54.2	0	1	1	1	1	1	0	0	1	0	1	0	1	1	0	0	1	1	1	1	1	0	1
dgge:55.9	0	1	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
dgge:56.7	1	0	1	0	1	1	1	1	0	0	0	0	0	1	1	0	1	1	1	1	1	1	0
dgge:57.7	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:58.5	1	0	1	0	1	1	1	1	1	0	1	0	1	0	1	0	1	1	1	1	1	1	1
dgge:60.6	0	0	1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
dgge:61.4	1	0	0	0	1	1	0	1	0	0	0	0	1	0	1	0	1	1	1	1	1	1	1
dgge:63.2	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	1	1	0	1	0	1
dgge:64.4	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
dgge:65.8	1	1	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0
dgge:67.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:69.1	1	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
dgge:70.0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	1	1
dgge:70.6	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	1	0	0
dgge:71.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
dgge:72.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:73.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:75.4	1	0	0	0	0	0	0	1	0	0	1	0	1	0	1	0	1	1	1	1	1	1	0
dgge:79.5	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
dgge:81.1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

	-W 6m 4 Jul 07	-SW 4 Jul 07	-in 20 Jul 07	-out 20 Jul 07	-NE inlet 20 Jul 07	LM ladder	LM ladder	-out 2 Jul 07	-in 2 Jul 07	in/out C 4 Jul 07	in/out B 4 Jul 07	in/out A 4 Jul 07	out/out C 4 Jul 07	LM ladder	in/in C 4 Jul 07	in/in B 4 Jul 07	ut expt 12A 25 Jun 07	oolik Inlet 22 Jun 07	NE inlet 18 Jun 07	LM ladder	out 8 Aug 07	7m 8 Aug 07	1m 8 Aug 07
dage:13.6	81 0	<u>8</u>	8	<u></u>	- I 8	–	F	8	- I 8	- I 8	8	8	<u>8</u>	Ъ-	8	8	_	Ē	8	F	<u>8</u>	8	8
dgge:10.0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
dage:22.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dggc.22.4 dage:24.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
dage:26.2	1	1	0	1	0	1	1	1	0	0	1	1	1	1	0	0	0	1	0	1	1	1	1
dgge:20.2	1	0	0	0	0	. 1	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
dage:30.3	1	1	1	1	0		1	1	1	0	1	1	1	1	1	1	1	1	0	1	0	0	1
dage:31.1	0	0	0	0	1	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
dage:32.6	1	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
dage:33.3	1	1	1	1	1		1	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
dage:34.9	0	0	1	0	0	1	1	1	. 1	0	0	0	0	. 1	1	0	0	0	0	1	0	0	0
dage:36.1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
dage:36.8	1	1	0	1	0	1	1	0	1	1	0	0	1	1	1	1	0	1	0	1	0	0	0
dgge:38.2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1
dgge:39.6	1	1	0	1	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0
dgge:40.7	0	0	0	1	0	1	1	1	1	0	0	0	1	1	0	0	0	0	0	1	1	1	1
dgge:41.9	1	1	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	1	0	1
dgge:43.1	1	0	0	1	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
dgge:44.1	1	1	1	0	1	1	1	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0
dgge:44.6	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:45.2	1	1	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	0	0	0	0
dgge:46.4	0	1	0	0	1	0	0	0	0	0	1	0	1	0	1	1	0	1	1	0	0	0	0
dgge:47.1	0	1	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:48.1	0	0	1	0	0	1	0	0	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0
dgge:49.0	1	1	0	1	0	1	1	1	0	0	0	0	0	1	0	0	0	1	1	1	1	1	1
dgge:49.8	1	1	0	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:50.7	0	1	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	1	1	1
dgge:51.6	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
dgge:52.1	0	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	1	0	0	0	0
dgge:52.8	1	1	0	1	0	1	1	0	0	0	0	1	1	1	1	1	0	0	1	1	1	1	1
dgge:54.2	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
