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SUMMARY

An axisymmetric viscous-transonic equation is presented. A nozzle
type similarity solution of this equation has been found, which describes
the initial stages in the development of shock-waves downstream of a con-
verging -diverging nozzle throat. This solution is an extension of a two
dimensional solution found previously (Sichel 1966). By an appropriate
choice of an arbitrary scaling constant solutions were found such that there
is essentially a weak normal shock near the axis with effects of wall and
shock wave curvature occurring only at a sufficiently large radius. The
upstream and downstream asymptotic behavior of these viscous-transonic

nozzle solutions has been investigated.
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1. INTRODUCTION

A similarity solution of the inviscid transonic equation describing flow
near the throat of a converging-diverging nozzle was found by Tomotika
and Tamada (1950) in the two dimensional case and by Tomotika and
Hasimoto (1950) in the axisymmetric case. These solutions describe both
the symmetrical Taylor flow with subsonic velocities upstream and down-
stream of the throat and the asymmetrical subsonic-supersonic Meyer flow,
but do not permit a smooth transition between the two types of flow. Since
this transition is accompanied by the formation of shock waves downstream
of the nozzle throat this difficulty appears due to the neglect of viscous ef-
fects. If the longitudinal or compressive viscosity and the thermal conduc-
tivity are taken into account the inviscid transonic equation should be replaced
by a '"viscous-transonic' equation (Cole 1949, Sichel 1963, Szaniawski 1963).
Sichel (1966) found nozzle type similarity solutions of the two dimensional
viscous-transonic equation, that do permit the smooth transition from the
Taylor toc the Meyer type of flow and display the initial stages in shock wave
formation downstream of the nozzle throat. An axisymmetric viscous tran-
sonic nozzle solution has also been found and is the main subject of the

present paper.

2. THE AXISYMMETRIC NOZZLE SOLUTION

The viscous-transonic equation for the axisymmetric flow of a perfect



gas can be shown to be

Voo - (0D

XXX +(UR/R)+U =0 , (1)

XX RR

and since the flow is irrotational to the order of approximation used in de-

riving (1)

U,=V 2)

In these equation X and R are dimensionless axial and radial coordinates

and U and V are the corresponding dimensionless velocities. Equations (1)
and (2) are derived from the full Navier-Stokes equations by a simultaneous
coordinate stretching and series expansion, and since the derivation is almost
identical to that of the two dimensional viscous-transonic equation (Sichel 1963)
the details will not be reproduced here. Without the third order viscous term
equation (1) is the same as the inviscid axisymmetric transonic equation
(Guderley 1962); without the term UR/ R and with R replaced by Y equation (1)

becomes the two dimensional viscous-transonic equation.

The stretched dimensionless coordinates X and R, and the correspond-
ing velocities U and V are related to dimensional coordinates X, r, and

velocities u, v by
A /2, A
X=AE&/M) ; R=VI/2)y+1) " "AF/n)

@ar)=1+eU ; @/ax)=c 2VI/DGT DV



where

A= (/20 + D1+ -1/Pr] 0

In equation (3) a* is the critical speed of sound while € is a small parameter
proportional to the maximum deviation of (u/a*) from the sonic value. The
characteristic length 1 is equal to (u*''/ € p* a*), which is of the order of
the thickness of a weak shock. p''is the compressive or longitudinal
voscosity (Hayes 1958) while p is the density, and the asterisk refers to
conditions at the sonic point. The Prandtl number Pr'' is based on the
viscosity u'' and is assumed constant. The relations between the deviations
of the pressure, density, and temperature from their critical values and the
velocity perturbation U are identical to those within an acoustic wave

(Sichel 1963).
The transformation

U=2Z(E) + 202R2

(4)

S=X+0R2

which was also used by Tomotika and Hasimoto (1950) reduces the axisym-

metric viscous transonic equation to the ordinary differential equation

Z'"' -2Z7' - 2(Z' - wlo)(Z' + wzo) =0 (5)

where



w1=\/—5_+1 , w2=x/—5—1

The flow described by equation (4) can be considered to be a nozzle flow by
choosing one of the streamtubes as the nozzle wall. Z(S) will be the value
of U on the nozzle axis R = 0. The arbitrary constant ¢ is related to the

streamline curvature and will be discussed further below.

