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A SYMPLECTIC KEPLERIAN MAP FOR PERTURBED TWO-BODY DYNAMICS

Oier Peñagaricano Muñoa1, Daniel J. Scheeres2

Abstract

A perturbation theory for solving initial value problems is presented.
Based on solutions to perturbed two-point boundary value prolems this
theory analytically solves for the state of a perturbed system. Applica-
tions of the theory are found primarily in the fields of orbital mechanics
and optimal control. Examples showing the accuracy of the theory in the
two-body and restricted three body problems are presented.

INTRODUCTION

Recently a perturbation technique that allows one to analytically solve perturbed two-
point boundary value problems (2BVP) was presented.1 This technique was derived from
Hamilton’s principle and uses Hamilton’s principal function (HPF), which embodies the
dynamics of the system. This perturbation technique was used to solve the perturbed two-
body problem.

This paper contains further development of this technique, obtaining a general analyt-
ical expression for the initial value problem (IVP). This allows one to obtain an analytical
expression for the dynamics of the perturbed state. This idea has been explored by Ross
and Scheeres (2007) to predict the change in orbit elements in the restricted three body
problem.2

This method requires to first obtain the time history of the nominal system. This solu-
tion is used to solve a simple quadrature to obtain the perturbed trajectory in phase space.
This method eliminates the need to fully integrate the equations of motion, and it only
requires to solve Kepler’s equation and and quadrature to obtain the perturbed system’s
solution
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HAMILTON’S PRINCIPAL FUNCTION

Consider a system with a Hamiltonian function H(0)(~x, t), ~x being the state. Let this sys-
tem be perturbed by a force potential R(~x, t) that preserves the Hamiltonian structure. The
Hamiltonian of the perturbed system is therefore

H(~x, t) = H(0)(~x, t) + R(~x, t) (1)

where ~x = ~x(0) +ǫ~x(1) being a small parameter. Consider Hamilton’s principal function
defined as the action integral3

W =

t2
∫

t1

L
(

~q, ~̇q
)

dt (2)

where ~q is the generalized coordinate vector, and ~p the generalized momenta, which
are related to the principal function through by the following relationships:

~p1 = −∂W
∂~q1

~p2 = ∂W
∂~q2

(3)

and

−∂W
∂t1

+ H (~q1, ~p1, t1) = 0

∂W
∂t2

+ H (~q2, ~p2, t2) = 0

(4)

The expressions in Eq. 4 are the two boundary conditions at times t1 and t2 that the
principal function must satisfy, while Eq. 5 shows the pair of partial differential equations
that must hold true for W . The principal function for the perturbed system is:

W = W (0) + ǫW (1) + ǫ2W (2) + ... + ǫ∞W (∞) (5)
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The first order perturbed Hamiltonian is

H(x, t) = H(0)(~x (0), t) + ǫ

[

∂H(0)

∂~x

∣

∣

∣

∣

∣

~x (0)

~x (1) + R(~x (0), t)

]

(6)

From the unperturbed system we know that the nominal solution W0 satisfies

∂W0

∂t1
− H0

(

~x
(0)
1 , t

)

= 0
∂W0

∂t2
+ H0

(

~x
(0)
2 , t

)

= 0 (7)

Hence, ignoring higher order terms, Eq. 5 will become

∂W1
∂t1

− ∂H0
∂~p1

∣

∣

∣

~x
(0)
1

~p
(1)
1 − R(~x

(0)
1 , t) = 0

∂W1
∂t2

+ ∂H0
∂~p2

∣

∣

∣

~x
(0)
2

~p
(1)
2 + R(~x

(0)
2 , t) = 0

(8)

Following Hamilton, we note that the total derivative of Wα with respect to t1 and t2,
can be expressed as the following:4

dWα

dt1
= ∂Wα

∂t1
+ ∂Wα

∂q1

dq1

dt1

dWα

dt2
= ∂Wα

∂t2
+ ∂Wα

∂q2

dq2

dt2

(9)

