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ABSTRACT

A general differential equation governing the flow of a viscous,
relaxing gas valid in the transonic range is derived by using a pro-
cedure similar to that used by Clarke and McChesney (1964) in ob-
taining the inviscid relaxing equation. Using this equation, the struc-
ture of a shock wave with relaxation is studied in detail in order to
clarify the effect of viscosity in relaxing flows. Asymptotic solutions,
valid in three different regimes of flow, depending on the order of mag-
nitude of the free stream frozen Mach number Mfoo with respect to
unity, have been obtained. The results show that the viscous solu-
tions successfully eliminate some of the difficulties encountered in
the inviscid theory such as the discontinuous velocity profile which
occurs in the partially dispersed wave and the upstream corner which
arises in the fully dispersed wave solution for Mg = 1. It is also
shown that the inviscid relaxing flow equation is valid as long as
M < 1 and nowhere close to one. Furthermore, a bulk viscosity
can be used to account for the relaxation when the equilibrium Mach
number Meoois close to one. The analytic results have been verified
by the numerical solution of the general equation.

Two dimensional versions of viscous transonic relaxing equations

valid for frozen (MfOo -~ 1) and equilibrium (MeOO —~ 1) regimes have

ii



also been obtained. No attempt was made to solve these equations.
However, the equilibrium transonic relaxing equation is found to be
identical to the viscous transonic equation in an inert gas except for
the fact that the dissipative term 1 + (('yf

pressive viscosity and heat conduction has been replaced by the term

- 1)/Pr") v due to com-

(afoo2 - 1) which is, essentially, a bulk viscosity.
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I. INTRODUCTION

Non-equilibrium gasdynamics has long been an area of extensive
study because real gas effects such as, chemical reaction, vibrational
relaxation, dissociation, etc., are often present in high speed aero-
dynamics. Much work has been published in the past. Most of it is
based on the linearized equations, however, much important informa-
tion is nevertheless obtained.

A linearized inviscid equation governing the steady, non-equi-
librium or relaxing flow about a slender object in a uniform parallel
stream was obtained by Vincenti (1959 ), and Moore and Gibson

(1960). The equation takes the following form

2 2 2 2
g a[(M 2_1)a¢_a¢ a¢]+(M 2_1>a¢
o0 1 f e

© 0% x oy 2l o
2 .2
(28280 (1.1)
oy 0z

where ¢ is the perturbed velocity potential, Mfoo and Meooare the
free stream Mach numbers based on the frozen and equilibrium
sound speeds, and 1'—';’0 is the relaxationtime evaluated at free stream

condition. The bars here denote dimensional quantities.
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It is apparent that Eq. (1.1) will no longer be valid,just as in
the case of the equation for an inert gas,when Mfoo - 1, as the first
term may then be of the same order of magnitude as the terms al -
ready being neglected.

Because of the dissipative character of the relaxation process,
Vincenti's solution for the Ackeret wavy wall problem exhibits a
drag force even in subsonic flow whereas the inviscid solution for
the inert gas does not.

Clarke (1961) and later Li and Wang (1962) worked out the steady
three dimensional relaxing flow over a pointed body. Supersonic
flow past a sharp corner was studied by Clarke (1960) later by Der
(1961) and extended by Vincenti (1962). The analysis of all the above
stated work made use of the integral transform method and Eq. (1.1).

Chu (1958) was the first to attack the one dimensional, unsteady,
relaxation problem by solving the following linearized equation which
can be found:in standard textbooks of gasdynamics such as Clarke

and McChesney (1964) or Vincenti and Kruger (1965)

= [ 1 1
Tw(f"z‘¢t_t'¢5;).(+;“—‘§¢a‘¢x—x=0 (1. 2)
f e
0 o8]

In Chu's analysis, the Laplace transformation was used to solve

the partial differential equation. Chu's solution shows that the signal
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or the discontinuous wave front, which is apparently the result of
using an inviscid theory, runs ahead at the frozen sound speed inde-
pendent of the value of relaxation time, and at the same time is
attenuated by relaxation. The bulk of the wave, except perhaps for
a very short time after the piston starts moving, essentially travels
at the equilibrium sound speed. However, at large times, this
linear theory predicts a wave which diffuses gradually with time and
never reaches a steady state. This decay is caused by the neglect
of the cumulative effects of the non-linear convective terms. This
result again suggests that Eq. (1.1) and Eq. (1.2) are not valid in
the transonic range.

The one dimensional, non-linear, steady problem was discussed
by Broer and Van Der Bergen (1954) and Lighthill (1956). Lighthill
(1956) divided the problem into two parts depending on whether the
Mach number based on the frozen sound speed Mg =1 d/ifoo is greater
or less than unity. When the free stream velocity is in between the
two sound speeds or Efoo > Eoo>§eooa fully dispersed wave is formed,
according to Lighthill, and the convective steepening effect is balanced
completely by relaxation. On the other hand, when Mfoo> 1i.e
Hw’> Efooa partially dispersed wave is formed. However, the relaxa-

tion alone is no longer sufficient to resist the convective steepening
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effect and the viscosity must then play a role in determining the wave
profile. Furthermore, Efoo and Eeoowere shown to be the upper and
lower bounds for a fully dispersed wave to exist.

Spence (1961), Ockenden and Spence (1969) and Blythe (1969)
worked out the one-dimensional non-linear unsteady problem. Broer
and Van Den Bergen (1954) were the first to study the relaxation wave
structure by including also the viscous effects. Starting with the
conservation equations and the linearized rate equation together with
some very ingenious series expansions for velocity, translational tem-
perature and rotational temperature, Broer and Van Den Bergen were

able to reduce the conservation equations to the following relation

(1.3

where h and g represent the perturbed rotational temperature and
velocity field respectively. The solution was then obtained through
numerical integration. Furthermore two special analytic solutions
for $ >> 1 and 8 << 1 were also given where B is a parameter charac-
terizing the ratio of a viscous length to a relaxation length while a-l
apart from a factor, measures the viscous shock strength in terms of
the critical strength. Broerand VanDen Bergen's approximate solution
for the case B >>10r whenthe viscous lengthis muchlonger than the rel-

axationlength shows a pure viscous shock solutionplus an extratermdue
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to relaxation whichacts to broadenthe velocity profile at the downstream
side somewhat more than at the upstream side. For thecase B«1, i.e. a
very slow relaxation process, Broer and Van Den Bergen's solution which
is valid only for a»1 also consists of two terms, one due to relaxation,
modified by a higher order term due to viscous effects. However,
because of the various linearizations and approximations used in the
analysis, both the analytic and numerical solutions give only quali-
tative results. In Broer's work, no attempt was made to compare
the two approximate solutions.to the numerical solution. Furthermore
the choice of variables and the series expansions used by Broer made
it difficult to study the case whenu - ag (o =2, in Broer's notation),
which will be an essential part of the present study. It is also neces-
sary to keep in mind that for most gases it usually takes more molecu-
lar collisions to establish equilibrium for the rotational mode than the
translational mode, although the characteristic time for translational
and rotational modes of dense gases can hardly be distinguished and

one has 7.~ 17

=Ty (Losev and Osipov, 1962). For other internal degree

of freedom such as those due to molecular vibrational and chemical
reaction, many more molecular collisions are always needed to estab-
lish the equilibrium state. Therefore the case B >> 1 is physically

of questionable significance for rotational relaxation and definitely

not applicable for other internal modes.
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The most practical problem in relaxing gas dynamicsis, perhaps,
the nozzle problem when the flow is being accelerated from subsonic
to supersonic velocity by passing through a converging-diverging pas-
sage. Most work on this problem is again based on the linearized
equation (1.1). Rhyming (1963) and Tirumalesa (1966) studied the
non-linear transonic case. However Rhyming did not solve the non-
linear problem directly, instead the Oswatitsch (1956)
transonic approximation was used to replace the non-linear convec-
tive term Tlﬁx by cu where c is a constant corresponding to d_ evalu-
ated at the sonic point. Tirumalesa (1966) derived, following the
procedure used by Vincenti (1959), a non-linear differential equation
for inviscid transonic flow. By assuming a series expansion for the
perturbed velocity potential in terms of yz, where y is the vertical
distance measured from the nozzle axis, Tirumalesa was able to
obtain solutions up to second order. The frozen sonic line was found
to be parabolic and downstream of the geometric throat.

The difficulty arising from the use of the inviscid theory is
readily seen in the one dimensional wave problem. When the free
stream velocity is less than but very close to the frozen sound speed,
Lighthill's solution for a fully dispersed wave is not accurate near

the upstream portion of the wave (Clarke and McChesney, 1964), and
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breaks down when EOO=5fOO as a corner appears in the upstream por-
tion of the wave profile. The upstream boundary condition then
cannot be satisfied continuously. On the other hand, the inviscid
solution for Eoo> Efoo is not unique and two velocities occur at each
location. A viscous discontinuity has to be introduced to solve the
difficulty. It is to be expected that these difficulties will also exist
in the case of two dimensional flow.

From the success of viscous transonic theory (Sichel, 1963) in
solving some of the difficulties encountered in inviscid transonic
theory of inert gas flow, it is to be expected that viscosity and heat
conduction will also play an important role in inviscid transonic
relaxing gas flow. However, it is to be expected that the resultant
governing differential equation will not only be very complex but
will also be highly non-linear, which is essentially the feature of
transonic flow. An approximate equation or equations will have to be
found for analysis to be possible.

Napolitano (1966) formulated the approximate equations of an
inviscid relaxing gas valid in different transonic regimes. He
showed that, depending on the parameter (A/AC) !Meoo2 -1/ leooz -1,
three different simplified differential equations can be obtained by
stretching the variables as indicated below, where A is a characteristic

macroscopic iength and AC is a characteristic relaxation length.
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2

(a) ]Meoo -1]= O(1);|Mfco2 - 1|= 0(e)

in the frozen transonic regime,and proper independent variables

are
M, % -1l
g, = X
. lez - 1]
o0
(1. 4)
M 2 -1]
p eoo 2 —
Ny =3~ 5 \/le -1ly
cle -ll 0
o0
2 2
O I ©-1]=06);M; © - 1= 0(1)
o0 o0

in the equilibrium transonic regime,and proper independent vari-

ables are
lMez—ll
o= % X
3 7\0 lez_ll
o0
(1. 5)
!Mez-ll 5
2
Cle -1 ©
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(c) lM92-1|=0(e); |Mf2-1!=0(€)
0 o0

in the proper transonic regime and the relevant independent
variables are 02 and 172. The first two regimes can be attained in
any medium, while the last one can be attained only in those media
for which the difference between the two speeds of sound is small.

