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FOREWORD

This report is a combined Final Report for work sponsored by the Army
Research Organization in Durham, N.C., both under Grant DA-ARO(D)-31-
124-G385 and the succeeding Contract DA-31-124-AR0O-D-276. This support
is gratefully acknowledged.

The object of the research program summarized here was to examine
the effect of viscosity on transonic flow, and was directed by Martin Sichel,
the chief investigator. Following the Introduction, Sections II and1II of the
report describe the personnel who have been active in this program, and
summarize the research which has been completed.

Unpublished studies of the mathematical properties of linearized forms
of the viscous transonic potential equation, ¢xxx - ¢X ¢xx + (byy =0, are
described in detail in Section IV. Solutions of the equation ¢xxx + ¢yy =0,
on a finite domain by separation of variables are described. The asymptotic
behavior of solutions of the equation ¢xxx + 62 ¢xx + ¢yy = 0 for large values
of y has been developed. Finally difference and exact solutions of (bxxx + (byy =0

on a semi infinite domain have been compared, as preliminary step in the

finite difference solution of the full viscous transonic equation.

ii



CONTENTS

FOREWORD

I. INTRODUCTION

II. ~ PERSONNEL

III. PUBLISHED WORK

A.
B.
C.

D.

IV. ANALYTICAL AND NUMERICAL SOLUTIONS OF THIRD ORDER

Papers

Reports

Papers presented at annual meeting of the Fluid Dynamics

Division of the American Physical Society

Seminars

PARTIAL DIFFERENTIAL EQUATIONS

A.  Solution of ¢ +¢__ =0 on a Finite Domain by Separation
of Variables vy
1. Formulation of an Eigenvalue Problem
2. Properties of the Eigen Expansion
3. Numerical Example

B. A Study é)f the Linearized Viscous Transonic Equation
¢xxxi6 ¢xx " ¢yy =0

C. Numerical Investigation of ¢xxx+ ¢ =0 on the Semi-
Infinite Domainy > 0 yy

BIBLIOGRAPHY

iii

Page

ii

14
18

22

28

38



I. INTRODUCTION

In the study of transonic flows the use of the inviscid transonic equation coupled
with the treatment of shock waves as Rankine-Hugoniot discontinuities sometimes
leads to paradoxial results or solutions in serious disagreement with experiment.
These difficulties usually arise when the application of the above theory leads to
large velocity gradients or discontinuities in streamline curvature, and it appears
that a viscous transonic theory must be applied in such cases (Cole 1949, Sichel
1962 and 1963 Szaniawski 1963, Ryzhov and Shefter 1964). It has been shown (Sichel
1963) that regions of transonic flow where the effect of compressive or longitudinal
viscosity is of the same magnitude as convection are governed by a viscous-transonic

equation, which, in normalized form (Sichel 1966), is

U _-20U0_+V_=0
XX X y

or written in terms of a normalized potential, ¢

o Oy b b =0

XXX yy

In this viscous transonic or V-T equation U and V are normalized x and y components
of the perturbation to the sonic velocity. The undisturbed velocity is presumed to be
near sonic and in the x direction and x and y are normalized coordinates. The investi-
gation of the above viscous-transonic equation was the subject of the investigation

carried out under ARO Grant DA-ARO(D)-31-124-G385, and Contract DA-31-124-ARO-



D-276. The question to be answered was whether physically meaningful solutions of
the V-T equation resolving some of the difficulties of the inviscid theory could be
found. The investigations, summarized in this final report, have shown that the
V-T equation does indeed provide a reasonable description of those transonic flows
in which compressive viscosity is important.

One problem in which the inviscid transonic theory fails is in explaining the
nature of the transition from purely subsonic to subsonic-supersonic flow in a con-
verging diverging nozzle. Exact similarity solutions of the V-T equation, which
do show the nature of this transition have been obtained (Sichel 1966, Sichel and
Yin 1967). In the case of radial and spiral flows the velocity gradient becomes
infinite near the sonic radius; however, exact spiral-radial flow solutions of the
V-T equation have been found which show that this difficulty can in part be elimi-
nated if viscous effects are taken into account (Sichel and Yin 1967).

External transonic flows about two-dimensional airfoils are, perhaps of
greater practical interest because of their relations to the performance of tran-
sonic airfoils. The question of how the viscosity affects the far field has been
investigated by Ryzhov and Shefter (1964) and Szaniawski (1966). Near the airfoil
surface there is often a region of supersonic flow imbedded in an external sub-
sonic flow. While potential flow solutions for such supersonic regions, in which
the flow decelerates smoothly to subsonic velocities, have been found, experiments
almost always indicate that the supersonic region is terminated by a shock wave.

