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Abstract

In a previous paper, a generalized model for representing the propulsive force and moment from a
solar sail as a function of solar illumination was presented. This generalized model can be defined with
only 18 numerical coefficients for the force, and 36 for the moment, and can represent a sail of arbitrary
geometry (under some mild restrictions). In this paper we revisit this general model and develop a
number of applications for it that will showcase its generality and utility. Specifically, we first show that
the number of coefficients needed to describe the total moment acting on the sail can be reduced to the 18
coefficients needed for the force description plus 9 additional constants, a significant reduction from the
original 36 coefficients. The computation of these new constants is described. Next we present the partial
derivatives of this model with respect to the sail position, attitude, and the model coefficients. Finally,
we revisit some classical results, now reformulated for our new model, such as the optimal orientation to
generate maximum thrust or to generate maximum energy increase in a sail trajectory.

I Introduction

A fundamental challenge for the simulation and analysis of solar sail trajectories and control laws is the
specification of the sail propulsive force as a function of its sun-relative orientation. Analytically, the only
known and commonly used closed-form expressions are for the “flat plate” model of a sail, which at best
is only a crude approximation of a sail even if realistic optical parameters are used [1]. Realistic sails may
have non-planar surfaces (or billow) and gaps where structural elements are placed. The presence of such
complexity in a sail structure can have significant effects on the performance of the sail and the design of
optimal control laws. The traditional approach to modeling such sails would use finite-element type models,
constructing a sail out of a mesh of connected flat plate elements. For such an approach, however, every time
the sail is re-oriented the entire surface must be summed over to compute the new propulsive force and new
moment acting on the sail. With such a sophisticated model it is very computationally intensive to compute
partial derivatives of the sail with respect to the solar orientation, these summations over the sail having to
be recomputed for each new illumination geometry. Finally, as the accuracy of the model is increased, the
computational burden will increase commensurately.

These issues become important as solar sail technology continues to advance and as the first practical
flight of a solar sail spacecraft comes closer to becoming a reality. For solar sail spacecraft to be accepted as
a viable option for space missions, it is crucial that flight tools be developed for these craft that will allow for
precision navigation [2]. At the heart of precision navigation, however, is the creation of accurate and precise
models of a solar sail propulsive force and moment as a function of the solar illumination. In Rios-Reyes and
Scheeres (2004) this issue was addressed and a general model for a solar sail’s total force and moment as an
analytical function of the solar illumination geometry was proposed. This formulation introduced a series
of well-defined coefficients that can be computed for any sail which can capture the effect of non-planarity
and the effect of a non-uniform distribution of optical properties across a sail’s surface. The coefficients
are defined as the integral of higher moments of the sail surface normal vector over the sail surface. One
can qualitatively think of them as “gravity coefficients” for the sail, in that they provide a complete and
unique specification of the sail’s properties. For notational ease, these coefficients are gathered into Cartesian
tensors of rank 1, 2, and 3. For the force equation there are a total of 18 independent coefficients, while
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for the moment equation there are a total of 36 independent coefficients. That paper also gave a number of
examples of these coefficients for some simple and non-simple sail shapes and geometries. These models are
a real advance in our ability to model solar sails, as they provide an exact analytical formula of a sail’s force
and moment as a function of the solar illumination geometry, including all relevant optical and re-radiation
effects. The only assumptions made in their derivation is that the sail shape does not change with the solar
illumination, and that the sail does not self-shadow. Relaxation of these assumptions may be considered in
the future.

In this paper, we revisit this sail model to propose a few improvements, provide a deeper discussion of the
properties of the model, and give a few examples of how it can be easily used to derive some simple guidance
laws for a complex sail. Specifically, this paper covers the following topics. First, we provide a concise
derivation of the general model and discuss the physical meaning of some of the tensor coefficients. Next,
we reconsider the moment equation with its 36 independent coefficients, and show that these can be reduced
to the 18 independent coefficients of the force equation plus 9 additional independent coefficients. This is a
nice result, as it reduces the total number of independent coefficients needed to specify the sail’s force and
moment equations to 27. We give examples of these reduced coefficients for the sail models considered in
Rios-Reyes and Scheeres (2004). Following this, we provide a few practical applications of the model, beyond
the direct computation of forces and moments. First we derive a series of partial derivatives of these models
with respect to the solar illumination geometry, with respect to the coefficient values themselves, and with
respect to the optical parameters of the model. Finally, we provide two examples of how the general model
allows one to derive analytical guidance laws for the sail that maximize the change in energy of the sail or
that maximize the total force produced by a complex sail.
A Concise Derivation of the Generalized Sail Model

The differential force normal and transverse to a sail element area can be expressed as:

dFn = −P (r)[a1 cos2 α + a2 cosα]dAn̂ (1)

dFt = P (r)a3 cos α sin αdAt̂ (2)

where P (r) is the solar radiation pressure at a distance r, n̂ is the vector normal to the differential area
dA, t̂ is the vector transverse to the normal vector in the plane given by n̂ and the sail position unit vector
r̂, which points into the sail, a1 = 1 + ρs, a2 = Bf (1 − s)ρ + (1 − ρ) εf Bf−εbBb

εf+εb
, and a3 = 1 − ρs, ρ is the

reflectivity, s is the fraction of specular reflection, ε is the emissivity, and B is the Lambertian coefficient
with the subscripts f and b denoting the front and back surfaces, respectively. The solar radiation pressure
can be calculated assuming the sun to be a point source or by taking into account the solar disk. Both of
these equation are found in [1]; the latter equation is given by:

P (r) =
2πI0

3c



1−

[
1−

(
Rs

r

)2
]3/2



 (3)

where I0 is the frequency integrated specific intensity, c is the speed of light, and Rs is the radius of the sun.
The total force is found by integrating and summing these expressions over the sail surface:

F =
∫

A

(dFn + dFt) (4)

The term cos α can be obtained from:

cos α = −n̂ · r̂ (5)

If the normal vector at any point on the sail is defined as n̂ = [n̂1 n̂2 n̂3]T and defining the cross product
as:

n̂×−r̂ = −ñ · r̂ (6)
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where the operator (˜) is defined in appendix A, the terms appearing in Eq. (2) can be expressed as:

sin αt̂ = −n̂× (n̂× r̂) = −ñ · ñ · r̂ (7)

Thus, the differential force acting on an area element can be reduced to:

dF = −P (r)[a1(r̂ · n̂)n̂(n̂ · r̂)− a2(r̂ · n̂)n̂ + a3(r̂ · n̂)ñ · ñ · r̂]dA (8)

Defining the dyadic of the normal vector as in [3], n̂n̂, and the triadic as n̂n̂n̂, the total force can be
written as:

F = P (r)
[ ∫

A

a2n̂n̂dA · r̂ + r̂ ·
(
− 2

∫

A

ρsn̂n̂n̂dA−U
∫

A

a3n̂dA
)
· r̂

]
(9)

The integrands of all these expressions are independent of the solar incidence direction, r̂, and can be
computed off-line for a given sail shape, re-used over a range of sail attitudes, and ideally can accommodate
non-uniformities in the sail optical properties.