Where ~q1 and ~q2 lie along the nominal trajectory. By definition d~q1

dt1
= ∂H

∂~p1

∣

∣

∣

~x
(0)
1

and

d~q2

dt2
= ∂H

∂~p2i

∣

∣

∣

~x
(0)
2

since the expansion is about this nominal solution. Also from Eq. 5

∂W1
∂~q1

= −~p
(1)
1 and ∂W1

∂~q2
= ~p

(1)
2 , therefore Eq. 10 becomes

dW1
dt1

= ∂W1
∂t1

− ~p
(1)
1

∂H
∂~p1

∣

∣

∣

~x
(0)
1

dW1
dt2

= ∂W1
∂t2

+ ~p
(1)
2

∂H
∂~p2

∣

∣

∣

~x
(0)
2

(10)

where ∂R
∂~p1

∣

∣

∣

~x
(0)
1

is a function of ~q1, ~p
(0)
1 and ∂H

∂p2

∣

∣

∣

~x
(0)
1

is a function of ~q2, ~p
(0)
2 . Therefore,

by substitution the right hand side of Eq. 11 into Eq. 9 we obtain total time derivative
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expressions for the W1, therefore

dW1
dt1

− R(~x
(0)
1 , t) = 0

dW1
dt2

+ R(~x
(0)
2 , t) = 0

(11)

which leads to

W (1) = −
t1

∫

t0

R(~x (0)(t), t)dt (12)

In order to calculate the required change in the initial and final velocities to solve the
two-point boundary value problem, we simply need to take the partial derivative of the
principal function with respect to the generalized coordinates:

~p
(1)
0 = −∂W (1)

∂~q0
=

t1
∫

t0

∂R

∂~x

∂~x

∂~q0
(13)

~p
(1)
1 =

∂W (1)

∂~q1
= −

t1
∫

t0

∂R

∂~x

∂~x

∂~q1
(14)

Care must be taken in performing the partial derivatives as the endpoints remain
fixed.1

HAMILTON’S CHARACTERISTIC FUNCTION

Recall that Hamilton’s principal function is defined as:4

W (~q0, ~q1, t0, t1) =

t1
∫

t0

L(~q, ~̇q, τ)dτ =

t1
∫

t0

[

~p~̇q − H(~q, ~p, τ)
]

dτ (15)

Hamilton’s principal function and characteristic function are related by

Q(~p0, ~p1, t0, t1) = W (~q0, ~q1, t0, t1) + ~p0~q0 − ~p1~q1 (16)
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The variation of the characteristic function is therefore

δQ = δW + ~p0δ~q0 − ~p1δ~q1 + ~q0δ~p0 − ~q1δ~p1 (17)

where

δW = ~p1δ~q1 − ~p0δ~q0 − H(~q1, ~p1)δt1 + H(~q0, ~p0)δt0 (18)

Therefore

δQ = ~q0δ~p0 − ~q1δ~p1 − H(~q1, ~p1)δt1 + H(~q0, ~p0)δt0 (19)

On the other hand if we simply take the variation of Q(~p0, ~p1, t0, t1)

δQ =
∂Q

∂~p0
δ~p0 +

∂Q

∂~p1
δ~p1 +

∂Q

∂t0
δt0 +

∂Q

∂t1
δt1 (20)

Combining the two equations together:

~q0 =
∂Q

∂~p0
~q1 = − ∂Q

∂~p1
(21)

and

∂Q

∂t0
− H(~q0, ~p0, t0) = 0

∂Q

∂t1
+ H(~q1, ~p1, t1) = 0 (22)

These equation represent the boundary conditions and partial differential equations
that Hamilton’s characteristic function must satisfy.
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PERTURBATION THEORY FOR HAMILTON’S CHARACTERIS-

TIC FUNCTION

Due to basic existence theorems we know that the system H(~x, t) = H(0)(~x, t) + ǫR(~x, t)
has a solution defined by both Hamilton’s principal and characteristic functions. Consider
a Taylor series expansion of the solution to the first order, allowing the characteristic func-
tion to take the form

Q = Q(0) + ǫQ(1) (23)