This conflict between theory and experiment led to the well known '"'transonic



controversy', extensively discussed by Nieuwland (1967), and Manwell (1963),

as to whether shock free pockets of supersonic flow embedded in a subsonic flow
can exist. Since it can be shown that the inviscid solutions for such flows are not
continuously dependent on the boundary data, it was concluded that such shock
free pockets of supersonic flow could not exist. As indicated by Nieuwland (1967)
this controversy has been reopened by the experiments of Holder (1964), and
Pearcy (1962) which showed that shock free supersonic pockets could be attained
under special conditions. Viscous effects may play a role in this controversy,
particularly since experimentally it is impossible to say whether the flow under
observation is a "'pure potential" flow or a viscous flow. The discontinuous de-
pendence on boundary data, on which nonexistence of supersonic pockets is based,
may disappear if viscosity is properly taken into account.

When the supersonic pocket is terminated by a shock it is found that the pres-
sure rise across the shock may be appreciably less than the Rankine-Hugoniot
value (Holder 1964). This is not surprising for application of the Rankine-Hugoniot
conditions to a weak shock normal to a curved surface leads to infinite streamline
curvature where the shock touches the surface (Emmons 1946). Emmons suggests
that the shock structure is no longer one dimensional near the wall and that a
viscous theory is required to properly treat this portion of the shock.

It would appear that solution of the V-T equation for two dimensional external
flow past bodies of arbitrary shape might shed some light on the difficulties dis-

cussed above. As a preliminary step in this direction approximate solutions for



V-T flow past a wavy wall have been obtained (Sichel and Yin 1967). In the viscous
case it is found that supersonic pockets are terminated by smooth, shock like,
transitions from supersonic to subsonic flow.

Several mathematical aspects of the V-T equation have also been explored.

This work is described in Section IV below.
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IV. ANALYTICAL AND NUMERICAL SOLUTIONS OF THIRD ORDER
PARTIAL DIFFERENTIAL EQUATIONS

The viscous transonic potential equation

bex ™ Px P * By = O (1)

is non-linear and of third order. Various approximate and iterative methods of

solving Eq. (1) require the solution either of the equation

by * By = 0 (2)
or of the linearized V-T equations
b 5800 4 =0 3)
XXX XX yy
¢Xxxia¢x+¢yy=0 (4)

While the literature on second and fourth order partial differential equations is
extensive references on third order partial differential equations are extremely
limited. Hence various aspects of the behavior of equations (2), (3) and (4) have
been investigated as described below.

A. Solution of ¢xxx + ¢yy = 0 on a finite domain by separation of variables

1. Formulation of an eigenvalue problem

The solution of Eq. (2) on the semi infinite domain, y > 0, has been discussed
extensively by Sichel (1961). Here we are concerned with solution of (2) on a
finite domain by separation of variables. A key objective of this work is to estab-

lish the behavior of the eigenfunctions which occur in this problem.



The problem considered is the following:

¢XXX +¢yy - 0
¢(0,y) = ¢(m,y) = ¢X(0, y) +b ¢x(1r, y) =0 (5)
¢(x,0) =h(x) ; o(x,0=0

i.e. homogeneous boundary conditions are chosen. Assuming a solution of the
form ¢ =X(x) Y(y) it follows that the functions X and Y must satisfy the ordinary
differential equations

X"'+p3X=0 (6)

Y'" - p3Y =0 (7)

where p3 is a separation constant.

The third order ordinary differential equation (6) has been discussed by
Kamke (1944) who cites several other papers dealing with eigenvalue problems
related to this type of equation. The solution of Eq. (6) can be written in the

form

W, X WoPX W X
X =C,e +Cqe +C,e (8)
where L 1, Wo = (1/2) + (V3/2)i, and Wg = (1/2) - (V3/2)i are the three cube
roots of - 1. Cl’ CZ’ and C3 are arbitrary constants. The boundary conditions
(5) require that

X(0) = X(7) = X'(0) + bX'(m) =0 (9)



and from (9) it follows that unless

1 1 1
w_pT W, pT W, p7
e 1 e 2 e S -0 (10)
w, o7 W, QT W07
pw1(1+be1) pw2<1+be2 pw3(1+be3)

the solution X will be the trivial one with C1 = C2 = C3 = 0. The characteristic
equation (10) will determine the eigen values p.
In general p will be complex so it is convenient to let p = £ + in where £ and 7

are of course) real constants. Now the characteristic equation (10) can be written

in the form

F(&,n) +iG(§,m) =0 (11)

which implies F(&,n) = G(§,n) = 0. A further reduction is possible in that F({, n)

and G(§,m) can be written in the form

F(§,n) = &(5,m) -ng(§,n) =0 (12a)