The present work will first attempt to derive, by following close-
ly the procedure used by Clarke and McChesney (1964), the differen-
tial equation governing a viscous, relaxing gas with only one active
internal energy mode. Then the one dimensional shock wave struc-
ture will be studied in detail with emphasis on the resolution of the
discontinuous wave profile of a partially dispersed wave and the
corner solution of the fully dispersed wave as ﬁoo = Efoo encountered
in Lighthill's inviscid solution. It is hoped that this systematic
study of the one dimensional case will provide a guide to the solution
of two dimensional problems such as flow inside a nozzle or past a

thin airfoil.



II. DERIVATION OF THE VISCOUS EQUATION FOR
GASES WITH ONE INTERNAL DEGREE FREEDOM
The procedure here used is essentially the one used by Clarke
and McChesney (1964) in deriving the inviscid relaxing gas equation.
The steady flow of a hypothetical pure gas is considered whose commun-
icable energy states are those of molecular translation with energy
content specified by a translational temperature Tl plus a contribu-
tion from the internal energy mode with an energy content specified
by an internal energy mode temperature _'f‘—z. It is also assumed that
the energy states of the internal mode are volume-independent. This

model is chosen for analytical simplicity. Then the following thermo-

dynamic relations hold :

T’l ds, =cl'é1 +pd (1/p) (2.1)
"'Fz d§2 =d€2 (2.2)
e =_e—1 + 32 (2. 3)
S ='s"1 + §2 (2. 4)

where §1, §2 and e_, 62 are the specific entropies and energies
associated with the translational and internal mode. It is further
assumed that the flow is only slightly out of equilibrium so that the

linearized relaxation equation can be used

10



TU, s=—=€, -€ (2. 5)

where 7T is the relaxation time and subscript € means equilibrium value.
The above equation can also be regarded as the definition of the relaxa-
tion time 7. In general, 7 is a function of pressure and temperature.
Furthermore, Eq. (2.5) is exact for the harmonic oscillator (Vincenti
and Kruger, 1965).

If ﬁi is the velocity, p the gas density, p the thermodynamic
pressure and h the enthalpy, then the equations of continuity, motion

and energy in Cartesian tensor notation are respectively

o5 . =%
] J
ou oT
- i ap ik
pu, ==— =- =~ + == (2.7)
i axj ax.l axk

pu, o - B dis (2. 8)

where 'Fik’ the viscous stress tensor, is given by
ot ol 0
I Y _ N Y
Tik‘(“b"s"—l)asz]2 5ik+“(aﬁk+a;‘fi) (2.9)

ﬁj, the heat flux vector is



4. =- K=t 4 (int) (2. 10)

@:rrik(-a:—+-35-_(-i-)/z | (2.11)

(int)

In these equations, dj isthe contribution to the heat flux vector due to
the internal mode, K is the thermal conductivity, [Iis the viscosity and
Eb is the bulk viscosity which can, under special conditions, be used
to account for the relaxation of an internal mode in addition to the single
mode considered here such as rotational relaxation for example. How-
ever ﬁb will be taken as zero in the present case as only one internal
mode is assumed.

The complex system of Eq. (2. 5)-(2.11) will now be reduced to

an equation with a single independent variable.

Adding (2.1) and (2. 2), and using Eq. (2. 3) yields

dé =T, dS; + T, d82 - pd (1/p) (2.12)

Using (2.4), Eq. (2.12) becomes

dé =T, dS + (T2 - Tl) ds, - pd (1/p) (2.13)
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or

— _ 08
I T 1(V/ . R
T1 u] = uj sz +D uj " (T2 - Tl) uj = (2. 14)
] ] J ]
Rewriting the energy Eq. (2.8) as
w28, pu /A1 ifﬁ-cp) (2.15)
jox, PY% ek, T B ek, ‘
] ] ]
and combining with Eq. (2.14) yields
aS 0q, o8
g -1l d_ g_.7 g2
YoE CT [ A A AP A3 ] (2.16)
i1 j j
Equation (2.16) is an entropy equation.
Since the internal mode is assumed volume-independent, the
density p is a function, only, of p and §1, consequently
-0 a5 +CP) a8 (2.17)
P = 33, 1
S 1._
1 p
where
— -
% =(z8) = 1 (2.18)
Ps 5T 3l
1 2t

(by definition). a, is then the frozen sound speed in contrast to the

equilibrium sound speed ﬁe which is defined as
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1
— (2.19)

I

(

()} Nab)
ig=]] I'OI

)
5, T, Ty

i

€ e

The two sound speed defined above are thermodynamic state variables.

The calculation of ﬁf and ie for a gas with an arbitrary equation of

state can be quite tedious. In general, Vincenti and Kruger (1965)

show that a.f and ﬁe can be written as

g2 1/2
A =(85)s,q =(ﬁ‘““(7“;_ /3 ) (2. 20)
- = _ 1/2
= 1/2 h_+h_{s5
5 =% _[ p__q Pe
a, "(aﬁ)s_, g ~( HI‘) L qpe - 1/[))) (2. 21)

where q is the nonequilibrium variable and is simply "fz in the present

case. Equation (2.17) can be written as

%_’I) U (2. 22)

(2.23)

F
QD
xlléi
il
]
QI
o
o
M|
Do
QO
—_
~~
S
+
o]
o]
=
[\
mh.
—
i
S0 (a))
||H.Ql
1
+
|
QO
&
')
| IO

Coid o
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where

1 9p

f o —

Epf is the frozen translation specific heat at constant pressure and Bf
the frozen thermal-expansion coefficient. By using the continuity
equation which is in a slightly different form, Eq. (2.23) becomes

_ % 9 auj 0€ 0

U, -=-+pa ———+"p'e'§.2ﬁ 2+-1—(
j 9%, P o, t %% "5

fel

j-@%zo (2. 25)
j

i

Now, using the momentum equation (2. 7) to eliminate the pressure
term in Eq. (2.25) yields, after some arrangement, essentially the

thermodynamic equation,

% 1 | a(ﬁ2/2)___a_2f)_f‘_1_§zf3_f(aq] -8
jox. —-2 . |P% ok, TP%* T TR
j pa’e j P, ]
f ¢
5%,
- g, —K (2. 26)
J oxy

The momentum equation (2.7) can also be used to eliminate the

pressure p in the energy equation (2. 8) which then becomes

_ _2 o7 0q.
ﬁ.ﬂl-z%l}ﬁﬁ. a(u_/2)+ﬁ. Jjk X]+<I>] (2. 27)
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but

h=¢ T,+¢,T (2. 28)

where 62 is the specific heat associated with the internal energy mode.
All the specific heats will be assumed constant, a good approxima tion
in transonic flow. The specific heat 62 is assumed to be volume inde-

pendent so that

C =C_ +C (2. 29)
Ve Ve 2
cC =C_ +¢C (2. 30)
Pe P, 2
52 = 62 T2 (2. 31)
and consequently
e2e =C, T1 (2. 32)

_E
QO
N":Q;x

It
—~
o)

)

b=t
» QD
NI' |

+
(@]

DN
D QO
]

(2. 33)

Substituting Eq. (2. 33) into Eq. (2.27), the energy equation can be

expressed in terms of temperature.
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Do

U,C ——==-1u,C

|

+

= -

1
P

QO

jpfij JZSEJ-

oT 0T _2 o7, 0q.
[—f)ﬁ a(@~/2) . ik j

i, T TR =,

+ d)] (2. 34)

Using Eq. (2. 30) and (2. 31) and taking the substantial derivative of

the relaxation equation (2. 5) yields

I
!
I

5 oT, 5 5
U (70, =—==)=0, =— -0, — (2. 35)
i 0X, j OX, j OX, j OX,
i j j j
Combining Eq. (2. 26), (2. 34) and (2. 35) yields
__ 3 1oty 2’
TCp YAk D __2 p j 0%, Pt o%
f 1ic,pa; €' ] ]
2 P9
58. 04 o7 c 9
_2 PP oY _ k). Pe 1 _fa@®/2)
S R ARt 7%
e e ) 2 pa,” e j
ot pB, g o,
~~2 7j 227" " o = ]k
P -y TR Y
j D; k
_2 aT..  94.
+—1_—[-“j§—(llé-}-_(-/—gl+ﬁj3§-5—é—i—l+d> (2. 36)
j k7

It can be shown that ifz €' = Ve 1 (Clarke and McChesney, 1964,

p. 216). Hence Eq. (2. 36) can be rearranged to yield



g _ _ _
Y% o | e@Pe) _2%% veo 1 0T 1_83
T S| T % w5 GR Y5y 0%
v, i i
24 2 1%, a3 o7
2% @2 s £, 9 1_ "k
=ae % - j % + 5 ¢ (a}.( —¢)+5 3'5—_——' (2.37)
] ] Ve j Xk

Equation (2. 37) is the governing differential equation of the flow
of a viscous, relaxing gas in its most general form.
By discarding the heat conduction and viscous terms, the inviscid

relaxing equation is recovered in the form

(e}

i 0X.
v i

\% ou. 2 )
?-c:—f-ﬁ.—?-[az—l-ﬁ.a(‘g/z)]ﬁ.a(“_/z) a2 (2. 38)
e

In the equilibrium case corresponding to T =0, Eq. (2. 38) reduces to

the classic gasdynamics equation

@
forl]

_a@?/e) - 2°%Y
u. = -a —_
j ax]. e 0 i

=0 (2. 39)

el

For one dimensional flow ﬁj =1 i]. =%, and Eq. (2. 38) becomes
f—-f-ﬁi[(zfz-ﬁz)%}(zz-az)@ (2. 40)

which is the one dimensional inviscid relaxing equation considered by

Clarke and McChesney (1964).



19

The three dimensional linear equation (1.1) can be recovered
from Eq. (2. 38) by considering small perturbations of a uniform

velocity field u =ﬁoo such that

u1 =uoo+u
ﬁ2=v— (2. 41)
ﬁ3=W

where U, ¥V, W, are perturbation velocities which are small compared

with ﬁoo such that

-ﬁ@ XK1 (2. 42)
o0

8;'l i
8‘='[<x

Then, substituting Eq. (2.41) into (2. 38) and letting a, = af a, =3

and neglecting higher order terms yields

e _ 0 2 ou  ov a{v‘] 2 ol
+ - - _— oz - el
To UodR [(Mfoo Dz 37 azlt Mep -V 3z
0V OW
"-a‘y—"'—a—.z__—-o (2.43)

with ?:'o = ?Oo (Evfoo/ Eveog(ifooz/ ﬁeooz). The flow can also be shown to
be irrotational to first order; thus, Eq. (1.1), or the Vincenti equation
is recovered if a velocity potential is introduced.