Hamilton’s characteristic function satisfies the following boundary conditions

~q0 =
∂Q

∂~p0
~q1 = − ∂Q

∂~p1
(24)

Define

~q = ~q(0) + ǫ~q(1) (25)

Hence,

~q
(1)
0 =

∂Q(1)

∂~p0
~q
(1)
1 = −∂Q(1)

∂~p1
(26)

The first order perturbed Hamiltonian is

H(~x, t) = H(0)(~x(0), t) + ǫ

[

∂H(0)

∂x

∣

∣

∣

∣

∣

~x(0)

~x(1) + R(~x(0), t)

]

(27)

Therefore,

∂Q(1)

∂t0
− ∂H(0)

∂~x0

∣

∣

∣

∣

∣

~x
(0)
0

~x
(1)
0 − R(~x

(0)
0 , t) = 0 (28)
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∂Q(1)

∂t1
+

∂H(0)

∂~x1

∣

∣

∣

∣

∣

~x(0)

~x
(1)
0 + R(~x

(0)
1 , t1) = 0 (29)

Performing the same manipulation as with Hamilton’s principal function we obtain
the following result:

dQ(1)

dt0
− R(~x

(0)
0 , t0) = 0 (30)

dQ(1)

dt1
+ R(~x

(0)
1 , t1) = 0 (31)

which leads to

Q(1) = −
t1

∫

t0

R(~x(0), τ)dτ (32)

We can now solve for the necessary change in generalized coordinates to solve the two-
point boundary value problem:

~q
(1)
0 =

∂Q(1)

∂~p0
~q
(1)
1 = −∂Q(1)

∂~p1
(33)

therefore

~q
(1)
0 = −

t1
∫

t0

∂R

∂~x

∂~x

∂~p0
dτ ~q

(1)
1 =

t1
∫

t0

∂R

∂~x

∂~x

∂~p1
dτ (34)

RELATIONSHIP BETWEEN IVP AND 2BVP

Hamilton’s principal function, W (~q0, ~q1, t0, t1) allows us to solve the 2BVP. Similarly, we
can solve a different kind of 2BVP (given the momenta we can solve for the coordinates) us-
ing Hamilton’s characteristic function Q(~p0, ~p1, t0, t1). From previously derived theory,we
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know that

W (1) = −
t1

∫

t0

R(~x(0), τ)dτ Q(1) = −
t1

∫

t0

R(~x(0), τ)dτ (35)

Therefore

~q
(1)
1 = −∂Q(1)

∂~p1
=

t1
∫

t0

∂R

∂~x

∂~x

∂~p1
dτ ~p

(1)
1 =

∂W (1)

∂~q1
= −

t1
∫

t0

∂R

∂~x

∂~x

∂~q1
dτ (36)

Combining these two equations

[

−~p
(1)
1

~q
(1)
1

]

J =

t1
∫

t0

Rx
∂~x

∂~x1
Jdτ (37)

When solving the 2BVP we fixed the endpoints creating a constraint for the system.
Then, we proceeded to solve that constraint by using the fact that we knew what the fixed
coordinate at time t1 had to be. If we remove the constraint of the state at the final time,
the term ∂x

∂x1
should be the backwards state transition matrix Φ(τ, t1). Therefore:

[

~q
(1)
1

~p
(1)
1

]

=

t1
∫

t0

RxΦ(τ, t1)Jdτ (38)

where

Φ(τ, t1) =

[

Φqq Φqp

Φpq Φpp

]

(39)

Now use the fact

Φ(τ, t1) = Φ−1(t1, τ) = −JΦT J (40)
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Hence:

[

~q
(1)
1

~p
(1)
1

]

=

t1
∫

t0

J [Rq Rp]

[

ΦT
pp − ΦT

qp

−ΦT
pq ΦT

qq

]

∣

∣

∣

∣

∣

(t1,τ)

dτ (41)

Therefore the first order perturbed state at time t1 can be expressed as:

x
(1)
1 =

t1
∫

t0

[−Rq Rp]

[

ΦT
qp ΦT

pp

ΦT
qq ΦT

pq

]

dτ (42)

which can be rewritten as

~x
(1)
1 =

t1
∫

t0

[Φ(t1, τ)JRx]T dτ (43)

The first order solution to the perturbed state is then:

~x1 = Φ(t1, t0)~x
(0)
0 + ǫ





t1
∫

t0

N(t1, τ)dτ



 (44)

where N(t1, τ) = [Φ(t1, τ)JRx]T

The integration is carried out over the time defined by the nominal system, and along
the nominal path in phase space. Hence, in order to calculate the perturbed state of the
system the knowledge of the nominal system and the perturbed Hamiltonian is needed.

