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Scalar Imaging Velocimetry Studies of the Dissipative Scales of Motion
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The concept of flow field velocimetry based on conserved scalar imaging measurements? is here
applied 1o turbulent flow scalar field data to yield the first fully resolved, non-intrusive, experimental
measurements of the spatio-temporal structure and dynamics of the full nine-component velocity gradient
tensor field Vu(x,?) in a turbulent flow. We describe a variational method for implementing this concept,
in which weighted residuals of the conserved scalar transport equation, the continuity condition, and a
derivative smoothness condition are minimized over the space of velocity fields. The technique is applied
to direct numerical simulation (DNS) data for the limiting case of turbulent mixing of a Sc = 1 passive
scalar field. The spatial velocity tields u{x,t} obtained correlate well with the exact DNS results, as do
statistics of the velocity and velocity gradient fields. The method is then applied to fully resolved four-
dimensional Sc » | scalar tield imaging measurements from a laboratory turbulent flow, Results give the
time-varying (u, v, w) vector velocity component fields simultaneously everywhere on a regular three-
dimensional spatial grid. Direct differentiation of these fields yields the spatial structure in the full
velocity gradient tensor figld components. From these. the vector vorticity field w,(x,f) and tensor strain
rate field sy.(x,:) are determined, as are the kinetic energy density field 4(x,r) and the kinetic energy
dissipation rate field $(x,7). Finally, we demonstrate extraction of the time evolution of these fields by
applying this scalar imaging velocimetry method to scalar field information at several sequential time

steps.

1. Introduction

Information on the fully resolved, three-dimensional,
spatial structure and simultaneous temporal dynamics of
the full nine-component velocity gradient tensor field
Vu(x,?) at the small scales of turbulent flows is k'jc'y to the
development of physical models for these scales of
turbulence. These scales are generally presumed to be
quasi-universal in high Reynolds number flows, and thus
studied in a generic context. To date, this has been done
almost exclusively via direct numerical simulations {DNS)
of the Navier-Stokes equations. By comparison,
experiments capable of directly yielding useful
information on the detailed structure and dynamics of
these scales have been few. Most have been limited to
single-point measurements of a small subset of the full
velocity gradient tensor field.
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Non-invasive optical techniques have been
increasingly used in recent years to measure certain
velocity gradient components. Lang? (1985) developed
an LDV with four focal volumes to measure the spanwise
vorticity in a turbulent shear layer. More recent advances
in laser diagnostics and high-speed data acquisition and
processing capabilities have facilitated a variety of
optically-based, non-intrusive velocimetry techniques
which provide information over spatial fields of many
points. Reviews of some of these are given, for example,
by Adrian®-4 (1986, 1991), Lauterborn & Vogel® (1984),
and Gad-el-Hak® (1989). Being optically based, these
techniques potentially offer high spatial and temporal
resolution, as well as genuine field information rather than
single-point. The most widely used are particle image
velocimetry techniques. These generally produce two-



component velocity vectors over two-dimensional fields,
though three-dimensional particle tracking”-% and
holographic particle image velocimetry? !l are being
developed for measuring full, three-component vector
velocity fields in complex flows, However, as with all
particle imaging techniques. the seeding densities required
to adequately resolve the finest velocity gradient length
scales in turbulent flows makes optical penetration into
the flow difficult, and potentially limits these methods
for studies of the fine structure and dynamics of velocity
eradieat fields in turbulent flows. This optical penetration
difficulty can be circumnvented by using an effectively
continuous distribution of laser fluorescent dye molecules
as the seed, whose size eliminates the Mie scattering
associated with particulates and thus maintains optical
transparency in the flow field. Determining velocities
then no longer centers on finding discrete particle
displacements, but rather on inversion of the time-evolving
dye concentration field to extract the underlying velocity
field. Often the dye molecules are both dynamically
passive and conserved, so that the conserved scalar
transport equation governs their concentration field
evolution and extraction of the velocity field can begin
from this equation. Such scalar based velocimetry
technigues were first introduced in Ref. 1.