Assuming constant sail optical properties, the force can now be rewritten as:

F = P (r)
[
a2J2 · r̂− 2ρsr̂ · J3 · r̂− a3(J1 · r̂)r̂

]
(10)

where the force surface normal distribution integrals, the cartesian tensors Jm of rank-m, are defined as:

Jm =
∫

A

n̂mdA (11)

=
∫

A

n̂n̂ . . . n̂dA (12)

The products of these tensors and the unit position vector are explained in appendix B. The force acting
on a solar sail of any given shape can then be described by a set of three tensors of rank 1, rank 2 and rank
3 [4]. The assumption that the sail shape is fixed and does not change with sun-relative attitude is made.

The total moment acting on the sail can be found by integrating the expression:

dM = ~%× dF = P (r)%̃ ·
[
a2n̂n̂dA · r̂ + r̂ ·

(
− 2ρsn̂n̂n̂dA− a3n̂UdA

)
· r̂

]
(13)

over the entire sail, where ~% is the position of the differential element dA with respect to a given reference
frame on the sail. Integrating yields the total moment about the origin of the sail reference frame:

M = P (r)
[ ∫

A

a2%̃ · n̂n̂dA · r̂− 2r̂ ·
∫

A

ρs%̃ · n̂n̂n̂dA · r̂

−r̂ ·
∫

A

a3n̂%̃ ·U · r̂dA
]

(14)

Defining the moment surface normal distribution integrals as:

Km =
∫

A

%̃ · n̂mdA (15)

L =
∫

A

n̂~%dA (16)

and assuming constant optical properties, the moment can be rewritten as:

M = P (r)
[
a2K2 · r̂− 2ρsr̂ ·K3 · r̂− a3r̂ · L · ˜̂r0

]
(17)

where Km and L are rank-m and rank-2 tensors.
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B Properties of the Tensor Coefficients

The force tensor coefficients are completely symmetric in their indices, i.e., Jm
i1i2...im

= Jm
i2i1...im

, and so on
for any two indices. Thus, for a rank-3 tensor, which could have up to 27 entries, we only need to compute 9
independent values. In general, a tensor Jm as defined above will only have 3m unique terms among its 3m

entries. Thus, the three integrals in Eq. (10) are specified by 3 + 6 + 9 = 18 numbers for the general case.
It is important to note that the force tensor coefficients are independent of the sail position and indepen-

dent of the sail orientation.
Some geometric properties are embedded in the force tensor coefficients. First consider the J1 tensor,

defining the nominal sail plane to be the x− y plane, the third element of the J1 tensor, J1
3, represents the

projection of the sail surface area into the sail x-y plane. The first element, J1
1, is the projection of the sail

area onto the y − z plane and the second element, J1
2, projects the area into the x − z plane. If the sail is

symmetric about the y − z plane, then J1
1 will be zero. Similarly, if the sail is symmetric about the x − z

plane, J1
2 will be zero, since the projection onto their respective planes will be cancelled from opposite sides

of the sail.
Now focus on the J2 tensor. The J2

11, J2
22, and J2

33 elements are expected to be non-zero even for
symmetric shapes, unless the sail is completely flat, then the only non-zero element will be J2

33. If J1
1 is

zero, then the elements J2
13 and J2

31 are zero. Also, If J1
2 is zero, then the elements J2

23 and J2
32 must be

zero. If any of J1
1 or J1

2 are zero, for symmetric geometries, then J2
12 and J2

21 must be zero. To show this
point assume that n̂ = n̂(η, ζ), where η and ζ are cartesian variables that define the sail surface area. Now,
J1

1 = 0 implies that n̂1(η, ζ) is symmetric, or is an odd function, on any of these two variables, but not both.
Similarly, J1

2 = 0 implies that n̂2(η, ζ) is an odd function on either η or ζ, but not both and not on the same
variable as n̂1(η, ζ) is since η and ζ are mutually orthogonal. Now consider the case where J1

1 = 0, J1
2 6= 0,

and n̂1(η, ζ) is symmetric on η, then we can write:

J2
12 =

∫ η0

−η0

∫ ζ2

ζ1

n̂1(η, ζ)n̂2(η, ζ)dA(η, ζ) (18)

where the limits of integration go from −η0 to η0, since we are assuming symmetry about η, and ζ1 to ζ2.
Furthermore, due to this symmetry we can write:

J2
12 =

∫ η0

0

∫ ζ2

ζ1

n̂1(η, ζ)n̂2(η, ζ)dA(η, ζ)−
∫ η0

0

∫ ζ2

ζ1

n̂1(η, ζ)n̂2(η, ζ)dA(η, ζ) = 0 (19)

The case where J1
1 6= 0, J1

2 = 0, and n̂2(η, ζ) is symmetric on ζ can be shown by replacing η with ζ in the
above equations. In a similar manner it can be shown that if both J1

1 and J1
2 are zero, with the symmetric

assumptions previously made, then J2
12 must be zero.

For the J3 tensor we expect the following results. If J1
1 is zero, then J3

111, J3
221, J3

331, J3
122, J3

212, J3
133,

and J3
313 are zero. Additionally, if J1

2 is zero, then J3
211, J3

112, J3
222, J3

332, J3
121, J3

233, and J3
323 will be zero. If

both J1
1 and J1

2 are zero, then the elements J3
231, J3

321, J3
312, J3

123, and J3
213 will be zero. If the element J2

11

is not zero, then the elements J3
131, J3

311, and J3
113 are not zero. Finally, if the element J2

22 is not zero, then
the elements J3

232, J3
322, and J3

223 are not zero. The elements J1
3, J2

33, and J3
333 are, in general, zero only for

the trivial case when the sail area is zero.
The moment tensors Km and L (which are rank-m and rank-2 tensors, respectively) do not have the

same complete symmetry as the Jm do. Thus, there are more unique coefficients needed to specify them. For
example, L has no symmetries in general and defines 9 unique coefficients. K2 requires 9 unique coefficients.
K3, however, is symmetric in two of its indices, K3

ijk = K3
ikj , and only requires 18 entries instead of 27.