We have assumed that the perturbation theory preserves the Hamiltonian structure of
the nominal system. In order to verify that we must check that the system is still symplec-
tic. Consider the equations of motion in a Hamiltonian form:

ẋ = J
∂H

∂x
(45)

where x = x(0) + ǫx(1), H(x, t) = H(0)(x(0), t) + ǫH(1)(x, t), and J is

J =

[

0 − I
I 0

]

(46)
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For the nominal system, the dynamics must satisfy

ẋ(0) = J
∂H(0)

∂x
(47)

which is symplectic and from which we can get the solution x(0)(t;x0). Consider now
the equations of motion of the full (perturbed) system:

ẋ(t;x0, ǫ) = ẋ(0) + ǫẋ(1) = J
∂H(0)

∂x

∣

∣

∣

∣

∣

x(0)

+ ǫ

[

J
∂R

∂x

∣

∣

∣

∣

∣

x(0)

]

(48)

We know that the solution to the initial value problem will be of the form:

x1 = Φ(t1, t0)x0 + ǫ

t1
∫

t0

Φ(t1, τ)JRxdτ (49)

where Rx = ∂R
∂x

∣

∣

∣

x(0)
. The system will be symplectic if the Jacobian of the system

M = ∂x1
∂x0

satisfies

MT JM = J (50)

Since we are solving the perturbed initial value problem, the state at the initial time

will be the same for the nominal solution and the perturbed solution, x0 = x
(0)
0 . Therefore

we can rewrite the solution as:

x1 = Φ(t1, t0)



x
(0)
0 + ǫ

t1
∫

t0

Φ(t0, τ)JRxdτ



 (51)
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The Jacobian then becomes

M =
∂x1

∂x0
= Φ(t1, t0)



I + ǫ

t1
∫

t0

Φ−1(τ, t0)JRxxΦ(τ, t0)dτ



 (52)

Therefore

MT JM =

[

I + ǫ
∫

ΦT (τ, t0)RxxΦ(τ, t0)
]

ΦT (t1, t0)JΦ(t1, t0)

[

I + ǫ
t1
∫

t0

ΦT (τ, t0)RxxJT Φ−T (τ, t0)

]

(53)

Since we assume that the unperturbed system is symplectic, ΦT (t1, t0)JΦ(t1, t0) = J
and the above equation becomes

MT JM =

[

I + ǫ

∫

ΦT (τ, t0)RxxΦ(τ, t0)

]

J



I + ǫ

t1
∫

t0

ΦT (τ, t0)RxxJT Φ−T (τ, t0)



 (54)

We are studying the effect of a perturbation tot he first order, therefore for the system
to be symplectic to the first order the following condition must be satisfied:

t1
∫

t0

ΦT (τ, t0)RxxJT Φ−T (τ, t0)Jdτ +

t1
∫

t0

JΦ−1(τ, t0)JRxxΦ(τ, t0)dτ = 0 (55)

The following relationships can be obtained from MT JM = J :

JT Φ(−T )(τ, t0)J = Φ(τ, t0)

−Φ = JΦ−1J

(56)
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Therefore the above equation becomes

t1
∫

t0

ΦT (τ, t0)RxxΦ(τ, t0)dτ −
t1

∫

t0

ΦT (τ, t0)RxxΦ(τ, t0)dτ = 0 (57)

The system is then symplectic to the first order.

