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Abstract

Glass and carbon fiber reinforced polymer matrix
composite specimens of cylindrical shape were sub-
jected to pure compression, pure torsion and com-
bined compression-torsion loading. The specimens
were of 50 % fiber volume fraction, V}, and the
loading was done under displacement and rotational
control in a proportional manner. The Budiansky-
Fleck(BF) model for kinking of composites was spe-
cialized to the case of a solid cylinder. The BF model
predicts a linear degradation in compressive strength
under combined axial-torsional loading, which is in
reasonable agreement with the experimental results
obtained from carbon fiber composites. However, in
the case of glass fiber composites, it was observed
that the compressive strength did not degrade lin-
early as predicted by the BF model since kinking
was not observed to be predominant. A new fracture
mechanics based failure model to predict the behav-
ior of glass fiber reinforced composites under com-
bined compression-torsion loading has been devel-
oped. The new model predictions show a good cor-
relation with the experimental data obtained from
glass fiber composites. The present work shows the
dependency of fiber type on the combined loading
response of fiber reinforced polymer matrix compos-
ites.

1 Introduction

The compressive behavior of polymer matrix com-
posite has been found to be very low as compared to
its tensile strength. Thus, the compressive strength
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of composites has been the limiting factor in the de-
sign of composite structures. Based on the work of
previous researchers [1-4] it is known that the uni-
axial compression strength of polymer composites
depends on the fiber type, matrix shear properties,
fiber /matrix interface toughness and misalignments
of the fibers. The effects of multiaxial loads on the
compressive strength of composites has not been
thoroughly investigated. The presence of shearing
stresses, during the application of compressive loads
on the specimen, induces additional misalignment
in the fibers which would degrade the performance
of the composite under compressive loads. Thus
combined axial/torsional loading of solid cylindri-
cal specimens will aid in understanding the effect of
shear on the composite compressive strength. Pre-
vious work has been restricted to carbon composites
at fixed volume fraction and under non-proportional
remote loading. Considering the fact that glass com-
posites have a distinctly different failure mechanism
in compression as compared to carbon composites,
the present work investigates both glass and carbon
composites under combined axial torsional propor-
tional loading. A fiber volume fraction of 50% was
chosen since most commercially manufactured com-
posites have a similar fiber volume fraction (V7).

2 Experimental Details

The composite specimens are solid cylinders of ap-
proximately 6.7 mm diameter and having a gage
length of 12.7 mm. Both the ends of the speci-
mens were cut with a diamond saw to achieve a
fine and smooth surface. The cylindrical specimens
were made using E-glass (Vetrotex-certainteed)
fibers of 24.1 pym diameter and IM-7-12K carbon
fibers(Hexcel corporation) of 5 um diameter with
vinylester resin (Dow Derakane 411-C50) respec-
tively. The specimens were cut with a fine dia-
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mond tip saw using a low speed cutting machine into
lengths of 63.5 mm. The gage length of the speci-
men was about 12.6 mm and the average diameter of
the specimen was 6.7 mm. The specimens were sub-
jected to pure compression, pure torsion and com-
bined compression-torsion under displacement con-
trol, rotation control and combined displacement-
rotational control loading respectively. The tests
were performed on a Axial-Torsional MTS machine
which had the capacity to simultaneously apply ax-
ial and torsional loads. The strains in the specimens
were measured by attaching three strain gages on
the specimen surface, two along the axial direction
on opposite surfaces and the third one at an angle of
45° to the vertical. The third strain gage was used
to calculate the shearing strain and the two strain
gages along the vertical were used to measure the
axial strain in the specimen. Apart from the strain
gage data, the cross head displacement, cross head
rotation, axial force and the torque acting on the
specimen were also measured. The combined com-
pression torsion tests require that the specimen be
gripped in such a manner that there is no slippage
between the specimen surface and the interior of the
grip while rotating the specimen and simultaneously
applying an axial deformation.

2.1 Testing Plan

Initially pure compression and pure torsion tests
were performed on the composite specimens, which
correspond to the vertical and horizontal axis of
the loading diagram as shown in Figure 1. As can
be seen in Figure 1, different loading paths were
adopted and the failure strength in each case was
noted. The loading ratio was defined in terms of the
axial displacement and the arc displacement as %,
where A is the axial cross head displacement, 6 is
the applied cross head rotation and ‘R’ is the radius
of specimen. This was repeated for both glass and
carbon composites.