dgge:55.9	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0
dgge:56.7	1	1	0	1	0	1	1	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0
dgge:57.7	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1
ugge:58.5	1	1	1	1	0	1	1	1	0	0	0	0	1	1	0	0	0	0	1	1	1	1	1
	U 1	1	T O	1	0	U 1	1	1	U	0	0	U	0	0	0	0	1	U	1	1	T O	1	1 0
uyye.01.4	1	1	0	1	0	1	1	1	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0
dgge:63.2	1	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
dgge:65.8	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
dggc.00.0 dage:67.6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dage:69.1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
dage:70.0	1	1	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
dage:70.6	0	0	0	0	0		0	0	0	0	0	0	0		0	0	0	1	0	0	1	0	1
dage:71.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
dgge:72.9	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
dgge:73.9	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
dgge:75.4	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1
dgge:79.5	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0
dgge:81.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

	l8 in 8 Aug 07	l8 out 11 Jul 07	18 7m 11 Jul 07	18 1m 11 Jul 07	TLM ladder	l8 in 11 Jul 07	l8 out 21 Jun 07	l8 6.5m 21 Jun 07	l8 1m 21 Jun 07	l8 in 21 Jun 07	18 S inlet 20 Jul 07	TLM ladder
dgge:13.6	0	0	0	0	0	0	0	0	0	0	0	0
dgge:19.1	0	0	0	0	1	0	0	0	0	0	0	1
dgge:22.4	0	0	0	0	0	0	0	0	0	0	0	0
dgge:24.3	0	0	0	0	0	0	0	0	0	0	0	0
dgge:26.2	0	0	0	1	1	0	0	0	0	0	0	1
dgge:29.4	0	1	0	0	1	0	0	0	0	0	0	1
dgge:30.3	1	1	1	1	1	1	0	0	1	1	0	1
dgge:31.1	0	0	0	0	0	0	0	1	0	1	0	0
dgge:32.6	0	0	1	0	1	0	0	0	0	0	0	1
dgge:33.3	1	1	1	1	1	1	1	1	1	1	0	1
dgge:34.9	1	1	0	0	1	0	1	1	0	0	0	1
dgge:36.1	0	0	1	1	0	0	0	0	0	0	0	0
dgge:36.8	0	0	0	1	1	1	1	1	0	1	0	1
dgge:38.2	0	0	0	0	0	0	0	0	0	0	0	0
dgge:39.6	1	1	1	1	1	1	0	0	0	0	0	1
dgge:40.7	0	1	1	1	1	1	1	1	1	1	1	1
dgge:41.9	0	1	1	1	0	1	0	0	1	1	0	0
dgge:43.1	0	0	1	0	1	0	1	1	0	1	0	1
dgge:44.1	0	0	1	1	1	1	0	0	1	0	0	1
dage:44.6	0	0	0	0	0	0	1	1	0	0	0	0
dage:45.2	0	0	1	1	0	0	0	0	0	0	1	0
dage:46.4	1	0	0	1	0	1	0	0	0	0	1	0
dage:47.1	0	0	0	1	0	1	0	0	0	0	1	0
dage:48.1	1	0	0	1	1	1	1	0	0	1	0	1
dage:49.0	0	0	1	1	1	1	0	1	0	0	0	1
dage:49.8	0	1	. 1	1	1	1	1	1	1	1	0	1
dage:50.7	0	1	1	. 1	0	. 1	0	1	0	0	1	0
dage:51.6	1	1	0	0	1	0	1	0	0	1	1	0
dage:52 1	1	0	0	0	0	0	0	0	0	0	0	0
dage:52.8	0	0	1	1	1	1	1	1	1	1	0	1
dgge:52.0	1	1	1	1	0	1	1	1	1	1	1	1
dage:55.9	1	0	0	0	0	0	1	1	0	0	1	
dage:56 7		0	1	0	1	0	0	0	0	0	۱	1
dage:57 7	1	0	0	0	۔ ^	0	0	0	0	0	1	
dage:59 5		0	1	1	1	0	1	1	1	1	۱ ۸	1
dage:60.6	0	1	1	1	۱ 0	0	1	1	1	۱ 0	0	
dage:61 /	0	۱ 0	0	۱ 0	1	0	0	1	1	0	0	1
dage:62.2	0	1	0	1	-	0	0	0	0	0	0	
dage:64 4	0	1	0	1	0	0	0	0	0	0	0	0
uyye.04.4	0	0	0	0	1	0	0	0	0	0	0	1
dage:67.6	0	0	0	0	1	0	0	0	0	0	0	1
dgge.67.6	0	0	0	0	0	0	0	0	0	0	0	0
ugge:69.1	0	0	0	0	0	1	0	0	0	0	0	0
ugge:70.0	0	0	0	1	1	0	1	1	1	0	0	1
agge:70.6	0	0	1	0	0	0	0	0	0	0	U	0
dgge:71.4	0	0	0	0	0	0	0	0	0	0	0	0
dgge:72.9	0	0	0	0	0	0	0	0	0	0	0	0
dgge:73.9	0	0	0	1	0	0	0	0	0	0	0	0
dgge:75.4	0	1	0	1	1	0	0	0	0	0	0	1
dgge:79.5	0	0	0	0	1	0	0	0	0	0	0	1
dgge:81.1	0	0	0	0	0	0	0	0	0	0	0	0

	TLM ladder	l8-in 16 Jun 07	l8-out 16 Jun 07	l8-in 18 Jun 07	l8-out 18 Jun 07	18-NE inlet 18 Jun 07	18-SE inlet 18 Jun 07	TLM ladder	18-S inlet 18 Jun 07	l8-in 29 Jun 07	l8-out 29 Jun 07	18-in 4 Jul 07	18-out 4 Jul 07	I8-NE inlet 4 Jul 07	TLM ladder	18-S inlet 4 Jul 07	18-NE 4 Jul 07	18-E 4 Jul 07	18-SE 4 Jul 07	18-Cen 4 Jul 07	18-NW 4 Jul 07	TLM ladder	l8-W 0.5m 4 Jul 07
dgge:82.1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:83.2	0	1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
dgge:84.6	1	0	0	0	0	0	0	1	0	0	1	0	1	0	1	0	1	1	0	0	1	1	1
