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CHAPTER 1 

INTRODUCTION 

 

The past decade has witnessed a tremendous expansion of genetic resources for 

biomedical research. The wealth of data generated by the Human Genome Project [The 

International Human Genome Sequencing Consortium, 2001], the International HapMap 

Project [The International HapMap Consortium, 2007], and the ongoing 1000 Genomes 

Project [www.1000genomes.org], present great opportunities for statisticians to 

contribute critical concepts and methods to this field.  

Genetic association studies are a powerful tool to detect genetic variants 

influencing human diseases or traits. High-throughput genotyping technologies make it 

possible to conduct genomewide association studies (GWAS) of common genetic 

variation across the entire human genome. In the past three years, there has been a 

dramatic increase in genetic discoveries involving complex diseases, with hundreds of 

common genetic variants for more than 80 diseases and traits identified and replicated in 

GWAS [www.genome.gov/gwastudies].  Analysis and interpretation of  GWAS raise 

interesting statistical challenges, for example, the massive number of statistical tests 

performed presents a potential for false-positive results, requiring stringent statistical 

significance levels and replication of findings. 

Chapter 2 and 3 of my dissertation are motivated by an important problem 

encountered in GWAS. Once an associated variant is identified, investigators are often 
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interested in estimating the genetic effect size of the identified variant. However, 

estimates of the genetic effect based on the initial GWAS sample(s), in which the 

significant associations were detected, tend to be upwardly biased as a consequence of 

“winner’s curse” [Lohmueller et al., 2003]. Overestimation of the genetic effect size in 

initial studies may cause follow-up studies to be underpowered and so to fail.  

In Chapter 2, I study the impact of the winner’s curse in the context of genetic 

case-control association studies. I analytically quantify the bias in the estimates of the 

allele frequency difference and odds ratio, which are used as measures of the strength of 

the effect in such studies. I show that in realistic situations, these uncorrected estimators 

can be substantially overestimated, and that the overestimation decreases as power 

increases. I then propose an ascertainment-corrected maximum likelihood method to 

reduce the bias of these estimators. I demonstrate that the ascertainment-corrected 

estimator results in reduced absolute bias compared to the naïve uncorrected estimator 

when study power is low or moderate (<60%), a range that is typical for most large-scale 

genetic association studies, and has similar absolute bias when power is higher. I extend 

these calculations to two-stage association studies, and find that for optimal two-stage 

designs [Skol et al., 2007], results are similar to those for the corresponding one-stage 

designs. [Xiao and Boehnke, 2009]. 

Associations between genotype and disease-related quantitative traits (QTs), such 

as cholesterol level, body mass index, and systolic and diastolic blood pressure have also 

been investigated. One rationale behind QT studies is that, because many of the traits 

examined are closely related to one or more diseases, any identified quantitative trait 

locus (QTL) may also be a disease predisposing locus. As for case-control association 
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studies, for QT association studies, investigators usually focus on genetic loci showing 

significant evidence for SNP-trait association. Again, the estimator of the genetic effect 

size also tends to overestimate the true effect size as a consequence of the winner’s curse. 

In Chapter 3, I extend the study of the winner’s curse to QT association studies, in 

which the genetic effect size is parameterized as the slope in a linear regression model. I 

use analytical calculation to demonstrate that overestimation in the regression slope 

estimate decreases as power increases. To reduce the ascertainment bias, I propose a 

three-parameter maximum likelihood method in which the intercept, slope, and error of 

the linear regression model are estimated. I also simplify this three-parameter likelihood 

model to a one-parameter model by excluding the nuisance parameters (the regression 

intercept and the error), since the regression slope is the primary interest of investigators. 

I show that both likelihood methods reduce the bias when power to detect association is 

low or moderate, and the one-parameter model generally results in a slope estimator with 

smaller variance.  

Recent development of GWAS has enabled investigation of common variants in 

most of the human genome, including the non-coding regions which comprise ~98% of 

the genome [International Human Genome Sequencing Consortium, 2004]. Index SNPs 

for about 88% of GWAS signals are located in non-coding regions, either in intronic 

(45%) or intergenic (43%) regions [Hindorff et al., 2009; www.genome.gov/gwastudies]. 

The relationship between these associated SNPs and the disease is frequently unclear, but 

regulation of gene expression might be a candidate to account for the connection between 

these polymorphisms and the disease. Identification of the functional variant(s) and its 

mechanism of action is often made more difficult by the presence of multiple genes in the 
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associated region. Testing for association between the associated SNPs and the genes 

expression levels has the potential to help identify the gene(s) most likely to influence the 

trait.  

Allelic expression imbalance (AEI) between the two alleles of a gene can be used 

to detect cis-acting regulatory SNPs (rSNP) in individuals heterozygous for a transcribed 

SNP (tSNP). Here the cis-regulatory elements are defined as the DNA polymorphisms 

that reside on the same chromosome as the gene they regulate, and only regulate the 

allele of the gene on the same chromosome. These elements are often in close proximity 

to the gene they regulate, but can also be located further away. In contrast, the trans-

regulatory elements can be located on the same or a different chromosome as the gene 

they modulate and regulate both alleles of the gene. AEI is measured in individuals 

heterozygous for the tSNP. An advantage of using AEI is that both alleles are measured 

within the same environment in each individual, allowing a more direct comparison of 

cis-acting variants. Consequently, AEI will specifically identify the cis-regulatory 

elements, whereas testing for association between total expression level and SNP 

genotype will identify both cis and trans-acting elements [Bray et al., 2003; Mahr et al., 

2006; Pastinen et al., 2003; Pastinen et al., 2005; Tao et al., 2006]. Methods for AEI 

analysis vary depending on whether we know phase of the rSNP and tSNP, and linkage 

disequilibrium (LD) between the rSNP and tSNP if we do not know the phase. Some 

current AEI analysis methods require phase known data [Serre et al., 2008; Ge et al., 

2009], others rely on the LD between the rSNP and tSNP for haplotype reconstruction 

[Tao et al., 2006; Alachkar et al., 2008].   
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In Chapter 4, I focus on the situation when LD between the rSNP and tSNP is 

incomplete (D’ < 1) and there is no phase information for the rSNP and tSNP. I propose 

five tests to detect association between the potential rSNP and AEI, assuming initially 

that AEI is due to a single rSNP. I show that the type I error rates for all these tests are 

well controlled, and demonstrate the relative power of the tests strongly depends on the 

magnitude of the LD between the rSNP and tSNP, and less strongly on the AEI effect 

size of the rSNP, the number of tSNP heterozygotes, and the allele frequencies of the 

rSNP and tSNP. I further demonstrate that the impact of a second ungenotyped rSNP on 

the power of these tests depends on the LD structure of the three SNPs, but almost never 

invalidates the proposed tests nor substantially changes the rankings of the tests for a 

given level of LD between the genotyped rSNP and the tSNP. I recommend the use of F 

test when the rSNP and tSNP are in or near linkage equilibrium (D'~0). When the two 

SNPs are in LD, in general, the mixture-model based test is most powerful for the 

intermediate LD levels, and the t test is typically most powerful for high LD. 
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CHAPTER 2 

QUANTIFYING AND CORRECTING FOR THE WINNER’S 

CURSE IN GENETIC ASSOCIATION STUDIES 

 

Genetic association studies are a powerful tool to detect genetic variants that 

predispose to human disease. Once an associated variant is identified, investigators are 

also interested in estimating the effect of the identified variant on disease risk. Estimates 

of the genetic effect based on new association findings tend to be upwardly biased due to 

a phenomenon known as the “winner’s curse”. Overestimation of genetic effect size in 

initial studies may cause follow-up studies to be underpowered and so to fail. In this 

paper, we quantify the impact of the winner’s curse on the allele frequency difference and 

odds ratio estimators for one- and two-stage case-control association studies. We then 

propose an ascertainment-corrected maximum likelihood method to reduce the bias of 

these estimators. We show that overestimation of the genetic effect by the uncorrected 

estimator decreases as the power of the association study increases and that the 

ascertainment-corrected method reduces absolute bias and mean square error unless 

power to detect association is high. 
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2.1 Introduction 

Large-scale genetic association studies are now commonly used to localize 

genetic variants that predispose to a wide range of human diseases. In genetic association 

studies, once the disease-predisposing variants are identified, it is of interest to estimate 

the genetic effect of those variants on disease risk. The simplest method of estimating the 

effect size of the variant is to calculate the difference of the observed risk allele 

frequency between cases and controls or the corresponding odds ratio. However, these 

naïve estimators are likely to overestimate the true genetic effect size as a consequence of 

the “winner’s curse” [Lohmueller et al., 2003], a phenomenon first described in the 

auction theory literature [Bazerman and Samuelson, 1983]. In auctions, participants place 

bids on an item. Even if the bids are unbiased, the winning bid is likely to overestimate 

the true item value since it is the highest among all the bids. In genetic association studies, 

an initial positive finding plays the role of the winning bid, since we generally focus on 

genetic effect size estimates only for the variants that yield significant evidence for 

association, resulting in effect size estimates that are upwardly biased. We refer to this 

bias as ‘ascertainment bias’ since it is caused by ascertaining only those samples that 

result in significant association evidence. If the sample size calculation for a subsequent 

study is based on an overestimated effect size, replication studies are likely to be 

underpowered and so more likely to fail. A review of association studies [Ioannidis et al., 

2001] has described the overestimation in first positive reports, consistent with the 

winner’s curse.  

This problem has drawn attention from several investigators in the context of 

genetic linkage and association studies [Göring et al., 2001; Siegmund, 2002; Allison et 
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al., 2003; Sun and Bull, 2005; Wu et al., 2006; Garner, 2007; Yu et al., 2007; Zöllner and 

Pritchard, 2007; Zhong and Prentice, 2008; Ghosh et al., 2008]. Göring et al. [2001] 

recommended the use of two independent datasets: one for locus mapping, the other for 

parameter estimation. An obvious disadvantage of this strategy is the power loss due to 

splitting the sample in two. Sun and Bull [2005] proposed resampling estimators that 

employ repeated random sample splitting of the data via cross-validation or the bootstrap. 

Wu et al. [2006] compared their bootstrap estimators for locus-specific quantitative trait 

linkage analysis, and, in the context of two-stage design, Yu et al. [2007] applied a 

bootstrap estimator to correct for stage 1 bias and improve sample size estimates for stage 

2. Zöllner and Pritchard [2007] used computer simulation to evaluate the magnitude of 

the winner’s curse effect in case-control studies and proposed a maximum likelihood 

method to correct for it. Their method estimates the frequencies of all genotypes and 

corresponding penetrance parameters based on a known population prevalence of the 

disease under different inheritance models. Garner [2007] studied the source of the 

upward bias in the odds ratio estimate in genome-wide association studies, but did not 

propose a method to correct for it. Zhong and Prentice [2008] and Ghosh et al. [2008] 

recently proposed conditional-likelihood-based methods for point and interval estimation 

of the (logarithm of the) odds ratio in the context of logistic regression analysis of case-

control status using genotype categories as a covariate. 

In this paper, we take a direct approach to evaluate and correct for the effect of 

winner's curse in the context of case-control genetic association studies. In contrast to 

previous simulation-based evaluations, we calculate analytically the impact of the 

winner’s curse on estimates of the allele frequency difference between cases and controls 
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and the corresponding odds ratios as a function of sample size, allele frequencies, and 

statistical significance level. We then describe a simple ascertainment-corrected 

maximum likelihood method to estimate the risk allele frequency difference and odds 

ratio. Our method is most similar to that of Zöllner and Pritchard [2007], but in contrast 

to their method, ours estimates directly the allele frequency difference or odds ratio, 

instead of estimating the penetrance parameters. We compare the performance (bias, 

standard error, and mean square error (MSE)) of our ascertainment-corrected maximum 

likelihood estimators (MLEs) to that of the naïve, uncorrected estimators. We extend 

these calculations to two-stage association studies, in which all markers are genotyped on 

a set of individuals in Stage 1, and the most promising markers are followed up by 

genotyping a second set of individuals in Stage 2. 

Consistent with Zöllner and Pritchard [2007], we find that (1) the factors that 

result in overestimation of the allele frequency difference can be summarized by study 

power, independent of sample size and allele frequency, and that overestimation 

decreases as power increases; and (2) compared to the uncorrected estimator of the allele 

frequency difference, the ascertainment-corrected estimator results in reduced absolute 

bias when study power is low or moderate, and has comparable absolute bias when power 

is high. Further, we find that (3) for the logarithm of the odds ratio (ln OR), 

overestimation can again be summarized by study power, independent of sample size and 

allele frequency, and that overestimation decreases as power increases; (4) compared to 

the uncorrected estimator, the ascertainment-corrected MLE of the OR generally results 

in reduced bias and MSE, and (5) for reasonable two-stage designs [Skol et al., 2007], 

results mirror those for the corresponding one-stage designs. We recommend use of this 
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ascertainment-corrected maximum likelihood method for estimation of genetic effect size 

in large-scale genetic association studies.  

 

2.2 Methods 

2.2.1 One-stage design 
 
Model and assumptions 

We assume independent samples of N cases and N controls genotyped at an 

autosomal disease locus with alleles D and d. Let p and p+δ (δ ≠ 0) denote the frequency 

of the risk allele D in controls and cases, respectively. For a complex disease, we expect 

the genetic effect size to be small, so that Hardy-Weinberg equilibrium predictions 

provide a good approximation to the genotype frequencies in both controls and cases. 

Under this assumption, the counts m0 and m1 of the risk allele D in controls and cases 

follow independent binomial distributions on 2N trials with probabilities of success p and 

p+δ, respectively. 

Let X be the standard Pearson chi-square test statistic for association in a 2 2×  

table of allele counts in cases and controls. Under the assumption of Hardy-Weinberg 

equilibrium, X follows a chi-square distribution with one degree of freedom under the 

null hypothesis of no association (δ = 0). We claim an association significant if X 

exceeds the critical value xα at significance level α. 

 

Uncorrected (naïve) maximum likelihood estimators (MLEs) 
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In practice, investigators generally estimate the allele frequency difference 

between cases and controls by its MLE
N

m
N

m
un 22

ˆ 01 −=δ , or the corresponding odds ratio 

by 1 0

0 1

(2 )
(2 )

un
m N mOR
m N m

−
=

−
.We call these uncorrected MLEs “naïve” because they ignore the 

bias associated with focusing on genetic markers with statistically significant association 

results. 

