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ABSTRACT 

The research presented in this document examines the results of melding three diesel 

engine emissions reduction methodologies: partially premixed low temperature 

combustion (LTC); the use of alternative, biodiesel fuel; and aftertreatment using a diesel 

oxidation catalyst (DOC). It shows how alternative fuels and novel combustion strategies 

complement each other on one hand and create new emissions challenges on the other. 

Partially premixed LTC simultaneously reduces soot and NOX emissions for both 

biodiesel and petroleum diesel fuels. The use of biodiesel in LTC has added benefits of 

lowering total hydrocarbon (THC) and CO emissions and reducing soot emissions to near 

undetectable levels. Light hydrocarbon species like ethylene emitted from biodiesel LTC 

as a fraction of THC are higher independent of ignition delay indicating that biodiesel 

burns more completely and results in less unburned hydrocarbon (UHC) emissions than 

petroleum diesel. However, the generally higher gas-phase UHC emissions from LTC 

compared to conventional combustion results in excessive particulate matter (PM) for 

biodiesel due to heterogeneous condensation of methyl esters onto soot particles after 

dilution with atmospheric air. In the work presented here, this condensation process 

resulted in over an order of magnitude increase in PM emissions for B100 in a late 

injection LTC condition (LLTC) compared to petroleum-derived fuels. For an early 

injection LTC (ELTC) condition, PM emissions were almost 100 times higher than the 

diesel fuels tested. Low vapor pressure methyl esters making up biodiesel have a near 
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95% conversion from the gas to the particle phase with an undiluted exhaust UHC 

concentration of 1000 ppm for a 10:1 dilution ratio and 47°C collection temperature. 

Although the use of biodiesel in LTC increases PM emissions significantly following 

dilution of the raw exhaust, the results of this work indicate that 80% of UHC in the 

exhaust is oxidized by a standard DOC with inlet temperature of 240°C. Unfortunately, 

the remaining unburned biodiesel left unconverted still significantly contributes to the 

PM following dilution. Methyl esters were found to be the primary species contributing 

to the higher total organic fraction (>90%) on the PM for biodiesel compared with diesel 

LLTC following a DOC. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Motivation 

Internal combustion engines are a ubiquitous force in the everyday life of humanity as 

we know it today. The conversion of stored chemical energy contained in fuels through 

heat to produce mechanical work allows the mechanization of society at power levels in 

Watts from one to one million. Although their practical use has been well established for 

well over one hundred years, the complexity of engines provides an ongoing challenge to 

scientists and engineers to this day. 

With inherently high thermal efficiency, ability to burn heavier fuels than gasoline, 

excellent durability and high torque capability, diesel-fueled compression ignition 

engines have a multitude of practical uses. In 2008, the United States consumed over 60 

billion gallons of diesel fuel (EIA, 2009) in diverse applications such as agriculture, 

construction, industrial, marine, and on-highway applications. Projections are that diesel 

fuel use will continue to grow, especially if more passenger cars start to utilize diesel 

engines to improve fuel economy. 

Scientists in recent years have concluded that the increasing atmospheric 

concentration of anthropogenic carbon emissions from sources including fossil fuel-
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burning engines have a direct impact on the climate of the earth (IPCC, 2007). Logically, 

partially replacing gasoline engines with more efficient diesel engines would help in the 

global effort to reduce CO2 emissions from engine-related sources, particularly in the 

transportation sector. However, concerns over high emissions of species like oxides of 

nitrogen (NOX), volatile organic compounds (VOCs), CO and particulate matter (PM) 

have restricted more widespread growth of diesel engines. Such species are harmful to 

both humans and the environment and are therefore regulated by agencies like the United 

States Environmental Protection Agency (US-EPA). 

NOX includes the chemical species NO and NO2 produced at high temperatures in the 

combustion chamber from both N2 in the air used by the engine and sometimes from fuel-

borne nitrogen. In the atmosphere, NO and NO2 are in thermodynamic equilibrium 

depending on the amount of solar irradiation. NOX reacts with moisture in the air and 

other species to eventually form nitric acid, one of the most water soluble gases found the 

atmosphere thus contributing to acid rain. NOX also reacts with VOCs via the OH radical 

in the atmosphere in the presence of sunlight to make troposphere ozone, more 

commonly known as smog. Ground level ozone has been definitively linked with 

respiratory disease in humans.  

VOCs are organic chemical compounds that have high enough vapor pressures under 

normal conditions to significantly vaporize and enter the atmosphere. They are also 

defined by having low water solubility. The US-EPA defines a VOC as “any organic 

compound that participates in atmospheric photochemical reactions except those 

designated by the EPA as having negligible photochemical reactivity” (US-EPA 40 CFR 

Part 51.100).  Important gaseous species from diesel combustion related to incomplete 
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combustion that fall outside the definition include hydrocarbons like methane (CH4) and 

ethane (C2H6), inorganic carbon species like carbon monoxide (CO) and carbon dioxide 

(CO2), and hydrogen (H2). These unregulated species are also investigated in this work. 

All organic species with low carbon number including CH4 and VOCs are termed light 

hydrocarbons (LHC) for the purposes of this study. 

Not only do some LHCs originating from incomplete combustion in diesel engines 

photochemically react with NOX in the atmosphere to form smog, they can be harmful in 

their own right. They are generally produced by diesel engines as a byproduct of 

incomplete combustion of fuel or from the engine lubricant. Methane is the most 

common LHC in the atmosphere and is known to be an efficient greenhouse gas. 

Benzene, a cyclic hydrocarbon byproduct of combustion is a known human carcinogen. 

Other LHCs from diesel combustion like formaldehyde and 1,3 butadiene are probable 

human carcinogens according to the California Air Resources Board (Seinfeld, 1996, pp. 

110). 

CO is not defined as a VOC since it is not considered to be photochemically reactive 

though it is formed from similar processes in diesel engines. However, it is toxic to 

humans where it forms a stable complex of carboxyhemoglobin in red blood cells, 

prohibiting the delivery of oxygen to the body. Concentrations of 600 ppm can cause 

death in humans in as little as ten hours of exposure (Seinfeld, 1986, pp.85). 

PM includes all solid and liquid-phase compounds, except water, in the atmosphere. 

Diesel engines emit PM as both carbonaceous soot and organic species forming mainly 

from rich partial combustion processes and from collection on established particle nuclei 
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in the exhaust. The health effects of particulates are many and sometimes proceed 

through complex pathways. Although PM from engines is generally regulated on a mass 

basis, its health effects are more dependent on the size of the particle. The size ranges of 

particles are defined in many different ways. Figure 1.1 graphically shows how different 

types of particles compare in terms of their size in a figure adapted from Eastwood (2008, 

pp. 26). In the discussion of PM emissions, the terminology PM2.5 and PM10 are 

generally used to define particles of size 2.5 μm and smaller and 10 μm and smaller 

respectively. Nanoparticles are defined as those with diameters less than 100 nm. High 

pressure diesel fuel injectors generate particles from 1 to over 200 μm, orders of 

magnitude larger than the PM created by the combustion process they enable. 

 

Figure 1.1: Terminology of particle size ranges and sizes of common PM compared with 

electromagnetic wavelengths adapted from Eastwood (2008, pp. 26). 

Risk to human health from PM depends heavily upon the point of deposition in the 

respiratory tract. Smaller particles like ultrafines are generally deposited via diffusion and 

larger particles by sedimentation or inertia (Eastwood, 2008) leaving a middle region of 
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particle size from about 100 – 1000 nm where less deposition occurs. Smaller particles 

generally go deeper into the respiratory system where they have been shown to have 

mutagenic effects. Larger particles which deposit in the upper respiratory tract have been 

proven to contribute to bronchitis and asthma among other ailments. PM from diesel 

engine emissions has also been implicated in cardiovascular illness (Seaton et al., 1995) 

prompting investigation into further reduction in ultrafine particles. 

Regulations have been enacted worldwide to enforce the limitations on the amount of 

NOX, VOCs, CO and PM that can be emitted by vehicles. The US-EPA Tier 2 Bin 5 

emissions rule in effect for passenger car vehicles from the model year 2007 is an 

example of such a regulation. Jacobs (2005) summarized the allowed emissions levels 

succinctly by expressing the regulated grams of pollutant, i per mile (Si) in terms of 

emissions index (EIi) given in grams of pollutant emitted per kilogram of fuel used in an 

engine as given in Equation 1.1. 

 (1.1) 

Based on Equation 1.1, the regulated emissions in EI for various vehicle fuel 

economy (FE) values in miles per gallon (MPG) are shown in Table 1.1 for the Tier 2 Bin 

5 regulation. Although meeting government emissions targets is not the goal of this work, 

the values in Table 1.1 are useful numbers for putting emissions data presented later into 

a more practical perspective. For this regulation, total hydrocarbon (THC) emissions are 

categorized as non-methane organic gases (NMOG). This captures all hydrocarbons 

excluding methane for which no significant human health effects have been reported.  
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Table 1.1: Regulated EI emissions based on the US-EPA Tier 2 Bin 5 standards per 

vehicle fuel economy from Equation 1.1 with ρfuel = 0.81 kg/liter. 

MPG NMOG CO NOX PM 

25 0.72 33.45 0.56 0.08 

30 0.86 40.14 0.67 0.10 

35 1.00 46.83 0.78 0.11 

40 1.15 53.52 0.89 0.13 

45 1.29 60.22 1.00 0.14 

 

Harmful emissions reductions in diesel engines can be achieved in three primary 

ways: by eliminating them from the exhaust using aftertreatment systems; by reducing 

the formation of species during combustion; or by using an alternative fuel. Installing 

catalytic aftertreatment devices in the exhaust of spark-ignited engines has proven to be a 

simple and relatively cost effective method for emissions reduction. Since the advent of 

the three-way catalyst, only one reactor is needed to eliminate NOX, THC and CO 

simultaneously provided the engine fuel to air mixture remains approximately 

stoichiometric. Diesel engines inherently operate fuel-lean of stoichiometric and cannot 

utilize a three-way catalyst. Current technology requires a series of reactors to remove the 

desired species. One example of such a system used by engine manufacturers includes a 

diesel oxidation catalyst (DOC) which can be used to convert hydrocarbon species and 

CO, a urea selective catalytic reduction reactor can then be installed to reduce NOX to N2 

and finally a diesel particulate filter can be used to remove PM. Many variations of 

aftertreatment systems have been proposed (Majewski and Khair, 2006) and some have 

been implemented in production vehicles with considerable success though they have 

proven to be quite costly to implement in practice. 
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As an alternative to treating the exhaust, eliminating or reducing the production of 

harmful species during combustion is an attractive option for emissions reduction. 

Advanced technologies like high-pressure injection systems, optimized combustion 

chamber design, cooled exhaust gas recirculation (EGR) and turbocharging have enabled 

the exploration of novel combustion regimes not possible in the early days of diesel 

engines. Partially premixed low temperature combustion (LTC), the methodology 

described in this work, utilizes recent advancements in engine design to simultaneously 

reduce NOX and PM. LTC is not without downsides since CO and THC emissions are 

generally higher than for conventional combustion and the speed and load range of 

operation is limited. 

Utilizing alternative fuels is a third method for reducing harmful emissions from 

diesel engines. Biodiesel, the fuel explored in this work, is a fatty acid methyl ester 

(FAME) produced from natural oil sources and has been shown to reduce many 

pollutants from diesel engines such as CO, THC and PM (Agarwal,2006, Lapuerta et al., 

2008). Most reductions in emissions from the use of biodiesel are assumed to be due to 

the oxygen contained in the fuel providing oxidant in fuel rich areas of the combustion 

chamber. Biofuels, including biodiesel, have an additional benefit of reducing overall 

CO2 emissions of an engine since a portion of the fuel can be made from renewable 

sources. 

Government regulations have been put in place to encourage the production of 

biofuels. In the United States, the Renewable Fuels Standard (RFS) originally established 

by Congress in 2005 and later expanded in 2007 (US-EPA 40 CFR Part 80) requires that 

13 billion gallons of renewable fuels be blended into petroleum motor vehicle fuels, 
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including diesel and gasoline-like products by 2019 increasing to 36 billion gallons in 

2022 which accounts for almost 25 percent of fuel production in the United States based 

on today’s consumption levels (EIA, 2009). A revision to the RFS was proposed in 2009 

(US Federal Register Vol. 74 No. 99) to better define the renewability of biofuels 

meeting the standard. Under this new standard, “biomass-based diesel” includes biodiesel 

and is mandated to reduce greenhouse gas emissions by 50% from the baseline petroleum 

diesel fuel it replaces. The impetus for a revised standard reveals a disadvantage of 

biodiesel as it is currently produced since considerable energy from non-renewable 

sources is required in its manufacture. Current studies place biodiesel between 22% 

reduction in GHG emissions from the baseline fuel (EPA, 2009) to 80% (Biodiesel 

Board, 2009). Regardless of how it is manufactured, biodiesel use is increasing. The 

revised RFS mandates fuel suppliers in the US blend 0.71% biodiesel into diesel fuel by 

2010 accounting for approximately 426 million gallons of total biodiesel use based on 

2008 consumption figures. Europe has also adopted aggressive goals to implement 

renewable fuels. Current standards mandate reaching a minimum of 5.75% biofuels by 

2010 of which most is estimated to be biodiesel (Bozbas, 2008) since over 50% of 

European passenger cars are diesel-powered (Palmen, 2007). 

The work presented in this dissertation examines the results of melding the three 

emissions reduction methodologies described above. In implementing biodiesel with 

partially premixed LTC strategies and aftertreatment, this research examines how an 

alternative fuel and novel combustion strategies complement each other on one hand and 

create new emissions challenges on the other. The work shows that the development of 

new fuels cannot be considered completely independently of the engine they enable. As 
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Lyle Cummins eloquently states in Internal Flame (Cummins, 1989), engine researchers 

face a “challenge in a real liquid fuel energy shortage that will come within the lifetime 

of many now living. As we plunge into the seeking of solutions to our dilemma, we must 

never forget that an engine and the fuel it consumes are inseparable partners; the one 

cannot progress without the full cooperation from the other."  

1.2 Conventional Diesel Combustion 

The ideal constant pressure engine cycle was conceived by Rudolf Diesel more than 

100 years ago. Unlike previous engine concepts, Diesel's "Rational Motor" was designed 

entirely using thermodynamic principles before a prototype was constructed. By utilizing 

near constant pressure combustion in the expansion stroke, Diesel hoped to more closely 

realize the ideal Carnot Cycle (Diesel, 1897) to improve the thermal efficiency of 

engines. To achieve this goal, a slow diffusion burn process was conceived where fuel is 

injected into the cylinder as combustion occurs.  

The progression of conventional diesel engine combustion can be described in the 

following manner. First, fuel is injected into the combustion chamber near top dead 

center of the compression stroke there mixing with the surrounding air and residual 

combustion products from the last cycle. This fuel is highly atomized and partially 

vaporizes. Since the surrounding gases are near or above the auto-ignition point of the 

fuel-air mixture, combustion begins within a few crank angle degrees. The combustion 

and continuing compression of the gases in the cylinder further evaporate the fuel spray 

and fuel continues to mix and burn. All of the fuel proceeds through injection, mixing 

and combustion until it is completely expended. 
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There are many advantages of the diesel process with comparison to that of spark-

ignited engines. Firstly, there is no knock limitation since fuel is injected very shortly 

before combustion begins. Therefore, higher compression ratios can be used in diesel 

engines increasing thermal efficiency. Also, since the desired load of the engine is 

controlled by the amount of fuel injected per cycle, the mass of air in the cylinder for a 

given engine speed is almost constant. This requires lower pumping work at part load 

compared with spark-ignited engines which use a throttle to lower the mass of premixed 

fuel and air allowed into the cylinder to control load. 

Diesel engines are also more suited towards turbocharging due to the elimination of 

the throttle valve thus more effectively increasing cycle efficiency. Naturally aspirated 

diesel engines are limited in maximum mean effective pressure (MEP) due to the limited 

time available to completely combust large quantities of fuel. If the injection process lasts 

too long, smoke emissions will increase. Increasing cylinder pressure by turbocharging 

allows a higher rate of mixing and more fuel to be burned thus directly altering the torque 

output of the engine. Finally, since the diesel engine always operates with globally lean 

equivalence ratio, the effective value of the ratio of specific heats (λ) over the expansion 

process is larger than for spark ignited engines. This has the effect of increasing fuel 

conversion efficiency for a given expansion ratio.  

Achieving rapid mixing is the most difficult challenge of diesel engines since this 

controls the burning rate of the fuel. At maximum rated power, the mean piston speed of 

large and small diesel engines is approximately the same. Thus for a fixed crank angle 

interval allowed for combustion, the time required for mixing is proportional to the 
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stroke. In small direct injection engines, the mixing is greatly enhanced by creating swirl 

in the combustion chamber and by increasing the injection pressure to improve 

atomization of the fuel to account for the shorter allowable time.  

The diesel combustion process can be described by four primary events (Heywood, 

1988). Ignition delay describes the time from the start of injection (SOI) of fuel into the 

cylinder to the start of combustion (SOC). For the work described here, SOC is defined 

as the crank angle degree that the apparent rate of heat release (RoHR) crosses the x-axis 

of a heat release rate versus crank angle plot. The second stage is the premixed 

combustion phase. During this time in the cycle, fuel that has mixed with air within 

flammability limits combusts. This is generally a rapid event and, for conventional diesel 

combustion, occurs faster than the time required to mix the remaining fuel. This leads to 

the third stage of combustion, the diffusion burn or mixing-controlled phase. The rate of 

combustion here is primarily controlled by the rate at which fuel is vaporized and mixes 

with air. The late combustion phase is when residual fuel pockets continue to burn and 

soot created in the earlier stages oxidizes. As the temperature of the gases fall during 

expansion, the rate of late combustion decreases. 

Dec et al. (1997) in often-cited work further solidified understanding of the stages of 

diesel combustion using optical methods. In their work, they identified when the 

formation of soot and oxides of nitrogen (NOX) occurred in the diesel flame. By looking 

at the period from the time fuel injection began to when it ended, they were able to gain 

new insight into ignition delay and premixed combustion through the early stages of 

diffusion burn. They devised a schematic, shown in Figure 1.2 that illustrates where soot 
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and NOX creation zones are located. During premixed combustion both just as the 

injected fuel begins to burn and also during any premixed burning occurring during the 

mixing controlled phase of combustion, the mixture has a very high equivalence ratio and 

therefore does not tend to generate NOX by either thermal or prompt mechanisms. 

However, NOX is formed on the periphery of the diffusion flame where temperatures are 

high due to near-stoichiometric combustion as shown in the figure. 

 

Figure 1.2: Illustration from Dec et al. (1997) showing the regions of soot and NOX 

production in diesel combustion 

Soot formation occurs downstream of the standing premixed flame just behind the 

fuel jet. Here, rich combustion products break down into precursor species leading to the 

inception of carbonaceous particles. Soot oxidation is also thought to occur during the 

diffusion burn phase along the outside of the flame where oxygen is present and 

temperatures are high enough to promote pyrolysis reactions. 
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HC and CO are created as a result of incomplete combustion and are mainly created 

in over-lean and over-rich zones of the flame (Turns, 1996, pp.488). Fuel lean areas 

located on the periphery of the diffusion flame have O2 concentrations greater than the 

flammability limits and therefore do not burn completely. Over-rich areas in the center of 

the diffusion flame have inadequate O2 to consume all the fuel, creating products of 

partial oxidation. 

Fuel properties have a significant impact on diesel combustion. Density, vaporization 

range, and viscosity are among the important factors. Since the processes described above 

all depend on the mixing of the injected fuel with the air and residual gases present in the 

cylinder, the penetration, spray particle size distribution and volatility of the fuel can 

impact ignition and the resulting combustion processes. It is desirable to have consistent 

properties of fuels such that engine performance and emissions do not suffer. 

Fuel chemical composition is even more important than physical properties when 

considering the ignition characteristics of a fuel. Large straight-chain paraffins, like n-

alkanes have the highest ignition quality which increases with hydrocarbon chain length. 

Aromatic species like benzene and alcohols lower the ignition quality (Gülder et al., 

1985).  

The cetane number (CN) is a useful property that indicates the ignition quality of a 

fuel. It is determined by comparing the ignition delay of a fuel to a primary reference fuel 

on a standardized test engine. Using this single metric the CN is a concise parameter for 

categorizing the ignition characteristics of a fuel taking into account its diverse chemical 

makeup. 
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1.3 Premixed Low Temperature Combustion 

One classical feature of diesel combustion is the soot-NOX tradeoff. Soot and NOX 

are the primary emissions from conventional diesel combustion as mentioned in Section 

1.2 and arise primarily during the mixing controlled phase. In conventional combustion, 

it is generally found that any decrease in NOX emissions leads to an increase in soot 

emissions and vice versa. For example, advancing injection timing tends to increase the 

premixed burn portion of combustion thus creating higher temperature conditions needed 

for NOX formation. This increased premixing however lowers the fraction of over fuel-

rich areas in combustion, reducing soot formation. 

As a more complex example of this tradeoff, increasing EGR increases the heat 

capacity of the mixture in the combustion chamber and reduces the overall combustion 

temperature, decreasing NOX. Further, ignition delay is increased with increasing EGR 

allowing more mixing which alone would cause a lowering of local equivalence ratios. 

However, dilution with EGR lowers O2 concentration and tends to counter that effect 

where mixing-controlled combustion is still present. This can raise local equivalence 

ratios creating more soot. Recent work has shown that by extending ignition delay such 

that the mixing controlled phase is eliminated, the soot versus NOX tradeoff can be 

largely avoided (Jacobs, 2007). This concept sets the foundation for diesel premixed low 

temperature combustion (LTC). 

Kamimoto and Bae (1996), in shock-tube experiments, explored the dependency of 

soot and NOX on temperature and local equivalence ratio (φ) opening up the idea that 

diesel combustion could have simultaneously low soot and NOX. In their work, they 
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showed that soot formation does not occur due to active fragmentation at temperatures 

over 2600 K. They also found that there is a high temperature, fuel-rich regime in which 

thermal NOX is not produced due to lack of oxygen. By looking at diesel combustion in a 

φ-T space it is possible to identify regions where neither soot nor NOX are present. Figure 

1.3 shows a φ versus temperature plot adapted from Kook et al. (2005) where the shaded 

region 1 is the high temperature diesel combustion mode identified by Kamimoto and 

Bae. 

 

Figure 1.3: Local φ versus temperature plot with soot and NOX islands adapted from 

Kook et al. (2005). Numerical values from Kitamura et al. (2002) from numerical 

simulation of n-heptane and air at 6 MPa and a residence time of 2 ms. Region 1- high 

temperature smokeless combustion from Kamimoto and Bae (1996), Region 2- Premixed 

low temperature combustion, Region 3 – HCCI combustion 

Other researchers like Akihama et al. (2001) and Kimura et al. (2001) experimented 

with a region of combustion at lower temperature. They found that by increasing the 

EGR rate and retarding injection timing, ignition delay increased and combustion was 

primarily premixed with little diffusion burn. The increased ignition delay helped to 

2 

3 
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improve air and fuel mixing prior to combustion and to avoid high flame temperature 

regions. The high dilution caused by heavy EGR also contributed to lower temperature 

combustion. Region 2 in Figure 1.3 shows the premixed low temperature combustion 

region on the φ versus temperature plot. Akihama et al. deduced that this mode of 

combustion can be achieved at a wide range of global equivalence ratios. Jacobs et al. 

(2005) experimented with both lean and rich premixed low temperature strategies and 

maintained simultaneously low soot and NOX for both. 

Homogeneous charge compression ignition (HCCI) engines can also operate in a 

region where soot and NOX are simultaneously reduced. This type of combustion 

premixes fuel and air in the intake manifold or injects fuel into the combustion chamber 

early in the compression stroke, allowing fuel and air adequate time to completely mix. It 

results in a very narrow band of φ in the fuel-lean regime during combustion and a wide 

range of temperature as is shown in region 3 on Figure 1.3. By advancing fuel injection 

timing very early in the compression stroke, Kimura et al. (1999) showed that a NOX 

could be reduced by 98% compared with conventional diesel combustion at low load. 

Disadvantages of the early injection strategy include extremely high HC and CO 

emissions compared with the late injection strategy due to fuel wall wetting (Shimazaki 

et al., 2007) and practical limitations on load due to excessive combustion noise and the 

potential of diesel knock.  

Modes of LTC discussed here are centered on those illustrated by region 2 in Figure 

1.3 where fuel is injected in the range of top dead center (TDC) to 40° BTDC. Early 

strategies within this range like that described by Lechner et al. (2005) allow for a greater 
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amount of mixing before combustion occurs but have less control over the location of 

peak pressure, limiting the maximum load they can attain. With injection timing retarded 

to near TDC, more control over combustion phasing can be attained. Late LTC strategies 

like those developed by Kimura et al. (2001) utilize high injection pressures and lowered 

compression ratio to slow ignition delay such that adequate premixing can occur. 

The criteria for developing premixed LTC, although appearing simple from Figure 

1.3, are complex in practice since local temperatures and φ in the cylinder are not 

typically measured. EGR rate is the key enabler of LTC development and is an easier 

parameter to measure using standard emissions equipment. One way to identify the LTC 

region is to observe the trends in soot and NOX emissions as EGR changes. LTC is 

identified by observing that both species decrease with an increase in EGR rate, thus 

defeating the soot versus NOX tradeoff.   

A more concise criterion for the development of premixed LTC is to control ignition 

delay to be longer than injection duration (Kimura et al, 2002). By accomplishing this, 

the diffusion burn portion is generally reduced considerably and combustion is primarily 

premixed. Ignition delay and premixed combustion can be easily identified on a rate of 

heat release and injection current versus crank angle plot. 

The use of early and late LTC strategies is limited by engine load. The early LTC 

condition is restricted to low loads since as fueling rate increases, peak cylinder pressure 

and temperature become very high near TDC and danger of incurring diesel knock 

occurs. Late injection LTC can be used at higher loads since combustion is more retarded 

away from TDC. As the fueling rate continues to increase for a given speed, late LTC is 
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more difficult to attain since it becomes impossible to set the ignition delay longer than 

the injection duration. As this limit approaches, more diffusion burn is present thereby 

reinstating the soot versus NOX tradeoff. Knafl et al. (2006) explored the load limits of 

premixed LTC in a 4 cylinder DI diesel engine at 1500 rpm and found that an early 

injection strategy almost completely eliminated soot and NOX at brake mean effective 

pressures (BMEP) less than 200 kPa. A late premixed strategy was chosen for loads 

above 200 kPa. It was found that soot emissions and combustion noise increased with 

load and the maximum load achieving suitably low emissions was 700kPa. 

LTC has other disadvantages when compared to conventional diesel combustion in 

addition to load limitations. One issue is higher CO and THC emissions due primarily to 

unburned and partially combusted fuel escaping the premixed burn process from over-

lean pockets in the combustion chamber. These emissions are generally not high in 

conventional combustion due to the extended time allowed for combustion to occur. 

Jacobs et al. (2005) reported about two times the THC emissions and 20 times the amount 

of CO on an emissions index basis for a late premixed LTC condition versus a best brake 

specific fuel consumption (BSFC) conventional case with no EGR at the same fueling 

rate in a 4 cylinder DI diesel engine operating at 1500 rpm. A related disadvantage to 

higher THC and CO emissions is higher BSFC due lower combustion efficiency. 

Although LTC exhibits mainly premixed combustion, fuel is still injected directly 

into the cylinder which leads to some degree of stratification regardless of the time of 

injection. Using optical methods Musculus et al. (2009) devised an analogous concept for 

LTC to that shown in Figure 1.2 for conventional combustion. In comparing this 
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illustration to that shown in Figure 1.4, the concept for LTC combustion is quite 

different.  

 

Figure 1.4: Graphical representation of diesel premixed low temperature combustion 

adapted from Musculus et al. (2009) 

One interesting feature of the scheme is that remnants of the fuel spray are still 

evident as combustion occurs. Since for most LTC conditions, the injection event is 

complete by ignition, the fuel spray shape is allowed to penetrate the combustion 

chamber and create a fuel rich zone downstream as shown in the figure. Genzale et al. 

(2008) in an optical study of a late-injection LTC condition found that equivalence ratios 

in this region reached approximately 1.4 and decreased rapidly back towards the injection 

point. Near the injector, the fuel from the end of the injection event is over mixed. Much 

of the unburned hydrocarbon emissions from LTC are assumed to originate from this 

very lean region near the injector (Musculus et al., 2007).  
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1.4 Biodiesel 

Vegetable-based fuels as a substitute for petroleum diesel were proposed very early in 

the history of diesel engines. In fact, it is commonly purported that Rudolf Diesel ran an 

engine in the 1900 Paris Exhibition on peanut oil (Knothe, 2001). Although this engine 

was designed to operate on mineral fuel, it was able to run on vegetable oils without any 

alterations. The desire to run engines on fuels other than those from petroleum sources 

was mostly motivated by recognition of the finite availability of petroleum. Diesel 

himself stated, “In any case, they make it certain that motor-power can still be produced 

from the heat of the sun, which is always available for agricultural purposes, even when 

all of our natural stores of solid and liquid fuels are exhausted.”  

Today the same goal of reducing the use of fossil sources of energy along with added 

motivations to reduce global CO2 emissions and diversify fuel sources due for political 

reasons has re-invigorated research into bio-derived fuels for engines. Although not a 

new process, the production of alkyl-esters from bio-oils is a way to create a fuel that is 

very similar to petroleum diesel. The use of neat triglycerides in modern diesel engines 

introduces complications which are mitigated by the use of their esters. Viscosities of 

pure oils are an order of magnitude higher than petroleum diesel which strongly affects 

injection characteristics. Neat oils also have a high cloud point creating practical 

difficulties for their use in colder climates. 

