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ABSTRACT

The semiparametric linear model is an important alternative to the Cox propor-

tional hazards model for censored survival outcomes. In this dissertation, we provide

some new insights for the parameter estimators and their asymptotic properties in

the semiparametric linear model with censored data.

In Chapter 2, we have shown that in a linear regression model, where the outcome

variable is subject to right censoring and the error distribution is unspecified, the

intercept parameter is consistent and asymptotically normal when the support of

some covariates with nonzero coefficients is unbounded. This holds even with finite

follow-up times. In a practical setting, it makes the prediction of survival time pos-

sible under a linear regression model when the covariate range is wide. Without the

commonly assumed regularity condition of bounded covariates, we have also shown

that the slope estimators obtained by solving the Gehan-weighted rank based esti-

mating equation are consistent and asymptotically normal, which provides a crucial

condition for the asymptotic properties of the intercept estimator.

In Chapter 3, we have proposed a new approach to estimate the slope parameters

in the semiparametric linear model by directly maximizing the log likelihood function

in a sieve space, in which the log hazard function of the error term is approximated

by B-splines. The maximization can be achieved through the gradient-based search

algorithm over the sieve space. The resulting slope estimators have been shown to

be consistent and asymptotically normal. In addition, the limiting covariance matrix

x



of the proposed estimators reaches the semiparametric efficiency bound and can be

estimated nicely by inverting either the information matrix based on the efficient

score function of the regression parameters or the observed information matrix for

all parameters including the “nuisance” parameters for estimating the log hazard

function.
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CHAPTER I

Introduction

Censored survival data often appear in biomedical research. The Cox propor-

tional hazards model (Cox 1972) and the semiparametric transformed linear model

are the two major approaches for analyzing such data. Instead of modeling the haz-

ard function, the later model postulates a direct relationship between failure time

and predictors. In this dissertation, we focus on the semiparametric linear model

with unspecified error distribution and provide some new insights for the parameter

estimates and corresponding asymptotic properties.

1.1 Estimation of the Intercept in the Accelerated Failure Time Model

The accelerated failure time (AFT) model assumes

h(Ti) = α0 + X ′
iβ0 + ζi, i = 1, · · · , n,

where Ti are the survival times that are subject to censoring, h is a pre-specified

monotone function, e.g. the logarithm function, α0 is the intercept, β0 is the slope,

and ζi are the independent random errors following an unknown distribution that is

assumed to have zero mean and bounded variance.

There is a rich literature on the slope parameter estimation in the above regression

model. We provide a brief review about existing slope estimating methods in Section

1



2

3.2.1. A good summary can be found in Chapter 7 of Kalbfleisch and Prentice (2002).

However, the estimation of intercept has not been thoroughly studied mostly

because the follow-up time is usually finite in practice so the intercept, directly

related to the mean survival time, is likely to be underestimated. Buckley and James

(1979) first claimed that the intercept cannot be estimated consistently due to the

existence of censoring. However, through simulation studies, Schneider and Weissfeld

(1986) and Heller and Simonoff (1990) found that the intercept can sometimes be

estimated very well using the Buckley-James method. Motivated by the existing

literature of consistent estimation of the mean survival time, which is reviewed in

Section 2.1, in this thesis we show that the aforementioned concern is not always

necessary. In fact, the intercept can be consistently estimated and an “approximated”

estimator is asymptotically normal when the support of some covariates with nonzero

coefficients is unbounded. This result holds even with limited follow-up times, which

is always the case in most human disease studies. It makes the prediction of survival

time possible under a linear regression model when the covariate support is wide in

the practice.

Without the commonly assumed regularity condition of bounded covariates, addi-

tional consideration on the slope estimation is required since its theoretical develop-

ments to date are mostly under the bounded covariates assumption. We next show

that, without the restriction of bounded covariates, the slope estimators obtained by

solving the rank-based estimating equations with Gehan weights are still consistent

and asymptotically normal, which provides a crucial condition for the asymptotic

properties of the intercept estimator.

The theoretical findings are further verified for finite samples by simulation stud-

ies. Simulations also show that, when both models are correctly specified, the semi-
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parametric linear model yields reasonable mean square prediction errors and outper-

forms the Cox model for censored data, particularly for heavy censoring and short

follow-up time. An illustrative example using the AFT model to predict the failure

times is given in Section 2.5.

1.2 Sieve Maximum Likelihood Estimation of the Slope Parameter in
the AFT Model

It is well known that the partial likelihood estimator in the Cox proportional haz-

ards model is semiparametric efficient. Despite previous research efforts, developing

an efficient estimator in the semiparametric linear model is not completely satisfac-

tory. In this thesis, we propose a different approach to the existing semiparametric

estimating equation methods that are known to be statistically inefficient. Specifi-

cally, we directly maximize the log likelihood function over a sieve space, in which

the log hazard function is approximated by a linear span of a set of basis functions

in that sieve space. Such bases can be B-splines, trigonometric polynomials, her-

mite polynomials or wavelets. We consider the B-splines basis (Schumaker 1981)

in this proposed method because of its computational convenience. The numeri-

cal implementation can be achieved through the conventional gradient-based search

algorithms such as the Newton-Raphson algorithm.

We show that the proposed estimators are consistent and asymptotically normal.

Moreover, the limiting covariance matrix of the estimators reaches the semipara-

metric efficiency bound. The proof of the asymptotic normality and semiparametric

efficiency of the proposed estimators is based on our extended general theorem on

the asymptotic normality of semiparametric M -estimators, where the infinite di-

mensional nuisance parameter is a function of the parameters of interest. This is the

case for the semiparametric linear regression model since the likelihood is built upon
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residuals, which is a function of the slope parameters.

We propose two ways to estimate the variance of the estimators. The first ap-

proach is to invert the information matrix based on the efficient score function of

the slope parameters derived by Ritov and Wellner (1988). The second approach is

to invert the observed information matrix of all parameters including the “nuisance”

parameters in the sieve space for the log hazard function. Although the second

method does not have a theoretical justification, simulation studies show that it is

numerically robust and yields quite similar variance estimates as the first method.

Simulation studies also demonstrate that the proposed method performs well in prac-

tical settings and yields more efficient estimates than existing estimating equation

based methods. Illustrations with two real data examples are provided in Section

3.5.



CHAPTER II

Asymptotics of the Intercept Estimator in the
Semiparametric Accelerated Failure Time Model

2.1 Introduction

As an important alternative to the Cox model (Cox 1972), the linear regression

model for transformed censored survival data including the accelerated failure time

model (Kalbfleisch and Prentice 2002) as a special case has been extensively studied

in recent years, see e.g. Wei et al. (1990), Tsiatis (1990), Ritov (1990), Ying (1993),

and Jin et al. (2003), among many others. This type of model appeals in many ways

because it models the failure time directly and thus has a more intuitive interpre-

tation. In situations where proportional hazards assumption is violated, this model

may provide more accurate summarization of the data. Since it directly models the

failure time, there might be chances that the linear model can be used to predict the

failure time in a straightforward way.

The study of such a linear model has primarily focused on the slope parameter

estimation. Commonly used estimating methods include: the Buckley-James method

(Buckley and James 1979) that imputes the censored failure time by its estimated

conditional expectation given the corresponding censoring time and covariates, the

weighted least squares method of Stute (1993, 1996) with weights obtained from

the Kaplan-Meier estimator for the transformed survival time, and the rank-based

5
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method (Prentice 1978; Tsiatis 1990; Ying 1993) that is derived by using linear rank

tests for the right censored data. Ritov (1990) showed that the class of weighted

rank-based estimating functions of Tsiatis (1990) is asymptotically equivalent to the

class of Buckley-James estimating functions on transformed residuals.

The estimation of intercept when the error distribution is unspecified, however,

has not been thoroughly studied mostly because the follow-up time is usually finite

in practice so the intercept, directly related to the mean survival time, is generally

believed to be underestimated. Obviously, a good prediction of survival time re-

quires a good estimator for the intercept parameter which is the expectation of the

error term in the semiparametric linear model. The inconsistency of the intercept

estimator was first claimed by Buckley and James (1979). In some of their simula-

tions, however, Schneider and Weissfeld (1986) and Heller and Simonoff (1990) found

that the intercept can sometimes be estimated quite well using the Buckley-James

method. Based on the work of Susarla and Van Ryzin (1980) and Susarla et al.

(1984), Wang et al. (2008) conjectured that the intercept can be consistently esti-

mated when the supports of some covariates are not restricted to finite intervals. In

this chapter, we confirm such a conjecture by formally establishing the consistency

result for the intercept estimator, as well as the asymptotic normality for an “ap-

proximated” estimator. This result makes the prediction of survival time possible

under a linear regression model when covariate support is wide in a practical setting.

Without the presence of covariates, using an integration by parts argument with

a truncation technique, Susarla and Van Ryzin (1980) showed that when the sup-

port of censoring time distribution contains the support of failure time distribution

together with appropriate assumptions for the tail probability, the mean failure time

estimation based on a Kaplan-Meier type estimator is consistent almost surely under
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random censoring. Using the reverse martingale approach, Stute and Wang (1993)

established more general strong consistency results including the mean failure time

estimation without using the truncation argument. When covariates are present and

a linear model is considered for the transformed failure time, the intercept estimation

is equivalent to the mean failure time estimation on the residual scale if true values

of the slope parameters are given. In reality, however, the slope parameters need to

be estimated, which dramatically complicates the study of asymptotic properties of

the intercept estimation. For the consistency of intercept estimation when slopes are

estimated, to the best of our knowledge, we are only aware of Lai and Ying (1991)

who assumed bounded covariates, bounded support of the failure time distribution

and wider support of the censoring time distribution. Their latter assumption, how-

ever, is often violated in practice due to the nature of limited follow-up time in, for

example, most of the human disease studies. Instead of assuming wider support of

the censoring time distribution, we consider the setting that the supports of some

covariates with nonzero coefficients are not restricted to finite intervals, which how-

ever requires additional consideration on the slope estimation because its theoretical

developments to date are primarily under the assumption of bounded covariates.

The unbounded covariate support is a technical condition, and corresponds to the

practical situation where the ranges of the explanatory covariates are wide.

The rest of the chapter is organized as follows. In Section 2.2 we present a gen-

eral strong consistency property of the intercept estimator under the assumption of

unbounded covariates, followed by the asymptotic normality result for an “approxi-

mated” intercept estimator where the modification is applied to simplify the technical

derivation. In Section 2.3 we present the both in probability and almost sure consis-

tency properties as well as the asymptotic normality result for the Gehan-weighted
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rank based slope estimators without assuming bounded covariates. In Section 2.4 we

conduct simulation studies by varying the covariate support and the censoring rate

under different error distributions with different sample sizes. We also compare the

failure time prediction performance of the semiparametric model to that of the Cox

model under the standard extreme value error distribution for which both models fit

the data correctly. In Section 2.5 we provide an application to a major medical study,

the Mayo primary biliary cirrhosis (PBC) study, for illustration. We provide some

concluding remarks in Section 2.6. Proofs of the technical results heavily depend on

the empirical process theory and are deferred to the Appendix.

2.2 Intercept Estimation

2.2.1 The Model and Notation

Consider the linear regression model:

(2.1) Ti = α0 + X
′
iβ0 + ζi, i = 1, . . . , n,

where ζi, i = 1, . . . , n, are independent and identically distributed (i.i.d.) with zero

mean. The response variable Ti for the ith subject is the failure time transformed

by a known monotone function, e.g. the logarithm transformation that yields the

so-called accelerated failure time model (Kalbfleisch and Prentice 2002, Chap. 7).

When Ti is subject to right censoring, we only observe (Yi, ∆i, Xi), where Yi =

min(Ti, Ci), Ci is the censoring time transformed by the same function that yields

Ti, and ∆i = 1(Ti ≤ Ci). Here we assume that (Xi, Ci), i = 1, . . . , n, are i.i.d. and

independent of ζi.

Throughout the sequel we consider one-dimensional β0 for notational simplicity

and assume that its parameter space B is compact. For any β ∈ B we denote

eβ,i = Ti − βXi, e0,i = Ti − β0Xi = α0 + ζi,
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and

εβ,i = Yi − βXi, ε0,i = Yi − β0Xi.

Here, eβ,i are the transformed failure time in the residual scale with β0 being replaced

by β, εβ,i is the corresponding observed time in the residual scale for a fixed β, and

e0,i is the error term that has absorbed the intercept in model (2.1). We shall use

F and G to denote the distribution functions of e0,i and Ci, and f and g to denote

their density functions, respectively. Now we adopt the empirical process notation

of van der Vaart and Wellner (1996). In particular, for a function f of a random

variable U that follows distribution P ,

Pf =

∫
f(u) dP (u),

Pnf = n−1

n∑
i=1

f(Ui),

Gnf = n1/2(Pn − P )f,

and refer all the details to the reference. Set εβ = Y − βX and ε0 = Y − β0X, and

define

H(0)
n (β, s) = Pn{1(εβ ≤ s, ∆ = 1)}, h(0)(β, s) = P{1(εβ ≤ s, ∆ = 1)};(2.2)

H(1)
n (β, s) = Pn{1(εβ ≥ s)}, h(1)(β, s) = P{1(εβ ≥ s)}.(2.3)

Since α0 = Ee0,i =
∫∞
−∞ t dF (t), if the slope β0 is known, then a natural estimator

of α0 is given by

(2.4) α̂n =

∫ ∞

−∞
t dF̂n(t),

where F̂n(t) is the Kaplan-Meier estimator of the distribution function F (t) of e0 =

T − β0X. In a regression setting, however, β0 is unknown and hence has to be

estimated. Let β̂n be an estimator of β0, a direct extension of (2.4) yields

(2.5) α̂n,β̂n
=

∫ ∞

−∞
t dF̂n,β̂n

(t),
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where F̂n,β(t) is the Kaplan-Meier estimator of the distribution function Fβ(t) of

eβ = T − βX and is given by

(2.6) F̂n,β(t) = 1−
∏

i:εβ,i≤t

{
1− ∆i/n

H
(1)
n (β, εβ,i)

}
.

Note that the above estimator does not automatically provide a consistent estimator

of Fβ(t) because T − βX and C − βX are not independent except when β = β0.

We will follow the method used by Lai and Ying (1991) to argue that F̂n,β̂n
(t) does

converge to F (t) when β̂n converges to β0 with a certain polynomial rate.

When there is no covariates (equivalently β0 = 0) or β0 is given, Susarla and

Van Ryzin (1980) and Stute and Wang (1993) studied the asymptotic properties of

the mean survival time estimator (2.4). They provided the following key sufficient

condition

(2.7) {t : t ∈ the support of T − β0X} ⊆ {t : t ∈ the support of C − β0X}

for the consistency of (2.4). Now we replace β0 by its estimator β̂n and want to show

the consistency of (2.5). The proof of Stute and Wang (1993) for the consistence of

the mean survival time estimation makes use of the martingale theory that cannot

be directly adopted here due to the dependence between T − βX and C − βX when

β 6= β0. We shall use the empirical process theory as well as the properties of

stochastic integrals with censored data in Lai and Ying (1988) to show the desirable

result.

2.2.2 Consistency

First we introduce the following regularity conditions:

Condition 1. The covariates Xi are i.i.d. random variables with finite second

moment.
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Condition 2. The error e0’s density f and its derivative ḟ are bounded and

∫ ∞

−∞

(
ḟ(t)/f(t)

)2
f(t) dt < ∞.

Condition 3. The conditional density of C given X is continuous and uniformly

bounded for all possible values of X. That is,

sup
x∈X , t∈C

gC|X(t | X = x) < ∞,

where X and C denote the support of X and C, respectively.

Condition 4. The error e0 has a finite second moment, i.e., Ee2
0 < ∞.

Condition 1 is different to the common assumption of bounded covariates in Tsiatis

(1990), Lai and Ying (1991), Ying (1993), and many others. Here we do not assume

bounded covariates. Instead, we only assume finite second moment. Hence, even

with a short follow-up time, the support of the censoring time in the residual scale

can be extended to infinity provided that the support of X is the real line and

β0 6= 0, which yields that the supports of e0 and C−β0X are equivalent and thus the

sufficient condition (2.7) is satisfied. Condition 2 is exactly the same as Condition 2

in Ying (1993). Condition 3 implies Condition 3 in Ying (1993) and also Condition

(3.5) in Lai and Ying (1991) when Xi are bounded. Condition 4 implies Condition

4 in Ying (1993) with θ0 = 2.

We then have the consistency results given in the following Theorems 2.2.1 and

2.2.2. We omit the constants in front of the rate expressions to simplify the notation.

Theorem 2.2.1. Suppose Conditions 1-3 hold, and define

(2.8) F (β, t) = 1− exp

{
−

∫

u≤t

dh(0)(β, u)

h(1)(β, u)

}
,
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with h(0)(β, u) and h(1)(β, u) being defined in (2.2) and (2.3), respectively. Then for

every ε > 0, with probability 1 we have

sup
{|F̂n,β(t)− F (β, t)| : β ∈ B, H(1)

n (β, t) ≥ n−ε
}

= o(n−
1
2
+3ε),(2.9)

sup
{|F (β, t)− F (t)| : |β − β0| ≤ n−3ε, h(1)(β, t) ≥ n−ε

}
= O(n−ε),(2.10)

where F̂n,β(t) is given in (2.6). In addition, for every 0 < ε ≤ 1
8
, with probability 1

we have

(2.11) sup
{|F̂n,β(t)− F (t)| : |β − β0| ≤ n−3ε, H(1)

n (β, t) ≥ n−ε
}

= O(n−ε).

Introduced by Lai and Ying (1991), F (β, t) defined in (2.8) is an important inter-

mediate quantity. On one hand, it is the limit of the Kaplan-Meier estimator F̂n,β(t)

for a fixed β; on the other hand, it equals to F (t), the true distribution function of

the error e0, when β is replaced by the true slope β0 in (2.8).

Theorem 2.2.2. Suppose Conditions 1-4 hold, and in addition, assume β0 6= 0 and

that the support of X, X is the whole real line, i.e., fX(x) > 0 for all −∞ < x < ∞.

Then for every 0 < ε ≤ 1
8
, with probability 1 we have

(2.12) sup

{∣∣∣∣
∫ ∞

−∞
t dF̂n,β(t)− α0

∣∣∣∣ : |β − β0| ≤ n−3ε, H(1)
n (β, t) ≥ n−ε

}
= o(1).

Theorem 2.2.2 implies that α̂n,β̂n
=

∫∞
−∞ t dF̂n,β̂n

(t) is a consistent estimator of

the intercept α0 when β̂n is a consistent estimator of the slope β0 with polynomial

convergence rate. Define

(2.13) Tn = sup
{
t : H(1)

n (β, t) ≥ n−ε, |β − β0| ≤ n−3ε
}
,

so the restriction on t inside the supremum is equivalent to set the Kaplan-Meier

estimator F̂n,β(t) to 1 for t > Tn, and thus
∫∞
−∞ t dF̂n,β(t) =

∫ Tn

−∞ t dF̂n,β(t) within the

set {t : H
(1)
n (β, t) ≥ n−ε, |β − β0| ≤ n−3ε}. Then the unbounded covariate support
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assumption plays an important role to guarantee that Tn →∞ as n →∞, and hence

∫ Tn

−∞ t dF̂n,β(t) → ∫∞
−∞ t dF (t) almost surely when |β − β0| ≤ n−3ε. Susarla et al.

(1984) showed that the above α̂n,β̂n
is identical to the Buckley-James estimator of

α0 for a fixed β̂n.

2.2.3 Asymptotic Normality

In the situation of no covariates or equivalently β = β0, to the best of our knowl-

edge, we are only aware of Susarla and Van Ryzin (1980), who proved the asymptotic

normality result for the mean survival time estimator. A truncation technique was

used in their proof and some stringent conditions on the tail probability were intro-

duced, which are often very difficult to justify. Even for the Kaplan-Meier estimator

itself without covariates, there has also been much effort to show its asymptotic

normality for the past two decades. See e.g. Wellner (2007). When covariates are

present, besides the complexity from the estimated slope parameter β̂n, another chal-

lenge comes from the integrand in the intercept estimator in (2.5), which integrates

from−∞ up to Tn, with Tn →∞ as n →∞. In this section, we try to avoid assuming

the hard-to-justify technical condition for the tail probability of the error term and

to simply the derivation, therefore, instead of showing the asymptotic normality for

the original intercept estimator in (2.5), we consider the following “approximated”

intercept estimator

(2.14) α̂∗
n,β̂n

=

∫ T ∗

S∗
t dF̂n,β̂n

,

where S∗ and T ∗ are any fixed time points with −∞ < S∗ < T ∗ < ∞. β̂n is

an estimate of β which is consistent and asymptotically normal. The asymptotic

normality result for the estimator in (2.14) is stated in the following theorem.
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Theorem 2.2.3. Suppose Conditions 1-4 hold, and in addition, assume β0 6= 0

and that the support of X is the whole real line, i.e., fX(x) > 0 for all −∞ < x < ∞.

Let α̂∗
n,β̂n

be the “approximated” intercept estimator defined in (2.14) with β̂n being

a consistent and asymptotically normal estimate of β. Let α∗0 =
∫ T ∗

S∗ t dF (t), then

n1/2(α̂∗
n,β̂n

− α∗0) is asymptotically normal with the following asymptotic representa-

tion

n1/2(α̂∗
n,β̂n

− α∗0)(2.15)

= Gn

{
T ∗[F̄ (T ∗)(m1(β0, ε0; T

∗) + m2(β0, ε0; T
∗, ∆)) + Ḟβ(β0, T

∗)m3(β0, ε0; X, ∆)
]

−S∗
[
F̄ (S∗)(m1(β0, ε0; S

∗) + m2(β0, ε0; S
∗, ∆)) + Ḟβ(β0, S

∗)m3(β0, ε0; X, ∆)
]

−
∫ T ∗

S∗

[
F̄ (t)(m1(β0, ε0; t) + m2(β0, ε0; t, ∆)) + Ḟβ(β0, t)m3(β0, ε0; X, ∆)

]
dt

}

+op(1).

The functions m1 and m2 in the above representation are defined as

m1(β, s; t) = −P

{
∆1(s ≥ εβ)1(t ≥ εβ)

h(1)(β, εβ)2

}
,(2.16)

m2(β, s; t, ∆) =
∆1(t ≥ s)

h(1)(β, s)
.(2.17)

The function m3(β0, ε0; X, ∆) is the influence function such that

n1/2(β̂n − β0) = Gn{m3(β0, ε0; X, ∆)}+ op(1),

where the explicit form of m3(β0, ε0; X, ∆) is given in (2.21). Ḟβ(β, t) is the derivative

of F (β, t) with respect to β.

This theorem does not provide the asymptotic normality result for the original

intercept estimator. However, since S∗ and T ∗ can be arbitrarily large, in practice

one is often able to find two values to bound the observed residual time.
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2.3 Slope Estimation with Unbounded Covariates

It is easily seen from Theorem 2.2.2 that we can obtain the consistency of α̂n,β̂n

in probability and almost surely by providing a consistent estimator β̂n with certain

polynomial convergence rate in probability and almost surely, respectively. We con-

sider both in this section using the estimator obtained by the Gehan-weighted rank

based estimating method.

Define

(2.18) H(2)
n (β, s) = Pn{1(εβ ≥ s)X} and h(2)(β, s) = P{1(εβ ≥ s)X},

Then the general rank-based estimating function of Tsiatis (1990) is given by

(2.19) Pn

{
ωn(β, εβ)

[
X − H

(2)
n (β, εβ)

H
(1)
n (β, εβ)

]
∆

}
,

where ωn(β, s) is a weight function and H
(1)
n (β, s) = Pn{1(εβ ≥ s)} is defined in

(2.3). We consider the Gehan weight function ωn(β, s) = H
(1)
n (β, s), which yields the

following estimating function

(2.20) Ψn(β,H(1)
n , H(2)

n ) = Pn

{
[H(1)

n (β, εβ)X −H(2)
n (β, εβ)]∆

}
.

2.3.1 Convergence in Probability and Asymptotic Normality

The only reason of assuming bounded covariates and/or truncated residual time

in the current literature is to bound the denominator H
(1)
n (β, εβ) in (2.19) away from

zero. Such an issue disappears in (2.20) and hence none of such assumptions is

needed when the Gehan weight function is used. Fygenson and Ritov (1994) showed

that the estimating function Ψn(β, H
(1)
n , H

(2)
n ) in (2.20) is monotone in β.

Proposition 2.2.4. Suppose Conditions 1-3 hold. Assume β0 ∈ B is the unique

root of Ψ(β, h(1), h(2)) = P
{
[h(1)(β, εβ)X − h(2)(β, εβ)]∆

}
. Then,
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(1) The approximate root β̂n satisfying Ψn(β̂n, H
(1)
n (β̂n, ·), H(2)

n (β̂n, ·)) = op(1) is a

consistent estimator of β0.

(2) Suppose Ψ(β, h(1), h(2)) is differentiable with bounded continuous derivative

Ψ̇β(β, h(1)(β, ·), h(2)(β, ·)) in a neighborhood of β0, and Ψ̇β(β0, h
(1)(β0, ·), h(2)(β0, ·))

is nonsingular. Then for an approximate root β̂n satisfying

Ψn(β̂n, H(1)
n (β̂n, ·), H(2)

n (β̂n, ·)) = op(n
−1/2),

we have |β̂n − β0| = Op(n
−1/2).

(3) Suppose the same assumptions given in (2) hold, then n1/2(β̂n−β0) is asymp-

totically normal with the following asymptotic representation

n1/2(β̂n − β0) = Gn{m3(β0, ε0; ∆, X)}+ op(1),

where

m3(β0, ε0; ∆, X)(2.21)

=
{−Ψ̇β(β0, h

(1)(β0, ·), h(2)(β0, ·))
}−1

{
[h(1)(β0, ·)X − h(2)(β0, ·)]∆

−
∫

[1(ε0 ≥ t)X] dPε0,∆(t, 1) +

∫
[1(ε0 ≥ t)]x dPε0,∆,X(t, 1, x)

}
.

The estimator β̂n is in fact in a neighborhood of the zero-crossing point due

to the discrete nature of Ψn(β, H
(1)
n , H

(2)
n ), see e.g. Kalbfleisch and Prentice (2002).

Proposition 2.2.4 implies that |β̂n−β0| = Op(n
−3ε) for any 0 < ε ≤ 1

8
with probability

approaching to 1. Hence by Theorem 2.2.2, α̂n,β̂n
converges to α0 in probability.

2.3.2 Almost Sure Convergence with Polynomial Rate

Following by the Theorem 5 in Ying (1993), the almost sure consistency of the

slope estimator with a polynomial rate can be also achieved under the unbounded

covariate support assumption, which is given in the following proposition.
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Proposition 2.2.5. Suppose Conditions 1-4 hold, and in addition assume that the

tail probability of the covariate X satisfies

(2.22) P (|X| > t) ≤ Mtθ exp(−ηtγ)

for some constants M > 0, −∞ < θ < ∞, η > 0, and γ > 0. Then the estimator

β̂n satisfying Ψn(β̂n, H
(1)
n (β̂n, ·), H(2)

n (β̂n, ·)) = o(n−1/2) almost surely converges with

probability 1 to β0 with a polynomial rate, that is, |β̂n − β0| = o(n−1/2+ε) almost

surely for every ε > 0.

Comparing to Proposition 2.2.4, an exponential tail probability bound for the

covariate is assumed to guarantee the almost sure consistency of β̂n with a polynomial

rate. Such assumption yields the relaxed Condition 1 in Ying (1993), page 83, i.e.,

maxi≤n |Xi| = o(nε) almost surely for every ε > 0. This is because when (2.22) holds,

for every t > 0 we have

P (max
i≤n

|Xi| > t) = 1− P (max
i≤n

|Xi| ≤ t)

= 1− [1− P (|X| > t)]n ≤ 1− [1−Mtθ exp(−ηtγ)]n

≤ 1− [1− nMtθ exp(−ηtγ)] = nMtθ exp(−ηtγ),

where the last inequality holds due to the fact that (1− s)n ≥ 1− ns for 0 ≤ s ≤ 1.

Therefore, for every fixed t > 0 and ε > 0,

∞∑
n=1

P (n−ε max
i≤n

|Xi| > t) =
∞∑

n=1

P (max
i≤n

|Xi| > nεt)

≤
∞∑

n=1

nM(nεt)θ exp{−η(nεt)γ} < ∞.

It then follows by the Borel-Cantelli lemma that P (limn→∞ n−ε maxi≤n |Xi| = 0) = 1,

i.e., maxi≤n |Xi| = o(nε) almost surely. As mentioned in Section 2.2.2, Conditions 2-4

imply Conditions 2-4 in Ying (1993), respectively. Furthermore, Ying (1993) pointed
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out that the Gehan weights satisfy their Condition 5 and (4.7). Hence the conclusion

in Proposition 2.2.5 follows directly from their (4.8) in Theorem 5 of Ying (1993).

The detailed argument is thus omitted. The exponential tail probability condition

holds for many commonly used distributions such as normal, weibull, extreme value

distributions and etc.

2.4 Simulations

We conduct extensive simulations to investigate the finite sample performance of

the intercept estimator and the slope estimator under different scenarios. Failure

times are generated from the following model

T = 2 + X + ζ,

where five different error distributions are considered, which are (a) ζ ∼ N(0, 0.52);

(b) ζ ∼ Gumbel(−0.5γ, 0.5) that has mean zero, where γ is the Euler constant;

(c) ζ ∼ Laplace(0, 0.5); (d) ζ ∼ Logistic(0, 0.5); and (e) ζ ∼ t(0, df = 30). In

each scenario, three different settings of covariate X are investigated, which are (1)

X ∼ N(0, 1); (2) X ∼ U(−2, 2); and (3) X ∼ U(−1, 1). The censoring distribution

is C ∼ U(0, 4)∧ τ , here τ is the follow-up time. We choose τ = 1 and τ = 3 to yield

censoring rate ranges (75%, 92%) and (51%, 53%), respectively. For each setting, we

simulate 1000 runs with four different sample sizes: 50, 200, 500 and 2000. Since

τ = 1 yields very high censoring rate that causes numerical instability, we drop τ = 1

for sample size 50. The simulation results are summarized in Table 2.1.

The first covariate setting corresponds to the unbounded covariate support. It

is clearly seen that the bias of the intercept estimator is minimal even with a short

follow-up time τ = 1 for all error distributions. The bias is also very small in the

second covariate setting, where the support of X is bounded, but wide. The bias
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becomes noticeable when the support of X gets narrow in the third setting with

the short follow-up time τ = 1. With the longer follow-up time τ = 3, the bias of

the intercept estimator is negligible even for a small sample size (n = 50) under all

error distributions. The bias for the slope estimator is minimal across all simulation

settings.

For the short follow-up setting (τ = 1), Figure 2.1 displays the Kaplan-Meier

curves of the estimated residual survival time Ti− β̂nXi under five error distributions

with sample size n = 2000. The left panel corresponds to the unbounded covariate

scenario with X ∼ N(0, 1), the middle panel corresponds to the scenario with X ∼

U(−2, 2), and the right panel corresponds to the scenario with X ∼ U(−1, 1). We

notice that none of the Kaplan-Meier curves in the right panel goes to zero in the

right tail when the support of X is narrow. This implies that the condition {t :

t in the support of T − β̂nX} ⊆ {t : t in the support of C − β̂nX} is violated in this

situation, and hence the intercept estimators are biased. With unbounded X, all

five Kaplan-Meier curves go to zero in the right tail, which indicates that a good

estimator of the intercept can be obtained. The similar pattern is also observed

for the case with bounded but wide support X, i.e., X ∼ U(−2, 2). This type of

plot is suggested to examine the quality of the intercept estimation in the real data

analysis. Based on additional simulations (results are not shown here), we suggest

that if the right tail of the Kaplan-Meier curve goes below 0.1-0.15, a good estimate

of the intercept can be obtained.