G(&,n) =nf(§,n) + &g(§,n) =0 (12D)

and from (12) it follows that
f(€,m) =0 (13)

g(&,n) =0 (14)

provided (ﬁz + nz) #0. £ =1=0is also a solution of (12) but this special case

will be discussed separately below. The functions £(£,7) and g(£,7n) are given



as follows

- ARRCLNT S
f(g,n)=e sinm - e sin *-2—§ --2-n+§ T
T
5 (& -V3n)
+e2 sin 7€+%n+%)w+be”€sinnn
T (15)
-"2—(€+\/§77) 1 1
- be sin '2"‘3-577-5 m
-5 (& - V31) o
+ be sin ?g+§n-§)ﬂ
-m§ %(5"“/577) 1 1
g(é,m) =e’ > cosmm -e CcoSs _Z_g_§n+§ -
5 (& - V8n) L ”
- € cos |5 £ +5M+ 3|7 -be °cosnm
T (16)
-§(£+\/§n) 3 1 )
+ be cos “2‘5--247-5)11
-5 (& - V3n) L
+ be cos 75+§n-§)w

Equations (12a) and (12b) must be solved simultaneously to determine values of
¢, and 1. This was accomplished graphically using the method of "grid plotting'

described by Hartree (1958).



From the boundary condition (9) it follows that the constants Cl’ CZ’ and

C. must be in the ratio

3
B WoPT w3p17"
C1C2C3= p(wz-—w3)+pb(w2e - Wy e )
[ W, P W, pT ]
3 1 7
p(w3 - Wl) +pb (w3 e -wy e (1
L -
r W, om Wo 0T\
p(w ~w)+pbwel -we2
1 2 1 2 ]

To correspond with (17) we now define the eigenfunction Xn’ corresponding to

the particular eigenvalue p, as follows

X = (Wy - Wq) + b(w eWZPnW -W eWSpnﬂ ewlpnX
n~ |Pn'V 3+ PR\ 3
WP T W, p M| W,Pp X
3'n 1"n 2" n
+{pn(w3 - Wl) + pnb Wa e -w, e :l e (18)
+{p(w, - w,) +p blw ewlp ! -w eWZDan eW3PnX
PptWp = Wol T PPV 2
Now Eq. (7) has the solution
3/2 3/2
Pn / y 'Pn /
Y =K1 e +K2 e (19)

It will be found later that one of the constants K1 and K2 must be chosen zero

to obtain solutions that remain bounded as y -« . For reasons discussed later

10



the choice K1 = 0 was made. Then it follows that

=K, e X (20)

In order to satisfy the condition ¢(x, 0) = h(x), K2 must represent the constants

An in the expansion of h(x) in terms of the eigenfunctions Xn’ such that

h(x) = Z An Xn (21)

In view of the strange nature of the functions Xn’ it is initially not evident that
arbitrary functions, h(x), can be expanded according to (21).

To determine the constants An it is necessary to use the property

w

J Xn(x) Vm(x) dx=0 ; m#n (22)
0

where Vm(x) is the adjoint eigenfunction corresponding to Xm(x)° Vm(x) is a
solution of the adjoint equation

Vi oSV =0 (23)

satisfying the boundary conditions
V(0) = V(7)) =bV'(0) + V(7) =0 (24)

The characteristic equation for determining the eigenvalues of the adjoint problem
is

11



1 1 1
-wlpvr -szﬂ -w3p1r |
e e e =0
-W,pT ~WoPT -w3p77
_pw1b+e -pw2b+e -pw3b+e ) (25)

\ e

Upon multiplying the first row of the above determinant by e 1 , the second by
W, pT

e and so on it can be shown that Eq. (25) is identical to Eq. (10), so that the

eigenvalues of the adjoint problem are identical to those obtained from Eq. (10).

As in the case of Xn(x), it is readily shown that the eigenfunction Vn(x) can be

defined as
V (x) =|p (W, - w,) + ﬁr—l w e-W3Pn7f -w e-sznﬂ e-Wlpnx
n n 3 2 b 3 2
i p -W, p_T -w,p_m\! -w.p x
n 1"n 3"n 2"n
+p (w1 WZ) + T)—-(w1 e - Wg :ie (26)
+|p (W, - W) + il— w e'sznﬂ_ w e-wlphﬂ) e-WspnX
n 2 1 b | 2 1

It should be mentioned that the definitions of Xn(x) and Vn(x) are by no means
unique, and that no attempt has been made to express these functions in normal -

ized form. From Eq. (22) it now follows that

12



m

f h(x) Vn(x) dx

A = (27)

[ %0 v, ax
0
As mentioned above £ = 7 = 0 is a solution of the characteristic equation (10).
We shall let Py = 0 be the corresponding eigenvalue. In this special case Xl(x)
cannot be obtained by simply substituting Py in Eq. (18) for Xn(x) ; rather, it is
necessary to return to the original differential equation (6). For p = py = 0 it
then follows that