Biodiesel is the result of the transesterification of triglycerides with an alcohol usually 

in the presence of a base catalyst like NaOH, resulting in an alkyl ester as shown in 

Figure 1.5. Fatty acid methyl esters have more similar viscosity to diesel fuel than 
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straight oil and are better adapted to production engines. Glycerol is a byproduct of the 

manufacture of biodiesel and can be used for soaps and other industrial products.  
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Figure 1.5: Transesterification of oil to a fatty acid methyl ester and glycerol 

The use of biodiesel in engines is not new. Walton (1938) in a study of multiple types 

of bio-oils in a diesel engine recognized the advantages of only using the fatty acids from 

the oil. He claimed that “to get the utmost value from vegetable oils as a fuel it is 

academically necessary to split off the triglycerides and to run on the residual fatty acid.” 

Although he did not report any data substantiating his claim, the use of “biodiesel” was 

reported prior to his publication in a Belgian patent in (Chavanne, 1937).  

The manufacture of biodiesel and other biofuels like ethanol also has costs and their 

environmental impact must be weighed before blanket statements can be made about the 

benefits of their expanded use. For example, one reason that biofuels are being 

investigated is due to their potential to reduce global CO2 emissions since they are 

derived from renewable sources. Methanol is the most economic material for use in 

industrial transesterification operations and comes primarily from fossil sources. Its use 

in biodiesel production erodes the renewability of the fuel. Furthermore, the planting, 
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fertilization, harvesting, and transporting of biofuels also generate carbon emissions and 

use non-renewable sources of energy. It has been further shown that a “carbon debt” is 

acquired as a result of biofuels production due to the clearing of established natural lands 

to plant fuel crops (Fargione et al., 2008). An additional complication in the use of 

biofuels is a result of competition for food production. It is estimated by researchers that 

global food prices will continue to rise as a result of increased use of cropland for energy 

production (Ragauskas et al., 2006). 

Aside from potential pitfalls, there are still benefits of using biodiesel for fueling 

diesel engines. It is still partially renewable since a portion of its feedstock comes from a 

renewable source. Every fraction of renewability in fuels humans use reduces global CO2 

emissions. Biodiesel also has other benefits for use in engines (Knothe, 2005). It can be 

derived from local sources, is biodegradable, has reported reductions in exhaust 

emissions like smoke and hydrocarbons and has higher lubricity than petroleum diesel. 

Its high lubricity is due to oxygenated species and tends to increase with the degree of 

unsaturation in the fuel (Knothe, 2003). 

In terms of fluid properties, biodiesel has some crucial differences from petroleum 

diesel. Petroleum diesel consists of many long chain paraffins and aromatic species. In 

comparison, as stated above, biodiesel consists of a small number of alkyl esters. Due to 

this more homogeneous composition, biodiesel exhibits a very narrow boiling range 

instead of a long distillation curve like diesel. This boiling point is generally around the 

100% recovery point for petroleum diesel. Table 1.2 shows the distillation curve and 

boiling point of a low sulfur diesel and a soy methyl ester taken from Sharp et al. (2000). 
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The reported methyl ester, a soy-derived methyl ester (SME) has a boiling range of 11°C 

whereas the boiling range of the reference petroleum diesel is 160°C. This difference in 

volatility as a function of temperature may create a difference in ignition quality 

compared with the reference fuel used in the cetane number test. 

Table 1.2: Distillation ranges from Sharp et. al (2000) for soy methyl ester and a 

petroleum diesel. IBP- Initial boiling point, FBP- Final boiling point, all values in °C 

Distillation SME Diesel 

IBP 331 192 

10% 333 226 

50% 336 266 

90% 341 321 

FBP 342 352 

Other property differences between biodiesel and petroleum diesel include higher 

viscosity and surface tension which have the effect of prolonging the breakup of 

atomized fuel in the cylinder. Biodiesel also has a higher bulk modulus; the reduction of 

liquid volume when subjected to elevated pressure. Tat et al. (2000) reported that 

biodiesel has 5-10% higher bulk modulus than a number 2 diesel fuel. This has the effect 

of advancing the actual start of injection depending on the type of fuel injection system 

used. Monyem et al. (2001) reported a 2.3° advance in injection timing. Boiling range, 

viscosity and bulk modulus differences change the start of combustion in engines 

significantly which has effects on engine emissions and performance. When common rail 

injection systems are used however, the effect of differences in bulk modulus is not as 

great because injection pressure is already established before injection (Fang et al., 2008). 
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Performance and emissions from diesel engine operation on various types of biodiesel 

is well known and is reviewed by Agarwal (2006) and others although reported results 

have varied according to engine, fuel injection strategy, and emissions measurement 

technique. In general, engine operating characteristics of biodiesel are very similar to 

petroleum diesel and sometimes their differences fall within the statistical error of 

measurement techniques. Table 1.3 shows a selection of results from a selection of ten 

different engine studies performed comparing biodiesel with a reference petroleum diesel 

fuel. 

In Table 1.3 the CN of the neat biodiesel is shown to be higher than the reference 

petroleum diesel in some cases and lower in others. Studies conducted in Europe and 

Asia use a reference diesel that has low aromatic content which raises its CN whereas 

those conducted in the United States use a reference fuel with higher aromatic content 

and lower CN. Among the biodiesel fuels shown, there is also a range of CN reported 

even though most are made from the same feedstock. This variation could be due to the 

error of the testing method or could be due to a different oxidation state of the fuel. It has 

been shown that biodiesel that is oxidized yields a much higher CN when tested than 

fresh fuel (Monyem et. al, 2001). The oxidative stability of soy methyl ester is generally 

lower than that of rapeseed or other esters due to its high degree of unsaturation (Knothe, 

2005). Furthermore, it has been shown that the cetane test is not a completely appropriate 

measure of the ignition quality of fuels like biodiesel that are significantly different in 

chemical makeup than the primary reference fuels used in the test (Siebers, 1985).  
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Table 1.3: Comparison of ten published studies of convention combustion of biodiesel 

and petroleum diesel; References - 1) Zhang et al., 1996, 2) Senatore et al., 2000, 3) 

Scholl et al., 1993, 4) Patterson et al., 2006, 5) Sharp et al., 2000, 6) Szybist et al., 2005, 

7) Akasaka et al., 1997, 8) Choi et al., 1999 9) Alam et al., 2006 10) Monyem et al., 

2001; N/R- Not reported, SME- Soybean methyl ester, RME-Rapeseed methyl ester, M-

Mechanical injection, CR- Common rail injection, FTP- Federal Test Cycle, D13-

Japanese heavy duty test cycle 

Reference 1 2 3 4 5 6 7 8 9 10 

Fuels 

Diesel CN 47 48 N/R 54 43.3 48.2 53.9 46.3 47.3 47.4 

Biodiesel SME RME SME SME SME SME SME SME SME SME 

Biodiesel CN 59 52 N/R 59 47.5 51.8 48.7 N/R 61.0 51.1 

Max. Blend  50% 100% 100% 100% 100% 100% 50% 40% 100% 100% 

Engine 

Displacement 

(L) 
4.5 1.9 3.0 2.3 5.9 N/R 7.9 2.4 5.9 4.5 

Cylinders 4 4 4 4 N/R 1 6 1 6 4 

Breathing T T N.A. N.A. T N/R T T T T 

Inj. Type M CR M M M M M CR M M 

Comp. Ratio 16.8 19.8 16.5 18.5 N/R N/R 18.0 16 16.3 16.8 

Speed (rpm) 1400 3000 1800 2000 FTP 3600 D13 1600 1800 1400 

Load 100% var.φ 
3 bar 

BMEP 
100% FTP 75% D13 φ=0.5 10% 100% 

Performance and Emissions 

BSFC ↑ ↑ N/R N/R ↑ N/R N/R N/R ↑ N/R 

Thermal Eff. ≈ ≈ ≈ ≈ N/R N/R N/R N/R ≈ N/R 

BS-CO ↓ ≈ ↓ N/R ↓ N/R ↓ ↓ ↓ ↓ 

BS-THC ↓ N/R ↓ N/R ↓ N/R ↓ N/R ↓ ↓ 

BS-NOX ↑ ↑ ≈ ↓ ↑ ↑ ↑ ≈ ↑ ↑ 

Smoke No. N/R ↓ ↓ ↓ N/R N/R N/R N/R N/R ↓ 

Total PM ↓ N/R N/R N/R ↓ N/R ↓ ↓ N/R N/R 

SOF Fraction ↑ N/R N/R N/R ↑ N/R ↑ ≈ N/R N/R 

Ign. Delay ↓ ↓ ≈ ↑ N/R ↓ N/R N/R ↓ N/R 

Actual SOI N/R ← ← → N/R ← N/R N/R ← N/R 
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BSFC of biodiesel is generally reported to be lower than that of diesel fuel since the 

caloric value of biodiesel is lower. However, brake thermal efficiency is reported to be 

the same. Most studies keep speed and load consistent between fuels either at steady state 

points or through a transient drive cycle. 

Carbon monoxide and THC emissions are generally reported to be lower for biodiesel 

than for petroleum diesel. As reviewed in Lapuerta et al. (2008), reasons for lower THC 

emissions include fuel property differences like high levels of oxygenation and higher 

CN leading to more advanced combustion. Work done by Rakopoulus et al. (2004) shows 

that additional oxygen present either in the intake air or contained in the fuel as 

oxygenated species contribute to lower CO and HC emissions in DI diesel engines. 

It is commonly reported that NOX emissions are higher for engines running on 

biodiesel than petroleum diesel. Suggested reasons for this vary and are reviewed in 

Cheng et al. (2006). Changing start of combustion, higher premixed burn fraction, higher 

diffusion burn temperature and combustion chemistry are given as possible explanations. 

In Table 1.3 most of the studies reporting NOX emissions found that NOX stays 

approximately constant or increases for biodiesel. One exception is the work done by 

Patterson et al. (2006) in which it was found that NOX decreased for the same engine 

settings at a constant load. When comparing to other studies, it is apparent that the actual 

start of injection in this study was retarded significantly when 100% biodiesel was used. 

This caused combustion phasing to be later and thus reduced NOX. Reasons for this 

change in actual SOI were not given though the correlation between combustion phasing 

and NOX emissions is interesting. As reported by Scholl et al. (1993) and Szybist et al. 
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(2005) changing NOX emissions with biodiesel was found to be primarily a function of 

combustion phasing. Scholl plotted the brake specific NOX emissions versus location of 

peak cylinder pressure and found no differences between fuels tested. Szybist plotted 

brake specific NOX versus crank angle location of maximum heat release rate and came 

to a similar conclusion. However, Cheng et al. (2006) found that NOX emissions are not 

purely dependent on start of combustion or premixed burn fraction. 

 Filter smoke number (FSN), primarily a measure of visible carbon generated during 

combustion is generally lower for biodiesel than for petroleum diesel as shown in Table 

1.3.  Studies such as Mueller et al. (2003) show that the presence of oxygenates in fuels 

contribute to lower formation of soot in the combustion process. In this and other studies 

like Upatnieks et al. (2004), it is found that the oxygen content in the fuel is not the only 

factor in reducing carbon formation but that molecular structure of the fuel also plays a 

part. They also found that oxygen in the fuel is more effective at reducing soot formation 

than enhancing oxygen entrainment into the flame. The presence of oxygen in the rich 

regions of combustion aids the soot oxidation process in the diffusion burn portion of 

combustion. 

Emissions of total PM are also lower for the loads and conditions shown in Table 1.3. 

However, if the percentage of soluble organic fraction (SOF) is reported, it is usually 

found to be higher. This SOF consists mainly of unburnt biodiesel fuel due to the low 

volatility of the esters found in the fuel. It was concluded in Zhang et al. (1996) that any 

increases in total PM for biodiesel is due to SOF increases especially at light loads. 

Chang et al. (1998) also found SOF to increase in a study of SME in a four cylinder 
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direct injected diesel engine. In his work, he also found that the collection conditions like 

filter temperature and dilution ratio had a large effect on the SOF of biodiesel exhaust 

due to the high boiling range of the unburned fuel on the soot particles. Also in this work, 

Chang found that the standard sample temperature of 190°C for the gaseous sample 

system also changed the amount of THC measured by a flame ionization detector (FID) 

analyzer due to condensation and adsorption of esters on the walls. This could 

compromise the actual readings of THC for any of the studies reported in Table 1.3. 

Overall THC emissions from operating diesel engines on biodiesel have been 

reported to contain higher concentrations of vapor phase aldehydes and other volatile 

oxygenates created during the combustion process. Hansen et al. (1997) found that 

combustion of RME in a 6 cylinder direct injected bus engine at moderate speeds and 

loads resulted in higher formaldehyde and acetaldehyde emissions with comparison to a 

reference diesel fuel. They also found that poly aromatic hydrocarbons (PAH) in the PM 

decreased for 100% RME and that most of the SOF contained in the PM was unburnt 

fuel. Corrêa et al. (2006) also saw a reduction in PAH in PM emissions from a 6 cylinder 

direct injected engine at moderate load and 1500 rpm when operating on 20% SME with 

comparison to diesel. 

Particulate size distribution has been reported for biodiesel operation in diesel engines 

with comparison to petroleum diesel. Jung et al. (2006) used a dilution system and a 

scanning mobility particulate scanner (SMPS) with a medium-duty four cylinder direct 

injection engine set at constant speed and load. They found that the PM had a smaller size 

distribution for biodiesel primarily due to the lower formation of carbonaceous species 
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during combustion as mentioned above. The SOF was not measured in this study. 

Tsolakis (2006) also reported smaller particles when running a single cylinder direct-

injected engine at constant speed and load on rapeseed-derived methyl ester (RME) using 

an electrical low-pressure impactor (ELPI). Using a correlation for mass density of the 

particles, Tsolakis also calculated that the biodiesel PM had a lower mass than the 

reference low sulfur diesel.  

1.5 Biodiesel use with Premixed LTC 

1.5.1 Previous work on Biodiesel LTC 

Using biodiesel in the premixed LTC mode has recently sparked interest as both are 

becoming desired capabilities of modern diesel engines. However, little literature exists 

exploring this combination. Zheng and coworkers in a series of papers (Zheng et al., 

2006, Zheng et al. 2007, Zheng  et al., 2008) have shown that it is possible to achieve 

LTC combustion with biodiesel in both the HCCI-like, early LTC strategy and with a 

late-injection LTC strategy. In their first paper, they explored early combustion modes 

using a single-cylinder DI engine at 1400 rpm with a heated fuel injection system in the 

intake. In this work, they found a shorter ignition delay with the biodiesel due to its 

higher cetane number and that due to biodiesel’s low volatility and higher viscosity, 

intake manifold injection and atomization was a challenge.  

Zheng et al. (2008) more recently experimented with running a biodiesel derived 

from various sources in a 4-cylinder direct-injected diesel engine with a compression 

ratio of 18.2:1 at a speed of 1500 rpm and 8 bar indicated mean effective pressure 

(IMEP). They varied SOI over a 20CA° range and ran EGR rates from 0% to 70%. In 
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their work, they found that compared with conventional diesel fuel, biodiesel had 

comparable NOX emissions and that CO and THC emissions were lower at a fixed 

injection timing. They also found that biodiesel was able to better sustain high EGR rates 

and LTC combustion due to its higher cetane number than the reference diesel and 

accessible fuel oxygen. Confirming these findings Cheng et al. (2007) found that 

oxygenated fuels are capable of sustaining more dilute combustion. 

Karra et al. (2008) compared B100 and B20 with a No. 2 diesel fuel under a single and 

dual injection LTC condition at 1400 rpm and 7.11 bar BMEP in a medium-duty multi-

cylinder diesel engine. In their study, they found that NOX emissions were higher for 

B100 for a given injection timing and FSN was lower. Since fuel injection conditions 

were maintained constant Karra et al. assumed that increases in NOX emissions for LTC 

were not due to variations in fuel injection conditions as had been reported in earlier 

literature for other injection systems. 

Fang et al. (2008) also experimented with both early and late LTC strategies with 

biodiesel and petroleum diesel in an optical single cylinder direct-injected engine at 1500 

rpm and 2 bar IMEP. They found that SME had a longer ignition delay than their 

reference diesel which is indicative of the CN of the fuels tested. As mentioned above, 

European diesel fuel has very low aromatic content and therefore can have a higher CN 

than biofuels. In the LTC regime, Fang et al. also found similar NOX emissions for SME 

compared with diesel fuel for fixed injection timing. In the case of LTC, since the 

thermal NOX formation island shown on Figure 1.3 is avoided, it may be assumed that 
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any formation of NOX is then by the prompt mechanism (Plee et al. 1981) in which the 

initial fuel composition may have little effect. 

1.5.2 Preliminary Study on Biodiesel LTC 

Research done at University of Michigan in a preliminary study of a late-injection 

LTC strategy and blends of soy methyl ester with two different petroleum diesel fuels 

further expanded the knowledge of the combination and was published in Northrop et al. 

(2009). Insight gained through the study provided the impetus and direction for the 

deeper research presented in this dissertation. A brief outline of the preliminary study and 

its results are summarized in this section. 

The purpose of the preliminary study was to broadly observe trends when operating a 

1.7 liter displacement high speed passenger car diesel engine on biodiesel in the LTC 

regime. Instrumentation included an emissions analyzer, smoke meter, cylinder pressure-

based combustion diagnostics and a differential mobility particle spectrometer (DMS).  

A test plan was executed which centered on a baseline operating condition using a 

US-specification ultra low sulfur diesel (ULSD) fuel. The condition was selected to be a 

representative medium speed and load of steady state vehicle operation. From the 

baseline condition, data for two fuel injection timing settings and two fuel injection 

pressure settings were taken while maintaining a constant speed, load, and EGR rate. 

Other fuels selected for the study included a soy-based methyl ester biodiesel and a low-

aromatic Swedish diesel fuel. Two blends of ULSD and biodiesel were also tested, a 20% 

(B20) and 50% (B50) by volume biodiesel. To eliminate the effects of combustion 
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phasing between fuels at the baseline operating condition, the 50% fuel mass fraction 

burned point (CA50) was kept constant by adjusting the fuel injection timing. Table 1.4 

shows the operating conditions of the engine for the baseline condition. 

Table 1.4: Engine conditions for baseline LTC condition and variation of injection 

pressure and timing for preliminary study from Northrop et al. (2009) 

Condition Baseline LTC 

Engine Speed (rpm) 1500 

BMEP (kPa) 400 

EGR Rate (%) 50 

Injection Pressure (bar) 800,1000,1200 

Injection Timing (°BTDC)  5,7,9 

Air/Fuel Ratio  20.8 

Intake Manifold Pressure (kPa) 107 

Intake Manifold Temperature (°C) 47 

Coolant Temperature (°C) 85 

The preliminary study revealed some interesting findings concerning LTC of 

biodiesel compared with petroleum diesel. Firstly, a given fuel’s CN is a better indicator 

of the duration from SOI to CA50 than of the ignition delay defined by the duration of 

SOI to SOC. This is mainly due to an altered ignition region of combustion for biodiesel 

at a given CA50. Given that observation, it was concluded that examining engine 

emissions and efficiency as a function of CA50 is a good way to compare fuel 

performance independent of combustion phasing. Two examples of this from the work 

were brake fuel conversion efficiency (ηf) and NOX. When plotted versus injection 

timing, NOX was statistically higher for B100, consistent with the findings of Karra et al 

(2008). When plotted versus CA50 however, NOX and ηf showed no differences between 
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fuels to the statistical error of the measurements. It was therefore concluded that NOX 

emissions in the premixed LTC regime are strongly tied to combustion phasing regardless 

of fuel. Based on this finding and that from the literature, the biodiesel NOX effect shown 

by other researchers applies to neither LTC nor conventional combustion so long as 

phasing is taken into account.  

Brake fuel conversion efficiency also was also found to be the same for all fuels 

tested as a function of CA50. It therefore concluded that any differences in fuel 

consumption reported in the literature for biodiesel is mainly due to differing fuel lower 

heating values and not combustion quality so long as combustion phasing is maintained 

constant. 

Differences did appear among the tested fuels when comparing CO and THC versus 

CA50. Both the high cetane Swedish diesel and B100 had statistically lower CO and 

THC emissions. The lower amount of these products of incomplete combustion for 

Swedish could be explained by its shorter ignition delay for a given CA50 leading to less 

over-leaning in the cylinder during combustion. B100 however had a longer ignition 

delay than the Swedish diesel which begs the question of whether some of the THC in the 

exhaust was missing from the measurements or whether fuel chemistry plays a more 

direct role in lowering the emission of partially reacted species in biodiesel combustion. 

Although smoke emissions as measured by FSN were nearly zero for B100 and 

higher for the petroleum fuels, the particle size distribution as measured by the DMS 

indicated a significantly higher mass of PM for B100 than the other fuels. This finding 
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led to the conclusion that the organic content of the PM from biodiesel LTC may be been 

greater for B100. Further work as outlined in this dissertation, takes the story from there. 

1.6 Research Goals and Dissertation Outline 

Like all research, the work presented in this document stands on the shoulders of 

already established results. Owen Chamberlain, a Nobel Prize winning physicist once 

said, “The whole structure of science gradually grows, but only as it is built upon a firm 

foundation of past research”. Both partially premixed LTC of petroleum diesel and 

conventional biodiesel combustion have been investigated thoroughly. However, based 

on the prior work described in the above section, three primary research goals form the 

focus of the current investigation. 

The first goal is to explain why the gaseous HC and CO emissions from biodiesel 

LTC decrease compared to petroleum diesel fuels by exploring the distribution of light 

hydrocarbons within the THC measurement. To accomplish this, a breakdown of the 

THC is made by speciation of light HCs in the exhaust gases using a Fourier Transform 

infra-red (FT-IR) analyzer. Relative concentrations of such volatile species can be 

indicators of over-lean and over-rich portions of the cylinder, allowing induction of the 

relative differences in local equivalence ratio and thus gain further insight into the 

combustion process. 

The second research goal is to prove the hypothesis that the organic fraction of the 

PM mass is greater for biodiesel in premixed LTC and to determine the primary species 

that contributes to this increase. To accomplish this, the mass emission of both 
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carbonaceous soot and PM must first be measured. Then, it is necessary to extract and 

identify the organic species contained within the PM structure. 

As a third goal, this work looks to identify whether a DOC can oxidize organic 

species in the exhaust that contribute to increased PM mass emitted from a vehicle 

tailpipe using biodiesel in the LTC mode. Measurements of THC and LHC contained 

therein are taken and compared to reductions in PM mass. Conversion of primary 

organics found on the PM is measured from diluted samples taken before and after the 

DOC.  

An experimental study is described in this work which seeks to meet these goals and 

to seek deeper understanding into underlying physical and chemical mechanisms. The 

dissertation is organized as follows. Following this introduction, Chapter Two describes 

the experimental methodologies used in the study. Instrument specifications, key 

calculations used in presenting results and measurement uncertainty are discussed. The 

development of three engine combustion conditions used in the study is explained in 

Chapter Three. Engine performance, combustion parameters and general emissions are 

used to characterize these conditions. 

The following three chapters are each dedicated to the proof and exploration of the 

three main thrusts outlined above. Chapter Four examines the emissions of gaseous 

hydrocarbon and inorganic carbon emissions in LTC for biodiesel and compares the 

results to conventional combustion. In Chapter Five, PM and the role of unburned HCs 

plays in those particulates is explored. As an extension of the work of the previous two 

chapters, Chapter Six discusses the performance of a standard DOC in the conversion of 
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organic species which normally would be found on the PM for biodiesel LTC. Finally, 

Chapter Seven provides a summary of the conclusions of the work and discusses 

recommended next steps to further advance the research presented here. 
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CHAPTER TWO 

EXPERIMENTAL METHODS 

2.1 Engine Test Cell 

Two major types of experimental platforms are typically used in engine research. 

Single cylinder engines eliminate cylinder-to-cylinder variability and thus ensure that the 

bulk exhaust from combustion emanates from one source. Generally, optical diagnostic 

and other detailed combustion studies are performed using these platforms. One 

drawback of single cylinder engines is that they do not accurately produce intake and 

exhaust conditions found in the actual engines they resemble. Exhaust temperatures are 

lower due to higher heat losses and flows have higher magnitudes of pulsation. Multi-

cylinder engines are useful for understanding systemic trends in actual working engines 

and are useful for bulk emissions studies. Since exhaust flows are higher and combustion 

products are essentially the average of multiple cylinders, larger gas and particulate 

samples can be taken. This is especially important for measuring PM from engines 

operating in low soot-producing conditions like partially premixed LTC where sufficient 

loading on filters for gravimetric analysis can take significant time. Further, since exhaust 

flows and temperatures are higher with less pulsation, aftertreatment studies are more 

readily correlated with expected performance of catalysts in practice.  
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A multi-cylinder engine test platform is best suited for meeting the goals of this 

study. Measuring the combined effect on bulk emissions of fuel, combustion strategy and 

aftertreatment is more easily correlated to engine performance on an actual diesel engine 

and DOC used in practice. 

2.1.1 Test Engine 

The experimental study to investigate premixed LTC of biodiesel fuels was 

conducted using a production 4-cylinder diesel engine designed by Isuzu Advanced 

Engineering Center in Japan and manufactured in cooperation with General Motors. The 

engine has been produced under many different configurations and is used in vehicles 

marketed in Europe and Asia. The engine used in the study has the technical 

specifications given in Table 2.1. The production version, manufactured in 2002, is 

capable of producing 100 hp at 4400 rpm, a suitable size for powering a small to mid-

sized passenger vehicle. 

The engine uses a common rail fuel injection system designed and developed by the 

Robert Bosch Corporation. This configuration decouples the generation of injection 

pressure and the fuel injection process. Fuel is injected by pressurizing a common 

manifold with a positive displacement pump from which a solenoid allows high pressure 

fuel to enter the injector. Advantages of common rail include extremely fast actuation 

time allowing multiple injections per engine cycle. The injection system also allows 

sustained and controllable injection pressures between 100 and 1400 bar. High pressures 

are essential for LTC as they enhance mixing prior to combustion. 
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Table 2.1: Specifications of the engine used in the experimental study 

Type Direct Injected Diesel 

Manufacturer Isuzu 

Cylinders 4 

Displacement (L) 1.7 

Bore (m) 0.079 

Stroke (m) 0.086 

Connecting Rod Length(m) 0.134 

Wrist Pin Offset (m) 0.0006 

Compression Ratio 16.0 

Piston Geometry Bowl-in-Piston 

Valves/Cylinder 4 

Injection System Common Rail 

Injector Location Centrally Mounted 

Injector Holes 6 

Injector Nozzle Spray Angle (°) 150 

Injector Nozzle Flow (cc/30-s) 320 

 

Creation of high levels of cooled EGR, up to 60% by mass of the intake gases, is also 

critical for premixed LTC as it both extends ignition delay and reduces the temperature of 

combustion by diluting the fuel-air mixture. The engine used in the study has a high 

pressure EGR system in which recycled exhaust from the high pressure side of the 

turbocharger is mixed with the relatively lower pressure gas in the intake manifold. A 

diagram of the system is given in Figure 2.1. A variable geometry turbocharger (VGT) 

utilizes controllable vanes to optimize upstream pressure of the turbine in the exhaust 

while a throttle valve in the intake runner after the compressor controls the differential 
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pressure needed to create EGR. Typically throttle-less operation is a key advantage of 

diesel engines over spark-ignited engines since reduction in intake air pressure has a 

negative impact on pumping work. For this reason, the throttle valve was kept completely 

open for the conditions used in the study. EGR was controlled by changing the VGT for 

large changes in flow between engine conditions and an EGR valve for small adjustments 

at a given engine setting. An EGR cooler using engine coolant as the cold medium 

allowed EGR to be maintained to a constant temperature. Cooling EGR and reducing the 

intake air temperature using an intercooler is important in diesel engines for maintaining 

high intake charge density for a given speed and load. 

 

Figure 2.1: Test engine flow diagram showing cooled EGR system 

The engine used in the study was modified from the production specifications in a 

number of ways to both make it more suitable for the laboratory environment and to 

better operate in the partially premixed combustion regime. First it was modified to have 

a lower compression ratio than the stock engine such that premixed combustion could be 

achieved over a wider load range. To accomplish this, the design of the bowl located in 
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the piston crown was enlarged to lower the geometric compression ratio from the stock 

19:1 to 16:1. 

Another change made to the engine was the replacement of the production EGR 

cooler with one of larger capacity for accommodating the larger quantities of cooled EGR 

to be used in premixed LTC. To maintain a constant temperature of gas at the outlet of 

the EGR cooler, a separate coolant boost pump was installed to increase the flow. The 

original EGR valve was also replaced with a throttling ball valve for more precise control 

of EGR flow.  

2.1.2 Engine Control 

The load and speed of the engine is controlled by a General Electric direct current 

dynamometer connected to the flywheel of the engine. Torque is measured by a load cell 

mounted to the dynamometer and speed is measured by a hall-effect type sensor.  

The engine is equipped with a programmable version of the engine electronic control 

unit (ECU) of that in production. A digital throttle controller from Dyne-Systems is used 

to provide the fueling input to the controller through an ETAS ETC interface. This 

interface also allows independent control of all parameters set by the ECU using the 

INCA software package. These parameters included injection timing, injection pressure, 

VGT position, throttle position, and swirl vane position. Setting of different engine 

settings during testing was done by altering maps for each parameter and was changed 

while the engine was operating. Other engine settings including EGR Valve actuation, 

engine coolant temperature and DOC inlet temperature are changed externally to the 

engine ECU using lab-based PID controllers. 
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2.1.3 Diesel Oxidation Catalyst 

A production DOC is mounted in the exhaust stream of the engine following the 

turbine. It is the standard size and formulation meant to meet EURO IV emissions 

regulations for the production version of the test engine. Catalyst formulation and other 

specifications of the DOC are shown in Table 2.2.  

Table 2.2: Known physical specifications of DOC catalyst used in the study 

Monolith length/diameter (mm) 93/74 

Fraction engine swept volume 23.5% 

Cell density (cm
-2

) 62 

Substrate material Cordierite (Mg2Al4Si5O18) 

Washcoat materials Alumina, Silica, Zeolite 

Total washcoat loading (g/in
3
) 2.32 

Active metal loading (g/ft
3
) Pt – 88.63 

 Pd – 29.15 

 

The DOC was de-greened prior to the study to ensure steady state activity over the 

testing period. This process involved maintaining the catalyst at a temperature of 160°C 

in an air and 10% water environment for 16 hours. 