SOLVING THE IVP: DELAUNAY VARIABLES IN THE 2BP

Consider the set of Delaunay variables for the two-body problem:

l =

√

µ

a3
t L =

√
µa (58)

g = ω G = L
√

1 − e2 (59)

h = Ω H = G cos i (60)

where {a, e, i,Ω, ω, l} are the classical orbit elements. The dynamics of the nominal so-
lution are:

l̇ =
µ2

L3
L̇ = 0 (61)

ġ = 0 Ġ = 0 (62)

ḣ = 0 Ḣ = 0 (63)

The state transition matrix for this system is

Φ(t, t0) =

















1 0 0 Φ14 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(64)
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where Φ14(t1, τ) = −3
2 (t1 − τ). The Hamiltonian of the nominal system can be ex-

pressed as the Keplerian energy

H(0) = −1

2

µ2

L2
(65)

Let the system be altered by a perturbing potential while preserving the Hamiltonian
structure:

H(~x, t) = H(0)(~x(0)) + ǫR(~x, t) = −1

2

µ2

L2
+ ǫR(~x, t) (66)

where ~x = ~x(0) + ǫ~x(1). From the theory, the solution to the initial value problem can be
written as:

~x1 = Φ(t1, t0)



~x
(0)
0 + ǫ

t1
∫

t0

Φ(t0, τ)JRxdτ



 (67)

For this problem Rx will be a 6 dimensional vector evaluated along the nominal solu-
tion:

Rx =



















∂R
∂l
∂R
∂g
∂R
∂h
∂R
∂L
∂R
∂G
∂R
∂H



















~x(0)

(68)

Therefore, the solution to the perturbed system can be expressed as:

~x1 = Φ(t1, t0)~x
(0)
0 + ǫ





t1
∫

t0

N(t1, τ)dτ



 (69)
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where

N(t1, τ) =



















∂R
∂L

− Φ14(t1, τ)∂R
∂l

∂R
∂G
∂R
∂H

−∂R
∂l

−∂R
∂g

−∂R
∂h



















~x(0)

(70)

In order to solve the perturbed two-body problem one needs the nominal solution and
the analytical form of the perturbing Hamiltonian R. The orbit is evaluated at the nominal
order, The relationship between the orbit and time is given by Kepler’s equation, which
has no analytical solution and it must be numerically solved.

Therefore, the nominal two-body solution must be obtained through numerical meth-
ods, and feed the solution into the perturbation expression. This will result in a solution of
the perturbed orbit to the first order. In order to obtain a higher order solution, time can be
divided into smaller fragments and feed the solution into the integral, using the result of
the perturbed orbit as the initial condition for the nominal orbit in the next time segment.
Making the time segments small will result in the exact solution of the the perturbed sys-
tem.

PERIAPSIS MAPPING

For problems that span over long time periods is of great interest to observe the change in
orbit elements over that time. For that purpose we can build a periapsis map showing the
evolution of the orbit element. Ross and Scheeres constructed a periapse (Poincare) map
that shows the relationship between the semimajor axis and argument of periapse of the
orbit over time.

However, for every nominal periapsis passage, the actual periapse will be perturbed,
and therefore shifted from its nominal position. In order to build a Poincare map for the
actual orbit, this change in periapse has to be taken into account in order to build a Keple-
rian map.

Let X0 be the nominal state at periapse passage tp, and X1 be the next periapsis passage.
The nominal periapse occurs at time T , however the actual periapse is slightly perturbed
and occurs at time T + δT . Therefore, in order to calculate the actual periapse passage:

X1 = y(t;X0, T ) = X0 +

T+δT
∫

T

N(T + δT, τ)dτ (71)
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X1 = X0 + ∆X +

T+δT
∫

T

N(T + δT, τ)dτ ∼= X0 + ∆X + N(δT, 0)δT (72)

for small δT . In order to solve for the small deviation δT , use the fact that at the new
periapse, ∆l = 2π + δl. Therefore

∆l + Nl(δT, 0)δT = 0 (73)

δT = − ∆l

Nl(δT, 0)
(74)

And finally,

X1 = X0 +

T−
∆l
Nl

∫

tp

N(T − ∆l

Nl
, τ)dτ (75)

where tp is the previous periapsis passage. Then X1 is the state at the subsequent peri-
apsis passage,

RESTRICTED THREE-BODY PROBLEM

In this section we introduce the restricted three body problem, where a massless body
orbits two large point-masses that are orbiting around their barycenter. We rewrite the
problem in Delaunay variables for the general 3-D case, and then specialize it to the planar
case, which simplifies the perturbation expressions.