2
X1 = C1 + sz + C3x (28)

Application of the boundary conditions (9) now yields C 1= 0 and requires that

1 i
=0 (29)
b+1 27
if C2 and C3 are to be different from zero. Equation (29) can only be satisfied
for b = 1 and then since C2 : C3 = -7 : + (1/7) it is possible to define X1 as
XZ
X1 =X -— b=1
T (30)
X, =0 ;. b#1

13



2. Properties of the Eigen Expansion

Simultaneous solution of Eqs. (12a) and (121 for En and 7 _, the real and imaginary
parts of Py is a major source of difficulty in the boundary value problem of Eq. (5).
However certain properties of the expansion (21) and of the eigenvalues p, can be
deduced without actually solving Eqs. (12a) and (12b), and these are considered
below.

a. Eigenvalues p, occur as complex conjugates. Proof: Inspection of
Eqs. (15) and (16) shows that
f(€,n) = - £(§, -n)

(31)
g(&,m) =g(&, -n)

From Eqs. (13) ‘and (14) it then follows that if (in, nn) is a solution of the charac-
teristic equation, (£n - nn) must also be a solution so that the eigenvalues occur
as pairs of complex conjugates.

b. The expansion (21) is real provided g(x), the constant b, and ihe
variable x in (9) are real. Proof: Using the property

Wy =Wy ; Wa =Wy Wa = W, (32)

which follows from the definition of Wis Wy and W, with the bar denoting the

complex conjugate, it is readily shown from Eq. (18) that

Xn(x9 En) = - Xn(x7 pn) (33)

14



Similarly from Eq. (26) it follows that

Vn(X’ En) = - Vn(xy pn) (34)

Then if h(x) is real equation (27) for A;nx(pn) yields the result

Ap)=-A(p) (35)

n'n

so that

AP X, (x,5) = K ()X %, p,) (36)

Since except for n = 1 the eigenvalues p, occur as pairs of complex conjugates,
and the eigenfunction and the adjoint corresponding to Py = 0 are real it follows
from (36) that the expansion (21) for h(x) will be real.

c. The characteristic equation (10) in symmetrical about rays from the
origin of the (£,7) plane making angles of 27/3 and 47/3 with the £ axis. Proof:

From the following properties of the cube roots of - 1:

i X
_'W = o 3
1Wo =Wy =€
. 2T
2 by
Wy = -wg=e (37)
W3W2=—W1=1

and the characteristic equation (10) it is readily shown upon writing the charac-

teristic equation as

15



that

Then from (39)

Wrwy?0) = V-wyp) = V(o) (40

Since - Wy = €Xp (i% T, + WZZ = exp (i % m) = exp (i % m) the above symmetry

follows. It should be observed that not only ¥(p), but its real and imaginary parts

1

F(£,7n) and G(§,n) will be symmetrical with respect to exp (i % 7) and exp (i% 7).

d. F(,n) = Re[\U(P)] = 0 on the rays:

0 = ta.n-1

|3

=0 ,

for all values of b. In the special case b = 1,F(£,7) is also zero on the rays

-1

_ n_nm om
6 = tan ET6

n T
2 b 6 > 6 )

Proof: From Eqs. (12a) and (15) it follows that F(¢,0) = 0 for £ 2 0. From

the symmetry properties (c¢) it then follows that F(£, 1) is zero on rays at angles

27
) 3 )

2

K I
3 3 7 3

L

In the special case b =1, F(0,7) = 0 for all 7 2 0. Then using symmetry

arguments similar to (c) it follows that F(§,n) will be zero on rays at angles
57

om _T
’ 2’ 6

L T
) 2 ’ 6 > 6

D=

16



e. Special properties when b = 1: The case b = 1 which implies

the symmetry X'(0) = - X'(7) in the boundary conditions results in consider-
able simplification and so merits special discussion. First, if the function
h(x) is symmetrical about x = (1/2) so that h(x) = h [(1/2) - (x - 7/2)] = h(7 - x),
then b must have the value unity to be consistent with the boundary conditions.
From property (d) and the grid plot it follows that with b = 1, the' eigenvalues
will lie on the rays 6§ = tan-1 (n/&) =+ 7/6, + 7/2, + 57/6. If 6 is restricted
to -7 _<_ 6 < 7, then if the solution (20) is to remain bounded the eigenvalues
lying on 6 = + 7/2 and + 57/6 must be rejected, and only the values lying on
9 =+ 7/6 need to be used. If K2 were chosen as zero in (19) then the eigen-
values on 9 =+ /2, + 57/6 would have to be used; thus the choice K, = 0
is the simplest to make. The fact that certain eigenvalues have been rejected
raises the question whether the expansion (21) for h(x) is complete; this ques-
tion remains to be investigated.

