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SUMMARY
Similarity solutions of the viscous transonic equation describing source,
and source vortex flows have been found. These solutions contain shock like
transitions from the supersonic to the subsonic branch of the corresponding
inviscid solutions, while the singularity near the sonic point of the inviscid
solutions is shifted to a smaller radius. It is shown that this similarity solu-

tion is identical to the transonic viscous compressible source and sink flow

solutions of Wu (1955) and Sakurai (1958).
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1. INTRODUCTION

Exact solutions of the equations of two dimensional inviscid compressible
flow for source and source-vortex or spiral flow contain limiting circles at or
near the sonic point where the velocity gradient becomes infinite (Taylor.1930,
von Mises 1958, Oswatitsch 1956). No solutions exist inside these limiting
circles. The transonic flow near these limiting circles, where velocity gradi-
ents are large; clearly can no longer be described by an inviscid theory.
Application of a viscous-transonic theory (Cole 1949; Sichel 1963; Szaniawski
1963; Ryzhov and Shefter 1964) to the flow in the neighborhood of these limit-
ing circles forms the subject of the present paper.

Two and three dimensional source and sink flows of a viscous compressible
fluid have previously been investigated by Wu (1955), Sakurai (1958) and Levey
(1954, 1959). Wu (1955) and Sakurai (1958) found closed form solutions of the
one dimensional Navier-Stokes equations valid in the region of transonic flow.
In the present paper the connection between the general viscous transonic theory

and the special solutions of Wu (1955) and Sakurai (1958) is shown.

2. THE VISCOUS TRANSONIC EQUATION

It has been shown (Sichel 1963) that in two dim ensional viscous-transonic
flow the perturbations to the sonic velocity taken in the X direction satisfy the
equation

U - 2UU +VY=:O (1)

U,=V (2)



which has been called the viscous-transonic or V-T equation. The dimension-
less quantities in (1) and (2) are related to the dimensional coordinates (x,y)

and corresponding velocity components (u,v) by

X = A(x/n) u/a* =1+ €U

Y = AV(A/2)(y + 1) 61/2 v/n (3)

varx= 2 ARG TV

where

A=(/2)(y+ 1)1+ (y- 1)/Pr"]'1

The characteristic dimension i is taken as u*''/ea*p* which is of the order of
the thickness of a weak shock wave, where u*'', a*, and p* are the longitudinal
or compressive viscosity, the speed of sound, and the density all evaluated
where the speed is sonic or critical. € is a small parameter proportional to
the deviation of u/a*, i.e., M*, from the sonic value of unity. Except for the
choice of the characteristic length 1 and the use of the full Navier-Stokes equa-
tions the derivation of (1) and (2) is identical to the derivation of the inviscid
transonic equation. In fact, as noted previously (Sichel 1963), Eq. (1) reduces
to the inviscid transonic equations if the term Uxx is deleted.

In the present case it is more convenient to use a dimensionless stream
function Y and potential ¢ as independent variables with w, the speed and 6 the
streamline angle as the dependent variables. With ¢ and i/ (barred quantities

are dimensional) defined by



it can be shown that

¢ = ($A/712*) = X + O(e)

Y = (61/2 VAV (1/2)(y + 1)/p*a*n) = Y + 0(62)

to the same order of approximation as Eq. (1) and (2). Defining 6 as the stream-
line angle with respect to the undisturbed sonic velocity a* along the x axis it

follows from (3) that
9 = tan™ /) = PG v )
At the same time since u = w cos 6 it follows that
w=w/a*=1+eW=1+¢€U

so that W = U,
Upon eliminating V from Eq. (1) and (2) and introducing ¢ and i/ as independ-
ent variables the V-T equation can be written in the form

2 —
Wase = W gyt Wiy, =0 (8)

If a dimensionless angle © is defined by

-2 TG T e



the irrotationality relation (2) becomes

WW=®¢ 9)

In the inviscid case that is without the term W (8) reduces to the equa-

, Eq.
b9’
tion considered by Tomotika and Tamada (1950) in their study of inviscid

transonic nozzle and spiral flow.