To model the impact of the winner's curse, we calculate the expected value of the 

uncorrected MLE unδ̂ of the allele frequency difference δ conditional on obtaining 

significant evidence for association: 

0 1

0 1

0 1
( , )

0 1
( , )

ˆ ( , )
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( , )
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m m I
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and from it the bias of the estimator as ˆ( | )unE X xαδ δ> − , and the proportional bias as 

ˆ( | )unE X xαδ δ
δ
> − . Here, 0 1 0 1( , )I {(m , m ) : X m m x }α= >  is the set of allele count pairs 

that result in statistically significant evidence for association and 

0 0 1 12 2
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2 2
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Note that the denominator in (1) is the power to detect association if we genotype the 

disease SNP.  

The standard error of the uncorrected MLE unδ̂  can be calculated as:  

( )2
2ˆ ˆ ˆ( | ) ( | ) ( | )                      (3)  un un unSE X x E X x E X xα α αδ δ δ> = > − >  
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where 2ˆ( | )unE X xαδ >  may be calculated by replacing ûnδ  by 2
ûnδ  in (1).  

We also calculate the absolute bias of unδ̂  as: 

0 1
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Analogous formulae allow us to calculate the conditional bias, standard error, and 

absolute bias of the uncorrected MLE of the odds ratio OR, and from the expectation, the 

proportional bias of the logarithm of the estimator [ln( ) | ] ln( )
ln( )

unE OR X x OR
OR

α> − . 

 

Ascertainment-corrected MLEs 

The naive estimators ignore the fact that we typically are interested in estimates of 

the allele frequency difference δ and the odds ratio OR only if we have strong evidence 

for association. To address this, we propose an ascertainment-corrected maximum 

likelihood method that conditions on obtaining evidence for association. To this end, we 

calculate the conditional likelihood function 

0 1

0 1
0 1 0 1

0 1
( , )

( , )( , | ) ( , | ) 1{ | , , }         (5)
( , )

∈

> = > = >
∑

m m I

P m mL p X x P m m X x X x m m N
P m mα α αδ  

 where the indicator function 0 11{ | , , }X x m m Nα>  equals 1 or 0 depending on whether or 

not X xα> .  

We maximize ( , | )L p X xαδ >  as a function of p and δ to obtain the 

ascertainment-corrected MLEs asp̂  and asδ̂ by using the Nelder-Mead [1965] simplex 

method. We calculate the empirical standard errors of these estimators based on 1000 
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simulation replicates, and the asymptotic-theory standard errors by calculating the 

observed information matrix (see Appendix) evaluated at the parameter estimates: 

2
ˆ, ˆ ,

ˆˆ( , ) log ( , | )                                    (6)
as as

as as p p
I p L p X xδ α δ

δ δ= −∂ >  

The covariance matrix for asp̂  and asδ̂ can be approximated by 1 ˆˆ( , )as asI p δ− . We take 

advantage of the invariance property of the MLE to calculate the ascertainment-corrected 

MLE for the odds ratio, and apply the delta method [Rao, 1965] to obtain its standard 

error. We calculate the mean square error (MSE) for the estimators by taking the sum of 

the variance and the squared bias of the estimator.  

 

2.2.2 Two-stage design 

Model and assumptions 

We next consider two-stage association studies, in which N1 cases and N1 controls 

are genotyped for all markers, and only the most promising markers are genotyped in the 

second stage in an additional N2 cases and N2 controls. Let pi and δi be the risk allele 

frequencies in controls and the allele frequency difference between cases and controls in 

stage i. Given genetic homogeneity between stages 1 and 2, p1 = p2 = p and δ1 = δ2 = δ. 

At each stage, we calculate the association test statistic using the data only from that 

stage   

[ ]
1 0

0 0 1 1

ˆ ˆ
                                                (7)

ˆ ˆ ˆ ˆ(1 ) (1 ) /(2 )
i i

i

i i i i i

p pZ
p p p p N

−
=

− + −
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where 10 ˆ and ˆ ii pp  are the naïve MLEs of the risk allele frequencies in controls and cases 

respectively at stage i, )1 ,0 ;2 ,1( 
2

  ˆ === ji
N

m
p

i

ij
ij . Under null hypothesis of no disease-

marker association (δ = 0), the association test statistic Zi follows a standard normal 

distribution with mean 0 and variance 1.  

We employ a joint analysis strategy for this two-stage study [Satagopan et al., 

2002; Skol et al., 2006] by calculating 

12 sample 1 sample 21                                                 (8)Z Z Zπ π= + −  

where πsample = N1/(N1+N2) is the proportion of individuals genotyped in Stage 1. We 

claim significant association when both |Z1| and |Z12| exceed the relevant critical values 

C1 and C12 in joint analysis. C1 is calculated so that 1 1 marker( )P Z C π> = , where πmarker is 

the proportion of markers to be genotyped in Stage 2, and C12 by finding the threshold so 

that 1 1 12 12 12 12 1 1 1 1( , ) ( | ) ( )P Z C Z C P Z C Z C P Z C> > = > > × >  results in the desired 

significance level [Skol et al., 2006].  

 

Uncorrected (naïve) MLEs 

The uncorrected MLE of the risk allele frequency difference for the two-stage 

design 12 1 2
ˆ ˆ ˆ(1 )sample sampleδ π δ π δ= + − , where ,

22
ˆ 01

i

i

i

i
i N

m
N

m
−=δ  i = 1, 2. The bias of the 

uncorrected MLE 12δ̂  can be calculated exactly as for one-stage design by formula (1) 

and similarly the proportional bias. However, exact calculation becomes computationally 

difficult when N1 or N2 is large, so we simulated n=1000 datasets satisfying 

1 1 12 12 and Z C Z C> >  and approximated the expectation and empirical standard error of 
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12δ̂  by calculating the mean and the standard error of the uncorrected MLE of the n 

simulated datasets: 

( )12 1 1 12 12 12 1 2
1

1ˆ ˆ ˆ( , ) (1 )                          (9)
n

sample j sample j
j

E Z C Z C
n

δ δ π δ π δ
=

> > ≈ = + −∑  

( )2

12 1 1 12 12 12, 12
1

1ˆ ˆ( , )                                 (10)
1

n

j
j

SE Z C Z C
n

δ δ δ
=

> > = −
− ∑  

 

Ascertainment-corrected MLEs  

In analogy to the one-stage design, the two-stage ascertainment-corrected 

likelihood 

1 1 12 12 1 1 12 12

1 1 12 12 1 2

1 1 12 12

( , | , ) ( | , )

1{ , | , , } ( )
                                                         (11)

( , )

L p Z C Z C P m Z C Z C

Z C Z C m N N P m
P Z C Z C

δ > > = > >

> >
=

> >

 

Here, 10 11 20 21( , , , )m m m m m= , 1 1 12 12 1 21( , | , , )Z C Z C m N N> > is an indicator function 

taking values of 1 or 0 depending on whether or not 1 1 12 12and ,Z C Z C> >  and P(m) is 

the product of four binomial probabilities. The denominator of (8) is again the power of 

the study, and can be evaluated as described by Skol et al. [2006]. We maximize the 

likelihood (8) to get MLEs of p and δ by using the Nelder-Mead simplex approach, obtain 

empirical standard errors based on 1000 simulation replicates. 
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2.3 Results 

2.3.1 One-stage design 

Bias of the uncorrected MLE of the allele frequency difference δ and the odds ratio OR  

For a locus showing association (δ≠0), our analytical calculation demonstrates 

upward bias in the genetic effect size by the naïve estimator unδ̂  of the allele frequency 

difference δ (Figure 2.1). This bias is particularly severe when power is low, owing to 

small sample size N and/or small allele frequency difference δ (Table 2.1, Figure 2.2A). 

As power approaches one, the bias disappears. Under the null hypothesis (δ = 0), unδ̂  is 

unbiased, since δ is equally likely to be over- or under-estimated. However, the absolute 

bias of this uncorrected estimator is extremely high when δ = 0 or when δ is small (Figure 

2.1). Due to symmetry, for the rest of the tables or figures, we only provide results for δ > 

0 (lnOR > 0).  

Given N = 1000 cases and N = 1000 controls, allele frequencies p = .1 and p+δ 

= .1258 (OR = 1.295), and testing at significance level of α = 10-6 (resulting in power 

= .01), the expected value of the uncorrected estimator of δ is .0524 compared to the true 

value of .0258, a bias of .0266 and a proportional bias of 103%; similarly, the expected 

value of the uncorrected OR estimator is 1.699 compared to its true value of 1.295. In this 

case, a follow-up study designed to have 80% power at significance level α = .05 would 

include 310 cases and 310 controls, but would have actual power of only 30%.  

We found that, for a fixed significance level α, the proportional bias in the 

uncorrected estimate of δ is solely a function of power, and is otherwise independent of 

sample size, allele frequency, or genetic model [Zöllner and Pritchard, 2007]. Consistent 
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with intuition, proportional bias decreases as power increases (Figure 2.2A), since the 

conditioning event becomes increasingly likely. At significance level α = 10-6, the 

uncorrected estimator of δ gives a proportional bias of ~60% when power is .05 but is 

nearly unbiased when power is 95%. Interestingly, given fixed power, the proportional 

bias of the naïve estimator is consistently less when α = 10-6 than when α = 10-4.  

We extended our analytical calculation to the uncorrected MLE of the odds ratio 

(Table 2.1, Figure 2.1), and observed the same general trend: substantial overestimation 

of the genetic effect given low to modest power to detect association and no bias given no 

association or sufficiently strong association. However, the proportional bias of the OR 

estimator, unOR , cannot be explained by power alone, but depends on sample size, allele 

frequency, and genetic model (Figure 2.2B). Interestingly, the proportional bias of the 

logarithm of the OR estimator, log unOR , is a function of power, and follows a very 

similar pattern as the uncorrected MLE of allele frequency δ.  

 

Bias of the ascertainment-corrected MLE of δ and OR 

When we correct for ascertainment, the absolute bias of the MLE is substantially 

reduced (Figure 2.1, Table 2.1), and correction actually results in underestimation unless 

the genetic effect size is small or power is very low. For example, given N = 1000 cases 

and N = 1000 controls, allele frequencies p = .1 and p+δ = .1258 (power = .01), and 

testing at significance level α = 10-6, the proportional bias of the corrected MLE of δ is –

7%, compared to +103% before correction. In this case, a follow-up study designed to 

have 80% power at significance level α = .05 would include 1350 cases and 1350 

controls and have actual power 85%, whereas 1150 cases and 1150 controls actually 
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would be sufficient to achieve 80% power. In the absence of association (δ=0), the 

corrected MLE is again nearly unbiased. 

Reduction of the absolute bias is most pronounced when overestimation is most 

severe, and for fixed significance level α, bias reduction depends solely on study power. 

The relationship between power and proportional bias of the ascertainment-corrected 

MLE of δ is summarized in Figure 2.2A. Although the corrected MLE asδ̂  typically 

underestimates δ by 10-20% over the power range of .001-.95 given testing at 

significance level of α = 10-6, the corrected MLE is considerably less biased than the 

uncorrected estimator unless power is high (typically > 60%). Even given high power, the 

magnitude of the bias of the ascertainment-corrected MLE asδ̂ is not much greater than 

that of the uncorrected MLE unδ̂ , and it is of opposite sign. Interestingly, when power 

greater than .1, the bias in the corrected MLE asδ̂ decreases almost linearly as power 

increases (Figure 2.2A). 

The situation for the odds ratio is similar. With correction, the OR is typically 

underestimated by 5-10%, and this bias is in general smaller (although of opposite sign) 

than that for the uncorrected estimator for study powers ranging from .001 to .95 (Table 

2.1, Figures 2.1 and 2.2B). Compared to the corrected MLE of δ whose proportional bias 

can be approximately summarized by power alone, the proportional bias for the corrected 

OR estimator does depends on sample size and allele frequency (Figure 2.2B), while the 

proportional bias of the logarithm of the corrected estimator depends essentially on power 

alone and displays a very similar pattern as that of the corrected estimator for δ (Figure 

2.2A). Again, if we focus on the situations in which power < 60%, correction generally 

results in reduced absolute bias, and in many cases, absolute bias reduction is impressive. 
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For example, given N = 1000 cases and N = 1000 controls, allele frequencies p = .1 and 

p+δ = .1258 (OR = 1.295), and testing at significance level α = 10-6 (resulting in power 

= .01), the proportional bias of the corrected MLE of OR is –2%, compared to +31% 

before correction.  

 

Standard errors and mean square errors (MSE) of the estimators 

Table 2.2 summarizes the standard errors (SEs) for the MLEs of δ. We observed 

that the empirical SEs agree well with the asymptotic SEs for the corrected MLE, and  

both are two to six times greater than the SE of the uncorrected MLE which incorrectly 

ignores the fact of ascertainment. We also calculated the SE based on a random sample of 

the same sample size without ascertainment. All calculated SEs demonstrate that the 

genetic effect size estimates are quite variable in the settings described. The SEs of the 

corrected MLE are typically 1.5-2 times as large as those for an unascertained 

independent sample of the same size. This implies that while the ascertained sample is 

not as informative as a new random sample would be to estimate genetic effect size, the 

ascertained sample does provide 50-60% of the information in a new random sample, 

without the extra cost of collecting a new sample. We observed a very similar trend for 

SEs for the MLE of the odds ratio. 

The mean squared error (MSE) provides a measure of estimator quality that takes 

into account both bias and variance. Figure 2.1 displays the MSE for the naïve and 

corrected MLEs of δ and lnOR. In general, the naïve estimator has larger MSE than the 

ascertainment-corrected estimator unless the genetic effect size is sufficiently large to 

result in high power to detect association. In that case, biases for the two estimators are 
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similar but the variance of the corrected estimator is larger than that of the naïve 

estimator (Table 2.2). 

 

2.3.2 Two-stage design 

For both the allele frequency difference δ and the odds ratio OR, the naïve and 

ascertainment-corrected MLEs for optimal two-stage designs yield very similar results to 

those for the one-stage association designs described above (Figure 2.3A). This is hardly 

surprising, since for optimal two-stage designs, statistical power is very close to that of 

the corresponding one-stage design in which all markers are genotyped on all samples, 

and power (approximately) determines proportional bias for δ and lnOR. Even for non-

optimal two-stage designs, this continues to be true, except that the proportional bias of 

both the uncorrected and corrected estimators tends to increase modestly as πsample, the 

fraction of the sample genotyped in Stage 1, increases (Figure 2.3B).  

