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Abstract
A new guidance law, which combines pursuit guid-
ance and proportional navigation is proposed. This
guidance law depends on two parameters that de-
termine the relative importance of pursuit guidance
and proportional navigation. Numerical simulations
of the nonlinear equations of motion suggest that
the parameters of this law can be chosen to reduce
the peak value of the missile acceleration. When the
engagement ends in a tail chase, and linearization
is valid, the linearized equations of motion lead to
a confluent hypergeometric equation. This equation
is solved in closed form, in the general case where
the target performs maneuvers such that its head-
ing angle is a polynomial function of time. The ana-
lytic solution based on linearization and the numeri-
cal simulation of the nonlinear equations show good
agreement.

Nomenclature
a, b = parameters in normalized guidance law
Ci = constants of integration
/ = forcing function
k{ = coefficients of forcing function
m — degree of polynominal
n = velocity ratio
R = relative distance
r = normalized relative distance
t — flight time
VM — missile velocity
VT — target velocity
z = modified relative distance
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a,- = coefficients in polynominal of f)p
/3 = line-of-sight(LOS) angle
/3p = particular solution for /?
F = normal acceleration
0 — missile flight-path angle
9T = target flight-path angle
A, n = parameters of guidance law
T = normalized flight time
M(-, •, •)= confluent hypergeometric function, or

Kummer's function
[/(.,., •) = confluent hypergeometric function of

the second kind
(-)o = initial value

1 Introduction
This paper considers the standard problem of guid-
ing a craft or a missile on a collision course to a
maneuvering target. Among the known guidance
laws, the simplest one is pursuit guidance which con-
stantly directs the velocity of the missile towards the
moving target. This law only requires knowledge
of the missile-target line-of-sight. Another practical
guidance law is proportional navigation, in which
the missile detects any rotation of the line-of-sight
and applies a turning rate proportional to this rota-
tion. The relative advantages and disadvantages of
these guidance laws are well known and presented in
many texts' '"" 'I . Various aspects of proportional
navigation are topics of discussion in the current
literature^16!.

Guelman[9] obtained a closed-form solution of
true proportional navigation for a nonmaneuvering
target. Shuklaet al.[10] derived a general form of lin-
earized solution to proportional navigation. Various
solutions for pure proportional navigation were given
by Mahapatra et al.[ll] and Becker[12]. Cochran et
al.[13] obtained new closed-form solution in terms of
elliptic functions and integrals. Yuan et al.[14]-[15]
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also presented closed-from solutions of true propor-
tional navigation for both maneuvering and nonma-
neuvering targets and solution of generalized pro-
portional navigation. Balakrishnan [16] introduced
a class of proportional navigation laws through an
approximation of time-to-go and a transformation
of state variables.

In this paper we propose a guidance law which
is a combination of pursuit and proportional nav-
igation, with the aim of retaining the effectiveness
of pure pursuit and at the same time reducing the
lateral acceleration, which is a characteristic feature
of proportional navigation. After formulation of the
problem, the effectiveness of the control law is tested
numerically for various maneuvers of the target. It
is shown that by adjusting two parameters which
control the turning rate of the missile, it is possi-
ble to reduce the peak acceleration to an acceptable
level. Furthermore, in the final and most impor-
tant phase of the interception, linearization of the
dynamics leads to a confluent hypergeometric equa-
tion which is solvable analytically when the heading
angle of the target is a polynominal function of a
dimensionless independent variable.

2 Equations of Motions
For the case of planar pursuit-evasion, we have the
equations

= VTcos(/3-6T)-VMcos((3-6), (1)

(2)

where R and /? are the relative distance between
target and missile positions and line-of-sight angle,
and 9 and OT are missile and target flight path angle,
respectively. We use the flight time t as the indepen-
dent variable. The geometry of the interception is
shown in Fig.l.

To control the missile towards the intercept point,
we use the following new guidance law

two fundamental guidance laws through the use of
the two parameters A and p.

VM

Missile
Reference Direction

Figure 1: Geometry of Interception.

To normalize the equations, the following non-
dimensional variables are defined for the case of con-
stant speed of the target. We have

r =

r —

n —

a =

b =

VT

A
RQ
VM_
VT '

A,
RQ
VT

(4)

where RQ is the initial relative distance, r is the nor-
malized time, r is the normalized relative distance,
a and b are parameters of the normalized guidance
law and n is the velocity ratio.