3 Analytical Model
3.1 Kinking Model

The conventional kinking model of Budiansky-
Fleck(BF) modified to account for the remotely ap-
plied shear is based on the assumption that the
shear stress varies linearly along the radius which
is valid for a hollow thin walled specimen. In the
present work solid cylindrical specimens were used
for conducting the combined compression-torsion
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tests, consequently, an analytical model which ac-
counts for a general distribution of shear stress along
the radius of specimen was developed. For solid
cylindrical specimens as shown in Figure 2, under
pure torsion, Lyon [5] gave an expression for the
shear stress 7 in terms of the applied torque, T' and
the rotation 6 as shown below in equation(1).

3 6 dT
2 [T+ -— 1
et 3] @)

The expression for critical compressive stress in the
presence of remotely applied shear stress, 7°° is de-
rived as follows. As shown in Figure 3, the free
body diagram of a small segment at a distance ‘r’
from the center of the cylindrical specimen is drawn
in the deformed configuration. Then taking the mo-
ment equilibrium of the forces acting on the segment,
the following expression for axial stress is obtained
in terms of the remote shear stress, 7°°, the shear-
ing response of the composite material, 7(r), within
an element of kinked fibers, the initial misalignment
angle of the fibers, ¢, and the applied shear strain,

y(r).

TR

T(r) —
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In case of solid specimens, the shear stress 7(r) is
not a linear function of ‘r’, hence its variation with
‘r’ is unknown and cannot be evaluated. However,
the variation of shear stress, 7(r) is known as a func-
tion of shear strain, vy, which is a linear function of
‘r’ given by r6/l, where 6 is the rotation and [ is the
specimen gage length. Therefore the first step in
applying the BF model to the current problem is to
express the shear stress as a function of shear strain,
v. This is achieved by expressing the specimen ra-
dius ‘r’ as 770. Using the above substitution for ‘r’
and multiplying both sides of equation(2) by r2drdd
and integrating we obtain the following expression
for critical compressive stress, o,, where, we substi-
tute T the applied torque for fOR 7°72drdf. Then,

(2)

Oz

s Jo TN dY = 5
+

(
¢
3

3)

g, =

The integral term in equation(3) represents the shear
response of the composite material and can be ob-
tained from the pure torsion test data of the compos-
ite with similar fiber volume fraction. In equation(3)
we substitute ao, for %, where « is the loading
ratio. Then we obtain an expression for ¢, in terms
of the shear response of the composite, loading ra-
tio, a, the misalignment angle, ¢, and the induced
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shear strain, yg as given in equation(4). On solving
equation(4) we get a limit load for o, at some value
of . This represents the critical kinking compressive
stress for the composite.

5 Jo " () Pdy
o, = = (4)
1+ 5 55m
3 4

3.2 Strain Energy Release Rate, G

In the following sections an energy based fail-
ure model has been developed for pure compres-
sion, pure torsion and combined compression-torsion
loading of solid cylindrical composites. In essence,
we have extended the Lee-Waas splitting model [2]
for pure compression to the case of pure torsion
and combined compression-torsion. For the sake of
completeness, all three loading cases are discussed.
However, complete derivations are presented only for
the cases of pure torsion and combined compression-
torsion loading. Complete derivation for the case of
pure axial compression loading can be referred to in
the paper by Lee and Waas [2]. Consider a represen-
tative volume element(RVE) of the composite, con-
sisting of a concentric cylinder of fiber and matrix,
with a fiber radius, 7o and an outer region of matrix
with radius, 71, and subjected to a external axial
load, P and torque, 7', as shown in Figure 4. The
outer radius of matrix is chosen to satisfy the fiber
volume fraction requirement such that r} = Vy/r2.
The outer matrix surface (r = r1) is assumed to be
traction free. The height of the cylinder is taken to
be 21’ with a interfacial crack of ’2I’ embedded at
the interface of fiber and matrix. The composite is
assumed to have perfect bonding outside the crack
region (1 < z < L) and (-L < z < -1). The total
potential energy is written as II = U — W where U
is the strain energy stored in the composite cylinder
and W is the work done by the external forces.