Equation (2. 37), although quite general, is very complicated;
however, the viscous dissipation & can be shown to be negligible in

transonic flow, and the heat conduction term @ can then also be

expressed in terms of the velocity as is shown below.
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In a gas having only one internal degree of freedom, the heat

flux vector is

oT. .
g --K il 4 g, nt) (2. 44)
] 0X |
j
where qj(mt), the contribution to the heat flux due to the internal energy
mode is
13
‘“t =y 8,V ¢ mt) - -7D =2 (2. 45)
0X.
. j
and = (1/n) Z“ 3 1nt ) and Ea(mt) = ¢ energy state

with V]. being the diffusion velocity, i the number density and D, the
coefficient of self-diffusion (Clarke and McChesney, 1964). If the
flow is assumed only slightly out of equilibrium and ’fz is nowhere

different appreciably from Tl or T2 ~ Tl’ then Eq. (2.45) becomes

_ (int)
qj d X.

~-AD¢C, =— (2. 46)

q.=—f(°(1+Le)—;~ (2.47)
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Comd s

where 3
nhD c2

7 (2. 49)

I—{C=K(1+Le) and Le-=

If Le << 1, the effect of diffusion upon heat flux can be completely
neglected. Otherwise f{'c, the modified conductivity has to be used.

In the transonic flow of an inert gas, the entropy variation is of
higher order; therefore, the relation dT ~ di can be shown to be valid
to the first order so that dT can be replaced by di in the analysis
(Sichel, 1962). With this result in mind, the entropy variation of a
viscous, relaxing gas in transonic flow will be considered, to see
whether the temperature gradient can also be replaced by a velocity
gradient in this case.

The entropy equation (2. 16) can be rewritten in terms of the total

entropy S, and is

= oq oS
oS 1] 17 1 = _mys 2
u]. 8}Tj = -—-Tl [ l_)~——-a}_(j + 5 o+ (T1 T2) u]. —-——a_}_{_j ] (2. 50)

but



4,
~ 8 (=) = =2
T T N P R T A
R T 1 3% Ty T

The first term of the right hand side is the entropy transport term,
or a reversible entropy source. The rest of the terms are the
irreversible entropy production terms due to viscous dissipation,
heat conduction and relaxation respectively.

The magnitude of the various terms in Eq. (2. 52) will first be
considered in the interior of a weak viscous shock. The character-
istic length is then the thickness of a weak viscous shock X = Uoo”/ a; e

with € = Mf - 1 (Lighthill, 1956), while the characteristic velocity

o0
isa, .
o
For simplicity two dimensional flow is considered. All quantities

are non-dimensionalized using the undisturbed free stream values
except that U and v, the velocity components in the X and § direction

are non-dimensionalized by a while X and y are non-dimension-

f ’

alized by xs. However, using an argument due to Cole and Messiter
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(1956) y must be further stretched by a factor ¢ ", if it is assumed

that the flow is irrotational in the transonic regime. Consequently

A

x-_--;-‘- N (2. 53)
S S

The assumption of irrotationality cannot be rigorously justified

a priori. In general, the assumption implies that only the compres-
sive viscous stress due to the gradient in volume dilation is important
in the first order flow, the viscous stress due to the shearing of the
fluid being negligible (e.g. Rae, 1960). Obviously, the approxima-
tions made here are not valid in a boundary layer. The non-dimen-
sionalized quantities u, Tl’ u, U, Cp and Kc are now expanded in

series of the form

(1)+...

L=1+¢L (2.54)

while v is expressed as

v-3, €2y L (2. 55)
o0

to be consistent with the irrotationality assumption. Furthermore the
entropy s is non-dimensionalized by C_ so that
Py
s
= —— .5
S o (2. 56)

o]
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The slightly out of equilibrium assumption which is in general true
in transonic flow implies T2 nowhere differs appreciably from T1

and consequently T2 can be written as

T2=T1+€9 (2. 57)

so that the entropy equation (2. 52) becomes

s _ 2 1 o2 63[ 1 (azT(2)+82T(1) ) BT(l))
0x Pr" ax2 Pr' ax2 ayz dx
2
Yy, -1 (1) Y
f ou s 2 2
+(7f"1)(1+ P H)( o0x ) :l'*' 'x;é C29 (2.58)

prie %

while Ac is a relaxation length defined as

A_C = TCO af (2. 59)
0]

Throughout the present analysis, the ratio between the viscous shock
thickness AS and the relaxation length AC will be assumed to be of the
order of € which can be considered either as an assumption or the

necessary order such that flow is irrotational; hence

AS/AC = Ole) (2. 60)
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Although this assumption is arbitrary it is certainly true for the vibra-
tional energy mode and for dissociation that xs/ Ac < 1 as discussed
in the introduction. For the purpose of analysis it is necessary to
specify the degree of smallness of AS/ A, The actual value of AS/ A,
depends on the detailed physics of the relaxation process.

The net change of entropy across the shock contributed by the
entropy transport in Eq. (2. 58) is zero as uniform conditions are
assumed at infinity. Therefore the entropy change across the viscous
shock is third order in ¢ while entropy variation within the viscous
shock will be of second order in ¢. And the contribution of relaxa-
tion is of third order or higher depending on the order of magnitude
of Coe
Next, the entropy change in a relaxation wave with characteristic

length A = FOO foo will be considered. Then the entropy equation

(2. 52) becomes

(
X Prvt A 3 Y o2 5+ T 5

s 1 Voo”/afooe a2p (1) , VER 2 {azT(z) 220 ()
= (
(¢ ox c oy

ve-1 o (1)
- (1 (B et ey 02 (2.61)

Pr"

In general, such as in a fully dispersed wave, it is irrelevant to

define a viscous shock length, and a viscous length AV which has
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the meaning of the order of magnitude of molecular mean free path is
used instead, A 1/ Ac will be assumed to be the order of 62 . It can be

considered, from Eq. (2. 61) as the necessary order of magnitude

such that the entropy production is of higher order; hence

xl/xc=0(e2) (2. 62)

This length was used by Moran and Shen (1966) in solving the viscous
shock propagation problem. The entropy change due to relaxation is
now of second order. Entropy variation due to transport is of third
order while entropy changes across the wave due to viscosity and
heat conduction are of fourth order. From the above discussion,

it follows that if a solution of Eq. (2. 37), accurate to first order is

desired, the flow can be considered as irrotational.

The approximation dT~du is obtained by considering Eq. (2. 34)

2
u
9Ty 05 Ty-Ty w19 g
u, C 'é‘;{""=-u. % -Cz———q—_—'—“-%-“——é——-—-a—}—(—-k-ﬁ (2.34)
J7pg 0% i oox, p 0x pox,

Inside a weak viscous shock, the characteristic length is A = Av/e

where ¢ is defined as IMf -1|. Nondimensionalizing Eq. (2. 34)

according to the upstream values yields
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aTl 822“ >Lv 1
Cp uj ox, -(Vf'l)uj ox, 2% € (Tl ) TZ)

f j ¢

0 oT
) K 5 1
i E)xl 1 ax]
+e€ — an +€ B 3 : + higher order terms (2.63)

As AV/AC is assumed to be of order 62, then to the first order, only
the left hand side and the first term on the right hand side of the
equation remain. Rewriting these lowest order terms in dimensional

form yields:

QO

|

(@3]
NI':‘L,’

(2. 64)

ke
)
o))
")
o3
ol

On the other hand, it can also be shown that in a relaxing zone
where the characteristic length is Ac, the same approximation can

also be reached if ¢, is assumed small compared with (_pr or (—:Pe

or 'c'z/ 6p = ¢. The nondimensional form of Eq. (2. 34) in a relaxing

region is then



u2
C_ u, === ~(y,-)u - & (T, - T,)
p; ] 5X] f 7] ax]. Cp 1 2
}\v u, ax.1 }\v 11 axJ
t = e 4 = B 2 7%, + higher order terms (2.65)
c P %k C J

To the first order, Eq. (2.64) is again obtained. Since the upstream

flow is uniform, Eq. (2.64) can be written as

_2
5)

1
dT, = - & d(
Py

1 =

(2.66)

Substituting Eq. (2.66) into (2. 48) yields

2
3q. oT ., a@—)
o2 g LK 2

0X. OX. c 0X. ' Pr'' 0%, 0%,
j j j i

(2.67)

However by using the vector identity

_2
4V = V ‘-;- + (Vxd) xU (2. 68)

and recalling that in transonic theory, Vxu, (Vﬁ)2 are of higher
order, Eq. (2.67) can also be written as
2.

u,

3. 9

] B ﬁ" _ 1 .
afj =y b & a}.{j + higher order terms (2.69)
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Then substituting Eq. (2.69) into (2. 37) yields

¢ G2 2
. vfﬁ 3 ~8(~2—)_§28uj_)/f lﬁ,,ﬁ auj __1_ﬁ a'rjk+¢
6;; i 0%, |'] axj f ax] p Pr''joR 0 P § 0%
9 _
_ a C 2_
:523_68(‘—2—)_*_(’}/:{—1):}_ *'uﬁ au]
e ax]. j E?xJ p CVe Pr ]axk axk
o,
1_ "jk
. — @ .
+5uj a}_(k + (2.70)

The dissipation ® above can be neglected since it is of the order

of 63.



III. ANALYTIC STUDY OF ONE DIMENSIONAL WAVE STRUCTURE

In order to understand the nature of flow and to establish where
viscous terms are important, the one-dimensional shock wave struc-
ture will be studied first.

There are several small parameters aside from AV/AC or AS/AC
in the problem and they are related to various velocity differences
suchasa,-a ,u -2a; andu -3, . Inthe wave structure prob-

f e’ 0 0 0
lem, only the relative order of magnitude of any one of the velocity
differences to the wave amplitude ﬁoo - ﬁs is important. Although
U - u_is, ingeneral an order higher thanu or a; as required by
© S 0 0

transonic theory. Therefore, ﬁoo - ﬁs is always one order higher

thanﬁao, and a ,-a ,u -a oru -a

e is either at the same order
f e’ o o0 0 0

or one order higher than ﬁoo - ﬁs.

The one dimensional version of Eq. (2.70) is

6v -1 2
Ftad @ z-ﬁz)@+(1+yf )U"ﬁ—--——dﬁ
TE Az |t a< Pr'' o i)
\Y dx
e
Y lav 2
~2 _ 2 .4da f77 't —da
._(u ae )a‘:'*'(l Pr” —é—“) VCO u———:i (3.1)
Ve dx

30
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Without viscous and heat conduction terms, Eq. (3.1) reduces to the

familiar inviscid equation for a relaxing gas.

el

\'% - _
?Jﬁi{(az-az)d—‘i]z(az-az)g‘i (3.2)

e]]
o,
>l

Lighthill's inviscid solutions for fully and partially dispersed
waves were reproduced by Clarke and McChesney (1964) by using
the above equation (3. 2) and will be given here. The information
obtained from the inviscid solution will then serve as a guide to the
study of the viscous equation (3.1). Some paradoxes in the inviscid

solution will also be examined carefully.

