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A First Order Analytical Solution for
Spacecraft Motion about (433) Eros

J.F. San-Juan∗, A. Abad†, D.J. Scheeres‡, and M. Lara§

The orbital motion of spacecraft about asteroids is highly perturbed, and classical
theories for motion close to spheroidal bodies cannot be applied. In particular, this is the
case for motion about (433) Eros: its large ellipticity coefficient (having the same order
as the oblateness coefficient) and its fast rotation rate dominate the dynamics. In this
paper we obtain a first order theory for the motion of a satellite around Eros by means of
two Lie transformations. The first one is a simplification of the Hamiltonian expressed in
polar-nodal variables by using a new technique, the algorithm of relegation. The second
one is the classical Delaunay normalization. After both transformations we replace the
actual nonintegrable Hamiltonian by an integrable approximation to it.

Introduction

THE nature of orbital motion about asteroids is
highly nonlinear. Large ellipticity coefficients

(having the same order as the oblateness coefficients)
and fast rotation rates can produce chaotic motion in
the vicinity of these celestial bodies that is difficult to
understand.

Numerical approaches have been used to understand
the dynamics of the problem. Thus, a global criterion
for the stability of motion is given in,20 where numer-
ically determined periodic orbits are used to explore
the stability of three dimensional trajectories around
asteroids. It is found there that families of three di-
mensional periodic orbits change their stability type
at certain critical inclinations enabling the drawing of
a line —relating orbital inclination and mean radius of
the orbiter— that separates regions of stable motion
from unstable ones. The transitions to instability are
associated with a 5% fluctuation in energy over each
orbit.

Contrary to numerical solutions, the determination
of action-angle variables reflecting the actual dynam-
ics of a chaotic system enables the replacement of the
(actual) nonintegrable Hamiltonian by an integrable
approximation that is designed to give good agreement
with the real dynamics. Classical theories for motion
close to spheroidal bodies assume that the Keplerian
attraction clearly prevails over other forces. That is
not necessarily the case for highly perturbed dynam-
ical systems, and therefore classical theories are not
valid for these systems.
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In this paper we study the dynamics about the as-
teroid (433) Eros, and obtain a first order analytical
theory of an spacecraft about the asteroid. We restrict
our study to the second degree and order gravity field,
and assume that Eros is in uniform rotation around
its axis of greatest inertia. This simplified model in-
cludes all the main perturbations that act on an orbiter
in this system,24,26 namely the Keplerian attraction,
the Coriolis force, the oblateness, and the ellipticity
perturbations. By computing the relative influence of
a wide range of initial conditions we conclude that
the addition of the Keplerian plus the Coriolis term
dominates the dynamics, while the oblateness and the
ellipticity perturbations, both of the same order, re-
main at a higher order.

Our analytical theory is found by averaging. First,
we determine action-angle variables suitable to average
the Hamiltonian over one of the fast angle variables.
Then, the averaging is done by the expedient finding of
generating functions by means of Lie transformations.
After the contact transformation is computed the new
Hamiltonian (in new canonical variables) appears as
an explicit series depending on a small parameter. In
the process of computing the canonical transforma-
tions, the influence of the angle variables is put off to
higher orders of the small parameter. To this end we
select the oblateness (J2) coefficient as a small param-
eter, and use Deprit’s method10 for constructing the
Lie transformations.

The usual technique when implementing closed form
analytical theories, the Delaunay normalization13 —
that converts the principal part of the Hamiltonian
into an integral of the transformed system— cannot be
directly applied to our problem. Since the argument
of the node is present in the Hamiltonian through the
ellipticity perturbation, the Coriolis term adds a term
to the Lie derivative that prevents the computation in
the usual way of the generator of the Lie transforma-
tion. To overcome this inconvenience we first perform
a simplification of the Hamiltonian making use of the
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Deprit’s relegation algorithm15 (see also22,27). This
procedure uses repeated iterations of a transformation
after which the desired perturbation (the ellipticity
perturbation in our case) appears in the new Hamilto-
nian with a lower influence. When the perturbation is
small enough we may neglect it.