3.2.1 Axial Loading

The expression for strain energy release rate(SERR),
G Agiai is derived below. The material is assumed to
behave as a linear elastic material under the action of
externally applied axial load, ‘P’. The strain energy
release rate, G is defined as follows G = —g—g. The
crack surface area, A is taken to be 47rgl. Hence,
the expression for strain energy release rate can be
written as G = 4;7{0 ar.

The total potential energy in case of

1. Displacement control (The applied displacement,

3

A, is held fixed during crack propagation)

n=v-w, U:%PA,andW =0
A 4P
T 8mrg dl
Using the definition of compliance, C = A/P
dP _ P?dc
di— Ad
P2 dc
Hence, G = Srro dl (5)
2. Load control (The applied load, P, is held fixed
during crack propagation)
n=v-w, U=%PA,a,ndW = PA
P dA
B 871"!'0 dl
Using the definition of compliance, C = A/P
dA _ e
dl " dl
P? dc
H = =
ence, G = gy dl (6)

Note that the expression for strain energy release
rate, G is same under load control as well as dis-
placement control due to the assumption of linear
elastic material behavior.

The expression for the change in compliance
with respect to crack length, de/dl of the composite
is taken from Lee and Waas [2] and is as follows.

dc 2 1

a = (5 - ﬂ) ™)
where,

5 = Ej+En(——1)
= Ey+ Enl
21+ ) (1=2vp) oy o 20+ vm) (1= 2vm + V)
o= E; (Vs 1)+ o
-1

B = [Br+ ;' = ){En +dalvy - vm)*}]
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In computing the above quantities, only the stress
states of the cracked and uncracked regions are con-
sidered, whereas a region near the crack tip of finite
size € is not considered. In the present analysis, the
above expression for dc/dl is used, even though this
expression for dc/dl was obtained by neglecting the
crack tip stress field. However, as explained later,
for steady state condition, equation (7) is exact. In
the region ¢ (Figure 5),the stress state is influenced
by the crack tip field. However, under steady state
condition for self similar crack growth, this region
translates with the crack tip resulting in an increase
of [ and a corresponding decrease of (L — ). Thus,
while the axial contraction and compliance given by
A and c above are approximate due to the negligence
of the crack tip field, the rate of compliance change
due to crack advancement, given by dc/dl is exact,
since the ’e’ region is invariant with respect to crack
length. This fact enables us to calculate G accurately
for steady state crack propagation. When the crack
is small, initially the compliance change with respect
to crack length, dc/dl, is dependent on the size of ¢,
but, as the crack length increases, dc/dl, becomes
independent of crack length and attains the steady
state value provided in equation (7). The derivation
of dc/dl including the dependence on ¢ is given in
[6], for non-steady state crack growth.

From (7), the energy release rate per unit area
is obtained as

Pz 1
G = m(g - B)
When G, becomes equal to twice the critical
interfacial surface energy (vys) the initial crack prop-
agates;

G = 2v
(8)
Thus,
Vs
f
cr — R TEN 9
o ro(1/6—B) ®)

3.2.2 Misaligned Fibers

The expression for axial compliance for the case
when the fiber is misaligned in the cracked region
can be obtained by considering a slightly imperfect
fiber with an initial imperfection of wo(z) and us-
ing kinematics that are appropriate for geometrically

4

nonlinear beam theory as described by Lee and Waas
[2]. Then the relation between axial contraction A,
and fiber load, Py, can be obtained as,

A _P;

21 [ A(Z)Af
l B AfEy

a1y )

where, Ay is the fiber cross-sectional area, Iy
is the area moment of inertia and Ay is the imper-
fection magnitude. From this relation an effective
axial stiffness for the fiber is obtained and is given
below

EsAy

AgAf’
1 + 21y

(BEA)esr =

Clearly, when the imperfection vanishes, one
recovers the perfect fiber axial stiffness (EA);. In
the present work, the imperfection amplitude is cho-
sen to correspond to an initial misalignment angle of
20, Detailed derivation of the axial splitting model
is presented in [2]

3.2.3 Torsional Loading

Strain energy release rate expressions for a cylindri-
cal specimen of linear elastic and non-linear elastic
material under the action of pure torsion, ‘T” are
developed below. Closed form expressions of strain
energy release rate for a linear elastic material be-
havior are obtained in terms of the compliance of
the material.