 

2.4 Discussion 

In genetic association studies, the genetic effect size for associated markers tends 

to be overestimated as a consequence of winner's curse. This bias is due to the strong 

positive correlation between the association test statistic and the estimator of the genetic 

effect and the focus of investigators on markers that show statistically significant 

evidence of association. In this paper, we studied the bias of the naïve maximum 

likelihood estimators for the allele frequency difference and the odds ratio that ignore this 

ascertainment; these measures are routinely used to estimate the strength of the effect in 
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genetic association studies. We demonstrated that the proportional bias in the estimators 

decreases as power increases. Interestingly, at fixed significance level, the proportional 

biases of the allele frequency difference and the logarithm of odds ratio are functions of 

power, and otherwise are essentially independent of allele frequency or sample size (see 

also [Zöllner and Pritchard, 2007]).  

We proposed a maximum likelihood method to correct for this ascertainment bias. 

The ascertainment-corrected MLEs for both the allele frequency difference and the (log) 

odds ratio are generally less biased than the uncorrected estimators unless study power is 

moderate to high (>60%). Since large-scale genetic association studies of complex traits 

typically are underpowered owing to small genetic effect sizes, our method should 

generally provide a more accurate estimate of genetic effect size in the context of 

genome-wide association studies and large-scale candidate gene studies. In high power 

situations, bias for both the naïve and corrected methods are small, so that ascertainment 

correction again is reasonable. Proportional bias of the corrected and uncorrected 

estimators for both the allele frequency difference and the odds ratio does show modest 

dependence on significance level α. For example, when significance level α = 10-4, biases 

for all estimators are somewhat increased compared to the case of α = 10-6, and the 

advantage of ascertainment correction is increased slightly. 

Zöllner and Pritchard [2007] used simulations to evaluate the impact of the 

winner’s curse effect in genetic association studies and also proposed a maximum 

likelihood method to correct for it. Their method estimates the frequencies of all 

genotypes and corresponding penetrance parameters based on a known population 

prevalence of the disease under different inheritance models. In contrast, our method is 
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simpler and focuses solely on the parameters of greatest interest:  the allele frequency 

difference and odds ratio. This advantage of our method does require the assumption of 

Hardy-Weinberg Equilibrium for our case and control samples. Such an assumption is 

entirely reasonable given the modest locus effect sizes for complex traits, but would not 

be reasonable in the context of a Mendelian major locus.  

Our corrected MLEs for the allele frequency difference and odds ratio generally 

underestimate the true genetic effects [Zöllner and Pritchard, 2007]. Using computer 

simulation, we note that the empirical distribution of our corrected MLEs can reasonably 

be described as a two-component mixture, with one component near zero and the other 

appearing more nearly normal. Figure 2.4 illustrates this for the ascertainment-corrected 

estimator of the allele frequency difference. As power increases, the distribution becomes 

more nearly normal, and the asymptotic unbiasedness of the MLE comes into play. 

We investigated the coverage of the asymptotic theory 95% confidence interval 

for the naïve and ascertainment-corrected MLEs for the allele frequency difference δ. The 

coverage of the ascertainment-corrected interval ranged from 82-100% for the cases we 

considered, reflecting the distribution and the bias of the ascertainment-corrected MLE, 

but still generally better than the coverage for the naïve estimator, which ranged from 0-

92%.  

Given the usual downward bias of our ascertainment-corrected estimators, one 

could consider an ad hoc bias correction. For the estimators of the allele frequency 

difference δ and the log odds ratio lnOR, the downward bias is 5-20% across the 

situations we considered (control allele frequency .1-.5, allele frequency difference 

δ=.018-.159 (OR 1.11-2.30), case and control sample sizes 250 to 2,000, and statistical 
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significance 10-4 to 10-8), so that multiplying the resulting estimate by 1.05 – 1.10 would 

generally reduce absolute bias. However, such an approach is counterproductive when 

power is very low (<.005). The same criticism holds for taking a (weighted) average of 

the corrected and uncorrected estimators. More appealing might be to use an alternative 

estimation approach, and we currently are considering an empirical Bayes method [Carlin 

and Louis, 2000] that uses information from genome-wide association studies to help 

define a prior distribution for the genetic effect size. 

Realistically, precise and unbiased estimation of genetic effect size will best be 

obtained by collecting a large sample specifically for this purpose, should resources be 

available to do so. However, given a sample in which an association is discovered, our 

ascertainment corrected approach provides more accurate estimation of allele frequency 

difference and odds ratio than the naïve approach, and permits better design of 

subsequent replication studies or studies focused on estimating the population effect of 

the identified variant(s). Standard errors for the ascertainment-corrected MLEs were 

substantially larger than those for the naïve estimator based on an independent random 

sample of the same size, correctly reflecting the information loss for estimation based on 

a sample used for association detection. 

In summary, we have presented analytic calculations that quantify the impact of 

the winner's curse in large-scale genetic association studies, and confirm that in realistic 

situations, it can result in substantial overestimation of the true genetic effect as measured 

by the case-control allele frequency difference or the corresponding odds ratio. We 

propose a maximum likelihood estimator that corrects for the typical focus on statistically 

significant results, and demonstrate that this estimator results in reduced absolute bias 
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compared to the naïve uncorrected estimator when study power is low or moderate 

(<60%), a range that is typical for most large-scale genetic association studies, and 

similar absolute bias when power is high. Our method does not require specification of a 

genetic model and is easy to implement. We extended these calculations to two-stage 

association studies, and found similar results to those for one-stage studies. We 

recommend the use of this ascertainment-corrected method for estimation of genetic 

effect size in large-scale genetic association studies.  

 

Software that carries out this analysis for case-controls data is available at 

http://csg.sph.umich.edu/boehnke/winner. 
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Table 2.1: Proportional bias (%) of the uncorrected (naïve) and ascertainment-corrected 
MLEs of the allele frequency difference δ and odds ratio OR. Results are presented only 
for δ > 0. 

 

p N power δ ûnδ δ
δ
−  âsδ δ

δ
−  OR unOR OR

OR
−  asOR OR

OR
−  

.1 

500 

.01 .0376 101.9 -4.3 1.436 53.3 -1.8 

.10 .0541 47.9 -12.4 1.640 27.9 -5.7 

.30 .0665 26.2 -16.1 1.798 17.6 -7.2 

.50 .0752 16.2 -14.2 1.913 11.9 -6.5 

.80 .0898 6.0 -8.2 2.108 5.55 -1.7 

1000 

.01 .0258 103.1 -7.0 1.295 31.2 -1.9 

.10 .0370 48.1 -15.7 1.429 19.2 -4.2 

.30 .0453 26.5 -18.3 1.530 12.3 -7.1 

.50 .0512 16.0 -16.2 1.603 8.36 -6.3 

.80 .0609 6.1 -9.3 1.726 3.77 -4.1 

.5 

500 

.01 .0576 103.0 -9.0 1.260 27.2 -2.1 

.10 .0806 48.3 -16.8 1.384 17.3 -5.3 

.30 .0972 26.3 -18.3 1.483 11.2 -6.3 

.50 .1086 16.2 -14.3 1.555 7.72 -5.8 

.80 .1270 6.1 -9.2 1.681 3.51 -3.6 

1000 

.01 .0405 104.0 -13.1 1.176 18.5 -2.0 

.10 .0571 48.3 -18.6 1.258 11.8 -4.2 

.30 .0690 26.4 -18.3 1.320 7.7 -4.9 

.50 .0772 16.2 -15.0 1.365 5.4 -4.5 

.80 .0903 6.1 -10.4 1.441 2.4 -3.1 
un: uncorrected; as: ascertainment-corrected 
p: disease allele frequency in controls; N: sample size (number of cases and of 
controls) 
Assume testing at significance level α = 10-6 
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Table 2.2: Standard errors (SEs) for the uncorrected (naïve) and ascertainment-corrected 
MLEs of the allele frequency difference δ and for MLE obtained from an unascertained 
random sample. Results are presented only for δ > 0. 

 

p N power OR δ 
SE 

unδ̂  *
âsδ  †

âsδ  r̂andδ  

.1 

500 

.01 1.436 .0376 .0049 .0263 .0307 .0142 

.10 1.640 .0541 .0064 .0291 .0315 .0150 

.30 1.798 .0665 .0080 .0304 .0307 .0148 

.50 1.913 .0752 .0094 .0309 .0291 .0153 

.80 2.108 .0898 .0120 .0291 .0244 .0154 

1000 

.01 1.295 .0258 .0032 .0179 .0216 .0099 

.10 1.429 .0370 .0043 .0200 .0212 .0103 

.30 1.530 .0453 .0054 .0216 .0204 .0099 

.50 1.603 .0512 .0063 .0218 .0195 .0107 

.80 1.726 .0609 .0081 .0195 .0170 .0102 

.5 

500 

.01 1.260 .0576 .0069 .0392 .0433 .0215 

.10 1.384 .0806 .0091 .0442 .0460 .0214 

.30 1.483 .0972 .0114 .0447 .0439 .0229 

.50 1.555 .1086 .0133 .0445 .0409 .0221 

.80 1.681 .1270 .0168 .0411 .0348 .0222 

1000 

.01 1.176 .0405 .0049 .0280 .0319 .0159 

.10 1.258 .0571 .0065 .0310 .0320 .0154 

.30 1.320 .0690 .0081 .0325 .0305 .0154 

.50 1.365 .0772 .0095 .0325 .0286 .0160 

.80 1.441 .0903 .0120 .0281 .0247 .0159 
un: uncorrected; as: ascertainment-corrected; rand: random sample without 
ascertainment 
*: empirical; †: asymptotic  
p: disease allele frequency in controls; N: sample size (number of cases and of 
controls) 
Assume testing at significance level α = 10-6 
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Figure 2.1: Bias, absolute bias, and mean square error (MSE) for allele frequency 
difference δ and logarithm of odds ratio lnOR with sample size N = 1000 and control 
allele frequency p = .3. Significance level α = 10-6. 
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Figure 2.2: Proportional bias versus power for the uncorrected (naïve) (solid lines) and 
corrected (dashed lines) estimators of the (A) allele frequency difference δ and (B) odds 
ratio OR. Significance level α = 10-6. Results are presented only for δ > 0.  
 
A. 

 
 
B. 
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Figure 2.3: Proportional bias versus power for the uncorrected (naïve) (solid lines) and 
corrected (dashed lines) estimators of the allele frequency difference δ for (A) optimal 
and (B) non-optimal two-stage designs. Significance level α = 10-6. Designs optimal for 
multiplicative disease model with disease prevalence .10, stage 2 to stage 1 genotype cost 
ratio 30. For non-optimal designs, πmarker = 1%, and samples of N=1000 cases and 
N=1000 controls. Results are presented only for δ > 0. 
 
A. 

 
B. 
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Figure 2.4: Distribution of the ascertainment-corrected MLE of the allele frequency 
difference δ for different power levels. Results are presented only for δ > 0. 

 

 
Based on 1000 simulation replicates of N=1000 cases and N=1000 controls, control 
allele frequency p = .5, and testing at significance level α = 10-6. 
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Appendix 

 
Calculate the observed information matrix I for one-stage study: 
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where ( , )  and ( , ) is calculated by formula (2) in the paper.
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Our calculation for the asymptotic SE for p and δ was based on the observed information 
matrix evaluated at ˆˆ ,as asp δ . 
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CHAPTER 3 

WINNER’S CURSE IN QUANTITATIVE TRAIT ASSOCIATION 

STUDIES 

 

Quantitative traits (QT) are an important focus of human genetic studies both 

because of interest in the traits themselves, and because of their role as risk factors for 

many human diseases. For large-scale QT association studies including genome-wide 

association studies (GWAS), investigators usually focus on genetic loci showing 

significant evidence for SNP-QT association, and consistent with findings for case-

control association studies of diseases, QT genetic effect size also tends to be 

overestimated as a consequence of the winner’s curse. In this chapter, I study the impact 

of the winner’s curse on QT association studies, in which the genetic effect size is 

parameterized as the slope in a linear regression model. Analytical calculation 

demonstrates that the overestimation in the regression slope estimate decreases as power 

increases. To reduce the ascertainment bias, I propose a three-parameter maximum 

likelihood method and further simplify this model to a one-parameter model by excluding 

nuisance parameters. I show that both methods reduce the bias when power to detect 

association is low or moderate, and that the one-parameter model generally results in 

smaller variance in the estimate. 
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3.1 Introduction 

In Chapter 2, I quantified the winner’s curse effect in one- and two-stage genetic 

case-control association studies, and described a maximum likelihood method to correct 

for the ascertainment bias in genetic effect size (parameterized as allele frequency 

difference and odds ratio) estimation. I showed that the upward bias is particularly severe 

when study power is low, and that the ascertainment-corrected MLE reduces bias when 

power is low or moderate, as expected for new gene discoveries in GWAS. In this 

chapter, I extend winner's curse study to quantitative trait (QT) association studies.  

For complex disease genetics research in humans, remarkable progress has been 

made recently with a number of genome-wide case-control association studies published 

[Klein et al., 2005; Maraganore et al., 2005; Sladek et al., 2007; Scott et al., 2007; Saxena 

et al., 2007; Zeggini et al., 2007]. In parallel, there have been increasing efforts to 

investigate the association between genotype and disease-related QT at population level 

[Frayling et al., 2007; Saxena et al., 2007; Willer et al., 2008; Levy et al., 2009]. One 

rationale behind QT studies is that, because the traits examined are in many cases closely 

related to disease, any quantitative trait locus (QTL) being identified may also act as a 

disease predisposing locus.  

Traditionally, linkage analysis, in which families with multiple affected 

individuals are scanned, has played an important role in mapping QTL. However, this 

analysis has the weakness of identifying relatively large chromosomal intervals 

associated with particular phenotypes. For instance, the initial localization from linkage 

analysis may define a region of 10-20 Mb. In contrast, association studies are useful only 

for short-range mapping because association relies on either the presence of linkage 



 38

disequilibrium (LD) between the SNP and trait loci, or the SNP being the trait locus itself. 

Association studies generally have greater power to detect alleles with minor or modest 

phenotypic effects [Risch and Merikangas, 1996; Sham et al., 2002].  