Moreover, for τ = 3, we plot the empirical variances of α̂n,β̂n
and β̂n versus the

reciprocal of the sample sizes respectively, and display the graphs in Figure 2.2. It

is clear that there is a linear relationship between the empirical variances of each

estimator and the reciprocal of the sample size. This provides numerical evidence of
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the root-n convergence rate for both α̂n,β̂n
and β̂n.

We also study the survival time prediction accuracy of the semiparametric linear

model via simulations and compare it to the Cox model. In order to have a fair

comparison, we generate data from the following model:

(2.23) h(T ) = X + e0,

where e0 follows the standard extreme value distribution with F (t) = 1 − e−et
,

and h(·) is some monotone transformation. In such a setting, we have β0 = 1 and

α0 = Ee0 = −γ, where γ is the Euler constant. Note that this is different to the

previous simulation setting with ζ ∼ Gumbel(−0.5γ, 0.5) where the mean is shifted

to zero and the scale parameter is 0.5. It is well known that both the semiparametric

linear regression model and the Cox model correctly fit the data generated from

(2.23). We choose the censoring distribution as h(C) ∼ U(−3, 3) ∧ τ , where τ is

a fixed follow-up time taking different values to generate different censoring rates.

As in the first simulation study, covariate X is generated from three distributions,

namely, N(0, 1), U(−2, 2) and U(−1, 1) . Two transformations are considered: the

identity (with a constant added to shift all the survival times to positive values) and

the logarithm transformations. For each simulation setting, two independent data

sets of equal size are generated from the same model, namely the training set and the

test set. Both the semiparametric linear model and the Cox model are fitted using

the training set, and survival times are predicted for the test set using the fitted

models. For the linear regression model, the predicted survival time is calculated by

T̂LR
i = h−1(α̂n+β̂LR

n X∗
i ), where X∗

i is the observed covariate for the ith subject in the

test set, β̂LR
n is solved by the Gehan-weighted rank based estimating equation, and α̂n

is estimated from (2.5). For the Cox model, the predicted survival time is calculated

by T̂Cox
i =

∫
t d

(
1 − exp{−Λ̂0,n(t)eβ̂Cox

n X∗
i }), where Λ̂0,n(t) is the Breslow estimator
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of the baseline cumulative hazard function Λ0(t) and β̂Cox
n is the partial likelihood

estimator. We use the following measure to determine the prediction accuracy:

(2.24) MSEp =
1

n

n∑
i=1

(T ∗
i − T̂i)

2,

where T̂i is either T̂LR
i or T̂Cox

i depending on which model is used and T ∗
i is the true

survival time for the ith subject in the test set. Two sample sizes are considered:

n = 200 and n = 2000, and 1000 runs are conducted for each simulation setting.

The results are summarized in Table 2.2. For each scenario, in addition to the

empirical mean and standard deviation of MSEp, given in the parenthesis, we also

calculate the relative prediction accuracy to the uncensored case, that is, the ratio of

the empirical mean MSEp under uncensored case to that under each corresponding

censored case. The MSEp obtained from ordinary least squares (OLS) is also listed

for each uncensored scenario.

Under both transformations and all three covariate distributions, the semipara-

metric linear model yields larger relative prediction accuracy than the Cox model

for all censored cases with four different censoring rates. Even with short follow-up

times, the relative prediction accuracy is close to 1 under the semiparametric linear

model, especially with large sample size, but much smaller than 1 under the Cox

model for both sample sizes. This is not surprising because for the Cox model, the

baseline hazard function after the last observation time in the training set is not es-

timable. For a study with the follow-up time τ , without any parametric assumption

for the baseline hazard function, the convention is to set Λ̂0,n(t) = ∞ for t > τ .

This will introduce bias when predicting the survival time for new observations and

obviously, the bias becomes more severe when follow-up time is shorter.

Moreover, under the identity transformation, the absolute MSEp value from the
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semiparametric linear model is smaller compared to that from the Cox model, espe-

cially when the follow-up time is short. In the scenario when X has an unbounded

or a wide support, i.e., X ∼ N(0, 1) or X ∼ U(−2, 2), the linear model yields larger

relative prediction accuracy and smaller absolute MSEp value comparing with the

scenario when X ∼ U(−1, 1). One possible explanation for this finding is that the

intercept estimate is more accurate under the situation when the support of X is

unbounded or wide. It also can be seen that when there is no censoring, both models

yield the same MSEp value as that obtained by the ordinary least squares. Under

the logarithm transformation, the absolute MSEp value from the linear model is also

smaller than that from the Cox model when censoring exists, except for the longest

follow-up case under X ∼ U(−1, 1). While there is no censoring, the Cox model

yields smaller MSEp compared to that obtained by both the semiparametric linear

model and the ordinary least squares. This is because the linear model predicts the

survival time as eE(log T ), which underestimates ET and hence causes bias.

In Figure 2.3, we plot the predicted survival time versus the true survival time for

both semiparametric linear model and Cox model under the identity transformation

with X ∼ N(0, 1) for the follow-up time τ = −2 and 0 (n = 2000). It is clearly seen

that the semiparametric linear model provides a nice prediction of the survival time

even with a short follow-up time. However the prediction from the Cox model under

two scenarios are both poor and we observe more severe bias when follow-up time is

shorter.

2.5 A Real Data Example

We consider the well-known Mayo primary biliary cirrhosis (PBC) study as an

illustrative example (Fleming and Harrington 1991, app. D.1). The data contain
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information about the survival time and prognostic factors for 418 patients. Jin

et al. (2003) and Jin et al. (2006) fitted the accelerated failure time model with

five covariates, namely age, log(albumin), log(bilirubin), edema, and log(protime).

They used the rank-based and least squares estimators and reported only the slope

estimators for the five covariates. We fit the same model with the slope estimators

obtained by the rank based estimating equation with Gehan weights and the intercept

estimator obtained by (2.5). The estimated coefficients for the five prognostic factors

are -0.025, 1.498, -0.554, -0.904, and -2.822 with estimated standard errors of 0.005,

0.479, 0.052, 0.234 and 0.923. Our estimates are similar to those reported in Jin

et al. (2003). The intercept estimator is 8.692. The Kaplan-Meier curve of the

residual survival time under the estimated slope parameters goes to zero in the right

tail (shown in Figure 2.4a), which indicates no evidence that the intercept estimator

obtained by (2.5) is biased.

We then perform the leave-one-out cross-validation to check the prediction per-

formance of the model. If the fitted model is adequate, the predicted survival time

is expected to be close to the observed time for those patients who failed. On the

other hand, for patients who were censored, the predicted survival time is expected

to be greater than the observed time. Figure 2.4b shows the predicted survival time

against the observed time in the logarithm scale. The circles correspond to the pa-

tients who failed and the triangles correspond to the patients who were censored.

The figure suggests that the accelerated failure time model provides reasonably good

prediction of the survival time for this dataset, except for a few subjects who might

be outliers. For example, subject 87 (circled in Figure 2.4b) was a 37 year old woman

with quite good prognostic status: no edema, good albumin (4.4), low bilirubin (1.1)

and moderate protime (10.7). Yet she survived for no longer than roughly half a
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year. Subject 293, on the other hand, was a 57 year old woman with poor prognostic

status. In spite of low albumin (2.98), high bilirubin (8.5) and protime (12.3), and

edema resistent to diuretics, she remains alive after more than 3.5 years. This same

subject was also detected as an outlier in the residual plot for the covariate edema

from a Cox model for the same data (Fleming and Harrington 1991, p. 184).

2.6 Concluding Remarks

Other important features such as the asymptotic distribution of the original in-

tercept estimator (2.5) and the procedure to estimate its variance remain unknown

and are worth further investigation.

In a practical situation with a finite follow-up time τ , instead of estimating the

unconditional expectation of the squared error loss [T − E(T |X)]2 to assess the

model prediction performance, it seems more reasonable to consider the conditional

expectation by conditioning on that the survival time is no greater than τ , i.e.,

(2.25) E{[T − E(T |X)]2 | T ≤ τ}.

This is because the model is believed to be correct only for the individuals whose

survival time is no greater than τ . Then as an analogue to the MSEp in (2.24), a

natural finite sample estimation of (2.25) is

MSEp,τ = n−1
τ

n∑
i=1

[
(T ∗

i − T̂i)
2 · 1(T ∗

i ≤ τ)
]
,

where nτ =
∑n

i=1 1(T ∗
i ≤ τ), T̂i is the predicted survival time and T ∗

i is the true

survival time for individual i. Simulations (results are not shown here) reveal that

when the follow-up time τ is short, the Cox model cannot provide a reasonable

MSEp,τ value, while the linear model estimates the MSEp,τ reasonably well.
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In the real data analysis, model checking is a very important issue. One possible

procedure is to follow the method developed for the Cox model by plotting the

cumulative sums of the martingale-based residuals to assess how unusual the observed

residual patterns would be, see e.g. Lin et al. (1993) and Lin et al. (1996).

Bias and variance trade-off plays an important role in assessing prediction errors,

which requires knowing the asymptotic joint distribution of both the intercept and

slope parameter estimators. We do not consider it here. We also want to point out

that any prediction beyond the last observed failure time needs to be interpreted

cautiously because it lacks empirical verification without obtaining new data with

longer observed survival times.

2.7 Appendix: Proofs of the Technical Results

In this section, we provide the proofs of Theorems 2.2.1-2.2.3 and Proposition

2.3.4. We first provide several lemmas that will be used for the proofs.

2.7.1 Technical Lemmas

Lemma A.1. For every ε > 0, with probability one we have

sup
β∈B,−∞<s<∞

n1/2|H(k)
n (β, s)− h(k)(β, s)| = o(nε),

where H
(k)
n (β, s) and h(k)(β, s), k = 0, 1, are defined in (2.2) and (2.3) respectively.

Proof: We shall use the empirical process theory to prove this result. Since the

class of indicator functions of half spaces is a VC-class, see e.g. Exercise 9 on page

151 and Exercise 14 on page 152 in van der Vaart and Wellner (1996), and thus a

Donsker class. Then the sets of functions F0 = {1(εβ ≤ s, ∆ = 1)}={∆1(εβ ≤ s)}

and F1 = {1(εβ ≥ s)} are both Donsker classes. Let F̄k be the closure of Fk, k = 0, 1,

respectively. Then H
(k)
n (β, s) and h(k)(β, s) are in the convex hull of F̄k, k = 0, 1,
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and thus belong to Donsker classes. See e.g. Theorems 2.10.2 and 2.10.3 in van der

Vaart and Wellner (1996). Hence by their Theorem 2.6.7 and Theorem 2.14.9, it

follows that for every t > 0,

P

(
sup

β∈B,−∞<s<∞
n1/2|H(k)

n (β, s)− h(k)(β, s)| > t

)
≤ MtV e−2t2 ,

where M > 0 is a constant and V = 2V (F) − 2 with V (F) being the index of the

VC-class F , which is 4 in this case for one-dimensional β0, hence V = 6. When

β0 ∈ Rd for a fixed d, the index of the VC-class is V (F) = d + 3 and the following

argument still holds. Then for any ε > 0, let

An,ε = sup
β∈B,−∞<s<∞

n1/2−ε|H(k)
n (β, s)− h(k)(β, s)|.

Since tV ≤ e1.5t2 for large enough t > 0 and a fixed V > 0, then

∞∑
n=1

P (|An,ε − 0| > t) ≤ M

∞∑
n=1

exp{−0.5(nεt)2} < ∞.

It then follows by the Borel-Cantelli lemma that P
(

lim
n→∞

An,ε = 0
)

= 1. Hence we

obtain the desired result.

Lemma A.2. Assume Conditions 1-3 hold, then for every ε ≥ 0 we have

sup
|β−β′|+|s−s′|≤n−ε

|h(k)(β, s)− h(k)(β′, s′)| = O(n−ε),

where h(k)(β, s), k = 0, 1 and 2, are defined in (2.2), (2.3) and (2.18) respectively.

Proof: Since e0 = T − β0X is independent of (X, C), the joint density function of

(T, C, X) can then be decomposed as

fT,C,X(t, c, x) = fe0,C,X(t− β0x, c, x) = f(t− β0x)fC,X(c, x)

where f is the density of e0. So

f(t− β0x) = fT |C,X(t|C = c,X = x) = fT |X(t|X = x).
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Then the joint density function of (Y, ∆, X) follows

fY,∆,X(y, δ, x) = f(y − β0x)δF̄ (y − β0x)1−δgC|X(y|X = x)1−δḠC|X(y|X = x)δfX(x),

where F̄ (·) = 1− F (·) and ḠC|X(·|X = x) = 1−GC|X(·|X = x).

For h(0)(β, s), the joint sub-density function of (Y, ∆ = 1, X) can be written as

fY,∆,X(y, 1, x) = f(y − β0x)ḠC|X(y|X = x)fX(x). So

h(0)(β, s) = P{1(εβ ≤ s, ∆ = 1)}

=

∫

X

{∫ s

−∞
f(u + (β − β0)x)ḠC|X(u + βx|X = x) du

}
fX(x) dx.

Then for any β, β′ ∈ X and −∞ < s < ∞, by the mean value theorem, there exists

a value β̃ between β and β′ such that

|h(0)(β, s)− h(0)(β′, s)|

=

∣∣∣∣
∫

X

{∫ s

−∞
[f(u + (β − β0)x)ḠC|X(u + βx|X = x)

− f(u + (β′ − β0)x)ḠC|X(u + β′x|X = x)] du

}
fX(x) dx

∣∣∣∣

=

∣∣∣∣
∫

X

{∫ s

−∞

[
ḟ(u + (β̃ − β0)x)ḠC|X(u + β̃x|X = x)

− f(u + (β̃ − β0)x)gC|X(u + β̃x|X = x)
]
(β − β′)x du

}
fX(x) dx

∣∣∣∣

≤ |β − β′|
∫

X

{∫ s

−∞

∣∣ḟ(u + (β̃ − β0)x)ḠC|X(u + β̃x|X = x)

− f(u + (β̃ − β0)x)gC|X(u + β̃x|X = x)
∣∣ du

}
|x|fX(x) dx

≤ C1|β − β′|
∫

X

{∫ s

−∞
|ḟ(u + (β̃ − β0)x)|+ f(u + (β̃ − β0)x) du

}
|x|fX(x) dx

≤ C1|β − β′|
∫

X

{∫ ∞

−∞
|ḟ(u)|+ f(u) du

}
|x|fX(x) dx

≤ C1C2|β − β′|
∫

X
|x|fX(x) dx,

where the second inequality holds for some C1 ≥ 1 such that gC|X(·|X = x) ≤ C1

uniformly, which is guaranteed by Condition 3; the third inequality holds since both
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|ḟ(u)| and f(u) are nonnegative and thus for any s, β̃ and x, the following inequality

holds:

∫ s

−∞
|ḟ(u + (β̃ − β0)x)|+ f(u + (β̃ − β0)x) du

=

∫ s+(β̃−β0)x

−∞
|ḟ(u)|+ f(u) du ≤

∫ ∞

−∞
|ḟ(u)|+ f(u) du;

and the last inequality holds since under Condition 2, it follows by the Cauchy-

Schwartz inequality that

{∫ ∞

−∞
|ḟ(u)| du

}2

≤
∫ ∞

−∞

( |ḟ(u)|√
f(u)

)2

du ·
∫ ∞

−∞

(√
f(u)

)2
du

=

{∫ ∞

−∞

(
ḟ(u)

f(u)

)2

f(u) du

}
· 1 < ∞,

so we can find a constant C2 > 1 such that

∫ ∞

−∞
|ḟ(u)|+ f(u) du =

∫ ∞

−∞
|ḟ(u)| du + 1 ≤ C2.

Therefore, by Condition 1 that X has a finite second moment and thus a finite first

moment, it follows that

|h(0)(β, s)− h(0)(β′, s)| = O(|β − β′|)

for all β, β′ ∈ B and −∞ < s < ∞. Moreover, for any β ∈ B and −∞ < s, s′ < ∞,

we have

|h(0)(β, s)− h(0)(β, s′)|

=

∣∣∣∣
∫

X

{∫ s′

s

f(u + (β − β0)x)ḠC|X(u + βx|X = x) du

}
fX(x) dx

∣∣∣∣

≤
∫

X

∣∣∣∣
∫ s′

s

f(u + (β − β0)x) du

∣∣∣∣fX(x) dx

≤ C3|s− s′|
∫

X
fX(x) dx = O(|s− s′|),
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where C3 > 0 is a constant such that f(·) ≤ C3, which is guaranteed by Condition

2. Hence, for any β, β′ ∈ X and −∞ < s, s′ < ∞, it follows that

|h(0)(β, s)− h(0)(β′, s′)|

≤ |h(0)(β, s)− h(0)(β′, s)|+ |h(0)(β′, s)− h(0)(β′, s′)|

= O(|β − β′|) + O(|s− s′|),

and therefore for any ε > 0, we have

sup
|β−β′|+|s−s′|≤n−ε

|h(0)(β, s)− h(0)(β′, s′)| = O(n−ε).

For h(1)(β, s), it is easy to obtain that

(2.26) P{1(εβ ≥ s)|X = x} = F̄ (s + (β − β0)x)ḠC|X(s + βx|X = x).

Then for any β, β′ ∈ X and −∞ < s < ∞, by the mean value theorem, there exists

a value β̃ between β and β′ such that

|h(1)(β, s)− h(1)(β′, s)| = |P{1(εβ ≥ s)} − P{1(εβ′ ≥ s)}|

=

∣∣∣∣
∫

X

{
F̄ (s + (β − β0)x)ḠC|X(s + βx|X = x)

− F̄ (s + (β′ − β0)x)ḠC|X(s + β′x|X = x)
}
fX(x) dx

∣∣∣∣

=

∣∣∣∣
∫

X

{−f(s + (β̃ − β0)x)ḠC|X(s + β̃x|X = x)

− F̄ (s + (β̃ − β0)x)gC|X(s + β̃x|X = x)
}
(β − β′)xfX(x) dx

∣∣∣∣

≤ |β − β′|
∫

X

{
f(s + (β̃ − β0)x) + gC|X(s + β̃x|X = x)

}|x|fX(x) dx

≤ (C1 + C3)|β − β′|
∫

X
|x|fX(x) dx = O(|β − β′|),

where C1 and C3 are two constants such that gC|X(·|X = x) ≤ C1 and f(·) ≤ C3

(defined before), and the last equality holds because E|X| < ∞. Moreover, for any
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β ∈ B and −∞ < s, s′ < ∞, by the mean value theorem, there exists a value s̃

between s and s′ such that

|h(1)(β, s)− h(1)(β, s′)| = |P{1(εβ ≥ s)} − P{1(εβ ≥ s′)}|

=

∣∣∣∣
∫

X

{−f(s̃ + (β − β0)x)ḠC|X(s̃ + βx|X = x)

− F̄ (s̃ + (β − β0)x)gC|X(s̃ + βx|X = x)
}
(s− s′)fX(x) dx

∣∣∣∣

≤ |s− s′|
∫

X

{
f(s̃ + (β − β0)x) + gC|X(s̃ + βx|X = x)

}
fX(x) dx

≤ (C1 + C3)|s− s′|
∫

X
fX(x) dx = O(|s− s′|).

Hence, for any ε > 0, we have

sup
|β−β′|+|s−s′|≤n−ε

|h(1)(β, s)− h(1)(β′, s′)| = O(n−ε).

Finally for h(2)(β, s), by using the similar argument for h(1)(β, s), we can easily

obtain that

|h(2)(β, s)− h(2)(β′, s)| = |P{1(εβ ≥ s)X} − P{1(εβ′ ≥ s)X}|

≤ (C1 + C3)|β − β′|
∫

X
x2fX(x) dx = O(|β − β′|),

and

|h(2)(β, s)− h(2)(β, s′)| = |P{1(εβ ≥ s)X} − P{1(εβ ≥ s′)X}|

≤ (C1 + C3)|s− s′|
∫

X
|x|fX(x) dx = O(|s− s′|).

Therefore, for any ε > 0, we have

sup
|β−β′|+|s−s′|≤n−ε

|h(2)(β, s)− h(2)(β′, s′)| = O(n−ε).

Thus, we have proved Lemma A.2.

Lemma A.3. Let Un(β, s) be random variables for which there exist non-random

Borel functions un(β, s) such that for every ε > 0,
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(A1) sup
β∈B,−∞<s<∞

|Un(β, s)− un(β, s)| = o(n−1/2+ε) almost surely.

(A2) Un(β, s) has a bounded variation in s uniformly on B, that is,

sup
β∈B

∫ ∞

s=−∞
|dUn(β, s)| = O(1) almost surely.

(A3) un satisfies

sup
β∈B,−∞<s<∞

|un(β, s)| = O(1).

Then under Conditions 1-3, for every 0 < ε ≤ 1/2, with probability 1 we have

sup
β∈B,−∞<y<∞

∣∣∣∣
∫ y

s=−∞
Un(β, s) dH(0)

n (β, s)−
∫ y

s=−∞
un(β, s) dh(0)(β, s)

∣∣∣∣ = o(n−1/2+ε).

Proof: By the triangle inequality and integration by parts, we have

∣∣∣∣
∫ y

s=−∞
Un(β, s) dH(0)

n (β, s)−
∫ y

s=−∞
un(β, s) dh(0)(β, s)

∣∣∣∣

≤
∫ y

s=−∞
|Un(β, s)− un(β, s)| dh(0)(β, s) + |Un(β, y)

(
H(0)

n (β, y)− h(0)(β, y)
)|

+

∫ y

s=−∞
|H(0)

n (β, s)− h(0)(β, s)| |dUn(β, s)|.

Then it is easy to see that each term on the right hand side of the above inequality

is o(n−1/2+ε) almost surely under (A1)-(A3) and Lemma A.1.

2.7.2 Proof of Theorem 2.2.1

By the first order Taylor expansion of function log(1− x), for large n we have

F̂n,β(t) = 1− exp

{ ∑
i:εβ,i≤t

log

(
1− ∆i/n

H
(1)
n (β, εβ,i)

)}

= 1− exp

{
−

∫

u≤t

dH
(0)
n (β, u)

H
(1)
n (β, u)

−
∑

i:εβ,i≤t

O
({nH(1)

n (β, εβ,i)}−2
)}

.
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Then by the mean value theorem and the fact that ex ≤ 1 for any x ≤ 0, it follows

that

|F̂n,β(t)− F (β, t)|

=

∣∣∣∣exp

{
−

∫ t

−∞

dh(0)(β, u)

h(1)(β, u)

}

− exp

{
−

∫ t

−∞

dH
(0)
n (β, u)

H
(1)
n (β, u)

− n−2
∑

i:εβ,i≤t

O
(
H(1)

n (β, εβ,i)
−2

)}∣∣∣∣

≤
∣∣∣∣
∫ t

−∞

dH
(0)
n (β, u)

H
(1)
n (β, u)

−
∫ t

−∞

dh(0)(β, u)

h(1)(β, u)
+ n−2

∑
i:εβ,i≤t

O
(
H(1)

n (β, εβ,i)
−2

)∣∣∣∣.

Under the condition H
(1)
n (β, t) ≥ n−ε, we have

n−2
∑

i:εβ,i≤t

O
(
H(1)

n (β, εβ,i)
−2

) ≤ n−2 ·O(n2ε) · n = O(n−1+2ε) = o(n−
1
2
+3ε).

So in order to show (2.9), we only need to show

(2.27)

sup

{∣∣∣∣
∫ t

−∞

dH
(0)
n (β, u)

H
(1)
n (β, u)

−
∫ t

−∞

dh(0)(β, u)

h(1)(β, u)

∣∣∣∣ : β ∈ B, H(1)
n (β, t) ≥ n−ε

}
= o(n−

1
2
+3ε)

almost surely. Now we define T̃n = sup{t : β ∈ B, H
(1)
n (β, t) ≥ n−ε}, and let

H̃(1)
n (β, t) =





H
(1)
n (β, t), if t ≤ T̃n,

H
(1)
n (β, T̃n), if t > T̃n.

Then H̃
(1)
n (β, t) ≥ n−ε for all β ∈ B and −∞ < t < ∞. Define h̃(1)(β, t) similarly

as H̃
(1)
n (β, t) and apply Lemma A.3 to Un(β, u) = n−2ε/H̃

(1)
n (β, u) and un(β, u) =

n−2ε/h̃(1)(β, u), we obtain (2.27) and thus (2.9) holds.

Next we show (2.10). Notice that F (t) = F (β0, t), then under the restriction
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{|β − β0| ≤ n−3ε, h(1)(β, t) ≥ n−ε}, we have

|F (β, t)− F (t)| = |F (β, t)− F (β0, t)|

=

∣∣∣∣exp

{
−

∫

u≤t

dh(0)(β, u)

h(1)(β, u)

}
− exp

{
−

∫

u≤t

dh(0)(β0, u)

h(1)(β0, u)

}∣∣∣∣

≤
∣∣∣∣
∫

u≤t

dh(0)(β, u)

h(1)(β, u)
−

∫

u≤t

dh(0)(β0, u)

h(1)(β0, u)

∣∣∣∣

≤
∣∣∣∣
∫

u≤t

d{h(0)(β, u)− h(0)(β0, u)}
h(1)(β, u)

∣∣∣∣

+

∣∣∣∣
∫

u≤t

(
h(1)(β0, u)− h(1)(β, u)

h(1)(β, u)h(1)(β0, u)

)
dh(0)(β0, u)

∣∣∣∣
≤ {nε + n2εh(0)(β0, t)} · sup{|h(1)(β0, t)− h(1)(β, t)|}

= O(nε−3ε) + O(n2ε−3ε) = O(n−ε),

where the third inequality holds since for any u ≤ t, 1
h(1)(β,u)

≤ 1
h(1)(β,t)

≤ nε, and the

second to last equality holds because h(0)(β0, t) ≤ 1 and |h(1)(β, t) − h(1)(β0, t)| =

O(|β−β0|) by Lemma A.2. Thus (2.10) holds. Finally, (2.11) can be easily obtained

by applying the triangle inequality to (2.9) and (2.10) provided that −1
2

+ 3ε ≤ −ε,

i.e., 0 < ε ≤ 1
8
.

2.7.3 Proof of Theorem 2.2.2

Notice that

α0 =

∫ ∞

−∞
t dF (t) =

∫ ∞

0

{1− F (t)} dt−
∫ 0

−∞
F (t) dt.

We thus have

∫ ∞

−∞
t dF̂n,β(t)− α0 =

∫ ∞

−∞
t dF̂n,β(t)−

∫ ∞

−∞
t dF (t)

=

{∫ ∞

0

{1− F̂n,β(t)} dt−
∫ ∞

0

{1− F (t)} dt

}
(2.28)

−
{∫ 0

−∞
F̂n,β(t) dt−

∫ 0

−∞
F (t) dt

}
.
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Since fX(x) > 0 for all −∞ < x < ∞, from the proof of Lemma A.2, we then have

h(1)(β, t) =

∫ ∞

−∞
F̄ (t + (β − β0)x)ḠC|X(t + βx|X = x)fX(x) dx.

With β0 6= 0, when β satisfies |β − β0| ≤ n−3ε, we have β 6= 0 for sufficiently large

n. Then for any fixed β 6= 0 and t ∈ (−∞,∞), one can always find a range of

x such that ḠC|X(t + βx|X = x) > 0 and F̄ (t + (β − β0)x) > 0 (since F̄ (t) > 0

for all t < ∞, even with β = β0, we still have F̄ (t + (β − β0)x) > 0). Therefore,

we have h(1)(β, t) > 0 for all t ∈ (−∞,∞). Moreover, since H
(1)
n (β, t) → h(1)(β, t)

almost surely as n →∞, then with n sufficiently large, we have H
(1)
n (β, t) > 0 almost

surely for any fixed β 6= 0 and t ∈ (−∞,∞). Hence Tn → ∞ as n → ∞, where

Tn = sup
{
t : H

(1)
n (β, t) ≥ n−ε, |β − β0| ≤ n−3ε

}
, as defined in (2.13).

Then at β = β0, by the independence of e0 and C − β0X and the Markov’s

inequality, it follows that

h(1)(β0, Tn) = P{1(e0 ≥ Tn)} · P{1(C − β0X ≥ Tn)}

≤ P{1(e0 ≥ Tn)} ≤ Ee2
0

T 2
n

.

Since H
(1)
n (β0, Tn) ≥ n−ε implies h(1)(β0, Tn) ≥ n−ε, i.e., 1/h(1)(β0, Tn) ≤ nε, together

with Condition 4 that Ee2
0 < ∞, we have T 2

n ≤ Ee2
0/h

(1)(β0, Tn) = O(nε), i.e.,

Tn ≤ O(nε/2). This implies that Tn →∞ in a rate no faster than nε/2.

Since the Kaplan-Meier estimator F̂n,β(t) is set to 1 for t > Tn, equation (2.28)

becomes

∫ ∞

−∞
t dF̂n,β(t)− α0

=

{∫ Tn

0

{1− F̂n,β(t)} dt−
∫ ∞

0

{1− F (t)} dt

}

−
{∫ 0

−∞
F̂n,β(t) dt−

∫ 0

−∞
F (t) dt

}

=

∫ Tn

0

{F (t)− F̂n,β(t)} dt−
∫ ∞

Tn

{1− F (t)} dt−
∫ 0

−∞
{F̂n,β(t)− F (t)} dt.
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Then by Theorem 2.2.1, we have

sup

{∫ Tn

0

|F (t)− F̂n,β(t)| dt : |β − β0| ≤ n−3ε

}
≤ Tn ·O(n−ε) ≤ O(n−

ε
2 )

almost surely. For the second term, by the Markov’s inequality,

∫ ∞

Tn

{1− F (t)} dt ≤
∫ ∞

Tn

P{1(|e0| ≥ t)} dt ≤
∫ ∞

Tn

Ee2
0

t2
dt ≤ Ee2

0

Tn

= o(1),

For the third term, we have

∫ 0

−∞
{F̂n,β(t)− F (t)} dt

=

∫ 0

−Tn

{F̂n,β(t)− F (t)} dt +

∫ −Tn

−∞
{F̂n,β(t)− F (t)} dt

where for the first part, similarly we have

sup

{∫ 0

−Tn

|F (t)− F̂n,β(t)| dt : |β − β0| ≤ n−3ε

}
≤ Tn ·O(n−ε) ≤ O(n−

ε
2 )

almost surely. For the second part, it follows that

∫ −Tn

−∞
|F (t)− F̂n,β(t)| dt ≤

∫ −Tn

−∞
F (t) dt +

∫ −Tn

−∞
F̂n,β(t) dt

=

∫ ∞

Tn

F (−t) dt +

∫ −Tn

−∞
F̂n,β(t) dt ≤ Ee2

0

Tn

+ o(1) = o(1),

where the last inequality holds because of the Markov’s inequality

F (−t) = P{1(e0 ≤ −t)} ≤ P{1(|e0| ≥ t)} ≤ Ee2
0

t2
,

and the fact
∫ −Tn

−∞ F̂n,β(t) dt → 0 as n →∞. Therefore,

sup

{∣∣∣∣
∫ ∞

−∞
t dF̂n,β(t)− α0

∣∣∣∣ : |β − β0| ≤ n−3ε, H(1)
n (β, t) ≥ n−ε

}
= o(1).