Three primary factors control the performance of catalytic reactors in exhaust 

aftertreatment applications; space velocity, catalyst temperature and composition. In the 

study, only the effects of changing exhaust composition into the DOC per fuel at a given 

engine condition is desired. Since a constant engine condition produces a near-constant 

flow rate, temperature of the inlet of the catalyst is set to a constant value. For this 
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purpose, a co-flow gas to gas heat exchanger was installed in the exhaust prior to the 

DOC. Forced cooling air is provided by a centrifugal blower. The heat exchanger has the 

capability to lower the temperature by 15°C from a baseline value which is suitable for 

maintaining constant DOC inlet temperature over the tested fuels for a given operating 

condition. 

2.1.4 Low Speed Data Acquisition 

In the experimental test setup, measurement of temperatures and pressures are made 

independent of the production engine control system and are recorded using a low speed 

data acquisition system. This system uses a Measurement Computing PCI card with 32 

analog input channels. The signals are processed, viewed and controlled by a National 

Instruments LabVIEW software interface at a rate of approximately 1 Hz. Signals 

measured by the low speed system include intake manifold temperature and pressure, oil 

pressure, turbine inlet and outlet temperature and pressure, DOC inlet, outlet and 

substrate temperature, coolant temperature, intake air temperature and humidity and 

engine speed and load. Temperatures are measured using K-type thermocouples and 

pressures by piezoresistive transducers both manufactured by Omega Engineering. Fuel 

flow is accurately measured using a Coriolis mass flow meter and is recorded by the 

system. Data from the online emissions measuring equipment is also processed through 

the low speed data acquisition system. For each low speed sample taken in the 

experimental study, 50 points of data were taken. 
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2.1.5 Combustion Analysis 

Cylinder pressure is measured in each of the four cylinders by water-cooled Kistler 

6041A piezo-electric pressure transducers. They were installed in place of the glow plugs 

normally used for cold start in the production engine. Fuel injector current for cylinder 

number 1 is measured by an inductive current sensor. Start of injection (SOI) was 

assumed to occur at 50% of the initial rise in the signal from the transducer. An AVL 

365C crank angle encoder set at a resolution of 0.25 CA° fitted to the front of the engine 

is used to time the pressure and injection data. 

The high speed signals are measured by a Redline CAS II data acquisition system 

manufactured by A&D Technology Inc. The CAS system has 16 analog input channels 

and an 8 million sample raw data memory. Along with cylinder pressure and injector 

current, the CAS system also has inputs for engine speed, engine load, and intake 

manifold pressure. The system also incorporates a real-time combustion processing 

module to calculate parameters like rate of heat release and mass fraction of fuel burned. 

For each steady state data point, the CAS system records and averages 100 cycles at a 

0.25 CA° resolution. 

In the experimental study, high speed pressure data was post-processed using UMHR, 

an internal program developed at The University of Michigan (Depcik, 2005). This 

program combines low speed data and the high speed pressure trace from cylinder one to 

calculate the rate of heat release, fuel mass fraction burned and mean cylinder 

temperature using the first law of thermodynamics for an open system. Constant mass 

during the cycle was assumed for the analysis neglecting changes due to fuel injection, 
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blow-by or crevice flows. Thermodynamic properties are calculated using the 

correlations of Krieger and Borman (1966). Hohenberg’s correlation (Hohenberg et al., 

1979) for heat transfer from the cylinder during combustion is assumed. 

In the experiments, it was found that for the point of 50% fuel mass fraction burned 

(CA50), the real time combustion analysis using the CAS system never deviated more 

than 0.2 CA° away from the more accurate value calculated by the post-processed heat 

release program. Therefore, it was deemed acceptable to use the real-time CA50 value for 

real-time engine control as well as for plotting the results of the study. 

Fuel injection timing was estimated by using the crank angle of 50% rise of the 

injector signal pulse. Though this metric measures timing to be slightly before the actual 

injection event, it was deemed acceptable for the purposes of this study. 

2.2 Emissions Measurement 

The results from emissions measurement including both gaseous species and 

particulate phase species is the primary focus of this work. A phalanx of analytical 

instruments was applied to gather as much data as in pursuit of the research goals. Figure 

2.2 shows a flow diagram of the instrumentation used both during the operation of the 

engine and that used in post-processing. 

For gaseous emissions, an analyzer bench for measuring the five primary species 

from diesel combustion is used in concert with an FT-IR analyzer for HC speciation and 

an H-Sense H2 analyzer. Particle emissions are measured by a smoke meter for 

carbonaceous species, DMS for particle size distribution and a partial flow dilution tunnel 
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for collecting aerosol samples on filters. From the particulate filters, PM mass was 

measured before removing the organic species using Soxhlet extraction. Extracts were 

speciated using a gas chromatograph with flame ionization detector (GC-FID). Organic 

versus elemental carbon analysis is conducted from quartz filters taken using the dilution 

tunnel. The following sections provide more detailed description of the instruments used 

in the emissions analysis. 

 

Figure 2.2: Emissions measurement flow diagram for experimental study 

2.2.1 Analyzer Bench 

The primary gaseous emissions from both the engine and the outlet of the DOC are 

measured by an AVL CEB II emissions bench. The analyzer bench utilizes non-

dispersive infra-red (NDIR) detectors for measurement of CO and CO2, a paramagnetic 

detector for O2, a dual channel FID for THC and CH4 and a chemiluminescence detector 

for measurement of NOX consisting of NO and NO2. Each analyzer has the capability of 
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multiple measurement ranges to increase the accuracy of measurement. For the 

measurement of NOX and HC the sample line is heated to 190°C from the sampling point 

on the engine exhaust line to each detector. Two heated glass micro fiber filters with 95% 

efficient retention for particles of 0.03 micron diameter of are mounted in the heated 

sample line to remove PM and other solid material before the analyzer. The O2, CO, and 

CO2 emissions are measured on a dry basis with a cooler to drop out any water from the 

sample prior to the analyzers. 

Calibration of the analyzer on each range of detection was performed before each day 

of testing along with a leak check of the vacuum system to ensure atmospheric air did not 

enter the sample lines at any point. Linearization of all analyzers was accomplished once 

at the beginning of the experimental study and two subsequent linearization checks were 

run during the course of the testing period. Heated filter elements were also changed after 

every day of testing. The analyzers were regularly purged with ultra-high purity nitrogen 

during the course of each testing run. 

2.2.1.1 Gaseous Emissions-Based Calculations 

In measuring the majority of species contained in engine exhaust, the analyzer bench 

data were used to calculate other parameters useful for the study of emissions and engine 

performance. First, species measured on a dry basis like CO and CO2 were calculated on 

a wet basis using the well established methods in Stivender (1971) such that all emissions 

data in the study were comparable. 

Emissions Index (EI) is a near dimensionless parameter used to show the mass flow 

of a species in the exhaust with respect to the mass flow of fuel into the engine. In this 



48 
 

way, emissions can be compared between engine conditions independent of dilution in 

the exhaust stream or efficiency of the combustion process. Using wet concentrations, the 

emissions index for each species was found using Equation 2.1 (Stivender, 1971).  

 (2.1) 

Where: 

EIj:  Emissions index of species j in g/kg-fuel 

Xj:  Wet mole fraction of species j 

MWj: Molecular weight of species j 

MWf: Molecular weight of fuel per atom of carbon 

THC1: Total hydrocarbons per atom of carbon 

Equation 2.1 is slightly different for hydrocarbons assuming a representative molecular 

weight defined by the US-EPA as 83.25 and divided by 6 to account for the US-EPA 

reporting method for hydrocarbons on a C6 basis as shown in Equation 2.2. 

 (2.2) 

Emissions data were also used to calculate the mass air to fuel ratio (AFR) using wet 

concentrations and a mole balances based on the methods described in Stivender (1971). 

Values for AFR were calculated both using an oxygen balance and a carbon balance as 

shown in Equations 2.3 and 2.4. By dividing the stoichiometric value of AFR for a given 

fuel by the mean of the two calculations, the equivalence ratio can be obtained. 

 (2.3) 
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(2.4) 

 

Where: 

AFRO: Mass air to fuel ratio based on oxygen mole balance 

AFRC: Mass air to fuel ratio based on carbon mole balance 

MWair: Molecular weight of air (28.96) 

y:  Atomic hydrogen to carbon ratio in the fuel 

The EGR rate on the test engine is measured using a separate CO2 analyzer sampling 

from the intake manifold. The mass fraction of EGR in the total intake charge was 

calculated by comparing the mole fraction of CO2 in the intake with that of the exhaust 

according to the correlations found in Stivender et al. (1971) and given in Equations 2.5 

and 2.6. 

 
(2.5) 

 
(2.6) 

Where: 

EGR: Mass fraction of EGR in intake 

AFRavg: Mean value of AFRO and AFRC 

MWexh: Molecular weight of exhaust (29.06) 

Combustion efficiency, a measure of available energy contained in the exhaust gas 

compared with the total energy contained in the fuel, was also calculated using the 
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gaseous emissions data (Stivender, 1971). Equation 2.7 gives the relationship for ηc 

assuming that the THC in the exhaust has the same heating value as the fuel. 

 (2.7) 

Where: 

ηc:  Combustion efficiency 

hLHV,f: Lower heating value of fuel (MJ/kg) 

2.2.2 Hydrogen Analyzer 

Diatomic hydrogen is not typically measured in engine studies as it is generally 

assumed to be proportional to the concentrations of CO, H2O and CO2 according to a 

pseudo-water gas shift reaction relationship (D’Alleva, 1936). However, this relationship 

has been shown to break down in the lean LTC regime (Northrop, 2009). To more 

accurately report H2 and for use in the emissions-based calculations described in the 

previous section, it is measured in this study using a sector-field mass spectrometer 

manufactured by V&F Instruments. The sector field mass spectrometer uses a high speed 

turbo pump to separate H2 from the other heavier gases in the exhaust. Then by ionizing 

and collecting molecules according to charge, the instrument measures the quantity of 

hydrogen molecules in the gas stream. 

The gas sample for the mass spectrometer is taken after the same filter as the 

emissions analyzer and flows through a heated line to the instrument in a heated line 

controlled to 190°C.  The sample is then cooled in an internal chiller to remove water 

before analysis. Therefore, the H2 measurement is made on a dry basis and was corrected 



51 
 

to a wet basis using the methods described in a previous section before converting to EI 

using Equation 2.1. 

The H-Sense analyzer was calibrated before every day of testing by setting a zero 

using ultra-high purity nitrogen and an upper span of 3000 ppm H2. Linearization of the 

instrument is not recommended by the manufacturer and thus was not checked during the 

course of the experiments.  

2.2.3 FT-IR 

An FT-IR analyzer was used to measure more detailed composition of LHC and other 

species. The specific instrument used was a 2030-HS Multigas Analyzer manufactured by 

MKS Instruments Inc. It has the capability to detect species from ppb levels to percent 

concentration in a gas stream. Identification of specific molecules is accomplished by 

measuring the absorption spectrum emitted by that species when exposed to an infrared 

beam in a gas cell. The spectral frequencies and intensity are unique based on the number 

and strength of chemical bonds among atoms contained in a given molecule. Most gases 

in engine exhaust are infrared detectable with exception of diatomic gases like O2, H2 and 

N2. The concentration of gas is determined by comparison of magnitude of the signal 

compared with pre-loaded calibrations. 

During the testing, a range of calibrations were loaded into the FT-IR software to 

look for desired species. Table 2.3 gives the species detected. Some redundancy exists 

between the emissions bench and the FT-IR for detection of species like CO, CO2, NO 

and NO2. This is an advantage however for further confirmation of experimental 

accuracy. Although the FT-IR is capable of detecting most hydrocarbon species found in 
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engine exhaust, it was not used to measure THC since pre-loaded calibrations of all 

expected organic components from the different fuels used in the study would introduce 

too many errors. The value for THC was taken only from the FID incorporated into the 

analyzer bench. For expected LHC species like ethylene and formaldehyde however, the 

FT-IR is an invaluable tool for identifying light organic components within the THC. 

Table 2.3: Gas species with pre-loaded calibrations in the FT-IR used in the experimental 

study 

Species Formula  Species Formula 

1,3-Butadiene C4H6  Fulminic Acid HCNO 

Acetaldehyde CH3CHO  Methane CH4 

Acetylene C2H2  Nitrogen Dioxide NO2 

Ammonia NH3  Nitrogen Oxide NO 

Carbon Dioxide CO2  Nitrous Oxide N2O 

Carbon Monoxide CO  Propane C3H8 

Ethane C2H6  Propylene C3H6 

Ethylene C2H4  Water Vapor H2O 

Formaldehyde H2CO    
 

 

Since water and therefore condensable HC was measured with the FT-IR, sampling 

was accomplished though a heated sample line maintained at 190°C. When recording 

from the FT-IR, data were collected at a rate of 5 Hz for two minutes, of which the last 

minute was logged and averaged. Values for concentration were measured directly on 

wet basis and EI values were calculated using Equation 2.1. Since hydrocarbons are 

measured by the FT-IR directly and not on a carbon number basis like with a FID, 

concentrations were multiplied by the number of carbons in the molecule and the 



53 
 

molecular weight used in equation 2.1 normalized per atom of carbon. In this way, the 

data collected by the FT-IR could be directly compared with the THC value from the 

FID.  

The gas cell was maintained at a temperature of 191°C, the path length was 5.11 m 

and the pressure was maintained constant at 1 atm. The FT-IR background gas was set 

twice per day of testing by sending ultra-high purity nitrogen into the gas detection cell 

for 15 minutes to allow complete purging. Residual spectra were checked along with 

other system checks before setting the background spectra. Calibration of the FT-IR 

using a span gas is not recommended by the manufacturer and therefore was not done 

during the course of the experimental study. 

2.2.4 Smoke Meter 

Smoke emissions from the engine were measured by an AVL 415S variable sampling 

smoke meter. In this device, a known volume of exhaust gas is drawn through a filter 

paper and the degree of darkening is measured by an optical sensor. The paper 

blackening (PB) measured by this device approximates the black carbon in the exhaust 

stream hereto referred to as soot and is measured on a linear scale between black and 

white according to Equation 2.8.  

 (2.8) 

Where: 

RG:  Reflectivity of blackened filter paper 

RW:   Reflectivity of white filter paper 
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The filter smoke number (FSN) is a function of both the paper blackening and the volume 

of gas that is drawn through the filter. It is therefore a measurement of the mean soot 

mass over a sampling time. The mass of soot per volume of exhaust gas at 1 atm pressure 

and 25°C (CFSN) can be approximated with the FSN using a correlation found in Christian 

et al. (1993) given in Equation 2.9.  

 (2.9) 

The emissions index of filter soot (EI-FSN) is calculated by using Equation 2.10.  

 (2.10) 

Where: 

EIFSN: Emissions index of soot (g/kg-fuel) 

Tstd:  Standard temperature (298 K) 

Pstd: Standard pressure (101,000 Pa) 

:  Ideal gas constant (8.314 J/mol-K) 

When taking FSN samples using the smoke meter for the experimental study, 3000 ml of 

gas was passed through the filter and three samples were acquired and consequently 

averaged per engine condition. 

2.2.5 Differential Mobility Spectrometer 

For measuring PM size distribution, a differential mobility spectrometer (DMS) was 

used in the experimental study. The DMS500 fast particulate spectrometer manufactured 

by Cambustion Inc. provides a real-time size distribution of particles. The instrument has 

an internal air dilution system to more accurately simulate PM concentrations at exhaust 
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outlet conditions. A mass dilution ratio of air to exhaust gas of 5:1, the maximum 

allowable by the DMS500, was used for the testing. When taking samples from the DMS, 

30 seconds of data were acquired at a sampling rate of approximately 10 Hz and 

consequently averaged per engine condition. 

The principle of detection of the DMS is based on ionized particles traversing a 

classifier column at sub-atmospheric pressure. The diluted sample is drawn through a 

conductive rubber tube, sent through an impactor to remove particles of size greater than 

1000 nm and subsequently exposed to a corona charger to ionize the remaining particles. 

The charged particles then flow within a flow of laminar air where they are carried in a 

predictable manner. They are then repulsed from a high voltage center rod towards 

grounded electrometer rings where they land based on their charge and momentum. Since 

their charge is only a function of particle size and not material composition, the 

measurement of current from each ring is based on numbers of particles that fall within a 

classification of size. 

The output of the DMS500 is given in terms of particle size number distribution n(Dp) 

where Dp is the equivalent particle diameter. Thorough explanation of different 

definitions of particle diameter and types of size distributions can be found in various 

texts including Seinfeld (1996) and Eastwood (2008). The number of particles per unit 

volume of gas can be expressed as a function of particle size as given in Equation 2.11. 

 (2.11) 
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It is useful to normalize n(Dp) by N such that the range dDp expresses the fraction of 

particles within the entire population. Since within a population of particles in the 

atmosphere or engine exhaust sizes vary over a few orders of magnitudes (10-1000 nm), 

it is also common to express number distribution in terms of a log function n(logDp). 

With this new independent variable, the total number of particles N can be expressed as 

given in Equation 2.12. 

 (2.12) 

The number of particles within a range of diameters dDp is the same as the number 

within dlogDp. Therefore, the number of particles dN does not depend on which way the 

distribution is expressed as shown in Equation 2.13. 

 (2.13) 

Rearranged, this equation becomes: 

 (2.14) 

In words, dN/dlogDp is a way of expressing the number distribution of the log of 

particle diameter. Particle size distributions are expressed in this way in plotting the 

experimental data of this experimental study. One key advantage of plotting number 

distributions in this way is that the total number of particles in any given size range is 

proportional to the area under the curve within that size range. 
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A similar procedure as outlined in Equations 2.12 through 2.14 can be accomplished 

to find the mass distribution m(Dp). In general, the number distribution is useful for 

looking at the smallest particles and the mass distribution for the larger particles in a 

poly-disperse aerosol since the smaller particles have a disproportionately smaller mass 

as illustrated by Equation 2.14. Further, just as the number distribution can be integrated 

to yield N, the area under the mass distribution gives the total mass, M of the particles per 

unit volume of gas. 

2.2.6 Particulate Filter Analysis 

A critical part of the experimental study of PM from partially premixed LTC of 

biodiesel and petroleum diesel fuels was the collection and analysis of particles collected 

on filters after a dilution process. Dilution allows for the simulation of conditions just as 

the exhaust leaves the tailpipe of a vehicle and enters the relatively cooler atmospheric 

environment. Where FSN can be correlated to the mass concentration of soot generated 

by combustion, diluted filter collection and subsequent gravimetric analysis is direct 

measurement of total particulate mass per unit volume of engine exhaust gas. Current 

governmental emissions regulations, as described in Chapter One, limit the emissions of 

particulate on a mass basis though particle size is becoming an important metric for 

evaluation since smaller particles have an arguably greater health effect on humans. In 

the experimental study presented here, the collection of engine PM on filters in a 

controlled environment allowed for the scientific comparison of mass, composition and 

morphology of engine particulate for different fuels and engine conditions. 
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2.2.6.1 Dilution Tunnel 

The partial flow dilution tunnel used in the study extracts a small fraction of the 

exhaust gas and mixes it with a known quantity of filtered ambient air before sending the 

mixture to a filter collection housing. Advantages of a partial flow dilution system over 

one that dilutes the entire engine exhaust are that equipment size is greatly reduced and 

capital and use costs are lower. The particular dilution tunnel used was a BG-2 

manufactured by Sierra Instruments Inc. It was designed and implemented in accordance 

with the standard ISO/DIS 16183. Figure 2.3 shows the configuration of the dilution 

tunnel and its installation in the test cell system. 

 

Figure 2.3: Flow diagram for the partial flow dilution tunnel system used in the study 

The BG-2 controls the relative quantity of air and exhaust using two mass flow 

controllers, one for the total diluted sample and one for the dilution air. In this way the 
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volumetric air flow at standard conditions of the sample flow can be calculated according 

to the expression given in Equation 2.15. 

 (2.15) 

Where: 

:   Volumetric flow rate of exhaust sample into dilution tunnel (std-l/min) 

:   Volumetric flow rate of total diluted sample (std-l/min) 

:  Volumetric flow rate of dilution air (std-l/min) 

The dilution ratio (DR) is the ratio of standard volumetric or mass flow of dilution air 

divided by the total flow. The filter face velocity (Vf), exposed filter diameter (Df), filter 

temperature (Tf), and filter pressure drop (dPf) are also important parameters for accurate 

measurement of PM using dilution tunnel methods. Table 2.4 gives a summary of the 

pertinent constant dimensions and settings used in taking dilution tunnel filter 

measurements. The set parameters are within the allowable limits according to ISO-DIS 

16183 and consistent with the US-EPA 40 CFR Part 1065 Engine Testing Procedures. 

Using the control software of the BG-2, the constant settings for Vf and DR were 

converted to volumetric flow commands to the two mass flow controllers. 

The BG-2 required daily calibration of both total air and dilution air mass flow 

controllers. Calibration was done by matching the range of desired flow set points to the 

flow expected based on the factory setpoints. 
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Table 2.4: Dilution tunnel constant settings and dimensions for the experimental study 

compared with allowable values from ISO-DIS 16183 

Parameter Allowable Setting 

Df (mm) 39 39 

Tf (°C) 47±5 45 

Vf (cm/s) 35-100 100 

DR NA 10:1 

dPf (kPa) maximum 25 20 

 
  

2.2.6.2 Particulate Collection and Filter Handling 

Collection of particulate from engines using filters requires precise and consistent 

procedures to ensure accurate data. In the experimental study, both filter handing and 

collection of filters as well as additional analysis like gravimetric and extraction were 

done with extreme care to reduce errors. 

In collecting engine PM on filters, the guidelines under US-EPA 40 CFR Part 1065 

were followed. Prior to sampling, the diluted exhaust gas passed through a 2000-30ES 

stainless steel cyclone separator manufactured by URG Corporation to separate out 

particles greater than 10 µm. These particles were not of interest since they were assumed 

to not be from the combustion process but rather from debris from the exhaust system 

carried downstream.  

PM was collected using a stainless steel filter holder with 12.5° tapered inlet provided 

by Sierra Instruments. Within the holder, filters were held in place using removable filter 

cassettes. Cassettes were loaded with fresh filters before every day of testing. Special 

care was taken to not touch the filter face during any part of the process. The entire 
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separator and filter holder assembly was heated using controlled heating tape purchased 

from Omega Engineering such that the desired Tf was achieved for each sample taken. 

For gravimetric analysis, Whatman 7592 ring supported 100% PTFE membrane 

filters with 2 μm pore size were used. All filter handing was done inside an 

atmospherically controlled clean room with specifications given in the EPA test standard. 

Fresh filters were pre-conditioned by exposing them to the clean room environment in 

partially open glass Petri dishes for a minimum of 2 hours before pre-weighing. They 

were then loaded into the cassettes within 12 hours of use. Before removing from the 

clean room, filter cassettes were wrapped in Parafilm and stored in individual metal 

containers. These containers were stacked in a sealed tube which was used to transport 

them to the test location. Figure 2.4 shows a photograph of the filters, cassettes and 

associated containers used. 

 

Figure 2.4: Filters, filter cassettes and associated containers 

During loading as mentioned in the previous section, DR and Vf were maintained 

constant. Since different conditions had varying amounts of PM, the sample time (τs) was 

changed such that the maximum allowable dPf given in Table 2.3 was not reached. For 
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the tests conducted in this study, τs varied between 30 seconds and 10 minutes to reach an 

adequate PM loading at different conditions. 

After PM loading during a test, the filter cassettes were re-wrapped in Parafilm, 

placed back in their metal tins and taken back to the clean room within ½ hour of the 

testing day. There they were exposed in opened Petri dishes for a minimum of 12 hours 

to condition before weighing and additional analysis.  

Filter cassettes and metal tins were cleaned between tests using de-ionized water in an 

ultrasonic bath for 30 minutes and subsequently air dried. Petri dishes were cleaned using 

a combination of de-ionized water and isopropyl alcohol. 

2.2.6.3 Gravimetric Analysis 

Determining the mass of PM on filters was done using a Mettler Toledo XP6U 

microbalance with accuracy of 0.1 μg. The balance is located in the clean room 

environment discussed previously. If the room fell out of the environmental conditions 

required, no data was collected until the room was allowed to re-equilibrate for 1 hour. 

The procedure for weighing filters was accomplished using the US-EPA 40 CFR 1065 

regulations as a guideline. The microbalance was calibrated and leveled at the beginning 

of each weighing session and re-zeroed after every 3 filters weighed. Before weighing 

filters for a test, a blank reference filter of known mass was checked. If the reference 

filter was more than 20μg from the known original value, the calibration procedure was 

repeated. 
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 A grounding strap was worn and statically resistive tweezers were used to handle 

filters when weighing. The filter was exposed to a radioactive Polonium source to 

eliminate static charge to ±2.0 V of neutral. Weighing occurred in an enclosed chamber 

and was automatically recorded using computer software. 

The mass of PM on a filter was taken to be the mass of a filter after PM loading 

subtracted from the mass before PM loading as shown in Equation 2.16. 

 (2.16) 

Where: 

mpm:  Mass of PM on filter (μg) 

mf,post: Mass of filter after PM loading (mg) 

mf,pre:  Mass of filter before PM loading (mg) 

Since atmospheric pressure was not controlled in the clean room, a buoyancy factor was 

applied to mp per the calculation outlined in US-EPA 40 CFR 1065.690. 

To calculate the mass concentration of PM for a given filter and dilution tunnel sampling 

time Equation 2.17 was applied. 

 (2.17) 

Where: 

Mpm:  Mass concentration of PM in exhaust gas (mg/std-m
3
) 

mpm: Mass of PM on filter (μg) 

:  Volumetric flow rate of exhaust sample into dilution tunnel (std-l/min) 

τs:   Dilution tunnel sample time (s) 
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The emissions index for PM was then calculated using engine AFR according to 

Equation 2.18. 

 (2.18) 

Where: 

EIpm: Emissions index of PM (g/kg-fuel) 

For each engine condition for which a PM mass was taken, three particulate filters 

weights were taken. The data reported for the experimental study was the mean of the 

three values. 

2.2.6.4 Total Organic Carbon Analysis 

Quartz fiber filters were used in the dilution tunnel during the experimental study to 

determine the organic carbon versus elemental carbon (OCEC) of the engine PM. These 

quartz filters were also handled only in a clean room environment like the PTFE filters 

for gravimetric analysis described above. After removal from their sampling cassettes, 

they were packaged in sealed Petri-dishes and stored in a laboratory refrigerator 

controlled to 5°C for later analysis. 

The OCEC value for the quartz filters was determined by the methods described in 

NIOSH 5040 and in Birch et al. (1996) using a thermal optical analyzer (TOA) 

manufactured by Sunset Laboratory Inc. In the TOA, a 1.5 cm diameter punch of the PM-

loaded filter is placed into a sealed chamber and is taken through two primary steps. The 

first is to heat the filter in a He environment over a period of minutes up to approximately 
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850°C. This step evolves organic carbon (OC) from the surface, catalytically oxidizes it 

to CO2 through a bed of MnO2 granules then converts it to CH4 in a Ni/firebrick 

methanator. The CH4 is then measured using a FID. In the second step, the temperature is 

lowered and the filter is heated again in a He/O2 environment to evolve the elemental 

carbon (EC) from the surface. The EC portion is then quantified in the same way as the 

OC. 

The primary output of the TOA is the mass of EC and OC per square centimeter. In 

the experimental study, these values were multiplied by the total exposed area of the filter 

to yield the mass of EC and OC (mec, moc respectively). The total carbon (TC) mass 

reported was the sum of EC and OC. To determine the mass concentration and EI of EC 

and OC in the exhaust, Equations 2.17 and 2.18 were applied. 

Calibration of the OCEC method was done according the NIOSH 5040 method. This 

calibration procedure uses a known quantity of carbon loaded onto a quartz filter and 

analyzes it multiple times to correlate the FID output to a mass measurement. 

Repeatability was established by running at least one duplicate sample per day of 

analysis. 

2.2.6.5 Soxhlet Extraction 

To characterize the organic matter from the PM-loaded PTFE filters, Soxhlet 

extraction was used. In this method, developed in 1879 by Franz von Soxhlet, a specially 

designed glass extractor is used to dissolve species from a sample into a solvent. The 

apparatus comprises a heated flask containing solvent, an extraction section and a 

condenser. The sample is generally loaded into a thimble and placed in the sample 
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chamber within extractor. As the solvent in the flask evaporates, it travels up a distillation 

arm to the condenser section which is cooled with room temperature water. The 

condensed solvent condenses and slowly fills the sample chamber. As the chamber fills, 

the desired compounds dissolve into the solvent. When the chamber is almost full, it is 

automatically emptied by siphon side arm and carried back into the flask. The cycle is 

repeated for as many times as necessary to concentrate the solvent with the desired 

compounds. The advantage of the Soxhlet method is that only fresh solvent is exposed to 

the sample each cycle allowing the maximum extraction to occur in the chamber. Three 

Soxhlet apparatus were used in parallel in the as shown in the photograph in Figure 2.5 to 

facilitate faster analysis time. 

 

Figure 2.5: Soxhlet extraction apparatus used in the experimental study 

The extraction of diesel particulate using Soxhlet has been a standard procedure for 

many years. However, the choice of solvent has been the subject of much debate. 