dage:88.4	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	1	1	0	1	0
dgge.00.4 dage:90.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dggc.30.7 dgge:96.2	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
	l8-W 6m 4 Jul 07	l8-SW 4 Jul 07	l8-in 20 Jul 07	l8-out 20 Jul 07	18-NE inlet 20 Jul 07	TLM ladder	TLM ladder	l8-out 2 Jul 07	l8-in 2 Jul 07	l8 in/out C 4 Jul 07	l8 in/out B 4 Jul 07	l8 in/out A 4 Jul 07	l8 out/out C 4 Jul 07	TLM ladder	18 in/in C 4 Jul 07	l8 in/in B 4 Jul 07	nut expt 12A 25 Jun 07	Toolik Inlet 22 Jun 07	18 NE inlet 18 Jun 07	TLM ladder	l8 out 8 Aug 07	l8 7m 8 Aug 07	l8 1m 8 Aug 07
dgge:82.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
dgge:83.2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
dgge:84.6	0	1	0	1	0	1	0	0	0	0	0	0	0	1	1	1	1	1	0	1	1	1	0
dgge:85.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
dgge:88.4	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1
dgge:90.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
dgge:96.2	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
	l8 in 8 Aug 07	l8 out 11 Jul 07	l8 7m 11 Jul 07	l8 1m 11 Jul 07	TLM ladder	l8 in 11 Jul 07	l8 out 21 Jun 07	l8 6.5m 21 Jun 07	l8 1m 21 Jun 07	l8 in 21 Jun 07	l8 S inlet 20 Jul 07	TLM ladder											
dgge:82.1	0	0	0	0	0	0	0	0	0	0	0	0											
dgge:83.2	1	0	0	0	0	0	0	1	1	1	0	0											
dgge:84.6	0	0	0	1	1	0	0	1	0	0	0	1											
dgge:85.3	0	0	0	0	0	0	0	0	0	0	0	0											
dgge:88.4	0	0	0	0	1	0	0	0	0	0	0	1											
dgge:90.7	0	0	0	1	0	0	0	0	0	0	0	0											
dgge:96.2	0	0	0	0	1	0	0	0	0	0	0	1											

	TLM ladder	Toolik Inlet 22 Jun 07	12A 23 Jun 07	12B 23 Jun 07	12C 23 Jun 07	12NPA 23 Jun 07	12NPB 23 Jun 07	12NPC 23 Jun 07	17A 23 Jun 07	17B 23 Jun 07	TLM ladder	17C 23 Jun 07	17NPA 23 Jun 07	17NPB 23 Jun 07	17NPC 23 Jun 07	12A 24 Jun 07	12B 24 Jun 07	12C 24 Jun 07	12NPA 24 Jun 07	TLM ladder	12NPB 24 Jun 07	12NPC 24 Jun 07	17A 24 Jun 07	17B 24 Jun 07	17C 24 Jun 07
dgge:13.8	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:17.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:21.1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:24.4	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:25.5	1	1	1	1	1	1	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:27.9	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:28.8	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1
dgge:29.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
dgge:30.3	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:32.0	1	1	1	1	1	1	1	0	0	0	1	0	1	1	1	1	1	1	0	1	0	0	0	1	1
dgge:33.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:34.8	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:37.1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:38.5	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:39.9	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:41.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:42.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
dgge:44.3	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:45.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:45.8	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:47.1	0	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	0	1	0	1	1	0	0	0
dgge:48.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
dgge:50.5	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:52.8	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1
dgge:54.8	0	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	0	1	1	1	1	1
dgge:57.6	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:61.3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:62.5	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