We now have proved Theorem 2.2.2.
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2.7.4 Proof of Theorem 2.2.3

Throughout the proof, we consider β ∈ BK
n = {β : |β − β0| ≤ Kn−1/2}, where

K > 0 is a constant. By the rule of integration by parts for the stochastic integral,

which is warranted by the fact that F̂n,β(t) is a right continuous non-decreasing

submartingale, we notice that

n1/2(α̂∗n,β − α∗0) =

∫ T ∗

S∗
t d

{
n1/2(F̂n,β(t)− F (t))

}
(2.29)

= T ∗n1/2(F̂n,β(T ∗)− F (T ∗))− S∗n1/2(F̂n,β(S∗)− F (S∗))

−
∫ T ∗

S∗
n1/2(F̂n,β(t)− F (t)) dt,

where

n1/2(F̂n,β(t)− F (t)) = n1/2(F̂n,β(t)− F (β, t)) + n1/2(F (β, t)− F (t))

with F (β, t) being defined in (2.8) and t ∈ [S∗, T ∗].

Then by mean value theorem, term n1/2(F̂n,β(t)− F (β, t)) can be rewritten as

n1/2(F̂n,β(t)− F (β, t))

= n1/2

[
exp

{
−

∫ t

−∞

dh(0)(β, u)

h(1)(β, u)

}

− exp

{
−

∫ t

−∞

dH
(0)
n (β, u)

H
(1)
n (β, u)

− n−2
∑

i:εβ,i≤t

O(H(1)
n (β, εβ,i)

−2)

}]

= zn(β, t) · n1/2

{∫ t

−∞

dH
(0)
n (β, u)

H
(1)
n (β, u)

−
∫ t

−∞

dh(0)(β, u)

h(1)(β, u)

+ n−2
∑

i:εβ,i≤t

O(H(1)
n (b, εβ,i)

−2)

}
,

where

zn(β, t) = exp

{
−λ

∫ t

−∞

dh(0)(β, u)

h(1)(β, u)
(2.30)

− (1− λ)

[∫ t

−∞

dH
(0)
n (β, u)

H
(1)
n (β, u)

+ n−2
∑

i:εβ,i≤t

O(H(1)
n (β, εβ,i)

−2)

]}
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is an intermediate value with λ ∈ (0, 1). Notice that 0 < zn(β, t) < 1 for any β, t and

n. For any fixed β and n, H
(1)
n (β, u) is decreasing as u increasing, so for εβ,i ≤ t ≤ T ∗,

we have H
(1)
n (β, εβ,i) ≥ H

(1)
n (β, T ∗). Since H

(1)
n (β, T ∗) > 0 almost surely, which

is shown in the proof of Theorem 2.2.2, we have O(H
(1)
n (β, T ∗)−2) = Op(1) and

therefore,

n1/2 · n−2
∑

i:εβ,i≤t

O(H(1)
n (β, εβ,i)

−2) ≤ n−1/2 ·O(H(1)
n (β, T ∗)−2) = Op(n

−1/2) = op(1).

Then term n1/2(F̂n,β(t)− F (β, t)) can be further rewritten as

n1/2(F̂n,β(t)− F (β, t))

= zn(β, t) · n1/2

{∫ t

−∞

dH
(0)
n (β, u)

H
(1)
n (β, u)

−
∫ t

−∞

dh(0)(β, u)

h(1)(β, u)

}
+ op(1).

By subtracting and adding the term
∫ t

−∞
dH

(0)
n (β,u)

h(1)(β,u)
, we get

n1/2

{∫ t

−∞

dH
(0)
n (β, u)

H
(1)
n (β, u)

−
∫ t

−∞

dh(0)(β, u)

h(1)(β, u)

}

= n1/2

{∫ t

−∞

dH
(0)
n (β, u)

H
(1)
n (β, u)

−
∫ t

−∞

dH
(0)
n (β, u)

h(1)(β, u)

}
(2.31)

+ n1/2

{∫ t

−∞

dH
(0)
n (β, u)

h(1)(β, u)
−

∫ t

−∞

dh(0)(β, u)

h(1)(β, u)

}
.(2.32)

Term (2.31) can be rewritten as

(2.31) =

∫ t

−∞

−n1/2(H
(1)
n (β, u)− h(1)(β, u))

H
(1)
n (β, u)h(1)(β, u)

dH(0)
n (β, u)

=

∫ t

−∞

−Gn{1(εβ ≥ u)}
H

(1)
n (β, u)h(1)(β, u)

dH(0)
n (β, u)

=
1

n

∑
i:εβ,i≤t

−Gn{1(εβ ≥ εβ,i)}∆i

H
(1)
n (β, εβ,i)h(1)(β, εβ,i)

=
1

n

n∑
i=1

−Gn{1(εβ ≥ εβ,i)}∆i1(εβ,i ≤ t)

H
(1)
n (β, εβ,i)h(1)(β, εβ,i)

= −Gn

{
1

n

n∑
i=1

∆i1(εβ ≥ εβ,i)1(εβ,i ≤ t)

H
(1)
n (β, εβ,i)h(1)(β, εβ,i)

}
,
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where t is any fixed time point between S∗ and T ∗. Now for a given t, define

A1(β, s; t) =
∆1(εβ ≥ s)1(s ≤ t)

H
(1)
n (β, s)h(1)(β, s)

and A2(β, s; t) =
∆1(εβ ≥ s)1(s ≤ t)

h(1)(β, s)2
.

As the same argument in the proof of Lemma A.1, the class of indicator functions

of a half space is a VC-class, and thus a Donsker class. So {∆1(εβ ≥ s)1(s ≤ t)}

belongs to a Donsker class. Also as shown in Lemma A.1, H
(1)
n (β, s) and h(1)(β, s)

are both Donsker classes. Moveover, for s ≤ t ≤ T ∗, we have already shown that

H
(1)
n (β, s) is bounded away from zero in probability and h(1)(β, s) is bounded away

from zero. Hence {A1(β, s; t)} and {A2(β, s; t)} are both Donsker classes. Then the

convex combinations

{ n∑
i=1

1

n
A1(β, εβ,i; t)

}
=

{
1

n

n∑
i=1

∆i1(εβ ≥ εβ,i)1(εβ,i ≤ t)

H
(1)
n (β, εβ,i)h(1)(β, εβ,i)

}

and { n∑
i=1

1

n
A2(β, εβ,i; t)

}
=

{
1

n

n∑
i=1

∆i1(εβ ≥ εβ,i)1(εβ,i ≤ t)

h(1)(β, εβ,i)2

}

belong to the convex hull of {A1(β, s)} and {A2(β, s)} respectively, and thus are also

Donsker classes. We then show that

1

n

n∑
i=1

∆i1(εβ ≥ εβ,i)1(εβ,i ≤ t)

h(1)(β, εβ,i)

[
1

H
(1)
n (β, εβ,i)

− 1

h(1)(β, εβ,i)

]
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converges to zero in quadratic mean through the following argument.

∫ {
1

n

n∑
i=1

∆i1(y − βx ≥ εβ,i)1(εβ,i ≤ t)

h(1)(β, εβ,i)

[
1

H
(1)
n (β, εβ,i)

− 1

h(1)(β, εβ,i)

]}2

dPY,X

≤
∫ {

1

n

n∑
i=1

1

h(1)(β, εβ,i)

∣∣∣∣
1

H
(1)
n (β, εβ,i)

− 1

h(1)(β, εβ,i)

∣∣∣∣
}2

dPY,X

≤
{

1

h(1)(β, T ∗)
sup

β∈BK
n ,S∗≤s≤T ∗

∣∣∣∣
1

H
(1)
n (β, s)

− 1

h(1)(β, s)

∣∣∣∣
}2 ∫

1 dPY,X

=
1

h(1)(β, T ∗)2

{
sup

β∈BK
n ,S∗≤s≤T ∗

∣∣∣∣
1

H
(1)
n (β, s)

− 1

h(1)(β, s)

∣∣∣∣
}2

≤ 1

h(1)(β, T ∗)4H
(1)
n (β, T ∗)2

{
sup

β∈BK
n ,S∗≤s≤T ∗

|H(1)
n (β, s)− h(1)(β, s)|

}2

=

{
1

h(1)(β, T ∗)6
+ op(1)

}
· op(1) = op(1),

where the second to last equality holds since

|H(1)
n (β, s)− h(1)(β, s)| = |(Pn − P )1(εβ ≥ s)|,

with {1(εβ ≥ s)} being a Donsker class, and thus a Glivenko-Cantelli class, therefore,

sup
β∈BK

n ,S∗≤s≤T ∗
|H(1)

n (β, s)− h(1)(β, s)| = op(1),

and in addition, 1/H
(1)
n (β, T ∗) = 1/h(1)(β, T ∗) + op(1) since h(1)(β, T ∗) is away from

0 by the argument in the proof of Theorem 2.2.2. Hence by the relationship between

the Donsker and the equicontinuity condition by Corollary 2.3.12 of van der Vaart

and Wellner (1996), we have

Gn

{
1

n

n∑
i=1

∆i1(εβ ≥ εβ,i)1(εβ,i ≤ t)

H
(1)
n (β, εβ,i)h(1)(β, εβ,i)

}
= Gn

{
1

n

n∑
i=1

∆i1(εβ ≥ εβ,i)1(εβ,i ≤ t)

h(1)(β, εβ,i)2

}
+op(1),

and thus

(2.31) = −Gn

{
1

n

n∑
i=1

∆i1(εβ ≥ εβ,i)1(εβ,i ≤ t)

h(1)(β, εβ,i)2

}
+ op(1).

Now for a given t, define

m1n(β, s; t) = − 1

n

n∑
i=1

{
∆i1(s ≥ εβ,i)1(t ≥ εβ,i)

h(1)(β, εβ,i)2

}
= −Pn

{
∆1(s ≥ εβ)1(t ≥ εβ)

h(1)(β, εβ)2

}
,
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and we further show that

Gn{m1n(β, εβ; t)} = Gn{m1(β, εβ; t)}+ op(1),

where m1(β, s; t) is defined in (2.16). First, using the same argument as before,

{∆1(s ≥ εβ)1(t ≥ εβ)/h(1)(β, εβ)2} belongs to a Donsker class. Then m1n(β, s; t) and

m1(β, s; t) are in the convex hull of {∆1(s ≥ εβ)1(t ≥ εβ)/h(1)(β, εβ)2} and thus also

belong to Donsker classes. Moreover,

∫
{m1n(β, εβ; t)−m1(β, εβ; t)}2 dPY,X

=

∫ {
(Pn − P )

[
∆1(y − βx ≥ εβ)1(t ≥ εβ)

h(1)(β, εβ)2

]}2

dPY,X

≤ sup
β∈BK

n ,−∞<s<∞

{
(Pn − P )

[
∆1(s ≥ εβ)1(t ≥ εβ)

h(1)(β, εβ)2

]}2 ∫
1 dPY,X

=

{
sup

β∈BK
n ,−∞<s<∞

∣∣∣∣(Pn − P )

[
∆1(s ≥ εβ)1(t ≥ εβ)

h(1)(β, εβ)2

]∣∣∣∣
}2

= op(1),

where the last equality holds because {∆1(s ≥ εβ)1(t ≥ εβ)/h(1)(β, εβ)2} is a Donsker

class, and thus a Glivenko-Cantelli class, it follows that

sup
β∈BK

n ,−∞<s<∞

∣∣∣∣(Pn − P )

[
∆1(s ≥ εβ)1(t ≥ εβ)

h(1)(β, εβ)2

]∣∣∣∣ → 0

in probability. Again by corollary 2.3.12 in van der Vaart and Wellner (1996), we

have (2.31) = Gn{m1(β, εβ; t)}+ op(1). Next we will show that

Gn{m1(β, εβ; t)} = Gn{m1(β0, ε0; t)}+ op(1).

Since we have already shown that {m1(β, s; t)} belongs to a Donsker class, we only

have to show that m1(β, εβ; t) − m1(β0, ε0; t) converges to zero in quadratic mean.
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First, it follows that

∫
{m1(β, εβ; t)−m1(β0, ε0; t)}2 dPY,X

=

∫ {
−P

[
∆1(y − βx ≥ εβ)1(t ≥ εβ)

h(1)(β, εβ)2
− ∆1(y − β0x ≥ ε0)1(t ≥ ε0)

h(1)(β0, ε0)2

]}2

dPY,X

≤ 1

h(1)(β, T ∗)2h(1)(β0, T ∗)2

∫
PI2 dPY,X

=

[
1

h(1)(β0, T ∗)4
+ o(1)

] ∫
PI2 dPY,X ,

where

I = 1(y − βx ≥ εβ)1(t ≥ εβ)h(1)(β0, ε0)
2 − 1(y − β0x ≥ ε0)1(t ≥ ε0)h

(1)(β, εβ)2.

Since both the indicator and h(1) functions are between 0 and 1, so −1 ≤ I ≤ 1 and

it follows that

I2 ≤
∣∣1(y − βx ≥ εβ)1(t ≥ εβ)h(1)(β0, ε0)

2 − 1(y − β0x ≥ ε0)1(t ≥ ε0)h
(1)(β, εβ)2

∣∣

≤ 1(y − βx ≥ εβ)1(t ≥ εβ)|h(1)(β0, ε0)
2 − h(1)(β, εβ)2|

+ h(1)(β, εβ)2|1(y − βx ≥ εβ)1(t ≥ εβ)− 1(y − β0x ≥ ε0)1(t ≥ ε0)|

≤ 2|h(1)(β0, ε0)− h(1)(β, εβ)|

+ |1{εβ ≤ min(y − βx, t)} − 1{ε0 ≤ min(y − β0x, t)}|

≤ 2
{|h(1)(β0, ε0)− h(1)(β0, εβ)|+ |h(1)(β0, εβ)− h(1)(β, εβ)|}

+ |1{εβ ≤ min(y − βx, t)} − 1{εβ ≤ min(y − β0x, t)}|

+ |1{εβ ≤ min(y − β0x, t)} − 1{ε0 ≤ min(y − β0x, t)}|

= 2{I1 + I2}+ I3 + I4.

For I1, by Lemma A.2 we have I1 = O(|ε0− εβ|) = O(|(β−β0)X|), Then together

with Condition 1, it follows that PI1 = O(|β−β0|) = O(n−1/2). For I2, it also follows

by lemma A.2 that

PI2 ≤ sup
β∈BK

n ,−∞<s<∞
|h(1)(β0, s)− h(1)(β, s)| = O(|β − β0|) = O(n−1/2).
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Then for I3, since the joint density for (Y,X) follows

fY,X(y, x) =
{
f(y − β0x)ḠC|X(y|X = x) + gC|X(y|X = x)F̄ (y − β0x)

}
fX(x),

it is easily seen that for any s and s′,

P |1(εβ ≤ s)− 1(εβ ≤ s′)|

= P |1(Y − βX ≤ s)− 1(Y − βX ≤ s′)|

=

∫ ∞

−∞

{∫ βx+max(s,s′)

βx+min(s,s)

[
f(y − β0x)ḠC|X(y|x) + gC|X(y|x)F̄ (y − β0x)

]
dy

}
fX(x) dx

≤
∫ ∞

−∞

{∫ βx+max(s,s′)

βx+min(s,s)

[f(y − β0x) + gC|X(y|x)] dy

}
fX(x) dx

≤ (C1 + C3)|s′ − s|
∫ ∞

−∞
fX(x) dx = (C1 + C3)|s′ − s|,

where C1 and C3 are two constants introduced in the proof of Lemma A.2 such

that f(·) ≤ C3 and gC|X(·|X = x) ≤ C1, guaranteed by Conditions 2 and 3. So

PI3 ≤ (C1 +C3)|(y−βx)− (y−β0x)| = (C1 +C3)|(β−β0)x|. Finally for I4, similarly

it follows that for any s,

P |1(εβ ≤ s)− 1(ε0 ≤ s)|

=

∫ ∞

−∞

{∫ max(βx,β0x)+s

min(βx,β0x)+s

[f(y − β0x)ḠC|X(y|x) + gC|X(y|x)F̄ (y − β0x)] dy

}
fX(x) dx

≤ (C1 + C3)|β − β0|
∫ ∞

−∞
|x|fX(x) dx

= O(|β − β0|) = O(n−1/2).

Hence PI4 = P |1{εβ ≤ min(y−β0x, t)}−1{ε0 ≤ min(y−β0x, t)}| = O(n−1/2). Thus,

∫
PI2 dPY,X ≤

∫
{O(n−1/2) + (C1 + C3)|(β − β0)x|} dPY,X

= O(n−1/2) + O(|β − β0|)
∫
|x| dPY,X = O(n−1/2).

Therefore,

∫
{m1(β, εβ; t)−m1(β0, ε0; t)}2 dPY,X = O(n−1/2) = o(1).
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By corollary 2.3.12 of van der Vaart and Wellner (1996), we have

Gn{m1(β, εβ; t)} = Gn{m1(β0, ε0; t)}+ op(1).

Thus, term (2.31) = Gn{m1(β0, ε0; t)}+ op(1).

Next we look at term (2.32). For any fixed time point t ∈ [S∗, T ∗], it follows that

(2.32) =

∫ t

−∞

dn1/2(H
(0)
n (β, u)− h(0)(β, u))

h(1)(β, u)

=

∫ t

−∞

dGn{∆1(εβ ≤ u)}
h(1)(β, u)

= Gn

{∫ t

−∞

d{∆1(εβ ≤ u)}
h(1)(β, u)

}

= Gn

{
∆1(εβ ≤ t)

h(1)(β, εβ)

}
= Gn{m2(β, εβ; t, ∆)},

where m2(β, s; t, ∆) is defined in (2.17). Then we will show that

(2.33) Gn{m2(β, εβ; t, ∆)} = Gn{m2(β0, ε0; t, ∆)}+ op(1).

By the same argument as before, {∆1(εβ ≤ t)/h(1)(β, εβ)} is a Donsker class. Fur-

thermore,

∫ {
∆1(εβ ≤ t)

h(1)(β, εβ)
− ∆1(ε0 ≤ t)

h(1)(β0, ε0)

}2

dPY,∆,X

≤ 1

h(1)(β, T ∗)2h(1)(β0, T ∗)2

∫
{1(εβ ≤ t)h(1)(β0, ε0)− 1(ε0 ≤ t)h(1)(β, εβ)}2 dPY,X

≤
[

1

h(1)(β0, T ∗)4
+ o(1)

] ∫
|1(εβ ≤ t)h(1)(β0, ε0)− 1(ε0 ≤ t)h(1)(β, εβ)| dPY,X

=

[
1

h(1)(β, T ∗)4
+ o(1)

]
O(n−1/2) = o(1),

where the first equality holds since by the similar argument as for
∫

PI2 dPY,X , we

have ∫
|1(εβ ≤ t)h(1)(β0, ε0)− 1(ε0 ≤ t)h(1)(β, εβ)| dPY,X = O(n−1/2).
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Again, by corollary 2.3.12 of van der Vaart and Wellner (1996), equation (2.33) holds.

Hence we have

(2.34)

Gn{m1(β, εβ; t) + m2(β, εβ; t, ∆)} = Gn{m1(β0, ε0; t) + m2(β0, ε0; t, ∆)}+ op(1),

and thus

n1/2(F̂n,β(t)− F (β, t))

= zn(β, t) ·Gn{m1(β, εβ; t) + m2(β, εβ; t, ∆)}+ op(1)

= (1− F (β, t)) ·Gn{m1(β, εβ; t) + m2(β, εβ; t, ∆)}+ op(1)

= F̄ (t) ·Gn{m1(β0, ε0; t) + m2(β0, ε0; t, ∆)}+ op(1),

where the second equality holds because F̂n,β(t) → F (β, t) as n →∞, and thus

zn(β, t) → exp

{
−

∫ t

−∞

dh(0)(β, u)

h(1)(β, u)

}
= 1− F (β, t),

with zn(β, t) being defined in (2.30), and the last equality holds because of equation

(2.34) and the fact that

1− F (β, t) = 1− F (β0, t) + o(1) = F̄ (t) + o(1)

for β ∈ BK
n . Finally for the term n1/2(F (β, t) − F (t)), first order Taylor expansion

gives

n1/2(F (β, t)− F (t)) = n1/2(F (β, t)− F (β0, t))

= n1/2(β − β0){Ḟβ(β0, t) + op(1)},

where Ḟβ(β, t) is the derivative of F (β, t) with respect to β. Proposition 2.3.4 shows

that n1/2(β − β0) converges to a normal random variable when β ∈ BK
n , i.e.,

n1/2(β − β0) = Gn{m3(β0, ε0; X, ∆)}+ op(1),
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where the representation of m3(β0, ε0; X, ∆) is given in Proposition 2.3.4. Hence

n1/2(F (β, t)− F (t)) = Ḟβ(β0, t) ·Gn{m3(β0, ε0; X, ∆)}+ op(1),

and therefore

n1/2(F̂n,β(t)− F (t))

= Gn

{
F̄ (t)(m1(β0, ε0; t) + m2(β0, ε0; t, ∆)) + Ḟβ(β0, t)m3(β0, ε0; X, ∆)

}
+ op(1).

Thus by (2.29) and the above representation, when β̂n is a consistent and asymp-

totically normal estimate of β0, n1/2(α̂∗
n,β̂n

− α∗0) is asymptotically normal with the

following asymptotic representation:

n1/2(α̂∗
n,β̂n

− α∗0)

= Gn

{
T ∗[F̄ (T ∗)(m1(β0, ε0; T

∗) + m2(β0, ε0; T
∗, ∆)) + Ḟβ(β0, T

∗)m3(β0, ε0; X, ∆)
]

− S∗
[
F̄ (S∗)(m1(β0, ε0; S

∗) + m2(β0, ε0; S
∗, ∆)) + Ḟβ(β0, S

∗)m3(β0, ε0; X, ∆)
]

−
∫ T ∗

S∗

[
F̄ (t)(m1(β0, ε0; t) + m2(β0, ε0; t, ∆)) + Ḟβ(β0, t)m3(β0, ε0; X, ∆)

]
dt

}

+ op(1).

2.7.5 Proof of Proposition 2.3.4

We will show the consistency of β̂n first, then prove the root-n convergence rate

and finally prove the asymptotic normality.

(1) For any β ∈ B, first we show that with probability approaching to one,

‖Ψn(β, H(1)
n , H(2)

n )−Ψ(β, h(1), h(2))‖ → 0,(2.35)

where ‖ · ‖ denotes the supremum norm. By the triangle inequality, we have

‖Ψn(β, H(1)
n , H(2)

n )−Ψ(β, h(1), h(2))‖

≤ ‖(Pn − P ){(H(1)
n X −H(2)

n )∆}‖+ ‖P{(H(1)
n − h(1))X∆}‖

+ ‖P{(H(2)
n − h(2))∆}‖
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By the same argument in the proof of Lemma A.1, the class of functions {1(εβ ≥ t)}

is a VC-class and thus a Donsker class, and the set of functions {1(εβ ≥ t)X} is also

a Donsker class when X is a random variable with a finite second moment. Since

Donsker classes are Glivenko-Cantelli classes, it follows that,

‖H(1)
n (β, t)− h(1)(β, t)‖ = ‖(Pn − P )1(εβ ≥ t)‖ → 0

in probability and

‖H(2)
n (β, t)− h(2)(β, t)‖ = ‖(Pn − P ){1(εβ ≥ t)X}‖ → 0

in probability. Since P |X∆| ≤ P |X| < ∞ and P |∆| ≤ 1, we then have

‖P{(H(1)
n − h(1))X∆}‖ ≤ ‖H(1)

n − h(1)‖P |X∆| → 0

and

‖P{(H(2)
n − h(2))∆}‖ ≤ ‖H(2)

n − h(2)‖P |∆| → 0

in probability. Since H
(k)
n (β, t) and h(k)(β, t), k = 1, 2, are in the convex hull of

{1(εβ ≥ t)} and {1(εβ ≥ t)X}, respectively, by Theorems 2.10.2 and 2.10.3 in

van der Vaart and Wellner (1996), H
(k)
n (β, t) and h(k)(β, t) are Donsker classes and

thus Glivenko-Cantelli classes. Since both X and ∆ have finite second moments,

{(H(1)
n X −H

(2)
n )∆} is also a Donsker class and thus a Glivenko-Cantelli class. So we

have

‖(Pn − P ){(H(1)
n X −H(2)

n )∆}‖ → 0

in probability. Therefore, (2.35) holds. Together with the assumption that β̂n satis-

fying the equation

Ψn(β̂n, H(1)
n (β̂n, ·), H(2)

n (β̂n, ·)) = op(1),
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we have the following inequalities:

|Ψ(β̂n, h(1)(β̂n, ·), h(2)(β̂n, ·))|

≤ |Ψn(β̂n, H(1)
n (β̂n, ·), H(2)

n (β̂n, ·))|

+ |Ψ(β̂n, h
(1)(β̂n, ·), h(2)(β̂n, ·))−Ψn(β̂n, H

(1)
n (β̂n, ·), H(2)

n (β̂n, ·))|

≤ op(1) + ‖Ψn(β,H(1)
n , H(2)

n )−Ψ(β, h(1), h(2))‖ = op(1).(2.36)

Since β0 is the unique solution to Ψ(β, h(1)(β, ·), h(2)(β, ·)) = 0, then for any fixed

ε > 0, there exists a δ > 0 such that

{β̂n : |β̂n − β0| > ε} ⊆ {β̂n : |Ψ(β̂n, h
(1)(β̂n, ·), h(2)(β̂n, ·))− 0| > δ}.

From (2.36), for any δ > 0, we have P{|Ψ(β̂n, h(1)(β̂n, ·), h(2)(β̂n, ·))− 0| > δ} → 0 as

n → 0. Hence P{|β̂n − β0| > ε} → 0 as n →∞, i.e., |β̂n − β0| = op(1).

(2) Now let B0 ⊂ B be a neighborhood of β0 and ‖ · ‖0 be the supremum norm in

B0. For any β ∈ B0, we have

∥∥n1/2{Ψn(β,H(1)
n (β, t), H(2)

n (β, t))−Ψ(β, h(1)(β, t), h(2)(β, t))}
∥∥

0
(2.37)

=
∥∥n1/2(Pn − P ){[H(1)

n (β, t)X −H(2)
n (β, t)]∆}

+ n1/2P{[H(1)
n (β, t)− h(1)(β, t)]X∆}+ n1/2P{[H(2)

n (β, t)− h(2)(β, t)]∆}
∥∥

0

≤
∥∥Gn{[H(1)

n (β, t)X −H(2)
n (β, t)]∆}

∥∥
0

+
∥∥Gn{1(εβ ≥ t)}

∥∥
0
P |X∆|+ ‖Gn{1(εβ ≥ t)X}‖0P |∆|.

Since {1(εβ ≥ t)}, {1(εβ ≥ t)X} and {[H(1)
n (β, t)X − H

(2)
n (β, t)]∆} are all Donsker

classes, and P |X∆| < ∞, P |∆| ≤ 1, we have (2.37) = Op(1). Together with the fact

that Ψ(β0, h
(1)(β0, ·), h(2)(β0, ·)) = 0 and n1/2Ψn(β̂n, H

(1)
n (β̂n, ·), H(2)

n (β̂n, ·)) = op(1),
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we have

Op(1) = −n1/2{Ψn(β̂n, H
(1)
n (β̂n, ·), H(2)

n (β̂n, ·))−Ψ(β̂n, h(1)(β̂n, ·), h(2)(β̂n, ·))}

= op(1) + n1/2Ψ(β̂n, h
(1)(β̂n, ·), h(2)(β̂n, ·))− n1/2Ψ(β0, h

(1)(β0, ·), h(2)(β0, ·))

= op(1) + n1/2(β̂n − β0)Ψ̇β(β̃, h(1)(β̃, ·), h(2)(β̃, ·)),

where β̃ is a value between β0 and β̂n, and thus |β̃ − β0| = op(1). By the continuity

of Ψ̇β(β, h(1)(β, ·), h(2)(β, ·)) we have

Op(1) = op(1) + n1/2(β̂n − β0){Ψ̇β(β0, h
(1)(β0, ·), h(2)(β0, ·)) + op(1)},

and by the assumption that Ψ̇β(β0, h
(1)(β0, ·), h(2)(β0, ·)) is nonsingular, it follows

that

n1/2(β̂n − β0) = Ψ̇−1
β (β0, h

(1)(β0, ·), h(2)(β0, ·))Op(1) + op(1) = Op(1).

Therefore, |β̂n − β0| = Op(n
−1/2).

(3) Now we prove the asymptotic normality of β̂n. First, we show that h(1)(β, t)

and h(2)(β, t) are differentiable in β with uniformly bounded and continuous deriva-

tives. The conditional density of Y |X is

fY |X(y|X = x) = f(y − β0X)ḠC|X(y|X = x) + gC|X(y|X = x)F̄ (y − β0x),

which is uniformly bounded and continuous by Conditions 2 and 3. Then

h(1)(β, t) = P{1(Y − βX ≥ t)} =

∫ ∞

−∞
F̄Y |X(t + βx|X = x)fX(x) dx,

and

∂h(1)(β, t)

∂β
=

∫ ∞

−∞
−fY |X(t + βx|X = x)xfX(x) dx.

Since fY |X(·|X = x) is uniformly bounded and X has a finite second moment, then

∫ ∞

−∞
fY |X(t + βx|X = x)|x|fX(x) dx < ∞.
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Hence ∂h(1)(β,t)
∂β

is bounded and continuous. Similarly, h(2)(β, t) also has an uniformly

bounded and continuous derivative in β. Then by the dominated convergence theo-

rem, Ψ(β, h(1)(β, ·), h(2)(β, ·)) is differentiable with respect to β and the derivative is

continuous and bounded.

Since we have already shown that |β̂n − β0| = Op(n
−1/2), now we consider a root-

n neighborhood of β0, i.e., BK
n = {β ∈ B : |β − β0| ≤ Kn−1/2}, where K > 0 is a

constant. For any β ∈ BK
n , it follows that

n
1
2

{
Ψn(β,H(1)

n (β, εβ), H(2)
n (β, εβ))−Ψn(β0, H

(1)
n (β0, ε0), H

(2)
n (β0, ε0))

}

= −n
1
2Pn

{
[H(2)

n (β, εβ)−H(2)
n (β0, ε0)]∆

}
+ n

1
2Pn

{
[H(1)

n (β, εβ)−H(1)
n (β0, ε0)]X∆

}

= −Gn

{
[H(2)

n (β, εβ)−H(2)
n (β0, ε0)]∆

}− n
1
2 P

{
[H(2)

n (β, εβ)−H(2)
n (β0, ε0)]∆

}

+ Gn{[H(1)
n (β, εβ)−H(1)

n (β0, ε0)]X∆}+ n
1
2 P{[H(1)

n (β, εβ)−H(1)
n (β0, ε0)]X∆}

= A1 + A2 + A3 + A4.

Term A1 converges to zero in probability because {H(2)
n (β, ·)∆} belongs to a Donsker

class and {[H(2)
n (β, εβ)−H

(2)
n (β0, ε0)]∆} converges to zero in quadratic mean, which

is warranted through the following argument.