3. SIMILARITY SOLUTION FOR SPIRAL FLOW

The transformation

W = £(S) ; S=¢+Ay (10)

introduced by Tomotika and Tamada (1950) leads to an exact solution of the
inviscid transonic equation which may be interpreted as a spiral flow. The
arbitrary parameter A determines the circulation of the source-vortex or
spiral flow while S is a coordinate in the direction of the radius from the
source center. The transformation (10) is also successful in the viscous
case and reduces the partial differential equation (8) for W to the ordinary
differential equation

- () el =0 (11)

for the function f. Equation (11) is readily integrated twice yielding the
Riccati equation

f“-f2+)x2f=—CIS+C2 (12)



where C1 and C2 are constants of integration, and the minus sign ahead of C1
is chosen for later convenience. Combination of Egs. (9), (10), and (12) yields
the expression

®=Af(S)+C11,U+C3 (13)

for the angle ©, which is valid for both the viscous and inviscid cases. C3 is
again a constant of integration.

The interpretation of the solution (10) as spiral flow requires further dis-
cussion. From the definition of S in (10) and Eqgs. (3) and (6) it follows that the

angle between streamlines, { = const, and the S axis is constant and equal to

-\ 61/ 2 v (1/2)(y + 1). With S taken as a radial coordinate the streamlines

then will be logarithmic spirals described by the equation

In (£/7%) = - (2 - @¥)/x /2 VG +D (14)

The polar angle  is measured with respect to a fixed axis while * and r*

are the particular values of r and Q at the sonic point of the streamline of
interest. With a given streamline chosen for reference the angle 6, on the
other hand; is measured with respect to the velocity vector at the sonic point.
Figure 1, in which angles have been exaggerated for clarity, shows the distinc-
tion between 6 and . It should be mentioned that the solution of (8) presented
here describes a family of similar solutions in the same sense as discussed by
Sichel (1966) in connection with viscous-transonic nozzle flow. In this latter

-1/2

casey ~ € for corresponding streamlines while dy/dx, the streamline



3/2)0

slope, was O(e Rather similarly, in the present case while the angle

between the streamline and the radius is O(el/ 2) the deviation angle 6 is only

o(/?),
Purely radial flow corresponds to A = 0. Then choosing {»= 0 when © = 0
the constant C3 in (13) will be zero so that with X taken in the direction of the

¥ = 0 streamline at the sonic point as shown in Fig. 2, the deviation angle 6

will be

6 = 63/2 V(1/2)(y+1) 0 = 63/2 (1/2)(y + 1) ClY (15)

Since 6 << 1 it follows that in the neighborhood of the sonic reference point,

shown in Fig. 2, 6 2 y/r. Assuming Y ~ O(1), C, ~ O(1) it then follows from

1
(15) that for the present theory to be valid the radius ?, or distance from the
source point must be O(n/ez).

Essentially the spiral flow solution describes the flow in the neighborhood
of the sonic point on any streamline i = const in terms of perturbations to the
sonic conditions. With iy and ¢ as coordinates the solution may be interpreted
as describing the flow for any arbitrary ¢ in a two dimensional radially sym-
metric flow. With X and Y as independent variables the solution describes
the flow only near that particular streamline with the X axis tangent at the
sonic point.

In the case of radial flow it is instructive to develop Eq. (12) directly from

the Navier-Stokes equations. Then it will be seen that the integration constant



C1 is related to the source strength. The continuity, momentum, and energy

equations for purely radial flow, with u the radial velocity, are

pur = p*a*r*

(16)
——=du dp d @ —~ du u] 2uf{du u
PUEF T I df[z“cﬁ*(“ WV E 5T TIF T (17)
dT -dp d|-dT| 2-[[la@@ = [P - 4 \[az §?
puc, B-i RSk F) 2% 8 g ] (- 2u(E T oo

To develop approximate equations valid in the transonic regime u, p, and T are
expanded in the form