II Moment Reformulation

A Defining the Generalized Centers of Pressure

The total moment acting on a solar sail about the sail origin is defined above as:
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M = P (r)
[ ∫

A

a2%̃ · n̂n̂dA · r̂− 2r̂ ·
∫

A

ρs%̃ · n̂n̂n̂dA · r̂

−r̂ ·
∫

A

a3n̂%̃ ·U · r̂dA
]

(20)

Let us generalize this result to the case where the moment is taken about an arbitrary point on the sail,
denoted by R. Then for a given location in the sail body-fixed frame, ~%, the new position relative to the
point defined by R is ~% −R. Then Eq. (20) can be generalized to the moment about the point defined by
R and be written as:

MR = P (r)
[ ∫

A

a2(%̃− R̃) · n̂n̂dA · r̂− 2r̂ ·
∫

A

ρs(%̃− R̃) · n̂n̂n̂dA · r̂

−r̂ ·
∫

A

a3n̂(%̃− R̃) ·U · r̂dA
]

(21)

which can be rearranged as:

MR = P (r)
[ ∫

A

a2%̃ · n̂n̂dA · r̂− 2r̂ ·
∫

A

ρs%̃ · n̂n̂n̂dA · r̂− r̂ ·
∫

A

a3n̂%̃ ·U · r̂dA
]

−P (r)
[ ∫

A

a2R̃ · n̂n̂dA · r̂− 2r̂ ·
∫

A

ρsR̃ · n̂n̂n̂dA · r̂− r̂ ·
∫

A

a3n̂R̃ ·U · r̂dA
]

(22)

As R denotes the position of a fixed reference point, and if the optical properties are assumed to be
constant, Eq. (22) can be reduced to:

MR = P (r)
[
a2

∫

A

%̃ · n̂n̂dA · r̂− 2ρsr̂ · (
∫

A

%̃ · n̂n̂n̂dA · r̂) · r̂− a3r̂ ·
∫

A

n̂%̃ ·U · r̂dA
]

−P (r)
[
a2R̃ · J2 · r̂− 2(ρsR̃ · J3 · r̂) · r̂− a3r̂ · J1R̃ ·U · r̂

]
(23)

or using the definition for the moment tensors we can write:

MR = P (r)
[
a2K2 · r̂− 2ρsr̂ · (K3 · r̂)− a3r̂ · L · ˜̂r0

]
−R× F

= M− R̃ · F (24)

This provide us with a general formula for the moment relative to a general point on the sail. We should
note that, for any given orientation, there will be a“center of pressure” defined by MRp = 0 or location Rp

such that:

Rp × F = 0 (25)

In [4] a general formula for the center of pressure is found and given by:

Rp =
1

F 2
F×M + σF̂ (26)

where σ is an arbitrary distance. The center of pressure changes with r̂ for a non-flat sail shape.
Inspired by the concept of center of pressure, we can use this idea to reduce the number of independent

coefficients needed to define the moment formula. In Eq. (21) we note that each integral can be written as:
∫

A

n̂(%̃− R̃) ·UdA = L−RJ1 (27)
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∫

A

(%̃− R̃) · n̂n̂dA = K2 − R̃ · J2 (28)

∫

A

(%̃− R̃) · n̂n̂n̂dA = K3 − R̃ · J3 (29)

If we set each of these equations equal to zero and solve for the vector R that satisfies the result, we can
replace the occurrence of the Km and L tensors with a simple function of the Jm tensors and the appropriate
R vector. Each equation will have a different solution, in general, exceptions occurring for sails with highly
symmetric area distributions. This allows the following substitutions in Eq. (17):

L = RLJ1 (30)
K2 = R̃K2 · J2 (31)
K3 = R̃K3 · J3 (32)

and the moment equation can be expressed as:

M = P (r)
[
a2(R̃K2 · J2) · r̂− 2ρsr̂ · (R̃K3 · J3) · r̂− a3r̂ · (RLJ1) · ˜̂r0

]
(33)

The moment equation is now characterized by 9 coefficients, the vectors RL, RK2 , and RK3 , plus the
already defined Jm, instead of the 36 coefficients stated previously.

We call the new coefficients the “generalized centers of pressure” for the moment coefficients. Note that
in order to find these generalized centers of pressure the coefficients L, K2, and K3 must be computed first.

Eqs. (30)-(32) are “non-standard” linear equations for the generalized center of pressure vectors. Thus,
we give a detailed solution of how they can be solved for.

B Solution of Generalized Centers of Pressure

The vector RL can be uniquely determined if the tensor J1 is not identically equal to zero, which it will not
be in general. If this statement holds, then Eq. (30) can be post-multiplied by J1 to yield:

L · J1 = (J1 · J1)RL (34)

which allows us to solve directly for RL:

RL =
1

J1 · J1
L · J1 (35)

Eqs. (31) and (32) cannot be solved directly, in general. We can discuss some properties of the solutions,
however. First we note that the vector RKm is a zero left eigenvector of Km, or for K2:

RK2 · R̃K2 · J2 = RK2 ·K2 = 0 (36)

Now, this implies that K2 has a zero left eigenvalue and thus will be singular. If we solve for its left
eigenvector RK2 , we then arrive at the identity:

|RK2 | ˜̂RK2 · J2 −K2 = 0 (37)

which should allow us to solve for the magnitude of RK2 by balancing terms. The same logic applied to Eq.
(32) yields:
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RK3 · R̃K3 · J3 = RK3 ·K3 = 0 (38)

and

|RK3 | ˜̂RK3 · J3 −K3 = 0 (39)

It may also be possible to directly solve for the vectors, depending on the structure of the J2 and J3

tensors.
Focusing on Eq. (31) first, if J2 is invertible we easily find the solution:

R̃K2 = K2 · (J2)−1 (40)

from which RK2 can be directly solved.
For finding RK3 , J3 can be transformed into a 9× matrix with the structure:

J3M =




J3
ij1 0 0
0 J3

ij3 0
0 0 J3

ij3


 (41)

the generalized center of pressure RK3 must also be modified to:

R̃M
K3 =




R̃K3 0 0
0 R̃K3 0
0 0 R̃K3


 (42)

Then, Eq. (32) can be written in the form:

K3M = R̃3M
K · J3M (43)