P
{
[H(2)

n (β, εβ)−H(2)
n (β0, ε0)]

2∆2
}

≤ P
{|H(2)

n (β, εβ)−H(2)
n (β0, ε0)|

}

≤ P
{|H(2)

n (β, εβ)− h(2)(β, εβ)|+ |h(2)(β, εβ)− h(2)(β0, ε0)|

+ |h(2)(β0, ε0)−H(2)
n (β0, ε0)|

}

= o(1) + P |h(2)(β, εβ)− h(2)(β0, ε0)|+ o(1)

= o(1) + O(n−1/2) + o(1) = o(1),

where the first inequality holds since both H
(2)
n (·, ·) and ∆ are between 0 and 1;

the first equality holds since {1(εβ ≥ t)X} is a Glivenko-Cantelli class and thus
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H
(2)
n (β, t)−h(2)(β, t) = (Pn−P ){1(εβ ≥ t)X} = o(1) for any β ∈ B and−∞ < t < ∞;

and the second equality holds since |εβ − ε0| = |(β − β0)X|, it follows by Lemma

A.2 that for any β ∈ BK
n , |h(2)(β, εβ) − h(2)(β0, ε0)| = O(|β − β0| + |(β − β0)X|) =

O(n−1/2)+O(n−1/2)|X|, thus P |h(2)(β, εβ)−h(2)(β0, ε0)| = O(n−1/2) by Condition 1.

Then let t′ = t− (β − β0)x, term A2 can be rewritten as

A2 = −n1/2P{[H(2)
n (β, εβ)− h(2)(β, εβ)]∆}+ n1/2P{[H(2)

n (β0, ε0)− h(2)(β0, ε0)]∆}

− n1/2P{[h(2)(β, εβ)− h(2)(β0, ε0)]∆}

= −n1/2

∫
{[H(2)

n (β, t′)− h(2)(β, t′)]∆} dPε0,∆,X(t, δ, x)

+ n1/2

∫
{[H(2)

n (β, t)− h(2)(β, t)]∆} dPε0,∆,X(t, δ, x)

− n1/2P{[h(2)(β, εβ)− h(2)(β0, ε0)]∆}

= −
∫
Gn{1(εβ ≥ t′)X} dPε0,∆,X(t, 1, x) +

∫
Gn{1(ε0 ≥ t)X} dPε0,∆,X(t, 1, x)

− n1/2(β − β0)P{ḣ(2)
β (β̃, εβ̃)∆}

= −
∫
Gn{[1(εβ ≥ t′)− 1(ε0 ≥ t)]X} dPε0,∆,X(t, 1, x)

− n1/2(β − β0)P{ḣ(2)
β (β̃, εβ̃)∆},

where β̃ is an intermediate value between β and β0 and ḣ
(2)
β is the derivative of

h(2) with respect to β. Since {1(εβ ≥ t)X} is a Donsker class and by using the

similar argument for I3 and I4 in the proof of Theorem 2.2.3, it is easy to show that

{[1(εβ ≥ t′) − 1(ε0 ≥ t)]X} converges to zero in quadratic mean. Therefore, term

Gn{[1(εβ ≥ t′) − 1(ε0 ≥ t)]X} = op(1). Moreover, since ḣ
(2)
β (β, εβ) is continuous in

β, and |β̃ − β0| = O(n−1/2), we have

−n1/2(β − β0)P{ḣ(2)
β (β̃, εβ̃)∆} = −n1/2(β − β0)P{ḣ(2)

β (β0, ε0)∆ + op(1)}.

Therefore, A2 = −n1/2(β − β0)P{ḣ(2)
β (β0, ε0)∆} + op(1). Finally, by the similar

argument for A1, it can be shown that term A3 converges to zero in probability. And
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by using the same argument for A2, term A4 can be re-written as

A4 = n1/2(β − β0)P{ḣ(1)
β (β0, ε0)X∆}+ op(1).

Therefore,

n
1
2

{
Ψn(β, H(1)

n (β, εβ), H(2)
n (β, εβ))−Ψn(β0, H

(1)
n (β0, ε0), H

(2)
n (β0, ε0))

}

= −n1/2(β − β0)P{ḣ(2)
β (β0, ε0)∆}+ n1/2(β − β0)P{ḣ(1)

β (β0, ε0)X∆}+ op(1)

= n1/2(β − β0)Ψ̇β(β0, h
(1)(β0, ·), h(2)(β0, ·)) + op(1).

Replacing β by β̂n and using the assumption that n1/2Ψn(β̂n, H
(1)
n (β̂n, ·), H(2)

n (β̂n, ·)) =

op(1) will yield the asymptotic linearity of Ψn, which further yields:

n1/2(β̂n − β0) =
{−Ψ̇β(β0, h

(1)(β0, ·), h(2)(β0, ·))
}−1

·n1/2Ψn(β0, H
(1)
n (β0, ·), H(2)

n (β0, ·)) + op(1).

Direct calculation with the fact that P{[h(1)(β0, ·)X − h(2)(β0, ·)]∆} = 0 gives

n1/2Ψn(β0, H
(1)
n (β0, ·), H(2)

n (β0, ·)) = n1/2Pn

{
[H(1)

n (β0, ·)X −H(2)
n (β0, ·)]∆

}

= Gn

{
[H(1)

n (β0, ·)− h(1)(β0, ·)]X∆} −Gn{[H(2)
n (β0, ·)− h(2)(β0, ·)]∆

}

+ n1/2P
{
[H(1)

n (β0, ·)− h(1)(β0, ·)]X∆
}− n1/2P

{
[H(2)

n (β0, ·)− h(2)(β0, ·)]∆
}

+ Gn

{
[h(1)(β0, ·)X − h(2)(β0, ·)]∆

}

= A5 + A6 + A7 + A8 +Gn

{
[h(1)(β0, ·)X − h(2)(β0, ·)]∆

}
.

For term A5, since both {H(1)
n (β0, ·)X∆} and {h(1)(β0, ·)X∆} belong to Donsker

classes and {[H(1)
n (β0, ε0) − h(1)(β0, ε0)]X∆} converges to zero in quadratic mean

through the following argument:

P
{
[H(1)

n (β0, ε0)− h(1)(β0, ε0)]
2X2∆2

} ≤
∥∥[H(1)

n (β0, t)− h(1)(β0, t)]
2
∥∥P{X2∆2}

≤
∥∥(Pn − P )[1(ε0 ≥ t)]

∥∥P{X2} = o(1),
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where the second inequality holds since both H
(1)
n and h(1) are between 0 and 1, it

follows that

[H(1)
n (β0, t)− h(1)(β0, t)]

2 ≤ |H(1)
n (β0, t)− h(1)(β0, t)| ≤ ‖(Pn − P )[1(ε0 ≥ t)]‖,

and the last equality holds because X has a finite second moment and {1(ε0 ≥ t)}

is a Donsker class and thus a Glivenko-Cantelli class. Hence by corollary 2.3.12 of

van der Vaart and Wellner (1996), term A5 = op(1). By the same argument for term

A5, we also have A6 = op(1). Finally, for terms A7 and A8, they can be re-written as

A7 =

∫
Gn{1(ε0 ≥ t)}x dPε0,∆,X(t, 1, x),

A8 = −
∫
Gn{1(ε0 ≥ t)X} dPε0,∆(t, 1).

Therefore,

n1/2Ψn(β0, H
(1)
n (β0, ·), H(2)

n (β0, ·))

=

∫
Gn{1(ε0 ≥ t)}x dPε0,∆,X(t, 1, x)−

∫
Gn{1(ε0 ≥ t)X} dPε0,∆(t, 1)

+ Gn

{
[h(1)(β0, ·)X − h(2)(β0, ·)]∆

}
+ op(1).

Thus, we have proved the asymptotic normality of β̂n with the following representa-

tion form

n1/2(β̂n − β0)

=
{−Ψ̇β(β0, h

(1)(β0, ·), h(2)(β0, ·))
}−1Gn

{
[h(1)(β0, ·)X − h(2)(β0, ·)]∆

−
∫

[1(ε0 ≥ t)X] dPε0,∆(t, 1) +

∫
[1(ε0 ≥ t)]x dPε0,∆,X(t, 1, x)

}

+op(1).
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Table 2.1: Summary of the simulation statistics. The slope estimator is obtained by solving the
Gehan-weighted rank based estimating equation and the intercept estimator is obtained
by (2.5). The true parameters are α = 2 and β = 1. The empirical mean (standard
deviation) for each of the two parameters is provided. (a) ζ ∼ N(0, 0.52); (b) ζ ∼
Gumbel(−0.5γ, 0.5); (c) ζ ∼ Laplace(0, 0.5); (d) ζ ∼ Logistic(0, 0.5); and (e) ζ ∼
T (0, df = 30). †: τ = 1 and ‡: τ = 3.

Err. Cen. n = 50 n = 200 n = 500 n = 2000
dist rate α β α β α β α β

X ∼ N(0, 1):

(a) .84† — — 1.99 (.18) 1.00 (.12) 2.00 (.11) 1.00 (.08) 2.00 (.06) 1.00 (.04)

.52‡ 2.00 (.11) 1.01(.11) 2.00 (.05) 1.00 (.05) 2.00 (.03) 1.00 (.03) 2.00 (.02) 1.00 (.02)

(b) .82† — — 1.95 (.16) 1.00 (.10) 1.97 (.10) 1.00 (.07) 1.99 (.05) 1.00 (.03)

.52‡ 1.99 (.14) 1.00 (.12) 1.99 (.07) 1.00 (.05) 2.00 (.04) 1.00 (.03) 2.00 (.02) 1.00 (.02)

(c) .82† — — 1.98 (.24) 1.00 (.18) 1.98 (.15) 1.01 (.12) 1.99 (.08) 1.00 (.06)

.52‡ 1.99 (.14) 1.01 (.14) 2.00 (.07) 1.00 (.07) 2.00 (.04) 1.00 (.04) 2.00 (.02) 1.00 (.02)

(d) .80† — — 1.96 (.23) 1.01 (.16) 1.96 (.14) 1.00 (.10) 1.98 (.07) 1.00 (.05)

.52‡ 1.98 (.18) 1.01 (.19) 2.00 (.09) 1.01 (.09) 2.00 (.06) 1.00 (.06) 2.00 (.03) 1.00 (.03)

(e) .78† — — 1.94 (.22) 1.00 (.16) 1.96 (.14) 1.01 (.10) 1.97 (.07) 1.00 (.05)

.52‡ 1.99 (.21) 1.02 (.21) 1.99 (.10) 1.00 (.10) 1.99 (.06) 1.00 (.06) 2.00 (.03) 1.00 (.03)

X ∼ U(−2, 2):

(a) .78† — — 2.00 (.19) 1.01 (.14) 2.00 (.11) 1.00 (.08) 2.00 (.06) 1.00 (.04)

.52‡ 2.00 (.12) 1.00 (.11) 2.00 (.06) 1.00 (.05) 2.00 (.04) 1.00 (.03) 2.00 (.02) 1.00 (.02)

(b) .77† — — 1.95 (.17) 1.00 (.12) 1.96 (.10) 1.00 (.07) 1.96 (.05) 1.00 (.03)

.52‡ 1.99 (.14) 1.01 (.10) 2.00 (.07) 1.00 (.05) 2.00 (.04) 1.00 (.03) 2.00 (.02) 1.00 (.01)

(c) .77† — — 1.99 (.25) 1.02 (.18) 1.98 (.15) 1.01 (.11) 1.97 (.07) 1.00 (.06)

.53‡ 2.00 (.16) 1.01 (.14) 2.00 (.08) 1.00 (.07) 2.00 (.05) 1.00 (.04) 2.00 (.02) 1.00 (.02)

(d) .76† — — 1.95 (.23) 1.02 (.17) 1.94 (.14) 1.01 (.10) 1.94 (.07) 1.00 (.05)

.52‡ 2.00 (.19) 1.01 (.16) 1.99 (.09) 1.00 (.08) 2.00 (.06) 1.00 (.05) 2.00 (.03) 1.00 (.03)

(e) .75† — — 1.91 (.21) 1.02 (.16) 1.91 (.13) 1.01 (.10) 1.91 (.06) 1.00 (.05)

.52‡ 2.00 (.21) 1.00 (.19) 2.00 (.11) 1.00 (.09) 2.00 (.07) 1.00 (.06) 2.00 (.03) 1.00 (.03)

X ∼ U(−1, 1):

(a) .92† — — 1.85 (.32) 1.08 (.37) 1.81 (.16) 1.02 (.19) 1.80 (.08) 1.00 (.09)

.52‡ 2.00 (.10) 1.01 (.18) 2.00 (.05) 1.00 (.08) 2.00 (.03) 1.00 (.05) 2.00 (.02) 1.00 (.03)

(b) .90† — — 1.77 (.20) 1.03 (.25) 1.76 (.13) 1.01 (.15) 1.76 (.06) 1.01 (.07)

.51‡ 1.98 (.12) 1.00 (.18) 1.99 (.06) 1.00 (.08) 1.99 (.04) 1.00 (.05) 1.99 (.02) 1.00 (.03)

(c) .89† — — 1.79 (.33) 1.06 (.40) 1.77 (.19) 1.03 (.23) 1.75 (.09) 1.00 (.12)

.52‡ 1.98 (.13) 1.00 (.22) 1.99 (.06) 1.00 (.10) 1.99 (.04) 1.00 (.06) 1.99 (.02) 1.00 (.03)

(d) .85† — — 1.67 (.23) 1.03 (.31) 1.66 (.14) 1.02 (.19) 1.66 (.07) 1.00 (.09)

.52‡ 1.96 (.17) 1.01 (.30) 1.98 (.08) 1.00 (.13) 1.99 (.05) 1.00 (.09) 1.99 (.03) 1.00 (.04)

(e) .82† — — 1.59 (.19) 1.02 (.27) 1.59 (.12) 1.01 (.16) 1.59 (.06) 1.00 (.08)

.52‡ 1.97 (.18) 1.01 (.33) 1.98 (.10) 1.00 (.16) 1.98 (.06) 1.00 (.10) 1.99 (.03) 1.00 (.05)
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Table 2.2: Comparison of prediction accuracy between the semiparametric linear model and the
Cox model. Relative prediction accuracy to the uncensored case, i.e., the ratio of the
empirical mean MSEp under the uncensored case to that under each corresponding
censored case, is listed. The empirical mean ± standard deviation of MSEp under each
scenario is given in the parenthesis. The MSEp obtained from ordinary least squares
(OLS) is also listed for each uncensored scenario.

Cen. Sample Size
X τ rate n = 200 n = 2000

Linear Cox Linear Cox

Identity Transformation:

N(0, 1) -2 .86 0.86 (1.95 ± 0.51) 0.33 (5.08 ± 0.41) 0.98 (1.68 ± 0.08) 0.33 (4.98 ± 0.12)
-1 .72 0.97 (1.72 ± 0.29) 0.58 (2.90 ± 0.29) 0.99 (1.66 ± 0.08) 0.58 (2.86 ± 0.09)
0 .55 0.99 (1.69 ± 0.25) 0.84 (2.00 ± 0.24) 1.00 (1.65 ± 0.08) 0.84 (1.96 ± 0.08)
1 .44 1.00 (1.67 ± 0.24) 0.97 (1.72 ± 0.23) 1.00 (1.64 ± 0.08) 0.97 (1.70 ± 0.08)
– .00 1.67 ± 0.25 1.67 ± 0.25 1.65 ± 0.08 1.65 ± 0.08

OLS 1.67 ± 0.25 1.65 ± 0.08

U(−2, 2) -2 .82 0.85 (1.93 ± 0.48) 0.31 (5.38 ± 0.44) 0.96 (1.71 ± 0.09) 0.31 (5.28 ± 0.12)
-1 .67 0.96 (1.71 ± 0.28) 0.53 (3.12 ± 0.32) 1.00 (1.65 ± 0.08) 0.54 (3.08 ± 0.09)
0 .54 0.99 (1.67 ± 0.26) 0.80 (2.07 ± 0.27) 1.00 (1.65 ± 0.08) 0.80 (2.05 ± 0.08)
1 .46 0.99 (1.66 ± 0.25) 0.96 (1.72 ± 0.26) 1.00 (1.65 ± 0.08) 0.96 (1.71 ± 0.08)
– .00 1.65 ± 0.25 1.65 ± 0.25 1.65 ± 0.08 1.65 ± 0.08

OLS 1.65 ± 0.25 1.65 ± 0.08

U(−1, 1) -2 .86 0.68 (2.41 ± 0.58) 0.37 (4.51 ± 0.36) 0.74 (2.24 ± 0.18) 0.38 (4.38 ± 0.09)
-1 .72 0.94 (1.75 ± 0.28) 0.67 (2.47 ± 0.28) 0.97 (1.70 ± 0.08) 0.67 (2.45 ± 0.08)
0 .55 0.99 (1.66 ± 0.26) 0.93 (1.78 ± 0.26) 1.00 (1.65 ± 0.08) 0.93 (1.77 ± 0.08)
1 .44 1.00 (1.65 ± 0.25) 1.00 (1.65 ± 0.25) 1.00 (1.65 ± 0.08) 1.00 (1.65 ± 0.08)
– .00 1.65 ± 0.25 1.65 ± 0.25 1.65 ± 0.08 1.65 ± 0.08

OLS 1.65 ± 0.25 1.65 ± 0.08

Logarithm Transformation:

N(0, 1) -2 .83 0.74 (12.09 ± 12.76) 0.56 (14.50 ± 12.52) 0.96 (9.02 ± 3.99) 0.51 (14.36 ± 4.79)
-1 .69 0.88 (10.25 ± 10.55) 0.59 (13.91 ± 12.44) 0.98 (8.82 ± 3.69) 0.54 (13.76 ± 4.77)
0 .55 0.98 (9.16 ± 8.88) 0.64 (12.75 ± 12.24) 0.98 (8.82 ± 3.68) 0.59 (12.58 ± 4.71)
1 .45 1.00 (8.99 ± 8.73) 0.74 (11.05 ± 11.79) 0.98 (8.82 ± 3.66) 0.68 (10.81 ± 4.57)
– .00 9.00 ± 8.60 8.19 ± 8.16 8.67 ± 3.25 7.39 ± 2.73

OLS 8.99 ± 8.51 8.68 ± 3.26

U(−2, 2) -2 .82 0.83 (9.64 ± 5.12) 0.53 (12.99 ± 4.65) 0.92 (8.85 ± 1.32) 0.52 (13.19 ± 1.41)
-1 .67 0.95 (8.44 ± 4.11) 0.56 (12.33 ± 4.56) 0.99 (8.21 ± 1.15) 0.55 (12.52 ± 1.39)
0 .54 0.99 (8.07 ± 3.58) 0.62 (11.00 ± 4.36) 1.00 (8.15 ± 1.11) 0.61 (11.12 ± 1.32)
1 .46 1.00 (8.04 ± 3.58) 0.76 (9.00 ± 3.95) 1.00 (8.15 ± 1.09) 0.76 (9.00 ± 1.19)
– .00 8.03 ± 3.59 6.86 ± 2.88 8.14 ± 1.08 6.83 ± 0.87

OLS 8.03 ± 3.59 8.14 ± 1.08

U(−1, 1) -2 .86 0.77 (2.81 ± 1.75) 0.55 (3.33 ± 0.87) 0.78 (2.79 ± 0.27) 0.54 (3.35 ± 0.26)
-1 .72 0.91 (2.35 ± 0.76) 0.62 (2.96 ± 0.83) 0.92 (2.36 ± 0.23) 0.61 (2.98 ± 0.25)
0 .55 0.99 (2.18 ± 0.71) 0.76 (2.40 ± 0.75) 0.99 (2.18 ± 0.21) 0.76 (2.40 ± 0.22)
1 .44 1.00 (2.15 ± 0.70) 0.94 (1.94 ± 0.65) 1.00 (2.17 ± 0.21) 0.94 (1.93 ± 0.19)
– .00 2.15 ± 0.69 1.83 ± 0.55 2.17 ± 0.20 1.82 ± 0.16

OLS 2.15 ± 0.69 2.17 ± 0.20
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Figure 2.1: Kaplan-Meier curves of the estimated residual survival time (T − β̂nX) under τ = 1.
(a)-(e): X ∼ N(0, 1) with ζ ∼ N(0, 0.52), ζ ∼ Gumbel(−0.5γ, 0.5), ζ ∼ Laplace(0, 0.5),
ζ ∼ Logistic(0, 0.5) and ζ ∼ T (0, df = 30), respectively; (f)-(j): X ∼ U(−2, 2) with the
same corresponding error distributions under (a)-(e); (k)-(o): X ∼ U(−1, 1) with the
same corresponding error distributions under (a)-(e).
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Figure 2.2: Empirical variances of the intercept and slope estimators with τ = 3. (a)-(c): the
intercept estimators under X ∼ N(0, 1), X ∼ U(−2, 2) and X ∼ U(−1, 1), respectively;
(e)-(f): the slope estimators under X ∼ N(0, 1), X ∼ U(−2, 2) and X ∼ U(−1, 1),
respectively. Solid line: ζ ∼ N(0, 0.52); dashed line: ζ ∼ Gumbel(−0.5γ, 0.5); dotted
line: ζ ∼ Laplace(0, 0.5); dotted dash line: ζ ∼ Logistic(0, 0.5); and long dashed line:
ζ ∼ T (0, df = 30).
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Figure 2.3: The predicted survival time versus the true survival time for the data generated from
model (2.23) with X ∼ N(0, 1) under the identity transformation. (a): semiparametric
linear model with τ = −2; (b): semiparametric linear model with τ = 0; (c): Cox model
with τ = −2; and (d): Cox model with τ = 0. A constant 8 was added to shift all the
simulated survival times to positive values.
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Figure 2.4: (a): Kaplan-Meier curve of the estimated residual survival time for the PBC data.
(b): Predicted survival time versus the observed time points (both in the logarithm
scale) for the PBC data by fitting the accelerated failure time model via leave-one-out
cross-validation. The circles correspond to the individuals who failed and the triangles
correspond to the individuals who were censored. Subject 87 and 293 are two potential
outliers.



CHAPTER III

Sieve Maximum Likelihood Estimation Using B-Spline
Smoothing for the Slope Estimators in the AFT Model

3.1 Introduction

The transformed linear regression model (Kalbfleisch and Prentice 2002) relates

the failure time under a monotone transformation to the covariates directly, it pro-

vides a straightforward interpretation of the data and serves as an attractive alter-

native to the Cox proportional hazards model in many applications.

The challenge in analyzing the semiparametric linear model comes from the pres-

ence of censoring in failure time data. Several estimators of the slope parameters

have been proposed in the literature since late 70’s. Prentice (1978) proposed the

rank estimators based on the well-known weighted log-rank statistics. Another major

estimating method is based on a modified least-squares estimator to accommodate

censoring, namely, the Buckley-James estimator (Buckley and James 1979). Ritov

(1990), Tsiatis (1990), Lai and Ying (1991) and Ying (1993), among others, studied

the asymptotic properties of the rank-based and Buckley-James estimators.

In spite of appealing theoretical properties, estimators from the above estimating

methods do not appear to be widely used in applications. One major reason is that

these semiparametric estimating functions are discrete and can be non-monotone,

which leads to potential multiple solutions and is difficult to solve numerically. Re-
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cently, Jin et al. (2003) and Jin et al. (2006) proposed new approaches to approximate

the rank-based estimator and least-squares estimators through linear programming,

together with the re-sampling procedures to estimate the limiting covariance ma-

trices. However, none of the estimators from the above estimating methods are

fully semiparametric efficient. It is also known that the linear programming with

re-sampling technique is computational intensive and infeasible for large samples.

Recently, Zeng and Lin (2007) developed an efficient estimator for the AFT model

by maximizing a kernel-smoothed profile likelihood function for the regression pa-

rameters. Their approach, however, is restricted to the log-transformed linear model

so far and may not be very flexible to accommodate more general monotone trans-

formations. Furthermore, their kernel smoothing procedure is neither intuitive nor

straightforward and thus difficult to implement in practice.

Two decades ago, Ritov and Wellner (1988) derived the semiparametric efficient

score functions for the slope parameters in the linear regression model, which involve

the derivative of the density function (or the hazard function) of the error term. We

propose a new approach by directly maximizing the log likelihood function in a sieve

space in which the log hazard function of the error term is approximated by B-splines.

Numerically, the estimator can be easily obtained by the Newton-Raphson algorithm

or any gradient-based search algorithms. We show that the proposed estimator is

consistent and asymptotically normal, and the limiting covariance matrix reaches

the semiparametric efficiency bound, which can be estimated either by inverting the

information matrix based on the efficient score function of the slope parameters, or

by inverting the observed information matrix of all parameters, taking into account

that we are also estimating the “nuisance” parameters in the sieve space for the log

hazard function.
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The organization of this chapter is as follows. Section 3.2 describes the new pro-

posed estimation approach. The regularity conditions and asymptotic properties of

the proposed estimators are provided in Section 3.3. In Section 3.4 we conduct exten-

sive simulation studies for different covariate and error distributions, censoring rates

and the sample sizes. In Section 3.5 we provide applications to two major medical

studies. In Section 3.6, we introduce an extended general theorem on the asymptotic

normality of semiparametric M -estimators, where the nuisance parameters can be a

function of the parameters of interest. The general theorem is crucial in the proof of

asymptotic normality and semiparametric efficiency of the proposed estimators given

in Theorem 3.3.2. We provide some discussion in Section 3.7. Technical details are

provided in the Appendix.

3.2 Estimating Methods in Linear Models with Censored Data

3.2.1 Accelerated Failure Time Model and Existing Estimators

Suppose that the failure time transformed by a fixed monotone transformation

h(·) is linearly related to a set of covariates, where the failure time is subject to right

censoring. Let Ti denote the transformed failure time and Ci denote the transformed

censoring time by the same transformation for subject i, i = 1, · · · , n. Let Yi =

min(Ti, Ci) and ∆i = I(Ti ≤ Ci). Then the semiparametric linear model we consider

here can be written as

(3.1) Ti = X ′
iβ0 + e0,i, i = 1, · · · , n,

where the errors e0,i are independent and identically distributed (not necessarily

with mean zero) with an unspecified distribution. When h(·) = log(·), this model

corresponds to the well-known accelerated failure time model. Here we assume that

(Xi, Ci), i = 1, . . . , n, are i.i.d. and independent of e0,i. This is a common assumption
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and yet a reasonable one in practice for linear models with censored survival data.

As mentioned in Section 3.1, there are two major classes of existing methods for

estimating the parameter β0 in model (3.1). One class is based on the Buckley-James

estimator (Buckley and James 1979; Ritov 1990; Lai and Ying 1991), which solves

the following estimating equation for β:

(3.2)
n∑

i=1

(Xi − X̄)

{
∆i s(Yi −X ′

iβ) + (1−∆i)
1

1− F̂ (Yi −X ′
iβ)

∫ ∞

Yi−X′
iβ

s(t) dF̂ (t)

}
= 0,

where F̂ is the Kaplan-Meier estimator (or a modified Kaplan-Meier estimator) of F ,

the distribution function of e0 = T −X ′β0, and s is some function in L0
2(F ). When

s is the identity function, the above equation reduces to the classical estimating

equation of Buckley and James (1979). Equation (3.2) can be solved iteratively.

Another class is the weighted rank based method (Prentice 1978; Wei et al. 1990;

Tsiatis 1990; Ying 1993), which solves the following estimating equation for β:

(3.3)
n∑

i=1

∫ {
Xi −

∑n
j=1 XjI(Yj −X ′

jβ ≥ t)∑n
j=1 I(Yj −X ′

jβ ≥ t)

}
ω(t) dNi(t) = 0,

where Ni(t) = ∆iI(Yi −X ′
iβ ≤ t) is the counting process for subject i and w(t) is a

weight function that may also depend on β. Note that both equations (3.2) and (3.3)

are discrete. Ritov (1990) showed that these two classes of estimating equations are

asymptotically equivalent and that when s(t) = −ḟ(t)/f(t), here f is the density

function of e0 = T −X ′β0 and ḟ is the derivative of f , the estimator obtained from

equation (3.2) is the fully semiparametric efficient estimator. Ritov and Wellner

(1988) showed that when ω(t) = λ̇0(t)/λ0(t), here λ0 is the hazard function of the

error term e0 and λ̇0 is the derivative of λ0, estimating equation (3.3) yields the most

efficient estimator for β0. Obviously, efficient estimation from either method needs

to estimate the derivative of the density (or the hazard) function of the error term,
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and developing a nonparametric approach for its estimation in addition to solving

the discrete estimating equation does not appear attractive to practitioners.

The non-smoothness of these estimating equations complicates the proofs of asymp-

totic properties of the estimators and makes numerical implementations less straight-

forward. Ritov (1990), Tsiatis (1990) and Ying (1993) derived asymptotic normality

of the estimators obtained from either equation (3.2) or equation (3.3) under sim-

ilar regularity conditions by first proving the asymptotic linearity of corresponding

estimating equation in a neighborhood of β0. Several numerical methods have been

proposed, which include the simulated annealing approach of Lin and Geyer (1992),

the linear programming approach of Lin et al. (1998) and Jin et al. (2003), and most

recently, the hybrid Newton-type method of Yu and Nan (2006). But none of them

is as nice as the Newton-Raphson method for solving smooth equations.

3.2.2 Sieve Maximum Likelihood Estimation Using B-Spline Smoothing

Instead of solving the discrete efficient estimating equation, a likelihood based

approach with certain nonparametric estimation of the log hazard function of the

error term using the smoothing technique seems more desirable, since such a proce-

dure maximizes a smooth function of unknown parameters. This falls into the sieve

maximum likelihood estimation procedure of Geman and Hwang (1982) where the

unknown function in the log likelihood is approximated by a linear span of some

known basis functions to form a sieve log likelihood. Then we just need to maximize

the sieve log likelihood with respect to the unknown coefficients in the linear span

to obtain a sieve maximum likelihood estimator. This also significantly reduces the

dimensionality of the optimization since the number of basis functions needed to

reasonably approximate the unknown function grows at a much slower rate as the

sample size increases.
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Spline technique has been extensively used as an effective tool in dimension re-

duction for nonparametric estimation. Stone (1985, 1986) has proved in theory that

a smooth unknown function can be well approximated using splines. Some further

convergence results of spline-based sieve estimates have been developed by Shen and

Wong (1994). Therefore, we consider the spline smoothed sieve maximum likelihood

estimation for the semiparametric linear model with censored data.

Since we assume that e0 is independent of (C, X), the joint density function of

(T, C, X) can then be decomposed as

fT,C,X(t, c, x) = fe0,C,X(t− x′β0, c, x) = f(t− x′β0)fC,X(c, x).

It is easy to see that T and C are independent conditional on X under the assumption

e0 ⊥ (C, X). Hence we have

f(t− x′β0) = fT |C,X(t|C = c,X = x) = fT |X(t|X = x).