L =L*(1+ LW, 21, ) (19)
while p is expanded as

p= p*a*zé + ep(l) + 62 p(z) +...) (20)

i, 1", and k are assumed constant. If a balance between convection and
p9 b 9

dissipation is the basic mechanism involved in the flow, it appears reasonable

to stretch the r coordinate according to

dr =7 dx

(21)
As the region of interest lies near the sonic radius r* it is expedient to ex-
press the radial coordinate in the form
T
r=—=1+ xg; (22)



(1)

Derivation of an equation for u'"’ parallels the original derivations of the V-T

equation (Sichel 1963) in that substitution of the expansions (19) and (20) and
equations (21) and (22) in the conservation equations (16)-(18) yields a set of

redundant first order equations, and second order equations from which

p(2) (2)’ o2

, u

(1

, and T(z) can be eliminated, leading to an equation for u
The expansion scheme above will be consistant only if r* ~ O(n/ 62), other-
wise unbalanced terms occur in the first order equations. This result agrees
with the conclusion reached above that r ~ 0(17/62)° Letting r* = Bn/ez with

(1),

B ~ O(1), algebraic reduction leads to the following equation for u

2 (1)
vy -1 du 1 d
(Pﬂ'+q 2 3R

2
J”)+%=o (23)

(1)

Letting S = Ax, u "’ = £(S), one integration reduces equation (23) to

p-¥=-sﬂum@+nBA+c2 (24)

Comparing equations (12) and (24) and using the definition of 8 it can now be

seen that

C1 =2n/(y + 1) r* ezA (25)

so that C1 is inversely proportional to r* which in turn is proportional to the
source strength. The failure of the present theory when r* << g/ 62 implies
that in this case the balance between convection and dissipation may not be

the dominant mechanism so that n is no longer the proper characteristic

length.



4, CLOSED FORM SOLUTION FOR {(S)
To actually describe the spiral flow, equation (12) for f must be solved.
For later comparison, the inviscid solution for spiral and radial flow will be
obtained first. Without the viscous term (12) reduces to the algebraic equa-
tion
2 .2

-5+ 2 f=—CIS+C2 (26)

The constant C2 sets the origin of the S coordinate system and is chosen as
zero for convenience. Then the inviscid solution, which is shown in Fig. 3,

becomes

Wy 1 R
S+———1-)=—C;(f--2—) 27)

The inviscid solution has two branches. Starting at S = - )\4/4C15 f= A2/29
the velocity either continues to accelerate with increasing S or decelerates
reaching the sonic value f = 0 at S = 0, and being subsonic for S> 0. The
velocity gradient is infinite at S = - A,4/ 4C 1 while no solution exists for

S< - A,4/4C10 Thus, S = - )\4/4C1 represents a limiting circle in the sense
discussed in Section 1 above. In the case of radial flow A = 0 and the sonic
and limiting circles coincide so that the solution consists of a subsonic and

a supersonic branch. It can be shown that in the transonic regime the

inviscid solution (27) is identical to that of Taylor (1930).



In the viscous case, it is convenient to introduce the new variables

2 4
A A ) _ A
f—f——z—- ; §—S+———4C1 (28)

for then equation (12), with C2 taken equal to zero, becomes

A
— -1 =-C1.§ (29)

The Riccati equation (29) is independent of the parameter A so that solutions
of (29), upon transforming back to f and S, describe both spiral and radial
flow.

The additional transformation

1

AN
f=-7

(30)

Q.IQ_
N L

followed by the transformation ¢ = Cll/ 35 changes (29) to the linear second
order equation

T -{T=0 (31)
which is Airy's equation, and has the solution (Abramowitz and Stegun 1964)

T=C, A (£)+CgB, () (32)

where Ai and Bi are Airy functions of the first and second kind while C 4

and C5 are constants of integration. From (30) and (32) it follows that

10
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P = L (33)
boka YR B 0,

1

where the arbitrary constant K has been substituted for the ratio C 4/ C 5
while the primes indicate differentiation. It is thus possible to find the solu-
tion for spiral and radial viscous-transonic flow in closed form. From the
asymptotic behavior of the Airy functions (Abramowitz and Stegun 1964), it

is readily shown that as & -«

9 4 1/2
2%\ 1/2 ,1/2 1/2 by

f——é—) -C ‘5 -—-Cl (S+EI (34)

=

1

A comparison of (27) and (34) shows the interesting result that as S -« the
viscous solutions all approach the subsonic branch of the inviscid solution.