Benzene was the solvent of choice for extracting ambient particulate for many years until 

concerns regarding its carcinogenic nature inspired the search for safer alternatives. It is 
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known that the polarity of solvents is important for the extraction selectivity of a desired 

species; polar solvents tend to attract polar molecules and non-polar attract non-polar 

species. Grosjean (1975) presented a detailed analysis of the extraction efficiency of 

different solvents compared to benzene for organic matter from particulate collected from 

the ambient air. In the analysis, dichloromethane (DCM), a slightly polar molecule, had a 

higher efficiency in extraction of organic molecules than benzene alone. The overall 

analysis suggested that for best extraction of polar and non-polar organic species within a 

sample, a two component solvent be used. Non-polar solvents have the ability to extract 

polar molecules to a certain extent. Some have experimented with combinations of 

benzene and DCM and found the mixture of the two, when mixed in the correct ratio, to 

have higher extraction efficiency than either of them alone (de Lucas et al., 1999). 

For the experimental study reported here, extraction of major species contained in the 

fuels used from the PM was of primary interest. Straight alkanes, found to high 

concentration in low sulfur petroleum diesel and fatty-acid methyl esters contained in 

biodiesel have all shown high extraction efficiency using DCM (Lapuerta et al., 2003). It 

has also been a standard for extraction of diesel PM from filters for many years 

(Funkenbusch et al., 1979; Wall et al., 1984). Based on these reasons and its relative 

safety compared with benzene, DCM was used as the sole solvent for extraction of 

organics from diesel PM in this study. 

In the Soxhlet extraction procedure, all glassware was first cleaned by triple rinsing 

with DCM, then with acetone and finally with de-ionized water. The glassware was then 

dried in a convection oven at 150 °C for at least 12 hours. Pyrex thimbles for holding the 
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PM filters were additionally cleaned in an ultrasonic bath of acetone for 30 minutes 

before rinsing with de-ionized water and dried. 

Once cleaned, all glassware was handled with gloves to reduce contamination and 

filters were inserted into thimbles using stainless tweezers. The flasks were filled with 

200 mL of DCM and 1 ml of internal standard mixture for each filter extraction. During 

one run, 3 filters were extracted at a rate of 6 minutes per cycle for 15 hours to yield 

approximately 150 total cycles. After extraction, the saturated solvent was transferred to 

clean glass jars and stored in a laboratory refrigerator controlled to a temperature of 5 °C. 

The solvent was then concentrated using a vacuum rotary evaporator to a volume of 

approximately 1.5 ml for use in the GC analysis. 

2.2.6.6 Gas Chromatography Methods for Extracted Particulate 

The use of GC methods for analyzing organic species from particulate filters has been 

well established. A Shimadzu GC-17A gas chromatograph with flame ionization detector 

GC-FID was used in the study. Details of the setup and program of the GC used are 

shown in Table 2.5. 

Although many published studies use GC with mass spectrometry as the detection 

method, GC-FID as the chosen analysis technique is appropriate for the experimental 

work presented here. This detector cannot conclusively detect species a priori, especially 

those with overlapping retention times which is a key disadvantage. However, it can be 

extremely accurate when concentrations of a desired species in a sample are high and 

when a known standard of the species have been established using the chosen instrument 
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and program. Both qualitative and quantitative methods have been well established for 

GC-FID (McNair and Miller, 1997) and are used in the work presented here. 

Table 2.5: GC specification and program for speciation of extracted PM samples 

Gas Chromatograph Shimadzu GC-17A 

Column  Restek RTX-1, 60 m, 0.53 mm, 2.5 μm 

Carrier Gas  Ultra-high purity He 

Injection Temperature = 300 °C, Split Ratio = 8:1 

Program  Temperature: 

40 °C for 0 min 

10 °C/min to 185 °C 

185 °C for 14 min 

10 °C/min to 300 °C 

300 °C for 15 min 

Pressure: 

126 kPa constant 

Detector Temperature = 320 °C 

  
  

In analyzing the extracted PM, solvent samples were injected into the GC-FID using a 

1μl plunger-in-needle syringe. Before running a sample, pure DCM was injected using 

the same program to ensure that residual contamination in the syringe, injection port or 

column did not exist. The sample was then run using the program outlined in Table 2.5. 

The syringe was cleaned by flushing 10 times with acetone and 10 times with DCM 

followed by baking in a syringe oven at 300 °C for 30 minutes. 

As mentioned in the previous section, internal standards were mixed into the solvent 

flask prior to the extraction process. Qualitatively, the standards species of known 

retention time and with higher concentration than the species in the sample allow relative 

identification of peaks. For quantitative analysis, the peak area of a known mass of a 
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standard species prior to extraction can be correlated to the mass of like species dissolved 

and concentrated in the solvent sample. Three standard species were chosen, tetradecane 

(C14H30), nonadecane (C19H40), and methyl heptadecanoate, a saturated C17 methyl ester 

(C17:1) not found in biodiesel. A mass of 400 μg of each standard species was mixed 

into the solvent for each filter extraction. To calculate the mass of identified species in a 

solvent sample, Equation 2.19 was applied. 

 (2.19) 

Where: 

mi:  Mass of species with identified species i 

mISTD:  Known mass of internal standard 

fi:  Response factor for identified species i 

Ai:  Peak area of species with identified species i 

fISTD: Relative response factor for internal standard 

AISTD: Peak area of internal standard  

In Equation 2.19, relative response factors (fi) allow compensation for non-linearity in the 

relationship between peak area from a given detector and the mass of a species relative to 

another molecule. It is generally advisable to determine response factors specifically for 

use in one instrument and program. Literature values were used instead however since for 

n-alkanes they can be predicted to good accuracy. The FID is particularly linear for n-

alkanes because their molecular weight is linear as a function of carbon number. Scanlon 

and Willis (1985) give an analytic expression for the calculation of hydrocarbon response 

factors for FID using what they termed the effective carbon response. This expression is 

given as Equation 2.20. 
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 (2.20) 

Where: 

MWC:  Molecular weight of carbon (12.011) 

MWH:   Molecular weight of hydrogen (1.008) 

NC,i:  Number of carbon atoms in species i 

NH,i:  Number of hydrogen atoms in species i 

Equation 2.19 was not used for fatty acid methyl ester (FAME) components which 

make up biodiesel however since the response of oxygenated molecules are generally 

more unpredictable. Alcohols and other oxygen containing molecules generally have a 

measured carbon deficiency where the FID detects less than the actual number of carbon 

atoms present. Therefore, these oxygenated compounds result in a response factor greater 

than 1. The FID response factors for FAME components used in the study are from 

Ulberth et al. (1999). They found that for high molecular weight esters like those found in 

biodiesel, response is surprisingly linear and near the value of 1 meaning that all carbon 

atoms are measured irrespective of the oxygen present. They speculate that the full 

carbon response for large methyl esters may be due to the particular breakdown sequence 

of the ester component in combustion. Table 2.6 shows the response factors for relevant 

compounds for the experimental study. 
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Table 2.6: Values used for FID response factors of n-alkanes (Scanlon and Willis, 1985) 

and FAME compounds (Ulberth et al., 1999) 

n-Alkane F  FAME f 

C14H30 0.883  C16:0 0.992 

C15H32 0.882  C18:0 1.000 

C16H34 0.882  C18:1 0.987 

C17H36 0.881    

C19H40 0.881    

 

In the implementation of Equation 2.19 to determine the mass of extracted 

components, the response factor for the internal standard (fISTD) C14H30 was used for 

species eluting earlier than C14H30. The fISTD for C19H40 was used in estimating the mass 

of all heavier species than C14H30 with exception to known FAME components. For these 

a standard response factor of 1.00 was used given the linearity of FAME response as 

illustrated in Table 2.6. 

2.3 Tested Fuels 

The primary fuels used in this work were a mid-cetane US-specification ultra-low 

sulfur diesel (ULSD) certification fuel, a soy-based methyl ester (SME) biodiesel and 

Swedish Environmental Class 1 (SWE) diesel fuel. The ULSD fuel was blended by the 

supplier to have a cetane number in the middle of the range 40-50. The SWE fuel is a 

light distillation blend with low aromatics. It was chosen to represent an upper bound of 

CN and for relevance in comparison with past studies conducted at the University of 

Michigan. 
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As discussed in Chapter One, when the combustion characteristics of biodiesel were 

compared with a petroleum diesel, ignition delay and therefore combustion phasing and 

NOX emissions correlated strongly with CN. Studies choosing a low aromatic diesel 

showed different trends than studies using a diesel fuel higher in aromatic species. By 

selecting two petroleum diesels with CN bounding that of the biodiesel used, this study 

attempted to see this effect more clearly. 

Along with the two diesels and 100% SME (B100), two 50% by volume blends of 

biodiesel mixed with ULSD and Swedish (B50ULSD and B50SWE) were tested. In this 

way, a matrix of fuels with a progression of CN was used as shown in Table 2.7. The 

table also shows other measured properties for all the fuels tested in the study from an 

analysis carried out by Paragon Laboratories Inc. Due to the instability of the SME due to 

oxidation as was mentioned in Chapter One, all fuel analyses were carried out within the 

month before testing began. 

Table 2.7: Properties of fuels tested in the preliminary study. 

Fuel ULSD B50ULSD B100 B50SWE Swedish 

Cetane  45.7 48.1 50.1 51.2 55.9 

LHV (MJ/kg)  42.97 39.98 37.35 40.22 43.54 

Kin. Viscosity 

(mm
2
/s)  

2.35 3.02 3.93 2.65 1.84 

Oxygen (Wt %)  0.0 5.6 10.9 5.7 0.0 

H/C ratio  1.86 1.86 1.83 1.93 2.00 

 

Trends in lower heating value (LHV) were as expected. The two petroleum fuels had 

very similar values whereas B100 has the lowest energy content per unit mass. Viscosity 
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was similar to values found in the literature with B100 having a slightly higher value than 

ULSD and Swedish diesel, a lower viscosity than ULSD. Sulfur was less than 15ppm in 

all fuels tested as required by federal regulations. 

SME was obtained from Peter Cremer Inc., a biodiesel manufacturer in Illinois, and 

was used within 3 months of transesterification. The standard ASTM 6751 outlines limits 

of properties required for biodiesel sold in the United States. It is a compilation of tests 

defined by separate standards. The results of the tests performed by Midwest 

Laboratories Inc. according to this standard are shown in Table 2.8. 

Table 2.8: Additional properties of biodiesel used in the study as part of ASTM 6751, 

n.d.-not detected 

Property  Level 
Detection 

Limit 
Method 

Oxidation Stability (hrs @110°C) 5.8 0.1 EN14112 

Flashpoint  (°C) 143 4 ASTM D93 

Water and Sediment (% Vol.) n.d. 0.010 ASTM D2709 

Kinematic Viscosity (mm
2
/s) 3.920 1.000 ASTM D445 

Sulfated Ash (% mass) n.d. 0.01 ASTM D874 

Sulfur (ppm mass) n.d. 0.5 ASTM 5453 

Cloud Point (°C) 5.0°C  ASTM D2500 

Carbon Residue (% mass) n.d. 0.020 ASTM D4530 

Acid Number (mg KOH/g) 0.19 0.05 ASTM D664 

Free Glycerin  (% mass) 0.008 0.001 ASTM D6584 

Total Glycerin (% mass) 0.020 0.001 ASTM D6584 

Boiling Point/100% Dist. Temp. (°C) 343 1 ASTM D1160 
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The boiling point of the B100 fuel was measured to be about the same as that found 

in Sharp et al. (2000) as shown in Table 1.2 and it may be assumed that the initial boiling 

point was about 10°C lower than the value shown. For comparison, the distillation curve 

of ULSD and the Swedish diesel used in this study is shown in Table 2.9. Both exhibited 

almost identical distillation ranges although the 50% point is 20°C higher for Swedish 

than for ULSD. All fuels have a final boiling point within 8°C of each other. 

Table 2.9: Distillation ranges of unmixed fuels used in the study, IBP- Initial boiling 

point, FBP- Final boiling point, * IBP not measured for B100, all values in °C 

Distillation  ULSD SWE B100 

IBP 183 181 ≈330 * 

10% 208 216 
 

50% 242 262 
 

90% 309 308 
 

FBP 332 333 340 

 

Table 2.10: Significant fatty acids contained in the biodiesel used in the study 

Fatty Acid  Concentration 

Linoleic (C18:2) 52.3% 

Oleic  (C18:1) 22.4% 

Palmitic (C16:0) 11.2% 

Alpha Linolenic (C18:3)  8.28% 

Stearic  (C18:0) 4.53% 

Arachidic (C20:0) 0.34% 

 

Another important set of properties to measure for biodiesel is the fatty acid profile. 

This analysis shows the percentages of different fatty acid groups paired with methyl 
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groups in the fuel. Table 2.10 shows the most significant fatty acids contained in the 

B100 used in this study in order from highest to lowest. The profile test was also done by 

Midwest Laboratories Inc. 

Linoleic acid was the primary fatty acid found and is consistent with expected values 

for a soy feedstock. This poly-unsaturated species is more prone to oxidation than mono-

unsaturated and saturated species like oleic acid and stearic acid, also found in high 

concentration in the SME tested. Biodiesels produced from other sources like rapeseed 

oil contain more oleic acid and therefore have higher oxidative stability. 

2.4 Experimental Uncertainty 

To establish the uncertainty of the data taken in the study, three primary 

categorizations of error are considered. First the accuracy of the data is evaluated based 

on the systemic error, or design-stage uncertainty (uo). It is estimated by tallying the error 

associated with different measurement devices and techniques. The second step is the 

estimation of uncertainty based on the single test repeatability of the data taken (um). In 

this case, the um of a given data sample is evaluated solely on the variability of that 

engine operating condition at the time of sampling. The third element of the uncertainty 

analysis is the repeatability uncertainty (ur) based on the three samples taken per fuel and 

operating condition. The repeatability based on repeated days of testing was confirmed 

qualitatively and is not included in the error bars reported in the results shown. To 

combine uo, um and ur in estimating overall uncertainty (ut), the root-sum-squares (RSS) 

method is used as shown in the Equation 2.21(Figliola and Beasley, 2006, pp.151). 
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 (2.21) 

The RSS method assumes variations of an error over repeated measurements tend to 

follow a Gaussian distribution. Although a straight algebraic addition of errors would 

yield a higher overall uncertainty, it assumes that all errors occur at their worst possible 

state which is not realistic. All errors in this study were calculated to a 95% confidence 

interval. For a given sample size this is equivalent to ±2 standard deviations (σ).  

2.4.1 Systemic Uncertainty 

The uo for each of the raw variables measured is shown in Table 2.11. The emissions 

analyzer bench uncertainty is shown along with the measurement ranges in Table 2.12. In 

most cases, the data were provided by the manufacturer of the equipment used. In the 

case of the emissions uncertainty, both the full scale accuracy and the accuracy of the 

calibration span gas (SG) were combined using the RSS method. 
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Table 2.11: Analyzer bench measurement ranges and uncertainty, * Span gas error was 

1% of span gas concentration 

Species 

  
Range 

Span 

Gas 

FS 

Error 

Inst. 

Error 

SG 

Error* 
uo 

Units Range (ppm) (ppm) (%/100) (ppm) (ppm) (ppm) 

CO 1 1200 989 0.014 17 10 19 

 
2 11000 10200 0.014 154 102 185 

 
3 70000 50070 0.014 980 501 1101 

CO2-exh 1 80000 70300 0.014 1120 703 1322 

 
2 200000 145400 0.014 2800 1454 3155 

O2 1 60000 50000 0.014 840 500 978 

 
2 250000 210000 0.014 3500 2100 4082 

CO2egr-int 1 40000 30080 0.014 560 301 636 

 
2 80000 70300 0.014 1120 703 1322 

NOx 1 65 60 0.018 1 1 1 

 
2 450 398 0.018 8 4 9 

THC 1 500 412 0.014 7 4 8 

 
2 2600 2334 0.014 36 23 43 

CH4 1 200 100 0.014 3 1 3 

 

Table 2.12: Instrument uncertainty of other variables measured from the engine 

Smokemeter (FSN) 0.1 

Pressure (kPa) 4.1 

Combustion Noise 

(dB) 
1 

Thermocouples (K) 2.2 

Torque (n-m) 1.5 

Speed (rpm) 5 

Fuel Flow (%/100) 0.0005 
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The uncertainty associated with fuel properties used in calculations is also accounted 

for and is shown in Table 2.13. Each is found from the ASTM standard used to measure 

the property. When calculating the overall uo for these variables, the repeatability and 

reproducibility were combined using the RSS method. 

Table 2.13: Uncertainty associated with fuel properties used in calculations for this study 

 
Standard Range/Average Repeatability Reproducibility  

LHV (MJ/kg) ASTM D 240 
 

0.13 0.40 

Carbon (Wt %) ASTM D 5291 75 to 87 (x+48.48)*0.0072 (x+48.48)*0.018 

Hydrogen (Wt %) ASTM D 5291 9 to 16 (x^0.5)*0.1162 (x^0.5)*0.2314 

Oxygen (Wt %) ASTM D 5622 1.0 to 5.0 0.06 0.26 

Oxygen (Wt %) ASTM D 5622 40 to 50 0.81 0.81 

Cetane No. ASTM D 613 40-56 0.01*x+0.42 0.125*x-2.2 

Viscosity @40C 

(mm
2
/s) 

ASTM D 445 1 to 13 0.0043*(x+1) 0.0082*(x+1) 

 

For measurement of FT-IR samples, the instrument uncertainty was assumed to be 1% of 

the full scale range of concentration for a given species spectral calibration. No systemic 

uncertainty was assessed for the gravimetric measurement of PM, soxhlet extraction, or 

GC-FID analysis because it was assumed that measurement uncertainty due to repeated 

samples was much greater than errors introduced by instrument inaccuracies. 

Furthermore, for the purposes of the experimental study, the accuracy of the PM 

measurements are not as important as the precision between samples conducted using the 

same methods and equipment. 
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2.4.2 Measurement Uncertainty 

To find the uncertainty associated with measurement variability for a given trial (um), 

twice the standard deviation (σ) of all samples taken for that data point was used to 

represent a 95% confidence interval. For the low speed data samples like engine speed 

and load for example, um was 2σ of the 50 data points taken at 1Hz for a given engine 

condition. For the FT-IR, um was 2σ of one minute of spectral data taken at 1 Hz.  In the 

case of the FSN measurements, um is 2σ of the three measurements taken for each fuel 

and operating condition. 

Some calculated values like BMEP or EI emissions are functions of many measured 

parameters. To find the uncertainty associated with functions of measured parameters 

each with their own uncertainties, the method of sequential perturbation (Figliola and 

Beasley, 2006, pp.158) was used. This method is a numerical approach using the finite 

difference method to approximate solutions to partial differential equations. The 

procedure was as follows: 
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1. Calculate the average of a set of each variable, and their relative uncertainties . 

In our case this is equivalent to 2 standard deviations, . 

2. Calculate the desired result, Ro using the average values found where 

  

3. Increase the independent variables by their respective uncertainties one at a time and 

recalculate the result. 

 

 

 

4. Similarly, decrease the independent variables in the same way and recalculate the 

function,  

5. Calculate the differences  and 
-
 for all . 

 

 

6. Evaluate the approximation of uncertainty contribution from each variable. 

 

7. The uncertainty of the function then is the sum of squares of each contribution. 
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2.4.3 Repeatability Uncertainty 

The repeatability uncertainty (ur), was represented by twice the σ of the three data sets 

for emissions, high speed and FT-IR are collected per condition and fuel. It was then 

added to the overall uncertainty for all the variables. The key assumption made was that 

given multiple trials of changing engine conditions and consequently coming back to the 

same conditions for a given fuel test where LTC was established, ur would be the same 

for any data point. 

For the gravimetric PM analysis, three Teflon fiber filters are collected along with 

one quartz filter per fuel and condition. The weights of the three Teflon filters are 

averaged and ur is twice the standard deviation of the three masses. 

On the plots shown in the following chapters, error bars are shown based on the 

above uncertainty analysis with each error bar being represented by ±ut. It is noted that 

for all high-speed variables like CA50, the instrument error was not included and the 

method for propagation of error was not known since they were calculated using 

externally developed, and proprietary, software. The uncertainty shown for these are 

based solely on the variability from the 100 sampled cycles per steady state condition. 
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CHAPTER THREE 

COMBUSTION DEVELOPMENT 

3.1 Engine Condition Development 

The intent of this chapter is to establish engine operating conditions best suited to 

achieve the goals set forth in Chapter One. Since a large number of instruments are 

brought to bear to accomplish this task, single operating points are first developed with 

the baseline ULSD fuel to ensure that they meet the criteria for the type of combustion 

they are meant to typify. Identification of constant parameters used for the development 

of the points and selection of these parameters based on past studies is accomplished. 

Data taken from sweeps in injection timing and EGR, two primary control parameters, 

are used to optimize the selection of each condition. 

In the second part of the chapter, combustion performance is explored for chosen 

operating conditions over the range of fuels used in the study. The objective is to see the 

effect of chosen constant parameters on combustion and to ensure that the emissions data 

presented in later chapters is from operating conditions best suited to illuminate 

differences resulting from fuel chemistry rather than those arising from secondary effects 

from physical fuel characteristics or ignition properties. 
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3.1.1 Identification of Constant Parameters 

This section details constant parameters used for the experimental study chosen such 

that appropriate comparisons can be made between the selected fuels. In the experimental 

study, engine speed and load are such variables. Load for multi-cylinder engines is 

generally indicated using BMEP. In the study, duration of the main fuel injection event is 

altered to change engine load. 

Another parameter that is maintained constant between fuels is the EGR rate. As 

mentioned in Chapter Two, the throttle is kept completely open to maximize volumetric 

efficiency, the VGT is used to set an initial EGR and the EGR valve is used to make 

small adjustments between fuels at an engine condition. In this way, although not 

specifically controlled, intake manifold pressure is maintained effectively constant for a 

given engine condition. 

As was shown in the preliminary study, removing the effects of combustion phasing 

between fuels is best accomplished by maintaining a constant CA50 (Northrop et al., 

2009). This measure of combustion phasing has also been proven to be an effective 

parameter of comparison between petroleum fuels of differing cetane numbers (Ickes et 

al., 2009). To maintain constant CA50 between fuels for a given engine, the timing of the 

main fuel injection event is advanced or retarded. 
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3.1.2 Selection of Engine Conditions 

3.1.2.1 Overview 

Three engine conditions are chosen in the experimental study. For these conditions, 

the parameters mentioned above are kept constant and comprehensive data are taken to 

compare detailed HC and PM emissions between the selected fuels. One mode represents 

a common use of early injection LTC (ELTC) and another represents late injection LTC 

(LLTC). The third is a conventional diesel combustion condition. The conventional case 

is selected to both confirm findings found in the established literature and to form a basis 

for comparison with premixed LTC of biodiesel. For choosing the two premixed LTC 

points, the work of previous researchers using the same engine as in the current 

experimental study and discussions with the engine manufacturer are used as guidelines. 

Table 3.1 shows a summary of the constant engine parameters set in the experimental 

study for the three operating conditions. The key constant parameters are shown along 

with their 95% confidence interval uncertainties taken over all data recorded at that 

condition. The remainder of this chapter is dedicated to characterizing these three chosen 

test conditions to set the stage for the detailed analysis of HC and PM in later chapters. 
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Table 3.1: Summary of important parameters for the three chosen engine conditions in 

the experimental study 

Condition Conventional  LLTC ELTC  

Speed (rpm) 1500 ± 2  1500 ± 1 1500 ± 1  

Power (bhp) 17.1 ± 0.2 11.3 ± 0.1 5.7 ± 0.1 

BMEP (kPa) 601 ± 7  397 ± 3 201 ± 3  

Injections  Pilot/Main  Single  Single  

Inj. Pressure (bar) 798 ± 17  1007 ± 11 804 ± 10  

Inj. Timing (°BTDC)  ≈ 2.2 (13.8)  ≈ 5.9 – 7.1 ≈ 17.3 – 24.1  

CA50 (°ATDC)  10.1± 0.1  10.9 ± 0.1 -0.4 ± 0.1  

NOX Range (ppm) 39 – 65  26 – 35 221 – 239 

EGR  24.9% ± 0.2%  45.3% ± 0.4% 55.2% ± 0.3%  

Φ  0.57 ± 0.01  0.68 ± 0.02 0.52 ± 0.01  

O
2
 in Intake  16.9% ± 0.1%  13.6% ± 0.2% 14.4% ± 0.2%  

Intake Pressure (kPa)  105 ± 1 101 ± 1 101 ± 1  

Coolant Temp. (°C)  85 ± 1  86 ± 1 82 ± 1  

Intake Temp. (°C)  53 ± 1  52 ± 1 38 ± 1  

 

3.1.2.2 Engine Speed and Load 

As discussed in Chapter One, the LTC regime is limited by both engine speed and 

load. Typical engine speeds studied for the use of these conditions are in the range of 

1000 to 2000 rpm. As engine speed increases, the time allowed for fuel and air mixing 

decreases thereby limiting the duration of injection and engine load for that speed. For 

the study, 1500 rpm is chosen since at this speed, it is realistic to operate all three 

combustion strategies at different loads. Further, this speed was chosen for comparison 

with past studies using similar engines. 
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For low load operation, it is possible to yield the maximum benefits of simultaneous 

low soot and NOX while maintaining high fuel conversion efficiency with an ELTC 

strategy. With early fuel injection occurring in advance of 15 CA°, peak cylinder 

pressures generated by combustion generally occur near TDC since fuel and air are very 

fuel lean. As load increases, peak pressure becomes too high decreasing durability and 

generating unacceptable combustion noise. In Knafl et al. (2008) it was found that the 

maximum load for an early injection strategy at 1500 rpm was 200 kPa BMEP and thus 

this load was chosen for the experimental study. 

Though an ELTC condition is not appropriate for a mid-load condition, LLTC, with 

injection timing nearer to TDC maintains significant premixing while retarding peak 

pressures further into the expansion stroke. The LLTC test load was chosen to be 400 kPa 

BMEP since this was the load used in the preliminary study and as well as in other 

previous work with the same engine. As load increases in LLTC, the end of injection 

tends towards the start of ignition, this creating more diffusion burning. Once the 

diffusion portion of combustion becomes significant, the traditional low soot and NOX 

tradeoff returns and the benefits of LTC disappear. Ickes et al. (2009) explored the load 

limits of a late injection LTC condition in a single cylinder version of the same engine 

used in the study. For an EGR rate of 45% and injection pressure of 1000 bar, the point of 

limitation was found to be 570 kPa indicated mean effective pressure (IMEP) which 

corresponds to just greater than 400 kPa BMEP in the test engine used in this study.  
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At higher loads, a conventional combustion strategy would typically be used in 

practice. A BMEP of 600 kPa was chosen to allow close enough comparison to the LLTC 

condition while increasing the soot concentration, allowing greater differences to appear 

in the comparison of fuels. 

To envision the chosen engine speed and load from a practical perspective, Figure 3.1 

shows an illustration of what steady state speed a hypothetical small-sized vehicle using 

the test engine would travel on level road at the three loads chosen for the experimental 

study. Road load resistance was calculated assuming only rolling resistance and air 

resistance. The calculations used in making the vehicle speed estimation are not shown in 

this document but can be found along with typical values for vehicle coefficient of rolling 

resistance and drag in the Bosch Automotive Handbook (2000, pp.338). 

 

Figure 3.1: Level road vehicle speed for the three engine loads used in the experimental 

study 
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3.1.2.3 Injection Pressure and Timing 

Premixed LTC strategies depend greatly on fuel injection properties. The pressure 

and timing of when fuel is injected into the cylinder directly influences mixing and thus 

ignition delay and burning rate. At the speed and load of the conventional condition, the 

test engine’s stock ECU calibration utilizes a two injection strategy. The small pilot 

injection is meant to provide a premixed fuel and air region to ignite the larger main 

injection which occurs around TDC. This injection strategy exhibits a distinct diffusion 

burning phase since combustion has commenced once the main injection starts. The 

values of injection pressure, timing and relative duration between pilot and main were 

taken from the stock ECU calibration. 

Injection pressures were set for the ELTC and LLTC conditions according to those 

from past studies with the same engine and from conversations with the manufacturer of 

the engine. Although high pressures are advantageous for mixing in LTC, they can have a 

deleterious effect due to parasitic power losses from the high pressure pump. Therefore, 

800 bar injection pressure was chosen for the ELTC low power condition and 1000 bar 

was selected for the LLTC mid-load condition. Also, since high injection pressure 

decreases soot formation due to increased mixing and reduction of over-rich zones, lower 

injection pressure than the maximum allowable pump pressure of 1400 bar is set to 

enhance soot formation slightly for lower error in the gravimetric PM analysis. 

Early injection strategies can be broadly characterized by peak cylinder pressures 

occurring around TDC and ignition delay longer than 10°ATDC. Such strategies have 

been developed in the literature with injection timings from 60°BTDC to 20 °BTDC 
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(Lechner et al., 2005). Even earlier strategies have been investigated in attempts to 

achieve complete HCCI-like conditions (Hardy et al., 2006, Kimura et al., 1999). The use 

of very early injection has drawbacks for the current study since it is desired to maintain 

constant combustion phasing between fuels at the same engine condition. By injecting 

fuel near intake valve closing, very small deviations in the start of ignition can be 

affected by large adjustments in injection timing. Therefore, a strategy with timing in the 

range of 30 °BTDC to 15 °BTDC is chosen to represent a low load premixed LTC 

condition where CA50 is controlled effectively using injection timing. Figure 3.2 shows 

how CA50 varies with injection timing for the three conditions used in the study with 

ULSD fuel over a varying injection timing range and with other parameters from Table 

3.1 held constant. 

 

Figure 3.2: CA50 versus injection timing for the conditions tested in the study with 

ULSD fuel; vertical lines represent chosen conditions from Table 3.1 
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For all the conditions, CA50 and injection timing have a near-linear relationship with 

positive slope, a trend that is well known (Northrop et al. 2009, Ickes et al 2009). 

Interestingly however, CA50 for the ELTC case shows a minimum at the chosen 

injection timing of 25 °ATDC. Detailed investigation of the trend is beyond the scope of 

this dissertation. However, one possible reason for the retarding of CA50 with advancing 

injection timing (ie. increasing ignition delay) from this point is due to changing fuel 

spray targeting. If fuel droplets begin to miss the piston bowl, they may begin to impact 

the piston crown and prohibit the mixing essential for ignition to occur. As injection is 

further retarded, less fuel enters the bowl and exacerbates the mixing deterioration thus 

extending ignition delay further. 