Then the joint density function of (Y, ∆, X) can be written as

fY,∆,X(y, δ, x) = f(y − x′β0)
δ{1− F (y − x′β0)}1−δH(y, δ, x)

= λ0(y − x′β0)
δ exp{−Λ0(y − x′β0)}H(y, δ, x),(3.4)

where Λ0(·) is the true cumulative hazard function for the error term e0. H(y, δ, x)

only depends on the conditional distribution of C given X and the marginal distri-

bution of X, and is free of β0 and λ0. Thus to simplify the notation, we will ignore

the factor H from the likelihood function. Then for i.i.d. observations (Yi, ∆i, Xi),

i = 1, · · · , n, from equation (3.4) we obtain the log likelihood function for β and λ

as

(3.5) ln(β, λ) = n−1

n∑
i=1

{
∆i log{λ(Yi −X ′

iβ)} −
∫ Yi

−∞
λ(t−X ′

iβ) dt

}
.
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The log likelihood given in (3.5) apparently is a semiparametric model, in which β

is the finite dimensional parameter of interest and λ is an unknown positive function

and treated as an infinite dimensional nuisance parameter. Let g(t) = log λ(t), then

the log likelihood function for β and g, using the counting process notation, can be

written as

(3.6) ln(β, g) = n−1

n∑
i=1

{∫
g(t−X ′

iβ) dNi(t)−
∫

I(Yi ≥ t) exp{g(t−X ′
iβ)} dt

}
,

where Ni(t) = ∆iI(Yi −X ′
iβ ≤ t) is the counting process for subject i.

By taking the logarithm of the positive function λ(·), the function g(·) is no longer

restricted to be positive, which eases the estimation. We now describe the spline-

based sieve maximum likelihood estimation for the AFT model. Suppose a and b are

lower and upper bounds of the observed residual time:

{Yi −X ′
iβ : β ∈ B, i = 1, · · · , n},

where B is the parameter space of β. Assuming the transformed observation time

Y is bounded away from −∞. Under the regularity conditions stated in section

3.3, we have −∞ < a < b < ∞. Let a = t0 < t1 < · · · < tKn < tKn+1 = b

be a partition of [a, b] with K subintervals IKj = [tj, tj+1), j = 0, · · · , K − 1 and

IKK = [tK , tK+1], where K ≡ Kn ' nν with 0 < ν < 1/2 being a positive number

such that max1≤j≤K+1 |tj − tj−1| = O(n−ν). Denote the set of partition points by

TKn = {t1, · · · , tKn}. Let Sn(TKn , Kn, l) be the space of polynomial splines of order

l ≥ 1 consisting of function s satisfying (i) the restriction of s to IKj is a polynomial

of order l (or equivalently, of degree l−1) for l ≤ K; (ii) for l ≥ 2 and 0 ≤ l′ ≤ l−2, s

is l′ times continuously differentiable on [a, b]. This definition is phrased after Stone

(1985), which is a descriptive version of Schumaker (1981, page 108, Definition 4.1).

According to Schumaker (1981, page 117, Corollary 4.10), there exists a local
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basis {Bj, 1 ≤ j ≤ qn}, so called B-splines, for Sn(TKn , Kn, l), where qn = Kn + l.

These basis functions are nonnegative and sum up to one at each point in [a, b], and

each Bj is zero outside the interval [tj, tj+l]. Thus for any s ∈ Sn(TKn , Kn, l), we can

write

(3.7) s(t) =

qn∑
j=1

γjBj(t).

Let γ = {γj : 1 ≤ j ≤ qn} be the collection of all the coefficients in the represen-

tation (3.7). Under suitable smoothness assumptions, g0(·) = log λ0(·) can be well

approximated by some function in Sn(TKn , Kn, l). Therefore, we seek a member of

Sn(TKn , Kn, l) together with a value of β ∈ B that maximizes the log likelihood func-

tion. Specifically, let θ̂n = (β̂n, γ̂n) with γ̂n = {γ̂n,j : 1 ≤ j ≤ qn} be the value that

maximizes

ln(β, γ) = n−1

n∑
i=1

[∫ qn∑
j=1

γjBj(t−X ′
iβ) dNi(t)

−
∫

I(Yi ≥ t) exp

{ qn∑
j=1

γjBj(t−X ′
iβ)

}
dt

]
.(3.8)

Taking the first derivatives of ln(β, γ) with respect to β and γ and setting them to

zero, we obtain the following estimating equations:

∂ln(β, γ)

∂β
= −n−1

n∑
i=1

[∫
Xi

qn∑
j=1

γjḂj(t−X ′
iβ) dNi(t)

−
∫

I(Yi ≥ t)Xi

qn∑
j=1

γjḂj(t−X ′
iβ) exp

{ qn∑
j=1

γjBj(t−X ′
iβ)

}
dt

]
(3.9)

= 0,

∂ln(β, γ)

∂γj

= n−1

n∑
i=1

[∫
Bj(t−X ′

iβ) dNi(t)

−
∫

I(Yi ≥ t)Bj(t−X ′
iβ) exp

{ qn∑
j=1

γjBj(t−X ′
iβ)

}
dt

]
(3.10)

= 0, j = 1, · · · , qn.
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Since the integrals in (3.9) and (3.10) are univariate integrals, their numerical imple-

mentation can be easily done by one-dimensional Gaussian-quadrature method that

would not increase the computing cost much. Newton-Raphson algorithm or any

gradient-based search algorithms can be applied to solve the above equations for all

parameters θ = (β, γ), e.g.,

θ(m+1) = θ(m) −H(θ(m))−1 · S(θ(m))

where θ(m) = (β(m), γ(m)) is the parameter estimate from the mth iteration, and

S(θ) =




∂ln(β,γ)
∂β

∂ln(β,γ)
∂γ


 , H(θ) =




∂2ln(β,γ)
∂β∂β′

∂2ln(β,γ)
∂β∂γ′

∂2ln(β,γ)
∂γ∂β′

∂2ln(β,γ)
∂γ∂γ′




is the score function and Hessian matrix of the parameter θ, respectively.

In order to make statistical inferences of β0, we have to approximate the sam-

pling distribution of β̂n. As stated in the next section, the distribution of β̂n can

be approximated by a normal distribution when the sample size is large enough.

One way to estimate the variance matrix of β̂n is to approximate the (inverse of

the) information matrix under the efficient score function for β0, given in Theorem

3.3.2, by plugging in the estimated parameters (β̂n, λ̂n(·)). Another way we suggest

is to invert the observed information matrix from the last Newton-Raphson itera-

tion, taking into account that we are also estimating the “nuisance” parameter γ.

This approach was also suggested by Huang (1999) in the variance estimation of β̂n

in the partly linear additive Cox model. As mentioned in Huang (1999), there is

no theoretical justification for the second variance estimator so far, but heuristics

based on the finite-dimensional parametric model and simulations indicate that this

estimator also works well.
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3.3 Asymptotic Results

This section states the asymptotic properties of the proposed estimators. Denote

εβ = Y −X ′β and ε0 = Y −X ′β0. We assume the following regularity conditions:

(C.1) The true parameter β0 belongs to the interior of a compact set B ⊆ Rd.

(C.2) (a) The covariate X takes values in a bounded subset X ⊆ Rd; (b) E(XX ′) is

nonsingular.

(C.3) Assume there is a truncation time τ < ∞ such that, for some constant δ,

P (ε0 > τ |X) ≥ δ > 0 almost surely with respect to the probability measure of

X. This implies that Λ0(τ) < ∞.

(C.4) The error e0’s density f and its derivative ḟ are bounded and

∫ (
ḟ(t)/f(t)

)2
f(t) dt < ∞.

(C.5) The conditional density of C given X and its derivative ġC|X are uniformly

bounded for all possible values of X. That is,

sup
x∈X

gC|X(t|X = x) ≤ K1, sup
x∈X

|ġC|X(t|X = x)| ≤ K2

for all t ≤ τ with some constants K1, K2 > 0, where τ is the truncation time

defined in Condition C.4.

(C.6) Let Hp denote the collection of functions h on [a, b] whose kth derivative h(k) is

bounded, and satisfies the Lipschitz continuity condition with exponent m:

|h(k)(s)− h(k)(t)| ≤ L|s− t|m for s, t ∈ [a, b],

where k is a positive integer and m ∈ (0, 1] such that p = k + m ≥ 3, and

L ∈ (0,∞) is a constant. The true log hazard function g0 = log λ0 belongs to

Hp, where [a, b] is a bounded interval.



69

(C.7) For some η ∈ (0, 1), u′V ar(X|ε0)u ≥ ηu′E(XX ′|ε0)u a.s. for all u ∈ Rd.

These conditions are usually satisfied in practice. Condition C.1 is a common

regularity assumption that has been imposed in many papers; see e.g. Lai and

Ying (1991). Conditions C.2(a) and C.3-C.4 were also assumed in Tsiatis (1990), in

particular Condition C.3 implies that only the observations for which the observed

residual time ε0,i = Yi − X ′
iβ0, 1 ≤ i ≤ n is no more than τ , are used in the log-

likelihood. Conditions C.1-C.3 guarantee that the observed residual time

{Yi −X ′
iβ = ε0,i −X ′

i(β − β0) : β ∈ B, i = 1, · · · , n}

included in the likelihood is within some bounded interval [a, b]. Condition C.5

implies Condition B in Tsiatis (1990). Here we make a stronger assumption for gC|X :

in addition to the boundedness of gC|X itself, we assume it has a uniformly bounded

derivative. Condition C.6 is the smoothness condition imposed on the underlying

hazard function of the error term, which is needed for the B-spline smoothing. In

the situation when we just need to control the approximation error rate of g0 itself,

only p ≥ 1 is required. In this particular problem, however we have to also control

the approximation error rates of both the first and second derivatives of g0, which

will be clearly demonstrated in the proof of Theorem 3.3.2 later, thus we require

a stronger Lipschitz condition with p ≥ 3 here. Finally, Condition C.7 was also

proposed for the panel count data model in Wellner and Zhang (2007). As noted

in their Remark 3.4, this Condition C.7 can be justified in many applications when

Condition C.2(b) is satisfied.

For any g1, g2 ∈ Hp, define the norm

(3.11) ‖g1 − g2‖2 =

{∫ b

a

(g1(t)− g2(t))
2 dΛ0(t)

}1/2

.
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For any θ1 = (β1, g1) and θ2 = (β2, g2) in the space of Θp = B × Hp, define the

following distance

(3.12) d(θ1, θ2) =
{|β1 − β2|2 + ‖g1 − g2‖2

2

}1/2
,

where |β1 − β2| is the Euclidean distance.

Denote Sn as an abbreviation for Sn(TKn , Kn, l), the spline space of order l with Kn

interior knots. Let Hp
n = {h : h ∈ Sn∩Hp}. Clearly we have Hp

n ⊆ Hp
n+1 ⊆ · · · ⊆ Hp

for all n ≥ 1. Denote Θp
n = B × Hp

n and the sieve estimator θ̂n = (β̂n, ĝn) is the

maximizer of the empirical log-likelihood n−1ln(θ; Z) over the sieve space Θp
n, where

Z = (Y, ∆, X). The following theorem gives the convergence rate of the proposed

estimator θ̂n to the true parameter θ0 = (β0, g0).

Theorem 3.3.1. Let Kn = O(nν), where ν satisfies the restriction 1
2(1+p)

< ν < 1
2p

with p being the smoothness parameter defined in Condition C.6. Suppose conditions

C.1-C.7 hold and the failure time T satisfies model (3.1), then

d(θ̂n, θ0) = Op{n−min(pν,(1−ν)/2)},

where d(·, ·) is defined in (3.12).

This theorem implies that if ν = 1/(1 + 2p), d(θ̂n, θ0) = Op(n
−p/(1+2p)) which

is the optimal convergence rate in the nonparametric regression setting. Although

the overall convergence rate is lower than n−1/2, the next theorem states that the

proposed estimator of the regression parameter is still asymptotically normal and

semiparametrically efficient.

Theorem 3.3.2. Suppose the conditions given in Theorem 3.3.1 hold, then

(3.13) n
1
2 (β̂n − β0) = n−

1
2 I−1(β0)

n∑
i=1

l∗β0
(Yi, ∆i, Xi) + op(1) → N(0, I−1(β0))

in distribution, where I(β0) = El∗β0
(Y, ∆, X)⊗2 and l∗β0

(Y, ∆, X) is the efficient score

function for the censored linear model derived by Ritov and Wellner (1988) with the
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following form

l∗β0
(Y, ∆, X) =

∫
{X − E(X|Y −X ′β0 ≥ t)}

{
− λ̇0

λ0

(t)

}
dM(t),

here M(t) is the failure counting process martingale defined as

M(t) = ∆I(Y −X ′β0 ≤ t)−
∫ t

−∞
I(Y −X ′β0 ≥ s)λ0(s) ds.

Because β̂n achieves this information lower bound and is asymptotically linear, it

is asymptotically efficient among all the regular estimators. We defer all the detailed

proofs of Theorems 3.3.1 and 3.3.2 to the Appendix.

3.4 Simulation Studies

Numerous simulation studies are carried out to evaluate the finite sample perfor-

mance of the proposed method. In the first set of simulations, we generate failure

times from the following model:

log T = β0X + e0,

where X follows a Bernoulli distribution with 0.3 success probability and the true

slope parameter is β0 = 0. We consider four error distributions: mixture of two nor-

mal distributions: 0.5N(0, 1) + 0.5N(−1, 0.52); standard extreme-value distribution;

Gumbel distribution with location parameter −0.5γ and scale parameter 0.5 with γ

being the Euler constant, denoted as Gumbel(−0.5γ, 0.5); and Weibull distribution

with shape parameter 3 and scale parameter 1, denoted as Weibull(3,1). We generate

censoring times (logarithm transformed) from the uniform[c1, c2] distribution, where

c1, c2 are chosen to produce two different censoring rates: 25% and 50%. We also

include the cases without censoring as references. The sample size is set to n = 400.

We choose to use cubic B-splines (i.e. of order 4) to approximate the log hazard

function. Three different numbers of interior knots for the B-splines are tried, which
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are 1, 2 and 3. The results are quite similar and we just present the case with

1 interior knot. We perform the sieve maximum likelihood analysis and obtain the

estimates of the slope parameter using the Newton-Raphson algorithm which updates

(β, γ) iteratively. We stop the iterations when the change of the parameter estimates

or the gradient value is less than a pre-specified tolerance number (10−5 in our

simulations). We use both methods proposed in section 3.2.2 to estimate the variance

of β̂n.

For efficiency comparisons, we also include the log-rank and Gehan-weighted es-

timators using the R package “rankreg” by Jin et al. (2003), as well as the Buckley-

James estimator by Buckley and James (1979). We calculate the theoretical semi-

parametric efficiency bound I−1(β0), and scale it by the sample size, i.e., σ∗ =

√
I−1(β0)/n, which serves as the reference standard error under the fully efficient

situation. The result based on 1000 simulated datasets for each scenario is summa-

rized in Table 3.1.

The proposed parameter estimator is virtually unbiased. The variance estimators

based on two methods, denoted as 1SEE and 2SEE both capture the variability of

the parameter nicely and the confidence intervals have proper coverage probabili-

ties. It is known that the log-rank estimator is asymptotically efficient under the

standard extreme-value error distribution. We observe that the proposed estimators

have similar variances as the log-rank estimators and are more efficient than both

Gehan-weighted and Buckley-James estimators. Under both the mixture normal and

the Gumbel errors, the proposed estimators are more efficient than all three other

estimators, especially the log-rank and Buckley-James estimators. Finally for the

Weibull(3,1) error, the proposed estimators are quite similar to the Gehan-weighted

and Buckley-James estimators in terms of the efficiency and are slightly more efficient
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than the log-rank estimators. Under all error distributions, the standard errors of

the proposed estimators are close to the theoretical standard errors calculated from

the efficient score function.

In addition to the slope parameter estimator β̂n that is of our main interest, as a

by-product we also obtain the estimate of hazard function

λ̂n(t) = exp
{ qn∑

j=1

γ̂n,jBj(t)
}

of the error term. Figure 3.1 plots the estimated hazard function over time for each

of the four error distributions under the 25% censoring rate in the solid line, and

the dashed line plots the true hazard function over time. Two lines are close to each

other in all cases except for the mixture normal error case, which indicates reasonable

estimations of the hazard functions.

In the second set of simulation studies, the failure times are generated from the

model

log T = 2 + X1 + X2 + e0,

where X1 is Bernoulli with success probability 0.5, X2 is independent normal with

mean 0 and standard deviation 0.5. This is the same model used by Jin et al. (2006)

and Zeng and Lin (2007). We consider six error distributions: standard normal;

standard extreme-value; mixtures of N(0, 1) and N(0, 32) with mixing probabili-

ties (0.5,0.5) and (0.95,0.05), denoted by 0.5N(0, 1) + 0.5N(0, 32) and 0.95N(0, 1) +

0.05N(0, 32), respectively; Gumbel(−0.5γ, 0.5) and 0.5N(0, 1)+0.5N(−1, 0.52) which

are considered in the first set of simulations. The first four distributions were also

considered by Zeng and Lin (2007). We do not choose the two Weibull distribu-

tions in Zeng and Lin (2007), namely Weibull(2,1) and Weibull(0.5,1). Although

Zeng and Lin (2007) stated that the Weibull distributions in their simulations per-
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tain to exponential of the errors, their simulation code actually reflected that the

error themselves were generated from the Weibull distributions. However, those two

Weibull distributions do not satisfy the bounded information condition in C.4, which

implies that I(β0), the information matrix under the semiparametric efficiency, is un-

bounded and thus the likelihood based estimator has a convergence rate faster than

n−1/2. Similarly to Zeng and Lin (2007), the censoring times are generated from the

uniform[0, c] distribution, where c is chosen to produce a 25% censoring rate. We set

the sample size n to 200, 400 and 600.

We choose cubic B-splines with one interior knot for n = 200 and 400, two in-

terior knots for n = 600, and perform the same search algorithm as in the first set

of simulations. Log-rank and Gehan-weighted estimators are included for efficiency

comparisons. Table 3.2 summarizes the results of these studies based on 1000 simu-

lated datasets. The bias of the proposed estimators of β1 and β2 are negligible. Both

variance estimation procedures yield nice standard error estimates of the parameter

estimators and the 95% confidence intervals have proper coverage probabilities, es-

pecially when the sample size is large. For the N(0, 1) error and the two mixture of

normal errors that are also considered in Zeng and Lin (2007), the proposed estima-

tors are more efficient than the log-rank estimators and have similar variances to the

Gehan-weighted estimators, especially when sample size is large. For the standard

extreme-value error, the proposed estimators are more efficient than the Gehan-

weighted estimator and similar to the log-rank estimators, which is known to be the

most efficient estimators under this particular error. For the Gumbel(−0.5γ, 0.5) and

0.5N(0, 1) + 0.5N(−1, 0.52) errors, the proposed estimators are most efficient com-

pared to the other two estimators. Under all six error distributions, when sample

size is large, the standard errors of the proposed estimators are quite close to the
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theoretical standard errors under the fully efficient situations.

To explicitly visualize the problems of the parameter estimations under two Weibull

errors that were used in Zeng and Lin (2007), we also conduct simulations under these

two error distributions using the same sample sizes as theirs, i.e., n = 100, 200 and

400. Table 3.3 summarizes the simulation results. All estimators are practically

unbiased. For Weibull(0.5,1), the proposed estimators yield much smaller standard

errors than the log-rank and Gehan-weighted estimators. Moreover, for all three es-

timating methods, the product of the sample size and the variance of the parameter

estimators (denoted as nSE2 in Table 3.3) are diminishing as n increases, which are

supposed to be around a constant for a root-n consistent estimator. For Weibull(2,1),

the proposed estimators also yield smaller standard errors than the other two esti-

mators, although not much. The nSE2 values are also decreasing as n increases for

the proposed estimators. The findings indicate that the proposed estimators have a

faster convergence rate than the usual n−1/2 rate under both Weibull errors, and all

three estimators have a faster convergence rate than n−1/2 under the Weibull(0.5,1)

error. As mentioned earlier, the covariance matrix I−1(β0) is singular under these

two Weibull distributions.

3.5 Examples

We first use the Stanford heart transplantation data (Miller and Halpern 1982) as

an illustrative example. This dataset was also reanalyzed by Jin et al. (2006) using

their proposed least squares estimators. Following their analysis, we consider the

same two models: the first one regressing the base-10 logarithm of the survival time

on the patients’ age at transplant and the T5 mismatch score for the 157 patients

with complete records on the T5 measure, and the second one regressing the base-10
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logarithm of the survival time on age and age2 for the 152 patients who survived

for at least 10 years after heart transplantation. For the first model, 102 patients

were deceased and 55 were still alive by February 1980, and for the second model,

97 patients were deceased and 55 patients were censored. We fit these two models

using the proposed method with five cubic B-spline basis functions (i.e. one interior

knot).

We report the parameter estimates and the standard error estimates in Table 3.4

and compare them with the Gehan-weighted estimators reported by Jin et al. (2006)

and the Buckley-James estimators reported by Miller and Halpern (1982). For the

first model, the parameter estimates for the age effect are fairly similar among all

estimators and the standard error estimate from the proposed method tends to be

smaller, while the parameter estimates for the T5 mismatch score vary across different

estimators with none of them being significant at the 0.05 level. The disparities of

the parameter estimates for the T5 may due to the reason that the AFT model with

age and T5 as covariates does not fit the data ideally, which was pointed out in Miller

and Halpern (1982). For the second model with age and age2 being the covariates,

both parameter estimates are very close across all methods and the standard error

estimates from the proposed method are the smallest.

We consider the well-known Mayo primary biliary cirrhosis (PBC) study (Flem-

ing and Harrington 1991, app. D.1) as the second example. The dataset contains

information about the survival time and prognostic factors for 418 patients. Jin

et al. (2003), Jin et al. (2006) and Zeng and Lin (2007) fitted the accelerated failure

time model with five covariates, namely age, log(albumin), log(bilirubin), edema,

and log(protime). They used the rank-based, least squares and kernel-smoothed

profile likelihood estimators and reported the slope estimators with their estimated
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standard errors for the five covariates. We fit the same model using the proposed

method with one and two interior knots. The parameter estimates and the standard

error estimates are similar and we report the result associated with one interior knot

in Table 3.5. Our parameter estimates are close to the Gehan-weighted estimates

of Jin et al. (2003), the least squares estimates of Jin et al. (2006) and the kernel

smoothed maximal likelihood estimates of Zeng and Lin (2007), while our standard

error estimates tend to be smaller.

Since the conditional survival function at time t given covariates X follows

S(t|X) = P (T ≥ t|X) = P (log T −X ′β0 ≥ log t−X ′β0|X)

= P (e0 ≥ log t−X ′β0|X) = P (e0 ≥ log t−X ′β0), since e0 ⊥ X

= exp{−Λ0(log t−X ′β0)},

a natural estimator of S(t|X) is

(3.14) Ŝn(t|X) = exp{−Λ̂n(log t−X ′β̂n)},

where Λ̂n(t) =
∫ t

−∞ λ̂n(s) ds with λ̂n(s) = exp
{∑qn

j=1 γ̂n,jBj(s)
}
. Then we can also

estimate the marginal survival function for a subgroup by averaging the conditional

survival function estimates of that subgroup. Figure 3.2 shows the estimated survival

curves for the PBC data in two groups: Edema=0 versus Edema=1. The model-

based estimates agree fairly well with the Kaplan-Meier estimates except the right

tail of the group with Edema=1. One reason for this lack of agreement is that there

are only 50 patients in the Edema=1 group and even less number of deaths by the

end of the follow-up time.
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3.6 An extended general theorem on the asymptotic normality of semi-
parametric M-estimators

In this section, we extend the general theorem introduced by Wellner and Zhang

(2007), which deals with the asymptotic normality of semiparametric M -estimators of

regression parameters when convergence rate of the estimator for nuisance parameters

is slower than n−1/2. In their theorem, the parameters of interest and the nuisance

parameters are assumed to be separate. We consider a more general setting when the

nuisance parameters can be a function of the parameters of interest. The theorem

is crucial in the proof of asymptotic normality of our proposed estimators given in

Theorem 3.3.2.

Some empirical process notation will be used from now on. We denote Pf =

∫
f(x) dP (x) and Pnf = n−1

∑n
i=1 f(Xi), with P being a probability measure, and

denote Gnf = n1/2(Pn − P )f . Given i.i.d. observations X1, X2, · · · , Xn, we try to

estimate the unknown parameters (β, Λ(·, β)) by maximizing an objective function

n−1
∑n

i=1 m(β, Λ(·, β); Xi) = Pnm(β, Λ(·, β); X), where β is the parameter of interest

with finite dimension and Λ is an infinite-dimensional nuisance parameter and can be

a function of β. If the objective function m is the log-likelihood function of a single

observation, then the estimator becomes the semiparametric maximum likelihood

estimator. Here we adopt the similar notation in Wellner and Zhang (2007).

Let θ = (β, Λ(·, β)), where β ∈ Rd and Λ is an infinite-dimensional parameter

in the class F . For any fixed Λ ∈ F , let {Λη : η in a neighborhood of 0 ∈ R} be a

smooth curve in F running through Λ at η = 0, i.e., Λη=0 = Λ. Let

H = {h : h =
∂Λη

∂η
|η=0, Λη ∈ F}.

For all Λ(·, β) ∈ F , assume Λ
(k)
β (·, β), the kth derivative with respect to β exists with

k ≥ 2. Then since for a small δ, we have Λ(·, β + δ)− Λ(·, β) = Λ̇β(·, β)δ + o(δ), by
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the definition of functional derivatives, it follows that

lim
δ→0

1

δ

{
m(β, Λ(·, β + δ); x)−m(β, Λ(·, β); x)

}

= lim
δ→0

1

δ

{
m(β, Λ(·, β) + Λ̇β(·, β)δ + o(δ); x)−m(β, Λ(·, β) + Λ̇β(·, β)δ; x)

}

+ lim
δ→0

1

δ

{
m(β, Λ(·, β) + Λ̇β(·, β)δ; x)−m(β, Λ(·, β); x)

}

= lim
δ→0

ṁ2(β, Λ(·, β) + Λ̇β(·, β)δ; x)[o(δ)/δ] + ṁ2(β, Λ(·, β); x)[Λ̇β(·, β)]

= ṁ2(β, Λ(·, β); x)[Λ̇β(·, β)],

where the subscript 2 indicates that the derivatives are taking with respect to the

second argument of the function and the last equality holds because

lim
δ→0

ṁ2(β, Λ(·, β) + Λ̇β(·, β)δ; x)[o(δ)/δ] = 0.

Similarly we have

lim
δ→0

1

δ

{
ṁ2(β, Λ(·, β + δ); x)[h]− ṁ2(β, Λ(·, β); x)[h]

}

= m̈22(β, Λ(·, β); x)[h, Λ̇β(·, β)]

and

lim
δ→0

1

δ

{
ṁ2(β, Λ(·, β); x)[Λ̇β(·, β + δ)]− ṁ2(β, Λ(·, β); x)[Λ̇β(·, β)]

}

= ṁ2(β, Λ(·, β); x)[Λ̈β(·, β)].
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Thus according to the chain rule of the functional derivatives, we define

ṁβ(β, Λ(·, β); x) = ∇β m(β, Λ(·, β); x)

= ṁ1(β, Λ(·, β); x) + ṁ2(β, Λ(·, β); x)[Λ̇β(·, β)],

ṁΛ(β, Λ(·, β); x)[h] = ṁ2(β, Λ(·, β); x)[h] =
∂m(β, (Λ + ηh)(·, β); x)

∂η

∣∣∣∣
η=0

,

m̈ββ(β, Λ(·, β); x) = ∇2
β m(β, Λ(·, β); x) = ∇β ṁβ(β, Λ(·, β); x)

= m̈11(β, Λ(·, β); x) + m̈12(β; Λ(·, β); x)[Λ̇β(·, β)]

+ m̈21(β, Λ(·, β); x)[Λ̇β(·, β)]

+ m̈22(β, Λ(·, β); x)[Λ̇β(·, β), Λ̇β(·, β)]

+ ṁ2(β, Λ(·, β); x)[Λ̈ββ(·, β)],

m̈βΛ(β, Λ(·, β); x)[h] =
∂ṁβ(β, (Λ + ηh)(·, β); x)

∂η

∣∣∣∣
η=0

= m̈12(β, Λ(·, β); x)[h(·, β)]

+ m̈22(β, Λ(·, β); x)[Λ̇β(·, β), h(·, β)]

+ ṁ2(β, Λ(·, β); x)[ḣβ(·, β)],

m̈Λβ(β, Λ(·, β); x)[h] = ∇β ṁ2(β, Λ(·, β); x)[h(·, β)]

= m̈21(β, Λ(·, β); x)[h(·, β)]

+ m̈22(β, Λ(·, β); x)[h(·, β), Λ̇β(·, β)]

+ ṁ2(β, Λ(·, β); x)[ḣβ(·, β)],

m̈ΛΛ(β, Λ(·, β); x)[h1, h2] = m̈22(β, Λ(·, β); x)[h1, h2]

=
∇2 m(β, Ληj

(·, β); x)

∂η1∂η2

∣∣∣∣
ηj=0,j=1,2

.

As noted before, the subscript 1 or 2 in the derivatives indicates the derivatives are

taking to the first or the second argument of the function, and h inside of the square

brackets is a function denoting the direction of the functional derivative with respect

to Λ. Note that for the second derivatives m̈βΛ and m̈Λβ, we implicitly require the
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direction h to be a differentiable function with respect to β. Similarly as in Wellner

and Zhang (2007), we also define

Ṡβ(β, Λ(·, β)) = Pṁβ(β, Λ(·, β); X),

ṠΛ(β, Λ(·, β))[h] = PṁΛ(β, Λ(·, β); X)[h],

Ṡβ,n(β, Λ(·, β)) = Pnṁβ(β, Λ(·, β); X),

ṠΛ,n(β, Λ(·, β))[h] = PnṁΛ(β, Λ(·, β); X)[h],

S̈ββ(β, Λ(·, β)) = Pm̈ββ(β, Λ(·, β); X),

S̈ΛΛ(β, Λ(·, β))[h, h] = Pm̈ΛΛ(β, Λ(·, β); X)[h, h],

and

S̈βΛ(β, Λ(·, β))[h] = S̈ ′Λβ(β, Λ(·, β))[h] = Pm̈βΛ(β, Λ(·, β); X)[h].

Furthermore, for h = (h1, h2, · · · , hd)
′ ∈ Hd, we denote

ṁΛ(β, Λ(·, β); x)[h] = (ṁΛ(β, Λ(·, β); x)[h1], · · · , ṁΛ(β, Λ(·, β); x)[hd])
′,

m̈βΛ(β, Λ(·, β); x)[h] = (m̈βΛ(β, Λ(·, β); x)[h1], · · · , m̈βΛ(β, Λ(·, β); x)[hd]),

m̈Λβ(β, Λ(·, β); x)[h] = (m̈Λβ(β, Λ(·, β); x)[h1], · · · , m̈Λβ(β, Λ(·, β); x)[hd])
′,

m̈ΛΛ(β, Λ(·, β); x)[h, h] = (m̈ΛΛ(β, Λ(·, β); x)[h1, h], · · · , m̈ΛΛ(β, Λ(·, β); x)[hd, h])′,

and define correspondingly

ṠΛ(β, Λ(·, β))[h] = PṁΛ(β, Λ(·, β); X)[h],

ṠΛ,n(β, Λ(·, β))[h] = PnṁΛ(β, Λ(·, β); X)[h],

S̈βΛ(β, Λ(·, β))[h] = Pm̈βΛ(β, Λ(·, β); X)[h],

S̈Λβ(β, Λ(·, β))[h] = Pm̈Λβ(β, Λ(·, β); X)[h],

S̈ΛΛ(β, Λ(·, β))[h, h] = Pm̈ΛΛ(β, Λ(·, β); X)[h, h].