For QT association studies, a commonly used method to detect the SNP-trait 

association is to regress the observed trait values on a score based on the individual’s 

SNP genotype. The slope of the linear regression is a measure of the strength of the 

genetic effect. As in disease case-control association studies, for QT association studies, 

investigators usually focus on genetic loci showing significant evidence for SNP-trait 

association. As a consequence of the winner’s curse described in Chapter 2, the effect 

size estimator tends to overestimate the true genetic effect size. Several investigators 

have studied the winner’s curse effect in the context of QT linkage analysis [Göring et al., 

2001; Siegmund, 2002; Allison et al., 2003; Sun and Bull, 2005; Wu et al., 2006].  

In this chapter, I study the winner’s curse effect in the context of QT association 

studies. I analytically quantify the impact of the winner's curse on the estimate of the 

genetic effect size parameterized as the linear regression slope as a function of sample 

size, allele frequency, and statistical significance level. I then describe an ascertainment-

corrected maximum likelihood method similar to that we derived for case-control disease 

association studies [Xiao and Boehnke, 2009; Chapter 2] to correct for this bias. I 

describe both a fully parameterized model in which we estimate the intercept, slope, and 

error of the linear regression model, and a simplified which focuses only on the 

regression equation slope parameter resulting in a one-parameter model. I also consider a 

mean square error (MSE) weighted estimator calculated as the weighted average of the 

uncorrected and corrected estimators using the MSE as the weight. I compare the 
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performance (bias, standard error, MSE) of these ascertainment-corrected maximum 

likelihood estimators (MLEs) and that of the naïve, uncorrected estimators.  

As for genetic case-control studies (Chapter 2), I find that (1) the factors that 

result in overestimation of the regression slope can be summarized by study power alone, 

independent of sample size and allele frequency, and that overestimation decreases as 

power increases; (2) compared to the uncorrected estimator of the regression slope, the 

ascertainment-corrected estimators based on the one- and three-parameter model result in 

reduced absolute bias when study power is low or moderate, and have comparable 

absolute bias when power is high; (3) the MSE of the ascertainment-corrected MLE of 

the regression slope based on the one-parameter model is generally smaller than that of 

the MLE based on the three-parameter model; and it is also smaller than the uncorrected 

estimator when power is low or moderate; and (4) the MSE weighted estimator generally 

improves the ascertainment correction compared to the three- and one-parameter-model 

based ascertainment-corrected MLEs. I recommend the use of the one-parameter-based 

ascertainment-corrected maximum likelihood method and the MSE weighted estimator 

for estimation of genetic effect size in large-scale quantitative trait association studies. 

 

3.2 Methods 

3.2.1 Models and Assumptions 

I assume N independent samples genotyped at an autosomal quantitative trait 

locus (QTL) with alleles A and a. Let p be the frequency for the minor allele a. For 

individual i, let Xi be the score for allele a, depending on the genetic model we assume. 

For example, Xi = 0 for AA, 1 for Aa, and 2 for aa if we assume an additive model or Xi = 
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0 for AA or Aa, and 1 for aa for a recessive minor allele. Let y be the N×1 vector of trait 

values for the N samples. 

To test for SNP-trait association, I assume the linear regression model: yi = β0 + 

β1Xi + εi, where {εi} are independently and identically distributed (iid) as normal with 

mean 0 and variance σ2. For simplicity in what follows, I assume an additive genetic 

model and no other covariates in the linear regression model, although these assumptions 

are easily relaxed.  

In a quantitative trait association study, I focus on the slope β1 in the linear 

regression model as a measure of the genetic effect size, and calculate the regression-

based t-test statistic 1

1

ˆ

ˆ( )
=T

SE

β

β
 for the null hypothesis of no association (H0: β1 = 0). 

Here, 1̂β and 1̂( )SE β are the estimated regression slope and its standard error (SE) obtained 

from the linear regression. I claim the association significant at significance level α 

when −α/2, N 2T > t .  

 

3.2.2 Uncorrected (naïve) estimators 

In practice, investigators often estimate the effect size of the quantitative trait 

locus, parameterized as the linear regression slope β1, using the same data used for the 

initial association test. I call this uncorrected estimator of β1 "naïve" because it ignores 

the possible bias associated with focusing only on genetic markers with statistically 

significant association results.  
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To assess the impact of the winner's curse, I calculate the expected value of this 

uncorrected estimator 1,
ˆ

unβ  conditional on obtaining significant evidence for association: 

1
1

1

(1)                         − −

,un
1,un α 2, N 2 ,un α 2, N 2

,un

β
E(β |T > t )= E(β | > t )

SE(β )

ˆ
ˆ ˆ

ˆ
 

To simplify this calculation, I approximate (1) by assuming 1̂ ≈,un
xx

σSE(β )
S

: 

1
1 1

1 1

1 1

; ;

;
(                                                         

− −

∞

∞

−

≈

−

∫ ∫

∫

,un
,un α 2, N 2 ,un α 2, N 2
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-a +

2 2

xx xx- a

a
2

xx-a

α 2, N 2

β
E(β |T > t ) E(β | > t )σ

S

σ σ= z× f(z β , | z > a)dz + z× f(z β , | z > a)dzS S

σβ z× f(z , )dzS
=

P(T > t )

β

ˆ
ˆ ˆ

2)
 

where 1;
2

xx

σf(z β , )S is the density function of normal distribution with mean β1 and 

variance
2

xx

σ
S , and −α 2,N 2

xx

t  σa =
S

. Sxx is the sum of squares of the covariate matrix 

X. Note that the numerator of (2) is the power of the study, which equals 1 minus the 

cumulative density function (CDF) of the non-central t distribution with degrees of 

freedom (df) N – 2 and non-centrality parameter 1 xxβ S
ncp =

σ
. The approximation of 

1̂,unSE(β )  is verified by simulations. From (2), I calculate the bias of the estimator 

as 1 1
ˆ

− −,un α 2,N 2E(β |T > t ) β , and the proportional bias as 1 1

1

ˆ
− −,un α 2,N 2E(β |T > t ) β

β
. 
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I also quantify the winner’s curse effect in the estimator of the coefficient of 

determination reg2

reg res

SS
R =

SS + SS
, where SSreg and SSres are the regression and residual 

sums of squares, respectively. By dividing both the numerator and denominator by SSres, 

−
2 FR =

F + N 2
 , where 

−

reg

res

SS
1F = SS

N 2

 is the F test statistic for H0: β1 = 0. When there 

are no other covariates in the model, F = T2. I calculate the expected difference in 

estimates of R2 when taking into account the ascertainment or ignoring this ascertainment 

as:  

( ) ( )

(3)              −

− −

∞

∞

−

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

−
−

−

∫
∫α,1,N 2

2 2
α/2,N 2 α,1,N 2

+

+
F

α,1,N 2 0

F FE R |T > t E R = E | F > F E
F + N 2 F + N 2

x g(x)dx
x + N 2 x= g(x)dx                                          

P(F > F ) x + N 2

 

where here g(x) is the density function for F distribution with 1 and N − 2 degrees of 

freedom, and −α, 1, N 2F is the corresponding quantile at significance level α. Notice that, 

were R2 a constant, the expected difference in (3) would be its bias in estimation owing to 

the winner's curse.  

 

3.2.3. Ascertainment-corrected MLEs  

Three-parameter model 

The naïve estimator ignores the fact that we typically are interested in estimates of 

the regression slope β1 only if we have strong evidence for SNP-QT association. To 
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address this, I propose an ascertainment-corrected maximum likelihood method that 

conditions on obtaining evidence for association. To this end, I calculate the conditional 

likelihood function 

0 1 0 1

0 1

;

1
;  (4)                                               

− −

−

−

∏

∏

2
α/2, N 2 i α/2, N 2

i

2α/2, N 2
i

iα/2, N 2

L(β ,β ,σ | y,X,T > t )= f(y β + β x , σ |T > t )

{T > t }
= f(y β + β x , σ )

P(T > t )

 

where the indicator function1 α/2, N -2{T > t }  equals 1 if α/2, N -2T > t  and 0 otherwise, and 

0 1; 2
if(y β + β x , σ )  is the normal density function with mean 0 1 iβ + β x and variance 2σ . 

I maximize the likelihood (4) as a function of β0, β1 and σ to obtain the 

ascertainment-corrected MLEs 0, 1,
ˆ ˆ,as asβ β and ˆasσ by using the Nelder-Mead [1965] 

simplex method. I calculate the empirical standard errors of these estimates based on 

1000 simulation replicates.  

 

One-parameter model 

Since the primary interest of investigators is to estimate the regression slope β1, β0 

and σ2 are nuisance parameters. I propose a one-parameter model to obtain the corrected 

estimator for β1 only, by assuming that the uncorrected estimator ,
ˆ
1 unβ  obtained from 

linear regression is a consistent estimator of β1, and asymptotically normally distributed 

when sample size is sufficiently large. Therefore I calculate the conditional likelihood 

function for β1 as: 
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1 1 1 1 1

1 1 1

1

(5)
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− −
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 L(β β ,T > t )= f(β β ,var(β ) |T > t )

1{T > t } f(β β ,var(β ))
                                                            

P(T > t β )

;

;  

where 1 1 1
ˆ ˆˆ,un ,unf(β β ,var(β )); is the normal density function with mean  β1 and variance 

1̂ˆ ,unvar(β ) , since 1

1

ˆˆ
1ˆ →,un

,un

var(β )
var(β )

. 

I maximize the likelihood (5) as a function of β1 to obtain the ascertainment-

corrected MLEs 1,as
%β , and calculate the empirical standard errors of these estimators 

based on 1000 simulation replicates.  

 

3.2.4. MSE-Weighted MLEs 

Following Zhong and Prentice [2008], I also consider a weighted estimator 1,β̂ w , 

calculated as the weighted average of the uncorrected estimator 1,β̂ un and the corrected 

estimator 1,β̂ cor : 

1, 1, 1,
ˆ ˆ ˆˆ ˆ(1 )                                                    (6)= + −w un corK Kβ β β  

The weight is defined as
( )

2

2
2

1, 1,

ˆˆ
ˆ ˆˆ

=
+ −

un

un un cor

K σ

σ β β
, where the denominator is the 

estimated mean square error (MSE) and the corrected estimator 1,β̂ cor  can be either the 

three-parameter-model based MLE 1,β̂ as or the one-parameter-model based MLE 1,β% as .  

Zhong and Prentice [2008] showed that in the case-control setting, this estimator 
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generally results in a smaller bias compared to the naïve and ascertainment-corrected 

estimators. 

 

3.3 Results  

Uncorrected Estimators 

For a locus showing significant evidence for QT association, there is clear upward 

bias in the genetic effect size for the uncorrected estimator ,
ˆ
1 unβ of β1 (Figure 3.1). This 

bias is particularly severe when power is low, owing to small sample size N and/or small 

genetic effect size β1 (Figure 3.2). As power increases, bias decreases. Under the null 

hypothesis (β1 = 0), β1 is equally likely to be over- or under-estimated so that the bias is 

zero while the absolute bias is large owing to large variance. Due to symmetry, here and 

for the rest of the tables or figures, I provide results only for β1 ≥ 0. For example, given 

an association study with N = 2000 samples, allele frequency p = .3, and testing at 

significance level of α = 10-6 under an additive genetic model, if the true value for β1 is 

0.1 (power = 5%), the expected value of the uncorrected estimator of β1 is .178, resulting 

in an absolute bias of .078 and a proportional bias of 78%. 

Similar to the case-control studies (Chapter 2), I found for a fixed significance 

level α, the proportional bias in the uncorrected estimator of β1 is solely a function of 

power, independent of sample size, allele frequency, and genetic model (Figure 3.2). As 

expected, proportional bias decreases as power increases, since the conditioning event 

becomes increasingly likely as power increases. At significance level α = 10-6, the 

uncorrected estimator of β1 gives a proportional bias of 50% when power is 10% but is 

nearly unbiased when power is 95%. 
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Interestingly, I found that, at a fixed significance level, the proportional bias in the 

uncorrected estimator of the coefficient of determination R2 is solely a function of the 

power as well (Figure 3.3), independent of sample size and allele frequency.  

 

Corrected ML and MSE-Weighted Estimators 

I found that both three- and one-parameter model-based ascertainment-corrected 

MLEs for the genetic effect size β1 are less biased than the uncorrected estimator when 

power is low or moderate (< 50%) (Figure 3.2). For example, given N = 2000 samples, 

allele frequency p = .3, and testing at significance level of α = 10-6 under an additive 

model, if the true value for β1 is 0.1 (power = 5%), the proportional bias of the corrected 

MLE of δ from the three- and one-parameter models are both about –20%, compared to 

+78% before correction. However, both estimators tend to underestimate the true effect 

size. As expected, the bias and absolute bias of the MSE-weighted estimator are 

intermediate between those of the uncorrected estimators and corrected estimators 

(Figure 3.1). 

The three-parameter and one-parameter estimators have very similar performance 

in bias reduction (Figure 3.1 and 3.2). However, the standard error of the MLE from one-

parameter model is smaller compared to that of three-parameter model, and also the 

uncorrected estimator (Figure 3.1). As with bias and absolute bias, the variance of the 

MSE-weighted estimator is intermediate between that of the uncorrected and corrected 

estimators (Figure 3.1). 

In the typical range of power for GWAS, I found that the MSE weighted 

estimator generally results in smaller bias compared to the uncorrected estimator or to the 
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corrected estimators based on either one- or three- parameter model (Figure 3.3). The 

improvement of the ascertainment correction is substantial when power is high. For 

example, at significance level α = 10-6, when study power is 80%, the proportional bias is 

~10% for the uncorrected estimator of β1 , and –18% for the ascertainment corrected 

estimators from both one- and three- parameter models, but only –5% for the weighted 

estimator.   

 

3.4 Discussion 

Similar to disease-marker case-control association studies, in quantitative trait 

association studies, the genetic effect size for associated markers tends to be 

overestimated as a consequence of the winner's curse. This is true because the association 

test statistic is correlated with the estimator of the genetic effect, and since investigators 

focus primarily on markers that show statistically significant evidence of association. In 

this chapter, I parameterized the genetic effect size as the slope in a trait-genotype score 

linear regression, which is often used as a measure to estimate the genetic effect size in 

QT association studies. I quantified the bias of the naïve estimator that ignore this 

ascertainment, and showed that the proportional bias in the estimators decreases as power 

increases. Interestingly, at fixed significance level, the proportional biases of the 

regression slope and the coefficient of determination are functions solely of power, 

independent of allele frequency or sample size. 