If each of the matrices J3
ij1, J3

ij2, and J3
ij3 are invertible, then J3M is invertible and we can solve for:

R̃M
K3 = K3M · (J3M )−1 (44)

A final approach to solving Eqs. (31) and (32) is to realize that these equations can be thought of as
an overdetermined linear system of equations. Eq. (31) would be a linear system of 9 equations with 3
unknowns while Eq. (32) has 18 equations with three unknowns. Expanding Eq. (31), the corresponding
equations obtained are:

J2
13RK2y − J2

12RK2z = K2
11 (45)

J2
23RK2y − J2

22RK2z = K2
12 (46)

J2
33RK2y − J2

23RK2z = K2
13 (47)

−J2
13RK2x + J2

11RK2z = K2
21 (48)

−J2
23RK2x + J2

12RK2z = K2
22 (49)

−J2
33RK2x + J2

13RK2z = K2
23 (50)

J2
12RK2x − J2

11RK2y = K2
31 (51)

J2
22RK2x − J2

12RK2y = K2
32 (52)

J2
23RK2x − J2

13RK2y = K2
33 (53)

(54)

which can be rearranged as:
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


0 J2
13 −J2

12

0 J2
23 −J2

22

0 J2
33 −J2

23

−J2
13 0 J2

11

−J2
23 0 J2

12

−J2
33 0 J2

13

J2
12 −J2

11 0
J2

22 −J2
12 0

J2
23 −J2

13 0




·



RK2x

RK2y

RK2z


 =




K2
11

K2
12

K2
13

K2
21

K2
22

K2
23

K2
31

K2
32

K2
33




(55)

Similarly, it is possible to solve for RK3 . Eq. (32) would yield 27 equations, from which 18 are non-
repeated, with 3 unknowns. Using the definition of the dot product of a rank-2 T2 and a rank-3 T3 tensor
presented in appendix A, the system of 18 equations can be obtained and expressed as:




0 J3
131 −J3

121

0 J3
231 −J3

221

0 J3
331 −J3

231

−J3
131 0 J3

111

−J3
231 0 J3

121

−J3
331 0 J3

131

J3
121 −J3

111 0
J3

221 −J3
121 0

J3
231 −J3

131 0
0 J3

232 −J3
222

J3
332 0 −J3

232

−J3
232 0 J3

221

−J3
332 0 J3

231

J3
222 0 −J3

221

J3
232 −J3

231 0
0 J3

333 −J3
332

−J3
333 0 J3

331

J3
332 −J3

331 0




·



RK3x

RK3y

RK3z


 =




K3
111

K3
121

K3
131

K3
211

K3
221

K3
231

K3
311

K3
321

K3
331

K3
122

K3
132

K3
222

K3
232

K3
322

K3
332

K3
133

K3
233

K3
333




(56)

Eqs. (55) and (56) can be solved using a pseudo-inverse method. Due to numerical errors in the compu-
tation of the Km tensors these errors will propagate into the solution of the generalized center of pressure.
One solution can be obtained by minimizing the error of the solution. Both of these equations have the
general form Ax = y, and the solution’s error can be defined as e = y − Ax. A solution that minimizes the
error is given by [5]:

x = (AT A)−1AT y (57)

Eqs. (57) would fail if the matrix AT A is singular. If we consider the case for a flat plate, however, we
do find that AT A is singular. If Eq. (55) is multiplied out, non-trivial terms do exist and equal:

J2
33RK2y = K2

13 (58)
−J2

33RK2x = K2
23 (59)

(60)

and the non-trivial elements of Eq. (56) are:

J3
333RK3y = K3

133 (61)
−J3

333RK3x = K3
233 (62)
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The elements J2
33 and J3

333 can only be zero if the sail area is zero. Thus, it is guaranteed that in this
degenerate case the above equations have a solution and the generalized center of pressure can be found.

C Computations of Generalized Centers of Pressure

We now find the generalized centers of pressure for a few different sail models of interest. Let us first use a
flat sail model, taking as a reference point one of the sail corners and setting the sail in the first quadrant of
a coordinate frame. For a flat sail the normal vector is n̂ = [0, 0, 1]T , so the only non-zero elements of the
force tensors are J1

3, J2
33, and J3

333 with a value equal to the sail area A. The moment tensors can be found
in Appendix B. Solving for the generalized centers of pressure we find:

RL =




0
0
0


 (63)

RK2 =
l

2




1
1
σ1


 (64)

RK3 =
l

2




1
1
σ2


 (65)

where σi is an arbitrary constant. Using these definitions we can verify that the formulas for the Km

and L given in Appendix B are valid.
Let’s now consider the circular sail model described in Appendix B. For the circular sail, J2 is invertible.

Solving directly for RK2 we obtain:

RK2 =




0
0

R0(6−5α2
max−

√
1+α2

max(6−8α2
max+α4

max))

5αmax(2+(α2
max−2)

√
1+α2

max)


 (66)

and for RK3

RK3 =




0
0

R0
4αmax

(
2α2

max − 2− α4
max

α2
max−log(1+α2

max)

)


 (67)

and solving for RL:

RL =




0
0

− 1
4R0αmax


 (68)

Note that all of these vectors point in the same direction, but have different magnitudes.
Finally, the generalized centers of pressure can be found for a square solar sail comprised of four triangular

segments. A square solar sail with billow can be modeled by four quadrants with an oblique cone section
[4]. Applying the model in [4] to a square solar sail of 100 m of length and 4% billow the force and moment
tensors can be found and are presented in Appendix B. The terms with values less than 1 × 10−14 can be
ignored since they are due to numeric errors. For this case, J2 is again invertible and the solution for RK2

is found from Eq. (44):

9



RK2 =




0 8.8537e + 001 0
−8.8537e + 001 0 0

0 0 0


 (69)

which implies that:

RK2 =




0
0

−88.54


 (70)

RL can be found from Eq. (35):

RL =




0
0

−1.7801


 (71)

The result for RK3 is found to be:

RK3 =




0
0

89.15


 (72)

As in the previous case, these vectors point in the same direction with different magnitudes.

III Partial Derivatives of the Force and Moment Equations

Since any change in sail attitude or position are directly related to changes in r̂, the partial derivative
equations we define can be used for navigation or control purposes. Also, the partial derivatives help us
identify how sensitive the sail is to changes or inaccuracies in parameter estimates, and can be used to
improve its design.