82

In order to have the asymptotic normality result for the M -estimator β̂n, the assump-

tions we need to make look similar to those in Wellner and Zhang (2007) but all the

derivatives with respect to β involve the chain rule and contain more components

(defined clearly in the pervious paragraph). We list the following assumptions:

A1. (Consistency and rate of convergence) |β̂n−β0| = op(1) and ‖Λ̂n−Λ0‖ = Op(n
−γ)

for some γ > 0 and some norm ‖ · ‖.

A2. Ṡβ(β0, Λ0(·, β0)) = 0 and ṠΛ(β0, Λ0(·, β0))[h] = 0 for all h ∈ H.

A3. (Positive information) There exists an h∗ = (h∗1, · · · , h∗d)
′, where h∗j ∈ H for

j = 1, · · · , d, such that

S̈βΛ(β0, Λ0(·, β0))[h]− S̈ΛΛ(β0, Λ0(·, β0))[h
∗, h] = 0

for all h ∈ H. Furthermore, the matrix

A = −S̈ββ(β0, Λ0(·, β0)) + S̈Λβ(β0, Λ0(·, β0))[h
∗]

= −P
{
m̈ββ(β0, Λ0(·, β0); X)− m̈Λβ(β0, Λ0(·, β0); X)[h∗]

}

is nonsingular.

A4. The estimator (β̂n, Λ̂n) satisfies

Ṡβ,n(β̂n, Λ̂n(·, β̂n)) = op(n
−1/2) and ṠΛ,n(β̂n, Λ̂n(·, β̂n))[h∗] = op(n

−1/2).

A5. (Stochastic equicontinuity) For any δn ↓ 0 and C > 0,

sup
|β−β0|≤δn,‖Λ−Λ0‖≤Cn−γ

|√n(Ṡβ,n − Ṡβ)(β, Λ(·, β))

−√n(Ṡβ,n − Ṡβ)(β0, Λ0(·, β0))| = op(1)

and

sup
|β−β0|≤δn,‖Λ−Λ0‖≤Cn−γ

|√n(ṠΛ,n − ṠΛ)(β, Λ(·, β))[h∗]

−√n(ṠΛ,n − ṠΛ)(β0, Λ0(·, β0))[h
∗]| = op(1).
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A6. (Smoothness of the model) For some α > 1 satisfying αγ > 1/2, and for (β, Λ)

in a neighborhood of (β0, Λ0) : {(β, Λ) : |β − β0| ≤ δn, ‖Λ− Λ0‖ ≤ Cn−γ},

∣∣Ṡβ(β, Λ(·, β))− Ṡβ(β0, Λ0(·, β0))

− S̈ββ(β0, Λ0(·, β0))(β − β0)− S̈βΛ(β0, Λ0(·, β0))[Λ(·, β)− Λ0(·, β0)]
∣∣

= o(|β − β0|) + O(‖Λ− Λ0‖α)

and

∣∣ṠΛ(β, Λ(·, β))[h∗]− ṠΛ(β0, Λ0(·, β0))[h
∗]

− S̈Λβ(β0, Λ0(·, β0))[h
∗](β − β0)− S̈ΛΛ(β0, Λ0(·, β0))[h

∗, Λ(·, β)− Λ0(·, β0)]
∣∣

= o(|β − β0|) + O(‖Λ− Λ0‖α).

The following theorem is an extension to the Theorem 6.1 in Wellner and Zhang

(2007) where the infinite dimensional parameter Λ is a function of the finite-dimensional

parameter β.

Theorem 3.6.1. Suppose that assumptions A1-A6 hold. Then

√
n(β̂n − β0) = A−1

√
n Pnm∗(β0, Λ0(·, β0); X) + op(1)

→d N(0, A−1B(A−1)′),

where m∗(β0, Λ0(·, β0); x) = ṁβ(β0, Λ0(·, β0); x)− ṁΛ(β0, Λ0(·, β0); x)[h∗],

B = Pm∗(β0, Λ0(·, β0); X)⊗2 = P{m∗(β0, Λ0(·, β0); X)m∗(β0, Λ0(·, β0); X)′},

and A is given in assumption A3.

Proof. The proof follows along the proof for the Theorem 6.1 of Wellner and

Zhang (2007). Assumptions A1 and A5 yield

√
n(Ṡβ,n − Ṡβ)(β̂n, Λ̂n(·, β̂n))−√n(Ṡβ,n − Ṡβ)(β0, Λ0(·, β0)) = op(1).
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Since Ṡβ,n(β̂n, Λ̂n(·, β̂n)) = op(n
−1/2) by A4 and Ṡβ(β0, Λ(·, β0)) = 0 by A2, we have

√
nṠβ(β̂n, Λ̂n(·, β̂n)) +

√
nṠβ,n(β0, Λ(·, β0)) = op(1).

Similarly,

√
nṠΛ(β̂n, Λ̂n(·, β̂n))[h∗] +

√
nṠΛ,n(β0, Λ(·, β0))[h

∗] = op(1).

Combining these equalities and assumption A6 yields

S̈ββ(β0, Λ0(·, β0))(β̂n − β0) + S̈βΛ(β0, Λ0(·, β0))[Λ̂n(·, β̂n)− Λ0(·, β0)]

+ Ṡβ,n(β0, Λ0(·, β0)) + o(|β̂n − β0|) + O(‖Λ̂n − Λ0‖α)(3.15)

= op(n
−1/2)

and

S̈Λβ(β0, Λ0(·, β0))[h
∗](β̂n − β0) + S̈ΛΛ(β0, Λ0(·, β0))[h

∗, Λ̂n(·, β̂n)− Λ0(·, β0)]

+ ṠΛ,n(β0, Λ0(·, β0))[h
∗] + o(|β̂n − β0|) + O(‖Λ̂n − Λ0‖α).(3.16)

= op(n
−1/2).

Since α > 1 with αγ > 1/2, the rate of convergence assumption in A1 implies that

√
nO(‖Λ̂n − Λ0‖α) = op(1), then (3.15)− (3.16) together with A3 yields

(S̈ββ(β0, Λ0(·, β0))− S̈Λβ(β0, Λ0(·, β0))[h
∗])(β̂n − β0) + o(|β̂n − β0|)

= −(Ṡβ,n(β0, Λ0(·, β0))− ṠΛ,n(β0, Λ0)[h
∗]) + op(n

−1/2),

that is,

−(A + o(1))(β̂n − β0) = −Pnm
∗(β0, Λ0(·, β0); X) + op(n

−1/2).

This yields

√
n(β̂n − β0) = (A + o(1))−1

√
nPnm

∗(β0, Λ0(·, β0); X) + op(1)

→d N(0, A−1B(A−1)′).
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In some situation, if in addition to the consistency, a convergence rate (possibly

sub-optimal) for the parameter estimator β̂n is known, then instead of considering

the previous assumptions A1, A5 and A6, we assume the following three modified

conditions:

A1’. (Rate of convergence) |β̂n − β0| + ‖Λ̂n − Λ0‖ = Op(n
−γ) for some γ > 0 and

some norm ‖ · ‖.

A5’. (Stochastic equicontinuity) For any C > 0,

sup
|β−β0|+‖Λ−Λ0‖≤Cn−γ

|√n(Ṡβ,n − Ṡβ)(β, Λ(·, β))

−√n(Ṡβ,n − Ṡβ)(β0, Λ0(·, β0))| = op(1)

and

sup
|β−β0|+‖Λ−Λ0‖≤Cn−γ

|√n(ṠΛ,n − ṠΛ)(β, Λ(·, β))[h∗]

−√n(ṠΛ,n − ṠΛ)(β0, Λ0(·, β0))[h
∗]| = op(1).

A6’. (Smoothness of the model) For some α > 1 satisfying αγ > 1/2, and for (β, Λ)

in a neighborhood of (β0, Λ0) : {(β, Λ) : |β − β0|+ ‖Λ− Λ0‖ ≤ Cn−γ},

∣∣Ṡβ(β, Λ(·, β))− Ṡβ(β0, Λ0(·, β0))

− S̈ββ(β0, Λ0(·, β0))(β − β0)− S̈βΛ(β0, Λ0(·, β0))[Λ(·, β)− Λ0(·, β0)]
∣∣

= O{(|β − β0|+ ‖Λ− Λ0‖)α}

and

∣∣ṠΛ(β, Λ(·, β))[h∗]− ṠΛ(β0, Λ0(·, β0))[h
∗]

− S̈Λβ(β0, Λ0(·, β0))[h
∗](β − β0)− S̈ΛΛ(β0, Λ0(·, β0))[h

∗, Λ(·, β)− Λ0(·, β0)]
∣∣

= O{(|β − β0|+ ‖Λ− Λ0‖)α}.
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These modified assumptions are easier to verify when a (sub-optimal) convergence

rate for β̂n is known, and we still have the asymptotic normality result for β̂n under

these modified assumptions, which is summarized in the corollary below.

Corollary 3.6.2. Suppose that assumptions A1’, A2-A4, and A5’-A6’ hold. Then

√
n(β̂n − β0) = A−1

√
n Pnm∗(β0, Λ0(·, β0); X) + op(1)

→d N(0, A−1B(A−1)′),

where m∗(β0, Λ0(·, β0); x) and B are given in Theorem 3.6.1 and A is given in as-

sumption A3.

Proof. The proof is almost identical to the proof of the Theorem 3.6.1 except that

equations (3.15) and (3.16) become

S̈ββ(β0, Λ0(·, β0))(β̂n − β0) + S̈βΛ(β0, Λ0(·, β0))[Λ̂n(·, β̂n)− Λ0(·, β0)]

+ Ṡβ,n(β0, Λ0(·, β0)) + O{(|β − β0|+ ‖Λ− Λ0‖)α}(3.17)

= op(n
−1/2)

and

S̈Λβ(β0, Λ0(·, β0))[h
∗](β̂n − β0) + S̈ΛΛ(β0, Λ0(·, β0))[h

∗, Λ̂n(·, β̂n)− Λ0(·, β0)]

+ ṠΛ,n(β0, Λ0(·, β0))[h
∗] + O{(|β − β0|+ ‖Λ− Λ0‖)α}(3.18)

= op(n
−1/2).

Since α > 1 with αγ > 1/2, the rate of convergence assumption in A1’ implies that

√
nO{(|β − β0| + ‖Λ− Λ0‖)α} = Op(n

1/2−αγ) = op(1), then (3.17)− (3.18) together

with A3 yields

(S̈ββ(β0, Λ0(·, β0))− S̈Λβ(β0, Λ0(·, β0))[h
∗])(β̂n − β0)

= −(Ṡβ,n(β0, Λ0(·, β0))− ṠΛ,n(β0, Λ0)[h
∗]) + op(n

−1/2),
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that is,

−A(β̂n − β0) = −Pnm
∗(β0, Λ0(·, β0); X) + op(n

−1/2).

This yields

√
n(β̂n − β0) = A−1

√
nPnm∗(β0, Λ0(·, β0); X) + op(1)

→d N(0, A−1B(A−1)′).

3.7 Discussion

Comparing to the existing methods for estimating β in the semiparametric model

(3.1), the proposed method has three advantages. Firstly, the estimating functions in

(3.9) and (3.10) are smooth functions in contrast to the discrete estimating functions

in (3.2) and (3.3). Thus the root search is easier and can be done fast by conventional

iterative methods such as the Newton-Raphson algorithm. Secondly, the standard

error estimates are obtained directly by inverting either the information matrix under

the efficient score function for the slope parameters or the observed information ma-

trix of all parameters, which are both more computationally tractable compared to

the re-sampling techniques. Thirdly, the proposed estimator achieves the semipara-

metric efficiency bound. The kernel-smoothed profile likelihood estimator proposed

by Zeng and Lin (2007) has also been claimed to achieve the semiparametric effi-

ciency bound, however, their approach is less intuitive and not easy to implement

numerically. Moreover, their method is restricted to the logarithm transformation

only and can be more difficult to implement for general monotone transformations.

From our simulation studies, it looks that the standard errors of either the Gehan-

weighted or the Log-rank estimators are close to the standard errors of the proposed

method. We recommend that when the sample size is small, one can compute both

the Gehan-weighted and the Log-rank estimators, and choose the one with a smaller
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standard error. While for the large sample size, the proposed method is preferred

since it not only yields statistical efficient estimators but also estimates the variance

matrix faster.

By providing a statistically efficient and computationally feasible estimating pro-

cedures, this work makes the semiparametric linear model a more viable alternative

to the Cox proportional hazards model. In some applications, censoring occurs just

because the equipment cannot detect values under or above certain thresholds. For

such type of censored data, the semiparametric linear model is particularly more at-

tractive since in this context, the concept of hazard is not relevant. The left censored

data can be turned to the right censored data by using −T and −C as the failure

and censoring variables when applying the semiparametric linear model.

3.8 Appendix: Proofs of the Technical Results

This section contains the proofs for Theorems 3.3.1 and 3.3.2. Some empirical

process theorems developed in van der Vaart and Wellner (1996) and van der Vaart

(1998) will be heavily involved. We use the symbol . to denote that the left hand

side is bounded above by a constant times the right hand side and & to denote that

the left hand side is bounded below by a constant times the right hand side. For

notational simplicity, we drop the superscript ∗ in the outer probability measure P ∗

whenever an outer probability applies.

3.8.1 Technical Lemmas

We first introduce several lemmas that will be used for the proofs of Theorems

3.3.1 and 3.3.2.

Lemma A.1. Under Conditions C.1-C.3 and C.6, the log-likelihood

l(β, g; Z) = ∆g(Y −X ′β)−
∫

1(Y ≥ t) exp{g(t−X ′β)} dt
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has bounded and continuous first and second derivatives of l(β, g; Z) with respect to

β ∈ B and g ∈ Hp.

Proof: This result follows by direct calculations. By the definition of the func-

tional derivatives in section 3.6, we can obtain all the first and second derivatives of

l(β, g; Z) with respect to β and g as follows:

l̇β(β, g; Z)

= −X

{
∆ġ(Y −X ′β)−

∫
1(Y ≥ t) exp{g(t−X ′β)}ġ(t−X ′β) dt

}
,

l̇g(β, g; Z)[h] =
∂

∂η
l(β, g + ηh; Z)|η=0

= ∆h(Y −X ′β)−
∫

1(Y ≥ t) exp{g(t−X ′β)}h(t−X ′β) dt,

l̈ββ(β, g; Z)

= XX ′
{

∆g̈(Y −X ′β)−
∫

1(Y ≥ t) exp{g(t−X ′β)}[g̈(t−X ′β)

+ ġ2(t−X ′β)
]

dt

}
,

l̈βg(β, g; Z)[h] = l̈′gβ(β, g; Z)[h]

= −X

{
∆ḣ(Y −X ′β)−

∫
1(Y ≥ t) exp{g(t−X ′β)}[ḣ(t−X ′β)

+ ġ(t−X ′β)h(t−X ′β)
]

dt

}
,

l̈gg(β, g; Z)[h1, h2]

= −
∫

1(Y ≥ t) exp{g(t−X ′β)}h1(t−X ′β)h2(t−X ′β) dt,

where h ∈ H = {h : h = ∂gη

∂η
|η=0, gη ∈ Hp}. All the above derivatives are continuous

and bounded due to Conditions C.1-C.3 and C.6.

Lemma A.2. For g0 ∈ Hp, there exists a g0,n ∈ Hp
n such that

‖g0,n − g0‖∞ = O(n−pν).
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Proof: This is a direct result according to Corollary 6.21 of Schumaker (1981),

that is, there exists a g0,n ∈ Hp
n such that ‖g0,n − g0‖∞ = O(q−p

n ) = O(n−pν).

Lemma A.3. Let θ0,n = (β0, g0,n) with g0,n being defined in Lemma A.2. Denote

Fn = {l(θ; Z)− l(θ0,n; Z) : θ ∈ Θp
n}. Assume that Conditions C.1-C.3 and C.6 hold,

then the ε-bracketing number associated with ‖ · ‖∞ norm for Fn is bounded by

(1/ε)cqn+d, i.e., N[ ](ε,Fn, ‖ · ‖∞) . (1/ε)cqn+d for some constant c > 0.

Proof: By the calculation of Shen and Wong (1994) in page 597, denote dxe

as the ceiling of the number x, then for any ε > 0, there exists a set of brackets

{[gL
i , gU

i ] : i = 1, 2, · · · , d(1/ε)c1qne} such that for any g ∈ Hp
n, gL

i (t) ≤ g(t) ≤ gU
i (t)

for some 1 ≤ i ≤ d(1/ε)c1qne and all t ∈ [a, b], and ‖gU
i − gL

i ‖∞ ≤ ε. Since B ⊆ Rd is

compact, B can be covered by dc2(1/ε)
de balls with radius ε; that is, for any β ∈ B,

there exists an 1 ≤ s ≤ dc2(1/ε)
de such that |β−βs| ≤ ε and hence |x′(β−βs)| ≤ Cε

for any x ∈ X because of Condition C.2(a), where C > 0 is a constant. This indicates

that t−x′β ∈ [t−x′βs−Cε, t−x′βs +Cε] for any x and t. Assume gL
i (t−x′βs +ci,t

1 ε)

and gU
i (t− x′βs + ci,t

2 ε) are the minimum and maximum values of gL
i and gU

i within

the interval [t − x′βs − Cε, t − x′βs + Cε], where ci,t
1 and ci,t

2 are two constants that

only depend on gL
i , gU

i and t with |ci,t
1 |, |ci,t

2 | ≤ C. So we have

gL
i (t− x′βs + ci,t

1 ε) ≤ gL
i (t− x′β) ≤ g(t− x′β) ≤ gU

i (t− x′β) ≤ gU
i (t− x′βs + ci,t

2 ε).

Hence we can construct a set of brackets

{
[mL

i,s(Z),mU
i,s(Z)] : i = 1, · · · , d(1/ε)c1qne; s = 1, · · · , dc2(1/ε)

de}

that for any m(θ; Z) ∈ Fn, there exists a pair (i, s) such that for any sample point
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Z, m(θ; Z) ∈ [mL
i,s(Z),mU

i,s(Z)], where

mL
i,s(Z) =

{
∆gL

i (Y −X ′βs + ci,Y
1 ε)−

∫
1(Y ≥ t) exp{gU

i (t−X ′βs + ci,t
2 ε)} dt

}

− l(θ0,n; Z)

=

{
∆gL

i (εs + ci,Y
1 ε)−

∫ b

a

1(ε0 ≥ t) exp{gU
i (ts + ci,t

2 ε)} dt

}
− l(θ0,n; Z)

and

mU
i,s(Z) =

{
∆gU

i (Y −X ′βs + ci,Y
2 ε)−

∫
1(Y ≥ t) exp{gL

i (t−X ′βs + ci,t
1 ε)} dt

}

− l(θ0,n; Z)

=

{
∆gU

i (εs + ci,Y
2 ε)−

∫ b

a

1(ε0 ≥ t) exp{gL
i (ts + ci,t

1 ε)} dt

}
− l(θ0,n; Z),

with

(3.19) εs = Y −X ′βs, ε0 = Y −X ′β0 and ts = t−X ′(βs − β0)

for notational simplicity. It then follows that

|mU
i,s(Z)−mL

i,s(Z)| ≤ |gU
i (εs + ci,Y

2 ε)− gL
i (εs + ci,Y

1 ε)|

+

∫ b

a

| exp{gU
i (ts + ci,t

2 ε)} − exp{gL
i (ts + ci,t

1 ε)}| dt

= A1 + A2.

For A1, by subtracting and adding the terms g(εs + ci,Y
2 ε) and g(εs + ci,Y

1 ε) and

applying the Taylor expansion to g at εs + ci,Y
1 ε, we have

A1 ≤ |gU
i (εs + ci,Y

2 ε)− g(εs + ci,Y
2 ε)|+ |g(εs + ci,Y

2 ε)− g(εs + ci,Y
1 ε)|+

+ |g(εs + ci,Y
1 ε)− gL

i (εs + ci,Y
1 ε)|

≤ ‖gU
i − g‖∞ + |ġ(εs + c̃ε)(ci,Y

2 − ci,Y
1 )ε|+ ‖g − gL

i ‖∞

. ‖gU
i − gL

i ‖∞ + |(ci,Y
2 − ci,Y

1 )|ε

. ε + 2Cε . ε,
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where the third inequality holds because ‖gU
i − g‖∞, ‖g − gL

i ‖∞ ≤ ‖gU
i − gL

i ‖∞ and

ġ is bounded. For A2, by using the similar arguments as for A1, we have

A2 ≤
∫ b

a

{| exp{gU
i (ts + ci,t

2 ε)} − exp{g(ts + ci,t
2 ε)}|

+ | exp{g(ts + ci,t
2 ε)} − exp{g(ts + ci,t

1 ε)}|

+ | exp{g(ts + ci,t
1 ε)} − exp{gL

i (ts + ci,t
1 ε)}|} dt

=

∫ b

a

{| exp{g̃U
i (ts + ci,t

2 ε)}(gU
i − g)(ts + ci,t

2 ε)|

+ | exp{g(ts + c̃ε)}(ci,t
2 − ci,t

1 )ε|

+ | exp{g̃L
i (ts + ci,t

1 ε)}(gL
i − g)(ts + ci,t

1 ε)|} dt

. ‖gU
i − g‖∞ + |(ci,t

2 − ci,t
1 )ε|+ ‖g − gL

i ‖∞ . ε.

The first equality above holds because g̃U
i = g + ξ(gU

i − g) for some 0 < ξ < 1 and

thus |g̃U
i (t)| ≤ |g(t)| + ε, which is bounded in [a, b], and similarly for g̃L

i . Hence

‖mU
i −mL

i ‖∞ . ε and the ε-bracketing number associated with ‖ · ‖∞ norm for the

class Fn follows

N[ ](ε,Fn, ‖ · ‖∞) ≤ (1/ε)c1qnc2(1/ε)
d . (1/ε)c1qn+d.

Lemma A.4. Let h∗j(t) = −ġ0(t)P (Xj|ε0 ≥ t), j = 1, · · · , d. This is the least

favorable direction for the score function of the nonparametric component g0, which

will be shown in the proof of Theorem 3.3.2. Assume Conditions C.1-C.6 hold, then

there exists an h∗j,n ∈ H2
n such that ‖h∗j,n − h∗j‖∞ = O(n−2ν).

Proof: By Conditions C.4-C.5, the conditional density of ε0 given X, i.e.,

fε0|X(t|X = x) = f(t)ḠC|X(t + x′β0|X = x) + gC|X(t + x′β0|X = x)F̄ (t)

is uniformly bounded for all x ∈ X , and its derivative with respect to t, that is,

ḟε0|X(t|X = x) = ḟ(t)ḠC|X(t + x′β0|X = x)− f(t)gC|X(t + x′β0|X = x)

+ ġC|X(t + x′β0|X = x)F̄ (t)− gC|X(t + x′β0|X = x)f(t)
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is also uniformly bounded. Hence the density of ε0

fε0(t) =

∫

X
fε0|X(t|X = x)fX(x) dx

and its derivative

ḟε0(t) =

∫

X
ḟε0|X(t|X = x)fX(x) dx

are bounded. Thus the first and second derivatives of P (ε0 ≥ t), i.e., −fε0(t) and

−ḟε0(t), are both bounded. In addition, under Condition C.2(a), the first and second

derivatives of P [X1(ε0 ≥ t)] with respect to t, i.e.,

dP [X1(ε0 ≥ t)]

dt
= −

∫

X
xfX(x)fε0|X(t|X = x) dx

and

d2P [X1(ε0 ≥ t)]

dt2
= −

∫

X
xfX(x)ḟε0|X(t|X = x) dx

are also bounded. Therefore, P [X|ε0 ≥ t] = P [X1(ε0 ≥ t)]/P (ε0 ≥ t) has a bounded

second derivative with respect to t for t ≤ τ , where τ is the truncation time defined in

Condition C.3. Thus P [X|ε0 ≥ t] ∈ H2. Moreover, since g0 ∈ Hp for p ≥ 3, we have

ġ0(t) ∈ Hp−1 with p− 1 ≥ 2. Thus according to Corollary 6.21 of Schumaker (1981),

there exists an h∗j,n ∈ Hmin(p−1,2)
n = H2

n such that ‖h∗j − h∗j,n‖∞ = O(q−2
n ) = O(n−2ν).

Lemma A.5. Let h∗j , j = 1, · · · , d be the function defined in Lemma A.4 and

denote the class of function

F j
n(η) = {l̇g(θ; z)[h∗j − h] : θ ∈ Θp

n, h ∈ H2
n and d(θ, θ0) ≤ η, ‖h− h∗j‖∞ ≤ η}.

Assume Conditions C.1-C.6 hold, then N[ ](ε,F j
n(η), ‖ · ‖∞) . (η/ε)cqn+d for some

constant c > 0.

Proof: We shall use the similar argument for the bracketing number of the class
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Fn in Lemma A.3. First, define the classes of functions

Hp
n(η) = {g ∈ Hp

n, ‖g − g0‖2 ≤ η},

H2
n,j(η) = {h ∈ H2

n, ‖h− h∗j‖∞ ≤ η}, and

B(η) = {β ∈ B ⊆ Rd, |β − β0| ≤ η},

then it follows by the calculation of Shen and Wong (1994) in page 597 that

N[ ](ε,Hp
n(η), ‖ · ‖∞) ≤ (η/ε)c1qn and N[ ](ε,H2

n,j(η), ‖ · ‖∞) ≤ (η/ε)c2qn

for some constants c1, c2 > 0. In addition, since B ⊆ Rd is compact, the covering

number for B(η) follows N(ε,B(η), ‖ · ‖∞) ≤ c3(η/ε)d.

Then as in the proof of Lemma A.3, let εs, ε0 and ts be defined in (3.19) for

notational simplicity. gL
i and gU

i are functions that bracket g with ‖gU
i − gL

i ‖∞ ≤ ε;

hL
k and hU

k are functions that bracket h with ‖hU
k − hL

k ‖∞ ≤ ε; and βs satisfies

t−x′β ∈ [t−x′βs−Cε, t−x′βs+Cε] = [ts−Cε, ts+Cε] for any x, t and some constant

C > 0. Moreover, let cj,k,t
1 and cj,k,t

2 be two constants that (h∗j − hU
k )(ts + cj,k,t

1 ε)

and (h∗j − hL
k )(ts + cj,k,t

2 ε) are the minimum and maximum values of (h∗j − hU
k ) and

(h∗j −hL
k ) in [ts−Cε, ts +Cε], respectively; and let ci,t

3 and ci,t
4 be two constants that

gL
i (ts + ci,t

3 ε) and gU
i (ts + ci,t

4 ε) are the minimum and maximum values of gL
i and gU

i

in [ts −Cε, ts + Cε], respectively. Then we can construct a set of brackets for F j
n(η)

as

{
[dL

i,k,s(Z), dU
i,k,s(Z)] : 1 ≤ i ≤ d(η/ε)c1qne; 1 ≤ k ≤ d(η/ε)c2qne; 1 ≤ s ≤ dc3(η/ε)de}

that for any l̇g(θ; Z)[h∗j − h] ∈ F j
n(η), there exists a triplet (i, k, s) such that

l̇g(θ; Z)[h∗j − h] ∈ [dL
i,k,s(Z), dU

i,k,s(Z)]
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for any sample point Z, where

dL
i,k,s(Z) = ∆(h∗j − hU

k )(εs + cj,k,Y
1 ε)

−
∫ b

a

1(ε0 ≥ t)egU
i (ts+ci,t

4 ε)(h∗j − hL
k )(ts + cj,k,t

2 ε)1{(h∗j − h)(ts + cj,k,t
2 ε) ≥ 0} dt

−
∫ b

a

1(ε0 ≥ t)egL
i (ts+ci,t

3 ε)(h∗j − hL
k )(ts + cj,k,t

2 ε)1{(h∗j − h)(ts + cj,k,t
2 ε) < 0} dt

and

dU
i,k,s(Z) = ∆(h∗j − hL

k )(εs + cj,k,Y
2 ε)

−
∫ b

a

1(ε0 ≥ t)egL
i (ts+ci,t

3 ε)(h∗j − hU
k )(ts + cj,k,t

1 ε)1{(h∗j − h)(ts + cj,k,t
1 ε) ≥ 0} dt

−
∫ b

a

1(ε0 ≥ t)egU
i (ts+ci,t

4 ε)(h∗j − hU
k )(ts + cj,k,t

1 ε)1{(h∗j − h)(ts + cj,k,t
1 ε) < 0} dt.

Then it follows that

|dU
i,k,s(Z)− dL

i,k,s(Z)| ≤ |(h∗j − hL
k )(εs + cj,k,t

2 ε)− (h∗j − hU
k )(εs + cj,k,t

1 ε)|

+

∫ b

a

∣∣egU
i (ts+ci,t

4 ε)(h∗j − hL
k )(ts + cj,k,t

2 ε)1{(h∗j − h)(ts + cj,k,t
2 ε) ≥ 0}

− egL
i (ts+ci,t

3 ε)(h∗j − hU
k )(ts + cj,k,t

1 ε)1{(h∗j − h)(ts + cj,k,t
1 ε) ≥ 0}

∣∣ dt

+

∫ b

a

∣∣egL
i (ts+ci,t

3 ε)(h∗j − hL
k )(ts + cj,k,t

2 ε)1{(h∗j − h)(ts + cj,k,t
2 ε) < 0}

− egU
i (ts+ci,t

4 ε)(h∗j − hU
k )(ts + cj,k,t

1 ε)1{(h∗j − h)(ts + cj,k,t
1 ε) < 0}

∣∣ dt

= A1 + A2 + A3.

For term A1, by subtracting and adding the terms hL
k (εs + cj,k,t

1 ε), h(εs + cj,k,t
1 ε) and

h(εs + cj,k,t
2 ε), and applying the Taylor expansions for h∗j and h, we have

A1 ≤ |h∗j(εs + cj,k,t
2 ε)− h∗j(εs + cj,k,t

1 ε)|+ |hU
k (εs + cj,k,t

1 ε)− hL
k (εs + cj,k,t

1 ε)|

+ |hL
k (εs + cj,k,t

1 ε)− h(εs + cj,k,t
1 ε)|+ |h(εs + cj,k,t

1 ε)− h(εs + cj,k,t
2 ε)|

+ |h(εs + cj,k,t
2 ε)− hL

k (εs + cj,k,t
2 ε)|

. |cj,k,t
2 − cj,k,t

1 |ε + ‖hU
k − hL

k ‖∞ + ‖hL
k − h‖∞ + |cj,k,t

2 − cj,k,t
1 |ε + ‖h− hL

k ‖∞

. |cj,k,t
2 − cj,k,t

1 |ε + ‖hU
k − hL

k ‖∞ . ε.
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Next for A2, first, by subtracting and adding the term egU
i (ts+ck,t

4 ε)(h∗j−hU
k )(ts+cj,k,t

1 ε)

we have

A′
2 =

∫ b

a

|egU
i (ts+ci,t

4 ε)(h∗j − hL
k )(ts + cj,k,t

2 ε)− egL
i (ts+ci,t

3 ε)(h∗j − hU
k )(ts + cj,k,t

1 ε)| dt

≤
∫ b

a

egU
i (ts+ci,t

4 ε)
∣∣(h∗j − hL

k )(ts + cj,k,t
2 ε)− (h∗j − hU

k )(ts + cj,k,t
1 ε)

∣∣ dt

+

∫ b

a

∣∣{egU
i (ts+ci,t

4 ε) − egL
i (ts+ci,t

3 ε)}(h∗j − hU
k )(ts + cj,k,t

1 ε)
∣∣ dt

= A4 + A5.