To correct for this ascertainment bias, I proposed a three-parameter-based 

maximum likelihood method, and then simplified the method to a one-parameter-based 

model rid of nuisance parameters. The ascertainment-corrected MLEs for the regression 
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slope obtained from both models are generally less biased than the uncorrected estimators 

unless study power is moderate to high (>60%). However, both of models tend to 

overcorrect. Since the uncorrected estimator is expected to be upwardly biased and the 

corrected estimators tend to underestimate the β1, following Zhong & Prentice [2008], I 

also considered a weighted estimator 1,β̂ w  which takes the weighted average of the 

uncorrected and corrected estimators using the estimated MSE as the weight. Simulations 

suggest that this MSE weighted estimator generally results in smaller bias compared to 

the uncorrected estimator or the ascertainment-corrected estimators based on either the 

one- or the three-parameter model. This weighted estimator improves the ascertainment 

correction substantially when power is high. 

Although the three-parameter and one-parameter model based estimators have 

very similar performance in bias reduction, the standard error of the MLE from one-

parameter model is smaller than that of three-parameter model. This is likely primarily 

owing to optimizing the likelihood function over a one- versus three-parameter space. In 

addition, our one-parameter model makes an explicit normality assumption on the slope 

estimator. 

 I also considered the application of a Bayesian model to the slope estimate in 

linear regression. However, given the large sample size typically used in GWAS, a strong 

prior for β1 is needed to influence its estimation. As a consequence, the posterior 

estimator of β1 will highly depend on the prior parameters. The resulting estimate of β1 

could then be more biased if the prior is mis-specified. 

In this study I focused on one-stage designed QT association study, but it is easy 

to extend this approach to multi-stage designs. In this chapter I only presented results 
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under additive model, but it is straightforward to generalize the approach to other genetic 

models by simply reparameterizing the genotype score. Although I investigated the 

model with only genotypes as the covariate, it is readily to incorporate other covariates 

such as demographic variables in the model.  

In summary, I have presented analytic calculations to quantify the impact of the 

winner's curse in quantitative trait association studies, and confirm that it can result in 

substantial overestimation of the true genetic effect parameterized as the linear regression 

slope when study power is not high. To correct for the ascertainment bias, I propose a 

fully parameterized maximum likelihood model and also a simplified likelihood model 

with the nuisance parameters excluded. I demonstrate that the ascertainment-corrected 

estimators from both the three- and the one-parameter models result in reduced absolute 

bias compared to the uncorrected estimator when study power is low or moderate (<60%), 

and similar absolute bias when power is high; but the variance of the one-parameter-

model based estimator is generally smaller than that of the three-parameter model. I also 

consider a MSE weighted estimator and show that it generally results in smaller bias 

compare to the corrected estimators based on either the one- or the three-parameter model. 

I recommend the use of the one-parameter maximum likelihood method and the MSE 

weighted estimator for estimation of genetic effect size in quantitative trait association 

studies.  
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Figure 3.1: Bias, absolute bias and mean square error (MSE) of the uncorrected, corrected, 
and MSE-weighted estimators for β1 from three- and one-parameter models with sample 
size N = 2000 and allele frequency p = .3 under an additive genetic model. Significance 
level α = 10-6.  
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Figure 3.2: Proportional bias of the uncorrected, corrected, and MSE-weighted estimators 
for β1 from three- and one-parameter models. Significance level α = 10-6. Results are 
presented only for β1 > 0 under an additive genetic model.  
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Figure 3.3: Proportional expected difference versus power for the uncorrected estimator 
of the coefficient of determination R2 under an additive genetic additive model. 
Significance levels α = 10-4 (solid) and α = 10-6 (dashed).  
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CHAPTER 4 

ALLELIC EXPRESSION IMBALANCE TO DETECT THE CIS-

ACTING REGULATORY SNPS 

 

Testing for association between gene expression and SNPs identified by 

genomewide association studies (GWAS) can help understand the relationship between 

these SNPs and the trait of interest and identify the gene(s) most likely to influence the 

trait. Allelic expression imbalance (AEI) between the two alleles of a gene can be used to 

detect cis-acting regulatory SNPs (rSNP) in individuals heterozygous for a transcribed 

SNP (tSNP). Appropriate analysis of AEI data depends on the extent of linkage 

disequilibrium (LD) between the rSNP and tSNP and whether we know linkage phase. In 

this paper, I propose five tests to detect association between a potential rSNP and AEI 

when LD between the rSNP and tSNP is incomplete (D’ < 1) and linkage phase is 

unknown. I show that the relative power of the tests depends strongly on the magnitude 

of the LD between the rSNP and tSNP, and less strongly on the AEI effect size of the 

rSNP, number of tSNP heterozygotes, and whether the two SNPs have similar allele 

frequencies. I further demonstrate that the impact of a second ungenotyped rSNP on the 

relative power of these tests depends on the LD structure of the three SNPs, but almost 

never invalidates the proposed tests nor substantially changes the rankings of the tests. 

Based on my results, I recommend the use of F test when the rSNP and tSNP are in or
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near linkage equilibrium (D'~0). When the two SNPs are in LD, in general, the mixture-

model based test is most powerful for the intermediate LD levels, and the t test is 

typically most powerful for high LD. 

 

4.1 Introduction   

Over the past decades, there has been increasing interest in understanding the 

genetic basis of phenotypic diversity in humans. While earlier studies focused primarily 

on genetic variants in protein coding regions or regions flanking  candidate genes, the 

recent development of genomewide association studies (GWAS) enables investigation of 

common variants in most of the human genome, including the non-coding regions that 

comprise ~98% of the genome [International Human Genome Sequencing Consortium, 

2004]. For published GWAS signals, about 88% are located in non-coding regions, either 

intronic (45%) or intergenic (43%) [Hindorff et al., 2009; www.genome.gov/gwastudies]. 

The relationship between these associated polymorphisms and the corresponding disease 

or trait (henceforth trait) are, for the most part, still unknown. Regulation of gene 

expression is one possible mechanism to account for the connection between these 

polymorphisms and the trait.  

Following a GWAS, a key goal is to identify the functional gene(s) and variant(s) 

within an identified locus of association. For example, recent GWAS of high-density 

lipoprotein-cholesterol (HDL-C) identified a region on chromosome 12 which contains 

four genes: KCTD10, MMAB, MVK, and UBE3B [Kathiresan et al., 2009; Willer et al., 

2009]. In this 175 kb region of high linkage disequilibrium (LD), multiple common SNPs 

(minor allele frequency > .05) showed similar strength of association with HDL-C levels. 
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At least two of the genes, MMAB and MVK, are functionally relevant to cholesterol 

biology [Deodato et al., 2006; Goldstein and Brown, 1990]. To identify the gene(s) most 

likely to influence HDL-C, one approach is to test for association between the associated 

SNPs and the expression levels of these genes.  

Gene expression is affected by both cis- and trans-regulatory elements, where by 

cis-regulatory elements we mean DNA polymorphisms that reside on the same 

chromosome as the gene they regulate, and act only on the copy of the gene on the same 

chromosome. These cis-regulatory elements usually are in close proximity to the gene 

being regulated, but can be far away. Trans-regulatory elements can be located on the 

same or a different chromosome, but regulate both alleles of the gene. 

One commonly used approach to identify potential regulatory SNPs (rSNP) is to 

test for statistical association between SNP and mRNA transcript levels by regressing the 

transcript levels on the SNP genotypes [Cheung et al., 2005; Rockman et al., 2006; 

Pastinen et al., 2006]. An advantage of this approach is that mRNA levels can be 

measured using high throughput expression arrays, which assay thousands of genes 

simultaneously. However, the power of this analysis may be reduced by intra-individual 

differences in a large number of variants involved in the regulation of the gene, and also 

by any non-genetic differences between samples [Tao et al., 2006]. In addition, this 

approach does not explicitly distinguish between cis- and trans-acting regulators [Cheung 

et al., 2005].  

A second approach is to test for association between a potential rSNP and the 

relative expression level of the two alleles of a gene in individuals heterozygous for a 

transcribed SNP (tSNP). Polymorphisms regulating gene expression in cis will result in 
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unequal amounts of mRNA from the two alleles of the gene, a phenomenon known as 

allelic expression imbalance (AEI). An advantage of studying AEI is that the relative 

mRNA level of one allele with respect to the other can be quantified more accurately than 

the absolute level, since the amounts of mRNA originating from the two alleles are 

measured in the same individual. Each allele serves as an internal standard for the other 

to control for trans-acting factors that could affect the expression of both alleles in the 

same way. Hence, using relative expression levels of the two alleles of the gene in each 

individual can specifically identify cis-acting regulators, in contrast to using total 

expression level as the outcome variable [Bray et al., 2003; Mahr et al., 2006; Pastinen et 

al., 2003; Pastinen et al., 2005; Tao et al., 2006]. Because of technical variability in 

assays for the two alleles, the relative allelic expression needs to be normalized to a 

reference which has equal amounts of the two corresponding alleles. Genomic DNA 

(gDNA) of the tSNP heterozygotes is often used for this purpose [Buckland, 2004], and I 

will do so here.  

Some AEI studies have used samples for which phase is known [Serre et al., 2008; 

Ge et al., 2009]; others have relied on the LD between the rSNP and tSNP and additional 

genotyped SNPs nearby for haplotype reconstruction [Tao et al., 2006; Alachkar et al., 

2008]. Based on the LD structure between the rSNP and tSNP, I consider three scenarios 

first assuming the AEI is due to a single rSNP (Figure 4.1):  (1) r2 = 1; (2) r2 <1, D' = 1; 

and (3) D' < 1, and in this chapter develop tests for the third scenario.    

When r2 = 1, all samples heterozygous for the tSNP are also heterozygous for the 

rSNP, there is only one possible haplogenotype, and we expect to observe only one AEI 

cluster for rSNP heterozygotes (Figure 4.1A). Here, a two-sample t test comparing mean 
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AEI of the cDNA to that of the gDNA may be applied for AEI detection, as suggested by 

Campino et al. [2008]. This approach requires at least one tSNP in the gene to be 

complete LD (r2 = 1) with the rSNP, a requirement that is often not met.  

When r2 < 1 but D' = 1, there is again only one possible haplogenotype for rSNP 

heterozygotes and we expect to observe one AEI cluster for rSNP heterozygotes and 

another for rSNP homozygotes (Figure 1B). This allows comparison of mean AEI of the 

cDNA for rSNP heterozygotes to that of rSNP homozygotes, or alternatively to that of 

gDNA for all individuals as in the r2 = 1 scenario.  

When D' < 1, there are two possible haplogenotypes for rSNP heterozygotes and 

we expect to observe two AEI clusters for rSNP heterozygotes, and two more for rSNP 

homozygotes (Figure 1C). Given sampled and genotyped parents or genotype data from 

the International HapMap Project, the phase of the rSNP and tSNP may be known [Serre 

et al., 2008; Ge et al., 2009], and Ge et al. [2009] proposed a regression-based test for 

phase known data. Often, however, phase is unknown and analysis of the AEI data is 

more challenging in doubly heterozygous individuals. Teare et al. [2006] proposed a 

four-component mixture model and expectation-maximization (EM) algorithm to analyze 

AEI data and a likelihood ratio test (LRT) to compare mean AEI in rSNP heterozygotes 

and homozygotes. However, they did not describe how to assess the significance of the 

LRT; the usual chi-square distribution cannot be used to due to non-identifiability of 

parameters in the finite mixture model [Hartigan, 1985].  

Here, I describe five alternative statistical procedures to analyze AEI data when 

D' < 1, including a two-sample t test comparing two means, a one-sided F test comparing 

two variances, and a mixture-model based test which fits a two-component mixture 
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model for rSNP heterozygotes. I further propose a test based on the minimum p-value of 

the t and F tests and a test that combines these two p-values. For the F, t, minimum-p-

value, and combined-p-value tests, I use permutation to assess significance while 

allowing for non-normality or correlated tests, while for the mixture-model based test, I 

employ the parametric bootstrap.  

My simulations demonstrate that type I error rates for all five tests are well 

controlled, and power of the tests depends on the LD structure (D') between the rSNP and 

tSNP, whether the two SNPs have similar frequencies, the AEI effect size of the rSNP, 

and the number of tSNP heterozygotes. The F test is generally the most powerful test 

when the two SNPs are in linkage equilibrium (LE) or low LD (D' < .2), but has fairly 

low power when the two SNPs are in high LD (D' > .5). In contrast, the t test generally is 

the least powerful test when LD is low (D' < .2), but most powerful when LD is high. 

When LD is intermediate, the mixture-model based test generally has the highest power, 

slightly higher than the combined-p-value test. I also demonstrate that the presence of a 

second ungenotyped rSNP generally does not invalidate these tests, but may result in 

reduced or increased power, depending on the LD structure between the three loci and the 

direction of effect of the two rSNPs. To detect cis-acting regulatory SNPs using AEI, I 

recommend the use of F test when the rSNP and tSNP are in or near linkage equilibrium 

(D'~0). When the two SNPs are in LD, in general, the mixture-model based test is most 

powerful for intermediate LD levels, and the t test is typically most powerful for high LD.  

 

4.2 Methods 
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4.2.1 Model and assumptions  

I initially assume that the differential expression of a gene is caused in part by a 

single cis-acting regulatory SNP (rSNP) with alleles R and r, with R causing higher 

expression of the allele on its chromosome compared to r. Allelic expression imbalance is 

measured in N independent individuals who are heterozygous for a transcribed SNP 

(tSNP) with alleles T and t. Let pR and pT denote the frequencies of R and T. For 

individual i, let { }RR, Rr, rr∈iG be the genotype of the rSNP and 

RT rT RT rT
rt Rt Rt rt

, , ,⎧ ⎫∈⎨ ⎬
⎩ ⎭

iH  be the haplogenotype of the rSNP and tSNP.  

I define the allelic expression ratio (AER) as the ratio of the allele T transcript 

level to the allele t transcript level, and use the natural logarithm of this AER normalized 

by the corresponding ratio in gDNA for the tSNP heterozygotes as the outcome variable 

cDNA g DNA_Tt
T= lnAER mean(ln                      (1)t )−y  

In what follows, I will refer to this normalized logarithm of AER as lnAER.  

Actually, this normalization of lnAER by the gDNA mean does not affect the type 

I error rate or power of the tests I propose in following sections. However, for purposes 

of estimating the AEI effect size of the rSNP, normalization by gDNA makes the 

resulting data easier to interpret since the possible difference of the detection system to 

quantify the two alleles of the gene is controlled. 