A. INVISCID SOLUTIONS

1. Fully Dispersed Relaxation Wave

A fully dispersed relaxation wave is a steady compression wave
in which the dissipative effect of relaxation completely balances the
convective steepening effect,and occurs when the upstream velocity
lies in between the frozen and equilibrium sound speeds. The prob-

lem is then to solve Eq. (3.2) with the boundary conditions

S oL di
o > dx

0

(3. 3)
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ﬁoo is the velocity upstream of the wave while ﬁs’ the velocity down-
stream of the wave, is found from the conservation relation (Clarke

and McChesney, 1964) across the wave:

i-a % 2@ ?-ud

2 (
o e e s
0

© S (ye+1)ﬁOO - (ye+1)'ﬁs

The solution of the above system is readily found and is (Clarke

and McChesney, 1964).

i 2_ﬁ2 = 2__ﬁ2
fw ®© f S
T =g In (uoo—u)—'r =T In (u—us)
0 S w S
EV'
1 e _ —
—'2—(Ye+l)gx:—x+'r(yf+1)u+constart (3. 5)
f

The constant is arbitrary and determines the location of the origin.
Figure 1 shows three solution curves with different upstream veloci-
ties with respect to the frozen sound speed ﬁf.
The upstream portion of the wave becomes narrower and steeper
as HOO approaches 5foo and in the limit, Hoozﬁf , a corner appears, and
the upstream boundary condition can no longer be satisfied continuously

On the other hand, as iioo approaches ag o the wave profile becomes

more symmetrical while the wave amplitude decreases. and in this
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u/uOo
1.0
corner
3, 2 'small'= 0
© _
u
-
_— i
i ‘'small'= 0
0
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~ . s
u
o0
u
S
a _
®© X
A
Fig. 1 d
case an approximate but useful form of Eq. (3.5) can be obtained
by using the fact that
3 2 - 2 ~ 5 2 5 2
f o 1 e
o0 o 0
(3.6)
5 2 5 2 ~3 2 5 2
f s °f e
S 00] 0]

If ﬁoo - ﬁs is indeed very small compared with ﬁfz - 562, then Eq. (3.5)

becomes



s 1 B0 T U (3.7)
U -u 72T 7 '
f a2 ;Y
C f e
Ve @0 o]

Equation (3. 7) has the same form as the solution for the structure

of a weak viscous shock with the quantity HB given by

o]

Ve
———-(if -3, ) (3.8)

v 0 0
€

Iy =7

ol

playing the same role as the compressive viscosity. Consequently
EB is sometimes called the bulk viscosity. Thus the relaxation
effect of the internal mode is equivalent but different in order of
magnitude to the action of compressive viscosity. Fully dispersed
waves are at least an order of magnitude thicker than the equivalent

viscous shock wave.

2. Partially Dispersed Shock Wave

When the upstream velocity is greater than the frozen sound
speed, the solution (3.5) is no longer valid as it then possesses an
infinite slope and is double valued at each location (Becker, 1968 ;
Polyakova, Soluyan and Khokhlov, 1962).

In the framework of the inviscid theory, this difficulty is resolved

by inserting a viscous shock discontinuity upstream of the relaxation
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zone within which the internal mode is assumed frozen. The detailed
structure of this viscous region is ignored. The solution downstream
of the shock discontinuity is (Lighthill, 1956)

. -, -%/7Ug

u=uS+(ub-uS)e (3.9)

where ﬁb is the velocity downstream of the viscous shock as determined

from the Rankine-Hugoniot relation:

2 (ﬁooz -3, 2
- 0

Furthermore, it should be pointed out that the viscous shock should
be sufficiently strong so that the majority of the velocity drop occurs
across the viscous shock if Eq. (3.9) is to be valid. This type of
wave has been called a partially dispersed wave by Lighthill. There-
fore, the solution for a partially dispersed wave does not hold for the
case when ﬁoo is greater than but extremely close to ﬁfoo. The com-
plete partially dispersed shock wave solution is shown in Fig. 2 below.
The discontinuity in the solution for a partially dispersed shock
wave is clearly the result of neglecting viscosity in the theory.
Mathematically speaking, the proper characteristic length in the up-
stream portion of the wave should be the viscous length A =¥ ' /u

o]

or the viscous shock thickness hs rather than the relaxation length
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Viscous Shock
Discontinuity

Relaxation Zone Downstream
of the Viscous Shock

el
i

Fig. 2

)‘c =FOO 1‘100. The existence of two characteristic lengths as above
suggests a singular perturbation problem.

In view of the difficulties arising in the inviscid solution, that is
the corner solution for a fully dispersed wave when iioo: éfoo and the
discontinuities in the velocity and velocity gradient in a partially
dispersed wave, the viscous equation (3.1) will now be used to study
the wave structure. It is also hoped that the one dimensional analysis

will shed some light on more practical problems such as flow inside

a nozzle or over an airfoil.
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B. VISCOUS SOLUTION

The problem is to solve Eq. (3.1)

c
S N A -az)S‘EJrA-"ﬁS’i‘? @ -z W
T Ve | TS el &
Ve dx
2.
+Byady (3.1)
diz
with the boundary conditions
X - - u=u s 9—E-:O
00 dx
(3.11)
— — - du
X=+c0 U=0, ; a—}:{-:O
where
)/f -1
A=1+ T =0(1)
z (3.12)

Ve - 1 Ve

B=1+ Pri 3 =0(1)
e

As mentioned before, there are two characteristic lengths in the

problem. One is the relaxation length defined as Ac =T

=1

0 oo’

'roo‘s‘tfoo, or FOO I'{eoo depending on the nature of the problem. The

other length is associated with the viscosity and is defined as
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A =7 '"/@ or ¥ '/a . The characteristic velocity will be @
v oo 0 0 0
for the partially dispersed wave, and for the fully dispersed wave
either Efoo or Taeoodepending on whether the flow is frozen or equilib-
rium transonic (Napolitano, 1966).

The distinction between frozen and equilibrium transonic flow

can best be illustrated by rewriting Eq. (3.1) in the form

K =K U (3.13)

where Kf and Ke are the frozen and equilibrium transonic operators

respectively defined as

c
'
_ f_di{,_2 .2 d
Kfz'r-g—-—ua%[(af -u)a—i]
Ve
(3.14)
2 _ 2, du
K =( -ae)ax:
in the inviscid theory, and as
c
\% 2
= f_d|-2 .2.d —, - d
K - —_—— - — 1 —
¢ T(? a __[(af u)d)_(+Av' u —2]
\% dx
e
(3.15)
2
=2 - 2,d ., d
K =(u ae)a§+Bv”u———
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in the viscous theory. In the frozen transonic regime where
leOoz - 1| = O(¢), an approximate equation with the non-linear

terms from Kf u plus a linear term from Ke u can be obtained by
stretching the x-coordinate with a factor leooz - 1]. Similarly,

an approximate equation valid in the equilibrium regime where

lMeoo2 - 1] =0(¢) with a linear term from K, T and non-linear terms
from Ke u can be obtained by stretching x-coordinate with a factor
1/ lMeoo2 - 1|. However, since the sonic point is always a singular
point in the inviscid equation, Napolitano's stretching is not valid for
the case Mfooz = 1. Therefore, the stretching of the x-coordinate
will be different in the viscous theory where )\V/ A, = O(€2) is used

as a stretching factor when Mfooz =1, It is also expected that the
viscous equation thus obtained should also be true for cases where

leooz - 1] = Ofe).

1. Equilibrium Transonic Approximation— The Bulk Viscosity Case

The equilibrium transonic case will be studied first. Non-
dimensionalizing Eq. (3.1) by the characteristic speed Eeooand

length x, =7 '3 where T '=7 _(Cy,/Ty ) yields

© 0
2 A 2
2 2 du A d%u 9 du v du
d | (a® - y*) U v S8 g 2 4By &d )
ud_x_[ £ u)dx+Ax;udX2] (u ae)dx+ }‘Cudx (3.16)

where x =7 "/@, K.
14 0] o] C
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The precise order of magnitude of AV/ X, is unimportant in the equi-
librium transonic regime so long as )\V/ A, < 1. Apparently the
waves are thick and gradients are sufficiently small that viscous
effects are negligible. However AV/ A =0(e 2) will be assumed here
in order to be consistent with other cases.
u is now expanded in the parameter 6 which is of the order of

magnitude (ﬁoo- ﬁeog/ie g \-€- represents the wave amplitude, and

6 < 1. Then
u=1+5u(1)+62u(2)+. .. (3.17)
a; = a, +6af (1)+62af(2)+
[00] o0
(3.18)
a :1+6a(1)+62a(2)+
e e e
i -2
o) eOo
6:]Me -1|=—~§-——- (3.19)
0 2
o0

f-xb-X5-_% .20
X X >\c ;\'(7'5 (3 )

The fact that Av/ 6 is a thickness of a weak viscous shock
suggests that Ac/é might be considered as a thickness of a weak
fully dispersed wave. Keeping only the largest terms, Eq. (3.16)

becomes
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6d(a2_1)ng”+Afg§d%“)
dax |t d% Y )
o0 (¢ dx
1) A 2 (1)
B VR N X T ¥ L
-—2(u -ae )5 —d—;(——-'-B)\ ) ")

2 (1) (1)
o P g )
0 dx

al-y (E-9)u
e "yeQ
where
F=p +p g 2 Q=p_1
=Pyt Po 0 =Py
Atx - -
a =2 4=u,
©

and then

(3.21)

(3. 22)

(3.23)

(3.24)
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Introducing the expansions (3.17) and (3. 18) yields

1) 2

1+%aJ”=1-yead”+5u( +0(6%)

and finally

u’’ -a = —u to first order

Similarly, it can be shown

Y.+ 1
o_,m_ %"

u - af 5 to first order

Equations (3.23) and (3. 26) will frequently be used below.

(3.23), Eq. (3.22) can be written as

2 (1) (1)
2 d u’ (1) du
(af -1) 5 = (ye +1)u 5
0 dx
Integrating once yields the equation
a 2_DdJ”_Ve+IJD2_C
foo d& 2 -

From boundary conditions

(3. 25)

(3.23)

(3. 26)

Using Eq.

(3.27)

(3. 28)



X = =00 u=u u

so that ¢ = - (ye +1)/2.