By the above result for A1, since ‖gU
i ‖∞ ≤ ‖g‖∞ + ‖gU

i − g‖∞ ≤ ‖g‖∞ + ε, which is

bounded, we have A4 ≤ ‖A1‖∞
∫ b

a
egU

i (ts+ci,t
4 ε) dt . ε. Then for A5, using the similar

argument for A1, it follows that

A5 ≤ ‖h∗j − hU
k ‖∞

∫ b

a

{|egU
i (ts+ci,t

4 ε) − eg(ts+ci,t
4 ε)|+ |eg(ts+ci,t

4 ε) − eg(ts+ci,t
3 ε)|

+ |eg(ts+ci,t
3 ε) − egL

i (ts+ci,t
3 ε)|} dt

≤ (‖h∗j − h‖∞ + ‖h− hU
k ‖∞)

{∫ b

a

[
eg̃U

i (ts+ci,t
4 ε)|(gU

i − g)(ts + ci,t
4 ε)|

+ eg(ts+c̃ε)|(ci,t
4 − ci,t

3 )ε|+ eg̃L
i (ts+ci,t

3 ε)|(g − gL
i )(ts + ci,t

3 ε)|] dt

}

. (η + ε){‖gU
i − g‖∞ + |ci,t

4 − ci,t
3 |ε + ‖g − gL

i ‖∞}

. (η + ε)ε . ε,

where g̃U
i = g + ξ1(g

U
i − g) and g̃L

i = g + ξ2(g
L
i − g) for some constants ξ1, ξ2 ∈ (0, 1),
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and c̃ = ci,t
3 + ξ(ci,t

4 − ci,t
3 ) for some ξ ∈ (0, 1). Thus A′

2 . ε. Therefore,

A2 ≤
∫ b

a

|egU
i (ts+ci,t

4 ε)(h∗j − hL
k )(ts + cj,k,t

2 ε)− egL
i (ts+ci,t

3 ε)(h∗j − hU
k )(ts + cj,k,t

1 ε)|

· 1{(h∗j − h)(ts + cj,k,t
2 ε) ≥ 0} dt

+

∫ b

a

egL
i (ts+ci,t

3 ε)|(h∗j − hU
k )(ts + cj,k,t

1 ε)|

· |1{(h∗j − h)(ts + cj,k,t
2 ε) ≥ 0} − 1{(h∗j − h)(ts + cj,k,t

1 ε) ≥ 0}| dt

. A′
2 +

∫ b

a

|1{(h∗j − h)(ts + cj,k,t
2 ε) ≥ 0} − 1{(h∗j − h)(ts + cj,k,t

1 ε) ≥ 0}| dt

. ε + |(cj,k,t
2 − cj,k,t

1 )ε| . ε,

where the second inequality holds since ‖gL
i ‖∞ ≤ ‖g‖∞+ ‖gL

i − g‖∞ ≤ ‖g‖∞+ ε and

thus is bounded, then

‖egL
i (ts+ci,t

3 ε)(h∗j − hU
k )(ts + cj,k,t

1 ε)‖∞ ≤ ‖egL
i ‖∞(‖h∗j − h‖∞ + ‖h− hU

k ‖∞) . (η + ε),

which is bounded. Finally, by using the same argument as for A2, we can also show

that A3 . ε. Hence ‖dU
i,k,s(Z)− dL

i,k,s(Z)‖∞ . ε. Therefore, the ε-bracketing number

for the class F j
n(η) is bounded by (η/ε)c1qn(η/ε)c2qnc3(η/ε)d, that is,

N[ ](ε,F j
n(η), ‖ · ‖∞) . (η/ε)(c1+c2)qn+d.

Lemma A.6. For j = 1, · · · , d, define the two classes of functions as

Fβ
n,j(η) = {l̇βj

(θ; z)− l̇βj
(θ0; z) : θ ∈ Θp

n, ġ ∈ Hp−1
n and d(θ, θ0) ≤ η, ‖ġ − ġ0‖2 ≤ η},

and

Fg
n,j(η) = {l̇g(θ; z)[h∗j ]− l̇g(θ0; z)[h∗j ] : θ ∈ Θp

n and d(θ, θ0) ≤ η},

where l̇βj
(θ; Z) is the jth element of l̇β(θ; Z) and h∗j is defined in Lemma A.4.

Assume Conditions C.1-C.6 hold, then N[ ](ε,Fβ
n,j(η), ‖ · ‖∞) . (η/ε)c1qn+d and

N[ ](ε,Fg
n,j(η), ‖ · ‖∞) . (η/ε)c2qn+d for some constants c1, c2 > 0.
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Proof: First, for the following classes of functions

Hp
n(η) = {g ∈ Hp

n, ‖g − g0‖2 ≤ η},

Hp−1
n (η) = {ġ ∈ Hp−1

n , ‖ġ − ġ0‖2 ≤ η} and

B(η) = {β ∈ B ⊆ Rd, |β − β0| ≤ η},

by the same argument in the proof of Lemma A.5, we have

N[ ](ε,Hp
n(η), ‖ · ‖∞) ≤ (η/ε)c1qn , N[ ](ε,Hp−1

n (η), ‖ · ‖∞) ≤ (η/ε)c2qn ,

and N(ε,B(η), ‖ · ‖∞) ≤ c3(η/ε)d for some constants c1, c2, c3 > 0.

Then using the similar argument as in the proof of Lemma A.5, let gL
i and gU

i be

functions that bracket g with ‖gU
i − gL

i ‖∞ ≤ ε; ġL
k and ġU

k be functions that bracket

ġ with ‖ġU
k − ġL

k ‖∞ ≤ ε; and let βs satisfy t− x′β ∈ [t− x′βs − Cε, t− x′βs + Cε] =

[ts − Cε, ts + Cε] for any x, t and some constant C > 0. Moreover, let ck,t
1 and

ck,t
2 be two constants that ġL

k (ts + ck,t
1 ε) and ġU

k (ts + ck,t
2 ε) are the minimum and

maximum values of ġL
k and ġU

k in [ts − Cε, ts + Cε], respectively; let ci,t
3 and ci,t

4 be

two constants that gL
i (ts + ci,t

3 ε) and gU
i (ts + ci,t

4 ε) are the minimum and maximum

values of gL
i and gU

i in [ts − Cε, ts + Cε], respectively; and let cj,t
5 and cj,t

6 be two

constants that h∗j(ts + cj,t
5 ε) and h∗j(ts + cj,t

6 ε) are the minimum and maximum values

of h∗j in [ts − Cε, ts + Cε]. Then we can similarly construct a set of brackets for

Fβ
n,j(η) as

{
[uL

i,k,s(Z), uU
i,k,s(Z)] : 1 ≤ i ≤ d(η/ε)c1qne; 1 ≤ k ≤ d(η/ε)c2qne; 1 ≤ s ≤ dc3(η/ε)de}

that for any element in Fβ
n,j(η), there exists a triplet (i, k, s) such that

l̇βj
(θ; Z)− l̇βj

(θ0; Z) ∈ [uL
i,k,s(Z), uU

i,k,s(Z)]
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for any sample point Z (without loss of generality, assume Xj is nonnegative, for

negative Xj, just switch the lower and upper brackets), where

uL
i,k,s(Z) = −Xj

{
∆ġU

k (εs + ck,Y
2 ε)

−
∫ b

a

1(ε0 ≥ t)egL
i (ts+ci,t

3 ε)ġL
k (ts + ck,t

1 ε)1{ġ(ts + ck,t
1 ε) ≥ 0} dt

−
∫ b

a

1(ε0 ≥ t)egU
i (ts+ci,t

4 ε)ġL
k (ts + ck,t

1 ε)1{ġ(ts + ck,t
1 ε) < 0} dt

}
− l̇βj

(β0, g0; Z)

and

uU
i,k,s(Z) = −Xj

{
∆ġL

k (εs + ck,Y
1 ε)

−
∫ b

a

1(ε0 ≥ t)egU
i (ts+ci,t

4 ε)ġU
k (ts + ck,t

2 ε)1{ġ(ts + ck,t
2 ε) ≥ 0} dt

−
∫ b

a

1(ε0 ≥ t)egL
i (ts+ci,t

3 ε)ġU
k (ts + ck,t

2 ε)1{ġ(ts + ck,t
2 ε) < 0} dt

}
− l̇βj

(β0, g0; Z),

with εs and ts being defined in (3.19). Also we can construct a bracket for Fg
n,j(η) as

{
[vL

i,s(Z), vU
i,s(Z)] : 1 ≤ i ≤ d(η/ε)c1qne; 1 ≤ s ≤ dc3(η/ε)de}

that for any element in Fg
n,j(η), there exists a pair (i, s) such that

l̇g(θ; Z)[h∗j ]− l̇g(θ0; Z)[h∗j ] ∈ [vL
i,s(Z), vU

i,s(Z)]

for any sample point Z, where

vL
i,s(Z) =

{
∆h∗j(εs + cj,Y

5 ε)

−
∫ b

a

1(ε0 ≥ t)egU
i (ts+ci,t

4 )h∗j(ts + cj,t
6 ε)1{h∗j(ts + cj,t

6 ε) ≥ 0} dt

−
∫ b

a

1(ε0 ≥ t)egL
i (ts+ci,t

3 )h∗j(ts + cj,t
6 ε)1{h∗j(ts + cj,t

6 ε) < 0} dt

}
− l̇g(θ0; Z)[h∗j ]
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and

vU
i,s(Z) =

{
∆h∗j(εs + cj,Y

6 ε)

−
∫ b

a

1(ε0 ≥ t)egL
i (ts+ci,t

3 )h∗j(ts + cj,t
5 ε)1{h∗j(ts + cj,t

5 ε) ≥ 0} dt

−
∫ b

a

1(ε0 ≥ t)egU
i (ts+ci,t

4 )h∗j(ts + cj,t
5 ε)1{h∗j(ts + cj,t

5 ε) < 0} dt

}
− l̇g(θ0; Z)[h∗j ].

By using the similar argument for the proof of Lemma A.5, we can show that

‖uU
i,k,s(Z)− uL

i,k,s(Z)‖∞ . ε and ‖vU
i,s(Z)− vL

i,s(Z)‖∞ . ε. Therefore,

N[ ](ε,Fβ
n,j(η), ‖ · ‖∞) . (η/ε)c1qn(η/ε)c2qn(η/ε)d = (η/ε)(c1+c2)qn+d,

and

N[ ](ε,Fg
n,j(η), ‖ · ‖∞) . (η/ε)c1qn(η/ε)d = (η/ε)c1qn+d.

3.8.2 Proof of Theorem 3.3.1

We shall apply Theorem 1 of Shen and Wong (1994) to derive the convergence rate.

First, we verify their Condition C1. Since Pl(β, g; Z) is maximized at (β0, g0), its

first derivative at (β0, g0) is equal to 0. By Lemma A.1 that all the second derivatives

of l(β, g; Z) are continuous and bounded, so the Taylor expansion yields

Pl(β, g; Z)− Pl(β0, g0; Z)

=
1

2
P

{
(β − β0)

′l̈ββ(β0, g0; Z)(β − β0) + 2(β − β0)
′l̈βg(β0, g0; Z)[g − g0](3.20)

+ l̈gg(β0, g0; Z)[g − g0, g − g0]
}

+ o(d2(θ, θ0))

= A + o(d2(θ, θ0)),

where θ = (β, g) ∈ Θp
n. By the model assumption we have P{l̇g(β0, g0; Z)[h]|X} = 0

for all h ∈ {h = ∂gη

∂η
|η=0, gη ∈ Hp}. The result holds in conditional expectation
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because the log-likelihood l(β, g; Z) is from the conditional density of (Y, ∆, X) with

conditioning on X. Taking h to be g̈0 and ġ − ġ0 respectively, we have

P

{
∆g̈0(Y −X ′β0)−

∫
1(Y ≥ t) exp{g0(t−X ′β0)}g̈0(t−X ′β0) dt

∣∣∣∣X
}

= 0

and

P

{
∆(ġ− ġ0)(Y −X ′β0)−

∫
1(Y ≥ t) exp{g0(t−X ′β0)}(ġ− ġ0)(t−X ′β0) dt

∣∣∣∣X
}

= 0.

Then it follows

A = P

{
1

2

∫ τ

a

1(ε0 ≥ t) exp{g0(t)}
{−[ġ0(t)(β − β0)

′X]2

+ 2ġ0(t)(β − β0)
′X(g − g0)(t)− (g − g0)

2(t)
}

dt

}

= −P

{
1

2

∫ τ

a

1(ε0 ≥ t) exp{g0(t)}
[
ġ0(t)(β − β0)

′X − (g − g0)(t)
]2

dt

}

= −1

2

∫ τ

a

exp{g0(t)}P
{
1(ε0 ≥ t)

[
ġ0(t)(β − β0)

′X − (g − g0)(t)
]2}

dt.(3.21)

The integrand is from a to τ (≤ b) because of Condition C.3 and C.6. Denote

s0(t) = −ġ0(t), s1(t; ε0, X) = 1(ε0 ≥ t)(β − β0)
′X, and s2(t; ε0) = 1(ε0 ≥ t), then

P
{
1(ε0 ≥ t)[ġ0(t)(β − β0)

′X − (g − g0)(t)]
2
}

= P
{
[s0(t)s1(t; ε0, X) + (g − g0)(t)s2(t; ε0)]

2
}

≥ s2
0(t)P (s2

1) + (g − g0)
2(t)P (s2

2)− 2|s0(t)(g − g0)(t)P (s1s2)|(3.22)

Using the same argument in Wellner and Zhang (2007), page 2126, under Condition

C.7, we have [P (s1s2)]
2 ≤ (1− η)P (s2

1)P (s2
2) for some η ∈ (0, 1). It follows

(3.22) ≥ s2
0(t)P (s2

1) + (g − g0)
2(t)P (s2

2)

− (1− η)
1
2 · 2|s0(t){P (s2

1)}
1
2 | · |(g − g0)(t){P (s2

2)}
1
2 |

≥ {1− (1− η)
1
2}{s2

0(t)P (s2
1) + (g − g0)

2(t)P (s2
2)}

& ġ2
0(t)(β − β0)

′P [1(ε0 ≥ t)XX ′](β − β0) + (g − g0)
2(t)P [1(ε0 ≥ t)].
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Hence, we have

(3.21) . −
{

(β − β0)
′
[∫ τ

a

exp{g0(t)}ġ2
0(t)P [1(ε0 ≥ t)XX ′] dt

]
(β − β0)

+

∫ τ

a

exp{g0(t)}(g − g0)
2(t)P [1(ε0 ≥ t)] dt

}

= −(A1 + A2).

For A1, Condition C.3 implies that

P [1(ε0 ≥ t)XX ′] = P [XX ′P (ε0 ≥ t|X)] ≥ P [XX ′P (ε0 ≥ τ |X)] ≥ δP (XX ′).

Then Condition C.2(b) yields that P (XX ′) is positive definite and thus its smallest

eigenvalue λ1 > 0. In addition,
∫ τ

a
exp{g0(t)}ġ2

0(t) dt is bounded away from zero

since exp{g0(t)}, ġ2
0(t) ≥ 0 but not ≡ 0 for t ∈ [a, τ ]. Hence it follows that

A1 & (β − β0)
′P (XX ′)(β − β0) ≥ λ1|β − β0|2 & |β − β0|2.

For A2, Condition C.3 with the fact that exp{g0(t)} = dΛ0(t) yields

A2 ≥ P (ε0 ≥ τ)

∫ τ

a

(g − g0)
2(t) dΛ0(t) & ‖g − g0‖2

2.

Therefore

(3.21) . −(|β − β0|2 + ‖g − g0‖2
2) = −d2(θ, θ0),

and thus

Pl(β, g; Z)− Pl(β0, g0; Z) . −d2(θ, θ0) + o(d2(θ, θ0)) . −d2(θ, θ0),

i.e. P (l(θ0; Z)− Pl(θ; Z)) & d2(θ, θ0) for any θ ∈ Θp
n, which implies that

inf
{d(θ,θ0)≥ε,θ∈Θp

n}
P (l(θ0; Z)− l(θ; Z)) & ε2.

Hence Condition C1 of Shen and Wong (1994) in page 583 holds with the constant

α = 1 in their notation.
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Next we verify the Condition C2 of Shen and Wong (1994). Denote εβ = Y −X ′β

and tβ = t−X ′(β − β0) for notational simplicity. It follows that

[l(θ; Z)− l(θ0; Z)]2

=

{
∆g(εβ)−

∫ b

a

1(ε0 ≥ t)eg(tβ) dt−∆g0(ε0) +

∫ b

a

1(ε0 ≥ t)eg0(t) dt

}2

. ∆[g(εβ)− g0(ε0)]
2 +

{∫ b

a

1(ε0 ≥ t)[eg(tβ) − eg0(t)] dt

}2

. ∆[g(εβ)− g0(ε0)]
2 +

∫ b

a

[eg(tβ) − eg0(t)]2 dt

. ∆[g(εβ)− g(ε0)]
2 + ∆[g(ε0)− g0(ε0)]

2

+

∫ b

a

[eg(tβ) − eg(t)]2 dt +

∫ b

a

[eg(t) − eg0(t)]2 dt

= I1 + I2 + I3 + I4,

where the second inequality holds because of the Cauchy-Schwartz inequality

{∫ b

a

1(ε0 ≥ t)[eg(tβ) − eg0(t)] dt

}2

≤
{∫ b

a

1(ε0 ≥ t) dt

}{∫ b

a

[eg(tβ) − eg0(t)]2 dt

}

≤ (b− a)

∫ b

a

[eg(tβ) − eg0(t)]2 dt,

and the third inequality holds by subtracting and adding the terms g(ε0) and eg(t).

For I1, since ġ ∈ Hp−1
n is bounded, applying Taylor expansion for g at ε0 we get

PI1 = P
{
∆[g(ε0 −X ′(β − β0))− g(ε0)]

2
}

≤ P [ġ(ε0 −X ′(β̃ − β0))X
′(β − β0)]

2

. P [X ′(β − β0)]
2 = (β − β0)

′P (XX ′)(β − β0)

≤ λd|β − β0|2 . |β − β0|2,

where λd is the largest eigenvalue of P (XX ′). For I2, since the density function for

(Y, ∆ = 1, X) is

fY,∆,X(y, 1, x) = λ0(y − x′β0)e
−Λ0(y−x′β0)ḠC|X(y|X = x)fX(x),
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it follows that

PI2 = P [∆(g − g0)
2(ε0)]

=

∫

X

{∫ b

a

(g(t)− g0(t))
2λ0(t)e

−Λ0(t)ḠC|X(t + x′β0|X = x) dt

}
fX(x) dx(3.23)

≤
∫

X

{∫ b

a

(g(t)− g0(t))
2λ0(t) dt

}
fX(x) dx

=

∫

X
‖g − g0‖2

2 · fX(x) dx = ‖g − g0‖2
2.

Then for I3, since g ∈ Hp
n is bounded, it follows that

PI3 = P

∫ b

a

[eg(t−X′(β−β0)) − eg(t)]2 dt

= P

∫ b

a

e2g(t−X′(β̃−β0))[X ′(β − β0)]
2 dt

.
∫ b

a

P [X ′(β − β0)]
2 dt

. (β − β0)
′P [XX ′](β − β0) . |β − β0|2.

Finally for I4, by the Taylor expansion for eg(t) at g0, we have

PI4 =

∫ b

a

[eg(t) − eg0(t)]2 dt

≤
∫ b

a

e2g̃(t)(g(t)− g0(t))
2 dt

=

∫ b

a

e2g̃(t)−g0(t)(g(t)− g0(t))
2 dΛ0(t)

.
∫ b

a

(g(t)− g0(t))
2 dΛ0(t) = ‖g − g0‖2

2,

where g̃(t) = g0(t)+ξ(g−g0)(t) for some 0 < ξ < 1 and hence is bounded. Therefore

we have

P (l(θ; Z)− l(θ0; Z))2 . |β − β0|2 + ‖g − g0‖2
2 = d2(θ, θ0)

for any θ ∈ Θp
n, which implies that

sup
{d(θ,θ0)≤ε,θ∈Θp

n}
Var(l(θ0; Z)− l(θ; Z)) ≤ sup

{d(θ,θ0)≤ε,θ∈Θp
n}

P (l(θ0; Z)− l(θ; Z))2 . ε2.
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So Condition C2 of Shen and Wong (1994) in page 583 holds with the constant β = 1

in their notation.

Finally, we verify the Condition C3 in Shen and Wong (1994). By lemma A.3, for

Fn = {l(θ; Z)− l(θ0,n; Z) : θ ∈ Θp
n}, we have N[ ](ε,Fn, ‖ ·‖∞) . (1/ε)cqn+d. Then by

the fact that the covering number is bounded by the bracketing number, it follows

that

H(ε,Fn, ‖ · ‖∞) = log N(ε,Fn, ‖ · ‖∞) . (cqn + d) log(1/ε) . nν log(1/ε).

So Condition C3 of Shen and Wong (1994) in page 583 holds with the constants

2r0 = ν and r = 0+ in their notation.

Therefore, the constant τ in Theorem 1 of Shen and Wong (1994), page 584, is

1−ν
2
− log log n

2 log n
. Since log log n

2 log n
→ 0 as n → 0, we can pick a ν̃ slightly greater than ν such

that 1−ν̃
2
≤ 1−ν

2
− log log n

2 log n
for n large. We still denote the ν̃ as ν and then τ = 1−ν

2
.

Then by definition θ̂n maximizes the empirical log-likelihood Pnl(θ; Z) over the sieve

space Θp
n, so θ̂n satisfies the inequality (1.1) in Shen and Wong (1994) with ηn = 0. By

Lemma A.2, there exists an g0,n ∈ Hp
n such that ‖g0,n − g0‖∞ = O(n−pν). Moreover,

by the Taylor expansion for P [l(β0, g0; Z) − l(β, g; Z)] in (3.20) and plugging in

θ = θ0,n = (β0, g0,n), the Kullback-Leilber pseudodistance of θ0,n = (β0, g0,n) and

θ0 = (β0, g0) follows

K(θ0,n, θ0) = P [l(θ0; Z)− l(θ0,n; Z)]

= −P
{
l̈gg(β0, g0)[g0,n − g0, g0,n − g0]

}
+ o(‖g0,n − g0‖2

2)

= P

{∫ b

a

1(ε0 ≥ t) exp{g0(t)}(g0,n(t)− g0(t))
2 dt

}
+ o(‖g0,n − g0‖2

2)

≤
∫ b

a

(g0,n(t)− g0(t))
2 dΛ0(t) + o(‖g0,n − g0‖2

2)

= ‖g0,n − g0‖2
2 + o(‖g0,n − g0‖2

2) = O(n−2pν),
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where the last equality holds because ‖g0,n− g0‖2 ≤ ‖g0,n− g0‖∞ = O(n−pν). There-

fore K1/2(θ0,n, θ0) = O(n−pν). Thus by Theorem 1 of Shen and Wong (1994), we

obtain the convergence rate for θ̂n as

d(θ̂n, θ0) = Op{max(n−(1−ν)/2, n−pν , n−pν)} = Op{n−min(pν,(1−ν)/2)}.

This completes the proof of our Theorem 3.3.1.

3.8.3 Proof of Theorem 3.3.2

We prove the theorem by checking the assumptions A1’, A2-A4 and A5’-A6’

of Corollary 3.6.2. Here the criterion function of a single observation is the log-

likelihood function l(β, g; Z). So instead of using m, we use l to denote the criterion

function. All the first and second derivatives of l(β, g; Z) with respect to β and g are

calculated in Lemma A.1. By Theorem 3.3.1, note that assumption A1’ holds with

γ = min(pν, (1− ν)/2) and the norm ‖ · ‖2 defined in (3.11). A2 automatically holds

by the model assumption. For A3, we need to find an h∗ = (h∗1, · · · , h∗d)
′ such that

S̈βg(β0, g0)[h]− S̈gg(β0, g0)[h
∗, h]

= P{l̈βg(β0, g0; Z)[h]− l̈gg(β0, g0; Z)[h∗, h]} = 0

for all h ∈ H = {h : h = ∂gη

∂η
|η=0, gη ∈ Hp}. Note that

P{l̈βg(β0, g0; Z)[h]− l̈gg(β0, g0; Z)[h∗, h]}

= P

{
−X

[
∆ḣ(ε0)−

∫ b

a

1(ε0 ≥ t) exp{g0(t)}ḣ(t) dt

]

+

∫ b

a

1(ε0 ≥ t) exp{g0(t)}h(t)[Xġ0(t) + h∗(t)] dt

}
.
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As in the proof of Theorem 3.3.1, P{l̇g(β0, g0; Z)[h]|X} = 0 by the model assumption

for all h ∈ H. Therefore, by taking h to be ḣ, we have

P

{
−X

[
∆ḣ(ε0)−

∫ b

a

1(ε0 ≥ t) exp{g0(t)}ḣ(t) dt

]}

= P

{
−X · P

[
∆ḣ(ε0)−

∫ b

a

1(ε0 ≥ t) exp{g0(t)}ḣ(t) dt

∣∣∣∣X
]}

= P{−X · 0} = 0.

Hence we only need to find a h∗ such that

P

{∫ b

a

1(ε0 ≥ t) exp{g0(t)}h(t)[Xġ0(t) + h∗(t)] dt

}

=

∫ b

a

exp{g0(t)}h(t)
{
ġ0(t)P [1(ε0 ≥ t)X] + h∗(t)P [1(ε0 ≥ t)]

}
dt = 0.

One obvious choice for h∗ is

(3.24) h∗(t) = −ġ0(t)
P [1(ε0 ≥ t)X]

P [1(ε0 ≥ t)]
= −ġ0(t)P (X|ε0 ≥ t).

Then it follows that

l̇β(β0, g0; Z)− l̇g(β0, g0; Z)[h∗]

= ∆{−ġ0(Y −X ′β0)}
{
X − P (X|ε0 ≥ Y −X ′β0)

}

−
∫

1(Y −X ′β0 ≥ t)
{
X − P (X|ε0 ≥ t)

}{−ġ0(t)} exp{g0(t)} dt

=

∫ {
X − P (X|ε0 ≥ t)

}{−ġ0(t)} dM(t)

=

∫ {
X − P (X|Y −X ′β0 ≥ t)

}{−ġ0(t)} dM(t),

which is the efficient score function for β0 with

M(t) = ∆I(Y −X ′β0 ≤ t)−
∫ t

−∞
I(Y −X ′β0 ≥ s) exp{g0(s)} ds.

We denote the efficient score function as l∗β0
(Y, ∆, X). Then by the fact that

P l̇β(β, g; Z) =

∫

Z
l̇β(β, g; z)f(z; β, g) dz = 0,
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where f(z; β, g) is the density function for Z = (Y, ∆, X), it follows that for any

h ∈ H,

0 =
∂

∂η
P l̇β(β, g + ηh; Z)|η=0

=

∫

Z
l̈βg(β, g; z)[h]f(z; β, g) dz +

∫

Z
l̇β(β, g; z)ḟg(z; β, g)[h] dz

= P l̈βg(β, g; Z)[h] +

∫

Z
l̇β(β, g; Z)l̇′g(β, g; z)[h]f(z; β, g) dz

= P l̈βg(β, g; Z)[h] + P
{
l̇β(β, g; Z)l̇′g(β, g; Z)[h]

}
,

and hence P l̈βg(β, g; Z)[h] = −P
{
l̇β(β, g; Z)l̇′g(β, g; Z)[h]

}
. Similarly, we have

P l̈gβ(β, g; Z)[h] = −P
{
l̇g(β, g; Z)[h]l̇′β(β, g; Z)

}
,

P l̈ββ(β, g; Z) = −P
{
l̇β(β, g; Z)l̇′β(β, g; Z)

}
,

P l̈gg(β, g; Z)[h1, h2] = −P
{
l̇g(β, g; Z)[h1]l̇

′
g(β, g; Z)[h2]

}
.

Then together with the fact that P{l̈βg(β0, g0; Z)[h∗]− l̈gg(β0, g0; Z)[h∗,h∗]} = 0, the

matrix A in assumption A3 of Theorem 3.6.1 follows

A = P{−l̈ββ(β0, g0; Z) + l̈gβ(β0, g0; Z)[h∗]}

= P{−l̈ββ(β0, g0; Z) + l̈gβ(β0, g0; Z)[h∗]

+ l̈βg(β0, g0; Z)[h∗]− l̈gg(β0, g0; Z)[h∗,h∗]}

= P{l̇β(β0, g0; Z)l̇′β(β0, g0; Z)− l̇g(β0, g0; Z)[h∗]l̇′β(β0, g0; Z)

− l̇β(β0, g0; Z)l̇′g(β0, g0; Z)[h∗] + l̇g(β0, g0; Z)[h∗]l̇′g(β0, g0; Z)[h∗]}

= P{l̇β(β0, g0; Z)− l̇g(β0, g0; Z)[h∗]}⊗2 = Pl∗β0
(Y, ∆, X)⊗2,

which is the information matrix for β0 under semiparametric efficiency and it is

non-singular by Conditions C.3-C.5.

To verify A4, we note that the first part automatically holds since β̂n satisfies the

score equation (3.9), that is Ṡβ,n(β̂n, ĝn) = Pnl̇β(β̂n, ĝn; Z) = 0. Next we shall show
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that

Ṡg,n(β̂n, ĝn)[h∗j ]

= Pn

{
∆h∗j(Y −X ′β̂n)−

∫
1(Y ≥ t) exp{ĝn(t−X ′β̂n)}h∗j(t−X ′β̂n) dt

}

= op(n
−1/2),

where h∗j(t) = −ġ0(t)P (Xj|ε0 ≥ t), j = 1, · · · , d, is the jth component of h∗(t)

given in (3.24). According to Lemma A.4, there exists an h∗j,n ∈ H2
n, such that

‖h∗j − h∗j,n‖∞ = O(n−2ν). Then by the score equation (3.10) and the fact that h∗j,n(t)

can be written as h∗j,n(t) =
∑qn

k=1 γ∗j,kBk(t) for some coefficients {γ∗j,1, · · · , γ∗j,qn
} and

the basis functions Bk(t) of the spline space, it follows that

Pn

{
∆h∗j,n(Y −X ′β̂n)−

∫
1(Y ≥ t) exp{ĝn(t−X ′β̂n)h∗j,n(t−X ′β̂n)} dt

}
= 0.

So it suffices to show that for each 1 ≤ j ≤ d,

In = Ṡg,n(β̂n, ĝn)[h∗j − h∗j,n] = Pnl̇g(β̂n, ĝn; Z)[h∗j − h∗j,n] = op(n
−1/2).

But In can be decomposed as In = I1n + I2n, where

I1n = (Pn − P )l̇g(β̂n, ĝn; Z)[h∗j − h∗j,n]

and

I2n = P
{
l̇g(β̂n, ĝn; Z)[h∗j − h∗j,n]− l̇g(β0, g0; Z)[h∗j − h∗j,n]

}
,

because P
{
l̇g(β0, g0; Z)[h∗j − h∗j,n]

}
= 0. We will show that I1n and I2n are both

op(n
−1/2).