Since the eigenvalues, Py lie on the rays £ = + V37 it is readily shown
that the real parts of Xn(x) and Vn(x) are symmetrical about 7/2 while the

imaginary parts of Xn(x), Vn(x) are asymmetrical about 7/2. Thus

Re[X (0] +im[X ®] =Re[X (r-%] -im[X (r-x)
. (41)
Re [Vn(x)] +iIm {Vn(x)] = Re [Vn (m - x)] -i Im[Xn (m - x)]

Then if h(x) is symmetrical about 7/2 it follows from

17



T
j h(x) Vn(x) dx
0
A == (27)
j Xn(x) Vn(x) dx
0
that the expansion coefficients An will all be real.
3. Numerical Example
The expansion
0
h(x) = An Xn (21)
n=1
was carried out in detail for the function
h(x) =sinx £<x<ﬂ
’ 4 4
(42)
h(x) =0 : 0<x<-g ; %71<x<77

Since this function is symmetrical about x = 7/2 the choice b = 1 appears
appropriate; however the function (42) is in some sense degenerate since
b # 1 will in no way conflict with the boundary conditions. However, as shown
previously, when b # 1 the eigenfunction Xl(x) = 0, and then the series (21)
does not seem to converge to h(x).

In the present case the eigenvalues P and their complex conjugate E were

found to be

18



- 2 3 . —
pmapm=(m'§)(\/.§il) ’ m=234...

i.e. two eigenvalues correspond to each value of the index m. Since Am(ﬁm)
= - A(pm) and the Am s are all real in this case Am(pn) = - Am(pm) so that
we have only one lAml corresponding to each m. It is found that Am takes

the form

-\/—?:(m-%)ﬂ

with the coefficients am as tabulated below:

m a m a
m , m

2 0.17240 7 -0. 01547

3 -0. 02640 8 -0. 02761

4 -0. 06400 9 0.01217

5 0.02070 10 0.02151

6 0.03884 11 -0. 01005

12 -0. 01775

From Eq. (27) it also follows that A1 = 0.9943. Values of the function
X exp [- V8 (m - —g—) m] are given in Table I below. In terms of the index

m the series expansion (21) becomes

o
h(x) = AX +2 Z Re [Am Xm(x)] (43)

m=2

19



the factor two being necessary since two eigenvalues correspond to each
index m. Counting the eigenfunction corresponding to p = 0 only once has
not been justified rigorously, although this procedure appears to yield rea-
sonable results. The sub-sums
i
Si(x) =A X +2 Z Re [A Xm(x)]
m=2
are shown in Fig. 1 for various values of i and are tabulated in Table II
below. The series appears to be converging toward h(x) except near
x = 7/4, 37/4 where h(x) is discontinuous. Here the series appears to be
approaching the mean value of the function.
A number of questions remain to be answered, among them the following
a) Are there restrictions on the type of functions h(x) which may be
expanded according to (21).
b) Can a more rigorous justification for neglecting certain eigenvalues
be found?
c) Is the expansion (21) complete?

3/2

d) How does ¢ behave for y > 0? Since Py will be complex the com-

plex antisymmetric part of X will affect the behavior of ¢ for y >0.

n
It appears that ¢ will cease to be symmetric with respect to 7/2 for y >0.

20



Table I'. Re{X_exp[- V3 (n - 2) 11]}

3
X - 0.0 /8 31/16 /4 37/8 /2
n |
2 0 -1.000 -0.934 -0. 583 0. 430 0.950
3 -0.785 -0.062 -0. 828 -0. 249 1.000
4 -0.074 0.934 0. 485 -0. 867
5 -0.658 -0. 599 0.870 -0. 967
6 0.973 -0. 501 -0. 493 -0. 499
7 -0.694 0.991 -0.870 0.255
8 -0.005 -0. 263 0.495 0. 866
9 0.708 -0.791 0. 869 0.967
10 -1.000 0. 866 -0. 493 0. 500
11 0. 707 0.134 -0.870 -0..253
12 Y 0. 000 ~0. 965 0.495  -0.865 \
TThe tabulated function is symmetrical about x = 7/2.
i
Table IIT. Si(x) = A]‘X1 +2 Z Re [Am Xm(x)]
m=2
X - 0.0 7/8 37/16 7/4 37/8 /2
S1 0.0 0. 342 0.472 0. 586 0.732 0.781
SZ -0.003 0.150 0.385 0. 880 1.126
S4 -0.035 0.034 0. 367 1. 004 0.945
S6 0.014 0.010 0. 365 0.926 1.064
SS 0.035 -0.044 0. 364 0. 870 0.978
SlO 0.010 -0. 026 0. 364 0.915 1. 045
S12 \ -0.005 0. 006 0.364 0.951 0.990
h(x) 0.0 0.0 0.0 0.354 0.925 1. 000

T

Si(x) is symmetrical with respect to 7/2.