The strain energy release rate expression for
a cylinder of radius r¢, under rotational (displace-
ment control) and torsional(load control) loading is
derived as follows.
1. Rotational control (The applied rotation, ¢, is
held fixed during crack propagation)

1
N=U-W, U= T¢and W = 0
_ sar
a 871'7‘0 dl
Using the definition of compliance, C = 7¢¢/T
T? dc
- 1
8mre dl (10)
2. Torque control (The applied torque, T, is held
fixed during crack propagation)
1
n=v-w, U:§T¢,and W = T¢
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T ds

= 8o di

Using the definition of compliance, C = ro¢/T
T? dc

= —— 11

8rr2 dl (11)

The expression for dc/dl for a solid circular cylinder
of length ‘2’ and made of linear elastic material
is 2/(GJ) where G is the shear modulus of the
material and J, is the polar moment of inertia given
by 7nr§/2. Hence, we can write the expression for
strain energy release rate as follows

T2

g = AnriGJ

When the strain energy release rate becomes equal
to the critical fracture toughness, 2v¢ the crack will
propagate leading to failure. The critical failure
stress in torsion can then be written in terms of vy
as follows.

44/v¢G /o

For a non-linear elastic material, the expression for
strain energy release rate, G, under displacement
control loading can be obtained as follows.

Ter (12)

1. Displacement control ( The applied rotation, ¢,
is held fixed during crack propagation)

I = U-Ww
Y T1 Y
U = /V /0 7(¢)d¢dV = 4nl /0 /0 7(¢)dCrdr
W o= 0 (13)
dIl 1 dU
9 = AT Dmed (14)

In equation (13), the inner integral is a known
function of {, where ( is a dummy variable for the
purpose of integration. But, the outer integral in
‘r’ has to be first converted in terms of shearing
strain <y since for a solid cylinder we do not know
the distribution of 7 with respect to the radius of
cylinder, r. Using the relations v = rv, and dr =
dv/v, in the integral of equation (13) we get the
following integral. Here, ‘v’ is the twist per unit

5

length given by the ratio ¢/I

U(y)

4rl / ( / 7(Q)d¢ ) /v dy (15)

Differentiating equation (15) with respect to ‘I’
we get

du i Y 9

— = 4 (| 7(Qd¢) v/vidy (16)
dl 0 0

where ( is a dummy variable and +,, is shear strain
at radius, 7;.

3.2.4 Compression-Torsion loading

Consider a concentric cylinder of fiber and matrix
with a debond of length ‘2]’ as shown in Fig-
ure 4. We can divide this representative volume
element(RVE) into a cracked region of linear elastic
fiber and a non-linear elastic matrix and an un-
cracked region of non-linear elastic composite. Now
let this RVE be subjected to a combined set of axial
and torsional loads as shown in Figure 4. ‘P’ is the
axial compressive load and ‘T is the torsional load.
The total strain energy release rate under combined
compression-torsion loading can be written as the
sum of axial and torsional strain energy release
rate contributions. It should be noted that we are
implicitly assuming that the non-linear torsional
response is unaffected by the presence of axial
stress.Thus,

gAzz'al + gTorsz'on

gTotal (17)

In the present case, it was observed during the
experiments that the axial stress - strain curve
remains linear upto the point of failure even under
combined compression-torsion loading. Hence,
strain energy release rate, Ga.iq is obtained based
on linear elastic material behavior. In torsion the
strain energy release rate, Grorgion, iS Obtained by
adding the strain energy release rate contributions
from a linear elastic fiber and non-linearly elastic
matrix in the cracked region and a non-linearly
elastic composite in the uncracked region under
torsional load.

1
471'7"0 dl

gTorsz'on =
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& a
47T’I'0 dl fiber

dl matric

du

dl composite
N )

1(18)

~~

crack:e;region uncrackedregion
Now, explicit relations for the terms entering in
equation (18) are given below for both the cracked
region and the uncracked region. In the cracked
region the fiber is assumed to be linear elastic hence
the term dU/dlfper can be written as

au
dl fiber

'7'2 7T2 7'(2)
2G fiver

(19)

Also, in the cracked region matrix is debonded from
the fiber and is modeled as a non-linear elastic
material for the calculation of dU/dlqtriz-

Matriz

du

dl matric

— / " / " QdCy /Pl (20)

0

Uncracked region

In the uncracked region away from the crack tip
we model the composite as a homogenous non-
linear elastic material. Thus, the expression for
dU /dlcomposite can be written as follows