First for I1n, according to Lemma A.5, the ε-bracketing number associated with

‖ · ‖∞ norm for the class F j
n(η), where

F j
n(η) = {l̇g(θ; z)[h∗j − h] : θ ∈ Θp

n, h ∈ H2
n and d(θ, θ0) ≤ η, ‖h− h∗j‖∞ ≤ η},
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is bounded by (η/ε)cqn+d. This implies that

log N[ ](ε,F j
n(η), L2(P )) ≤ log N[ ](ε,F j

n(η), ‖ · ‖∞) . qn log(η/ε),

which leads to the bracketing integral

J[ ](η,F j
n(η), L2(P )) =

∫ η

0

√
1 + log N[ ](ε,F j

n(η), L2(P )) dε . q1/2
n η.

Now we pick η to be ηn = O{n−min(2ν,(1−ν)/2)}, then

‖h∗j − h∗j,n‖∞ = O(n−2ν) ≤ O{n−min(2ν,(1−ν)/2)} = ηn,

and since p ≥ 3,

d(θ̂n, θ0) = Op{n−min(pν,(1−ν)/2)} ≤ Op{n−min(2ν,(1−ν)/2)} = ηn.

Therefore, l̇g(β̂n, ĝn; z)[h∗j − h∗j,n] ∈ F j
n(ηn). As in the proof of Theorem 3.3.1, denote

tβ = t − X ′(β − β0) for notational simplicity, for any l̇g(θ; Z)[h∗j − h] ∈ F j
n(ηn), it

then follows that

P{l̇g(θ; Z)[h∗j − h]}2

= P

{
∆(h∗j − h)(εβ) +

∫ b

a

1(ε0 ≥ t) exp{g(tβ)}(h∗j − h)(tβ) dt

}2

. P [(h∗j − h)2(εβ)] + P

{∫ b

a

1(ε0 ≥ t) exp{g(tβ)}(h∗j − h)(tβ) dt

}2

. ‖h∗j − h‖2
∞ + P

{∫ b

a

exp{2g(tβ)}(h∗j − h)2(tβ) dt

}

= ‖h∗j − h‖2
∞ + ‖h∗j − h‖2

∞

∫ b

a

P [exp{2g(tβ)}] dt

. ‖h∗j − h‖2
∞ ≤ η2

n,

where the second inequality holds because of the Cauchy-Schwartz inequality and

second to last inequality holds because g is bounded. Moreover, by Lemma A.1,
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‖l̇g(θ; Z)[h∗j − h]‖∞ is bounded by some constant M > 0. Then by the maximal

inequality in Lemma 3.4.2 of van der Vaart and Wellner (1996), it follows that

EP‖Gn‖Fj
n(ηn) . J[ ](ηn,F j

n(ηn), L2(P ))

(
1 +

J[ ](ηn,F j
n(ηn), L2(P ))

η2
n

√
n

M

)

. q1/2
n ηn + qnn−1/2

= O{nν/2−min(2ν,(1−ν)/2)}+ O(nν−1/2)

= O{n−min(3ν/2,1/2−ν)}+ O(nν−1/2) = o(1),

where the last equality holds because 0 < ν < 1/2. Thus by the Markov’s inequality,

I1n = n−1/2Gnl̇g(θ̂n; Z)[h∗j − h∗j,n] = op(n
−1/2).

Next for I2n, the Taylor expansion for l̇g(θ̂n; Z)[h∗j − h∗j,n] at θ0 yields

l̇g(β̂n, ĝn; Z)[h∗j − h∗j,n]− l̇g(β0, g0; Z)[h∗j − h∗j,n]

= (β̂n − β0)
′l̈βg(β̃n, g̃n; Z)[h∗j − h∗j,n] + l̈gg(β̃n, g̃n; Z)[h∗j − h∗j,n, ĝn − g0],

where (β̃n, g̃n) is the intermediate value between (β0, g0) and (β̂n, ĝn). Then denote

εβ̃n
= Y −X ′β̃n and tβ̃n

= t−X ′(β̃n − β0) for notational simplicity, it follows that

|l̈βg(β̃n, g̃n; Z)[h∗j − h∗j,n]|

=

∣∣∣∣X
{

∆(ḣ∗j − ḣ∗j,n)(εβ̃n
)

−
∫ b

a

1(ε0 ≥ t) exp{g̃n(tβ̃n
)}[(ḣ∗j − ḣ∗j,n)(tβ̃n

) + ˙̃gn(tβ̃n
)(h∗j − h∗j,n)(tβ̃n

)
]

dt

}∣∣∣∣

. ‖ḣ∗j − ḣ∗j,n‖∞ + ‖ḣ∗j − ḣ∗j,n‖∞
{∫ b

a

exp{g̃n(tβ̃n
)} dt

}

+ ‖h∗j − h∗j,n‖∞
{∫ b

a

exp{g̃n(tβ̃n
) ˙̃gn(tβ̃n

)} dt

}

. ‖ḣ∗j − ḣ∗j,n‖∞ + ‖h∗j − h∗j,n‖∞

= O(n−ν) + O(n−2ν) = O(n−ν),
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where second inequality holds because g̃n and its first derivative ˙̃gn are bounded,

and the last equality holds due to the Corollary 6.21 of Schumaker (1981) that

‖ḣ∗j − ḣ∗j,n‖∞ = O(n−(2−1)ν) = O(n−ν). Thus,

|(β̂n − β0)
′l̈βg(β̃n, g̃n; Z)[h∗j − h∗j,n]| = |β̂n − β0| ·O(n−2ν)

= Op{n−min(pν,(1−ν)/2)} ·O(n−ν) = Op{n−min((p+1)ν,(1+3ν)/2)}

And also

|l̈gg(β̃n, g̃n; Z)[h∗j − h∗j,n, ĝn − g0]|

=

∣∣∣∣
∫ b

a

1(ε0 ≥ t) exp{g̃n(tβ̃n
)}(h∗j − h∗j,n)(tβ̃n

)(ĝn − g0)(tβ̃n
) dt

∣∣∣∣

≤ ‖h∗j − h∗j,n‖∞ ·
{∫ b

a

exp{g̃n(tβ̃n
)}(ĝn − g0)(tβ̃n

) dt

}

= ‖h∗j − h∗j,n‖∞ · I3n,

where by the Cauchy-Schwartz inequality and the boundedness of g̃n, we have

{I3n}2 =

{∫ b

a

exp{g̃n(tβ̃n
)}(ĝn − g0)(tβ̃n

) dt

}2

.
∫ b

a

exp{2g̃n(tβ̃n
)}(ĝn − g0)

2(tβ̃n
) dt . ‖ĝn − g0‖2

2.

Hence I3n . ‖ĝn − g0‖2 and

|l̈gg(β̃n, g̃n; Z)[h∗j − h∗j,n, ĝn − g0]| = ‖h∗j − h∗j,n‖∞ · ‖ĝn − g0‖2

= O(n−2ν) ·Op{n−min(pν,(1−ν)/2)} = Op{n−min((p+2)ν,(1+3ν)/2)}.

Finally since 1
2(1+p)

< ν < 1
1+2p

, it follows that

I2n = O{n−min((p+1)ν,(1+3ν)/2)} = o(n−1/2).

Thus we have shown that In = I1n + I2n = op(n
−1/2) and Condition A4 holds.
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Now we verify assumption A5’. First by Lemma A.6, the ε-bracketing numbers

for the classes of functions

Fβ
n,j(η) = {l̇βj

(θ; z)− l̇βj
(θ0; z) : θ ∈ Θp

n, ġ ∈ Hp−1
n and d(θ, θ0) ≤ η, ‖ġ − ġ0‖2 ≤ η}

and

Fg
n,j(η) = {l̇g(θ; z)[h∗j ]− l̇g(θ0; z)[h∗j ] : θ ∈ Θp

n and d(θ, θ0) ≤ η},

are both bounded by (η/ε)cqn+d, which implies that the corresponding ε-bracketing

integrals are both bounded by q
1/2
n η, i.e.,

J[ ](η,Fβ
n,j(η), L2(P )) . q1/2

n η and J[ ](η,Fg
n,j(η), L2(P )) . q1/2

n η.

Then for l̇βj
(θ; z)− l̇βj

(θ0; z), by applying the Cauchy-Schwartz inequality, together

with subtracting and adding the terms ġ(ε0), eg0(tβ)ġ(tβ), eg0(t)ġ(tβ) and eg0(t)ġ0(tβ),

we have

{
l̇βj

(θ; Z)− l̇βj
(θ0; Z)

}2

=

{
−∆Xj[ġ(εβ)− ġ0(ε0)] + Xj

∫ b

a

1(ε0 ≥ t)[eg(tβ)ġ(tβ)− eg0(t)ġ0(t)] dt

}2

. {∆[ġ(εβ)− ġ0(ε0)]
2}+

{∫ b

a

[eg(tβ)ġ(tβ)− eg0(t)ġ0(t)]
2 dt

}

. {∆[ġ(εβ)− ġ(ε0)]
2}+ {∆[ġ(ε0)− ġ0(ε0)]

2}

+

∫ b

a

{
[eg(tβ)) − eg0(tβ)]2 + [eg0(tβ) − eg0(t)]2

}
ġ2(tβ) dt

+

∫ b

a

e2g0(t)
{
[ġ(tβ)− ġ0(tβ)]2 + e2g0(t)[ġ0(tβ)− ġ0(t)]

2
}

dt

= B1 + B2 + B3 + B4.

For B1, since g̈ is bounded and the largest eigenvalue of P (XX ′) satisfies 0 < λd < ∞
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by Condition C.2(b), it follows that

PB1 ≤ P [g̈(Y −X ′β̃)X ′(β − β0)]
2

. P [X ′(β − β0)]
2 ≤ λd|β − β0|2

. |β − β0|2 ≤ η2

For B2, by (3.23) we have

PB2 = P{∆[ġ(ε0)− ġ0(ε0)]
2}

≤
∫

X

{∫ b

a

(ġ(t)− ġ0(t))
2λ0(t) dt

}
fX(x) dx

= ‖ġ − ġ0‖2
2

∫

X
fX(x) dx

= ‖ġ − ġ0‖2
2 ≤ η2.

For B3, by using the Mean Value Theorem, it follows that

PB3 = P

{ ∫ b

a

{
[eg̃(tβ)(g − g0)(tβ)]2 + [eg0(t−X′(β̃−β0))X ′(β − β0)]

2
}
ġ2(tβ) dt

}

.
∫ b

a

(g − g0)
2(t) dt + P [X ′(β − β0)]

2

. ‖g − g0‖2
2 + |β − β0|2 ≤ η2,

where g̃ = g0 +ξ(g−g0) for some 0 < ξ < 1 and thus is bounded. The first inequality

above holds because of the boundedness of g̃, g0 and ġ. Finally for B4, since g0 and

g̈0 are bounded, by the Mean Value Theorem, it follows that

PB4 = P

{ ∫ b

a

e2g0(t)
{
[ġ(tβ)− ġ0(tβ)]2 + e2g0(t)[ġ0(tβ)− ġ0(t)]

2
}

dt

}

.
∫ b

a

(ġ − ġ0)
2(t) dt + P

∫ b

a

[g̈0(t−X ′(β̃ − β0))X
′(β − β0)]

2 dt

. ‖ġ − ġ0‖2
2 + P [X ′(β − β0)]

2

. ‖ġ − ġ0‖2
2 + |β − β0|2 . η2.
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Therefore we have P
{
l̇βj

(θ; Z) − l̇βj
(θ0; Z)

}2 . η2. Using the similar argument, we

can show that P
{
l̇g(θ; Z)[h∗j ] − l̇g(θ0; Z)[h∗j ]

}2 . η2. By Lemma A.1, we also have

‖l̇βj
(θ; Z)− l̇βj

(θ0; Z)‖∞ and ‖l̇g(θ; Z)[h∗j ]− l̇g(θ0; Z)[h∗j ]‖∞ are both bounded. Now

we pick η as ηn = O{n−min(pν,(1−ν)/2)}, then by the maximal inequality in Lemma

3.4.2 of van der Vaart and Wellner (1996), it follows that

EP‖Gn‖Fβ
n,j(ηn) . q1/2

n ηn + qnn−1/2

= O{nmax(( 1
2
−p)ν,ν− 1

2
)}+ O(nν− 1

2 ) = o(1),

where the last equality holds since p ≥ 3 and ν < 1
2
. Similarly EP‖Gn‖Fg

n,j(ηn) = o(1).

Thus for γ = min(pν, (1 − ν)/2) and Cn−γ = O{n−min(pν,(1−ν)/2)} = ηn, by the

Markov’s inequality,

sup
|β−β0|+‖g−g0‖2≤Cn−γ

Gn{l̇βj
(β, g; Z)− l̇βj

(β0, g0; Z)} = op(1)

and

sup
|β−β0|+‖g−g0‖2≤Cn−γ

Gn{l̇g(β, g; Z)[h∗j ]− l̇g(β0, g0; Z)[h∗j ]} = op(1).

This completes the verification of assumption A5’.

Finally, assumption A6’ can be verified by using the Taylor expansion. Since the

proofs for the two equations in A6’ are essentially identical, we just prove the first

equation here. In a neighborhood of (β0, g0) : {(β, g) : |β − β0|+ ‖g − g0‖2 ≤ Cn−γ}

with γ = min(pν, (1− ν)/2), the Taylor expansion for l̇β(β, g; Z) yields

l̇β(β, g; Z) = l̇β(β0, g0; Z) + l̈ββ(β̃, g̃; Z)(β − β0) + l̈βg(β̃, g̃; Z)[g − g0]

= l̇β(β0, g0; Z) + l̈ββ(β0, g0; Z)(β − β0) + l̈βg(β0, g0; Z)[g − g0]

+ {l̈ββ(β̃, g̃; Z)− l̈ββ(β0, g0; Z)}(β − β0)

+ {l̈βg(β̃, g̃; Z)[g − g0]− l̈βg(β0, g0; Z)[g − g0]},
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where (β̃, g̃) is an intermediate value between (β0, g0) and (β, g). So

P{l̇β(β, g; Z)− l̇β(β0, g0; Z)− l̈ββ(β0, g0; Z)(β − β0)− l̈βg(β̃, g̃; Z)[g − g0]}

= P{l̈ββ(β̃, g̃; Z)− l̈ββ(β0, g0; Z)}(β − β0)

+ P{l̈βg(β̃, g̃; Z)[g − g0]− l̈βg(β0, g0; Z)[g − g0]}

Then By Lemma A.1, we have

P |l̈ββ(β̃, g̃; Z)− l̈ββ(β0, g0; Z)|

≤ P |XX ′∆{¨̃g(εβ̃)− g̈0(ε0)}|

+ P

{
XX ′

∣∣∣∣
∫ b

a

1(ε0 ≥ t)
{
exp{g̃(tβ̃)}¨̃g(tβ̃)− exp{g0(t)}g̈0(t)

}
dt

+

∫ b

a

1(ε0 ≥ t)
{
exp{g̃(tβ̃)} ˙̃g2(tβ̃)− exp{g0(t)}ġ2

0(t)
}

dt

∣∣∣∣
}

. P |∆{¨̃g(εβ̃)− g̈0(ε0)}|+ P

{∫ b

a

| exp{g̃(tβ̃)}¨̃g(tβ̃)− exp{g0(t)}g̈0(t)| dt

}

+P

{∫ b

a

| exp{g̃(tβ̃)} ˙̃g2(tβ̃)− exp{g0(t)}ġ2
0(t)| dt

}

= C1 + C2 + C3.

By applying the similar argument that we are using all the time, it can be shown

that

C1 . |β̃ − β0|+ ‖¨̃g − g̈0‖2 = O(n−γ) + O{n−min((p−2)ν,(1−ν)/2)},

where the first equality holds since |β̃−β0| ≤ |β−β0| = O(n−γ), and by the Corollary

6.21 of Schumaker (1981), for g̃ within the neighborhood of ‖g̃ − g0‖2 = O(n−γ) =

O{n−min(pν,(1−ν)/2)}, we have ‖¨̃g − g̈0‖2 = O{n−min((p−2)ν,(1−ν)/2)}. Similarly, it can

be shown that

C2 . |β̃ − β0|+ ‖¨̃g − g̈0‖2 = O(n−γ) + O{n−min((p−2)ν,(1−ν)/2)}

and

C3 . |β̃ − β0|+ ‖ ˙̃g − ġ0‖2 = O(n−γ) + O{n−min((p−1)ν,(1−ν)/2)}.
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Therefore, P |l̈ββ(β̃, g̃; Z)− l̈ββ(β0, g0; Z)| = O{n−min((p−2)ν,(1−ν)/2)} and thus

P |l̈ββ(β̃, g̃; Z)− l̈ββ(β0, g0; Z)|(β − β0)

= O{n−min((p−2)ν,(1−ν)/2)} ·O{n−min(pν,(1−ν)/2)}

= O{n−min(2(p−1)ν, 1
2
+(p− 5

2
)ν,1−ν)} = o(n−1/2),

where the last equality holds since for p ≥ 3, it follows that 2(p − 1)ν > p−1
p+1

≥ 1
2
,

1
2

+ (p − 5
2
)ν > 1

2
and 1 − ν > 1

2
. Moreover, followed by the similar argument for

P |l̈ββ(β̃, g̃; Z)− l̈ββ(β0, g0; Z)|, we are able to show that

P |l̈βg(β̃, g̃; Z)[g − g0]− l̈βg(β0, g0; Z)[g − g0]|

= O{n−min(2(p−1)ν, 1
2
+(p− 5

2
)ν,1−ν)} = o(n−1/2).

Hence,

|P{l̇β(β, g; Z)− l̇β(β0, g0; Z)− l̈ββ(β0, g0; Z)(β − β0)− l̈βg(β̃, g̃; Z)[g − g0]}|

= O{n−min(2(p−1)ν, 1
2
+(p− 5

2
)ν,1−ν)} = O(n−αγ),

where α = min(2(p− 1)ν, 1
2

+ (p− 5
2
)ν, 1− ν)/ min(pν, 1−ν

2
) > 1 and αγ > 1/2.

Therefore, we have verified all six assumptions of Corollary 3.6.2 and thus we have

√
n(β̂n − β0) = A−1

√
nPnl∗(β0, g0; Z) + op(1) → N(0, A−1B(A−1)′),

where l∗(β0, g0; Z) = l̇β(β0, g0; Z)−l̇g(β0, g0; Z)[h∗] = l̇β(β0, g0; Z) is the efficient score

function for β0 and A = P{l̇β(β0, g0; Z)}⊗2 = I(β0), as shown in the verification of

the assumption A3. Hence A = B and A−1B(A−1)′ = A−1 = I−1(β0), and

√
nPnl∗(β0, g0; Z) = n−

1
2

n∑
i=1

l∗β0
(Yi, ∆i, Xi).

Thus equation (3.13) holds and we complete the proof of Theorem 3.3.2.
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Table 3.1: Summary statistics for the first set of simulation studies. The true slope parameter is
β0 = 0. SE is the empirical standard error of the parameter estimator, SEE is the mean
of the standard error estimators, CP is the coverage probability of the 95% confidence
interval, and σ∗ =

√
I−1(β0)/n is the sample size scaled theoretical standard error under

the fully efficient situation. 1SEE: the standard error estimates by inverting the infor-
mation matrix based on the efficient score function; 2SEE: the standard error estimates
by inverting the observed information matrix of all parameters including the “nuisance”
parameters for estimating the log hazard function. (a): 0.5N(0, 1)+0.5N(−1, 0.52); (b):
standard extreme-value; (c): Gumbel(−0.5γ,0.5); (d): Weibull(3,1).

Err. Cen. B-spline MLE Log-rank Gehan-weight B-J
dist rate Bias SE 1SEE (CP) 2SEE (CP) Bias SE Bias SE Bias SE σ∗
(a) .00 .000 .090 .088 (.938) .090 (.945) -.003 .117 -.002 .096 -.002 .102 .085

.25 -.004 .093 .092 (.937) .093 (.942) -.007 .114 -.004 .093 -.006 .101 .088

.50 .001 .110 .105 (.940) .106 (.946) .001 .138 .001 .111 .001 .121 .105

(b) .00 .003 .113 .107 (.934) .109 (.942) .002 .110 .002 .124 .002 .137 .109
.25 .001 .131 .122 (.938) .125 (.941) .002 .128 .003 .151 .004 .161 .126
.50 -.001 .166 .148 (.912) .152 (.923) .002 .161 .006 .189 .007 .194 .154

(c) .00 .000 .057 .060 (.942) .060 (.951) .001 .083 .000 .063 .000 .070 .055
.25 .002 .059 .058 (.946) .058 (.947) .002 .084 .002 .066 .001 .073 .058
.50 .002 .072 .068 (.931) .068 (.934) .004 .100 .003 .079 .003 .088 .068

(d) .00 .000 .037 .037 (.944) .038 (.954) .001 .040 .000 .037 .000 .036 .033
.25 -.001 .039 .037 (.938) .038 (.954) -.001 .043 .000 .040 .000 .039 .036
.50 -.001 .044 .040 (.914) .042 (.934) -.001 .048 .000 .044 .000 .043 .039
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Table 3.2: Summary statistics for the second set of simulation studies. The true slope parameters
are β1 = 1 and β2 = 1. SE, CP, 1SEE, 2SEE and σ∗ have the same interpretation
as these abbreviations in Table 3.1. (a): N(0, 1); (b): standard extreme-value; (c):
0.5N(0, 1) + 0.5N(0, 32); (d): 0.95N(0, 1) + 0.05N(0, 32); (e): Gumbel(−0.5γ,0.5); (f):
0.5N(0, 1) + 0.5N(−1, 0.52).

Err. B-spline MLE Log-rank Gehan-weight
dist n Bias SE 1SEE (CP) 2SEE (CP) Bias SE Bias SE σ∗

(a) 200 β1 .003 .168 .149 (.912) .155 (.924) .000 .170 .002 .159 .155
β2 .003 .167 .153 (.928) .156 (.928) .004 .171 .002 .160 .156

400 β1 .006 .110 .108 (.948) .110 (.950) .005 .115 .008 .108 .110
β2 .001 .110 .109 (.944) .110 (.945) .002 .116 .001 .109 .110

600 β1 .001 .092 .088 (.939) .090 (.943) .001 .096 .002 .093 .090
β2 .005 .091 .089 (.945) .090 (.944) .005 .097 .003 .092 .090

(b) 200 β1 -.009 .180 .154 (.894) .161 (.903) -.008 .168 -.007 .190 .165
β2 .004 .182 .162 (.903) .163 (.915) .005 .170 .005 .195 .169

400 β1 .000 .126 .113 (.914) .115 (.923) -.001 .124 .000 .143 .117
β2 .008 .118 .116 (.934) .116 (.938) .010 .116 .012 .135 .120

600 β1 .001 .102 .093 (.919) .094 (.923) .001 .100 .000 .114 .095
β2 .011 .098 .095 (.944) .095 (.945) .011 .097 .007 .114 .098

(c ) 200 β1 .014 .300 .281 (.930) .279 (.924) -.020 .315 -.019 .292 .259
β2 .000 .306 .285 (.916) .282 (.918) .002 .317 .002 .288 .260

400 β1 .034 .199 .206 (.955) .200 (.949) .002 .218 -.002 .201 .183
β2 -.003 .207 .208 (.949) .202 (.942) .009 .228 .012 .202 .184

600 β1 .035 .168 .171 (.957) .165 (.949) .003 .185 .001 .163 .150
β2 -.007 .169 .172 (.956) .166 (.956) -.004 .190 -.002 .168 .150

(d) 200 β1 -.013 .172 .157 (.926) .164 (.927) -.010 .181 -.007 .166 .167
β2 -.004 .180 .160 (.908) .164 (.913) -.005 .184 -.005 .173 .166

400 β1 .003 .119 .113 (.944) .116 (.948) .004 .126 .006 .117 .118
β2 .003 .117 .114 (.942) .116 (.953) .004 .126 .003 .115 .118

600 β1 -.003 .097 .093 (.948) .095 (.952) -.002 .105 .002 .097 .096
β2 .001 .096 .094 (.942) .095 (.944) .002 .105 .003 .094 .096

(e) 200 β1 -.002 .081 .077 (.944) .078 (.946) -.008 .109 -.006 .086 .079
β2 .000 .085 .080 (.929) .078 (.934) -.007 .119 -.004 .093 .080

400 β1 -.005 .055 .055 (.946) .055 (.951) -.003 .079 -.004 .061 .056
β2 .003 .055 .056 (.954) .056 (.950) .003 .081 .003 .063 .056

600 β1 -.003 .047 .045 (.940) .045 (.938) .000 .067 -.001 .052 .045
β2 -.001 .047 .046 (.944) .045 (.943) -.002 .066 -.001 .051 .046

(f) 200 β1 -.002 .126 .117 (.918) .120 (.929) -.002 .159 -.001 .128 .119
β2 .000 .133 .120 (.917) .121 (.926) .002 .164 .001 .134 .116

400 β1 -.002 .087 .084 (.949) .085 (.950) .003 .114 .000 .091 .084
β2 .004 .086 .086 (.951) .086 (.953) .003 .111 .004 .090 .082

600 β1 .003 .074 .070 (.929) .070 (.931) .005 .101 .001 .074 .069
β2 .003 .074 .070 (.936) .070 (.936) .009 .104 .004 .075 .067
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Table 3.3: Summary statistics for the second set of simulation studies with Weibull(0.5,1) and
Weibull(2,1) as the error distributions. The true slope parameters are β1 = 1 and
β2 = 1. nSE2 is the multiplication of the sample size and the square of SE.

Err. B-spline MLE Log-rank Gehan-weight
dist n Bias SE SEE CP nSE2 Bias SE nSE2 Bias SE nSE2

Weibull 100 β1 -.038 .053 .056 .953 .281 -.004 .312 9.73 .001 .126 1.59
(0.5,1) β2 -.004 .053 .058 .985 .281 -.001 .317 10.05 -.002 .136 1.85

200 β1 -.011 .018 .017 .933 .065 .050 .184 6.77 .025 .075 1.13
β2 -.002 .015 .017 .977 .045 -.006 .194 7.53 -.004 .080 1.28

400 β1 -.011 .009 .011 .901 .032 .038 .116 5.38 .017 .043 .740
β2 -.001 .009 .011 .981 .032 .000 .113 5.11 .001 .044 .774

Weibull 100 β1 -.002 .101 .091 .908 1.02 -.008 .125 1.56 -.001 .106 1.12
(2,1) β2 -.006 .104 .092 .907 1.08 -.004 .127 1.61 -.007 .107 1.14

200 β1 -.005 .067 .062 .925 .898 -.004 .087 1.51 -.002 .074 1.10
β2 -.003 .064 .063 .951 .819 -.003 .086 1.48 -.003 .072 1.04

400 β1 -.002 .045 .042 .927 .810 .003 .065 1.69 .002 .054 1.17
β2 -.002 .044 .042 .936 .774 -.001 .060 1.44 -.002 .052 1.08
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Table 3.4: Regression parameter estimates and standard error estimates for log10 of time to death
versus age at transplant and T5 mismatch score with n = 157 Stanford heart transplant
patients. The proposed estimators (B-spline MLE) are compared with Gehan-weighted
estimators reported from Jin et al. (2003) and Buckley-James estimators reported from
Miller and Halpern (1982).

B-spline MLE Gehan-weight Buckley-James
Covariate Est. SE Est. SE Est. SE

M. 1 Age -0.0237 0.0068 -0.0211 0.0106 -0.015 0.008
T5 -0.2118 0.1271 -0.0265 0.1507 -0.003 0.134

M. 2 Age 0.1022 0.0245 0.1046 0.0474 0.107 0.037
Age2 -0.0016 0.0004 -0.0017 0.0006 -0.0017 0.0005
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Table 3.5: Accelerated failure time regression for the Mayor PBC data. The proposed estimators
(B-spline MLE) are compared with Gehan-weighted estimators reported from Jin et al.
(2003), least squares estimators reported from Jin et al. (2006) and kernel smoothed
profile likelihood estimators reported from Zeng and Lin (2007).

B-spline MLE Gehan-weight Least-squares Kernel MLE (aopt
n )

Parameter Est. SE Est. SE Est. SE Est. SE

Age -0.0295 0.0058 -0.0258 0.0059 -0.0256 0.0063 -0.0286 0.0061
log(albumin) 1.8654 0.4314 1.5906 0.5352 1.6174 0.5409 1.6212 0.4761
log(bilirubin) -0.6138 0.0606 -0.5789 0.0698 -0.5885 0.0752 -0.6175 0.0669
Edema -0.6383 0.1930 -0.8781 0.2768 -0.8430 0.2604 -0.7985 0.3179
log(protime) -2.3208 0.3072 -2.7680 0.9085 -2.3331 0.8543 -2.4095 0.8050
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Figure 3.1: The solid lines are the estimated hazard functions (λ̂n(t)) by the proposed method for
the model log T = β0X + e0, where β0 = 0 and e0 follows four distributions with (a):
0.5N(0, 1) + 0.5N(−1, 0.52); (b): standard extreme-value; (c): Gumbel(−0.5γ,0.5) and
(d): Weibull(3,1). The dashed lines are the true hazard functions λ0(t).
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Figure 3.2: Estimated survival functions for the PBC data. The upper and lower solid lines are
the Kaplan-Meier estimates for the patients with Edema=0 and Edema=1; the dashed
lines are the corresponding model-based estimates.



CHAPTER IV

Future Work

The utility of novel biomarkers and clinical information for predicting future sur-

vival status for patients plays an important role in medical decision making. In

addition to the survival probabilities, the actual survival times provide more straight-

forward information and can be crucial for treatment decision making as well. The

result in Chapter 2 makes the prediction of survival times possible under a semipara-

metric linear model when covariate range is wide in practice. Then good statistical

measures of model predictive performance are desirable. One type of commonly

used prediction accuracy measures in the survival context includes Brier score (Brier

1950), integrated Brier score, time-dependent ROC curves (Heagerty et al. 2000),

and etc. All of these measures use the time-dependent survival or event status, i.e.,

I(T > t), as the quantity of interest. However, if the prediction of survival time is

of primary interest, a measure that incorporates the survival time directly would be

more attractive. The inverse probability of censoring weighted mean square error

loss (Robins and Rotnitsky 1992) is one such measure. But it depends on an ac-

curate estimate of the censoring distribution, which is not always the case. When

truncation exists, this measure does not provide a consistent estimate of the mean

square error loss. Developing straightforward yet reasonable prediction accuracy
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measures to evaluate the survival time prediction performance is worth exploration,

and investigation in this direction is one of our future research plans.

The extended general theorem on the asymptotic normality of semiparametric

M -estimators that has been proposed in Chapter 3 will be useful for the theoret-

ical justification for other semiparametric models where the nuisance parameter is

a function of the parameter of interest. One direct application would be the AFT

model with other types of censoring such as the interval censoring and current status

data. The likelihood functions in these cases are built upon residual survival times,

which is a function of the slope parameters. Another application is the proportional

hazards models with unknown link function (Wang 2004; Huang and Liu 2006). In-

stead of assuming the exponential form for the dependence of the hazard function

on covariates as in the traditional Cox proportional hazards model, a more flexible

relative risk form can be assume:

λ(t|X) = λ0(t) exp{ψ(β′0X)},

where ψ(·), the link function, is an unknown smooth function. Clearly, the nuisance

parameter ψ(·) in the partial likelihood is a function of the regression parameter

β. Finally, the extended general theorem can be useful for proving the asymptotic

normality of the parameter estimates from the single index models (Ichimura 1993)

and generalized linear models with unknown links (Weisberg and Welsh 1994; Chiou

and Muller 1998, 1999).
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