The behavior of f for several values of K is shown in Fig. 4. For large
values of K the solution f first approaches the supersonic branch of the in-
viscid solution, then after passing through a shock like compression £
approaches the subsonic branch of the inviscid solution, as also indicated by
the asymptotic solution derived above. From Fig. 4, it is evident that inclu-
sion of the viscous term in the equations for radial flow has eliminated the
singular behavior near the sonic point; however, the solution still diverges
at some point inside the sonic circle. This can also be seen from the fact

that as £ -, £ has the asymptotic behavior

11



3/2
1/3 1/2 [- (1+K)+(1-K) tan{% (- C11/3£) + %H

1

1/3

f=-C -C,778)

NN

3/2
1-K+(1+K) tan[%(- C11/3£j) + }

(35)
SO that/f\ has numerous singularities for large negative values of £.
Figure 4 also represents the function f({) for radial flow. From equa-
tion 28) it follows that the behavior of f(¢) for spiral flow (i.e., X # 0) can be
ascertained from Fig. 4 by simply shifting the origin a distance A,z/ 2 in the

minus /f\ direction and a distance A4/ 4C12/ 3 in the positive ¢ direction.

5. DISCUSSION

The solution developed above provides another indication that a viscous
transonic theory can resolve the singular behavior sometimes encountered
in the inviscid theory. As in the case of nozzle flow (Sichel 1966, Sichel and
Yin 1967) the viscous transonic solutions contain shock like transitions be-
tween the supersonic and subsonic branches of the inviscid
solutions. The inviscid singularity at the sonic radius disappears; how-
ever, a new singularity occurs at a somewhat smaller radius.

As mentioned above the present paper is not the first analysis of viscous
spiral and source flow. Both Wu (1955) and Sakurai (1958) used an approxi-
mate form of the Navier-Stokes equation to find source and sink solutions in
the transonic flow regime. This approximate equation was developed by

using the expansion

12



u 1
a—*—u—l-i-T-gU (36)
Re
with
In L -1 § =mn|1+(L - 1) (37)

where Re is a Reynolds number defined as p*a*r*/u*. It has already been

shown that the V-T solution developed above will be consistent only if
%1t
I T (38)

Since generally u*''/u* ~ O(1) equation (38) implies that € ~ O(Re_1/3); then

if (r/r* - 1) << 1, it follows that the expansion and stretching of (19) and (22)
and (36) and (37) are equivalent.

The approximate equation obtained by Wu (1955) and Sakurai (1958) is
essentially the same as equation (29) above, and, of course, Wu and Sakurai
also found closed form solutions in the transonic case. The significance of
the present paper thus lies not in the development of new cylindrical shock
solutions, but in showing the connection between the viscous transonic equa-
tion (1), which applies to a broad class of two dimensional flows, and the
earlier one dimensional transonic radial flow solutions of Wu (1955) and

Sakurai (1958).

13



A viscous transonic radial flow solution was also obtained by Axford and
Newman (1967) for the spherically symmetrical radial flow of an ideal gas in
a gravitational field. Their interest was to establish the nature of shock transi-
tion in solar wind and stellar accretion problems. Axford and Newman's analy-
sis also leads to a Riccati equation for which solutions are obtained in closed
form. It is perhaps worth remarking that many problems involving the struc-
ture of weak shock waves lead to the solution of a Riccati type equation. The
classic example is, of course, the Taylor structure of a weak normal shock
wave which is the solution of the equation (Hayes 1958).

2
u' - uT = const (39)

14
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SPIRAL FLOW GEOMETRY

Figure 1. Spiral Flow Geometry.

RADIAL FLOW

Figure 2. Radial Flow and the x-yCoordinate System.
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Figure 3.

Inviscid Solution for Spiral and Radial Flow.



Inviscid solution for
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Figure 4. Solutions for Viscous Transonic Spiral and Radial Flow.