21




B. A Study of the Linearized Viscous Transonic Equation ¢ + Bz¢ +¢ =
XXX XX 'yy
If the viscous transonic equation (1) is linearized by replacing the velocity
¢X in the convective non-linear term by a constant 62, then the VT equation

becomes

2
by £ B by 9y =0 (44)

with plus sign corresponding to subsonic and the negative sign to supersonic

values of ¢X. The Dirichlet boundary value problem

¢(x’ 0) = f(X)
(45)
| o(x, 9 | <M
will be considered.
If &2,y) is the Fourier Transform of ¢(x,y) such that
©
1 irg
®(N,y) = = j , d 46
(y)m ¢(£,y) e 4 (46)
-0

then it is readily shown from the properties of Fourier Transforms (Sneddon,
1951) that ® must satisfy the ordinary differential equation

2
(-10° 20, y) £ B2 (-2 20, y) + L5 = (47)
dy

so that

- \/:i)x3 iBZ Az y

/.3 2 2
el B A Yic.e

1 2
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Since

Re [V-2% 1+ g2 2% <

it follows that C2 = 0 if, according to (45), ¢ is to remain bounded as y ~.
Arg (V -i)t3 + {32 Az) is restricted to angles between 0 and 27. Applying the

boundary condition at y = 0 yields

where F()) is, thus, the Fourier transform of f(x). The solution ¢(x,y) is

obtained by taking the inverse, Fourier transform of &2, y) such that

©
¢(xy=\/—_1:ll’ Ay)e d)\
-0

and in the present case this becomes

oo oo
/ 2
¢(x,y)=§17-7- jf(g) fe - +B A i -x)
') -0

dx dé (50)

where it has been assumed that the order of integration between £ and 2
can be reversed. In the present case it is more convenient to write Eq. (50)

in the form



0
f o(£,y) eME-X) d¢ da
o0

.3 2 2 .
=%Rﬂﬁ[ﬂﬂéﬁm'i3 MY JAMER) ) e

So far no way has been found to carry out the integration with respect
to A in Eq. (51) in closed form; however, it is possible to determine the
asymptotic behavior of ¢(x,y) as y =« Since Re (\/¥i)\3 + 32 Az) <0 it
follows from the exponential term in (51) that the integrand will contribute

to ¢(x,y) only for A <1 if y >> 1. In the subsonic case, with A K 1, it is

3 2 21/2
then possible to expand (-ix~ + g~ ") y according to

1/2 2 3
1,2 12 1 .
Y=-B>\(1'§1_§+§_4+T§1_6+"' vy (52

B B

(-'1)x3 + Bz AZ)

W

It will be assumed throughout that 8§ ~ O(1). The real part of the integrand

of (51) then can be written

3 2.2
Re [e -/-m + B A yem(ﬁ-x)]

9 3
= e PN | cos ME - %) - 2 sin AE - %) - 2 cos A(E - %)
28 833
% 4.2
+ 25 sin Mg - x) + O0%y%) (53)
168
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In carrying out the expansion (53) it has been assumed that even with Ay > 1,

Azy < 1; thus the results will be valid only for extremely large y. Keeping

only the two leading terms in (53) and carrying out the integration with respect

to A in Eq. (51) now yields the result

o0

" l62y2+(x )

o0
2 2
+%jf(g)<x-é>y136y X-3 ldg+... (54)
-0 3[32y2+(x-§)]

Equation (54) represents the first terms in an asymptotic expansion with the
first term of O(1/y) and the second term of 0(1/y3). The first term of (54)

is a solution of the inviscid equation

2 _
B by + 0y = O

with

¢(X, 0) = f(X)

The situation is different in the supersonic case when the expansion of

3 921/2

(-ir” - B°2%)  y yields

1/2 1in 122

S'th) -16}\1+—-——-——+°., y (55)

(-ix

Then the leading term of the integrand of Eq. (50) for the inverse transform

becomes
25



2

12
. V-ixd - BZAZ y eih(ﬁ -X) _ e_if y eiA[By + (%-x)]

It is now possible to write

Since

o0
¥ -1 l:F(A) e“ﬁy] - \/'1—5: f F(y) e TMEBY) 4,
it
-0

= f(x - By)

-1 . . .
where g = denotes the inverse Fourier transform, and since

2 XZB

12
-———-y - —
3’-1[626 ]=\/§e 2y

it follows from the convolution theorem (Sneddon 1951) that

(x-n)28

o0
¢=‘\/-2% ff(n-By)e 2 an
-0

With a simple change of variables Eq. (60) can also be written in the form

©-
t
5~

ot 2
ff(x - By _\/ZBEC)G—C dg¢
-00
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Again the expression (61) for ¢ is the first term of an asymptotic series.
The nature of this asymptotic solution can best be indicated by considering
several specific and simple forms of the function f(x) = ¢(x,0). Considering

first a pulse type disturbance

f(x) =a : x| < X,
f(x) =0 ; x| > X (62)
f(x) = (a/2) x| = Xy

it follows from (61) that

) =%—[erfc (x =Xy - By) 5%- erfc (x+x1 - By) \/5%:! (63)