After the elimination of the ellipticity term the
Hamiltonian becomes equal to the Hamiltonian of the
main problem of the artificial satellite, in which the
longitude of the node is cyclic and, hence, the Corio-
lis term becomes constant and may be deleted. Then
a Delaunay normalization may be performed trans-
forming the Hamiltonian into an integrable one. The
Delaunay normalization is made in closed form, with-
out using series expansion in the eccentricity.

All these operations have been made symbolically
by using the Poisson series processor PSPC1 included
in the software ATESAT.2,3, 23

Dynamical model
In order to formulate the motion of a satellite around

the asteroid Eros, let us consider the asteroid as a solid
rotating around the z-axis with constant velocity ω,
and let us take up to the second order in the potential
expansion. The satellite motion will be referred to a
rotating frame with origin at the center of mass of
Eros, and whose axes coincide with its principal axes
of inertia defined by the unit vectors i, j, k.

Under the previous assumptions, the Hamiltonian
defining the motion is

H = 1
2 (X · X) − ω · (x × X) + V(x), (1)

where X = (X, Y, Z) are the conjugate momenta of
the Cartesian variables in the rotating frame x =
(x, y, z), and V is the potential

V = −µ

r
+

µα2

r3

[
C2,0

(
1
2
− 3

2
z2

r2

)
− 3C2,2

x2 − y2

r2

]
,

(2)
where µ is the gravitational constant, α the equatorial
radius, r =

√
x2 + y2 + z2 is the radial distance of the

satellite and the harmonic coefficients are C2,0 < 0 <
C2,2 since Eros spins around its axis of greatest inertia.

The equations of motion corresponding to the
Hamiltonian (1) are

ẋ + ω × x = X,

Ẋ − ω × X = −∇xV,
(3)

and H(X,x) = h is an integral of the motion.
The simplified model of Eqs. (3) with V given by

Eq. (2) —second degree and order gravity field and
uniform rotation around the axis of greatest inertia—
includes all the main perturbations that act on an
orbiter in this system,24,26 namely the Keplerian at-
traction, the Coriolis force, and the oblateness and
ellipticity perturbations. To the well known effects

of the oblateness perturbation, the main effect of the
C2,2 term is a change in orbit energy and angular
momentum that produces noticeable variations in the
orbital elements.25 When the asteroid rotates slowly
as compared to the spacecraft orbit period, the aver-
aged problem of orbital motion can be integrated in
the formal sense.17 But the situation is very different
for fast rotation rates, where the motion is far from
being integrable. First order analytical theories based
on averaging of the orbital elements may not be accu-
rate at all, and instead of trying to give approximate
solutions, the analytical efforts have taken the direc-
tion of giving estimates of the stability of motion based
on energy and angular momentum variations over one
orbit.26 On the other hand, extensive numerical com-
putations have been performed in order to understand
the chaotic dynamics.18,20

The numerical values of Eros we use in this paper
are

α = 16.5 km
µ = 4.463 × 10−4 km3/s2

ω = 3.31182 10−4s−1

C2,0 = −0.110231
C2,2 = 0.052826

and are taken from.21

Ordering the Hamiltonian
Inertially referenced orbital elements have been tra-

ditionally used for studying the long term evolution
of dynamical systems. By formulating the perturbing
function in orbital elements —the semimajor axis a,
the eccentricity e, the inclination I, the argument of
the pericenter g, the argument of the node Ω, and the
mean anomaly �—, the (averaged) Lagrange planetary
equations can be integrated providing approximate so-
lutions for the secular motion of the satellite.

The usual averaging procedure is done developing
the perturbation function as a Fourier series in the
mean anomaly � with coefficients as series in powers
of the eccentricity e and the inclination function sin I,
the validity of such solutions are constrained to small
values of the eccentricity. Contrary, in order to avoid
expansions in powers of the eccentricity we formulate
the orbital problem in Whittaker variables and carry
all developements in closed form.