The unit position vector can be written in terms of the sun-line angle α and the cone angle δf in the
sail-fixed frame as:

r̂ =



− cos δf sin α
− sin δf sin α
− cosα


 (73)

where δf is taken in the positive sense from the x-body-fixed axis as shown in Fig. 1. Many of the partial
derivatives will involve knowing the partial derivative of r̂ with respect to itself, which is given by:

∂r̂
∂r̂

= U− r̂r̂ = Ur̂r̂ (74)

where U is the identity dyad. We note that any changes in r̂ will be perpendicular to its direction and
cannot be along its direction, hence we see that Ur̂r̂ · r̂ = 0. With this definition, the partial derivative of
the force with respect to r̂ is given by:

∂F
∂r̂

= P (r)
[
a2J2 ·Ur̂r̂ − 2ρsr̂ · (J3 ·Ur̂r̂)− 2ρs(J3 · r̂) ·Ur̂r̂

−a3r̂(J1 ·Ur̂r̂)− a3(J1 · r̂)Ur̂r̂

]
·

= P (r)
[
a2J2 − 4ρs(r̂ · J3)− a3J1r̂− a3(J1 · r̂)U

]
·Ur̂r̂ (75)
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Carrying out the same procedure for the moment equation we obtain:

∂M
∂r̂

= P (r)
[
a2(R̃K2 · J2) ·Ur̂r̂ − 2ρsr̂ · (R̃K3 · J3)T13 ·Ur̂r̂

−2ρsr̂ · (R̃K3 · J3) ·Ur̂r̂ − a3
˜(r̂ ·RLJ1) ·Ur̂r̂ + a3

˜̂r · (RLJ1)T ·Ur̂r̂

]
(76)

or:

∂M
∂r̂

= P (r)
[
a2R̃K2 · J2 − 2ρsr̂ · (R̃K3 · J3)T13 − 2ρsr̂ · R̃K3 · J3

−a3
˜(r̂ ·RLJ1) + a3

˜̂r · (RLJ1)T
]
·Ur̂r̂ (77)

where the transpose operator T13 implies that the first and third indices are transposed from a rank-3 tensor
with indices. Now the force partial derivatives with respect to the sun-line angle can be evaluated:

∂F
∂α

=
∂F
∂r̂

· ∂r̂
∂α

=
∂F
∂r̂

·


− cos δf cos α
− sin δf cosα

sin α


 (78)

and for the cone angle:

∂F
∂δf

=
∂F
∂r̂

· ∂r̂
∂δf

=
∂F
∂r̂

·



sin δf sin α
− cos δf sin α

0


 (79)

and similarly for the moment equation.
One way to find the partial derivatives of the force with respect to the force tensors is to write the force

using the summation convention as:

Fi = P (r)
[
a2J2

ij r̂j − 2ρsJ3
kij r̂kr̂j − a3J1

j r̂j r̂i

]
(80)

Then, the force partial derivatives with respect to the force tensors can be expressed as:

∂Fi

∂J1
k

= −P (r)a3r̂kr̂i (81)

∂Fi

∂J2
kl

= P (r)a2δikr̂l (82)

∂Fi

∂J2
kl

= −2P (r)ρsδilr̂kr̂m (83)

where δ is the Kronecker delta function. The partial derivatives of the moment with respect to the moment
tensors can be found in a similar manner.

The force partial derivative with respect to distance from the sun r is given by:

∂F
∂r

=
[
a2J2 · r̂− 2ρs(J3 · r̂) · r̂− a3(J1 · r̂)r̂

]∂P (r)
∂r

= −
[
a2J2 · r̂− 2ρs(J3 · r̂) · r̂− a3(J1 · r̂)r̂] 2πI0R

2
s

cr3

√
1− R2

s

r2
(84)
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The force partial derivatives with respect to the optical parameters ρ and s are given by:

∂F
∂ρ

= P (r)
[
J2 · r̂∂a2

∂ρ
− 2s(J3 · r̂) · r̂− (J1 · r̂)r̂∂a3

∂ρ

]

= P (r)
[
J2 · r̂(Bf (1− s)− εfBf − εbBb

εf + εb
)− 2s(J3 · r̂) · r̂− (J1 · r̂)r̂s

]
(85)

∂F
∂s

= P (r)
[
J2 · r̂∂a2

∂s
− 2ρ(J3 · r̂) · r̂− (J1 · r̂)r̂∂a3

∂s

]

= P (r)
[
− J2 · r̂Bfρ− 2ρ(J3 · r̂) · r̂ + (J1 · r̂)r̂ρ

]
(86)

The previous two Eqs. can be linearly dependent for certain special cases; when J2 · r̂, (J3 · r̂) · r̂, and r̂ are
parallel, or antiparallel. For a flat sail, this is satisfied when the sun-sail angle is zero since the aforementioned
vectors will have components only along the third direction and thus will be linearly dependent. For this to
be true for a general case, each of the components of these vectors must be equal to each other. To derive
these relationships, J2 · r̂ and (J3 · r̂) · r̂ will be expanded. Expanding J2 · r̂ yields:

J2 · r̂ =




J2
11r̂1 + J2

12r̂2 + J2
13r̂3

J2
12r̂1 + J2

22r̂2 + J2
23r̂3

J2
13r̂1 + J2

13r̂2 + J2
33r̂3


 (87)

where the subscripts indicate the element of the corresponding tensor or vector. Performing the same
procedure for (J3 · r̂) · r̂:

(J3 · r̂) · r̂ =




J3
111r̂

2
1 + 2J3

121r̂1r̂2 + 2J3
131r̂1r̂3 + J3

212r̂
2
2 + 2J3

231r̂2r̂3 + J3
331r̂

2
3

J3
121r̂

2
1 + 2J3

221r̂1r̂2 + 2J3
231r̂1r̂3 + J3

222r̂
2
2 + 2J3

232r̂2r̂3 + J3
332r̂

2
3

J3
131r̂

2
1 + 2J3

231r̂1r̂2 + 2J3
331r̂1r̂3 + J3

232r̂
2
2 + 2J3

332r̂2r̂3 + J3
333r̂

2
3


 (88)

finally we are left with three equations that must be satisfied for the force partial derivatives with respect
to s and ρ to be linearly dependent:

J2
11r̂1 + J2

12r̂2 + J2
13r̂3 = J3

111r̂
2
1 + 2J3

121r̂1r̂2 + 2J3
131r̂1r̂3 + J3

212r̂
2
2

+2J3
231r̂2r̂3 + J3

331r̂
2
3 = (J1 · r̂)r̂1 (89)

J2
12r̂01 + J2

22r̂2 + J2
23r̂3 = J3

121r̂
2
1 + 2J3

221r̂1r̂2 + 2J3
231r̂1r̂3

+J3
222r̂

2
2 + 2J3

232r̂2r̂3 + J3
332r̂

2
3 = (J1 · r̂)r̂2 (90)

J2
13r̂1 + J2

13r̂2 + J2
33r̂3 = J3

131r̂
2
1 + 2J3

231r̂1r̂2 + 2J3
331r̂1r̂3

+J3
232r̂

2
2 + 2J3

332r̂2r̂3 + J3
333r̂

2
3 = (J1 · r̂)r̂3 (91)

we can say that whenever these requirements are met, the partial derivatives of the force with respect to ρ
and s are linearly dependent since the vectors J2 · r̂, (J3 · r̂) · r̂, and r̂ will point in the same direction.