The solution (63) represents a decaying pulse propagating along the line
x = By, which is one of the characteristics of the inviscid equation

- 32 d)xx + ¢yy = 0. As a second example the initial function

f(x) = a ; x <0
f(x) =a/2 ; x=0 (64)
f(x) =0 ; x>0

yields the solution

¢ = % erfc (x - By) \/% (65)

which represents a transition from ¢ = 0 to ¢ = a which propagates along

x = By and broadens with increasing y. Of course)f(x) does not satisfy the
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0

condition j If(x) ldx required for convergence of Fourier transforms
-0 2
(Sneddon, 1951) however because of the expoential factor exp (- %L y)

8
in (57), the inverse transform exists nevertheless. This latter point has
been discussed by Sommerfeld (1949), for example.

The asymptotic results obtained above in both the subsonic and super-
sonic cases appear reasonable from a physical point of view. However,
the behavior of the transform ®(2,y) in the complex A plane should be
investigated in greater detail to lend more rigor to the results derived

above, and higher order terms of the asymptotic series for y >> 1 should

be investigated.

C. Numerical Investigation of ¢ + ¢ ___ = 0 on the Semi-Infinite Domain
v > 0. XXX 'yy

The complexity of the V-T equation (1) suggests that numerical methods
may have to be used in the solution of certain problems. As a preliminary
step in this direction the finite difference solution of the equation (2),

(bxxx + ¢yy = 0 on the semi-infinite domain, was investigated. Since analytical
solutions are available for this linear problem (Sichel, 1961), it can be used
as a means of testing various finite difference methods. As the highest order
terms of equation (2) are the same as those of the V-T equation, there is
some hope that finite difference schemes which are applicable to equation (2)

may also apply to the V-T equation. The work described below is still in a

preliminary stage.
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If central differences are used, then the partial differential equation

e ¥ O =0 (2)

XXX yy

can be replaced by the finite difference equation

S I R B I R W 1 Bl R WS (66
3 2 y

The grid points and grid spacing associated with this equation are shown

in the sketch below.

(i, j+1)

T
L

(i'z, ]) (1 (i+1’ J)

y O (i,j-1)
X

This grid is consistent with the results of the uniqueness proof for Eq. (2)
(Sichel, 1961) which shows that on a rectangular domain ¢ must be specified
on the closed rectangular contour surrounding this domain, except for the
left hand boundary on which it is also necessary to specify ¢x’ Equation (66)
can be rewritten as

w 3w w 1
%3 Tvaw el T2 3w %i-1,j T 2w sw %i-2, ) T2+ 3w 4, i+l

1

R TA R E (67)
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where w = (kz/h3)° It is also possible to consider (66) as a relation for

¢. . in terms of the values of ¢ at neighboring grid points so that

L]

1

¢i,j T2+ 3w (W¢i+1,j * 3W¢'1-1

+ ¢

0 T g T Vo) (69)

)

The finite difference equation (67) is actually a system of simultaneous

algebraic equations for the unknown nodal values ¢>.1 i and the finite difference

b

solutions of (2) requires a solution of this simultaneous system of equations.
This system of equations can also be expressed in matrix form. Suppose the
finite difference grid contains :m rows and n columns of unknown nodal points.

Let U be the n component vector ¢s1’ ¢SZ’ e . @

sn i.e. the unknown

nodal values of ¢ in row s, Then the system of equations (67) can be written

-

Az =k (69)

where z is the vector ul, uz, C e um and k is a constant vector with mn
components which reflects the boundary conditions. Since each ug has n

components, z is also an mn component vector. The mn X mn matrix A

can be expressed in terms of submatrices A1 and B of rank n x n such that

1

o o W »

1

© W » W

0

B
A
B

1

;>Ujoo

N
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B > o

> W o
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In the case of Eq. (67)

w
A, =
' __..3_‘57__) - 0 0
2+ 3w 2 + 3w
w 3w 1 _ w) 0 (71)
2 + 3w 2 + 3w 2+ 3w
0 w )_ 3w) 1 ) A )
2 + 3w 2 + 3w 2 + 3w
A
0 0 2+3w)
while
1
B=- 2+3w)I (72)

where I is the n x n unit matrix.
In principle Eq. (69) could be solved using Cramer's rule or, what is
the same thing, by inverting A so that

Z-AlE (73)

In practice this procedure is impractical if the number of grid points, mn, is
large, for then the inversion of A becomes very difficult and time consuming,
even on a high speed computer. Thus for large mn Eq. (69) must be solved
iteratively.