Calling G = x×X the angular momentum, we ma-
terialize the ascending node by the vector n = k ×G.
The Whittaker canonical variables (r, θ, ν, R, Θ, N)
are: the distance r of the satellite, the argument of
latitude θ —the angle between n and x—, the argu-
ment of the node ν —the angle between i and n—, the
modulus Θ of G, N = G · k, and the radial velocity
R = X · x/r in the inertial frame.

Using these variables, we distinguish four terms in
the Hamiltonian: the Keplerian term HK, Coriolis one
HC, the oblateness or main problem term Ho and the
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Fig. 1 Stability regions for three-dimensional mo-
tion around the asteroid Eros (after19,20).

ellipticity one He

HK =
1
2

(
R2 +

Θ2

r2

)
− µ

r
(4)

HC = −ωN (5)

Ho =
µα2J2

4r3

(
2 − 3s2

i + 3s2
i cos 2θ

)
(6)

He =
µα2J2C

′
2,2

4r3

[
12s2

i cos 2ν − (7)

− 3
(
2 − 2ci − s2

i

)
cos(2θ − 2ν)

− 3
(
2 + 2ci − s2

i

)
cos(2θ + 2ν)

]
where ci = N/Θ, si =

√
1 − c2

i are functions of the
momenta Θ, N , we take the usual convention J2 =
−C2,0, while the harmonic coefficient C2,2 is replaced
by C ′

2,2 = C2,2/J2.
In order to check the relative influence of these four

terms in the Hamiltonian, we resort to the global
criterium for stability given in,20 where the stability
character of low-eccentricity orbits is shown to depend
on their inclination. Thus, in Fig. 1 the line

I◦ = 1447.87a− 163.846a2 +6.19364a3 − 0.0779807a4,

where a must be in km, separates stable almost circu-
lar motion from unstable one.

We compute the respective values of Eqs. (4)–(7) for
a wide range of initial conditions sweeping part of the
stability area provided in Fig. 1, more precisely, we in-
spect the nonchaotic region corresponding to (stable)
almost circular periodic motion further than 26 km
away from the center of mass of Eros. We conclude
that the addition of the Keplerian term plus the Cori-
olis one dominates the dynamics, while the influence of
the oblateness and the ellipticity perturbations, both
of the same order, is lower and remains at a higher
order. Therefore, at least in that region, the Hamilto-
nian admits the following asymptotic expansion:

H = H0 + εH1,

{ H0 = HK + HC,

H1 = (Ho + He)/J2,

in which we selected ε = J2 as the small parameter.
Now we can proceed in computing the infinitesimal

contact transformations that will provide our analyti-
cal theory. This will be done using Lie transformations
as detailed below.

Lie transformations
A Lie transformation10 is a one-parameter family of

mappings

ϕ : (x′,X ′; ε) �−→ (x,X),

defined by the solution x(x′,X ′; ε) and X(x′, X ′; ε)
to the Hamiltonian system

dx

dε
=

∂W
∂X

,
dX

dε
= −∂W

∂x
,

satisfying the initial conditions x(x′,X ′; 0) = x′ and
X(x′,X ′; 0) = X ′. The function

W(x,X ; ε) =
∑
n≥0

εn

n!
Wn+1(x,X), (8)

is the generator of the transformation.
Due to the properties of the Hamiltonian systems,

the Lie transformation ϕ is a completely canonical
transformation that maps the Hamiltonian

H(x,X ; ε) =
∑
n≥0

εn

n!
Hn(x,X); (9)

onto a new one

K(x′,X ′ ; ε) =
∑
n≥0

εn

n!
Kn(x′,X ′). (10)

For the sake of simplicity we drop the “primes” and
use again the notation (x,X) to represent the vari-
ables (x′,X ′) after the transformation. Thus, there is
no ambiguity in writing K = K(x,X; ε).

The Lie-Deprit method10 gives a way to find both
the Lie transformation and the transformed Hamilto-
nian (10) by solving, term by term, the homological
equation

LH0(Wn) = Kn − H̃n, (11)

in which LH0(Wn) is the Poisson bracket (Wn;H0),
and H̃n is a linear combination of Poisson brackets
involving the coefficients

Wj , (j = 1, . . . , n − 1),

Hk, (k = 1, . . . , n).