The force partial derivatives with respect to the rest of the optical parameters Bf , Bb, εf , and εb are:

∂F
∂Bf

= P (r)
[
J2 · r̂ ∂a2

∂Bf

]

= P (r)
[
J2 · r̂

(
(1− s)ρ + (1− ρ)

εf

εf + εb

)]
(92)
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The force partial derivative with respect to Bb, εf , and εb are given by:

∂F
∂Bb

= P (r)
[
J2 · r̂ ∂a2

∂Bb

]

= −P (r)
[
J2 · r̂(1− ρ)

εb

εf + εb

]
(93)

∂F
∂εf

= P (r)
[
J2 · r̂∂a2

∂εf

]

= P (r)
[
J2 · r̂(1− ρ)

Bf

εf + εb
− J2 · r̂(1− ρ)

εfBf − εbBb

(εf + εb)2
]

(94)

∂F
∂εf

= P (r)
[
J2 · r̂∂a2

∂εb

]

= P (r)
[
− J2 · r̂(1− ρ)

Bb

εf + εb
− J2 · r̂(1− ρ)

εfBf − εbBb

(εf + εb)2
]

(95)

Note that the last four equations are linearly dependent and can be expressed in terms of a known partial
derivative. For instance, taking the partial of the force with respect to Bf as our basis, the other partial
derivatives can be expressed as:

∂F
∂Bf

= c1
∂F
∂Bb

(96)

∂F
∂Bf

= c2
∂F
∂Bb

(97)

∂F
∂εf

= c3
∂F
∂Bb

(98)

where

c1 = − 1− ρ

(1− s)ρ + εf

εb
(1− sρ)

(99)

c2 = −Bb + Bf

εf + εb

1− ρ

(1− s)ρ + εf

εb
(1− sρ)

(100)

c3 =
Bb + Bf

εf + εb

1− ρ
εf

εb
(1− s)ρ + (1− sρ)

(101)

The partial derivatives of the moment with respect to these previous parameter can be obtained by re-
placing ∂F

∂r̂ by ∂M
∂r̂ where they appear.

IV Locally Optimal Control Laws

One advantage to having closed-form equations for the force acting on a solar sail is that we are able to
easily define explicit control and guidance laws. In the following examples we take the advantage of this to
implement guidance and orientation laws for a non-ideal sail.
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A Maximum Energy Increase

In [6], a guidance law, using the sun-sail angle as the controller, was developed to find optimum escape
trajectories from the sun using flat, ideal sails. In this section we extend the locally optimal control law
developed in [6] to a four-quadrant non-ideal billowed solar sail. To accomplish this, the Gauss variational
equation relating the semi-major axis change with respect to the true anomaly can be written as:

∂a
∂f

=
2pr2

µ(1− e2)2




e sin f
0

1 + e cos f


 · Fp (102)

where µ is the sun’s gravitational parameter, e is the orbit eccentricity, f is the true anomaly, and Fp is
the force expressed in local polar coordinates. A coordinate transformation T is needed to obtain Fp, as
Fp = T · F. We only consider changes in the sail position and attitude in the orbit plane (i.e., set δf ≡ 0).
Then T would be given by:

T =



− sin α 0 − cos α

0 −1 0
cosα 0 − sin α


 (103)

where Fp has radial Fr, out of plane Fr×θ, and transverse Fθ force components. Taking the partial derivative
of Eq. (104) yields:

∂

∂α

(∂a
∂f

)
=

2pr2

µ(1− e2)2




e sin f
0

1 + e cos f


 ·

(∂T

∂α
· F + T · ∂F

∂α

)
(104)

The partial of T with respect to α is readily obtained from Eq. (103) and the partial of F with respect to
α is given by Eq. (78). Setting the above equation equal to zero for the square-billowed sail model coefficients
found in Appendix B, the optimal angle satisfies the relation:

0 = 1.9201(1 + e cos f)− 5.7604e sin f tan α− 3.7804(1 + e cos f) tan2 α

−0.0599e sin f tan3 α (105)

The solution of Eq. (105) is chosen so that Eq. (102) is maximized. The control law equation is close to
the solution for an ideal flat solar sail. The force acting on an ideal flat sail in the local polar frame is given
by:

Fp = 2P (r)A




cos3 α
0

sin α cos2 α


 (106)

With this information the equation for the optimum angle is obtained from:

0 = 2(1 + e cos f)− 6e sin f tan α− 4(1 + e cos f) tan2 α (107)

The solution of the above equation is obtained by solving the quadratic equation for tanα and is presented
in [6]. Both the ideal and the optimum control laws can be compared now on the squared-billowed sail model.
Fig. 2 is polar plot of the orbit change using both guidance laws starting at 1 au during a time of one year.
The optimum control law has a faster energy increase, as expected. The orbital energy increase for both
guidance laws is shown in Fig. 3, which clearly shows that the non-ideal guidance law is optimum. The
values for the optical parameters used in the simulation were ρ = 0.9, s = 1, Bf = 0.8, Bb = 0.5, εf = 0.05,
εb = 0.3 and the mass chosen was 80kg.
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B Maximum Propulsive Force

As another example, we can compute the planar orientation that gives the maximum propulsive force on
the sail. This can be found by differentiating the square of the force magnitude with respect to the sun-sail
angle and setting the resulting expression equal to zero:

∂(F · F)
∂α

= 2F · ∂F
∂α

= 0 (108)

The corresponding equation for the four-quadrant sail example is:

(
− 3.3735− 3.3040 cos 2α

)
cos α sin α = 0 (109)

which has its extrema when α equals 0, π/2, π, and 3π/2. The term in the parenthesis is zero for α complex.
These solutions are the same as that of an ideal solar sail. When α = 0, the maximum force is achieved, and
with α equal to π/2 or 3π/2, the force is zero. Finally, the solution α = π implies that the sail is facing away
from the sun, an orientation we do not consider. This simple result occurs due to the overall symmetry of
the four quadrant sail.