The solution for u(l) is then readily found and is

@ - e (3.29)

Equation (3. 29) can be re-expressed in terms of the original physical

variables
R S
T a
0 e
)
ﬁ-ﬁe
(1) _ ol
u = a 3’ (3.30)
e
0
u -a
0 e
——®_5
a
e
0
so that to first order in 6.
] (ye+1)(uoo—us)x
o 2 (¢ /c)'r(ﬁz-—a 2)
u- S f e foo eoo
— = (3.31)
a -u
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This solution is identical to that obtained by Clarke and McChesney
(1964). Thus Clarke's inviscid solution for the bulk viscosity case
is completely recovered in Napolitano's equilibrium transonic approxi-
mation. Furthermore, the physical nature of the solution (3. 29) can

best be shown by rewriting it in the form

(v + 1 -u)
oY - tann —© ©x S (3. 32)

g

This solution can now be seen to be identical with Taylor's weak
viscous shock solution with the bulk viscosity replacing the longi-
tudinal viscosity. Since this classic solution for the bulk viscosity
approximation has been derived from the viscous equation it appears
that the effects of viscosity can be neglected in the equilibrium

transonic regime.

2. Fully Dispersed Wave

Lighthill's solution, Eq. (3.5), for a fully dispersed wave is
good for almost the entire velocity range ieoo <u< ag, However,
a corner appears in the solution as the free stream velocity approaches
the frozen sound speed from below and there is then a discontinuity
in the velocity gradient at the upstream boundary.
The viscous equation (3.1) will now be used to study this problem.

The governing equation is again Eq. (3.1)



c
V¢ al_2 2dm , _, _d%
Ta——ua-}:(:(f -U)E_{'+A u—-z
\ dx
e
2 2, du d2ﬁ
=@ -3) F+BV i — (3.1)
dx
with boundary conditions
X =~ - u=u El—ﬁ—O
x "% 0 &
(3. 33)
_ Y L S
X = +o u=ug = -

Lighthill's solution for a fully dispersed wave, obtained by simply
solving Eq. (3.1), (3.2) but without the viscous terms, has already

been shown to be

_ 2 _2 3 2_g?2
afoo -lloo fs s
T =g W@ -0-T =% In (@ -T)
.
1 +1) —YE:—(+F()/ + 1) @ + constant (3.5)
2 Ve c, f
f

For the case when |a; 2 _ g 2 |/a 2 becomes small as indicated by

0 0 fw
Clarke and McChesney (1964), the scale parameter T (?aifoo2 - ﬁooz) / (ﬁw—ﬁs)
for departure of u from ﬁoo in the early parts of the wave will be very

small and the variation of flow properties correspondingly rapid.
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Therefore, it is doubtful that the inviscid solution will remain valid.

Furthermore when Efw: u , a corner appears upstream. When 5foo

od
=u_Eq. (3.5) becomes

0
- 2 _2 _
a, -1u C
— fs . — 1 v
T =3 ln(u-us)z—z—('ye+1)—é—-x
w S \'
f
T ('yf +1) U + constant (3. 34)

and boundary condition (3. 33a) cannot be satisfied, as u = ﬁoooccurs
at a finite value of X and a corner appears. The slope of the velocity
profile at the corner can be determined by rewriting Eq. (3.2) in the

following form.

c
v _
- .2 _2du_1 e
TE—(af —u)a—i_z(ye+1)(u u)(T uS)
Ve
and is
o 1 et DA -T)
—_ =7 = (3.35)
ax 4 C
v
_ f
T —
C
v
e

The failure of Eq. (3. 34) to satisfy the upstream boundary condi-
tion is apparently due to the neglect of the compressive viscosity

terms near the upstream region. The compressive viscosity terms
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in Eq. (3.1) should be of the same importance as the relaxation

terms in a small region near the upstream portion of the wave.
Equation (3.1) is first non-dimensionalized by the relaxation

length A, =7 '3¢ , where 7 '=T Oo(Evf/Eve), and by the characteristic

speed éfooso that

)y 2 by 2
d 2 2, du vy du 2 2, du v d'u
ua—x~[:(af -u)a-}—(-+A—X—-u—-——2]-(u -ae)———+B->T—u——2 (3. 36)
c dx c X

Q.

Again it is assumed that Av/ A~ O(e 2) so that, keeping only the largest

terms, Eq. (3. 36) becomes

u a‘-‘;{[(af?‘ - ud) %x‘l]= (w? - ae?‘) gx—“ (3. 37)

This equation will be called the outer equation and is just the inviscid
relaxation equation. The solution in terms of the outer variables

is then

In (u - us) = —;— (ye +1) x + ('yf + 1) u + constant (3. 34a)

This solution will not be valid near the upstream part of the wave
where another equation is needed. In order to keep both the viscous
and the relaxation terms in the equation, the first three terms in
Eq. (3.36) will have to be of the same order. If 0 is defined as

o1 -u S), it follows that the x-coordinate is to be streched by
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\/)\V/Ac (1 - us) = 6/61/2 and the perturbation in u is 0(651/2).
However, for definiteness, the particular case ¢ / % LO(G) will
be considered, but this choice is not essential. Thus x and u

in the inner region are

X =x/6 (3. 38)

ui=1+6(1-us)ui(1)+... (3. 39)

Substituting Eq. (3. 38) and (3. 39) into Eq. (3. 36) and collecting the

lowest order terms, then yields the inner equation

ot ® gau]  au®
& A 5" 21‘f u.1 = = I‘e = (3.40)
dx
where
Vet 1 Ve 1
l‘f = 5 and l‘e = D) (3- 41)

=T u, (1) (3. 42)




49

The constant of integration is zero by applying the upstream boundary

condition.
In the absence of viscosity, Eq. (3.42) has the solutions

u.(l) =0

‘ (3.43)

or

r
1 _ e
u = - 2I,fx + ¢y (3. 44)

Clearly, Eq. (3.43) is a trivial solution but solution (3. 44) describes

the upstream behavior of the fully dispersed wave for the case

af = uoo.
o0
Unfortunately, Eq. (3.42) cannot be further integrated analytically;

however by letting f= - u,, Eq. (3.42) becomes

9
A-‘L%Jrzr g4

—~-T f=0 (3. 45)
iz f dX e

which, except for the numerical coefficients, is exactly the same as
the equation studied in detail by Cole (1968) in connection with what
he refers to as a corner solution. The phase plane of Eq. (3.45) has
been plotted by Cole and various possibilities for matching have been
outlined. The following phase plane plot is reproduced from Cole

(1968). The asymptotic behavior of the inner solution can be readily
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Pe/ZTf

Integral curve for
inner solution

> f
Fig. 3
determined. Letting p = df/d%X, Eq. (3.45) becomes
Ap-q-E+21" fp-T =0 (3.46)
df f e
or
dp _,
r -2 I‘f df
Integrating once then yields
r
A e 1.2
E-f;[—p_é—f‘;m (Fe-zr‘fp):l_-if +C1 (3.47)

and since



A I‘e
x—-0 f=0 , p=0 = 2lnl"e
4T
f
Then Eq. (3.47) becomes
r 2T
A e f 1.2
-z—f-li-p--z—f—ln(l--f— )——Ef (3.48)
f f e

Upstream u—u 00a.nd both f and p are expected to be small. The the
logarithmic term in Eq. (3.48) can be expanded in terms of a power

series of p to give
A T2y 4T 3\L 12
oot (- E b o))
e
so that

f\é— p2 = f2 + higher order terms (3.49)
e

Taking the square root of Eq. -(3. 49) yields

=p=+ VI /A § (3. 50)

€

B &

The solution of Eq. (3.50) is readily seen to be

i\/i‘JA X
f= c2 e
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From the boundary condition x - -« f = 0 and since f = - ui(l)
the final result is
1) /A%
u ' =-c,€ (3.51)

The constant must be determined from matching with the outer solu-
tion. Thus the asymptotic solution of the inner equation approaches
the upstream velocity exponentially and also satisfies the boundary
conditions upstream.

Equation (3. 51) can also be expressed in terms of the physical

variables to give

[ _ 2
(::1f

)/
B (K] c
ufl) = exp Pr _— \/ / Vf

and after some rearrangement yields

a

1)_ vy +1 X
4 T EXp (1 e S )17 "
© (3. 52)

Equation (3. 52) clearly shows the combined role of compressive
viscosity and relaxation in the upstream part of the wave. 1t is
interesting to note that the compressive kinematic viscosity is unre-

lated to the viscous shock amplitude; whereas the bulk viscosity
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depends on the maximum strength of a fully dispersed wave. This
difference explains why an increase in ﬁB steepens the wave and an
increase in ¥'' smooths the wave.

At the downstream end of the inner region as f — o, a different
asymptotic representation is also available. Cole's phase plane
plot suggests that p is a monotonic increasing function as long as
p < re/zrf andasf — o p —~I‘e/21’f. Near the downstream end

of the inner region, the solution is then found by solving the equation

r
df e
p ——d—x'—-é'i,—f (3. 53)
r
f=re X +c
2T 3
f
or
T
1) _ e~
U =-gp X+ Cq (3. 54)

f

Equation (3. 54) is the asymptotic form of the inner solution near the
downstream end and is to be matched with the outer solution. It is
interesting to note that Eq. (3. 54) contains no parameter related to

the compressive viscosity.
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The idea of matching, according to Van Dyke (1964) or Cole (1968)
is that the behavior of the outer expansion as the outer variable
approaches the inner limit is in agreement with the inner expansion
as the inner variable approaches the outer limit, i.e. there is an
overlap domain where both expansions are valid. Therefore it is
desirable to express both the inner and outer representations in an

intermediate region where the intermediate variable is defined as

f
6 (1) o0 D __
=D Y Dafl-w) D=0 5 F—w
©
(3. 55)
—6~
xn-—l-)-x

It is more convenient here to consider u77 rather than x77 to be the
independent variable. Then the inner limit become un-—>0 while outer
limit becomes un——~ .

The inner asymptotic representation in the intermediate region is
readily found from Eq. (3. 54) and written in terms of the intermediate
variables becomes

I'e
un = -f'fgxn + 035 (3. 56)

where Cq must be obtained from matching.
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The easiest way to obtain the asymptotic representation of the
outer solution in the intermediate region is from the outer equation
rather than from the outer solution.

Equation (3. 37) can be integrated once to give

o - ud) 9‘% .- -;- (rg+1) (@-u) (w-1) (3. 57)

In the intermediate region

f
0 - _®©_ u-1
n Daf D(l-us)
o0
a =—f—=(1+D(1-u)a )
f a s’ °f
foo n

then u17 -a, = I‘f un . Equation (3. 57) becomes

du

_Nn__
ZI‘f u17 dxn = I‘e u?7 (3. 58)

This equation is readily integrated yielding

T
e
un=-—2-f-f-xn+c (3.59)

The constant ¢ in Eq. (3.59) is arbitrary and determines only the
location of the origin. If the origin is located so that u = u, atx=0

then ¢ = 0 and



Comparing Eq. (3.60) and Eq. (3. 56), the result Cq

(3.60)

= 0 follows.