Using these non-dimensional variables, the nor-
malized equations are

dr
— = cos(/?-0T)-ncos(/?-0), (5)

dr

'-0)}, (6)

(7)

(3)

where A and \i are constant parameters. The first
term on the right hand side in this guidance equa-
tion represents proportional navigation, and the sec-
ond term represents pursuit guidance. Therefore
this guidance law is constructed by combining the

3 Effectiveness of Guidance
Law

Although we have restricted the analysis to the case
of constant speed for the target, the nonlinear equa-
tions (5)~(7) allow its maneuverability through the

173
American Institute of Aeronautics and Astronautics



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

arbitrary change in the heading #T(T~) as a func-
tion of the dimensionless time, and the possibility
of modulating the speed ratio n(r) for the missile.
Of course, the turning rate of the missile is dictated
by the guidance law (7), now written in dimension-
less form with two arbitrary constants a and b. For
this paper, we use a constant value for n.

To show the effectiveness of the guidance law, and
the influence of the parameters a and 6 on its perfor-
mance, we consider the complete non-linear system
and generate the intercept trajectory numerically.

Without loss of generality, the reference direction
is taken along the initial target velocity. Hence, we
have at the initial time

0r(0) = 0, r(0) = l, 0(0) =00.
(8)

In the first two examples, we use a constant speed
ratio n = 3.0, and fa = 1/20, while varying do from
0 to 7T/2. In the last example, we use n = 1.701

a / In the simplest case, we keep constant the
heading of the target. Hence

= 0. (9)

Figure 2 shows the intercept trajectories for var-
ious initial headings of the missile, using 00 =
0, 7T/6, 7T/3, 7T/2.
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Figure 2: Intercept Trajectories for Non-
Maneuvering Target.

Setting Value of Parameter b
Normalized Flight Time

Figure 3: Time History of Normal Accelerations F
vs. Setting Values of Parameter 6.

It is highest at the initial time, and hence its peak
value increases when do increases. To reduce it to
an acceptable value for implementation in missiles
with low turning rate, as indicated by Fig.3, we can
decrease the value of parameter to b = 1.0, at the
expense of a longer time for interception. This is
achieved in Trajectory 5 in Fig.2 for the case of #o =
7T/2, with a lower initial turning rate than Trajectory
4.

b / In this case, we allow the target to have a
constant turning rate by using

= CT. (11)
Figure 4 shows the missile trajectories with the

initial values OQ = 0 and #o — \

O.B
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O.I 6

O.1

Mlsalte Trajectories

As expected, for the same set of values a = 3.0,
6 = 3.0, the tail chase case do = 0, is the fastest, and
as #o increases, it takes longer time for the intercep-
tion. The interception points are denoted in order of
increasing time and range in the figure. The normal
acceleration F, in normalized form, is

= -— sm(/3-6T)dr r (—r - 0).
(10)

Figure 4: Circular Evasive Trajectory.

For the value of c = 5.0, both intercept trajecto-
ries are achieved with a = 3.0, 6 = 3.0, n = 3.0.

c / In the last example, we consider a sinusoidal
change in the heading of the target in the form

— csnwr. (12)
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Figure 5: Sinusoidal Evasive Trajectory.

The values used for this evasive trajectory are c =
0.2 and w = 4.5. Both intercept trajectories are
achieved with a = 3.0, 6 = 3.0, n = 1.701.

We have experimented with a variety of evasive
maneuvers for the target, and it has been found that
it is always possible to select the parameters a and
6 to have successful interception with an acceptable
acceleration for the missile. Furthermore, the guid-
ance law tends to tail chase, and hence in the termi-
nal phase, the linearization of equations (5)~(7) is
valid.

4 Terminal Guidance
The control law used in this guidance tends to align
the velocity of the missile with the line-of-sight and
with the velocity of the target. Hence, in the final
phase of the homing, the two angles (/? — 0) and
(ft — OT) are reasonably small. This leads to the
linearized system for terminal guidance :

dr
57

d6_
dr

(13)

(14)

(15)

The equation for r is decoupled and upon integra-
tion, we have the linear relation

• = 1 - (n - l)r. (16)

For the integration of the other two equations, we
change the independent variable from r to r to have
the new system

d£
dr r1" ' (n —
de_ _ a(n - 1) + br
dr (n- l ) r

(n — l)r
an + 6r a
(n — l)r (n — l)r

(17)

0T.

(18)

For the integration of this system, it is convenient
to use a new independent variable

br
z = (19)

We notice that since r varies from 1 to zero, this
new variable monotonically decreases from b/(n — 1)
to zero. By changing to z, Equations (17) and (18)
can be rewritten

^ = --8 H

~d~z ~ ~z + (n- l )z

dz

0T, (20)

«
(n — l)z (n - l)z

(21)

By eliminating 6 between these two equations, we
obtain a linear second order differential equation
with a forcing function for the variable /?