Now we consider a more general situation. Let us find the sun-sail angle that provides the maximum
force for only one quadrant of the square-billowed sail whose force tensors coefficients are given in Appendix
B. Following the same procedure as for the complete sail, the equation that needs to be satisfied is now:

−83.806− 759.262 tan α + 248.428 tan2 α− 27.134 tan3 α + tan4 α = 0 (110)

This equation has only two real solutions, −6.0960 and 83.9130. The first solution maximizes the force
on the sail; the sign is negative due to the quadrant position with respect to the overall sail (the opposite
quadrant would have the reverse sign on the solutions). The second solution minimizes the force on the sail.
These examples showcase the ease with which we can work with complex sail shapes using the generalized
sail model.

V Conclusions

In this paper the Generalized Sail Model was studied in more detail. Conditions are found to determine
when the force tensor coefficients are guaranteed to be zero or non-zero. The concept of generalized centers
of pressure is defined, which allows us reduce the coefficients needed to characterized the moment from 36
to 9. These 9 coefficients are distributed into three three-dimensional vectors, which, together with the force
tensors, characterize the moment acting on the sail.

The equations for finding the generalized centers of pressure are non-standard linear equations and ideas
on how to solve for them are developed. Using these ideas, the generalized centers of pressure for a flat sail,
billowed circular sail, and four-quadrant billowed sail are computed.

The partial derivatives of the force and moment equations are computed with respect to each parameter
affecting the force and moment. Some of the force partial derivatives such as the partial with respect to Bf ,
Bb, εf , and εb were found to be linearly dependent. As an application of the analytic partial derivatives, a
guidance law was developed to maximally increase the orbit energy for a four-quadrant non-ideal sail. This
guidance law was contrasted to the guidance law established for a flat sail by applying both laws to the
four-quadrant non-ideal sail; the non-ideal guidance law had the better performance. It was also shown that
the Generalized Sail Model is capable of handling complex sail models by finding the angle α that generated
the most thrust for the four-quadrant sail and for a single quadrant of the same model. The four-quadrant
sail had the same solutions as a flat sail with α = 0 being the angle that generated the most thrust. The
single-quadrant model had an optimum sun-sail line angle equal to −6.0960.
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Appendix A

Tensor and Vector Notation

The force surface normal distribution integrals are defined as the integral of the outer product of the normal
vector:

Jm
i1i2...im

=
∫

A

n̂i1 n̂i2 . . . n̂imdA (111)

ij = 1, 2, 3 (112)

where the entries n̂i are the elements of the normal vector evaluated at the surface element dA. The moment
surface normal distribution integrals contain an additional multiplier, which contains the information of the
area element moment arm with respect to the origin, and expressed are as:

Km
i1i2...im

=
∫

A

%̃ · n̂i1 n̂i2 . . . n̂imdA (113)

Li1i2 =
∫

A

n̂i1~%i2dA (114)

ij = 1, 2, 3 (115)

where ~% is the vector from the sail coordinate origin to the the center of pressure of the differential element
dA, and tilde over a vector implies a transformation from a given three-dimensional in vector V into a square
skew-symmetric matrix Ṽ specified as:

Ṽ =




0 −V3 V2

V3 0 −V1

−V2 V1 0


 (116)

where the index inside the matrix denotes the element of the vector V.
The products of the force and moment tensors and the sun’s position unit vector can be defined using

the summation convention:

r̂ ·T3 · r̂ = T3
ijkr̂j r̂k

r̂ ·T2 = T2
ij r̂i

T2 · r̂ = T2
ij r̂j

r̂ ·T1 = T1
i r̂i

where the superscript determines the tensor rank and equal indices imply summation, i.e., aibi =
∑3

i=1 aibi.
The force and moment tensors follow these conditions. In the same manner, the product of a rank-2 and
rank-3 tensor can be stated as:

T2 ·T3 = T2
ilT

3
ljk

Appendix B

Force and Moment Tensors for Common Sail Geometries

In this section force and tensor coefficients are presented for a number of sail geometries. These results have
been derived in [4], and are given here for completeness.
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Flat Sail. The most basic shape is the flat sail. The force coefficients of a flat sail about the geometric
center are:

J1 =




0
0
A


 (117)

J2 =




0 0 0
0 0 0
0 0 A


 (118)

J3
ij2 = J3

ij1 =




0 0 0
0 0 0
0 0 0


 (119)

J3
ij3 =




0 0 0
0 0 0
0 0 A


 (120)

where A is the sail area. The moment tensors, taken at the geometric center, are identically equal to zero.
Now, if we assume a square sail with the reference point taken at one of the sail corners, let’s say the lower-
left corner so that the sail is in the first quadrant of the x − y set of axis, then the force tensors will have
the same values as above, however, the moment tensors will be:

K2 =
l3

2




0 0 1
0 0 −1
0 0 0


 (121)

K3
ij1 = K3

ij2 = L =




0 0 0
0 0 0
0 0 0


 (122)

K3
ij3 =

l3

2




0 0 1
0 0 −1
0 0 0


 (123)

where l is the length the sail’s side.

Billowed Circular Sail. Next we define a billowed circular sail with a slope varying linearly from its edge
and zero at its center as shown in Fig. 4. Its surface is given by the equation:

zb = −αmax

2R0
r2
s +

αmaxR0

2
(124)

where αmax is the slope at the outer rim and is negative for a concave shape, R0 is the sail radius, and
rs is the radial polar coordinate. Then computing the force coefficients we obtain:

J1 =




0
0

πR2
0


 (125)
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J2 =
πR2

0

α2
max




2+(−2+αmax)
√

1+α2
max

3 0 0

0 2+(−2+αmax)
√

1+α2
max

3 0
0 0 2

(
− 1 +

√
1 + α2

max

)


 (126)

J3
ij1 =

πR2
0

2α2
max

(
α2

max − log(1 + α2
max)

)



0 0 1
0 0 0
1 0 0


 (127)

J3
ij2 =

πR2
0

2α2
max

(
α2

max − log(1 + α2
max)

)



0 0 0
0 0 1
0 1 0


 (128)

J3
ij3 =

πR2
0

α2
max




α2
max−log(1+α2

max)
2 0 0
0 α2

max−log(1+α2
max)