The Gauss-Seidel method (Varga 1962, Todd 1962) is an iterative method

which is particularly well suited to the use of a computer. Therefore this
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method was applied to a solution of the boundary value problem

¢(x,0) =1 ; x| <1

$(x,0) = 0 ; Ix|>1 (74)
#(x,0)=0.5 x| =1

-0 as x=-+w , y-—=+w

on the semi-infinite domain y > 0 since an analytical solution is also available
in this case (Sichel 1961).

A key question is whether the Gauss Seidel iteration procedure, or for
that matter any other, when applied to Eq. (69) will converge at all. The con-
vergence properties of any iterative scheme depend on the properties of the
matrix A. In particular Varga(1962). Theorem 3.4, proved that if A is a
strictly or irreducibly diagonally dominant n x n complex matrix then the

Gauss Seidel method is convergent. From Varga, Definition 1.7: "Annxn

complex matrix A = (aij) is diagonally dominant if

for all 1 <i <n. Annx nmatrix A is strictly diagonally dominant if strict

inequality in (75) is valid for all 1 <i<n. Similarly, A is irreducibly diag-

onally dominant if A is irreducible and diagonally dominant with strict in-

equality in (75) for at least one i"". The matrix A defined by Eq. (70) is neither
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strictly or irreducably diagonally dominant and so does not satisfy the condi-
tions of Varga's theorem. Since Varga's theorem only provides a sufficient
condition, the failure of A to satisfy the conditions of Varga's theorem does
not necessarily mean that the Gauss-Seidel method will diverge. Varga (1962)
also presents a number of theorems applicable when A is Hermitian; however,
A as defined in (70) is non-Hermitian. Clearly more work is required to
prove convergence of iterative schemes in the present case.

In spite of the above difficulties it was considered worth while to study
the convergence of the Gauss-Seidel method by applying it to the boundary
value problem (74). Although a semi-infinite domain is under consideration
only a finite number of grid points covering a finite region can be used and
this may be a source of considerable error. To eliminate this error the exact
solution, which is available in the present case, was used to determine the
boundary values at the first two columns, at the last column, and at the last
row of the rectangular grid of size (n+2)h in the x direction and (m+1)k in the
y direction. In the present case there are n columns and m rows of unknown
grid points.

Two iterative finite difference calculations and the corresponding exact
solutions are prescribed in Tables III, IVa, and IVb. These results have
been used to construct the graphs of ¢(0,y) vs y and ¢(x, 1) vs x in Figs. 2
and 3. Preliminary indications are that the Gauss-Seidel iteration converges,

though apparently very slowly, but this result is not a proof of convergence.
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Additional work is clearly necessary in establishing finite difference
methods for the V-T equation. A proof of the convergence of the Gauss-
Seidel or other iterative methods should be found or developed in the pres-
ent case. Results of the direct method of solving (69) should be compared
to the exact solution for a small enough grid to make the direct method
tractable. The possibility of stretching the y coordinate to take care of
the boundary condition at y =~ should be examined. Thus the transforma-

y

tion 7 = e ° changes Eq. (2) into

2 —
Spxx T by TNy =0 (76)

with boundary conditions applied at 1 = 0 and 7 = 1.0. Now of course 7 =0

is a singularity of Eq. (76).
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COMPARISON OF EXACT AND NUMERICAL

SOLUTIONS GAUSS-SEIDEL 75 ITERATIONS

BEHAVIOR AT X=0

Exact Solution

.0 +++++ m=7,n=8,h=1.0,w=0.5
00000 m=13,n=8,h=0.5,w=0.5
0.8 BOUNDARY CONDITION
b (x,0) =1;Ixl<]I
06+ ¢(x,0) =0;Ix 1>
¢ ¢(x,0) =0.5;Ix1=I
041
0.2
0 | | | | | |
0] 1.0 2.0 30 40 5.0 6.0

Figure 2. Comparisons of Exact and Numerical Solutions.




COMPARISON OF EXACT AND NUMERICAL _
SOLUTIONS GAUSS-SEIDEL, 75 ITERATIONS

BEHAVIOR AT Y=1.0
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Figure 3. Comparison of Exact and Numerical Solutions.
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Unpublished studies of the mathematical properties of linearized forms

of the viscous transonic potential equation, ¢yyx - ¢x dxx + ¢yy =0, are
described in detail in Section IV. Solutions of the equation ¢xxx + ¢ )
on a finite domain by separation of variables are described. The asymptotic
behavior of solutions of the equation ¢xxx + g2 ¢xx + ¢yy = 0 for large values
of y has been developed. Finally difference and exact solutions of ¢yxxx + ¢ vy
= 0 on a semi infinite domain have been compared, as preliminary step in
the finite difference solution of the full viscous transonic equation.
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