Thus the inner and outer solutions are matched to the first

order; however due to complexities of the equations higher order

terms in the asymptotic expansions were not evaluated.

In general, since both the inner and outer equations are autono-

mous, each solution will have a constant which establishes the origin

of the coordinates. However only one of these constants is arbitrary.

In the present case, the constant in the outer solution was fixed by

requiring u = uooat x = 0. Then the constant in the inner solution

was found from matching. A qualitative sketch of the solutions is

given below. Mathematically speaking, the theory is now complete.

ol

0(d) O(1)

i

i

il
b

Inner Solution
Outer Solution

Common Part

u
@ -W/@, -8 = (T/2TYE/)

S

Fig. 4

o>’ !N!
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However the complete inner solution still can be found only by numer -
ical integration. Equation (3. 52) provides the initial values needed
to start the integration.
An uniformly valid composite solution can now be constructed
by adding the inner and outer solutions and subtracting the common

part which from Eq. (3. 54) is in the present case

(3.61)

The final result is

-+, (3.62)

where u.1 is the inner solution.

3. Partially Dispersed Wave

The partially dispersed wave corresponds to the case when the
upstream velocity is greater than the frozen sound speed éfoo' By
considering that the relaxation due to the internal mode is a much

slower process than the translational diffusion which accounts for



58

viscous effects, it can be assumed that the internal mode is frozen
inside the viscous shock and then relaxes slowly to the final equi-
librium state required by the conservation laws. The viscous shock
is usually represented by a discontinuity in the inviscid theory
(Lighthill, 1956; Clarke and McChesney, 1964).

For the viscous problem, the governing equation is again (3.1)

ol

\' - 2_
. f_d| -2 _2 du ...du
T————EV ua—x_—[(af —u)a§+Av”u-———_2]
e

2_
-2 - 2 du —,=du
=1 -ae)a§+Bv'u——_——2- (3.1)
dx
with boundary conditions
_ — da dzﬁ
X = -0 u=u , — =0 —=0
o ' dX ’ _2
dx
(3.11)
—_ — dua dzﬁ
X=~+0 U=0, ; a-i-=o ; ———2=0
dx

where ﬁs, the velocity at downstream infinity, is related to ﬁooby

the equilibrium Hugoniot condition

u -u_ = = (3.4)
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Utilizing Eq. (3.11) after integrating Eq. (3.1) once yields

2_

v -
Ve[, _d% _2 _2.dd| 1 o

e

Equation (3.63) is nondimensionalized with characteristic velocity u,

and length » =7 (Ev / c, ) U and takes the following form

e
A 2
v du o2 2du_1 - W -
Akcudx +(af -u)dx-z(y +1)(1 - uw(u us) (3. 64)
where
— g /=
izi_voo/uoo_o( 2)
Acu Ev e
S
Tt Yo
\
e

by assumption.
Then the outer equation is obtained by letting ¢ - 0 in Eq. (3.64)

and is again an inviscid one
-u )a-x—- 5 (y +1)(1 -uwu - us) (3.65)

This equation is expected to satisfy only the downstream boundary
condition and an approximate solution valid downstream of the wave is
easily found, after integrating the approximate equation,

(fs’” e AR (1w
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to be

= - s S
u=u+ (u us)e (3. 66)

where W, the velocity immediately downstream of the frozen viscous
shock, is obtained from the frozen Hugoniot condition.

Apparently, solution (3. 66) is not valid near upstream infinity
where a different equation is sought. The inner equation for a par-

tially dispersed wave with a very weak viscous shock or the case

u -u
_2';_:2:0(5),
u

" s
will be derived first. This can be done by considering a small re-
gion around u of order 6 compared with the total wave amplitude

(1 - uS). Velocity u and sound speeds will then be expanded in the

series

u=u o+ 6(1 -uS)ui(1)+. ..

(3.67)

a=a + b(l—us)ai(1)+. ..

Substituting Eq. (3. 67) into Eq. (3. 64) yields
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2 (1 a u.b
A
fb -2T u.(l)b)

s  dx 1—uS fi

du.(l)
i

dx

(3. 68)

Y — u)‘“b s

1-u Y (1-us)

where terms with order of 62 or higher have been neglected. Fur-

thermore, using the frozen Hugoniot relation

_ 2 2
— _ a -
uOo - ub tb ub fb ub
1-u =—— = (3. 69)
b u 2 T
0 T.u f
9%
and the assumption
1- u.b
T - o)
Eq. (3.68) can be rewritten as
2 (1)
) d u, (1)
v i (1), du
A 4 6T,(1 - 2u.')
Ac(l - uS) dx2 f i dx
(3. 70)
-u
[ ¢ O N T
=(1-u,"") 1= us

The x-coordinate will be stretched as in the case of a fully dispersed

wave when u = afoo by
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A
v

)\c(l - us)

0 =

or & = 62/3 if (AV/AC) = 62 and (1 - us) =06. ThenX = x/6.
Equation (3. 70) becomes
2 (1) (1)
du, du U - U

1) i (1)
+1"(1-2u.( ) =T (1-u'")
,.,2 f i % e i 1- uS

A

(3. 71)

where (ub - us)/(l - us) is, in this case, of order of one.
In order to give more physical insight, AV/ A (1 - u ) will be

written in a slightly different form,

A v "/u v '"/u
v ) /_oo 0 /_oo
= — — (3.72)
A(1-u) C - c 2
C S u -1 v, O -4
= f_ "o s _ f €
T=—1 — T —
Cy, o U c _ 2
00 v u I
e e 0 e
If indeed u is close toa, as assumed then
) foo
A v "/a
v o0 foo
= ——— T (3.73)
Ac(l us) pb/afoo e

Therefore, Av/ Ac(l -u S) can now be interpreted as the ratio of the
two characteristic lengths associated with the longitudinal and bulk

viscosity aside from a constant I‘e.
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The procedure used to solve for the fully dispersed wave with

u, = 'a'if can also be applied here by letting
o0

1- Zui(l) - f (3. 74)
Equation (3. 71) becomes
dzf df
A=+ T, —=TE({+1) (3. 75)
dx ax ¢

where E has been used to represent (ub—us)/(l -u

).

This equation is again very similar to Cole's corner equation

S

except for a constant term I‘eE. Its phase plane equation can be

easily written, by letting

df
to yield
-T.fp+ TE(1 + {)
9-? _ pe (3. 77)

A qualitative sketch of the phase plane plot with three different E is

shown below
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-1 0 /
Frozen Viscous Shock
Fig. 5

Upstream infinity, T =ﬁw, (du/dX) =0, or f = -1, p =0 is again
a saddle point as in the fully dispersed wave. From these plots, the
role of Eq. (3.75) is now clear. The terms on the left hand alone
is just the equation describing a weak viscous shock while the terms on
the right hand side is due to relaxation of the internal mode. Near
upstream, the terms on the left hand side dominate the equation un-
less E is large, while near the end of the inner region, the viscous
term is no longer important and the inviscid terms dominate the
equation—an indication of the matching solutions of Eq. (3. 71) and

the inviscid outer equation.
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Although, Eq. (3. 71) is arrived at by assuming
U = %

T_-u
0 S

= 0(5)

and

...'ﬁs
S _E = 0(1)

c_f:-‘l

b

=]

o0

it can be extended to solve for general cases of partially dispersed
waves by simply considering that E is a parameter for the equation
and allowing its order of magnitude to vary. The phase plane plots
indeed indicates that is true. The extension of Eq. (3. 71) is ap-
parently due to the fact that varying the order of magnitude of E does
not affect other terms.

For the case of a reasonably strong viscous shock or

T -1

? = - 0(s)
-1

® 8

and

T, 5,

T -u =0(1) ’
o 8

the term on the right hand side of Eq. (3. 71) can, in general, be

neglected because it is of higher order. However, dropping of this
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term makes it impossible to match the inner and outer solutions
since the relaxafion effect has then been completely left out in the
inner equation. Therefore E should be retained as a parameter as
discussed above even if it is of higher order if the present method
is to be used.

However Eq. (3. 71) will have to be derived in a slightly dif-
ferent way if it is to be used for the case E =0{6). The expansions

of variables will be different

u=ub+ 6u1(1)+. ..

(3.78)

a=a.b+ Gai(1)+. ..

It is clear that the velocity in the inner region for the present
case is of order 6 (the same as the tptal wave amplitude) contrary
to the previous case when the velocity variation in the inner region is
of order &6(1 - uS) or 0(62).

The stretching factor 6 is defined as

A A
Y =55§ = O(€) (3.79)
(¢

6 = ——i
)tc(l - ub)

Because of the reasonable strength of the viscous shock, the thick-
ness of the viscous shock A = (AV /(1 - ub)) is used as the character-

istic length in the inner region. The the inner independent variable is



with 6=¢ (3. 80)

Substituting (3. 78) and (3. 80) into Eq. (3. 64) and neglecting all the
higher order terms except the one expressing the relaxation effect,

i. e.

)

Y™ %
which will then be treated as a parameter as discussed before,

yields

_ (1)
=T(1-u')E (3.8

Equation (3. 81) is identical to Eq. (3. 70). It is also interesting
to note that if x| / A, is fixed to be of order 62, then the length of
the inner region for the case when (uoo/ﬁb)/ (‘ﬁoo - us) = O(1) will be of

2/3

- )@ -u) =05,
order €~ but of order € for the case when (u © ub)/ (u(Jo uS) 0(0)
This is indeed true as the stronger the viscous shock strength, the
thinner the shock.

Solution of Eq. (3. 71) or (3. 75) by following the same procedure

used in the fully dispersed wave with U = 3y will now be considered.

Near upstream infinity where f = -1 an approximate form of Eq. (3. 75)
can be obtained by letting f + 1 = g clearly g << 1. Equation (3. 75)

becomes



= gE (3. 82)

g = Cle (3., 83)

c1 is the constant of integration and has to be determined by
matching of the full inner solution and the outer solution.

It can be easily seen from Eq. (3. 83) that a combined effect of
viscosity and relaxation determines the structure of weak viscous
shocks in a relaxing gas contrary to the fact that viscous effects
alone determine the structure in an inert gas. However, as the
viscous shock strength increases . and E decreases, the relax-
ation effect in the upstream portion of the shock diminishes and
vanishes in the limit of a strong viscous shock.