Except for the value of the constants W and W, equation (5) is identical
to the ordinary differential equation considered in the two dimensional case;
therefore, the properties of equation (5) are similar to those of the two
dimensional equation, which has been discussed in detail by Sichel (1966).

As before the inviscid solutions
Z = wo (S - b) (6a)

Z = - Wy 0 (S -Db) (6b)

also satisfy the viscous equation, and (6a) represents the inviscid Meyer type
subsonic-supersonic accelerating flow. The arbitrary constant b locates the
sonic point Z = 0. Again the behavior of solutions of (5) in the Z2'', Z', Z
phase space can be established by studying the two dimensional trajectories
obtained when Z is held constant, and there will be singularities where the
inviscid solutions pierce the Z = constant planes. The point Z' = w0,

Z'' = 0 will be a saddle-point for all Z while the point Z' = - W0, Zz"=0

will be an unstable node, an unstable spiral point, a stable spiral point, and



a stable node respectively for Z corresponding to the ranges

7 > mwlﬂ.oz); ﬂo(w1+w2) > 22> 0, 0> 7 >-V20(w +w);

- \/Zo(wl + wz) > Z

Thus any solution starting near the inviscid accelerating solution will diverge
from it for all Z; however, some of these solutions pass through a maximum

and then asymptotically approach the inviscid decelerating solution.

Numerical solutions of equation (5) representing stages in the transition
from the Taylor to the Meyer type of flow are shown in figures 1.a,b, and ¢
for 0 =1.0, 0.5, and 0.1, and were obtained by choosing initial values very
close to the accelerating inviscid solution and lying on the directrix of the
saddle-point in the corresponding Z = constant plane. Integrating equation (5)

once yields

Z'" - 2(22") + 2cr(w1 - wz) Z + Zwl Wy 028 = C1 , (7)

and initial conditions Z(SO), Z'(SO) and Z"(SO) were chosen so that the con-
stant C1 = 0 for then it follows from equation (7) that the transitional solutions

will be asymptotic to Z = - wzoS asS ~+wandto Z = wloS as S - - .

In figure 1, Z represents the nozzle centerline velocity distribution so
that Z = 0 corresponds to the sonic point. As in the two dimensional case,

figure 1 shows the gradual development of what appears to be a shock wave



as the maximum of Z increases beyond the sonic value. With increasing Zmax
the velocity gradient steepens in the region of transition from supersonic to
subsonic flow. The expansion scheme which provides the basis for the
derivation of the viscous-transonic equation will be valid only if U, and

hence Z are O(1); therefore, the solutions with Zmax greater than 2.0 to

3.0, while of interest with regard to the overall behavior of equation (5),
cannot accurately represent the transition from the Taylor to the Meyer flow.
As the parameter o decreases the supersonic-subsonic transition shifts to
larger values of S for a given value of Zmax' With o = 0.1 these transitions

appear to closely approximate a normal shock wave with almost uniform

upstream and downstream flow.

Weak normal shock waves are to order € symmetrical with respect to

the sonic point for if the stream velocity ﬁl/ a* = 1 + €U, the velocity GZ/ a*

1

downstream of the shock will be 1 - €U1. Supposing Zmax to be U1 it can be

seen that, as in two dimensions, nozzle flow transitions overshoot the cor-

responding downstream Hugoniot value U2 = - Zmax' For subsonic Taylor

type flows with S < 0, Z diverges from the inviscid solution Z = wlos very

slowly, but for large positive values of S the solution Z(S) very rapidly de-
viates from the inviscid solution. On the other hand, even for S >> 1 the
solutions approach the decelerating inviscid solution Z = - wzoS very gradually.

This behavior can be verified analytically by studying the asymptotic behavior

of Z near the two inviscid solutions as discussed below.