2 0
0 0 log(1 + α2

max)


 (129)

and the moment coefficients with respect to the origin are:

L =
1
4
πR3

0αmax




1 0 0
0 1 0
0 0 1


 (130)

K2 =
πR3

0

(
6− 5α2

max −
√

1 + α2
max(6− 8α2

max + α4
max)

)

15α3
max




0 1 0
−1 0 0
0 0 0


 (131)

K3
ij1 = − πR3

0

8αmax

(
α2

max(−2 + α2
max)− 2(−1 + α2

max) log(1 + α2
max)

)



0 0 0
0 0 0
0 −1 0


 (132)

K3
ij2 = − πR3

0

8αmax

(
α2

max(−2 + α2
max)− 2(−1 + α2

max) log(1 + α2
max)

)



0 0 0
0 0 0
1 0 0


 (133)

K3
ij3 = − πR3

0

8αmax

(
α2

max(−2 + α2
max)− 2(−1 + α2

max) log(1 + α2
max)

)



0 −1 0
1 0 0
0 0 0


 (134)

Four-Quadrant Sail. For an increase in the complexity of a sail, we can define a square solar sail with
billow depicted in Fig. 5 . The sail will be composed of four quadrants each being a section of an oblique
cone. The force and moment tensors need to be computed for a single quadrant and the complete geometry
will be obtained by rotating the results of the single quadrant through a sequence of four angles and adding
the results. The results for a single quadrant were generated numerically for a square sail with sides l of
100m and a maximum billow of 4% of l; the results are as follows:
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J1∗ =



−2.6701e + 002
1.5632e− 013
2.5000e + 003


 (135)

J2∗ =




2.9579e + 001 −6.3949e− 014 −2.6394e + 002
−6.3949e− 014 2.1050e + 001 2.4158e− 013
−2.6394e + 002 2.4158e− 013 2.4749e + 003


 (136)

J3∗
ij1 =



−3.4320e + 000 9.5479e− 015 2.9196e + 001
9.5479e− 015 −2.6571e + 000 −7.1054e− 014
2.9196e + 001 −7.1054e− 014 −2.6092e + 002


 (137)

J3∗
ij2 =




9.5479e− 015 −2.6571e + 000 −7.1054e− 014
−2.6571e + 000 7.3275e− 015 2.0719e + 001
−7.1054e− 014 2.0719e + 001 5.9686e− 013


 (138)

J3∗
ij3 =




2.9196e + 001 −7.1054e− 014 −2.6092e + 002
−7.1054e− 014 2.0719e + 001 5.9686e− 013
−2.6092e + 002 5.9686e− 013 2.4501e + 003


 (139)

K2∗ =




1.1156e− 011 −4.3574e + 003 −7.2198e− 011
−8.8400e + 003 1.1433e− 011 8.2920e + 004
2.9261e− 012 −1.2636e + 003 −1.6097e− 011


 (140)

K3∗
ij1 =



−1.7564e− 012 5.5001e + 002 1.0612e− 011
9.7746e + 002 −1.9098e− 012 −8.7389e + 003
−5.4279e− 013 1.6134e + 002 2.5815e− 012


 (141)

K3∗
ij2 =




5.5001e + 002 −1.4786e− 012 −4.2888e + 003
−1.8259e− 012 6.9317e + 002 8.8951e− 012
1.6134e + 002 −5.5911e− 013 −1.2432e + 003


 (142)

K3∗
ij3 =




1.0713e− 011 −4.2888e + 003 −4.9958e− 011
−8.7389e + 003 8.6153e− 012 8.2090e + 004
2.4487e− 012 −1.2432e + 003 −1.6893e− 011


 (143)

L∗ =




8.9003e + 003 9.5577e− 012 4.2745e + 002
−7.6721e− 012 −4.4501e + 003 2.3528e− 014
−8.3333e + 004 −7.0465e− 011 −4.4501e + 003


 (144)

The tensors for the complete square sail are:

J1 =




5.6843e− 014
0

1.0000e + 004


 (145)
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J2 =




1.0126e + 002 −1.7764e− 015 5.6843e− 014
−1.7764e− 015 1.0126e + 002 −5.6843e− 014
5.6843e− 014 −5.6843e− 014 9.8995e + 003


 (146)

J3
ij1 =




0 0 9.9829e + 001
0 1.1102e− 015 −1.7764e− 015

9.9829e + 001 −1.7764e− 015 5.6843e− 014


 (147)

J3
ij2 =



−2.2204e− 016 1.2212e− 015 −1.7764e− 015
9.9920e− 016 −8.8818e− 016 9.9829e + 001
−1.7764e− 015 9.9829e + 001 0


 (148)

J3
ij3 =




9.9829e + 001 −1.7764e− 015 5.6843e− 014
−1.7764e− 015 9.9829e + 001 0
5.6843e− 014 0 9.8003e + 003


 (149)

K2 =




4.1837e− 011 8.9651e + 003 0
−8.9651e + 003 4.5475e− 011 −1.4552e− 011

0 3.4106e− 013 −6.4389e− 011


 (150)

K3
ij1 =



−4.5475e− 013 −1.9895e− 013 3.9108e− 011
−2.8422e− 013 −2.8422e− 014 −8.9003e + 003
−2.1600e− 012 −2.8422e− 014 1.1369e− 013


 (151)

K3
ij2 =



−1.9895e− 013 −1.1369e− 013 8.9003e + 003
−2.8422e− 014 −4.5475e− 013 4.0927e− 011
−2.8422e− 014 −2.2169e− 012 2.2737e− 013


 (152)

K3
ij3 =




3.9108e− 011 8.9003e + 003 0
−8.9003e + 003 4.0927e− 011 −2.1828e− 011

0 2.2737e− 013 −6.7573e− 011


 (153)

L =




8.9003e + 003 3.0923e− 011 −1.1369e− 013
−3.4561e− 011 8.9003e + 003 1.1369e− 013
2.1828e− 011 −2.1828e− 011 −1.7801e + 004


 (154)
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Figure 1: Attitude angles and r̂ in sail body-fixed frame.
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Figure 2: Trajectories for realistic and ideal guidance laws.

0 50 100 150 200 250 300 350 400
−10

−9

−8

−7

−6

−5

−4
x 10

8

time (days)

E
ne

rg
y 

(m
2 /s

2 )

Realistic Law
Ideal Law

Figure 3: Energy increase for realistic and ideal guidance laws.
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Figure 4: Circular Sail Geometry.

Figure 5: Four-quadrant Sail.
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