Composite

U

dl composite

=t [T ([ 0 @

0

From equations (9,19-21) we can write an expression
for the total strain energy release rate(SERR) of
the composite as

T27l'27'(2)
2sz'ber

0'2”"0 1
-+
4Vf2 )

1 Yrq
+_
To

1

To

OTotal

( / Q)¢ ) /iy +

Yro

( Tn(Qde ) /Ry (22)

When the total strain energy release rate, Grota:
becomes equal to 2y, then splitting failure occurs.
Therefore, we can write the above equation in terms
of the surface energy term 7y and the compressive
strength of the composite, 0., under combined
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loading as,
o2rg 1 272l
o= 8V7 (5 —A)+ 4G ¢iper

1 Yrq Y 9

L e ) apar+
r0o Jy., Jo

1 Yrq Y 9

o [ ([ m0de ) ey 3)
To Jo 0

4 Solution Procedure

Equation (23) relating the fracture toughness to the
axial stress and shear stress acting on the compos-
ite is solved numerically to obtain the critical value
of compressive stress and the corresponding value of
shear stress. The input parameters required to solve
equation (23) are the elastic and geometric proper-
ties of fiber, the shear response of pure matrix, the
shear response of the composite and the fiber vol-
ume fraction of the composite. Table 1 shows the
properties used in the present failure model. The
shear response was incorporated in the analytical so-
lution by using the Ramberg-Osgood fit parameters
obtained from [7] and are given in Table 2. With
the above input parameters, the equation is solved
for the critical value of shear stress or compressive
stress for different values of loading ratios, ‘x’ , where
k is defined as o /7. The critical value of shear stress
or compressive stress is attained when for a partic-
ular value of &, the right hand side of equation (22)
exceeds the left hand side value of critical fracture
toughness, v;. A range of v; values of 0.1224K J/m?
to 0.0408 K J/m? has been used to study the effect of
fracture toughness on the predicted failure envelope.

E;(MPa) pup(MPa) ro(mm)
Glass fiber 72000 29508 0.012
Vinylester 3585 1318

Table 1: Properties of glass fiber and vinylester resin

Discussion

The results obtained from the combined ax-
ial compression-torsional loading of solid circular
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experimental values for the failure envelope under a
combined state of compression-torsion loading. The

Vi pe.(MPa) A n
Glass composite 0.5 3260 68.68 12.44
Vinylester 0 1318 65.44 7.9603

value of fracture toughness as a function of fiber vol-
ume fraction of the composite is not available but a
initial value of vy = 0.1224KJ/m? has been cho-

Table 2: Ramberg-Osgood fit for shear stress-strain
curve of glass/vinylester and pure vinylester speci-
mens

cylindrical specimens of glass/vinylester and car-
bon/vinylester composites indicated that the re-
motely applied shear stress caused a degradation
in the composite compressive behavior leading to
a decrease in the failure strength. However, there
was a difference in the response of carbon com-
posites to remote shear stress as compared to that
of glass composites. The carbon composites show
a approximately linear reduction in compressive
strength as the remote shear stress is increased,
which matches with the prediction of the modified
BF model, equation(4). This can be observed in
Figure 6, where the axial compressive strength is
plotted against a normalized torque defined as %3‘.
The glass/vinylester composites were found to be
initially unaffected by the remotely applied shear
stress. After the remote shear stress reached a crit-
ical value a significant drop in compressive strength
was observed as can be seen in Figure 7. The exper-
imental data show that for high values of A/r@, the
compressive strength of specimens was found to in-
crease. This could be attributed to the fact that for
small rotations of cross sections, the applied shear
strain acts in a manner to reduce the misalignments
thus leading to an increase in compressive failure
strength.

The results in Figure 7 indicate that the MBF
kinking model predictions are inaccurate for the
glass composites which were tested under combined
compression-torsion loading. The glass composites
tested are made of fibers of diameter 24.1ym and
fail by splitting as observed in experiments instead
of failing in a kinking mode. This observation indi-
cates the need for a model that explicitly accounts
for the effect of fiber diameter on the composite com-
pressive strength. Such a model should also predict
the mode of failure, based on the magnitude of com-
pressive stress that is required ro induce the failure
mode in question. The present fracture mechanics
based model which is applicable to splitting failure
is used to compare the predicted and the observed