At the downstream end of the inner region where the viscous ef-
fect is negligible as found in the phase plane study, as f becomes
large compared with unity, or f - w, Eq. (3. 75) can be approximated

to yield

(3. 84)

£l &
i
| o
=



f=—=—EX+c as f—+w (3. 85)

uw ' =-=—EX+3s+cC (3. 86)

The asymptotic form of the outer solution needed to match
Eq. (3. 85) or (3. 86) is best obtained by solving the outer equation

in an intermediate region where

(3. 87)

The outer equation is then, in terms of the intermediate variable,

du
The solution is
I-‘e
unz-?r—,Exn (3. 89)

L)

Matching Eq. (3. 89) to Eq. (3. 86) which is written in terms of the in-

termediate variable

Iﬂe 1 €
un=—§j—fEX +(—2'+C)]—)
(3. 90)
RN |
2
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A qualitative sketch of the solutions is shown below

u - 0(5)—
? N~
0(6%)
i b \

llnner Solution/

0(9)

Quter Solution

u / C ommon Part\

L o(1)

Fig. 6

The exact matching of inner and outer solutions of a fully disper-
sed shock wave with Mf =1 is shown on Fig. 10. The inner solution
is obtained from the numerical integration of inner equation (3. 42)
while the outer solution is from equation (3. 34). All calculations
are based on vg= 7/5 and Vo= 9/7. This particular solution has
been compared with the result from the numerical integration of

the full equation (4. 1) and is in very good agreement which is shown

on Fig. 11.



71

A different method which gives more physical insight is now
employed to solve for the partially dispersed wave with reasonable

viscous shock strength.

4, Partially Dispersed Wave— Alternate Approach

A method which shows more physical meaning will be given next
for the solution of the structure of a partially dispersed wave with
reasonable viscous shock strength. The disadvantage in the pre-
vious method in solving this problem lies in that there is no analyt-
ical composite solution available. However, the method which will
now be described-—a physical approach, although lacking mathe-
matical justification, does give an analytical composite solution
not only with a very simple form but also shows clearly the relation
between the viscosity and the relaxation effects.

Since ideas from the method of matched asymptotic expansions
will again be used to solve the viscous equation, it is useful to re-
write the discontinuous inviscid solution in a slightly different form.

Thus the inner solution, or shock discontinuity can be written

fii = ﬁoo + (Iib - GOO)H(E) (3.91)

where H(x) is the Heaviside function defined as

(3. 92)
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The outer solution is then in the present form

Up = U, - HE®) | (@, -T) (1 -¢)

E’llxl

S

The zero order composite solution is

u-—-ui+uo—ub

or
_ X
Tﬁs
= +(ﬁb HD-H(" [(u.b u)(l—e)
The viscous problem is to solve Eq. (3.1)
v 2
7—'—'—£ 1—1'_(_1_ (52__2)@ AI/"ug‘—E
R s S 2
\4 dx
e
2 _2d .., da
=(u - ae )§+ BV""U""‘E
dx
with the boundary conditions
X u=u —(E—O
- ® T > dx
X =u ElE—O
-+ U=ug D &=

andu > a
0 foo

(3. 93)

(3. 94)

(3. 95)

(3. 1)
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Non-dimensionalizing Eq. (3. 1) by the characteristic velocity

a; , and length A= TR With 7.0 =T (cvf/ cve) yields
A 2
4 |2 2% , v, du
udx[(af -u)dx+A)\u 2]
c dx
(3. 96)
A 2
2 2, du v du
(u -ae )EX-+BX—u——2
c dx

where 2 1/ Ac is of order of 62 as assumed before. By letting
€ -0; (AV/ AC) -0, the inviscid equation is recovered and will be

called the outer equation
4 [p2_ 2d] _ 2 . 2d
u [(af - u”) ]_(u %) & (3.97)

However, the outer solution cannot satisfy the upstreé.m boundary
condition as the outer equation will not be valid in a region where
the viscous length A, rather than the relaxation length Ac is the
proper characteristic length.

In this inner region where the characteristic length is AV, the

appropriate variables are

o~ X
X = AI/A - ? (3. 98)
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Substituting (3. 98) into Eq. (3. 1) and collecting the lowest order

terms yields the equation
cdf[ 2 2a , d&
U'd—g' (af -ﬁ)-—-l—Aﬁ =0 (3.99)

with the upstream boundary condition

X —-- T=u gg=0 g—g-:O (3. 100)
dg
Integrating Eq. (3. 99) once yields
2 .2 a8 . d%
(a° - § )axa+Aﬁ—-—%=e
dx
and with boundary condition Eq. (8. 100), ¢ = 0, to yield
2 2.di ,_d%
(a,”" -0 )s=+AU—5=0 (3.101)
f dx 2
dax
In the transonic regime, this equation is often called "Taylor's
weak shock equation' and its well known solution is
u -u —1-( +1)(u,, -1y )X (3.102)
oo 271 o™ '

or in a different form

u= u,, - —12- (uy - ub) [1 + t:a.nh%l-(yf + 1)(uy, - ub)i] (3.103)
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The outer equation

d 2 2 du 2 2, du
u-a—x-[(af -u)&]_(u -ae)ax— (3. 104)

will now be examined in detail. This equation has exactly the same
form as that for a fully dispersed wave, and expresses the balance
between the convective steepening and the diffusive effect of the re-
laxation. However, the nature of the solutions for the fully and par-
tially dispersed wave are quite different. For a fully dispersed
wave, the solution of Eq. (3. 104) is either a shock like profile, i.e.,

Eq. (3.5) or the trivial solution, 4 =u o For a partially dispersed

wave, the translational temperature rises from T, = 'fw toT, =T

1 1 b
through the viscous shock, while the temperature '-I‘_2 associated with

the internal energy mode still lags behind and is almost equal to the

upstream value due to the assumption that

U "/5
foo 2
5, - Ae)

foo

84! 8

In the limit, the slow mode is frozen inside the inner region, so that

the internal mode temperature ’fz remains constant at Tw. Tz still

equals 'foo immediately downstream of the inner region where the

equilibrium value should be Tb with Tb > 'foo' It is this difference

between the equilibrium and frozen value of the internal mode
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temperature, which depends on the viscous shock strength, that drives

the relaxation wave downstream. In other words, Tl - T2 is zero
ahead of the inner region and suddenly jumps to a finite value equal
to ('_I‘—b - 'fw) behind the inner region.

The inner equation as formulated here is independent of the
outer equation. This contradicts the familiar feature of the method
of matched asymptotic expansions in which the determination of an
unknown constant in the inner solution depends on matching with the
outer solution. In the present case the inner solution serves as a
forcing function which acts on the outer equation over a very small
but finite region.

Equation (3. 104) can also be written in the following form since

both the upstream and downstream flows are assumed to be in equil-

ibrium,

(a - u) P=-Zlr + Dlu-u)l_-v) (3.105)

This equation is not expected to be valid anywhere near the singular
point u = Efoo without modification. Furthermore, it does not have
the information of how U deviates away from ﬁ'oo which has to be sup-
plied by the inner solution. Physically the relaxing flow considered
here is similar to one dimensional flow with heat removal as can

easily be recognized by examining Eq. (2. 26) in one dimensional form
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but without the viscous term:

de
2 1 2 2 du
u?‘-;(—-—-;/‘f—:-i-[:(af _u)—d;:l (3106)
or
u(y -l)d—eg
du f dx
=" 55 (3.107)
(a;” - u’)

dez/dx can be considered as a heat sink and is zero upstream of the
inner region but suddently jumps to a finite value which then drives
the wave downstream of the viscous shock discontinuity. A quali-

tative sketch is shown below

ezs . ezs

e | I e
; X |
| Position -~
of Shock Viscous
Lighthill Solution Shock

Actual Behavior
Fig. 7
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It is the deviation of u from Iioo within the viscous shock that
initiates the relaxation process and will determine the initial be-
havior of (dez/ dx), as shown in the sketch of Fig. 7 . Thus the
inner solution initially drives the outer equation suggesting that an
improved outer equation could be obtained by replacing (uOO - u)

in Eq. (3.105) by

u -us= %(uoo - ub) [1 + tanh %(yb + 1)(uOo - ub)k] (3.108)

corresponding to the variation within the viscous shock. Then the

modified outer equation becomes

2 2
(a,f —u)d

@ -u)

|8

(’}’e + 1) 1 ~
== (u - us) [1 + tanh(z (yf + 1)(uoo - ub)x] (3.109)

If indeed, the viscous shock is not too weak, it is possible to use

the approximation

]
i

a -aes ;ow Tug (3.110)

so that Eq. (3.109) can be further simplified to yield

du 1 1 ~
Fi —z—lg (u - us) [1 + ta.nhz(yf + 1)(uoo - us)x] (3.111)
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with boundary conditions

X=-0 Uus= (a)
L (3.112)
X=+00 U=1u (b)
boundary condition (3. 112a) can be considered the result from mat-

ching with the inner solution.

Then the solution is readily found to be

2
€

S
=exp |- x+
-u 2u ( 1
Y T Y s gDl -u)

(3.113)

In cosh

(Yf"' 1)(uw_ uS)
2 X)

Letting

2
€

: E (3.114)
Z(Yf + 1)(uw - uS)

Equation (3. 113) can be written in the simplified form

4ol 1+eE
= +C (3.115)
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from boundary condition (3. 112a), it follows that

¢ =(3) (3.116)

_E
- 2 2u
— =(1+eE) (3.117)
" Ys
or
_E
2% 2uS
u=u_ - ( —u)(1+eE> (3.118)
s Y s )

The composite solution, obtained by adding Eq. (3. 118) and

(3.103) and subtracting the common part U is

usu +uo-u s (uw—ub)[ - %{1 + tanh—‘li(yf+ 1)(uoo-ub)'}"<}]

(3.119)
_E

2u
S

2x
+us+(ub—us)<l+e_ﬁ- )
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The qualitative sketch of the inner, outer and the composite
solutions is shown below

A

l— g —

0(5) ‘ ' Inner Solution

Composite Solution

. . . /

O(e) Quter Solution

Fig. 8

The composite solution and the exact matching of inner and outer
solutions of a partiallydispersed wave with Mfoo= 1. 2 is shown on
Fig.12. The comparison between the analytic solution (3. 119) and the
result from the numerical integration of the Eq. (4. 1) is shown on
Fig. 13. The two solutions agree well except in the middle part of the
wave where a smalldiscrepancy exists. Thisisapparently due to the
fact that the data used in getting the analytic solution (3. 119) do not

quite satisy the approximation u zuS for in the present case

b
(ub— ug)/(u -ug)=1/4.
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A diagram which shows various regimes depending upon the
relative order of magnitude of u_ -3, andu -3 and sum-
©  foo 0 ew

marizes the various solutions is shown below.