The above explanation is partially verified by Figure 3.3 where the four major 

pollutant emissions are shown over an injection timing range. When timing is advanced 

from 25 °BTDC, an inflection point occurs in all the curves. Soot and the other products 

of incomplete combustion increase while NOX decreases sharply. One would assume that 

on either side of the minimum in CA50 for ELTC, NOX would be similar since the 

maximum average cylinder temperature is nearly constant. However, if some fuel is 

deposited on the cylinder crown, more rich zones of combustion are likely. These areas 

lead to fewer zones where combustion occurs in the bowl leading to more HC and soot 

emissions. 
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Figure 3.3: EI-NOX, FSN, EI-CO, EI-THC and maximum mean cycle temperature versus 

injection timing for the ELTC condition and ULSD fuel 

By examining the data, the most optimal point of injection timing for the ELTC 

condition is 24°BTDC since at this setting, THC and CO are low, FSN is near zero and 

NOX is still acceptably low. Further, since all the other test fuels have higher cetane 

number than ULSD, the injection is retarded from this point to match CA50. Therefore, 

the limitation on advancing past the optimal point of spray targeting can be avoided for 

all fuels. 

For ELTC, the effects of poor combustion before the 23.6 °BTDC point can be 

clearly seen in the plot of BSFC versus injection timing given in Figure 3.4 for the three 

engine conditions. Trends in combustion efficiency, although not shown, follow those of 

BSFC closely.  
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Figure 3.4: BSFC versus injection timing for the three conditions with ULSD fuel; 

vertical lines indicate chosen conditions from Table 3.1 

Late injection strategies are characterized by having injection timing near that of 

conventional conditions and by combustion occurring after TDC. This is clearly 

illustrated in Figure 3.2 where CA50 and timing range for both the LLTC and 

conventional conditions overlap to some degree. The injection timing chosen for the 

LLTC condition coincides with the preliminary study (Northrop et al., 2009). This 

condition is also optimized from the perspective of combustion quality. With premixed 

combustion occurring with CA50 later than approximately 10 °ATDC, fuel and air have 

less time to burn as the piston travels down through the expansion stroke creating 

products of incomplete combustion due to quenching. This increases BSFC as shown in 

Figure 3.4. THC shows a sharp increase at timings more retarded than 6.6 ° BTDC as 

given in Figure 3.5, also a consequence of lower combustion efficiency. CO increases 

monotonically through the timing range indicating that zones of incomplete combustion 
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increase steadily as timing is retarded. NOX decreases almost linearly with retarded 

injection timing whereas smoke remains consistently low, showing no evidence of the 

soot-NOX tradeoff seen in conventional combustion. The chosen timing for the LLTC 

condition avoids the area of poorer combustion and also strikes a balance between NOX 

and CO emissions. 

 

Figure 3.5: EI-NOX, FSN, EI-CO and EI-THC versus injection timing for the LLTC 

condition and ULSD fuel 

For conventional combustion, BSFC remains essentially constant along in a range of 

injection timing around the stock ECU setting as shown in Figure 3.4. Emissions for the 

conventional case are shown in Figure 3.6. Here NOX decreases and FSN, CO and HC 

increase with retarded timing. As expected, with more retarded timing, combustion is 

pushed further back into the expansion stroke and more unburned fuel results. The NOX 

emissions also decreases with retarded timing since combustion temperatures are cooling 

with the retarded combustion phasing. With further retarding of injection timing, smoke 
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emissions would be expected to rise although this is not seen in the range of timing 

tested. 

 

Figure 3.6: EI-NOX, FSN, EI-CO and EI-THC versus injection timing for the 

conventional condition and ULSD fuel 

3.1.2.4 EGR and Equivalence Ratio 

Fueling rate and thus net fuel flow into the engine for the three conditions are dictated 

by the desired load. The quantity of air and EGR flow into the engine are partially 

dictated by engine speed though their proportion is chosen independently. High levels of 

EGR is the key enabling parameter for inducing long ignition delay for LTC and the 

important factor in reducing peak cylinder temperatures. By setting the fueling rate to 

achieve the desired load and by controlling the amount of EGR desired using the VGT in 

combination with the EGR valve as described in Chapter Two, the equivalence ratio is 

automatically constrained. Further control of φ could be made by using the intake throttle 
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though it has been shown that creating more boost through the use of a VGT has 

advantages for both engine efficiency and emissions (Jacobs et al., 2006).  

For both the ELTC and LLTC conditions, EGR is set based on the capability of the 

laboratory EGR cooler to maintain a constant outlet temperature for an extended testing 

session. One issue limiting the use of LTC strategies in practice is the fouling of EGR 

coolers over time due to large quantities of cooled exhaust gases passing through them. 

As engine load increases, demand on cooling duty increases due to higher exhaust 

temperatures. Therefore, in the case of the experimental study, EGR is 55% for the ELTC 

and 45% for the LLTC condition. For conventional combustion, 25% EGR is chosen 

since this represents the estimated value set in the stock ECU calibration at this speed and 

load. 

Emissions of soot and NOX strongly depend on the choice of EGR rate. Figure 3.7 

shows FSN versus EI-NOX for the three conditions in the study with ULSD as fuel when 

EGR is varied. Engine speed, load and injection timing are held constant at the values 

shown in Table 3.1 for the conditions shown in the plot. 

For the conventional combustion, the traditional soot versus NOX tradeoff is clearly 

illustrated. In the steady state condition chosen for the study, NOX falls within the middle 

of the range shown in the plot and the FSN is below 1. For ELTC, no discernable change 

in FSN is seen as a function of EGR illustrating the defeat of the soot-NOX tradeoff. NOX 

does increase with decreasing EGR due to rising combustion temperatures. Soot remains 

near zero for ELTC however since the degree of mixing is not changed with changing 

EGR and formation of hot rich zones of combustion does not occur (Kimura et al. 2001). 
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For LLTC, the opposite trend appears where soot increases with increasing EGR with 

only a small change in NOX.  

 

Figure 3.7: FSN versus EI-NOX for the three chosen conditions with ULSD at varying 

EGR levels 

Increasing EGR for LLTC extends ignition delay thereby retarding combustion 

further into the expansion stroke. This sharply degrades combustion quality leading to the 

formation of soot (Jacobs et al., 2007) as illustrated by combustion efficiency versus 

EGR rate shown in Figure 3.8. In ELTC, combustion efficiency degrades with increasing 

EGR without the formation of significant soot showing that unburned fuel most likely 

escapes due to over-leaning and not from fuel-rich zones. Values of ηc are lower in 

general for ELTC illustrating higher levels of THC for this strategy. In conventional 

combustion, EGR does not have significant effect on ηc since diesel combustion utilizing 

a diffusion flame typically yields more complete oxidation of the fuel. For conventional 
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combustion, EGR is chosen more based on NOX and soot emissions and less based on 

combustion quality. 

 

Figure 3.8: Combustion efficiency versus EGR rate for the three chosen conditions with 

ULSD; vertical lines indicate EGR rates for chosen conditions 

3.2 Combustion Comparison Between Fuels 

This section examines combustion and engine efficiency differences between fuels 

for the test conditions outlined in Table 3.1. It provides the proper background for the 

deeper examination of HC and PM emissions detailed in following chapters. 

3.2.1 Test Protocol 

In the investigation of the three steady state engine operating points used for the 

remainder of this dissertation, a specific test protocol was followed to ensure accurate and 

precise results. For a given fuel the desired operating condition was established and 

allowed to equilibrate for 45 minutes before data was taken. Then low speed emissions 
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analyzer data was taken along with high speed combustion data. FT-IR data was then 

recorded before sampling two filters from the dilution tunnel. A second emissions and 

high speed data point was then taken prior to a second FT-IR sample. Two more PM 

filters were then loaded using the dilution tunnel followed by a third round of emissions, 

high speed and FT-IR data. Total time to collect all data from one fuel and condition was 

approximately 45 minutes. All data for a given engine condition and all fuels was 

collected without shutdown of the engine to eliminate day-to-day variability due to 

atmospheric changes or other laboratory changes. 

3.2.2 Conventional  Condition 

The pilot and main injection strategy used for the conventional combustion condition 

incorporated both premixed and diffusion burning phases. Results are comparable with 

those found in the literature reviewed in Section 1.2. This section will show that 

conventional combustion is very similar among the fuels tested when CA50 and the other 

parameters are held constant. 

Examining the apparent RoHR calculated for conventional combustion, B100 and 

ULSD show very few differences as illustrated in Figure 3.9. Just following the pilot 

injection pulse, the RoHR curves dip under the x-axis indicating heat lost to evaporating 

fuel. At the crank angle where the curve re-crosses the axis with positive slope, the SOI is 

defined. Since the pilot injection is just 5.5% of the total fuel injected, most of the liquid 

is evaporated and the first spike in RoHR is mostly premixed as evidenced by its 

symmetrical shape. 
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Figure 3.9: RoHR of ULSD and B100 for conventional combustion 

The second, main injection occurs at the tail end of the pilot RoHR. The second spike 

in heat release corresponding to the main injection has a maximum but is not 

symmetrical. The long “tail” of the main heat release is indicative of a diffusion burning 

period leading to the eventual burnout phase (Heywood, 1988).  

The other three fuels exhibit the same trends and differences between their RoHR 

curves are insignificant. These are not shown in Figure 3.9 to improve clarity. In 

examining the pilot region more closely for the neat fuels tested, Figure 3.10 shows that 

ULSD has a slightly retarded peak pilot RoHR due to its lower cetane number. All other 

fuels have identical pilot RoHR to the SWE and B100 cases. 
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Figure 3.10: RoHR of the pilot injection region of neat fuels used in the study for 

conventional combustion 

With mean combustion properties nearly identical, differences in engine performance 

are clearly related to fuel chemistry and not necessarily the fluid properties of the fuels. 

For example, some report NOX emissions for biodiesel to increase compared with 

petroleum diesel citing its lower bulk modulus (Szybist et al., 2003). Mechanical unit 

injection systems cause fuel to be injected earlier for the same commanded timing 

depending on the compressibility of the fuel. This advanced timing allows combustion to 

occur closer to TDC thus raising peak cylinder temperatures. NOX emissions, related 

mostly to local peak temperatures in the cylinder due to the extended Zeldovich 

Mechanism (Turns, 1996), subsequently increase. However, if combustion phasing is 

maintained constant and peak RoHR is the same due to load-compensated fueling rates, 

NOX emissions are the same for all the fuels to the accuracy of the measurements as 

shown in Figure 3.11. 



102 
 

 

Figure 3.11: EI-NOX fuel comparison for conventional combustion 

Physical fuel properties like viscosity and surface tension can also lead to differences 

in spray breakup and vaporization from diesel injection systems. These differences cause 

an alteration in ignition and combustion phasing for a given injection timing. This in turn 

can change emissions and combustion efficiency thus altering the fuel consumption of an 

engine for a given load. If combustion phasing is maintained constant, differences caused 

by injection differences can be minimized and direct fuel chemistry effects can be seen. 

For example, BSFC is clearly different for the fuels tested in the study though brake fuel 

conversion efficiency is identical as given in Figure 3.12. Differences in LHV between 

biodiesel and the other fuels are effectively isolated from other fuel properties. 
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Figure 3.12: BSFC and fuel conversion efficiency for conventional combustion 

3.2.3 LLTC Condition  

The LLTC operating point has much different combustion properties than the 

conventional mode as illustrated in the RoHR and injection timing plot shown in Figure 

3.13. As reviewed in Chapter One, one criterion for premixed LTC is that it has a shorter 

duration of injection than ignition delay. This can be seen for the LLTC condition for 

both biodiesel and ULSD in the figure. The main heat release is symmetrical, implying 

mostly premixed combustion. Between fuels, B100 has a larger peak main RoHR 

although the combustion phasing is the same as ULSD. Although not shown to enhance 

clarity of the plot, the low-aromatic SWE diesel fuel has the same peak rate of main 

RoHR as ULSD with both B50 blends falling between B100 and the petroleum fuels. 
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Figure 3.13: RoHR and injection timing for ULSD and B100 for the LLTC condition 

One possible explanation for differences in the peak RoHR is that the ignition region 

is retarded for B100. Therefore, the maximum rate is higher for the same engine load and 

total heat release.  

In diesel ignition, radical species are first formed in a slightly exothermic chemical 

reaction just prior to the main ignition event. Species like OH are essential precursors for 

starting the combustion event (Westbrook and Dryer, 1984). This process is easily seen 

on a RoHR plot for combustion regimes like premixed LTC where ignition delay is very 

long and can be seen as a small area just before the main heat release. This region is 

referred to as the low temperature heat release (LTHR) or the cool flame region and can 

be seen more clearly in Figure 3.14 where a closer view of the ignition region is shown 

for all fuels tested. LTHR cannot be as easily detected using a plot of RoHR for 
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conventional combustion due to shorter ignition delay but has been measured using other 

methods (Higgins et al., 2000). 

 

Figure 3.14: Fuels comparison of RoHR in the LTHR region of the RoHR for the LLTC 

condition 

In comparing the ignition region of the neat fuels, ULSD and SWE both have a 

discernable LTHR process though for B100, it is absorbed into the main heat release 

process. It has been shown that methyl ester fuels do exhibit LTHR phenomena but 

proceed by a slightly different kinetic mechanism then for conventional diesel fuel 

(Szybist et al., 2007). Ignition for petroleum fuels is largely attributed to the breakdown 

of n-paraffin species. Szybist et al. showed that the aliphatic chain of methyl esters first 

react similarly to petroleum fuel in the first stages of ignition. The ester group undergoes 

decarboxylation later in the ignition process forming CO2 to higher concentrations than 

for LTHR of n-alkanes. 
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The ignition differences explained above can be also seen by comparing ignition 

delay both measured by SOI to SOC and by SOI to CA10, the point of 10% mass fraction 

burned. A normalized combustion event timeline starting from SOI as the origin is shown 

in Figure 3.15. This diagram illustrates that although B100 has the median cetane number 

of the fuels tested; it has the longest ignition delay as measured by SOI to SOC. 

However, B100 has the median SOI to CA50 duration following the trend in cetane 

number of the fuels with ULSD as the lowest and SWE being highest as given in Table 

2.7. This was also seen in the preliminary study where the duration from SOI to CA50 

was a better indicator of cetane number than the ignition delay (Northrop et al., 2009).  

 

Figure 3.15: Combustion event timeline from SOI for the LLTC condition 

For B100 to have longer ignition delay from SOI to SOC but shorter SOI to CA50 it 

has the shortest duration from SOI to CA10 showing that although very little LTHR is 

seen in the RoHR plot, the fuel has a very fast burn rate once combustion is initiated. The 

overall combustion event as measured by SOI to CA75 follows cetane number of the 
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fuels with ULSD being the longest and SWE the shortest corresponding to their different 

injection timings set to match CA50. 

Even though B100 has a higher peak RoHR, it does not exhibit a distinctively higher 

peak cylinder pressure for the same combustion phasing and load as shown in Figure 

3.16. Corresponding to the constant peak cylinder pressures, mean cylinder temperatures 

were near constant at approximately 1400 K for all the fuels tested. Slight differences in 

NOX emissions, a strong function of temperature, for the LLTC condition tend with 

cetane number of the fuel rather than the peak cylinder pressure. Since NOX formation is 

more a function of local conditions, it is likely that shorter ignition delay for the higher 

cetane fuels like SWE contributed to less mixing and increased local temperatures. 

 

Figure 3.16: Peak cylinder pressure and EI-NOX for all fuels at the LLTC operating 

condition 
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Like for the conventional combustion case, BSFC increases with biodiesel 

concentration in the fuel for LLTC whereas the brake fuel conversion efficiency remains 

the same. This plot is not shown for brevity. In summary, the LLTC operating condition 

maintains similar combustion properties for all the fuels tested even though 

measurements from the ignition region are inconsistent with what would be expected 

from the cetane number.  

3.2.4 ELTC Condition 

Maintaining constant CA50 for the ELTC condition requires larger differences in SOI 

for the fuels tested as shown in Figure 3.16. The main heat release event for early 

injection was sharper than for LLTC due to longer ignition delay and more premixed 

combustion. This is also deduced from the symmetry of the heat release curve shown in 

Figure 3.17 where very little “tail” exists at the end of the heat release suggesting 

extremely limited diffusion burning. Peak RoHR are lower in magnitude than for LLTC 

due to the lower engine load and higher EGR rate. 

Between fuels, ULSD has the lowest peak RoHR and SWE the highest with B100 in 

the middle. The B50 blends fell between the neat fuels and are not shown in the figure for 

clarity. With larger changes in ignition timing required to maintain constant CA50, the 

ignition region becomes more abbreviated with increasing cetane number as would be 

expected. With a shorter LTHR region, more fuel energy is released in the main heat 

release creating a higher maximum value. 
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Figure 3.17: RoHR and injection timing of the three neat fuels for the ELTC condition 

Looking more closely at the ignition region, the LTHR for ELTC is more pronounced 

than for LLTC since ignition delay is longer and reaction kinetics slower for the radical 

forming reactions. Unlike the LLTC case, the ELTC condition shows a distinct LTHR 

region for B100. In Figure 3.18 where a detail of the ignition region for all the tested 

fuels is given, the size of the LTHR region varies with the cetane number of the fuels, a 

trend not seen for LLTC. Similar to the LLTC condition, the LTHR region is delayed for 

B100 creating a higher peak RoHR for B100 as seen in Figure 3.17. 
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Figure 3.18: LTHR region of the RoHR for the ELTC condition and all tested fuels 

The entire combustion process for the tested fuels in ELTC can be seen more clearly 

in the combustion timeline shown in Figure 3.19. Like for the LLTC condition, a 

relationship exists between the overall combustion duration and cetane number where 

SWE has the shortest SOI to CA75 duration and ULSD the longest. Unlike the LLTC 

case however, the ignition delay for the fuels also follows the cetane number trend with 

B100 having the median value for SOI to SOC and SOI to CA10.  

Differences between fuels in the ignition region are clearer for the ELTC condition 

than in LLTC because longer ignition delay allows more premixing and vaporization. If 

all fuel is vaporized for all fuels tested, reactivity plays a more significant role in 

determining ignition properties. It is possible that the longer than expected SOI to SOC 

found for biodiesel in LLTC is due to the fuel’s lower volatility. This would result in less 

vaporized fuel at ignition and cause the delay to increase. For ELTC, the amount of fuel 
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injected is less and more vaporization occurs, allowing biodiesel’s higher reactivity to 

shorten the ignition delay more in accordance with what would be expected from the 

cetane number trends. 

 

Figure 3.19: Combustion timeline for the ELTC condition 

Similar to the LLTC case, ELTC has approximately a constant peak cycle pressure 

over the range of fuels tested even though the peak RoHR increases with cetane number. 

Compared with LLTC, the magnitude of peak cylinder pressure is higher; a result of 

more premixed combustion occurring. NOX emissions increase for B50SWE and SWE 

although the uncertainty is higher in the very low range of concentration measured. The 

higher NOX for the low aromatic SWE fuel was most likely a result of higher peak RoHR 

indicating more localized areas of lean and high temperature combustion. The NOX 

emissions are higher in ELTC than for LLTC as a result of higher peak cylinder pressure 

and lower average equivalence ratio.  
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Figure 3.20: Peak cylinder pressure and EI-NOX for all fuels at the ELTC operating 

condition 

3.2.5 Summary of Operating Conditions 

From the above discussion, the ELTC case is a more distinct example of partially 

premixed combustion than the LLTC case as evidenced by the longer ignition delay and 

narrower RoHR curves. The conventional case exemplifies a stock engine combustion 

mode where a pilot and main injection create two distinct heat release rate peaks. 

Differences in injection timing to maintain constant CA50 were smallest for the 

conventional case due to the pilot strategy whereas the LLTC condition required some 

retarding of timing with increasing cetane number. The ELTC case required the largest 

changes in injection timing to maintain CA50 creating the largest differences in peak 

RoHR between fuels. 

For the three conditions, maintaining constant CA50 for all tested fuels by changing 

injection timing was an effective way to normalize engine performance with respect to 
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combustion phasing. Although duration of combustion and ignition properties varied 

among fuels for each condition, peak cylinder pressures, and therefore mean cylinder 

temperatures, were essentially constant. As a result, NOX emissions were largely the 

same for all fuels at each condition. By fixing combustion phasing using CA50, the 

complex effects of differing physical fuel properties and cetane number are best 

minimized when examining the emissions of HC and PM in the following chapters. 
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CHAPTER FOUR 

GASEOUS HYDROCARBON AND CARBON MONOXIDE EMISSIONS 

4.1 Background 

The primary goal of this chapter is to show how the data taken in this study can be 

used in concert with work presented in the literature to achieve the first goal set forth in 

Chapter One. Restated, this is; “To explain why the gaseous HC and CO emissions from 

biodiesel LTC decrease compared to petroleum diesel fuels by exploring the distribution 

of light hydrocarbons within the THC measurement.” 

The work described here extends beyond the identification of VOCs as defined by the 

US-EPA but encompasses the highest concentration LHC species found from incomplete 

diesel combustion. First, background information will be reviewed describing previous 

work in the identification of what partially reacted species are important for premixed 

diesel combustion and where they are thought to originate. Then, THC, CO and H2 

emissions data taken for the ELTC and LLTC steady state engine operating conditions 

will be presented and compared with the conventional combustion case. To look deeper 

into the species contained within the THC, LHCs measured using FT-IR will be 

presented and the trends between fuels and operating conditions will be analyzed.  
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4.1.1 Sources of HC and CO in Diesel Combustion 

Fuel is never completely consumed in engine combustion processes where it is 

directly injected into the cylinder. Heywood (1988) describes several sources of HCs in 

compression ignition engines. The first is from over-mixing to yield equivalence ratios 

below the lean flammability limit of the fuel not permitting it to completely oxidize 

within relevant engine time scales. Generally, over-mixing occurs at low loads in 

conventional combustion and for LTC conditions due to long ignition delays. Under-

mixing can also lead to a similar situation where insufficient oxygen exists to consume 

the fuel completely. These regions generally occur at high loads or in as a result of over-

fueling. Small volumes of fuel can also leak from the injector sac volume into the 

combustion chamber during expansion creating fuel rich pockets which do not burn.  

HCs in diesel combustion also occur due to quenching processes. Wall quenching 

occurs when fuel comes into contact with cool surfaces like the firedeck or top of the 

piston. Fuel can also be trapped in crevice volumes like those near the piston rings and 

re-released into the cylinder unreacted during expansion. Bulk gas quenching also exists 

where slow burning rates in some areas do not allow combustion to complete due to 

lowering cylinder temperatures during the expansion stroke. Slow rates of burning 

generally occur during the mixing-controlled portion of conventional combustion but can 

also exist in premixed modes where considerable EGR is present. 

The goal for complete combustion is to emit all fuel carbon as CO2. Therefore, it is 

formed in all areas of the combustion chamber where oxidation of fuel is occurring. In 

the expansion stroke, equilibrium reaction rates are high enough to change the proportion 
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of CO, CO2, H2 and H2O. CO is left as a result of these equilibrium reactions and is also 

emitted a product of the incomplete combustion processes mentioned above. 

Recent work has explored the primary sources of HCs in partially premixed LTC. 

Concentrations of all partially reacted species are well known to increase for LTC 

compared to conventional combustion. In early injection strategies like the ELTC 

condition studied here, Colban et al. (2007) studied crank angle-resolved THC 

concentrations using a fast FID analyzer from near the exhaust valve of a similar engine 

to that used in this study. They found that high HCs in LTC are primarily a result of the 

mean combustion cycle and are not due to combustion variability from cycle to cycle. 

Further, the study found that most HCs exit the cylinder later in the exhaust process 

indicating that they originate from zones along the top of the piston or from the piston 

bowl. The inference from the work is that the bulk gas plays a significant role in HC 

generation for early injection strategies. 

Some studies have used optical techniques to identify the primary sources of HC 

emissions from LTC. Lachaux and Musculus (2007) found that the evolution of 

formaldehyde (H2CO) closely tracks that of the THC the bulk gas. By using planar laser 

induced fluorescence they were able to track the zones of formaldehyde during both early 

and late LTC conditions. At the end of injection, mixtures near the injector tip were too 

lean for complete combustion. The study contributed to the diagrammatic view of the 

progression of LTC combustion shown in Figure 1.4. 

Bulk gas quenching is also known to be a significant source of partially burned 

species in LTC. Kashdan et al. (2007, 2008) ran a low load early injection to late 
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injection timing sweep in both an optical and metal engine and was able to track HC 

emissions using tracer laser-induced fluorescence. They found that bulk quenching of low 

temperature over-rich and over-lean zones in the combustion chamber were the most 

significant sources of HC emissions from LTC. For early injection strategies like the 

ELTC condition presented in this work, Kashdan et al. found that liquid films forming on 

the piston top and re-evaporating during the expansion stroke also play a major role in 

HC emissions although crevice flows from the piston ring area were still not significant 

for the engine tested. This theory is seen in Figure 3.3 where for timings earlier than 

approximately 25 °BTDC, THC emissions increase drastically apparently due to more 

injected fuel missing the piston bowl. 

In summary, the longer ignition delay found in LTC enhances mixing but creates 

zones where mixtures are not within the flammability limits of the fuel. Further, the low 

temperature of combustion due to high levels of EGR contribute to slow burning in these 

zones and eventually bulk quenching of the reactions. In early injection strategies such as 

the ELTC condition reported here, liquid films can also collect at the top of the piston 

which later evaporate and contribute to higher THC emissions. 

4.1.2 Primary Species Emitted from Diesel Combustion 

Diesel fuel and biodiesel are composed of a blend of hydrocarbon components with 

molecular weights ranging from about 100-250 for petroleum diesel and around 300 for 

biodiesel. During combustion, species of both lower and higher molecular weights than 

the original fuel are created. Lighter compounds like ethylene (C2H4) and formaldehyde 

are primary species created from fragmentation of longer aliphatic molecules in the fuel. 
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Species like poly-aromatic hydrocarbons (PAH) created that are the same or heavier than 

the fuel are created from the lighter molecules by polymerization and dehydrogenation 

reactions. Some fuel also directly escapes the combustion process without reacting 

originating from over lean areas from the sac volume, liquid pools on surfaces, crevice 

flows and bulk quenching processes as described in the previous section. Figure 4.1 

shows a schematic of fuel-derived emissions from diesel engines as a rough function of 

their molecular weight. THC as measured by the FID analyzer in this study is assumed to 

incorporate all gaseous hydrocarbon species including most of those in the higher 

molecular weight range.  

 

Figure 4.1: Diagram of fuel-derived exhaust emissions from diesel combustion 
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4.1.2.1 Premixed LTC of Petroleum Diesel 

Some previous work has been done in examining the hydrocarbon species formed 

from premixed LTC. Cook et al. (2008) in a modeling study predicted that lean and rich 

zones produce different types of partially reacted products. In an early-injection strategy, 

they showed that nearly all methane emissions originated from rich zones of combustion 

whereas lean zones accounted for the majority of CO and unburned fuel. Ethylene is also 

predicted to be a major product and originates from either lean zones or areas where 

mixtures are cold, allowing fuel to decompose but not completely burn. In their findings 

they estimate that with better mixing or colder combustion temperatures the proportion of 

ethylene to methane would increase. 

Sluder et al. (2004) speciated diluted exhaust products from an engine late injection 

LTC condition. In their study, they found that by increasing EGR to enter the LTC 

combustion regime, carbonyl species like the aldehydes, formaldehyde and acetaldehyde 

increased approximately proportionally with THC corresponding well to the work of 

Lachaux and Musculus (2007). Methane and ethylene were not mentioned in their work 

although Koci et al. (2009) in a comprehensive study of sources of HC and CO in LTC 

found that methane, ethylene and acetylene (C2H2) were the primary light species found 

over a range of injection timings and EGR. In that study, CO emissions were found to 

track well with trends in light (<C6) HCs indicating that they originate in the same 

regions. Speciation work done by Han et al. (2009) from a diesel engine operating in late 

injection LTC confirm that methane, ethylene and acetylene make up the majority of light 

HCs for premixed modes of combustion. 
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The light hydrocarbon fraction of THC varies according to study. Ethylene 

concentrations can vary from about 2.5% (Lewis et al., 2005) to near 18% (Han et al. 

2009) by volume in different modes of LTC. CH4 varies more widely from approximately 

1.8% (Han et al. 2009) approaching 25% (Koci et al, 2009). Based on the theory of Cook 

et al. (2008), this indicates that lean and rich zones can appear to differing magnitudes in 

the LTC regime depending on engine geometry, injection timing, EGR and other factors. 

Aldehydes can also make up a significant fraction of the THC. Lewis et al. found 

formaldehyde and acetaldehyde to be the primary aldehyde species produced by LTC. In 

their study, they found the two species to have similar concentrations and to make up 

around 2.5% of the THC over a range of injection timing and fuel cetane number. 

Heavy gaseous hydrocarbons like those from the fuel increase for LTC corresponding 

well to the ethylene and formaldehyde found in over-lean portions of the combustion 

chamber. For early injection timings where liquid layers form on the piston or in crevice 

volumes, the unburned fuel portion of the THC increases significantly indicating that it 

escapes combustion completely (Koci et al, 2009). 