(22)

Upon obtaining the solution for /?, the guidance
angle 0 for the missile is obtained from

The linear equation (22) is a confluent hypergeo-
metric equation^ J. Including the forcing function
on the right hand side, its general solution is

.
n — 1 n— I

(24)

where M(-, •, •) and [/(•, •, •) are linearly independent
Kummer's solutions of the homogeneous equation,
and /3p(z) is a particular solution. Using this solu-
tion into Eq.(23), we have the solution for 0

2(n - 1) - an n - 1 n - 1

+ C2!Lri[£/(_ 1 2(n-!)-„„

n - 1
n — 1.

n-1 ' n-1 ' '
1 , 2 (n - l ) - a»

Vi n^I'

1P + Z—PP+ ———-tdz n — 1

n - 1

(25)
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The constants of integration C\ and GI are deter-
mined by the initial conditions on /? and 9.

For a maneuvering target, when the heading 6T
is an arbitrary function of T, we model it as a poly-
nominal in T, and ultimately through the change of
independent variable by Eqs.(16) and (19), we have
OT as a polynominal in the independent variable z.
In this case, the forcing function f ( z ) , which is the
right hand side of Eq.(22) is also a polynominal in
z and the particular function fip(z) in the solutions
(24) and (25) for /? and 0 can be easily obtained by
identification.

As an example, we consider the case of a third-
degree polynominal

f ( z ) = fc0 k3z3 =
Tt — '

(26)

The particular solution of the non-homogeneous
equation (22) is assumed to be a polynominal of the
same degree

(27)

where the coefficients on (i — 0,1,2,3) are to be
found. Upon substituting into Eq.(22) and equating
the coefficients of the same power in z, we have the
solution

3(5 + 2)q3 -
A + 2

+ I)q2 -
A + l
- k0

(28)

where

A = -

rt _

n-1'
~ -an
n-1

(29)

It is not difficult to show that if the forcing func-
tion is a polynominal of degree m, then in the solu-
tion for /3p(z)

/3p(z) = a0 •aaz° + ... + amz'n,

(30)
we first calculate the coefficient ar,

A + m' (31)

and for any other coefficient aq (q = 0 , . . . , m — 1),
we use the recursive formula

(32)
A + q

As an example, we consider the case of a constant
turning rate for the target as given in Eq.(ll). Then,
in terms of z, we have

, l *)k n - l b'' (33)

The solution j3p(z) is also a linear function and the
coefficients ot\ and «o are easily calculated from
Eqs.(31) and (32). With n = 1.701, initial values
(?o = 0 and /?0 = 1/20 and using again a = 3, b = 3,
we generate two evasive trajectories for c = 0.06
and c — —0.06. We calculate the intercept trajec-
tories, first by integrating the non-linear equations,
and then by using the analytical solution of the lin-
earized system. The two solutions are in excellent
agreement with each other, as seen in Fig.6.

• - Non-linear Miaalle Trajectory
:: Ariaiytjcaj Miaail* trajectory

—— Target Trajectory '

Laft-Turn
tTargat Trajectory

Mlsaile Trajactorln

Right-Turn
Target Trajectory

Figure 6: Circular Evasive Trajectory.

In the next example, we model the heading change
of a sinusoidal evasive trajectory as a polynominal
in T.

OT(T) = 0.38r3 - 0.827r2 + 0.4r, (34)
After changing the independent variable, again, us-
ing the value n = 1.701, a — 3, b = 3 with the
trinominal in z

9T(z) - -0.01407z3 - 0.08880r2 - 0.12010z - 0.00928,
(35)

176

American Institute of Aeronautics and Astronautics



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

for the heading of the target, the analytical solution
obtained is in perfect agreement with the numerical
solution of the non-linear system. This is shown in
Fig.7.

Non-linear Mlaaile Trajectory
Analytical Miaaiie Trajectory'

- Targat Trajectory ;
Target Trajectory

Miaaiie Trajectoriea

o O.5 1.5 2

Figure 7: Sinusoidal Evasive Trajectory.

5 Conclusion
In this paper, a new guidance law, which combines
pursuit guidance and proportional navigation has
been proposed. This guidance law depends on two
parameters that determine the relative importance
of pursuit guidance and proportional navigation.
Numerical simulations of the nonlinear equations of
motion have been presented and suggest that the
parameters of this law can be chosen to reduce the
peak value of the missile acceleration. An analysis of
the terminal portion of the trajectory has been pre-
sented, leading to a confluent hypergeometric equa-
tion. A closed form solution of this equation has
been obtained in the general case where the target
performs maneuvers such that its heading angle is a
polynomial function of time. The analytic solution
based on linearization and the numerical simulation
of the nonlinear equations show good agreement.
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