In the restricted three-body problem (R3BP) the Hamiltonian function be written as

H =
1

2
~v · ~v − U(~r1, ~D, ǫ) (76)

where ~v is the velocity, ~r1 is the radial position vector from the center of the primary

to the particle, and ~D is the position vector of the secondary body from the primary. The
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force potential U is defined as

U =
µ1

r1
+

µ2

r2
(77)

where r1, r2 are the absolute distances from the primary and secondary bodies to the
particle, µ1, µ2 are the gravitational parameters of the primary and secondary, and µ1 > µ2.
Define the mass ratio ǫ as:

ǫ =
µ2

µ1 + µ2
(78)

Using the law of sines, r2 can be expressed in terms of r1, D, and θ the angle between
the inertial and rotating frames

r2(r1, θ) =
√

r2
1 + D2 − 2r1D cos(u − θ) (79)

where u is the angle between the particle and the ascending node. Therefore the Hamil-
tonian can be written as

H =
1

2
~v ·~v−(1−ǫ)

µ

r1
−ǫ

µ
√

r2
1 + D2 − 2r1D cos(u − θ)

= K−ǫ
µ

√

r2
1 + D2 − 2r1D cos(u − θ)

(80)

where µ = µ1 + µ2 is the total gravitational parameter of the system, and K is th Kep-
lerian energy of the two-body system (primary-particle system). In the rotating frame, the
Hamiltonian can be expressed as:

Hrot = K − θ̇G − ǫ
µ

√

r2
1 + D2 − 2r1D cos(u − θ)

(81)

We can view the PRC3BP as a rotating two-body problem with third-body perturbation
effects.

Hin = K + ǫR

Hrot = K − θ̇G + ǫR
(82)
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where

R = − µ
√

r2
1 + D2 − 2r1D cos(u − θ)

(83)

where G is the angular momentum of the particle about the primary.

THE JACOBI INTEGRAL

In the restricted three body problem the Jacobi integral can be expressed as

CJ = K − θ̇H + ǫR(l, g, h, L,G,H) (84)

The time rate of change of the Jacobi integral is therefore

ĊJ = K̇ − θ̇Ḣ + ǫṘ(l, g, h, L,G,H) (85)

ĊJ =
µ2

L3
L̇ − θ̇Ḣ + ǫ

[

∂R

∂l
l̇ +

∂R

∂g
ġ +

∂R

∂h
ḣ +

∂R

∂L
L̇ +

∂R

∂G
Ġ +

∂R

∂H
Ḣ

]

(86)

From the relationship ẋ = J ∂CJ

∂x
we know that

l̇ = ∂CJ

∂L
= µ2

L3 + ǫ∂R
∂L

L̇ = −∂CJ

∂l
= −ǫ∂R

∂l

ġ = ∂CJ

∂G
= ǫ∂R

∂G
Ġ = −∂CJ

∂g
= −ǫ∂R

∂g

ḣ = ∂CJ

∂H
= −θ̇ + ǫ ∂R

∂H
Ḣ = −∂CJ

∂h
= −ǫ∂R

∂h

(87)

Therefore

ĊJ = ǫ
[

− µ2

L3
∂R
∂l

+ θ̇ ∂R
∂h

+ ∂R
∂l

µ2

L3 − ∂R
∂h

θ̇
]

+

+ǫ2
[

∂R
∂l

∂R
∂L

+ ∂R
∂g

∂R
∂G

+ ∂R
∂h

∂R
∂H

− ∂R
∂L

∂R
∂l

− ∂R
∂G

∂R
∂g

− ∂R
∂H

∂R
∂h

]

= 0

(88)

Therefore the Jacobian for the perturbed two-body problem is constant.
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PLANAR RESTRICTED CIRCULAR THREE-BODY PROBLEM

In the PRC3BP, H = G and g′ = h + g, therefore the perturbing potential becomes

R = − µ
√

r2 + D2 − 2rD cos(g′ + f − θ)
(89)

and

r =
1

µ

G2L

L +
√

L2 − G2 cos f
(90)

The Jacobi integral for the PRC3BP can be expressed as

CJ = K − θ̇G + ǫR = − µ

2L2
− θ̇G + ǫR (91)

where g = g′ − θ̇t. The Jacobian is constant to the first order.