7

sen to predict the failure envelope. The failure en-
velope predictions based on this value of y; were
found to be very high since this value of vy corre-
sponds to the fracture toughness of pure epoxy and
is more suitable for lower volume fractions. Also, the
failure of glass composites at high volume fractions
was seen to be a combination of splitting and kink-
ing. Hence, the failure model was used to predict
the failure envelope for a range of fracture tough-
ness (5 = 0.1224K J/m?,v¢ = 0.0612K J/m?,v; =
0.0408 K J/m?2). The correlation between the pre-
dicted stresses and the experimentally obtained data
is good as indicated in Figure 8. The better corre-
lation between the predicted value of compressive
strength and experimentally observed strength for
a lower value of vy could indicate that the interfa-
cial fracture toughness reduces at higher fiber vol-
ume fraction. The new model captures the trend
of the failure data and the correlation is much bet-
ter in the range where the loading ratio, x is high.
At lower values of k the model predicts higher val-
ues of splitting compressive strength than the ob-
served experimental values. However, it should be
noted that the failure mode in case of higher values
of shear stress(i.e. lower k) was not pure splitting
but a combination of matrix crushing and splitting,
which is not taken into account by the current frac-
ture model. To better understand the initial insensi-
tivity of the glass composites to remote shear stress,
a plot of axial strain energy release rate(SERR) and
torsional SERR as a precentage of the total SERR
with respect to the applied shear stress, 7, is shown
in Figure 9. It can be seen from Figure 9 that upto
a significant value of remote shear stress, 7, the ax-
ial SERR contribution to the total SERR is nearly
100% indicating that remotely applied shear stress
does not play a role in inducing failure as seen in
experiments. When the shear stress 7 reaches a crit-
ical value, which is about 40 — 50MPa for the glass
composites there is a sudden rise in the contribution
from the torsional SERR and it reaches a peak value
of 100% for pure torsion loading.

5 Conclusions

The present experimental work has revealed that
the response mechanism of glass fiber composites
to remote shear stress is different from that of the
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carbon fiber composites. The results indicate that
the conventional Budiansky-Fleck model is applica-
ble to carbon fiber composites, where the failure is
due to buckling of fibers in an inelastic matrix. In
glass composites there seems to be a critical value
of remote shear stress beyond which the compres-
sive strength of the composite degrades very rapidly.
This difference in sensitivity to the remote shear
stress motivated us to develop a new fracture me-
chanics based failure model which captures the ini-
tial insensitivity of compressive strength to shear
stress and the subsequent steep drop in compressive
strength when the remotely applied shear stress is
very high. Apart from the difference in sensitivity
to remote shear stress exhibited by carbon and glass
composites, the failure mechanism is also found to
be different. In case of the glass composite speci-
mens tested it was found that the failure mechanism
changed from splitting to kinking and a combination
of matrix crushing and splitting was observed as the
remote shear stress increased. Ideally a single model
which can effectively tackle the mode transition from
splitting to kinking failure and vice-versa would be
the best model. Conceivably, such a model would
have to be implemented numerically, perhaps using
the finite element method.
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Figure 5: Schematic cross section of fiber-matrix
Figure 3: Free body diagram of a kinked segment of ~ cylinder showing the crack tip details
a cylinder under combined compression and torsion

Carbon/Vinylester, V, = 50%
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Figure 6: Combined compression-torsion failure plot

Figure 4: Composite cylinder under compression-
& P Y P for carbon/vinylester composite of Vy = 50%

torsion loading
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Glass/Vinylester, V, = 50%
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Figure 7: Combined compression-torsion failure plot
for glass/vinylester composite of V; = 50%

1000

Normalised Torque, (T/21R%) (MPa)

y, = 0.1224 KI/m?

g
s 800 \
o | m y, = 0.0304 KI/m* \
S S \
& i [
9 600 L] | \
= [ ® W B ™, -oo0d08Kim? \ |
[} - ] B |
= 5 |
2 | " N
@ 400 - \ \‘
5 [
£ - = \\ |
s | nll NI
T 200} = I
S or " Il
< | \‘
i ||
| ‘\‘\ \
|- - Ll - - I L I L L
%% 0 10 20 30 20 ¥50 60
Shear stress, T (MPa)

Figure 8: Comparison of the new fracture critieria
with experimental data for a glass/vinylester com-

posite of Vy = 50%
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Figure 9: Variation of axial and torsional SERR with

shear stress, 7 for glass/vinylester composite of V; =
50%
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