Uep
Composite Solu{ion is (3.119) with the
idea that the viscous shock drives the
relaxation process downstream
Partially Dispersed Frozen Transonic
Shock Wave .
Regime
Inner Solution is
(3.76)or (3. 81)
afoo l
Corner type equation in the
Inner Region (3. 42)
Inviscid Flow Regime
Eq. (3.2)
Inviscid Solution is
Eq. (3.5)
a Equilibrium Transonic Regime, Bulk
€% Viscosity Case, Solution is (3. 52)
All Outer Equations are Inviscid

Fig. 9



IV. PHASE PLANE STUDY AND NUMERICAL INTEGRATION

Since it is hoped that the method of matched asymptotic expan-
sions used for the one-dimensional case could eventually be ap-
plied to more practical problems such as flow over an airfoil or
inside a passage, the solutions for 1 - D wave structure obtained
analytically will be compared with solutions obtained by numerical
integration of the full Eq. (3.1). In general, the full equation for
some two or three dimensional problems may be too complicated to

be solved even numerically.

The phase plane of Eq. (3.1)

Flod (g2 gt @, odE

c dx |\t dx 2

Ve dx
(3.1)

2_

du —
=(ﬁz—§.2)—E+B17"ug—li
e " dx diz

will be studied in detail in order to provide the information needed
to start the numerical integration. However, Eq. (3. 1) can be in-

tegrated once to yield

=BP -5+ D@ -T)E-T (4.1)
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where boundary conditions

X=-+0 U=1 —@-=0 Lzﬁ—o
s dx diz
2

X - - u=u_ %=0 , —qlzl=0
dx

have been used.
Next, non-dimensionalizing Eq. (4.1) by the characteristic
velocity ﬁw and length A, and also considering as before, (AS/ AC) =

O(ez), yields

A€2 ug—-—%+ (af2 - uz) g;;
dx
(4. 2)
2du 1
=Be€ F E(Ye + 1)(u - uS)(l - u)
Furthermore, by letting (du/dx)= p, Eq. (4. 2) becomes
[— (a.2 - u2) + Bez]p - 1()/ + 1)1 -v)(u-u)
dp _ f 2'e S (4. 3)

du A ezpu

It is clear from this equation, that p =0, u=1and p = 0,
u =u_ are the two singular points of Eq. (3. 1) in the(p, u) plane
where p = 0, u = 1 corresponds to upstream infinity and p =0, u = u

corresponds to downstream infinity.
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The singularity at upstream infinity will be examined first.
It is, then, convenient to choose this point in the phase plane as the

origin by simply letting
l-u=71 q=%x7£=-p (4. 9

In order to study the singular behavior, a very small neighborhood
around 7= 0, q =0 is considered, and it is reasonable to linearize

Eq. (4. 3) to yield

Yy +1

1 Eafooz_l)-BeZ:lq- e2 (l—us)w

Aez

ﬁL (4. 5)

g8

while the higher order terms such as 62, Tq, q2, 772 etc. are neg-
lected.
The book by Minorsky (1960) is one of many describing the
procedure which can be used to investigate the system (4. 5) and is
followed below. A transformation

£ =oq+ Br
(4. 6)

n=yq+ om

reducing Eq. (4. 5) to the canonical form



ax = Pif

(4.7
dn _
ax - Do

is sought, where D, and D2 are the two characteristic values which

1

determine the nature of the singularity. In order that a non-trivial
solution exist for a, B, y,6 in Eq. (4. 6), the constants D1 and D2
must for the singularity (0, 1) be solutions of the characteristic

equation

(1-u)=0 (4. 8)

whose solutions are

D, D, =

-(afof - 1) i/(afof - D22y« (1 - u)AE
7

2A€

(4.9)

Since the two roots are always real and opposite in sign, no matter
whether u, > a, or Efoo > u the singularity at (0, 1), or upstream
infinity is always a saddle point. This is in agreement with Broer
and Van den Bergen's results (1954); however, it is just the reverse
of the viscous shock plane for which the saddle point occurs at down-

stream infinity. Therefore the numerical integration has to start

from upstream infinity.
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On the other hand, near the singularity (O,uS) or downstream

infinity, the linearized equations are

d7
ax ¢
(4.10)
(v, +1)
%xg:- € z(l-u)?r—“l:—z(a‘fz_usz)q
2A€ Ae® 8
where
~ a7 _
f=u-u, ik (4. 11)
The characteristic equation is then
Y +1
p’+ Lo (a? -u D+ S (1-u) =0 (4.12)
A€ S 2Ae

Since € is, by assumption small, the two roots are real and have the
same sign; the singularity at downstream infinity or (O,us) is a
nodal point.

The numerical computations are performed on the IBM System
360 computers. The Runge-Kutta method is used. The integration
step size in the x-coordinate is chosen small enough to insure the
stability of the integration. For example, the step size used is

0.02 compared with a value for the thickness of the wave Ac which
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is roughly 7 for a fully dispersed wave with Mfoo= 1. The integration
stops when the velocity gradient du/dx reaches a value of the order
(10'3). The integration converges well, however, the solution could
diverge if the step size chosen is not small enough. Because no
difficulty was experienced in the present case, no attempt was
made to establish the limit of the step size.

The integration starts infinitesimally near the saddle point
(m =0, q = 0) on the directrice or the axis which passing through
the saddle. In the (m,q) plane, the slope of the axis on which the
integral curve leaves the singularity is given by

2 .2 2 2
; \/(af -D7+ T (1 -u) Ae” - (a “ - 1)
a_ © © (4.13)

dw 9

I‘e 1 - us) Ae

The results are shown on Figs. 14, 15 and 16 for cases Mfoo= 1.2,
1. 05, and 1.0 respectively. In the case for a partially dispersed
wave, the velocity profile shows a sharp but continuous viscous
shock-like front in the upstream portion of the wave. For smaller

frozen Mach numbers the curves become less steep. The com-

‘parisons  between the results obtained from the analytical study

and the numerical integration of Eq. (4. 1) for M o 1.2 and 1.0 are

f

shown on Fig. 13 and Fig. 11 respectively and are in good agreement.



V. TWO DIMENSIONAL VISCOUS TRANSONIC EQUATIONS

Because of the complexity of the general equation for the two
dimensional flow of a V-T relaxing gas, approximate equations valid
in equilibrium and frozen transonic regimes will be derived. The

general equation is,

_ )
C u
Vi | ) 00 w-1
T=— U. — peve - —_— - 14
c i0x.,| ] ox f ax. p." )
Ve i j r
—2
2%, T, u.
] 1- " gk 227 -~ 2
ox0x. p iex, | “eox. Y ox. T (2.70)
%% k j '
c 2_ _
Yf~1 Vf_”_ auj l_avak
+ T g Vo, a-— a-i + = j a—}-{-
P, CVe ] 9% 0%y P k

where i, j, k=1, 2.

1. Equilibrium Transonic Approximation

In this regime, the characteristic speed is Eeoo and the charac-
teristic length is a length related to the relaxation length or more pre-
cisely, the length of a fully dispersed wave, AC/G, where 6 = IMeoo - 1]
and A= T (ch/ cve) A If perturbations from the free stream are

small, substitution of the expansions
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(5. 1)

and coordinate stretching

5. 2)

au(l) av(l)
ox oy

)&ty + 1yuD (5. 3)

(a'foo )

Equation (5. 3) is identical to the viscous transonic equation for
an inert gas derived and studied extensively by Sichel (1962, 1963 )
except for the fact that the dissipative term
(1+ (y-1)/ Pr” ) v'' due to compressive viscosity and heat conduction

has been replaced by the term which is, essentially, abulk viscosity
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due to the internalenergy mode. Thus a conclusion is that for velo-
cities very close to the equilibrium sound speed the flow will behave
like a viscous transonic inert flow except that the compressive vis-
cosity is replaced by a bulk viscosity. And in this region of flow, the
various existing viscous transonic solutions will, thus, be applicable.

As it is well known, measurement and observation of the struc-
ture of weak curved shock waves is extremely difficult because such
curves are very thin at ordinary temperatures and pressures. On the
other hand at densities low enough for observation of the structure, it
is difficult to apply optical measuring techniques such as interfero-
metry or Schlieren photography. However, as reported by Strehlow
and Maxwell (1969), very thick dispersed relaxation waves have been
observed. It is, therefore, hoped that Eq. (5. 3) together with experi-
ments in relaxing gases may provide a tool for the study of two dimen-
sional shock structure and possibly of the interaction of shocks, with
the boundary layer.
(2) Frozen Transonic Approximation

As the free stream velocity approaches the frozen sound speed
a  or @, - ﬁfoc}/ (Efoo - Eeq? = 8 << 1, the situation becomes more
difficult since now the viscous terms of Eq. (2.66) can no longer be
neglected as suggested by the study of one dimensional wave struc-

ture. The proper stretched coordinates are then



~ X_ X
(5. 4)
~_Y. 1/2 .y 1/2
Y=% 5 a6 5
c
where 0 is defined, as in the one dimensional case, as
>‘v
b = == (5. 5)
fOO eOO
>tc a
f
@0

2/3 . 2 - = \/=
Pl = - = 6
and 0 =¢ if AV/ A, =€ and (af a, )/ 2
0 o0 ]
af is now being used as the characteristic speed. Substitution of

Eq. (5.9) and the expansions

U=—=148(1 -2 )u(1)+... (5. 6)
a €
f 0
[0.0]
u= L 253210 )W, . (5.7
af e
0 (0 0]
a
e _ 1)
ae_i _ae +6(1-ae)ae +. .. (5-8)
f, oo
c
Vi
kcszéﬁ.af (5.9
Vv o0

(¢
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into Eq. (2. 66) and keeping only the lowest order terms yields

T Y il (5. 10)

-1 .2 (1) (1) (1) (1)
%[(1 . 1§ aau oT u(1) ou ov :l_ ou'"
X

No known solution of Eq. (5.6) for two-dimensional frozen transonic
flow are available. However, it is expected that this equation will play
an important role in transonic flow problem when viscous and relaxing
effects are both important. Clearly, more work is needed to complete

the study of Eq. (5.10).



VI. CONCLUSIONS AND DISCUSSION

1. The viscous transonic differential equation for a relaxing gas has
been derived and used to study the one dimensional shock wave
structure problem. Results show that viscous effects cannot be
neglected whenever the velocity is close to the frozen sound speed.
And the viscous solutions successfully eliminate some of the
difficulties encountered in the inviscid theory.

2. Approximate one dimensional equations have been obtained in equi-
librium and frozen transonic regimes. The Method of matched
asymptotic expansions has been successfully applied to solve
these equations. It is expected that the same technique can also
be used to solve nmiore complex problems.

3. Approximate two dimensional equations valid in the equilibrium
and frozen transonic regimes have also been obtained. No attempt
has yet been made to solve these equations and it is clear that
more work should be done. However the identical form of the
equilibrium transonic relaxing equation to the viscous transonic
equation for an inert gas except for a coefficient suggests that this
equation might be used to interpret the experimental results obtain-

ed by Strehlow and Maxwell (1968).

94
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4, In a relaxing flow problem with reasonably strong viscous
Shock, the idea that the viscous shock drives the much slower

relaxation process can be used.
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