3. ASYMPTOTIC BEHAVIOR

Although equation (5) could only be solved numerically it is possible to
analytically determine the asymptotic behavior of Z(S) where it lies near
the inviscid solutions. Thus from

Z:w108+C1

(8)
7 = —w208+52

it follows that the perturbations ¢ 1 Cz << 1 respectively where Z asymp-
totically approaches the inviscid solutions Z = wlos and Z = - wzoS.
Substituting equations (8) into equation (7) for Z and dropping terms of

0](9 12) and O(sz) then yields the following linear differential equations

for €, and ¢, :
1 2

Cl” - 20)108 Cl‘ - 2w20§1 =0

Cz" + 2w2ch Cz‘ + 2w10§’2 =0

Equations (9) are readily reduced to Weber's equation and have the solutions

lwoSz W,
21 2 1
Cl—e \:C3U('CU—-’2‘,S)+C4V




where U(a, S), V(a, S) are parabolic cylinder functions of S with parameter
a as defined and tabulated by Miller (1964); and C3, C 4 C5, and CG are

arbitrary constants.

The numerical results for Z(S) (Figure 1) indicate a difference in the
behavior of § 1 and §2 for large S and this can be verified from equations (10).
Thus, using the asymptotic expansion for Uand V as S — + o (Miller, 1964)

and keeping only the largest term in each expansion it follows that

W, W,
_ 2 2 4 9
@ 2 W @oS 2
¢, () ~ CgS [1 +O(1/8 )} £ C 8 e {1 +0(1/8 )]
) , (11)
1y 9 _ 1
) - W08 2 ) 2
¢,(8) ~ CS e [1 +0(1/8 )} + Cg8 [1 +0(1/8 )]

For a given SO the choice of Cl (SO), Cz (SO), Cl (SO), and Cz (SO) deter-
mines the constants in equations (10). Asymptotic expressions for the
derivatives Cl‘ (S) and C’Z' (S) are thus required and can be determined by
differentiating equations (9) and determining the asymptotic behavior of

the solution of the resultant Weber's equation for 1' and Cz‘ with the result

that as S -



w, w,
- _2+1 _2 2
, “ “ 2 W @8 2
Cl (S) —w—lcss {1 +0(1/8 )] +2w10C4S e [1 +0(1/8 )]
(12)

w w

1 2 - —1+ 1

wz - wzoS 9 wl w2 9
€,' (S) ~ - 2w,C.08 " C 1+0(1/8%) -—cC._S 1+0(1/8%)
2 2 5 wy 6

The need to differentiate the asymptotic expansions (11) directly, a procedure
generally not valid (De Bruijn, 1958), is thereby avoided. The form of (12)
is such that C3, Cg, C5, and C6 are the same as the constants in equation (11),

and equation (11) can be recovered by integrating the asymptotic expressions

(12). The constants in equation (10) can now be evaluated with the result that

) “
o o L 5 2
g “ g “ wo 8" -8,
£, S)=D|{=— +E|=— e (13a)
1 S S
0 0
wl 0)1
P 5 2 s
g “ - wyo (87 - 8,) g\ 2
o, 8)=F|— e +G|=— (13b)
2 S S
0 0
with
-1
C. ' W
p=le. .10 My, 2 ,
10 2w,08 2 2
190 2, "08,




Con' W
G = (%o*%ios )(1 - ; 2)
20 20w, SO

2
where the subscript zero indicates values at S = Soa

Equation (13a) shows that, except for the special case E = 0, Cl(S)
increases very rapidly for S > SO as do the numerical solutions in
Figure 1. The term (S/ SO)— 2 dies out with increasing S and so will
have little effect upon ¢ 1° Equation (13a) is consistent with the saddle-point

behavior near Z = w,0S discussed previously, for ¢ 1(S) will tend to zero

with increasing S only in the special case
C10= " @/ @) Sq 814

for which E = 0, otherwise § 1 increases with increasing S. As S decreases,
i.e., S < S,, the exponential part of (13a) decays rapidly but the