Compared to rSNP homozygotes (h = RT
Rt

, rT
rt

) for which we do not expect to 

observe AEI, in the presence of AEI, Rr heterozygotes will show an increased T:t 

expression ratio if h = RT
rt

 and a decreased T:t expression ratio if h = rT
Rt

.  
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For individual i with haplogenotype h, I assume yi is normally distributed with 

mean μh and variance σ2, where  

0

0 R

0 R

RT rTfor =  or 
Rt rt
RTfor =                                                 (2)
rt

rTfor =
Rt

⎧
⎪
⎪
⎪= +⎨
⎪
⎪ −⎪⎩

h

        h

  h

  h

μ

μ μ α

μ α

 

Under the null hypothesis of no AEI effect, R 0=α . I assume that there is no difference in 

the mean or variance of y between the RR and rr homozygotes [Pastinen et al. 2009]. 

Our goal is to test for association between AEI and the putative rSNP. In the 

presence of AEI ( R 0≠α ), different haplogenotypes have different mean allelic 

expression ratios, and I model the data for the rSNP heterozygotes as a mixture of normal 

distributions for each haplogenotype. I consider a two-sample t test comparing the mean 

of lnAER between the different rSNP genotype groups, an F test comparing their 

variances, and a mixture-model based test that explicitly acknowledges the nature of the 

mixing distribution of the lnAER data. Since the t and F tests have different power 

characteristics for different levels of LD between the rSNP and tSNP, I also consider a 

test based on the minimum of the p-values of the t and F tests and another test that 

combines the two p-values based on Fisher's [1948] method.  

 

4.2.2 Two-sample (two-sided) t test and (one-sided) F test 

When the rSNP and tSNP are in LD, one of the two RrTt haplogenotypes (h 

= RT
rt

, rT
Rt

) is more common than the other. In the presence of AEI, I expect mean lnAER 

for Rr heterozygotes to be higher or lower than for the combined RR and rr homozygotes, 
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depending on which haplogenotype is more common. I propose using a (two-sided) two-

sample t test for the hypothesis that mean lnAER of the Rr heterozygotes differs from 

that of the combined RR and rr homozygotes, allowing for unequal variances between the 

heterozygous and homozygous groups due to the mixing distribution for the Rr 

heterozygotes. 

When the rSNP and tSNP are in LE or low LD, the two haplogenotypes (h 

= RT
rt

, rT
Rt

) have similar frequencies. In the presence of AEI, I expect to observe 

approximately half the Rr heterozygotes to have high lnAER and the remainder to have 

low lnAER, resulting in an increased variance in lnAER for Rr heterozygotes compared 

to the combined RR and rr homozygotes. I therefore propose using the F test for equal 

variances against the one-sided alternative that variance in Rr heterozygotes is greater 

than in the combined RR and rr homozygotes. 

For both these tests, I use permutations to assess significance while accounting for 

violation of the normality assumption due to the nature of the mixing distribution of the 

lnAER. I estimate the p-value by the sum of the proportion of permuted data test statistics 

greater than the observed test statistic plus half the proportion of permuted data test 

statistics tied with the observed test statistic. 

 

4.2.3 Mixture-model based test  

Given unknown linkage phase and incomplete LD, the lnAER data follow a 

mixture distribution. I therefore propose a mixture-model based test which fits a two-

component normal mixture model for the rSNP heterozygotes, with likelihood: 
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i 0
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1 (3)

{ }

{ }

( )

      ( ) ( ) ( )            

∈

∈

= ×

+ − −

∏

∏
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;
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Here, f(μ,σ2) is the density function for normal distributions with mean μ and variance σ2 

and π is the mixing proportion of the two-component mixture model.  

I perform a likelihood ratio test (LRT) for the null hypothesis: R 0=α : 

0

1

2ln (4)
ˆ( )                     ˆ( )

−
LΛ =
L
θ
θ

 

where 2
0 0( )ˆ ,ˆ ˆθ μ σ=  and 2

1 0 R( , )ˆ , ˆ ,ˆ ˆ ˆθ π μ α σ=  are the maximum likelihood estimators 

(MLEs) under the null and alternative hypotheses, respectively. Since the likelihood 

cannot be maximized directly, I obtain MLEs by the simplex method [Nelder and Mead, 

1965]. To assess significance for Λ, I apply the parametric bootstrap [McLachlan, 1987], 

since the chi-square distribution cannot be used to approximate the null distribution of 

LRT in finite mixture models [Hartigan, 1985]. For each bootstrap, I simulate the lnAER 

data from the distribution with parameters estimated under null hypothesis, and calculate 

the LRT statistic based on the bootstrapped data. I estimate the p-value as the proportion 

of the bootstrap LRT statistics greater than the observed LRT statistic; no ties were 

observed.  

 

4.2.4 Minimum- and combined-p-value tests 

As we shall see in the Results, the t test tends to be more powerful when the rSNP 

and tSNP are in strong LD, while the F test tends to be more powerful given weak LD. 
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To take advantage of this behavior, I consider two additional tests. The minimum-p-value 

test  

min t FT = min(P ,P )                                     (5)  

selects the minimum of the p-values for the t and F tests (Pt, PF). In contrast, the 

combined-p-value test  

com t FT = 2(lnP lnP )                               (6)+−  

uses Fisher's (1948) method to meta-analyze the information from the two tests. Both 

approaches seek to take advantage of whichever test is more powerful. Significance for 

both test statistics is assessed via permutation as described above and allows me to 

account for the correlation between the t and F tests. 

 

4.2.5 t test when r2 = 1 

When the rSNP and tSNP are in complete LD (r2 = 1), I carry out the analysis by 

a two-sample t test comparing mean lnAER for the rSNP heterozygotes to the 

corresponding mean for the gDNA Tt heterozygotes.  

 

4.3 Simulations  

4.3.1 One regulatory SNP 

I evaluated the performance of the tests to detect association between AEI and the 

potential rSNP by simulating samples with varying numbers N of Tt heterozygotes, under 

models with lnAER mean effect Rα and variance σ2, allele frequencies pR and pT , and D' 

values 0 ≤ D'RT < 1 between the rSNP and tSNP.  
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For each individual, I simulated haplotype pairs according to the conditional 

probabilities of the two-locus haplogenotypes assuming ascertainment for Tt 

heterozygotes. For example,  

RT Rt
RT

T TRt

(RT,Rt)      (7)
(Tt) (1 )

                   
=

= =
−h

w wpf
p p p

 

where wl is the frequency of haplotype { }RT, rT, Rt, rt∈l . I then simulated the 

corresponding lnAER data from a normal distribution with the appropriate 

haplogenotype-specific mean described in (2) and variance σ2. 

When the rSNP and tSNP are in complete LD (r2 = 1), I simulated the gDNA data 

by assuming the mean and variance of the corresponding logarithm ratio for the gDNA to 

be the same as those for the rSNP homozygotes cDNA. 

 

4.3.2 Two regulatory SNPs 

In the preceding work I have assumed a single rSNP. In fact, there could be more 

than one [see for example Ge et al., 2009]. To assess the impact of a second 

(ungenotyped) regulatory SNP on the power and relative rankings of the proposed tests, I 

simulated lnAER data assuming that there is a second cis-acting rSNP with alleles UR  

and Ur  influencing allelic expression. 
URp is the frequency of the allele UR  causing higher 

expression for the allele on the same chromosome. 

Given two regulatory SNPs GR (genotyped) and UR (ungenotyped), there are 16 

possible haplogenotypes for Tt heterozygotes. Probabilities for these haplogenotypes can 

be calculated as a function of the pairwise D' values
G UR RD' , 

GR TD'  and
UR TD' , and the 

third order LD 
G UR R TD  between the three loci. As defined by Bennett [1954]: 
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G U G U G U U G G U G UR R T R R T T R R R R T R R T R R TD D D D (8)              = − − − −w p p p p p p  

where
G UR R Tw is the haplotype frequency, and

G UR RD , 
GR TD and 

UR TD are the unnormalized 

pairwise LD for the three loci. The normalized third order LD  

G U G U

G U

G U G U

R R T R R T
R R T

R R T R R T

D D (min)
D' (9)

D (max) D (min)
                                       

−
=

−
 

[Thomson and Baur, 1984], where
G UR R TD (min) and 

G UR R TD (max) are the lower and upper 

bounds for
G UR R TD described in that paper. 

I assume that the RU allele of the ungenotyped rSNP increases mean lnAER 

by
URα , and that the two regulatory SNPs act additively, resulting in the type of pattern 

displayed by the balloon plot in Figure 4.2, which shows the expected lnAER data 

patterns for different levels of LD between the rSNP and tSNP. The diameter of each 

circle corresponds to the frequency of the haplogenotype(s) to its right while the center of 

the circle corresponds to mean lnAER in individuals with that halplogenotype(s). For 

example, lnAER for genotyped rSNP G GR R  homozygotes may display three clusters, 

with means 
U0 R+μ α  (corresponding to haplogenotype k = G U

G U

R R T
R r t

), 0μ (k 

= G U

G U

R R T
R R t

, G U

G U

R r T
R r t

), and
U0 R−μ α  (k = G U

G U

R r T
R R t

). As many as three clusters also may be 

present for G Gr r  individuals, and six for G GR r  heterozygotes.  

As in the one-rSNP case, for each individual, I simulate haplotype pairs based on 

probabilities analogous to those in (7), and the corresponding lnAER data with 

appropriate haplogenotype-specific mean and variance σ2. 
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4.4 Results  

In this section, I show the type I error rate and power of my five proposed tests for 

SNP-AEI association given one or two rSNP. My main goals are 1) to illustrate the 

similarities and differences in relative rankings of power for these tests over a wide range 

of scenarios and 2) to determine if patterns of the relative power are consistent enough to 

draw general conclusions about the most powerful test given existing information on the 

rSNP and tSNP to be tested (allele frequencies and LD between them). To do this I will 

focus on specific examples from a much larger set of simulations. 

 

4.4.1 Single rSNP 

Type I error  

I examined the type I error rates for the F, t, mixture-model based, minimum-p-

value, and combined-p-value tests of association between AEI and the potential rSNP 

using computer simulation. I considered LD levels between the rSNP and tSNP D'RT 

= .0, .1, …, .9, numbers of tSNP heterozygotes N = 25, 50, 100, and 500, rSNP allele 

frequencies pR = .1, .3, .5, .7, and .9, and tSNP frequencies pT = .1, .3, and .5. I found that 

in all cases examined, empirical type I error rate estimates based on 10,000 simulation 

replicates were consistent with nominal significance levels α = .01, .05, and .10. Figure 

4.3 shows results for N = 50 and 100, pR = pT = .3 for α = .05. For purpose of comparison, 

I included D'RT = 1 (highlighted by * in Figure 4.3), with type I error rates estimated for a 

t test comparing the sample mean of lnAER for rSNP heterozygotes to the corresponding 

sample mean of gDNA when pR = pT or to the sample mean of lnAER for the rSNP 

homozygotes when pR ≠ pT. This is true for all the figures.  
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Power 

Outline  Next I evaluated the power of the five tests at significance level α = .05 

as a function of these same values of LD levels D'RT, and allele frequencies pR and pT. 

For numbers of tSNP heterozygotes N and AEI rSNP effect sizes Rα , I considered 

combinations of N = 50, 100, and 500 and Rα of 0.3 to 1.2, chosen to achieve power in the 

range of 40 to 90% to yield informative comparisons. For example, when N = 100, I 

considered Rα = 0.6, 0.8, and 1.0. Throughout this section, I fixed variance σ2 = 1.   

Equal allele frequencies: impact of LD I first looked at the power of the tests 

under different levels of D'RT when the two SNPs have equal allele frequencies pR = pT, 

holding the other parameters constant. Figure 4.4A displays these results for pR = pT = .3, 

N = 100, and Rα = .8; I observed nearly identical patterns of the relative rankings of the 

power for pR = pT = .1 or .5 for (N, Rα ) = (50, 1.2) and (500, 0.3) (see below). My 

simulations demonstrate that the F test has the highest power among the five tests when 

the two SNPs are in LE or low LD (D'RT < .2), but power decreases dramatically as D'RT 

increases and is fairly low when D'RT is moderate or high (> .4) (Figure 4.4A). In contrast, 

the t test is the least powerful test when D'RT is low (< .2), but its power increases rapidly 

as D'RT increases, and it becomes the most powerful test when D'RT is moderate or high 

(> .6).   

This pattern holds because when rSNP and tSNP are in LE or low LD, on average 

~½ the rSNP heterozygotes have high lnAER and the remainder low lnAER, resulting in 

similar mean but increased variance in lnAER for rSNP heterozygotes compared to rSNP 

homozygotes (Figure 4.4B). For moderate to high D'RT, the majority of rSNP 
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heterozygotes are expected to have high (when h = RT
rt

 is the more common 

haplogenotype) or low (when h = rT
Rt

is the more common haplogenotype) lnAER 

(Figure 4.4B), resulting in a greater difference in mean lnAER between the Rr 

heterozygotes and the combined RR and rr homozygotes, but similar variances between 

the two groups.   

The mixture-model based test shows a trend similar to that of the t test as D'RT 

increases, but is substantially more powerful than the t test when D'RT < .3, the most 

powerful test when .1 < D'RT < .5, and only slightly less powerful than the t test when 

D'RT > .4 (Figure 4.4A). Here and elsewhere (see Figures 4.5, 4.6, 4.9), power for the 

minimum-p-value and combined-p-value tests generally are similar to those for the 

mixture model based-test, but the power for the mixture-model based test usually is 

greater and never is substantially less. 

As for the actual power values, the F test displays a monotonic decreasing trend 

as D'RT increases, while the other four tests display an increasing-and-then-decreasing 

trend with power maximized at an intermediate D'RT. This is because for high D'RT only a 

few individuals are rSNP homozygotes, conditional on the fact they are heterozygotes at 

the tSNP (Figure 4.4B). The small number of rSNP homozygotes results in poor 

estimation of 0μ and decreased power for the mixture-model based test, and the unbalance 

in numbers between the rSNP heterozygous and homozygous groups results in decreased 

power for the t test and consequently for the minimum- and combined-p-value tests. 
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Equal allele frequencies: impact of sample size and effect size I next evaluated 

the power of the tests varying the number of tSNP heterozygotes N and rSNP AEI effect 

size Rα while continuing to hold pR = pT = .1, .3, or .5.  