Heavy species produced from lower molecular weight hydrocarbons like PAH have 

also found to increase for LTC combustion. Naphthalene is most prevalent PAH 

compound by about a factor of 10 over the remaining compounds in LTC (Merritt et al., 

2006). This distribution is the approximately the same for conventional combustion and 

is a result of carryover from PAH in the fuel along with that formed during combustion 

(Rhead et al. 2003). PAH compounds can range from naphthalene with a molecular 

weight of 128 up to those with multiple rings and molecular weights of more than 350 

(Dobbins et al., 2006). Heavier PAH compounds are generally not captured by the FID at 
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190°C but account for a miniscule portion of the THC measured. Merritt et al. (2006) 

showed that for an early injection LTC condition that THC was on the order of 80 g/hr 

whereas the total PAH found from both gas and particulate phase was not more than 2 x 

10
-4

 g/hr for the same condition. Even with the low concentrations PAH emissions, 

especially those with higher molecular weight merit the intense investigation by 

researchers since they have extremely high mutagenic capability in humans (IARC, 

1983). PAHs are not measured in this study since it is primarily the bulk HCs contained 

in the gas and particulate phase that are of interest. 

Other HC species emitted from diesel combustion that do not originate from the fuel 

include those from the lubricating oil which come into contact with the combustion gases 

along the cylinder walls mainly during expansion (Heywood, 1988). Just as species from 

the oil can be emitted from the engine, fuel components can make their way into the oil 

through dilution processes as will be discussed in Chapter Five. 

4.1.2.2 Conventional Combustion with Biodiesel 

Previous work has compared HC emissions for biodiesel versus petroleum diesel 

using conventional combustion strategies. In general, it is found that THC and CO 

emissions decrease with increasing concentrations of biodiesel in the fuel as was 

mentioned in Chapter One. For example, Payri et al. (2009) found that THC decreased by 

64% and CO by 50% on an EI basis for B100 versus diesel fuel for a conventional 

combustion condition very similar to that tested in this work. In general, light HCs less 

than C7 were extremely small as a fraction of total THC. Some semi-volatile, partially 

burned species were detected but were less significant for B100 than for diesel fuel. 
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Ballesteros et al. (2008) also found a near 50% reduction in THC emissions excluding 

CH4 for biodiesel for an engine operating over a European driving cycle. In their results, 

most fuel species reduced with increasing biodiesel except for aldehyde species which 

increased.  

Aldehyde emissions for biodiesel in conventional combustion have been reported to 

go up as compared to petroleum diesel as in the case of Ballesteros et al., remain 

unchanged (Lea-Langton et al., 2009) or go down (Peng et al., 2008). Peng et al (2008) 

reported the decrease in overall aldehydes for B20 from a petroleum diesel fuel in a light-

duty diesel engine over a US drive cycle on a brake specific basis. In their study, they 

found that formaldehyde and acetaldehyde accounted for about 75% of the total 

aldehydes in the diluted exhaust. Differing trends in aldehyde emissions depend strongly 

on operating condition as was found in McGill et al. (2003) where a low load condition 

had higher aldehyde emissions for petroleum and similar aldehydes for biodiesel at 

higher engine loads. Since aldehyde emissions, like ethylene are strongly linked to lean 

combustion, they are also dependent on the amount of mixing occurring in the cylinder. 

Ignitability differences in the fuels at the same injection timing could account for large 

differences in aldehyde emissions found in previous work. By keeping combustion 

phasing constant between fuels, this study allows comparison of aldehyde and other 

gaseous hydrocarbon emissions independent of when combustion occurs. 
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4.2 Experimental Results and Discussion 

4.2.1 Combustion Efficiency 

As has been mentioned in previous chapters, combustion efficiency (ηc) is a measure 

of the ratio of energy contained in the exhaust to that contained in the fuel. Put another 

way, it measures how effectively a fuel is converted into complete combustion products. 

It is an important metric for obtaining an overview of how complete the combustion 

process is. In the experimental study ηc is calculated from the bulk gas emissions 

recorded by the emissions analyzer bench using Equation 2.7. It is related to the overall 

fuel conversion efficiency (ηf) by Equation 4.1. 

 (4.1) 

In Equation 4.1, ηth is the thermal efficiency and represents the first law thermodynamic 

efficiency of the engine cycle. Figure 4.2 shows ηc for all the fuels tested and for the 

three operating conditions tested. Conventional combustion has the highest ηc of the three 

conditions at over 99% which indicates almost complete conversion of the fuel. For the 

LLTC condition, ηc decreases and is lower still for ELTC. 
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Figure 4.2: Combustion efficiency for the three conditions and all fuels 

In comparing ηc for biodiesel versus the two diesel fuels, conventional combustion 

shows no differences in fuel conversion. For LLTC, ULSD has slightly lower ηc though 

with little statistical significance. ELTC however exhibits this trend more clearly with a 

2% difference in ηc over B100, B50SWE and SWE. The increasing ηc follows an inverse 

relationship to ignition delay time for ELTC both measured by SOI-SOC and by SOI-

CA50 as shown in Table 4.1. The correlation becomes stronger for ignition delay 

measured as SOI-CA10 as calculated by the Microsoft Exel Correl function which 

automatically determined the correlation coefficient between two arrays of data.  Fuel 

ignition properties appear to have a dominant effect on ηc since both ULSD and SWE are 

petroleum fuels of similar distillation but with differing cetane number. 
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Table 4.1: Correlation between ηc and ignition delay for ELTC conditions 

 
ULSD B50ULSD B100 B50SWE SWE Correl. 

ηc 94.2% 95.3% 96.0% 96.0% 96.2%  

SOI-SOC (ms) 1.25 1.19 0.99 0.97 0.92 -93.8% 

SOI-CA10 (ms) 2.19 2.00 1.62 1.58 1.46 -96.6% 

 

Although combustion phasing is maintained constant between fuels, mixing times 

allowed before combustion occur play a major role in how much over-leaning occurs in 

the cylinder prior to and during combustion. As the duration before ignition increases, 

more mixing is allowed thus increasing zones where lean conditions may exist. Another 

possible reason for lower ηc for ULSD in ELTC is that the SOI was advanced closer to 

the point where a portion of the fuel spray may miss the piston bowl allowing liquid to 

collect on the top of the piston. 

4.2.2 Carbon Monoxide and THC Emissions 

Emissions of CO and THC are among the most common data measured from diesel 

engines since they are limited by governmental regulations. Beyond certification of 

engines, these two measurements are useful for understanding the combustion process. 

Figure 4.3 shows the THC emissions for the fuels and conditions run in this study. 

Emissions of THC are very low as expected for the conventional combustion condition, 

higher LLTC and the highest for ELTC. Very high THC emissions are expected for 

ELTC since ignition delays are much higher allowing more time for mixing to occur in 

the cylinder. 
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Figure 4.3: EI-THC emissions for all fuels and operating conditions 

SWE has lower THC emissions than ULSD for ELTC and less so for LLTC. Reasons 

for this include shorter ignition delay for SWE leading to less over-leaning prior to 

combustion. The disproportionally higher THC for ULSD and B50ULSD could be also 

due to higher quantities of liquid pooling on the piston top as previously mentioned. 

Evidence for the theory of more unburned fuel from liquid quenching for ULSD and 

B50ULSD can be inferred from the EI-CO data shown in Figure 4.4. Here, the ELTC CO 

is more commensurate between LLTC and ELTC for ULSD and SWE. Restated, both 

LLTC and ELTC show lower CO for SWE than ULSD but in approximately equal 

proportions. Since CO is a product of partial combustion and has little to do with liquid 

wall quenching processes, it is a logical conclusion that wall quenching is a larger 

component of the higher THC emissions for ULSD in ELTC.  
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Figure 4.4: EI-CO emissions for all fuels and operating conditions 

Both THC and CO emissions are lowest per mass of fuel for B100 for all three 

conditions. This trend is independent of cetane number since B100 had the median 

ignition delay time. Part of the cause for the dip in EI-THC and EI-CO for B100 and the 

B50 blends is that biodiesel contains less carbon per mass of fuel than ULSD or SWE as 

given in Table 4.2 due to fuel-borne oxygen. Therefore, as a function of the mass of fuel 

used, the amount of carbon emitted as CO or HC will be lower. If the emissions of CO 

were plotted on a brake specific basis, differences would be less clear between fuels since 

the biodiesel cases had a higher fuel flow rate to maintain the same brake power output.  

Table 4.2: Carbon weight percent of fuels used in the experimental study 

 
ULSD B50ULSD B100 B50SWE SWE 

Wt. % Carbon 86.55 81.71 77.27 81.22 85.72 
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Other reasons for lower CO and THC for biodiesel and B50 blends include possible 

measurement error since some loss of unburned biodiesel in the heated sample line and 

filter at 190 °C could be expected due to adsorption as shown in Chang et al. (1998). In 

that study they found that if a FID is used to measure total hydrocarbons for neat 

biodiesel at light load, the THC measurement could be under predicted by as much as 

28.7% for biodiesel compared with petroleum diesel. Even compensating for this 

estimation, they still found biodiesel to lower THC emissions compared to the baseline 

diesel fuel. Likewise, in considering the percent reductions in EI-THC and EI-CO for all 

the fuels tested in this study shown in Table 4.3, this amount of error still does not 

account for the entire reduction in THC for B100. However, if up to 30% of the THC is 

missing from the FID measurement for the B100 case, the differences in reduction of EI-

CO and EI-THC are much closer which lends support to this explanation if the sources of 

CO and HCs in combustion are largely the same. 

Table 4.3: Percent reductions in EI-THC and EI-CO from ULSD for the three operating 

conditions 

 
ULSD B50ULSD B100 B50SWE SWE 

ELTC 
  

   

  % Red. EI-THC 0.00 23.14 43.66 38.60 42.04 

  % Red. EI-CO 0.00 21.36 23.38 22.59 8.31 

LLTC 
  

   

  % Red. EI-THC 0.00 15.16 32.11 21.22 14.47 

  % Red. EI-CO 0.00 10.59 14.31 10.43 5.24 

Conventional 
  

   

  % Red. EI-THC 0.00 34.28 67.22 46.01 13.49 

  % Red. EI-CO 0.00 21.22 29.85 26.06 12.45 
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Another possible reason for lower CO and THC for biodiesel over petroleum diesel is 

the high oxygen content in biodiesel allowing for more complete combustion in fuel-rich 

areas of the combustion chamber. This reasoning has been given by others (Rakopolous 

et al., 2004) though has as yet been not completely explored. Optical diagnostics or more 

detailed flame studies would be necessary to understand whether the oxygen content 

lowers the formation of partially reacted species. One argument supporting the theory is 

other work proving that oxygenated fuels reduce carbonaceous soot (Gonalez et al., 2001) 

in diesel combustion processes. Since soot is formed from precursor HCs found in rich 

areas of combustion, any reduction in soot formation may indicate reductions in CO and 

THC made in these regions as well. Some work has shown that PAH species, the major 

precursor to soot, are lower for biodiesel (Karavalakis et al., 2009) compared to diesel 

fuel. This finding may however be due to a lack of PAH species in biodiesel that are 

normally found in diesel. 

Diatomic hydrogen is a byproduct of partial oxidation reactions in rich areas of 

combustion. After being created it is generally considered to be emitted in some 

proportion to CO based on a pseudo-water gas shift equilibrium constant (Stivender, 

1971). However, it has been shown to be lower than predicted for combustion with lean 

average equivalence ratios (Northrop et al., 2009) due to oxidation by residual oxygen 

during expansion. Figure 4.5 shows that H2 emissions are very low for the operating 

conditions run in this study. 
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Figure 4.5: EI-H2 emissions for all fuels and conditions 

Although ELTC has considerably higher CO emissions than LLTC, it also has a 

lower equivalence ratio lending credence to the oxidation theory. H2 is lowest for 

conventional combustion since other partial combustion products are also low. Little 

difference in H2 emissions is seen for biodiesel compared to the diesel. For LLTC 

however, the increase in H2 trends with increasing fuel cetane number indicating that fuel 

reactivity may play a role.  

4.2.3 Primary Light HC Emissions 

It is useful to further characterize the THC emissions into species to assist in 

understanding where they originate for the different fuels and modes of combustion used 

in the study. For example, partially reacted species like LHC indicate the presence of 

over-lean and over-rich areas of combustion. Unburned hydrocarbon (UHC) emissions 

may indicate whether crevice flows or quenching processes are occurring where fuel 

escapes combustion process unscathed.  
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From the results of LHC species using the FT-IR, no statistical differences can be 

discerned in emissions of acetylene, methane, propylene, 1,3 butadiene, formaldehyde or 

acetaldehyde over the fuel sweep for a given operating condition. The mean values for 

each of these species for the three conditions are given in Figure 4.6. Error bars reported 

are the mean uncertainties from the emissions of each species over the five fuels. It is 

also worthwhile to reiterate from Chapter Two that the EI emissions of individual HC are 

shown on a C1 basis. The one LHC species that does show significant deviation as a 

function of fuel for a given operating condition is ethylene. These results are shown in 

Figure 4.7. 

 

Figure 4.6: Speciated LHC components remaining constant over the fuel sweep for the 

three operating conditions 
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Figure 4.7: Ethylene emissions for all fuels and operating conditions 

For all operating conditions, ethylene and formaldehyde were found in the highest 

concentration for all fuels although the amount of ethylene over other LHC increased 

with LLTC and more so for ELTC. Methane is almost three times lower than ethylene for 

the three conditions indicating limited over-rich zones per the findings of Cook et al 

(2008) and also expected with low soot formation typical of premixed combustion.  

These results are also comparable with other published work in speciation of HC from 

LTC (Han et al, 2009). Acetylene, also an indicator of over rich combustion and a known 

precursor of soot along with PAH (Wang and Frenklach, 1997) is found to be slightly 

lower than methane on a C1 basis. 

Between fuels, the concentration of biodiesel in the fuel has little correlation to the 

production of the two primary aldehydes from combustion for either conventional or 

LTC. Differences in aldehyde emissions reported in the literature for biodiesel versus 

petroleum diesel as discussed in Section 4.1.2.2 may have been a result of changing 



133 
 

combustion phasing or regime as a result of switching to biodiesel, an effect taken into 

account in this study in maintaining constant CA50 for a given condition as explained in 

Chapter Three. 

Although ethylene is the same among fuels for conventional combustion, it increases 

with higher biodiesel concentration for ELTC and LLTC. This tendency for biodiesel to 

make more ethylene and similar quantities of other LHC components in LTC combustion 

modes has not been shown in the literature to date. It is an opposite trend to that found for 

THC where biodiesel had the lowest emissions from Figure 4.3. For the ELTC condition, 

higher ethylene exacerbates the LHC emissions as shown in Figure 4.8 where the LHC 

emissions measured using the FT-IR are plotted for the three operating conditions. 

 

Figure 4.8: EI-LHC emissions for all fuels and operating conditions 
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For ELTC, using B100 increases the LHC emissions by almost 25%. In general, like 

for THC, fuel composition appears to have a dominant effect on LHC concentration over 

ignition delay. From the literature reviewed thus far, it is expected that ethylene 

emissions are strongly linked to the mixing time prior to combustion. Although the mass 

emissions of light HCs only increases with biodiesel content for ELTC, the proportion of 

LHC in the THC shows the same trend for all three operating conditions as shown in 

Figure 4.9. The light organic fraction (LOF) of the THC is calculated using the combined 

results from the FT-IR and the FID and is shown by Equation 4.1. As a corollary the 

THC is assumed to consist of the sum of the LHC and the UHC. 

 (4.1) 

And 

 (4.2) 

In Equation 4.2, it is assumed that partially burned higher molecular weight HCs like 

light PAH or lubricating oil are in negligible concentrations compared to unburned fuel in 

the in the gas-phase exhaust and sampling lines at 190°C. 
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Figure 4.9: Light organic fraction (LOF) of the THC emissions for all fuels and 

operating conditions 

For ELTC, trends in LOF are similar to THC where an asymmetrical distribution 

about the B100 condition is evident. Since LHC does not increase in proportion to THC 

for ULSD and B50ULSD, it is likely that fuel escapes combustion due to wall quenching 

in these cases due to advanced injection timing. These two conditions notwithstanding, 

LTC combustion has a higher LOF than conventional combustion which corresponds 

well to more over mixed areas of combustion and the lack of a defined diffusion burn 

portion of combustion. 

Higher LOF in concert with lower THC emissions for increasing biodiesel as 

illustrated in Figure 4.9 indicates that UHC is lower for biodiesel LTC due to more 

complete combustion of the fuel or due to unmeasured fuel lost in the sample lines as 

explained in Section 4.2.2. Further, the dependency of LHC emissions with increasing 

biodiesel content in the fuel as shown in Figure 4.8 indicates that combustion chemistry 

also plays a significant role especially in the formation of additional ethylene. 
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4.2.4 Further Examination of LHC from ELTC Condition 

As previously mentioned, the formation of ethylene and other LHC species has a 

strong dependence on the level of premixing before combustion occurs. This allows for 

more over-lean areas of combustion where partially burned products are created. 

Therefore, a dependence of ethylene emissions on ignition delay should appear over a 

range of injection timing. ELTC is the most extreme case of the three conditions run in 

the study in terms of premixing since it is expected that most of the fuel that eventually 

burns is completely vaporized before combustion. Furthermore, larger differences in 

ethylene emissions between B100 and ULSD are found for this operating condition as 

shown in Figure 4.7. Overall magnitudes of LHC emissions are also higher for ELTC 

reducing uncertainties in the measurements. 

An additional experiment was undertaken to explore LHC emissions over a range of 

injection timing for the ELTC condition.  Fuels tested included ULSD and B100. And 

injection timing was swept from 40 °BTDC to 17.5 °BTDC. Engine load was held 

constant at 200 kPa and the engine throttle was maintained wide open as in the ELTC 

condition reported thus far. The LOF results are plotted versus ignition delay in Figure 

4.10. Ignition delay is reported as the duration from SOI to CA10 per the better 

correlation with combustion efficiency due to differences in ignition between B100 and 

ULSD as discussed in Section 4.2.1. 
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Figure 4.10: Light organic fraction (LOF) of the THC emissions as a function of ignition 

delay for the ELTC condition with ULSD and B100 fuels 

For a given ignition delay, LOF remains higher for B100 than for ULSD over the 

timing range just as was shown for the single steady state ELTC condition in Figure 4.9 

implying that biodiesel emits a higher proportion of partially combusted as LHC. LOF 

increases as a function of increasing ignition delay since more time is available for 

mixing. The inflection point in Figure 4.10 at approximately 20 CA° is most likely due to 

the wall quenching phenomena found in the ELTC timing sweep reported in Chapter 

Three. 

As is shown in Figure 4.7, ethylene has the highest concentration among LHC for the 

ELTC condition and tends to increase with increasing biodiesel concentration in the fuel. 

It is also found to be higher for B100 than for ULSD over the timing sweep as shown in 

Figure 4.11 where the emissions of ethylene is plotted as a function of overall LHC 

emissions. 
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Figure 4.11: EI-Ethylene versus EI-LHC for the ELTC condition with ULSD and B100 

fuels over the injection timing sweep 

The figure shows that ethylene varies approximately linearly with LHC for B100 and 

ULSD but at different slopes. At low LHC emissions levels, ethylene fraction is nearly 

the same for the two fuels but as LHC increases for increasing ignition delay, B100 

diverges and shows consistently higher ethylene fraction. This indicates that not only 

does B100 have higher LHC emissions than ULSD due to higher ethylene concentrations 

but that ethylene is also higher as a fraction of the total LHC.  

Fuel chemistry plays a major role both in what species are formed and in what 

quantity they are produced at different stages of the combustion process. Kinetic 

modeling studies typically attempt to capture the characteristics of how fuels oxidize 

using simpler surrogate species. For petroleum diesel fuel like ULSD, n-heptane is a 

common surrogate and detailed mechanisms have been proposed for both low 

temperature ignition reactions and high temperature oxidation (Curran et al., 2002). For 



139 
 

biodiesel, the same group has proposed methyl decanoate as a suitable surrogate over a 

large range of temperatures (Herbinet et al., 2008) and others have proposed the use of 

methyl butanoate, a smaller ester, when low temperature reactions are less important 

(Gaïl, et al., 2008). The use of smaller molecules in the simulation of how larger HC 

species in the actual fuels react is a compromise between accuracy in predicting accurate 

trends and saving computational time. 

Although in-depth analysis and modeling is beyond the scope of this study, published 

comparisons of kinetics mechanisms with experimental data has some implication for the 

results shown in this chapter. For example, ethylene is well known to be a primary 

intermediate species emitted as a result of partial combustion of aliphatic hydrocarbons 

(Westbrook and Dryer, 1984). In methyl ester combustion at higher temperature, initial 

uni-molecular decomposition of C-O and C-C bonds typically results in decomposition of 

the fuel either by removing the methyl group at either end of the molecule or by removal 

of the ester from the aliphatic chain altogether (Herbinet et al., 2008). In this case, 

combustion of the remaining molecule is similar to the oxidation of straight-chain 

hydrocarbons. However, comparisons of methyl deconoate and methyl butonate kinetic 

models to jet-stirred reactor experiments of larger methyl esters have shown that ethylene 

concentration is under-predicted (Gaïl, et al., 2008) especially at temperatures less than 

1000 K. Based on this and the results found in this study, ethylene appears to be created 

to greater concentrations for methyl esters compared with pure aliphatic fuels like 

petroleum diesel. Future work is advised to further examine the kinetics of biodiesel 

combustion to explain the differences in LHC emissions seen in this study. 
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4.3 Summary of Findings 

In summary, this chapter was successful in determining the primary species that 

contribute to the THC measurement for LTC and conventional combustion. The 

combustion efficiency, a global measure of fuel conversion, closely correlated to ignition 

delay for all fuels and operating conditions. However, THC and CO are found to decrease 

for increasing biodiesel concentration in the fuel. Reductions in CO and HC for biodiesel-

containing fuels on a g/kg-fuel basis are lower partially due to lower carbon content in 

the fuel. Lower THC emissions also may arise through adsorption of biodiesel in the 

sample system, effectively lowering the measured UHC concentration. Although errors 

like this account for some of the differences seen in the study, the percent reduction in 

THC is still higher than what would be expected from experimental errors based on 

previous work. This indicates that differences in combustion between biodiesel and 

petroleum fuels exist. 

For the ELTC condition, the lower cetane number fuels, ULSD and B50ULSD, had 

the lowest combustion efficiency indicating that some wall quenching was occurring due 

to their early injection timing. This conclusion is also substantiated by the light organic 

fraction (LOF) results indicating that the UHC concentration for these cases is 

disproportionately higher than for SWE in ELTC although ULSD and SWE had the same 

LOF for LLTC and conventional combustion. 

Between fuels, emissions of the primary LHC species acetylene, methane, propylene, 

1,3 butadiene, formaldehyde or acetaldehyde were the same to the uncertainty of the 

measurements for the three operating conditions. For all cases, methane is about three 
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times lower than ethylene or formaldehyde indicating that more over-lean areas of 

combustion exist compared to rich zones in LTC. Aldehyde emissions are not found to 

increase for biodiesel as has been reported in the literature when combustion phasing is 

held constant for a given operating condition. 

Although most LHC species are not found to differ between fuels, the emissions of 

ethylene are higher for biodiesel-containing fuels, significant enough to increase the 

overall LHC emissions for the ELTC condition. The LOF of the total THC measurement 

is also higher for biodiesel for all operating conditions indicating that the measured UHC 

emissions are lower.  

Over a timing range, the LOF is found to increase with increasing ignition delay for 

the ELTC condition. B100 has a consistently higher LOF than ULSD over the sweep 

confirming the findings from the steady state experiments. Ethylene varied linearly with 

LHC emissions for ELTC over the timing range. For B100, the slope of the line was 

greater than for ULSD indicating that ethylene is produced in greater quantities for 

biodiesel. Kinetic models from the literature consistently under-predict experimental 

ethylene emissions from low temperature combustion of biodiesel surrogates setting the 

stage for future work to explore these findings. 
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CHAPTER FIVE 

PARTICULATE EMISSIONS 

5.1 Background 

In this chapter, previous presented results along with PM measurements will be used 

to investigate the second goal outlined in Chapter One; “To prove the hypothesis that the 

organic fraction of the PM mass is greater for biodiesel in premixed LTC and to 

determine the primary species that contributes to this increase.” 

Analytical tools such as a smoke meter, OCEC measurement, particle size 

distribution from DMS, partial flow dilution tunnel, gravimetric analysis and speciation 

of PM-based organics are used in the study. First, established literature will be reviewed 

concerning the formation of diesel particulate for premixed combustion modes and 

comparing the effects of biodiesel on PM emissions. Carbonaceous soot will then be 

explored for the three experimental conditions and range of fuels. The PM will be 

examined for premixed LTC and conventional combustion and characterization of the 

primary organic species found will be presented. Condensation as the mechanism for 

deposition of organic species onto the PM will also be discussed and a prediction of 

trends in PM for LTC will be presented. 
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5.1.1 Particulate Formation in Diesel Combustion 

The subject of PM formation in diesel engines has been well researched and 

comprehensive reviews can be found in many excellent published resources (Eastwood, 

2008, Kittleson, 1998). The purpose of this section is to review the pertinent sources and 

composition of PM as background for the upcoming sections. 

There are four major sources of PM from engines; fuel, lubricating oil, ambient air 

and material wear. Of these, only fuel and oil create PM in significant quantities. These 

four sources generate PM which can be further categorized into five distinct 

compositional fractions; carbonaceous, organic, sulfate, nitrate and ash. Ambient air and 

engine material breakdown generally contribute to the ash fraction which is not of 

interest in the work presented here. Both fuel and lubricating oil also contribute to the ash 

fraction depending on the quantity of additives contained therein.  

The sulfate fraction mostly originates from sulfur compounds in the fuel breaking 

down during combustion and later contributing to PM in the form of sulfuric acid 

(H2SO4). In past decades, high concentrations of sulfur were thought to be the major 

contributor to PM emissions from fuel (Wall and Hoekman, 1983). Most modern fuels 

contain less than 15 ppm sulfur and biodiesel contains virtually none. Therefore, the 

sulfate fraction is assumed negligible compared with the other components in the PM for 

the purposes of this study.  

The nitrate fraction comes from the reaction of nitric dioxide (NO2) and water in the 

exhaust creating nitric acid (HNO3). Since NOX emissions are very low in premixed 

combustion and differences in NOX emissions between fuels for a given combustion 
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mode are small as shown in Chapter Three, the nitrate fraction is assumed insignificant in 

the comparison of PM for different fuels in this work. 

The carbonaceous and organic fractions are of most interest in the discussion of PM from 

premixed combustion modes with varying fuels. The fuel and lubricating oil are the 

primary sources of these fractions. These make up the elemental carbon (EC) portion 

which, in this work is considered synonymous to the terms “carbonaceous” and “soot”. 

EC is sometimes distinct from black carbon (BC) since other carbon containing 

compounds besides soot can have “blackness” or light absorption when using optical 

measurement techniques like a smoke meter.  

The EC fraction of PM originates mostly from the fuel used in the engine. As 

mentioned in Chapter One, soot is generally formed in the diffusion, or mixing-controlled 

duration of diesel combustion in fuel rich zones. Here with a deficiency of oxygen and at 

high temperatures, fuel undergoes pyrolysis where it is first broken down into molecules 

of lower molecular weight via dehydrogenation and bond rupture. Then as temperatures 

decrease, these light compounds combine by polymerization creating soot species with 

molecular weights larger than the original fuel molecules.  

It is thought that two types of precursor molecules lead to the inception of soot in 

diesel combustion, unsaturated hydrocarbons and PAH species (Wang and Frenklach, 

1997). The primary unsaturated HC that is considered important in soot formation is 

acetylene. PAH species are both formed during combustion and originate directly from 

the fuel. Mono-ring aromatics contained in the fuel can also lead to direct polymerization 

to PAH (Martinot et al., 2001) though some studies shown that these species decompose 
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by ring rupture and reform to create pyro-synthesized aromatics leading to PAH (Haynes 

and Wagner, 1981). Such long aromatic chains eventually combine to form molecules of 

ever increasing molecular weight and become soot particles in a process termed 

nucleation. Many models have been proposed for formation of soot nuclei from such 

precursors (Kennedy, 1997) and will not be discussed here in detail. 

Oxidation of soot occurs simultaneously with formation of particulates in the 

combustion chamber and continues well into the exhaust manifold. This effect mitigates 

the formation of PM throughout all phases of the process, from combustion through the 

exhaust system to when the effluent interacts with the environment over longer time 

scales. A comprehensive review on soot oxidation is given by Stanmore et al. (2001) and 

will not be further discussed here. 

The organic fraction of particulate generally forms after the combustion process or 

after dilution of the exhaust by gas to particle conversion mechanisms. Both fuel and 

lubricating oil contribute significantly to the organic fraction. Fuel can contribute either 

directly or indirectly to PM as in Figure 5.1 where the fuel-derived emissions shown in 

Figure 4.1 are shown to contribute to the gas and particulate phases after dilution. 

Unburned fuel that escapes combustion from over-mixing in LTC modes for example, 

can enter the particulate phase directly. Fuel-derived species like PAH and other heavy 

hydrocarbons originating from rich zones of combustion that do not have time to pyrolize 

completely to form soot can later convert to the particulate phase. These species are 

indirect contributions to the PM emissions from fuel. Lubricating oil usually directly 

contributes to soot as it becomes exposed to the exhaust products of combustion along the 

cylinder wall during the expansion stroke. Since it is assumed that lubrication oil 
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properties do not change significantly between different fuels used in the engine, this 

fraction is not examined in detail for the work presented here. 

 

Figure 5.1: Contribution of fuel-derived species to gas and particulate phase emissions 

after dilution 

Organic species can enter the particulate phase by many routes. They can either 

homogeneously nucleate to form particles by themselves or as is most often the case, they 

collect on the soot particles already contained in the exhaust gas. Primary methods of gas 

to particle conversion include adsorption and condensation. These mechanisms generally 

occur late in the exhaust process and in the exhausting plume as ambient air dilutes and 

rapidly cools the stream. Generally, higher molecular weight petrogenic compounds from 

the fuel and pyrogenic species, those created during combustion, are in the highest 

concentration on the PM. Light hydrocarbon species like those described in the Chapter 

Four do not generally contribute to PM emissions to a significant extent. 
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5.1.2 PM Emissions from Premixed LTC 

As stated in Chapter One, in-cylinder reduction of soot is one of the key motivations 

for the use of LTC strategies in diesel engines. Low combustion temperatures combined 

with a lack of diffusion burning creates an environment where soot precursors, though 

present in high concentrations, do not polymerize to create larger molecules as readily. 