- w,/
(S/SO) term increases unless D = 0. The special solutions D = 0

and E = 0 thus correspond to solutions lying on the directrices of the saddle-

point, and the solution which approaches Z = wlch as S decreases is clearly

10



the one with D = 0. The numerical integrations were started near Z = wlos
and at points lying on the directrix of the solution diverging from the point
Z'= w0, Z'' = 0, in the appropriate Z = constant plane, a procedure
equivalent to choosing D = 0. Nevertheless, because of round-off errors

the solutions always diverge from the inviscid solution when integrating

backward from the starting point.

Both terms of the expansion for CZ(S), equation (13b), tend;to zero
with increasing S in accord with the fact that the point Z' = w0, Z"=20
is a stable node in the Z = constant plane for Z < - 201/2 \/aﬁ + 1. The

exponential term decays rapidly when S > S0 so that ¢ 2(S) will be dominated

-w, /W
by (S/ SO) 2 and so approaches the inviscid solution Z = - w,08S rela-

tively slowly as do the numerical solutions in figure 1.

The asymptotic expansions for U(a, S) and V(a, S) presented by Miller
(1964) are not valid for S < 0; however, by using the expansion for U@, -S)
(Whittaker and Watson, 1952) together with appropriate recursion formulas
for U and V and redefining the standard solution for Weber's equation in
the cases S < 0 equations (13a) and (13b) for Cl and Cz can be shown to be

valid for S - - . Now, however, for S > S S2 < So2 so that the ex-

O’

ponential term in equation (13a) decays rapidly while the power term
~w,/ w

S/ SO) increases. Again in accord with the numerical curves, Z

deviates from the inviscid solution very slowly with increasing S as

SO - - o, particularly since coz/ w = 0. 382 in the axisymmetric case.

11



From the inviscid solution of Tomotika and Hasimoto (1950) for Z it
- w,/ w -w,/ w
2 1and52~|Sl 1 zasS—»ioo, The

can be shown that {, ~ S|
exponential terms in equations (13a) and (13b), which account for the
difference in the behavior of the subsonic and supersonic solutions, thus

reflect the effects of viscosity.

The discussion of asymptotic behavior given above is fully applicable
to the two dimensional case (Sichel, 1966) provided the two dimensional

values W, Wy = 2.0, 1.0 are used in place of the axisymmetric values

W, W = /5 + 1), (5 - 1).

4. NATURE OF THE FLOW

To compute the streamlines corresponding to the solutions in figure 1
the vertical velocity, V, must be known, and can be determined from the

irrotationality condition and equation (7) with the result

W, W C
V = 20RZ + 402RX+ —%2—42— 03R3 1

Cy

The arbitrary constant 02 is taken to be zero since only solutions with

finite V on the axis R = 0 are of interest. The constant C1 merely trans-
lates the origin of S and so, for convenience, will be taken as zero. Unlike
equation (5) and the foregoing asymptotic analysis, equation (14) cannot be
extended to the two dimensional case. To the present order of approximation

the streamlines satisfy the differential equation

12



dS 3/27/+11/2

e \' (15)

where FS (X) is the variation of the radius T along any given streamline.

In terms of Rs(x) equation (15) becomes

\' (16)

The significance of 62 in (16) and the relation between solutions in the X-R
and physical X-T plane are the sameas in the two dimensional case (Sichel,

1966).

Generally it is desirable to specify the ratio of throat radius Ft to the

radius of curvature of the nozzle wall streamline. To the present order of

approximation the streamline curvature, —f_._l, at any point in the flow is

given by
i d2rs 320y + 11 2qv . 3/2(y+1\7 %A
= = p) = € YT — = 2¢€ 1'2— 7\-0R(Z'+20') (17)

where L is the streamline radius of curvature. For most cases of interest
the transition from supersonic to subsonic flow occurs well beyond the
throat; hence, the flow in the immediate vicinity of the throat follows the

inviscid solution, Z = w 0§, so that (L/7n) is given by

13



(L/%) = 263/2 v(1/2)y + 1) Rcr2 (cu1 + 2%4 (18)

With the ratio Ft/ Et of throat radius to wall radius of curvature fixed at

B, the throat radius Ft will then be

ngY/ 2

r =

t Aeo (y + 1)((01 + 2) 1/2

The axial throat coordinate Et is derived using the condition V = 0 at the

throat as in the two dimensional case (Sichel 1966).