PERTURBED ROTATING TWO-BODY PROBLEM

The planar restricted circular three-body problem can be viewed as a perturbed rotating
two-body problem. The equations of motion for the PRC3BP expressed in the synodic
frame centered at the barycenter are:

ẍ = 2ẏ + x − µ1
(x+ǫ)√

(x+ǫ)2+y2
− µ2

(x−1+ǫ)√
(x−1+ǫ)2+y2

ÿ = −2ẋ + y − µ1
y√

(x+ǫ)2+y2
− µ2

y√
(x−1+ǫ)2+y2

(92)

where ǫ = m2/(m1 + m2). The trajectories of the nominal and perturbed systems can
be obtained by numerically integrating the above equations. In order to transform the syn-
odic trajectory (Qs, Ps) back to an inertial trajectory (Qi, Pi) centered at the main primary,
allowing to express the trajectory using Delaunay elements:

Qp = Qs + ǫx̂p

Pp = Ps

(93)
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Q′

p = Qp

P ′

p = Pp + Θ̇Qp

(94)

Qi =

[

cos Θ − sin Θ
sinΘ cos Θ

]

Q′

p

Pi =

[

cos Θ − sin Θ
sin Θ cos Θ

]

P ′

p

(95)

The perturbation of the orbit elements with respect to the nominal system can be ob-
tained by the following integral:









∆l
∆g
∆L
∆G









=

t1
∫

t0









∂R
∂L

+ 3
2(t1 − τ)∂R

∂l
∂R
∂G

−∂R
∂l

−∂R
∂g









x(0)

dτ (96)

where

R = − µ2

r2
1 + D2 − 2rD cos u

(97)

and u = g + f − Θ̇t.

EXAMPLE SIMULATIONS

Take as an example a spacecraft orbiting the central body with a semimajor axis a = 0.67
and eccentricity e = 0.3. The distance between the primary and secondary masses is D = 1,
and the mass ratio ǫ = 0.00005667. Let the spacecraft be initially at periapse. Figures ??
though 10 show the Delaunay elements after 100 orbits. The integrations of the elements
are carried out in 1, 8, and 1000 steps per orbit.
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Figure 1: Change in g in 2 steps per orbit
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Figure 2: Change in g in 8 steps per orbit
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Figure 3: Change in g in 1000 steps per orbit
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Figure 4: Change in G in 2 steps per orbit
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Figure 5: Change in G in 8 steps per orbit
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Figure 6: Change in G in 1000 steps per orbit
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Figure 7: Change in L in 2 steps per orbit
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Figure 8: Change in L in 8 steps per orbit
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Figure 9: Change in L in 1000 steps per orbit
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Figure 10: Change in l in 8 steps per orbit
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CONCLUSIONS

We have presented a perturbation technique for Hamiltonian dynamical systems. This
technique is a further development from a perturbation theory to solve two-point bound-
ary value problems, and can be used to obtain an analytical expression for the perturbed
initial value problem.

We have shown that this theory allows one to obtain the full trajectory of a space-craft
in phase space by quadratures. With small enough step sizes the theory predicts the actual
trajectory of the particle. We have also developed a periapse map that shows the evolution
of orbit elements as they pass through the actual periapsis of the perturbed orbit.

Future research will include a robust method of finding trajectories of interest for inter-
planetary missions. This should result in an algorithm for mission planning tools that will
decrease the cost of a space mission significantly.

This can also be applied to optimal control problems. We envision to solve continuous
low-thrust optimal control problems with the perturbation theory as the underlying basis.
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