Figure 4.5 shows results for (N, Rα ) = (100, 0.8), (50, 1.2), and (500, 0.3) when pR 

= pT = .3. My simulations show that while power of the tests varies according to scenario, 

the relative rankings of the tests across different levels of LD remain similar for different 

(N, Rα ) combinations, except that the mixture-model based test is most powerful for a 

slightly broader range of LD levels when (N, Rα ) = (50, 1.2), and a narrower range when 

(N, Rα ) = (500, 0.3). I observed similar results for pR = pT = .1 or .5, and also for 

additional combinations of (N, Rα ) = (50, 1.0), (100, 0.6) and (100, 0.7) (data not shown).  

When Rα = 1.2 and N = 50, the mixture-model based test is most powerful for .1 < 

D'RT < .6 (Figure 4.5B) compared to .1 < D'RT < .5 when Rα = 0.8 and N = 100 (Figure 

4.5A). This is because the stronger AEI effect leads to two more separated clusters for 

rSNP heterozygotes, resulting in a better fit of the mixture model.  

When Rα = 0.3 and N = 500, the F test is most powerful when D'RT = 0, the 

mixture-model based test is most powerful only for D'RT = .2, and the t test is most 

powerful for a much wider range of LD (D'RT > .2) (Figure 4.5C). But in contrast to Rα = 

0.8 or 1.2, the power of all the tests when D'RT is low or high is much less than the 

powers for all but the F test when D'RT is moderate.  

Unequal allele frequencies I next evaluated the power of the tests varying the 

rSNP and tSNP allele frequencies pR and pT. Figure 6 displays results for pR = .1 and .3, 

pT = .3, N = 100, and Rα = .8. While power of the tests varies by scenario, the relative 
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rankings of the tests are generally consistent across different pR-pT combinations for fixed 

(N, Rα ) (data not shown). As for pR = pT, the F test is most powerful when D'RT is low 

(D'RT < .2) and the t test when D'RT is high (D'RT > .7), while the mixture-model based test 

is most powerful in a wider range of D'RT = .2 to .7 compared to D'RT = .2 to .4 when pR = 

pT (Figure 4.6AB). In addition, when pR and pT are sufficiently different, for all tests 

except the F test, power increases monotonically as D'RT increases, in contrast to an 

increasing-and-then-decreasing trend when pR = pT as described previously.     

 

4.4.2 Two rSNPs  

Type I error 

Outline I investigated the impact of a second (ungenotyped) rSNP on the type I 

error rates of the five tests to detect AEI association with the genotyped putative rSNP 

(Figures 4.7, 4.8). I assume here that the genotyped putative rSNP has no effect on 

lnAER (
GRα = 0) while the ungenotyped rSNP has mean effect size

URα = .8 and variance 

σ2 = 1. Figure 4.7 and 4.8 display the type I error rates evaluated for different LD 

structures between the three loci, assuming allele frequencies for the genotyped 

rSNP
GRp = .3, ungenotyped rSNP

URp = .1, and tSNP pT = .3. I also performed 

simulations for
GRp  = .1 and .5, and

URp = .3 and .5 (data not shown).  

Ungenotyped rSNP in LE with genotyped putative rSNP and tSNP When the 

ungenotyped rSNP is in LE with both the genotyped putative rSNP and the tSNP 

(
G UR RD' = 

UR TD' = 0,
GR TD' varies from 0 to 1), empirical type I error rates are consistent 

with nominal expectation for α = .05 (Figure 4.7A), and also for α = .01 and .10 (data not 
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shown). This is because the independent ungenotyped rSNP adds a similar amount of 

variability to lnAER for genotyped putative rSNP heterozygotes and homozygotes, 

resulting in a similar lnAER pattern as for the single rSNP case under the null hypothesis 

(Figure 4.7B).  

Ungenotyped rSNP in LD with genotyped putative rSNP and tSNP When the 

ungenotyped rSNP is in moderate LD with both the genotyped putative rSNP and the 

tSNP (
G UR RD' = 

UR TD' = .5,
GR TD' varies in the figure from 0 to 1), I observed both increase 

and decrease in the type I error rate from nominal expectations (Figure 4.8A), and the 

increase in type I error rate is more substantial compared to when the ungenotyped rSNP 

is in stronger LD with the tSNP (Figure 4.8B). In fact, this is not really a type I error, 

since the genotyped putative rSNP is serving as a proxy for the actual (ungenotyped) 

rSNP. Interestingly, I observed that the F test is conservative when the genotyped 

putative rSNP is in moderate or high LD with the tSNP (Figure 4.8A). This is because the 

variance of lnAER in the G GR r  heterozygotes could be smaller than that in the combined 

G GR R and G Gr r homozygotes when
UR TD' is high (balloon plot in Figure 4.8A) due to the 

presence of the second ungenotyped rSNP, causing the one-side F test to have a type I 

error rate smaller than nominal expectations. 

 

Power 

Outline Next I investigated the impact of a second ungenotyped rSNP on the 

power of the five tests. Here, I assumed the two rSNPs act additively on gene expression 

and have same effect size with mean
GRα = 

URα = .8. I observed similar results for 
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(N,
GRα = 

URα ) = (50, 1.2) and (500, 0.3) (data not shown), and report power under the 

same settings as considered above for type I error. 

Two rSNPs have same regulation direction and are in LE I first assumed that 

the minor alleles of the two rSNPs regulate gene expression in same direction. I found 

that when the ungenotyped rSNP is in LE with both the genotyped putative rSNP and the 

tSNP (
G UR RD' =

UR TD' = 0), the relative rankings of the tests are essentially unchanged 

compared to the single rSNP case, although the power of each test decreases slightly 

(Figures 4.4A, 4.9A). This is because the presence of the second ungenotyped rSNP 

increases variation of the lnAER data for all tSNP heterozygotes (Figure 4.9B).  

Two rSNPs have same regulation direction and are in LD When the second 

ungenotyped rSNP is in moderate LD with both the genotyped putative rSNP and the 

tSNP (
G UR RD' = 

UR TD'  = .5,
GR TD' varies in the figure from 0 to 1), I again observed 

generally unchanged relative rankings of the tests at each D' level between the genotyped 

putative rSNP and the tSNP (Figure 4.10A). However, the power of the tests increases 

slightly, due to the LD of the ungenotyped rSNP with the tSNP and the consistent 

direction of effect on AEI of the two rSNPs (Figure 4.10A). This power increase is more 

substantial when LD between the ungenotyped rSNP and the tSNP is higher (Figure 

4.10B) or, as expected, when the allele frequency of the ungenotyped rSNP
URp is higher 

(data not shown).  

Two rSNPs have opposite regulation direction and are in LD Next I assumed 

that the two rSNPs act additively but the minor alleles of the two rSNPs regulate gene 

expression in opposite directions. When the two rSNPs have similar allele frequencies 

and are in strong LD, as expected, the power of all tests is much lower compared to the 
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single rSNP case (data not shown). When the second ungenotyped rSNP is in moderate 

LD with the genotyped putative rSNP and the tSNP (
G UR RD' = 

UR TD'  = .5), the power of 

the F and mixture-model based tests decreases when the genotyped putative rSNP and the 

tSNP are in low LD (
GR TD'  < .4), resulting in a wider

GR TD' range (
GR TD'  > 0) for the t test 

to be the most powerful test compared to the single rSNP case (Figures 4.4A, 4.11A). 

Because part of the AEI effect of the two rSNPs cancels, when
GR TD' is low, we expect to 

see a smaller difference in lnAER variance between the G GR r heterozygotes and the 

combined G GR R and G Gr r homozygotes, and also to see two less separated clusters in 

the G GR r  heterozygotes (Figure 4.11B), which are likely to account for the power 

decrease for the F and mixture-model based tests respectively. 

 

4.5 Discussion 

Measurement of the relative expression levels of the two alleles of a gene can be 

used to identify cis-acting regulatory SNPs. Recent AEI studies have used samples such 

as the HapMap CEU with phase known data [Ge et al., 2009], while other studies have 

estimated haplotypes for the potential rSNPs and tSNP based on the LD between them 

and additional genotyped SNPs nearby, ignoring the possible errors in haplotype 

estimation [Tao et al., 2006; Alachkar et al., 2008]. While AEI data may be collected 

without phase information [for example, Marie Fogarty and Karen Mohlke, personal 

communication], few studies have tested for AEI when D' < 1 because of the lack of well 

evaluated methods. It is this situation on which I have focused in this chapter.    
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I initially proposed a t test, F test, and mixture-model based test of AEI-SNP 

association. The t test tends to be most powerful when the rSNP and tSNP are in high LD, 

while the F test tends to be most powerful when the two SNPs are in LE or low LD. The 

mixture-model based test, which explicitly acknowledges the expected mixed distribution 

nature of the data, tends to be the most powerful test when the rSNP and tSNP are in 

intermediate LD, and is not much less powerful than the F test when LD is low but not 

zero, and the t test when LD is high. To take advantage of the strengths of both the F and 

t tests under different levels of LD, I also proposed the minimum- and combined-p-value 

tests which use information from both the t and F tests. My simulations showed that the 

combined-p-value test is occasionally more powerful, and in most simulations only 

slightly less powerful than the mixture-model based test when the two SNPs are in 

moderate LD, suggesting an alternative to the mixture-model based test with the 

advantage of less computational complexity for investigators uncomfortable with a more 

complex statistical approach.   

For the mixture-model based test, I applied a two-component normal mixture 

model to the rSNP heterozygotes: RT
rt

and rT
Rt

. Teare et al. [2006] also proposed a 

mixture-model based method. The four components of their mixture model correspond to 

the two rSNP heterozygous haplogenotypes RT
rt

and rT
Rt

and the two rSNP homozygous 

haplogenotypes RT
Rt

and rT
rt

. Since the same information is available for both models, it is 

not obvious to us why their results differ.  

Teare et al. proposed the use of a likelihood ratio test (LRT) comparing the four-

component model to a one-component model given no AEI effect. Within the paper they 
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did not describe how to assess the significance of the LRT statistic. In further 

communication they stated that they compare their LRT statistic to a chi-squared 

distribution on one degree of freedom [Mauro Santibánez-Koref, personal 

communication]. In fact, the finite mixture model belongs to a non-regular parametric 

family and most classical asymptotic results do not apply, so that the limiting null 

distribution of the LRT for homogeneity is complicated and cannot be approximated this 

way [Hartigan, 1985; Chen and Chen, 2001]. Some investigators have suggested a 

modified likelihood ratio test which incorporates a penalty term in the likelihood to force 

the estimates away from the boundary of the parameter space [Chen and Kalbfleisch, 

1996; Chen, 1998; Chen et al., 2001]. This method requires specifying a parameter in the 

penalty term, and the choice of the parameter affects power of the test. I instead chose to 

use the parametric bootstrap to determine the significance of the LRT, a procedure 

described originally in this context by McLachlan [1987]. The bootstrap provides an 

estimate of the null distribution of the LRT based on the distribution parameters 

estimated from the observed data. McLachlan [1987] has shown that the type I error rate 

of this method is well controlled, which is also confirmed by my simulations.   

I initially assumed a single rSNP model for AEI. In fact, AEI could be due to 

more than one rSNP [see for example Ge et al., 2009]. To examine the sensitivity of the 

proposed tests to the presence of >1 rSNP, I studied the impact of an ungenotyped rSNP 

on the size and power of my tests to detect association between AEI and the genotyped 

(putative) rSNP. My simulations demonstrated that when the second ungenotyped rSNP 

is in LE with both the genotyped putative rSNP and the tSNP, the type I error rate of the 
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tests is well controlled and that the relative rankings of the powers of the various tests are 

essentially unchanged compared to the single rSNP case.  

When the ungenotyped rSNP is in LD with both the genotyped putative rSNP and 

the tSNP, my simulations demonstrate that the 'false positive' rate of the tests can be high, 

corresponding to the genotyped putative rSNP serving as a proxy for the ungenotyped 

rSNP. Thus, when an association between AEI and a potential rSNP is detected, we can 

at most infer that the AEI is due to the putative rSNP and/or one or more other rSNP(s) in 

LD with the genotyped putative rSNP.  

Given this LD structure, the relative rankings of the tests essentially remain 

unchanged, while the absolute power of the tests can either decrease or increase 

depending on the frequencies of the expression-increasing allele of the two rSNPs. When 

the two rSNPs are in high r2, there will be a substantial increase or decrease of power, 

depending on whether the rSNP expression-increasing alleles are on the same or opposite 

chromosomes.  

After extensive simulations in which I varied the allele frequencies from .1 to .9, 

the pairwise LD from 0 to 1, and the third order LD for the three loci from 0 to 1, I did 

identify two LD scenarios in which the second ungenotyped rSNP leads to inconsistent 

tests. In the first scenario, pairwise LD values for the three pairs of markers are all (near) 

zero, but the third-order LD is (near) one. In this case, there are four three-locus 

haplotypes G UR R T , G UR r t , G Ur R t , and G Ur r T , each with probability ~.25, and 

correspondingly four haplogenotypes G U

G U

R R T
R r t

, G U

G U

R R T
r R t

,  G U

G U

r r T
R r t

, and G U

G U

r r T
r R t

 also with 

probabilities ~.25. If the two rSNPs act additively and have same AEI effect size, the AEI 

data are expected to be identical in the rSNP heterozygotes and combined homozygotes. 
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As a consequence, the power of the proposed tests would equivalent to the type 1 error 

rate regardless of sample size. However, this scenario is unlikely to occur in real data 

[Nielsen et al., 2004]. I confirmed this through extensive search in the HapMap CEU 

samples. I examined at all three-SNP combinations in a 200 kb window on chromosome 

1 and estimated the three-locus haplotype frequencies for each combination. I did not find 

a single example even approximating this LD scenario. 

The second and more plausible scenario in which an ungenotyped rSNP results in 

tests with little or no power is when the two rSNPs are in strong LD (r2 ~ 1) and act 

additively with same effect sizes but in opposite directions on gene expression. In this 

case, the AEI effects of the two rSNPs cancel. 