Isotachs, or lines of constant speed in the T-X plane correspond to
curves along which U is constant to the present order of approximation,
and so can be determined from equation (4) and the numerical solutions

for Z. In the region of inviscid flow the velocity perturbations €U and

63/2 V(1/2){y + 1) V are given by

1/2
— w, B
-2 _1- L £ 48 q? (20)

2 o+ D + 2] 722

3/2 1/2
_ 2(w, +1) B 1/2)y +1)
& TG+ D V=L = pnt + — 3 [2)}3/2 78 e

(1)1+

when T, is chosen as a reference length so that



Integration of equation (15) using (21) for v/a* then yields the following

expression for the wall streamline in the portion of the flow where

Z = wlch:
-1/2
3/2.1/2 ¢
I, e(1/2)B£2 e.BEt My be T J’ eBAZ dx (22)
r, - 3/2
t 20wy + z)] {
With £ i’ the throat coordinate, given by
2[31/2 (w1 +1) 1"1/2

‘[2(w1 +2)

Equation (22) shows that n = « for sufficiently large &, but for those solu-
tions with Z, and U ~ O(1) transition to subsonic flow occurs long before
1 diverges to infinity. Once Z deviates from Z = wloS equation (15) can

only be integrated numerically.

The relation between the arbitrary constant ¢ and the nozzle flow field
can be seen from equations (18), and (19). With €, 7, and y fixed the
streamline radius of curvature L varies inversely with 02 for a given fixed
radius R, and the velocity gradient of the inviscid solutions ahead of and

behind the viscous transition decreases as is evident from figure 1. As

15



discussed previously with this decrease in velocity gradient the viscous
transition, at least on the nozzle centerline, approaches the Taylor (1910)
shock transition. For fixed 8 and € the nozzle throat radius Ft varies in-
versely with o, (equation (19)).

Typical isotach contours and streamlines for 0 = 1.0 and 0.1, cor-
responding to curves A and B in figures 1(a) and 1(c), are shown in
figures 2(a) and 2(b) in the £-n plane. Figures 2(a) and 2(b) have been
drawn using numerical solutions with the same peak value of Z, and with
wall streamlines corresponding to 8 = 0. 21 as in the paper by Tomotika
and Hasimoto (1950). Since the flow is axisymmetric the isotachs are really

the intersections of constant speed surfaces with planes through the nozzle

axis.

The strange shape of the isotachs downstream of the region of rapid
deceleration in figure 1(b) results from the slight increase in Z(S) im-
mediately behind the shock like transition. The o = 0.1 wall streamline
has a second minimum some distance downstream of the supersonic-
subsonic transition; however, for streamlines with 8 sufficiently small
this second throat disappears. An inherent property of similarity solutions,
such as presented here, is, of course, the inability to specify streamline
shapes a-priori. The shock like nature of the supersonic-subsonic transi-

tion is clearly indicated particularly in the case of 0 = 0. 1.

16



5. DISCUSSION

The axisymmetric nozzle similarity solutions are quite similar to the
two dimensional solutions found previously (Sichel 1966). In the present
case the asymptotic behavior of the solutions for the centerline velocity
Z has been investigated, and the difference in the behavior of the numerical
solutions in regions of subsonic and supersonic flow has been verified ana-
Iytically. The effect of the parameter o upon the nozzle solutions has been
examined. Figure 2(b) shows that when 0 << 1 solutions are obtained
such that there is essentially a weak normal shock near the axis with
effects of the wall and shock curvature occurring only for sufficiently large

T as was anticipated previously.

17
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