Briefly, the procedure is as follows. First, we com-
pute H̃1, and choose K1 in such a way that, while
being free from the short period effects that we want
to average, it makes possible to integrate W1 in the
partial differential equation (11). Then, and iterative
procedure based on the “Lie triangle” is performed

3 of 7

American Institute of Aeronautics and Astronautics Paper - 2002 - 4543



where, after choosing the order n of the transformed
Hamiltonian, the coefficients H̃j , Kj (j = 2, . . . , n)
are obtained, and W̃j is solved for in the homological
equation. More details about the method can be found
in.10,16

Relegation of the longitude of the node
The relegation of the node tries to get rid of the an-

gle ν by using a transformation after which the desired
perturbation appears in the new Hamiltonian with a
lower influence. After repeated iterations of the trans-
formation the perturbation should be small enough so
that we may neglect it.

In our case, the longitude of the node appears only
in the ellipticity perturbation Eq. (7). Thus, one can
look for Lie transformations that increase the power p
of the factor (1/r)p. Depending on the initial condi-
tions, after successive iterations we eventually find a
value of the exponent of (1/r) for which the effect of
the term that contains the angle ν is sufficiently small
and can be neglected.

Taking into account the zero-order of our Hamilto-
nian we may express LH0 as

LH0 = LK + LC

where LK represents the Lie derivative in the Keple-
rian flow

LK = R
∂

∂r
−

(
µ

r2
− Θ2

r3

)
∂

∂R
+

Θ
r2

∂

∂θ

and LC = −ω ∂ /∂ν. Then, the homological equation
(11) has the form

LK(Wn) − ω
∂Wn

∂ν
= Kn − H̃n. (12)

At first order we have

H̃1 = H1 = Ho + He.

In order to compute W1 and K1 we split them into the
form

W1 = W1,0 + W∗
1,0,

K1 = K1,0 + K∗
1,0

so that K1,0 is the averaging of H̃1 over the angle ν,
and W1,0 verifies

LC(W1,0) = K1,0 − H̃1,

that is to say:

K1,0 =
1
2π

∫ 2π

0

(Ho + He) dν,

W1,0 = − 1
ω

∫
(K1,0 −Ho −He) dν.

Let us note that Ho does not depend on ν and He

is periodic in ν, then we have K1,0 = Ho and W1,0

becomes a periodic function in ν:

W1,0 =
3µα2C ′

2,2

8ωr3
×

×
[
2s2

i sin 2ν −
(
2 − 2ci − s2

i

)
sin(2θ − 2ν)

+
(
2 + 2ci − s2

i

)
sin(2θ + 2ν)

]
.

(13)
With this choice, the fundamental equation (12) be-

comes into

LK(W∗
1,0) − ω

∂W∗
1,0

∂ν
= K∗

1,0 − LK(W1,0),

which is the same expression as before (12) with the
unknowns W∗

1,0, K∗
1,0, and the computable function

LK(W1,0). The process is iterative and we may de-
compose W∗

1,0,K∗
1,0 in the form

W∗
1,0 = W1,1 + W∗

1,1,

K∗
1,0 = K1,1 + K∗

1,1,

where

K1,1 =
1
2π

∫ 2π

0

LK(W1,0) dν,

W1,1 = − 1
ω

∫
(K1,1 − LK(W1,0)) dν.

Taking into account the value of W1,0 given by Eq.
(13), and the relations

LK

[(
1
r

)n]
= −nR

(
1
r

)n+1

,

LK

[
sin(l θ + k ν)

cos(l θ + k ν)

]
=

 l
Θ
r2

cos(l θ + k ν)

−l
Θ
r2

sin(l θ + k ν)


LK

[
Rm

]
= −m

(
µ

r2
− Θ

r2

)
Rm−1,

(14)
where k, l, m, n are integer numbers, one can see that
LK(W1,0) has terms in (1/r)4, (1/r)5 instead of the
terms in (1/r)3 appearing in He. Moreover, it is purely
periodic in ν, that means its average K1,1 over ν is zero,
and W1,1 is similar to W1,0 with terms of powers 4 and
5 in (1/r).