Soot does form however which implies that mixtures in LTC are only partially 

homogeneous. From the work of Musculus et al (2009), it is apparent that high 

temperature rich zones are present in LTC combustion in recirculation zones created by 

the vaporized fuel plume coming in contact with the piston bowl. In these zones, 

precursor species have been detected (Genzale et al., 2008) which lead to the creation of 

soot.  

There is little literature to date concerning the overall PM mass emissions for LTC 

combustion. Sluder et al. (2004) investigated PM emissions for a similar engine to that 

used in this study operating in a late injection mode analogous to the LLTC condition. At 

55% EGR, the brake specific emissions of insoluble carbonaceous species were 0.2 g/hp-

hr whereas the rate of PM was near 1.0 g/hp-hr giving an organic fraction of near 80%. 

The reasoning for such a high percentage of organic species on the PM was assumed to 

arise from the high levels of HC in the exhaust for the LTC operating condition. 

Speciation of the extracted samples found that the majority of the organics on the PM 

were fuel molecules and other partially oxidized species from the fuel. 
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5.1.3 Effects of Biodiesel on PM Emissions 

The use of biodiesel or other oxygenated fuels in diesel engines is generally assumed 

to be an effective way to mitigate soot emissions (Eastwood, 2008, pp. 256). It has been 

well documented that by operating diesel engines with oxygenated additives soot is 

reduced in proportion to the quantity of oxygen in the fuel (González et al., 2001). In fact, 

if 30-40% of the fuel is oxygen, soot has been shown to be eliminated completely 

(Miyamoto et al., 1998). 

Although PM mass has been mostly shown to decrease for conventional diesel 

combustion, the organic fraction of particulates is well known to be higher for biodiesel 

than for petroleum diesel fuels especially at part load conditions (Lapuerta et al.; 2007, 

Last et al.; 1995, Bagley, 1998; Chang and Van Gerpen, 1998). This implies that the 

decrease in soot formation due to the increase in oxygenated compounds is compensated 

for by higher organic fraction on the PM. At light loads, engines are known to generate 

higher HC emissions leading to increasing gas to particle conversion of higher molecular 

weight species onto the soot. Biodiesel, having higher molecular weight than species in 

petroleum diesel fuel and with lower volatility is assumed to aid in the higher level of 

organic species on the emitted PM. 

As mentioned in the previous section, oxidation of organic material is a continual 

mitigating factor in the reduction of PM throughout the exhaust process. Biodiesel PM 

has shown to exhibit higher oxidation rates than PM from petroleum diesel fuels which 

may contribute to its lower PM mass emissions. Boehman et al. (2005) studied the 

oxidation rates of biodiesel blends and the same authors in Song et al. (2006) looked at 
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pure soy-based biodiesel. They found that along with higher oxidation rates, the 

microstructure of soot from biodiesel combustion contained more hollow cavities and 

graphene ribbon structures evidently caused by the oxidative processes occurring during 

its formation. 

Particle size distribution for biodiesel in comparison to petroleum diesel has mixed 

results in past studies. Some research reports larger number of smaller particles resulting 

from biodiesel combustion (Krahl et al., Purcell et al., 1996) but others find that biodiesel 

creates less small particles (Aakko et al). Mean particle sizes generally are found to 

decrease along with total number of particles as shown in Jung et al. (2006) but others 

show that biodiesel lowers mean particle size but increases the number of particles 

(Tsolakis, 2006). Such disparities result from differences in engine operating condition, 

sample dilution and analytical equipment used such that comparisons between literature 

studies must be carefully made. In general, it is seen that for part load conditions or for 

engines operating with higher EGR rates, mean particle sizes increase for biodiesel use as 

in the preliminary study (Northrop et al., 2009). In another study, Theinnoi et al. (2008) 

found that at part load with 20% EGR, PM from conventional combustion of biodiesel 

contained considerably less nuclei mode and more accumulation mode particles than for a 

condition with 0% EGR. 

The combination of LTC and biodiesel has been shown to have a compounding effect 

in the reduction of soot formation. In an optical engine study, Fang et al. (2009) found 

lower soot luminosity during combustion of biodiesel versus petroleum diesel in early 

and late LTC modes. However, the measurement of PM following a dilution process for 

this combination has not been reported as of the writing of this dissertation. It is the 
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intention of the following sections to fill this gap in knowledge and to examine the effects 

of biodiesel on PM emissions in the LLTC and ELTC conditions. 

5.2 Experimental Results and Discussion 

5.2.1 Soot Emissions 

Soot, as was stated previously, refers to the carbonaceous portion of PM formed by 

pyrolysis of fuel into precursor molecules before forming large carbon chains with low 

organic content. In this work, soot emissions are measured in two distinct ways: by using 

the OCEC technique to selectively oxidize only the elemental carbon from a quartz filter; 

and by measuring the FSN using a smoke meter. From the FSN reading the soot mass is 

calculated using the Christian (1993) correlation given in Equation 2.9 and then 

converted to an EI basis using Equation 2.10. For the conventional combustion operating 

condition, Figure 5.2 shows that the two measurement techniques are well correlated over 

the range of fuels tested. 

Soot emissions for biodiesel compared with both SWE and ULSD show expected 

trends based on the established literature for conventional diesel combustion. Soot 

magnitudes are lower than generally reported however, with FSN between 0.4 and 1.3, 

since the condition presented here utilizes a large pilot injection and a good portion of the 

heat release is premixed. As mentioned in a previous section, the oxygenated nature of 

biodiesel reduces carbonaceous matter formation by allowing local oxidation in fuel-rich 

zones concurrent with soot formation. 
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Figure 5.2: EI-FSN and EI-EC emissions for the conventional operating condition 

For LLTC the soot emissions are reduced by a factor of ten for ULSD as illustrated in 

Figure 5.3 but the trends from the conventional combustion case remain the same. These 

results are expected based on previous work in using a similar LLTC combustion mode 

(Jacobs et al., 2005). Error bars are not shown for EI-FSN since they exceed the y-axis 

scale in the figure due to high systemic error of the smoke meter in the low detection 

range. However, even with the high instrument errors, the accuracy of the EI-FSN 

measurement is assumed to be high since the data correlates well to the EC measurement. 
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Figure 5.3: EI-FSN and EI-EC emissions for the LLTC operating condition 

As was found in the preliminary study (Northrop et al, 2009), SWE has higher soot 

emissions than ULSD. The primary reason for the increase include the shorter ignition 

delay for SWE preventing over-rich zones to mix with air prior to the commencement of 

combustion. As biodiesel is mixed with either petroleum diesel however, soot emissions 

are drastically reduced proving that the simultaneous oxidation of soot from the oxygen 

containing fuel present in conventional combustion is also present in LTC. 

For the lower load ELTC condition, soot emissions are reduced further. At this point the 

FSN readings are near zero and the error bars for this measurement are again not shown 

in Figure 5.4. Surprizingly, the FSN and EC data correlate extremely well even at this 

low emissions level. 
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Figure 5.4: EI-FSN and EI-EC emissions for the ELTC operating condition 

Differences in soot emissions from the ELTC mode are difficult to discern given the 

extremely low values found given the large 95% confidence interval of error. However, it 

appears that SWE has the lowest soot emissions and B100 the highest, an opposite 

finding to that from the LLTC mode.  

The high correlation between soot mass emissions measured by OC/EC techniques 

and by using the Christian correlation from FSN readings is a promising finding since the 

optical smoke meter is an inexpensive and well established instrument for measuring soot 

from engines. Table 5.1 shows the relationship between all values measured for the three 

conditions using the correlation coefficient calculated by the Correl function in Microsoft 

Excel described in Section 4.2.1. By showing that, even for FSN magnitudes lower than 

the recommended range of operation of the instrument, EI-FSN corresponds to the more 

accurate EI-EC measurement; carbonaceous species can be reported in low soot regimes 

with considerably more confidence. 
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Table 5.1: Correlation between EI-FSN and EI-EC for the three operating conditions 

 
FSN-EC Correlation 

Conventional 89.4% 

LLTC 99.7% 

ELTC 99.3% 

 

5.2.2 Particulate Emissions 

5.2.2.1 Gravimetric Analysis 

The overall PM emitted by the engine includes both soot and all other particulate 

phase elements found in the exhaust gas for a given dilution and temperature condition. 

As is explained in Chapter Two, the dilution ratio in this work is 10:1 with ambient air 

and the filter collection temperature is 47°C. The conditions during PM collection are 

important in interpreting the results as will be explained later in this chapter. 

The results of the gravimetric analysis of PM in comparison to the soot emissions 

based on the EC measurement for the conventional combustion case are given in Figure 

5.5. The trends in PM match that for soot quite closely with B100 having the lowest PM 

and SWE the highest. In general, the literature trends for PM emissions in conventional 

diesel combustion are confirmed. 
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Figure 5.5: EI-EC compared to EI-PM as measured by gravimetric analysis for the 

conventional operating condition 

In LLTC the situation is completely different. Figure 5.6 shows quite clearly that 

trend in PM emissions is opposite to that of soot for this operating condition. With more 

biodiesel in the fuel, PM increases dramatically such that it is over an order of magnitude 

higher than the soot emissions for B100. This trend indicates that the organic fraction of 

the PM with increasing biodiesel in the fuel has a dominant effect on the overall 

emissions proving the hypothesis set forth in the beginning of this chapter. 

The trends are similar for the ELTC condition with even more drastic differences in 

soot and PM for increasing biodiesel in the fuel as shown in Figure 5.7. PM is over two 

orders of magnitude higher than EC for B100 indicating that at the dilution conditions 

used in the study, a “white smoke” condition may be present (Eastwood, 2008) where 

visible traces of the organics may be present from the exhaust of a vehicle running at this 

operating condition. The neat petroleum diesel fuels, ULSD and SWE, also had much 
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higher PM mass than soot indicating high organic content though not as high the 

biodiesel containing fuels.  

 

Figure 5.6: EI-EC compared to EI-PM as measured by gravimetric analysis for LLTC 

operating condition 

 

Figure 5.7: EI-EC compared to EI-PM as measured by gravimetric analysis for ELTC 

operating condition 
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The total organic fraction of the PM (TOF) which represents the total amount of organic 

matter on the PM including partially reacted HCs, fuel HCs and lubricating oil HCs can 

be calculated using the results of the gravimetric PM analysis and the EC measurement 

using Equation 5.1. The TOF is calculated from the results shown in the previous figures 

and is compiled in Table 5.2. 

 (5.1) 

Table 5.2: TOF as calculated by Equation 5.1 for all fuels and operating conditions 

 
ULSD B50ULSD B100 B50SWE SWE 

Conventional 20.4% 59.5% 31.5% 40.8% 50.8% 

LLTC 71.0% 97.1% 99.4% 96.7% 41.2% 

ELTC 97.4% 99.9% 99.8% 99.9% 98.8% 

 

For both LTC conditions and for any biodiesel containing fuels, the TOF exceeded 

96%. The remainder of this chapter will be devoted to the study of why such disparity 

between soot and organic-containing PM exists for biodiesel operating in LTC modes of 

combustion. 

5.2.2.2 Particle Size Distribution 

Particle size distribution gives more detailed information about what types of 

particles cause differences in mass emissions of PM between fuels and engine operating 

conditions. In this study, the dilution ratio of the DMS instrument was maintained at 5:1. 

Therefore mass calculated from the distribution based on correlations like that given by 



158 

Symonds, et al. (2007) cannot be expected to give the same results as those found in the 

gravimetric analysis using a dilution ration of 10:1 and are not presented here. 

Figure 5.8 shows the distribution of particles for the conventional combustion case. 

The total area encompassed by the distribution was smallest for B100 and largest for 

SWE and ULSD corresponding to trends in PM mass. The B50 fuels fit within the 

magnitude of the neat fuels much like the PM mass shown in Figure 5.5.  

A bimodal distribution exists for all fuels. The smaller peak in particle diameter from 

10-50 nm is generally termed the nuclei range where single particles are thought to 

predominate. The peak occurring in the range of 50-200 nm is considered the 

agglomeration range where nuclei mode particles have combined and gas to particle 

processes have increased their size. For the conventional case, the nuclei mode particle 

distribution is approximately the same for all fuels though the neat petroleum diesel fuels 

have a larger magnitude of agglomerated PM. 

For the LLTC condition, starker differences in particle size distribution exist between 

fuels as seen in Figure 5.9. All fuels showed a larger number of nuclei mode particles 

with ULSD exhibiting the largest magnitude peak in this range. 
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Figure 5.8: Particle size distribution for the conventional operating condition 

 

Figure 5.9: Particle size distribution for the LLTC operating condition 
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Figure 5.10: Particle size distribution for the ELTC operating condition 

Particle size distribution shifts towards larger particles with higher concentrations of 

biodiesel in LLTC as was found in the preliminary study. For the ELTC condition, a 

similar phenomenon is apparent. For this operating condition, the distribution shifts to 

higher diameter than for LLTC indicating more agglomeration of particles. This result for 

both LTC conditions and biodiesel is consistent with the PM mass trends shown in 

Figures 5.6 and 5.7 since the overall mass of a distribution is dominated by larger 

particles.  

In further examining the trends, the curves shown in Figures 5.8 through 5.10 were 

integrated to solve for total number of particles for each case and are shown in Figure 

5.11. Here, ELTC has the most particles and conventional the least. The trends in total 

particle number are the same as PM mass where for conventional combustion it decreases 

for increasing biodiesel whereas in LTC the total particles increase to a maximum for 

B100. 
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Figure 5.11: Number of particles per cubic centimeter for all fuels and operating 

conditions 

Beyond the particle number analysis presented, mean particle size is also a key 

parameter in identifying differences between fuels and operating conditions. Figure 5.12 

shows clearly that the mean particle diameter decreases with increasing biodiesel 

composition for conventional combustion but the opposite is true for the LTC modes. 

This result clearly indicates that higher amounts of organic content found for biodiesel is 

based on agglomeration of particles. 
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Figure 5.12: Mean Dp for all fuels and operating conditions 

5.2.2.3 Bulk Composition of Organic Fraction 

To confirm the primary culprit in the dramatic increase in PM mass for biodiesel in 

LTC, extracted organics were analyzed using GC-FID. Using the method described in 

Chapter Two, the neat fuels used in the study were first tested to identify species to be 

found later in the extracted PM. Figure 5.13(a) shows the raw signal for ULSD from the 

GC analysis.  
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a. 

 

b. 

 

c. 

 

d. 

 
Figure 5.13: (a) Raw GC-FID signal for ULSD; Area fraction versus retention time for: 

(b) ULSD; (c) SWE; and (d) B100 fuels 
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To more easily see the areas of the resultant peaks as a function of detector response 

time, area plots are shown in Figure 5.13(b)-(d) for the three neat fuels tested. For ULSD 

and SWE n-alkanes were identified as unburned fuel markers. ULSD contained 31% n-

alkanes and SWE had 33% n-alkane content. For biodiesel, the five methyl primary 

methyl esters were detected using the GC method as shown in figure 5.13(d). The values 

matched well with those found from the fatty acid profile done by Midwest Laboratories 

presented in Chapter Two. 

Table 5.3: Comparison between biodiesel fatty acid profile from outside analysis and 

GC-FID method 

Fatty Acid  Midwest Labs GC-FID (Area Frac.) 

Linoleic (C18:2) 52.3% 52.7% 

Oleic  (C18:1) 22.4% 23.6% 

Palmitic (C16:0) 11.2% 11.1% 

Alpha Linolenic (C18:3)  8.3% 4.2% 

Stearic  (C18:0) 4.5% 4.4% 

Arachidic (C20:0) 0.3% N.D. 

 

Four primary fractions of hydrocarbons are identified in the extracted PM samples; 

known biodiesel species, known n-alkanes, unidentified light species eluting below 

nonadecane (C19H40) and unidentified heavy hydrocarbons which includes the lubricating 

oil fraction. The known n-alkanes are assumed to be representative of unburned 

petroleum diesel fuel. Figure 5.14 shows the quantitative results for the mass of extracted 

hydrocarbons from the conventional combustion operating condition. Here n-alkanes 

from SWE and ULSD are found in low quantities but biodiesel is found in relatively 

higher concentrations for the B100 and B50 cases. Unidentified light HCs remained 
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essentially constant for all fuels and the heavy HCs did not follow any discernable trend 

ranging from 10 µg to 55 µg. 

 

Figure 5.14: Masses of four categories of extracted organics for the conventional 

combustion operating condition 

For the LLTC condition, methyl esters from unburned biodiesel were 

overwhelmingly the dominant HC fraction detected in the extracted PM samples as seen 

in Figure 5.15. Other fractions appeared nearly constant for all fuels. ELTC show the 

same trends but with much higher fraction of biodiesel in the extracted PM as shown in 

Figure 5.16. It is conclusive from this data that unburned biodiesel is the primary 

component responsible for the increase in PM mass for biodiesel in LTC combustion. 

Taken with the findings of Chapter Four, the results from the speciated extracted PM 

paint a more complete picture of the total unburned hydrocarbon emissions of both LTC 

modes. THC is lower in the undiluted exhaust but the LHC fraction is higher indicating 

lower concentrations of unburned fuel. However, when subjected to quenching and 



166 

dilution as would occur if the gas were mixed in the atmosphere, the unburned fuel 

present in the biodiesel cases converts readily to the particle phase. In Section 5.3, 

condensation is presented as the most likely mechanism for this to occur. 

 
Figure 5.15: Masses of four categories of extracted organics for the LLTC operating 

condition 

 
Figure 5.16: Masses of four categories of extracted organics for the ELTC operating 

condition 



167 

5.2.2.4 Fuel Switching Error 

In Figures 5.15 and 5.16, a small amount of biodiesel is shown in the extracted PM 

from both neat ULSD and SWE. This indicates an error in the testing procedure where 

residual methyl esters from a previous biodiesel run are somehow introduced. A separate 

experiment was run in which the engine operates on biodiesel for 30 minutes, the fuel 

switching procedure described in Chapter Two was done followed by the engine warm-

up procedure. A sample was then taken from the fuel system and analyzed using the GC-

FID method. Results from the analysis are shown in Figure 5.17. 

 

Figure 5.17: Area fraction versus response time for ULSD fuel sampled after switching 

procedure 

Based on the area fraction, the ULSD fuel contained 4.7% biodiesel after the 

switching procedure. Therefore, in all the data presented in this study, neat petroleum 

fuels contain up to 5% of biodiesel and vice versa. Results from ULSD and SWE cases 

showing identifiable biodiesel components in the PM extract shows that even at very low 

concentrations in the exhaust, methyl esters convert to the particle phase very easily. 
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5.2.2.5 Oil Dilution with Biodiesel 

Another source of error in the testing is unburned biodiesel coming into contact with 

lubricating oil and mixing along the cylinder walls before returning to the oil system. 

Biodiesel is known to mode readily dilute engine oil by this method than petroleum based 

fuels (Knothe, 2005). This is a primary concern for engine durability.  

Engine oil was not changed during the duration of the data taken in this study; a 

duration of approximately 200 hours of engine operation. GC analysis of new and used 

oil was done using the methods described previously and the results are shown in Figure 

5.18. 

a. 

 

b. 

 
Figure 5.18: Area fraction versus response time for: (a) Used lubricating oil and; (b) 

Fresh lubricating oil 
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In the test, the same quantity of oil was analyzed for both samples. Figure 5.18(a) 

shows 3.1% methyl esters in the oil by area fraction, roughly equating to its mass 

fraction. This finding is consistent with that of Thornton et al. (2009) where oil was 

diluted by 4 to 10% after implementation of a post-injection strategy which allows more 

fuel to come into contact with engine oil on the cylinder walls during expansion. 

5.3 Condensation Mechanism for Increased Organic Fraction of PM 

From the experimental results, significant gas to particle conversion occurs as a result 

of biodiesel in the exhaust after dilution in LTC modes. As previously mentioned, 

adsorption and condensation are the primary mechanisms by which this occurs. In a 

comprehensive study of PM sampling, Plee and MacDonald (1980) explored the effects 

of dilution ratio and collection temperature on PM mass and composition. Then, by 

comparing experimental data to simple models, they found that adsorption was the 

primary mechanism responsible for conversion of semi-volatile organics to the particle 

phase. Confirming this finding, Clerc and Johnson (1982) developed a more complex 

model for predicting the rate of adsorption onto PM prior to a dilution process. 

Adsorption is a process wherein organic species traveling in the exhaust come into 

contact with the micro-porous surface of soot molecules and attach based on 

intermolecular forces. Once on the surface, they become part of the particle, thus 

transitioning from the gas phase to the particle phase. 

Adsorption, while generally thought to be the predominant mechanism for 

conventional diesel modes with less than 50 ppm THC in the raw exhaust, is not 

considered the primary mechanism for the increases seen in this study. A first reason is 
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that although the number of particles more than doubles for ELTC as shown in Figure 

5.10 from ULSD to B100, the number of sites for adsorption may be assumed to be 

linearly related to this increase and does not explain the more than one order of 

magnitude increase in PM mass. Secondly, the methyl esters found in biodiesel have 

lower volatility than any species found in ULSD or SWE. This factor is not accounted for 

with the adsorption model since it is largely independent of vapor pressure. Also, with 

adsorption, the soot particle sites cannot be assumed to have such a higher preference for 

biodiesel over petroleum diesel components leading to such large differences in soot 

mass for the same combustion condition. Lastly, although Plee and MacDonald found 

that adsorption best fit the trends in dilution ratio and temperature for their combustion 

condition, they indicated that with increasing concentrations of semi-volatile species, like 

in LTC, the condensation mechanism plays a more important role. 

Condensation, the second mechanism for gas to particle conversion is a logical 

explanation for the increase in PM mass found in this study. The increasing concentration 

of low volatility methyl esters for LTC along with increasing mean particle size for 

biodiesel implies that these species are preferentially condensing over petroleum diesel. 

Confirming this idea, Durán et al. (2006) found that the adsorption mechanism was 

inadequate for completely explaining organic content on PM when biodiesel is used in 

conventional diesel combustion even with relatively lower THC concentrations. 

Condensation and evaporation are important processes in the atmosphere. Cloud 

formation proceeds by heterogeneous condensation of water on salt particles in the 

troposphere and models for growth of such particles are well known (Hinds, 1999). 

Organic species in the atmosphere also contribute to atmospheric aerosols over time. A 
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model is presented in the following section to examine the role of condensation of 

biodiesel and petroleum diesel components in the growth of engine PM during a dilution 

process. 

5.3.1 Calculations and Assumptions 

A model is presented which follows the condensational growth model given by 

Jacobson and Kittleson et al. (2005). The rate of liquid concentration growth of a species 

on the surface of a particle is a function of the saturated vapor concentration, and the 

concentration of each species in the gas phase. 

 (5.2) 

Where: 

Ci,liq: Concentration of species i in the liquid phase (mol/m3) 

ki,diff: Rate of diffusion of species i to the surface (1/s) 

Civap: Concentration of species i in the vapor phase (mol/m3) 

kdes: Rate coefficient for desorption 

S*i: Kelvin ratio 

The Kelvin ratio (S*) is a unitless coefficient that expresses the difference in 

thermodynamic liquid/vapor equilibrium between a curved surface and a flat surface and 

is always greater than unity. The Kelvin ratio for a given species is given by Equation 

5.3. 
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 (5.3) 

Where: 

σi:  Surface tension of species i 

ρi:  Density of species i 

MWi:  Molecular weight of species i 

R:  Ideal gas constant 

d*:  Kelvin diameter 

T:  Temperature  

For a system that has reached steady state, the worst case scenario for condensation of 

species onto a surface the equation reduces to the following. Equation 5.4 is also an 

expression of Raoult’s law which allows for the interaction of other species in 

determining thermodynamic equilibrium of a two phase system. 

 (5.4) 

The system of non-linear equations (5.4) is solved together with a species mass 

balance for a given number of species using the fsolve function in Matlab. For the model, 

the four primary methyl esters in proportion to the fractions in Table 5.3 are used for 

biodiesel and C8-C19 n-alkanes in proportion to that found in Han et al. (2009) are used to 

approximate petroleum diesel fuel. Other semi-volatiles like olefins contained in the 

diesel fuel are not considered. This is a conservative assumption since for a given carbon 

number, paraffins have the highest boiling point. The saturated vapor pressure for each 

species is calculated using the Antoine equation with coefficients for methyl esters given 

by Yuan et al. (2005). Other physical properties of methyl esters are taken from Yuan et 

al. (2003). The Antoine coefficients for n-alkanes are from Yaws’ Handbook (2003). 
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For a given condition, UHC concentration is divided by the dilution ratio and is 

assumed to be in proportion to the fuel used. For example, a B50 condition has 50% by 

volume biodiesel and 50% of the n-alkane mixture in the UHC. For the model, the Kelvin 

diameter (d*) is assumed to be 50 µm, temperature (T) is the filter collection temperature 

of 45°C and the dilution ratio is assumed to be 10:1 as in the experimental study. 

 

Figure 5.19: Fuel fraction condensed from model prediction for varying amounts of 

biodiesel mixed with petroleum diesel surrogate 

Figure 5.19 shows the results of the model for a range of UHC from 10 to 1000 ppm 

on a log scale and different concentrations of biodiesel. The fraction of fuel condensed 

for B0 at the conditions shown is approximately zero up to 1000 ppm of total UHC. For 

B100 however, almost all of the biodiesel comprising the UHC condenses out of the 

exhaust. This is a promising result as it predicts that methyl esters preferentially condense 

over n-alkanes from petroleum diesel fuels found in exhaust to the proportion of biodiesel 

in the fuel. 
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5.3.2 Experimental Validation 

To validate the model based with the experimental data taken in this study the mass 

of fuel condensed for a given UHC concentration in the undiluted exhaust is compared to 

the data taken. For the experimental data, the UHC concentration is given by Equation 

4.2 and the condensed mass is estimated by subtracting the EC mass concentration from 

the overall PM concentration for a given condition as in Equation 5.1. The B50SWE and 

B50ULSD cases were combined into one B50 data set and the SWE and ULSD cases 

were combined into the B0 data. All data from the three operating conditions were 

combined creating a spectrum of UHC data over a range from 30 to 700 ppm. Figure 5.20 

shows that the condensation model predicts the experimental data quite well confirming 

that this mechanism is the likely cause of biodiesel converting to the particle phase for 

LTC.  

 
Figure 5.20: Condensed mass on PM versus UHC in undiluted exhaust for model 

prediction and experimental data 
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For all the data points, the uncertainty of the PM mass is based on twice the standard 

deviation of the three filter masses taken per condition. With such small sample sizes, the 

possibility for larger experimental error is likely. Following the student’s t-distribution, 

the measured 95% confidence interval error would be multiplied by 3.182 (Figliola and 

Beasley, pp.122) in which case the model may predict the condensed mass to even higher 

precision. 

As mentioned in section 5.2.2.4, the neat petroleum diesel cases had close to 5% 

biodiesel in the fuel as methyl esters were found in both in the PM and in the fuel after 

the switching procedure. The model predicts this as well since the B0 experimental data 

more closely approximates the B5 model results as opposed to the B0 model results as a 

function of UHC concentration. 

Contrary to some literature findings (Chang et al., 1998), the model predicts that no 

condensation of biodiesel onto PM occurs in the undiluted raw exhaust sample lines at 

190°C without air dilution.  It is then expected to higher confidence that all the biodiesel 

is still in the gas phase in the heated sample line and DOC inlet. 

5.4 Summary of Findings 

With regards to the stated goal of this chapter, PM mass emissions are confirmed to 

be more than an order of magnitude higher for B100 than for ULSD for the LLTC and 

ELTC operating conditions following a controlled dilution process. The primary 

contributors to this increase are high concentrations of unburned biodiesel from over-lean 

areas from combustion heterogeneously condensing onto the carbon particles in the 
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exhaust. This gas to particle conversion process also skews the particle size distribution 

towards larger particles and increases the mean particle diameter. 

The PM emission for conventional combustion decreases with increasing biodiesel 

confirming trends found in the literature. Soot decreases for all operating conditions with 

increasing biodiesel content in the fuel as a result of concurrent oxidation processes 

during soot formation in rich areas of the combustion chamber. The soot mass emissions 

as measured by the OC/EC measurement match well with the calculation of soot mass 

based on the smoke meter readings using a well established correlation even in the low 

range of FSN measurement. 

From speciation of extracted PM from the engine operating conditions in this study, 

the primary contributors to increased PM emissions for biodiesel LTC are unburned 

methyl ester species. Also from the speciation results, methyl ester components diluted 

the lubricating oil to 3.1% during the course of the study consistent with published 

studies. The experimental fuel switching procedure used in the study was found to 

inadequately purge all biodiesel from the system and therefore many of the neat 

petroleum diesel cases contained approximately 4.7% biodiesel by mass. 

Condensation is the primary mechanism by which biodiesel in the gas phase converts 

to the particle phase following dilution. A model based on Raoult’s Law was developed 

to predict the amount of condensed unburned fuel on the PM given the dilution ratio, 

filter collection temperature and concentration of individual fuel species in the raw 

exhaust. The model accurately predicted the amount of unburned fuel species found on 

the PM in the experimental study. 
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CHAPTER SIX 

DIESEL OXIDATION CATALYST PERFORMANCE 

6.1 Background 

Findings from the previous chapter indicate that unburned biodiesel from the exhaust 

of an engine operating in LTC plays a significant role in increasing particulate emissions 

due to condensation. Since this process occurs upon a reduction in temperature due to 

exhaust dilution, if the concentration of UHC in the gas phase can be lowered prior to 

exiting the atmosphere, the observed increase in PM could be averted. This chapter uses 

the material presented thus far and additional measurements from the exit of a diesel 

oxidation catalyst (DOC) to meet the third goal set forth in Chapter One; “To identify 

whether a DOC can oxidize organic species in the exhaust that contribute to increased 

PM mass emitted from a vehicle tailpipe using biodiesel in the LTC mode.” 