dgge:68.6	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:73.5	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:75.8	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:76.6	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1
dgge:77.1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:81.8	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:83.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:84.3	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
dgge:86.9	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:88.4	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	0	0	1	0	0	0	1	0
dgge:89.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:93.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:95.3	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0

	17NPA 24 Jun 07	17NPB 24 Jun 07	17NPC 24 Jun 07	TLM ladder	TLM ladder	12A 25 Jun 07	12B 25 Jun 07	12C 25 Jun 07	12NPA 25 Jun 07	12NPB 25 Jun 07	12NPC 25 Jun 07	12A 26 Jun 07	12B 26 Jun 07	TLM ladder	12C 26 Jun 07	12NPA 26 Jun 07	12NPB 26 Jun 07	12NPC 26 Jun 07	TLM ladder	TLM ladder	12A 25 Jun 07	Toolik Inlet 22 Jun 07	TLM ladder
dgge:13.8	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:17.3	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
dgge:21.1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1
dgge:24.4	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:25.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
dgge:27.9	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:28.8	1	1	1	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1
dgge:29.6	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:30.3	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:32.0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1
dgge:33.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
dgge:34.8	0	0	0	1	1	0	0	0	0	0	1	1	1	1	1	1	0	0	1	1	0	0	1
dgge:37.1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	1	1
dgge:38.5	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	1	0	0	1	1	0	0	1
dgge:39.9	1	0	0	1	1	0	0	0	0	0	0	1	1	1	1	1	0	0	1	1	0	1	1
dgge:41.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
dgge:42.8	1	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	1	1	0	0	0	0	0
dgge:44.3	0	0	0	0	1	0	0	0	0	0	0	1	1	1	0	0	0	0	1	1	0	1	1
dgge:45.1	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	1	1
dgge:45.8	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	1	1
dgge:47.1	1	1	1	0	0	1	1	1	1	1	1	1	0	0	1	1	1	1	0	0	0	1	0
dgge:48.6	1	1	1	0	0	0	0	0	1	1	1	1	1	0	1	1	1	0	0	0	0	0	0
dgge:50.5	1	1	0	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	0	1	1
dgge:52.8	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0
dgge:54.8	1	1	1	0	0	0	1	1	0	0	0	1	1	0	1	0	1	1	0	0	1	1	0
dgge:57.6	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:61.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:62.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
dgge:68.6	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:73.5	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:75.8	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:76.6	1	0	0	1	0	0	0	0	0	0	1	1	1	0	1	0	0	1	1	1	0	0	0
dgge:77.1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
dgge:81.8	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:83.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
dgge:84.3	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1
dgge:86.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dgge:88.4	0	0	0	1	1	1	1	1	0	0	0	1	1	1	1	0	0	0	1	1	0	0	1
dgge:89.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
dgge:93.5	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	0	1	0	0	0	0
dgge:95.3	0	0	0	1	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0