After (m + 1) iterations, we have

LK(W∗
1,m) − ω

∂W∗
1,m

∂ν
= K∗

1,m − LK(W1,m),

and we may stop the process by choosing W∗
1,m = 0

and K∗
1,m = LK(W1,m). Eventually

K1 =
m∑

i=0

K1,i + LK(W1,m),

W1 =
m∑

i=0

W1,i.
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Following the same argumentation as in the first it-
eration we may conclude that every term K1,i = 0 with
i between 1 and m, and LK(W1,m) contains terms with
powers in (1/r) with exponent (m+3) and greater. In
our case, after three iterations, the new Hamiltonian
is

K1 = Ho + LK(W1,2),

where

LK(W1,2) =
3µα2C ′

2,2

16ω3r6
×

×
[
Θ(ci − 1)2

(
15Θ2

r3
− 11µ

r2
− 60R2

r

)
cos(2θ − 2ν)

+Θ(ci + 1)2
(

15Θ2

r3
+

11µ

r2
+

60R2

r

)
cos(2θ + 2ν)

−R(c2
i − 1)

(
45Θ2

r2
− 45µ

r
− 60R2

)
sin 2ν

−R(ci − 1)2
(

105Θ2

2r2
− 21µ

r
− 30R2

)
sin(2θ − 2ν)

+R(ci + 1)2
(

105Θ2

2r2
− 21µ

r
− 30R2

)
sin(2θ + 2ν)

]
that contains only powers greater than six in (1/r).
Therefore, for the given values of Eros the contribution
of LK(W1,2) will remain at second order of J2 for any
distance r, and it can be neglected from our first order
approach. Note that the term Ho is not affected by
the transformation since it does not depend on the
argument of the node.

Thus, at first order of ε, after the relegation of the
node we obtain the Hamiltonian

K = K0 + εK1 = HK + HC + Ho

where the H’s are the ones given in Eqs. (4)–(6),
but now expressed in new variables. The argument
of the node ν became a cyclic variable and, there-
fore, HC represents a constant of the motion that can
be dropped from the new Hamiltonian K. Then, the
transformed Hamiltonian is

HK + Ho,

that is formally equal to the Hamiltonian of the main
problem of an earth satellite but, of course, with dif-
ferent values for the constants. Therefore, taking into
account the scale invariance of the problem6 the dy-
namics should be the well known dynamics of the main
problem of the artificial satellite except for a different
length scale corresponding to the quantitative value of
the Eros’s J2.

At this point we must note that the main problem
of the artificial satellite enjoys cylindrical symmetry,
that is not at all the case of Eros. Consequently, the
validity of a first order theory will be limited to cer-
tain regions of phase space as we will see later. More
general analytical theories must include the ellipticity
effect, that appears free from ν in high order theories,
and will be the topic of a future paper.

Delaunay normalization
To obtain a first order theory we will perform now a

Delaunay normalization.13 Therefore, instead of the
Whittaker variables we will use the Delaunay ones
(�, g, h, L, G, H), where � is the mean anomaly, g is
the argument of the pericenter, h is the argument of
the node, and the conjugated momenta are

L =
√

µa, G = L
√

1 − e2, H = G cos I,

The asymptotic Hamiltonian

K = K0 + εK1,

obtained after the relegation of the node may be writ-
ten in Delaunay variables by means of the expressions

K0 = − µ2

2L2
,

K1 = M0
a3

r3
+ M1

a3

r3
cos(2g + 2f),

where R, f are implicit functions of the mean anomaly
�, and

M0 = M0(L, G, H) =
α2µ4(3H2 − G2)

4G2L6
,

M1 = M1(L, G, H) =
3α2µ4(G2 − H2)

4G2L6
,

are functions of the momenta.
The Delaunay normalization is a Lie transformation

that maps

K =
∑
n≥0

εn

n!
Kn

into a new one

R =
∑
n≥0

εn

n!
Rn

in which Rn belongs to the kernel of the Lie derivative,
i.e. Rn is the average of K̃n over the mean anomaly �.