First, the overall conversions of THC, LHC, UHC, CO, and H2 through the DOC with 

a constant inlet temperature and space velocity are determined. The tests were performed 

by taking samples from the raw exhaust of the engine operating in the LLTC condition 

before and after the DOC for ULSD, B100 and SWE fuels. PM mass was also taken after 

the DOC following the same dilution process as performed previously. Finally the 

organic species from the PM were extracted and speciated using the GC-FID method to 

determine how much biodiesel remained on the particles following the DOC.  
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6.1.1 General Characteristics of DOCs 

Aftertreatment catalysts for diesel engines hold the promise to largely purge HC, CO, 

NOX and PM from the exhaust stream before they enter the environment. Originally 

designed for use in diesel engines for the reduction of organic species from PM (Otto et 

al., 1980), the DOC has become an essential tool for meeting emissions targets 

worldwide (Walker, 2004). Reviews like that by Zelenka et al. (1990) surveyed the use of 

oxidation catalysts to that point in time and found them a suitable solution for the 

reduction of SOF, THC and CO from light and heavy-duty diesel engines. 

One obstacle for the early adaptation of DOC was high amounts of sulfur in the fuel 

that poisoned the active catalytic materials. Fortunately, the introduction of ultra-low 

sulfur diesel (ULSD) with sulfur contents less than 15ppm in recent years has made the 

use of DOCs more feasible. Biodiesel contains virtually no sulfur; also an advantage for 

catalyst longevity. 

DOCs are usually configured as ceramic monoliths due to a desire for high durability 

and low pressure drop. The active metal typically used is platinum though palladium is 

also commonly added to aid in stabilizing the catalyst against thermal aging and sintering 

(Morlang et al., 2005). Aluminum oxide (alumina) supports have been commonly used in 

DOCs. Zeolite-containing supports have also been implemented for adsorbing HC 

species at lower engine exhaust temperatures where the catalytic material is not active 

(Kamijo et al. 2000). Cerium oxide (ceria) is also often used as a component in support 

material for its oxygen storage capacity during rich excitations of the engine and for its 

ability to oxidize SOF on PM (Farrauto, 1996). 
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6.1.2 DOC for LTC Modes 

Even though PM emissions are much lower in partially premixed LTC modes, the 

DOC is essential for reducing the higher CO and HC emissions generated. Bohac et al. 

(2006) looked at the conversion of CO and HC from an engine operating in the LTC 

mode over a platinum-based catalyst. They found that the conversion efficiency for CO 

was near 100% while for hydrocarbons it was near 80%. Methane, being a major 

component among partially reacted species in premixed combustion did not react at the 

temperatures found in the DOC for LTC and accounted for a large portion of the 

hydrocarbons passing, unreacted, through the catalyst. 

Issues related to the use of DOCs in LTC modes arise related to the poisoning effects 

of engine exhaust species on the catalyst. Knafl et al. (2007) in a combined engine and 

bench reactor study found that catalyst light-off temperature increased for LTC exhaust 

due to high concentrations of CO. Complicating the effect is low load operation where 

LTC operating strategies are typically implemented. Here, exhaust temperatures can be as 

low as 200°C, close or below the light-off temperature of most catalysts. Northrop et al. 

(2007) also examined the self-inhibiting effects of unsaturated hydrocarbon species on a 

platinum-based DOC catalyst. They found reduced hydrocarbon conversion efficiency 

when more of such species were present in the exhaust like the case of a rich LTC mode 

as described above. 

Han et al. (2008) performed a more detailed study of the HC species converted by the 

DOC from a late LTC mode similar to the LLTC mode in this work. They found that 

alkenes and alkynes were almost completely converted whereas non-methane alkanes like 
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ethane and propane had a conversion efficiency of only 80%. Higher carbon number HCs 

like those from unburned fuel had conversions that fell from 85% for C8 to lower than 

50% for C18. 

6.1.3 DOC Performance with Biodiesel-Fueled Engines 

Although biodiesel combustion generally creates lower exhaust manifold 

concentrations of THC and CO than petroleum fuels, conversion of these pollutants 

through a DOC is still necessary to meet emissions standards. In general, conversions of 

THC and CO are comparable between biodiesel blends and neat diesel fuel (Peterson et 

al., 2009, Theinnoi et al., 2008). Purcell et al. (1996) performed a study where a heavy 

duty diesel engine was operated over a transient test cycle on commercially available 

diesel fuel, B50 made with soy-based biodiesel and B100. The results of the average 

gaseous conversion of THC, CO and formaldehyde are shown in Table 6.1. THC 

conversion for all three fuels remained constant at near 60% and CO conversion was 

nearly constant at 80% but H2CO conversion significantly reduced for B100. 

Table 6.1: Average conversion of THC, CO and H2CO through a DOC calculated from 

the data presented in Purcell et al. (1996) for diesel, B50 and B100 

 
Diesel B50 B100 

THC Conversion 60% 64% 61% 

CO Conversion 77% 80% 76% 

H2CO Conversion 42% 50% 20% 

 

For conventional biodiesel combustion, DOCs have been implemented to reduce 

higher organic content contributing to PM emissions compared with petroleum fuels. For 
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example, Sharp et al. (2000) tested the effectiveness of a DOC to reduce the total PM 

emissions on a 5.9L medium-duty engine over an FTP cycle. They found that HC 

conversion efficiency of the catalyst was reduced but the CO conversion remained the 

same when comparing 100% biodiesel (B100) to a reference diesel. However, total PM 

and SOF conversion efficiency improved. Others have confirmed this finding (Stein, 

1996) showing that the organic content leading to the same or higher PM emissions for 

biodiesel in conventional combustion are reduced through a DOC since the soot 

emissions are lower than for petroleum diesel. There are some dissenting findings 

however. Baik and Han (2005) found that conversion of PM through a DOC at 200°C 

decreased from 37% to 26% for a heavy duty engine operating at part load for B20 

compared with ULSD. Peterson et al (2009) also found that the conversion of PM for 

four different modes of combustion was lower for a B20 blend than for ULSD. 

Even though PM mass is generally reported to be reduced through a DOC it has been 

shown ultrafine particles of diameter less than 100 nm are not reduced irrespective of fuel 

used (Frank et al. 2007). However, the DOC is effective at reducing larger agglomeration 

mode particles. Theinnoi et al. (2008) showed that a DOC reduced overall particle 

number for biodiesel by 5% by reducing the larger particles in a particle size distribution. 

They also found that the DOC reduced PM mass by more than 30% indicating oxidation 

of organics residing on the particle surface were oxidized. 

DOC conversion of high concentrations of unburned biodiesel like that found in the 

exhaust from LTC has not to this date been reported. This chapter presents experimental 

data to show whether a production-style DOC is effective in reducing UHC from the 
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LLTC condition such that PM emissions do not increase later due to gas to particle 

conversion processes once the exhaust mixes with the ambient air. 

6.2 Experimental Results and Discussion 

6.2.1 DOC Conversion of HC and CO 

This experimental study tested the effectiveness of the DOC for the LLTC engine 

operating condition and the three neat fuels; ULSD, B100 and SWE. The test engine was 

held to the same constant parameters as shown in Table 3.1 for LLTC. In the test setup, 

gaseous species measured from before and after a DOC at a constant inlet temperature. 

The catalyst conditions including 95% confidence interval are shown in Table 6.2. 

Table 6.2: GHSV and temperatures for steady state conditions used for conversion tests 

with three neat fuels 

 
ULSD B100 SWE 

GHSV (hr
-1

) 82,700 ± 4,300 85,200 ± 5,400 82,700 ± 4,600 

Inlet Temperature (°C) 239.5 ± 2.3 239.6 ± 2.3 240.2 ± 2.5 

Monolith Temperature (°C) 270.7 ± 3.2 269.0 ± 2.6 268.8 ± 2.6 

Outlet Temperature (°C) 246.7 ± 4.0 248.4 ± 3.3 244.4 ± 3.4 

 

Gas hourly space velocity (GHSV) is defined as the volumetric flow rate of exhaust 

gas though the catalyst at standard conditions divided by the total volume of the catalyst 

monolith. GHSV, DOC inlet temperature, monolith temperature, and outlet temperature 

are the same for all three fuels tested to the precision of the measurements. More accurate 

comparisons of fuel-effects on catalyst conversion can be made when such parameters are 

held constant. 
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DOC conversion of CO and THC is shown for the three fuels in Figure 6.1. Here, 

conversion is defined as the change in volumetric concentration of species through the 

catalyst. The figure shows that conversions of THC and CO are the same to the error of 

the measurements for the three fuels. This result is consistent with findings from the 

literature referenced above. 

 

Figure 6.1: Conversion of CO and THC through the DOC for the LLTC operating 

condition 

More subtle differences between the fuels can be seen in Figure 6.2 where the 

conversion of individual HCs as measured by the FTIR along with H2 is shown. Here, the 

only statistical differences in conversion occur for methane and formaldehyde. Consistent 

with the finding from Purcell et al. (1996) formaldehyde conversion is lower for the 

biodiesel case. Strangely, methane conversion increases for the B100 case. Usually 

methane is not converted by any extent through DOCs based on the established literature 

(Han et al., 2008, Northrop et al. 2009).  
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Figure 6.2: Conversion of individual LHC compounds and H2 through the DOC for the 

LLTC operating condition 

Low temperature oxidation of biodiesel proceeds in a slightly different pathway than 

petroleum diesel fuels. Some literature indicates that formaldehyde is created through 

additional pathways for methyl esters not found in the oxidation of aliphatic compounds 

(Huynh and Violi, 2007, Herbinet et al., 2008). This may contribute to additional 

formaldehyde being formed simultaneously to its oxidation thus reducing the net 

conversion as shown in Figure 6.2. Reasons for methane conversion for biodiesel as 

shown in the figure are unknown. Future work is recommended to examine the oxidation 

of biodiesel through a DOC to better understand the mechanisms by which it is 

converted. 
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Figure 6.3: Conversion of LHC and UHC through DOC for the LLTC operating 

condition 

Though some minor differences are seen in the conversion of CH4 and H2CO through 

the DOC, no significant net change in LHC conversion is found. Calculating LHC and 

UHC based on Equation 4.1, Figure 6.3 shows no statistical differences in conversion 

through the DOC.  

6.2.2 DOC Conversion of PM 

For the LLTC condition, the DOC is effective at significantly reducing PM emissions. 

Figure 6.4 shows the comparison of PM mass measured before the DOC from Chapter 

Five compared to that measured after the DOC. The post-DOC PM emissions are of 

similar magnitude for the three fuels whereas the pre-DOC PM emissions are ten times 

higher for B100 compared the other two fuels. The DOC converts almost all of the PM 

for the B100 case indicating that the methyl ester species shown earlier to be responsible 

for PM growth are eliminated to a significant extent.  
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Figure 6.4: EI-PM taken pre-DOC from Chapter Five compared with post-DOC with 

conversion of PM indicated for the LLTC condition 

 

Figure 6.5: EI-FSN and EI-PM for the LLTC condition after the DOC 

Using the same log scale for the y-axis as in the previous figure, Figure 6.5 shows the 

comparison of PM mass emissions and soot mass from after the DOC. Here, as was 
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shown in Chapter Five, the soot emissions are lower significantly for B100. However, the 

PM emissions are nearly the same for all three fuels tested. This larger difference 

between PM and soot mass for B100 indicates that the organic fraction of the PM is still 

large for this case. Table 6.3 shows the TOF calculated based on the results shown in 

Figure 6.5 using Equation 5.1 compared with the results from Figure 5.6. Here it is seen 

that the post-DOC TOF for B100 is still over 90% proving that organics species on the 

PM are still more significant for biodiesel compared with the petroleum diesel cases. 

Further TOF is only reduced slightly from the pre-DOC condition. It is therefore likely 

that unconverted UHC after the DOC converted to the particle phase at a higher rate for 

B100. 

Table 6.3: Total organic fraction for the pre-DOC LLTC condition from Chapter Five 

compared with post-DOC TOF calculated from the data shown in Figure 6.5 

 
ULSD B100 SWE 

Pre-DOC 71.0% 99.4% 41.2% 

Post-DOC 37.5% 90.6% 29.4% 

Reduction in TOF 47.1% 8.9% 28.6% 

 

In further examination of the organic species remaining on the PM for the three cases, 

Figure 6.6 gives the proportions based on Soxhlet extraction and GC-FID analysis. 

Biodiesel still remains on the PM, increasing the total extracted mass of organics for the 

B100 case. This is consistent with the findings of Figure 6.5 and Table 6.3 where the 

TOF for B100 equalizes the overall PM mass with respect to the other two fuels. Based 

on this result and the 80% conversion of UHC as shown in Figure 6.3, the increase in 

TOF for biodiesel is assumed to be the result of unreacted gaseous methyl esters escaping 
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the DOC and condensing onto the soot as they proceed through the dilution process. As 

shown in Chapter Five, components from petroleum diesel do not convert to the particle 

phase as readily upon dilution. Therefore, those UHC components left unreacted through 

the DOC for the ULSD and SWE cases do not significantly contribute to their PM mass 

emissions. 

 

Figure 6.6: Extracted mass of species from the PM for the LLTC operating condition 

taken after the DOC 

The fuel switching error mentioned in Section 5.2.2.4 also plays a role in the data 

presented here as biodiesel again contributes to the PM for the neat petroleum diesel 

cases. Alkanes from the diesel fuel are not detected in any samples indicating that the 

DOC oxidizes these species to a low enough concentration such that they do not 

contribute to PM emissions. Heavy HCs are largely the same as is expected since these 

are more difficult to oxidize by the DOC and most likely reside on the PM in the raw 

exhaust prior to the dilution process. 
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6.3 Summary of Findings 

Based on the above findings, overall conversion of THC, LHC, UHC and CO are the 

same for ULSD, B100 and SWE in LTC through a DOC operating at a constant inlet 

temperature and space velocity. Conversion of gaseous methane increases for B100 and 

formaldehyde conversion decreases, countering each other within the net LHC 

conversion. 

In addressing the goal of this chapter, it is apparent that a DOC can eliminate enough 

unburned biodiesel from an LTC condition with B100 to significantly reduce PM 

emissions down to the level of ULSD and SWE at the same engine operating condition. 

However, since the soot emissions are lower for biodiesel LTC than for the petroleum 

diesel fuels, the organic content is higher. This organic fraction contains significant 

unreacted biodiesel which condenses onto the PM after exhaust dilution. Therefore, from 

the perspective of engine out PM emissions, unburned biodiesel from LTC is a factor that 

deserves additional study. It is likely that for conditions where UHC is higher like for 

ELTC or a fuel rich LTC mode as described by Jacobs et al. (2005), PM mass could still 

be higher for biodiesel than for petroleum diesel fuels after a DOC. 
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CHAPTER SEVEN 

SUMMARY, CONCLUSIONS AND FUTURE RECOMMENDATIONS 

7.1 Summary of Research 

Emissions reductions from engines can be accomplished by in-cylinder means, by 

utilizing alternative fuels or by implementing aftertreatment devices. Partially premixed 

LTC in diesel engines is an effective method for the simultaneous reduction of soot and 

NOX emissions. By utilizing high EGR rates, ignition delay is extended and combustion 

temperatures are reduced thus avoiding creation of regions where these pollutants are 

created. Disadvantages of LTC operation include higher THC and CO emissions than for 

conventional diesel combustion. The use of biodiesel in engines has not only advantages 

based on its partial renewability and the ability to make it from local sources but it also 

been shown to reduce emissions from diesel engines. Soot, THC and CO emissions have 

all been reported to be lower for engines operating on biodiesel and blends compared to 

petroleum diesel. Aftertreatment catalysts are commonly used to convert pollutant 

emissions from engines before they escape into the atmosphere. The use of a DOC for 

LTC operation is necessary to oxidize the higher levels of THC and CO emissions 

created. 

 In this work, an experimental study was undertaken to explore the use of biodiesel in 

LTC modes of operation with the use of a DOC catalyst. Data are presented from a 
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comprehensive study of gaseous HC and PM emissions from a test engine operating in 

three steady state modes: conventional combustion; late-injection LTC (LLTC); and 

early-injection LTC (ELTC). Soy-based biodiesel, two neat petroleum diesel fuels and 

50% by volume blends of biodiesel and the diesel fuels were tested in the study. The two 

petroleum fuels were chosen to bound the cetane number of B100 thereby isolating the 

effects of ignition differences and physical fuel properties on emissions.  

Partially premixed LTC operating conditions were chosen based on typical usage 

scenarios in practical engine applications. ELTC utilizes injection earlier than 15 °BTDC 

to maximize premixing before combustion begins and is generally used at low loads since 

peak cylinder pressure generally occur near TDC. Injecting fuel nearer to TDC and 

retarding combustion allows LLTC conditions to be run at higher loads and speeds. This 

mode still has limitations in load when injection duration begins to exceed the ignition 

delay, causing diffusion burn to occur. A conventional combustion mode using a pilot 

and main injection strategy was also tested to verify established findings for biodiesel use 

in engines from the literature and to use as a point of comparison for the LTC cases. 

Published results from a preliminary study on biodiesel LTC were used as a starting 

point for establishing three research goals for this dissertation. The first was to explain 

why the gaseous HC and CO emissions from biodiesel LTC decrease compared to 

petroleum diesel fuels by exploring the distribution of light hydrocarbons within the THC 

measurement. The second was to prove the hypothesis that the organic fraction of the PM 

mass is greater for biodiesel in premixed LTC and to determine the primary species that 

contribute to this increase. Finally, the use of DOC was explored to oxidize organic 



192 
 

species in the exhaust that lead to increased PM mass emitted from a vehicle tailpipe 

using biodiesel in the LTC mode.  

In achieving the goals of the study, the three operating conditions were first 

developed on the test engine using the ULSD reference fuel. Data from injection timing 

and EGR sweeps were analyzed to optimize the conditions based on performance and 

emissions criteria. The three steady state conditions were then run for all test fuels and 

emissions data were taken repeated times at each point to ensure accurate results. 

Between fuels for a given operating condition, speed, load and EGR were maintained 

constant. Injection duration was altered to maintain a given load, compensating for lower 

heating value differences between fuels. The CA50 for each fuel was maintained constant 

by changing the injection timing, allowing for compensation for changes in emissions 

due to combustion phasing. 

Emissions data were collected from numerous instruments for each steady state data 

point taken. A five gas analyzer bench was used to take basic gaseous emissions and an 

FT-IR was used to measure individual light HC species. A smoke meter was used to 

measure soot emissions and data was compared to separate OCEC measurements. A 

DMS was used to measure particle size distribution and a partial flow dilution tunnel was 

used to collect filter samples for gravimetric analysis. Organic species were removed 

from the PM filters collected from the dilution tunnel using Soxhlet extraction and were 

analyzed using GC-FID. The GC-FID method used in the study was developed to 

specifically quantify methyl ester species found in biodiesel and n-alkanes found in 

petroleum diesel fuels. 
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As part of the study, a model was developed to explain the results for organic material 

found on the PM. It used a Raoult’s Law correlation to estimate the amount of 

condensation occurring in a gas stream of given temperature, dilution ratio and undiluted 

hydrocarbon concentration. Outputs of the model included the amount of biodiesel and n-

alkanes from the undiluted exhaust that condensed onto particulates following a 

controlled dilution process like that achieved in the experimental study.  

The ability of a standard DOC to reduce emissions from the engine was also studied 

for the LLTC condition and for the three neat fuels. Gaseous emissions from the analyzer 

bench and FT-IR from before and after the catalyst combined with PM data were used to 

examine the effectiveness of the DOC. Gravimetric and speciation analyses were 

performed to determine whether the species of interest were oxidized to sufficient levels 

such that excess PM did not appear for the biodiesel case. 

7.2 Conclusions 

The primary conclusion derived from the work described in this dissertation is that 

for partially premixed LTC of biodiesel, excessive gas-phase unburned methyl esters in 

the in raw exhaust condense onto a relatively smaller mass of soot after dilution with 

atmospheric air. This condensation process resulted in over an order of magnitude 

increase in PM emissions for B100 in the LLTC condition as compared to petroleum-

derived fuels. For the ELTC condition, PM emissions were almost 100 times higher than 

the diesel fuels tested. The high molecular weight methyl ester components contained in 

biodiesel have lower vapor pressure and reach a near 95% conversion into the particle 
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phase with concentrations of 1000 ppm of UHC in the undiluted exhaust for a 10:1 

dilution ratio and 47°C collection temperature. 

Biodiesel components also condensed onto the particulates in the conventional 

combustion mode though since THC was more than 10 times lower than for the LTC 

modes, the difference in PM emissions between fuels was small. The total organic 

fraction of the PM did increase however since soot emissions were significantly lower for 

B100 as has been reported in the literature. 

From the GC-FID analysis it was found that the switching procedure for changing 

fuel in the experimental study resulted in residual biodiesel remaining in the fuel system 

for subsequent tests. For most of the neat ULSD and SWE cases tested in the study, up to 

5% by mass biodiesel was contained in the fuel. The small quantity of methyl esters in 

the UHC from the neat ULSD and SWE cases also condensed on the PM for those cases. 

The condensation model also predicted that the measured condensed mass for those cases 

matched better to the B5 estimation, further validating this result. 

Biodiesel also diluted the lubricating oil to approximately 3.1% by mass during the 

course of the experimental testing. This was verified by speciation of the used oil 

compared to fresh oil using the developed GC-FID method. 

Although significant differences in PM emissions in the diluted exhaust exist between 

biodiesel and petroleum diesel fuels in LTC, undiluted emissions differences are more 

subtle. For example, combustion efficiency was found to be better correlated to ignition 

delay than fuel composition directly. 
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Some findings from the study were expected based on the established literature. Soot 

emissions are lower for biodiesel in LTC and in conventional combustion due to 

simultaneous oxidation during combustion from fuel-borne oxygen molecules. In the 

study, soot mass emissions as calculated from FSN measurements and a well-used 

calculation compared to those from the more accurate OCEC method had correlation 

coefficients of greater than 97% for the three operating conditions.  

Another expected finding is that THC and CO emissions decrease with increasing 

biodiesel in the fuel for both biodiesel and petroleum diesel. The reduction in emissions 

was the same for both B50 blends and the same for the neat petroleum diesel fuels except 

in the ELTC case. Here, wall quenching of fuel due to early injection timings for ULSD 

and B50ULSD was responsible for higher THC emissions than for SWE and B50SWE. 

Reductions in EI emissions for THC and CO for biodiesel are partially related to the 

lower mass fraction of carbon in the fuel. 

Emissions of LHC species are largely the same for all fuels run for a given engine 

operating condition with the exception of ethylene. This species is a primary intermediate 

species in the oxidation of higher hydrocarbons. For the LTC modes run in the study, it 

increased with increasing amounts of biodiesel in the fuel significantly enough to 

increase overall LHC emissions for the ELTC condition. Overall, the fraction of LHC 

species, or LOF, increased with increasing biodiesel in the fuel indicating that the UHC 

emissions were lower. Over a timing sweep for ELTC, LHC emissions depended on the 

amount of over-mixing in the cylinder as measured by ignition delay but the LOF for 

biodiesel was consistently higher. Furthermore, ethylene was emitted as a function of 

LHC according to a linear relationship but with biodiesel having a higher slope. This 
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indicates that ethylene not only increases the LHC emissions for biodiesel combustion in 

ELTC modes but that it accounts for a higher proportion of the LHC as well. Based on 

these findings, it can be assumed that biodiesel is more reactive during combustion, 

generating higher amounts of partially-reacted species, particularly ethylene. Though 

detailed kinetics analysis was beyond the scope of this work, it is left to future 

researchers to investigate these trends further. 

Although it was found that the use of biodiesel in LTC increases PM emissions 

significantly following dilution of the raw exhaust, the results of this work indicate that 

80% of the UHC in the exhaust can be oxidized by a standard DOC with an inlet 

temperature of 240°C and GHSV of 85,000 hr
-1

. The same conversion was found for 

ULSD and SWE and the CO conversion for all cases was near 100%. Unfortunately, the 

remaining unburned biodiesel left unconverted by the DOC still contributes significantly 

to the PM following dilution. In this study, it was found that although the soot emissions 

were much lower for the B100 case, the PM emissions were the same compared to that 

from the ULSD and SWE fuels. Methyl esters from biodiesel were found to be the 

primary species contributing to the higher total organic fraction (>90%) on the PM for 

biodiesel LLTC following a DOC. 

Although DOC conversion of THC was largely the same for the fuels tested, two 

interesting trends emerged when the conversion of individual LHC species was 

examined. Methane, generally found to be left unconverted through a DOC catalyst when 

petroleum diesel is used had a conversion of 15% for the biodiesel case. Further, 

formaldehyde conversion decreased for the biodiesel LLTC condition as compared to 

ULSD and SWE. Literature suggests additional pathways to formaldehyde creation as a 
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result of methyl ester oxidation at low temperature indicating that it could be produced as 

well as oxidized through the catalyst, thus reducing its net conversion. 

7.3 Implications of Research Findings  

The findings presented in this dissertation have some important implications for 

practical engines. Biodiesel replaces petroleum diesel in the existing fleet of diesel-

powered vehicles in a number of countries and its use is projected to grow in coming 

years. Some of these vehicles implement LTC strategies as part of their stock engine 

calibrations. For all diesel engines, idle and low load conditions operate with a high level 

of premixed combustion and emit relatively high THC emissions, similar to LTC, 

compared with high load operation. If neat biodiesel or blends are used in these engines, 

unburned methyl ester components exiting the vehicle are susceptible to condensation 

following dilution with the atmosphere, increasing the mass of PM emitted to above 

regulated emissions standards. 

Although most vehicles are equipped with aftertreatment devices, even small 

concentrations of methyl esters passing unreacted through a DOC increase the organic 

fraction of the PM for biodiesel. At high UHC levels, this could negate the decrease the 

mass reductions of soot generally found with biodiesel operation or even increase the 

overall PM emissions compared with operation with petroleum diesel fuel. To 

accommodate the use of low volatility fuels like biodiesel, DOC catalysts may need to be 

larger, have higher activity or be operated at higher temperature to prevent excessive PM 

to be emitted. 
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Condensation of methyl esters could occur in other locations in an engine system 

where exhaust is cooled. For example, in most engines utilizing an EGR cooler, exhaust 

can be cooled to 80°C or lower if the engine is cold starting or if a separate cooling loop 

is used. In these cases, it is most likely that biodiesel in the recycled exhaust will 

condense on the cold surfaces of the cooler and cause considerable fouling or even 

blockage of some heat exchange channels. 

Another area of diesel engines where exhaust is cooled is downstream in the tailpipe 

and in aftertreatment devices located far from the exhaust manifold. In cold ambient 

conditions, a DPF located downstream could be near atmospheric temperature when the 

engine is starting. If a biodiesel blend is used in the engine, unburned methyl esters are 

likely to condense on the DPF, possibly blocking the porous channels. This could cause 

excessive pressure drop requiring more frequent regeneration or worse, permanently 

reduce the effectiveness of the device. 

A practical implication of the findings to laboratory applications is that FSN and the 

Christian Correlation (Christian et al., 1993) can be used to good accuracy for estimating 

the mass of soot even at the low end of the smoke instrument’s measurement range. Since 

a smoke meter is a commonly used instrument in testing of diesel engines, this result 

improves the level of confidence in reporting soot mass emissions data. 

7.4 Suggestions for Future Work 

Often in research, answering a question leads to many more questions asked. Based 

on the work presented in this dissertation, some recommendations for future work can be 

made. First, more comprehensive data on PM emissions from diesel engines operating on 
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biodiesel should be collected at diverse operating conditions to more completely 

understand PM formation following dilution. A follow-on study could use design of 

experiments (DOE) methods to create a test plan with the goal of developing a correlation 

for the amount of biodiesel converting to the particulate phase. 

In the recommended study, variables should include UHC in the undiluted exhaust, 

percent of biodiesel in the fuel, dilution ratio and PM filter collection temperature. More 

accurate measurement of gaseous fuel species in the undiluted exhaust should be made by 

increasing the sample line temperature to 250°C per the recommendation of Chang et al. 

(1998) both for the FID and the FT-IR to eliminate the possibility of condensation or 

adsorption of methyl esters before detection. A spectral calibration for methyl ester 

components and the actual petroleum diesel used in the study should be implemented for 

the FT-IR to more accurately measure the UHC composition during the study. 

The model developed in this work should be improved to take into account 

adsorption, the other primary gas to particle conversion mechanism besides condensation. 

Together with the experimental data taken from the recommended study, a physics-based 

correlation could be realized to estimate the increase in PM mass as a function of percent 

biodiesel in the fuel, dilution ratio and temperature, and FSN. In the past, empirical 

correlations have been developed to estimate the increase in PM mass due to THC mass 

in the exhaust (Greeves and Wang, 1981). Modifications to those have been recently 

proposed to estimate the biodiesel contribution to the PM using neural network-based 

models fed with experimental data (Duran et al., 2006). These models, however accurate 

for the engines and fuels tested, are not based on physical mechanisms and therefore fall 

short of accurately predicting PM increase for a wide range of conditions. 
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Additional future work that can be recommended following the findings of this 

dissertation is to look more closely at the conversion of biodiesel though a DOC catalyst. 

Since the remaining methyl ester components from the engine exhaust have been shown 

to convert readily to PM, it would be interesting to more thoroughly quantify their 

conversion over an oxidation catalyst. Variables in the study should include catalyst inlet 

temperature, GHSV and biodiesel concentration. Other interesting trends alluded to in 

Chapter Six could also be explored including the increase in methane conversion through 

a DOC when biodiesel is present and the decrease in formaldehyde conversion.  

Other studies that should be undertaken as a result of this work are to examine in 

more detail the effects of biodiesel condensation on EGR coolers and DPF reactors. 

Finally, the findings of this dissertation will hopefully inspire additional thought on 

research topics related to biodiesel combustion in engines.   
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