While AEI has important advantages for studying gene expression, notably to 

explicitly detect cis-acting regulatory SNPs, it also has important limitations.  First, 

individuals used for analysis must be heterozygous for the transcribed SNP, which 

requires common SNPs in order to obtain a reasonable number of samples. Second, until 

recently allelic expression has been measured by low throughput procedures such as 

reverse transcription PCR (RT-PCR) [for example, Heighway et al., 2005]. However, 

with the development of next-generation sequencing technologies, high throughput allelic 

expression data has begun to be generated [Ge et al., 2009] and more will be available in 

the near future, so that we expect this limitation to be addressed.   

When the rSNP and tSNP have equal allele frequency and are in high D', my 

simulations show a decreased power for all the tests I proposed, due to smaller sample 

size for the rSNP homozygotes. In this situation, it will be useful to incorporate 

information from genomic DNA (gDNA) for all individuals. In this chapter, I focused on 
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the situation that the rSNP and tSNP are in incomplete LD (D' < 1). When D' = 1 and r2 < 

1, we could choose to compare the sample mean lnAEI of the cDNA for rSNP 

heterozygotes to that of rSNP homozygotes, or alternatively to that of gDNA for all 

individuals. For future work, I will consider developing tests which take advantage of the 

gDNA information and combine with the cDNA for rSNP homozygotes.  

My simulations indicate that the power of the most powerful tests maximize at 

different D' levels between the rSNP and tSNP in the various scenarios considered in my 

study. This information may prove useful for optimal design of AEI experiments to help 

choose the tSNP on which to focus when there are multiple tSNPs available in the gene 

of interest.  

As I proceed to write the manuscript based on this chapter, I plan to develop a test 

for analyzing AEI data when linkage phase is known, since some of the current AEI 

studies collected phased data [Serre et al., 2008; Ge et al., 2009]. This test will also be 

useful for providing an upper bound on the power of tests where phase is unknown and 

allow comparison of the relative merits of phase known and unknown data. In addition, I 

plan to study the asymptotic and empirical distributions of the likelihood ratio test (LRT) 

for the mixture model based test to assess the p-value of the LRT instead of using 

bootstrap. This has the potential to make computation much faster and consequently 

make the method more attractive when applied to large scale AEI studies.  

In summary, in this chapter I presented five testing procedures for association 

between AEI and a cis-acting rSNP when D’ < 1 between the rSNP and a tSNP and there 

is no phase information. I demonstrated that when AEI is due to a single rSNP, the power 

of the tests is affected by multiple factors, including the LD between the rSNP and tSNP 
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which has strong impact on the relative power, and the allele frequencies of the two SNPs, 

number of tSNP heterozygotes, and AEI effect size of the rSNP, which have less strong 

impact on the relative power. I further demonstrated that the presence of a second 

ungenotyped rSNP may reduce (or increase) statistical power, but does not impact type I 

error rate, seldom results in inconsistent tests, and tends not to modify the relative 

ranking of the tests. To maximize power to detect association between AEI and a cis-

acting regulatory SNP, I recommend the use of the F test when the rSNP and tSNP are in 

or near linkage equilibrium (D'~0). When the two SNPs are in linkage disequilibrium, in 

general, the mixture-model based test is most powerful for the intermediate LD levels, 

and the t test is typically most powerful for high LD.  
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Figure 4.1: The lnAER data patterns for three different LD structures between the rSNP 
and tSNP. 
  
A) 

 
 
B) 

 
 
C) 
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Figure 4.2: Balloon plot for expected lnAER data pattern with presence of a second 
ungenotyped rSNP. In this example, the two rSNPs and the tSNP are all mutually 
independent, and have same allele frequency

GRp = 
URp = pT = .5. Assume effect of the 

genotyped rSNP on lnAER is greater than that of the ungenotyped rSNP (
GRα >

URα ) and 
the two rSNPs act additively. Center and diameter of each circle represent mean lnAER 
and frequency of the corresponding haplogenotype(s) to its right, respectively. 
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Figure 4.3: Type I error rate at significance level α = .05 for the F, t, mixture-model based, 
minimum-p-value and combined-p-value tests. A) N = 50 tSNP heterozygotes, frequency 
of the rSNP expression-increasing allele pR = .3 and B) N = 100, pR = .3. The tSNP allele 
frequency pT = .3.  
 
A) 

 
B) 
 

 
 
P-value test is estimated using 1000 permutations for the F, t, minimum-p-value and 
combined-p-value, and 1000 bootstraps for the mixture-model based test; type I error rate 
for each test is calculated based on 10000 simulation replicates. 
*: t test to compare the mean of lnAER of the cDNA to that of the corresponding gDNA, 
assuming that for the gDNA, the mean and variance of logarithm ratio are equal to that of 
the cDNA for rSNP homozygotes. 
Same for Figure 4.4 - 4.11. 
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Figure 4.4: Impact of LD between the rSNP and tSNP on power at significance level α 
= .05 for the tests to detect association between AEI and the rSNP. N = 100 tSNP 
heterozygotes. The frequency of the rSNP expression-increasing allele pR = .3 and tSNP 
T allele pT = .3. Effect size of the rSNP on lnAER Rα = 0.8 with variance σ2 = 1. Mean 
lnAER in rSNP homozygotes 0μ = 0.  
 
A)          N = 100; Rα = 0.8;  pR = pT = .3 

 
 
B) 
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Figure 4.5: Impact of number of tSNP heterozygotes N and AEI effect size Rα of the 
rSNP on the power of the tests at significance level α = .05. A) N = 100, Rα = 0.8; B) N = 
50, Rα = 1.2; and C) N = 500, Rα = 0.3. The frequencies of the rSNP and tSNP are pR = pT 
= .3. The variance of lnAER σ2 = 1. Mean lnAER in rSNP homozygotes 0μ = 0. 
 
A)      N = 100; Rα = 0.8 

 
 
B)      N = 50; Rα = 1.2 

 
 
C)      N = 500; Rα = 0.3 
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Figure 4.6: Impact of the frequency pR of the rSNP expression-increasing allele on the 
power of the tests at significance level α = .05. A) pR = .3; and B) pR = .1. N = 100 tSNP 
heterozygotes with tSNP allele frequency pT = .3. Effect size of the rSNP on lnAER 

Rα = .8 with variance σ2 = 1. Mean lnAER in rSNP homozygotes 0μ = 0.  
 
A)      pR = .3 

 

 
 
B)      pR = .1  
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Figure 4.7: When a second ungenotyped rSNP independent from the genotyped putative 
rSNP and the tSNP (

G UR RD' = 
UR TD' = 0), type I error rate of the tests to detect association 

between AEI and the genotyped rSNP.   
 
A) 

 
 
B) 

 
 
Significance level α = .05. N = 100 tSNP heterozygotes with allele frequency pT = .3. 
Allele frequencies for the genotyped rSNP 

GRp = .3 and ungenotyped rSNPs
URp = .1. 

Effect size of the ungenotyped rSNP on lnAER
URα = Rα = .8 with variance σ2 = 1. Mean 

lnAER in rSNP homozygotes 0μ = 0.  
Same for Figure 4.8. 
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Figure 4.8: When a second ungenotyped rSNP in LD with the genotyped putative rSNP 
and the tSNP, type I error rate of the tests to detect association between AEI and the 
genotyped rSNP. A) 

G UR RD' = 
UR TD' = .5 and B) 

G UR RD' = .5, 
UR TD' = 1.  

A)      

 

 
 
B)*      

 

  
 
*: 

GR TD' maximizes at the level of .8 under the combination of the allele frequencies, 
pairwise LD and third order LD considered. Same for Figure 4.10B. 
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Figure 4.9: When a second ungenotyped rSNP independent from the genotyped putative 
rSNP and the tSNP (

G UR RD' = 
UR TD' = 0), power of the tests to detect association between 

AEI and the genotyped rSNP.  
 
A) 

 
 
B) 

 
 
Significance level α = .05. N = 100 tSNP heterozygotes with allele frequency pT = .3. 
Allele frequencies for the genotyped rSNP

GRp = .3 and ungenotyped rSNPs
URp = .1. The 

two rSNPs have equal effect size on lnAER
GRα = 

URα = Rα = .8 with variance σ2 = 1, and 
act additively with same direction on gene expression. Mean lnAER in rSNP 
homozygotes 0μ = 0. 
Same for Figure 4.10. 
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Figure 4.10: When a second ungenotyped rSNP in LD with the genotyped putative rSNP 
and the tSNP, power of the tests to detect association between AEI and the genotyped 
rSNP. A)

G UR RD' = 
UR TD' = .5; and B)

G UR RD' = .5, 
UR TD' = 1.  

 
A)      

 
 

 
 
B)      
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Figure 4.11: When a second ungenotyped rSNP with opposite regulation direction as the 
genotyped rSNP, power of the tests at significance level α = .05. LD between the 
ungenotyped rSNP with the genotyped rSNP and the tSNP

G UR RD' = 
UR TD'  = .5, and third 

order LD
G UR R TD' = 0. Allele frequencies for the genotyped rSNP and the tSNP

GRp = pT 
= .3, and ungenotyped rSNP

URp = .1. N = 100 tSNP heterozygotes. The two rSNPs have 
equal effect size on lnAER

GRα = 
URα  = Rα  = .8 with variance σ2 = 1. Mean lnAER in 

rSNP homozygotes 0μ = 0. 
 
A)            

 
 
B) 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

For the past three years, the genomewide association studies (GWAS) have 

rapidly grown in scale and complexity, and have provided new insights into complex 

disease genetics. For loci identified by GWAS, investigators are interested in genetic 

effect size to help understand the genetic contribution of these loci to the disease risk or 

trait variation, and moreover, to provide information for designing follow-up studies. 

Following GWAS, testing for association between gene expression and identified SNPs 

has the potential to help understand the relationship between these SNPs with the trait, 

and identify the gene(s) and variants most likely to influence the trait in identified regions 

that include multiple genes. In this dissertation, I have presented statistical methods to 

correct for the winner's curse in GWAS and so achieve more accurate estimation of 

genetic effect size. In addition, I have proposed testing procedures for using the allelic 

expression imbalance (AEI) to detect cis-acting regulatory SNPs.      

In Chapter 2 and 3, I studied the impact of winner's curse in the context of genetic 

case-control and quantitative trait (QT) association studies by analytically quantifying the 

upward bias for estimators of the genetic effect size. I also proposed ascertainment-

corrected maximum likelihood methods to reduce the bias of the estimators.  
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In Chapter 2, I focused on the estimates of the allele frequency difference and 

odds ratio (OR) in case-control association studies, measures often used to quantify the 

strength of the genetic effect in such studies. I showed that in realistic situations, these 

uncorrected (naïve) estimators can be substantially overestimated, and that the 

overestimation decreases as power increases. I demonstrated that in the typical power 

range for most large-scale genetic association studies, the ascertainment-corrected 

estimators result in reduced absolute bias compared to the naïve uncorrected estimators. I 

further extended these calculations to two-stage association studies, and found that for 

optimal two-stage designs [Skol et al., 2007], results are similar to those for the 

corresponding one-stage designs. [Xiao and Boehnke, 2009]  

In Chapter 3, I presented an extension of the winner's curse study in SNP-QT 

association studies, in which the genetic effect size is parameterized as the linear 

regression slope. My analytical calculation again demonstrated that the overestimation in 

the regression slope estimate decreases as power increases. To reduce the ascertainment 

bias, I proposed a three-parameter maximum likelihood method and also a simplified 

one-parameter model with the nuisance parameters excluded based on the asymptotic 

property of the linear regression model. I showed that both likelihood methods reduce the 

bias when power to detect association is low or moderate, and the one-parameter model 

generally results in a slope estimator with smaller variance. 

I found that, as with other methods [Sun and Bull, 2005; Zöllner and Pritchard, 

2007; Zhong and Prentice, 2008], the ascertainment-corrected estimators in both case-

control and QT association studies tend to underestimate the effect size, in contrast to the 

naïve estimators which result in overestimation. Zhong and Prentice [2008] proposed a 
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mean-square-error (MSE) weighted estimator for the OR in logistic regression model, 

which is a linear combination of the naïve and corrected estimators. This MSE weighted 

estimator improves the bias-correction when study power is high. In an effort better to 

address the overcorrection problem in winner's cures studies, for future work, I plan to 

use an empirical Bayes method [Carlin and Louis, 2000] utilizing information from 

GWAS to help define a prior distribution for the genetic effect size. 

In Chapter 4, I described testing procedures for using AEI to detect cis-acting 

regulatory SNPs (rSNP), focusing on the situation when the rSNP and a transcribed SNP 

(tSNP) are in incomplete linkage disequilibrium (LD) and there is no phase information 

for the two SNPs. I initially assumed that the AEI is due to a single rSNP, and modeled 

the AEI data as a mixture of normal distributions depending on the haplogenotype of the 

rSNP and tSNP. I proposed simple t and F tests which ignore the nature of the mixing 

distribution, and also a mixture-model based test which incorporates this nature. My 

simulations showed that the type I error rates for all tests are well controlled, and the 

relative power of the tests depends on the LD between the rSNP and tSNP, allele 

frequencies of the SNPs, AEI effect size of the rSNP, and number of tSNP heterozygotes. 

I further investigated how sensitive these tests are to the violation of the single-rSNP 

assumption, and found that a second ungenotyped rSNP may reduce power of the tests 

but almost never invalidates the proposed tests nor substantially changes the rankings of 

the tests for a given level of LD between the genotyped rSNP and the tSNP.   

For the mixture-model based test in Chapter 4, I estimated the frequencies of the 

two rSNP heterozygous haplogenotypes by the mixing proportion π of the mixture model. 

In practice, the two haplogenotype frequencies could be estimated based on additional 
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genotyped SNPs surrounding the rSNP or the tSNP, or an external source of phased data, 

for example, the HapMap data. In future work, I will consider an extension of the AEI 

analysis in a Bayesian framework, which incorporates this prior information on π to help 

infer the haplogenotype frequencies. I also plan to develop methods combining the AEI 

with the total expression level of the two alleles of the gene to infer jointly the association 

strength between the rSNP and the candidate gene.  

Until recently AEI was measured by low-throughput procedures [e.g., Melani et 

al., 2007], which has limited the application of this method. With the development of 

next-generation sequencing technologies and the ongoing 1000 Genomes Project, high 

throughput allelic expression data has begun to be generated [Ge et al., 2009] and more 

will be available in the near future. Chapter 4 provides a quantitative framework for using 

the AEI to identify the potential regulatory variants identified in large scale sequencing 

studies, and ultimately, may provide new insight into the relationships between gene 

regulation and disease. 
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