Instead of using the expansions of r and f in powers
of the eccentricity we will compute the integrals with
respect to �. But, taking into account the relation

a
√

1 − e2 d� = rdf,

we change the independent variable to be the true
anomaly. Then, at first order we find

R1 = M0(1 − e2)−3/2 = M0
L3

G3
.

where � and g simultaneously disappear.
With this election the homological equation has the

form

n
∂W1

∂�
= M0

(
a3

r3
− L3

G3

)
+ M1

a3

r3
cos(2g + 2f).
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A simple quadrature gives

W1 =
µ

G3

[
M0(f − �)+

+M0e sin f +
M1

2
e sin(f + 2g)

+
M1

2
e sin(2f + 2g) +

M1

6
e sin(3f + 2g)

]
.

The Hamiltonian after Delaunay normalization is

R = − µ2

2L2
+ ε

L3

G3
M0(L, G, H),

that depends only of the momenta and is trivially in-
tegrable.

Summary and Conclusions
Classical theories for motion close to spheroidal bod-

ies assume the prevalence of the Keplerian attraction
over other forces. That is not true for the case of many
asteroids, where the Coriolis force can be of the same
order of the Keplerian attraction.

For these kind of highly nonlinear dynamical sys-
tems analytical theories can be constructed with a
more sophisticated averaging using suitable action-
angle variables. After relegating the node, we obtain
the Hamiltonian of the main problem of the artificial
satellite —a well known problem. Then, we perform
a Delaunay normalization and arrive at an integrable
Hamiltonian that solves the problem and permits the
generation of approximate ephemerides for any desired
solution.

Thus, from our first order theory we see that the
qualitative behavior should be similar to the main
problem, where low-eccentricity, frozen orbits exist for
most inclinations, and which suffer from biffurcations
of eccentric frozen orbits at the critical (retrograde
and direct) inclinations.6,9 From20 we know that this
is true for orbits further than ≈ 30.2 km away from
Eros. As presented in Fig. 2, one stability index of a
family of three-dimensional periodic (frozen) orbits ap-
proaches the critical value k = 2 twice (at inclinations
I ≈ 53◦ and I ≈ 117◦ for the example presented),
corresponding to the bifurcation of eccentric orbits.
But, also from,20 we see that behavior suffers radi-
cal changes for orbits close to the asteroid. Numerical
computations give strong indications that, contrary to
the main problem, frozen orbits no longer exist for
direct inclinations in the close neighborhood of Eros.
The typical behavior of almost circular periodic orbits
close to Eros is presented in Fig. 3. While they show
stability for retrograde inclinations, there is a limit-
ing inclination where the periodic orbit stability index
grows very large. Periodic orbits at direct inclinations,
if they exist, are so chaotic that they are of no practical
interest.

Therefore, although our results are not conclusive,
the analytical solution could be useful for mission pur-
poses. In this paper we only proceed to first order.
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Fig. 2 Evolution of the stability indices of a typical
family of three-dimensional periodic orbits far away
from Eros (after20).
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Fig. 3 Evolution of the stability indices of a typical
family of three-dimensional periodic orbits close to
Eros (after20).

More sophisticated analytical theories including the
ellipticity effect, which should appear free from the
argument of the node in higher order theories, may be
much more accurate.

When pursuing a higher order theory, the number
of iterations that are necessary to relegate the node
grows considerably, with the consequent increase in
size of the generating function. Moreover, the trans-
formed Hamiltonian will no longer resemble the main
problem Hamiltonian, despite that its form will be sim-
ilar to the zonal problem.8 When trying to obtain a
closed form theory in that case, the Delaunay normal-
ization could be problematic.4 Then, the need arises of
performing (nontrivial) simplifications14 of the Hamil-
tonian —elimination of the parallax,7,11,12 elimination
of the perigee5—, but these kinds of problems can be
solved very efficiently with the methods provided in
the powerful tool ATESAT.2,3

The computation of high order analytical theories
for spacecraft motion in the vicinity of Eros is in
progress, we have obtained stimulating partial results
and, hopefully, a high order theory will be provided
very soon.
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