Here we demonstrate the first application of the scalar
imaging velocimetry concept to laboratory measurements
of a conserved scalar field in a turbulent flow, and extract
the underlying velocity gradient tensor tield as well as its
time evolution. As before, we approach the problem of
determining the fully resolved, space- and time-varying
velocity field w(x.t) from the standpoint of the exact
conserved scalar transport equation. A variational method
for implementing this concept is described in Sec. I, in
which weighted residuals of the conserved scalar transport
cquation, the continuity condition, and a derivative
smoothness condition are minimized over the space of
velecity fields. The technique is then applied in Sec. IiI
to direct numerical simulation data for the limiting case
of turbulent mixing of a S¢ = | passive scalar field. The
spatial velocity fields u(x.s) obtained are compared with
the exact DNS results to assess the validity of the method.
In Sec. IV, the method is then applied to fully resolved
four-dimensional S¢ » | scalar field imaging
measurements from a laboratory turbulent flow. We
extract the time-varying full vector velocity component
fields simultaneously everywhere on a regular three-
dimensional spatial grid. Direct differentiation of these
fields yields the spatial structure in the full velocity

gradient tensor field components Vu(x,7),

2. Variational scalar imaging velocimetry

In this section, we describe the scalar imaging
velocimetry method used to determine the vector velocity
field w(x,7) from fully resolved, four-dimensional
measurements of a single, dynamically passive, conserved
scalar field £{x.t) in turbulent flows. This implementation
expands on that of Ref. | in its use of variationa!
techniques in the velocity field extraction. The undertying
conserved scalar field measurement technique will be
reviewed here only briefly; details can be found in Refs.
12-15, 18.

A Scalar field measurements

Any dynamically passive conserved scalar field {(x,)
evolves via the advection-diffusion equation
%+u-V(,’——l-V2§=O, (1)

ot ReSc

where all quantities are normalized by reference length
and velocity scales {* and 4”. The dimensionless scalar
diffusivity 1/ReSc (the inverse of the Peclet number)
involves the Reynolds number Re = («*{"/v) and Schmidt
number (v/D), with v and D being respectively the
vorticity and scalar diffusivities. Scalar imaging
velocimetry involves inversion of (1), together with
additional conditions, based on measurements of the scalar
field. The requisite measurements must therefore be fully
reselved in both space and time, and have sufficient signal
quality, to allow direct differentiation of the scalar field
data to evaluate the derivatives appearing in (1).

Such fully resolved four-dimensional scalar field
measurements are based on successive, high-speed, planar
imaging of the laser induced fluorescence from a
dynamically passive laser dye carried by the flow, whose
concentration is a conserved scalar variable. A collimated
taser beam is repeatedly swept through a small volume in
the flow by a pair of low-inertia mirrors driven by two
galvanometric scanners slaved to the imaging array timing.
The successive 256 x 256 scalar field data planes are
acquired at rates up to 142 planes/sec into gigabyte sized
data sets using very fast computer disk ranks to produce a
four-dimensional spatio-temporal data space. The
resulting effective spatial resolution (Ax, Ay, Az) between
adjacent points in each three-dimensional data volume is
smaller than the local strain-limited molecular diffusion
scale Ap/8 ~ Sc™!2Re;=3 of the scalar field. Similarly,
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the temporal resolution At between the same data point in
successive spatial data volumes can be held smaller than
the local molecular diffusion scale advection time A,/U.
This resolution, together with the high signal quality
attained, ailows accurate differentiation of the measured
conserved scalar field data in all three space dimensions
and in time to determine the components of the
instantaneous time derivative field (/99)Z(x.1), the scalar
gradient vector field V{(x,n), and V2{(x,1) throughout the
four-dimensional data space. Such fully resolved
conserved scalar tield measurements have been conducted
at outer-scale Reynolds numbers Reg = (U/v) as high as
65,0001 An example of a single three-dimensional spatial
data volume obtained via this technique is shown in Fig.
I

Note that, for dilute solutions in water, the scalar
diffusivity of the dye is quite small, with Sc = 2075. Asa
consequence, the underlying velocity field which we are
aiming to extract from such measurements is considerably
smoother than the scalar field from which we begin. In
particular, the finest gradient length scale A, in the velocity
field is larger, by a factor of Sc''?, than the smallest gradient
length scale A in the scalar field. For the Sc in the
laboratory data in Section TV, this ratio of scales is about
45. However, for the S¢ = 1 DNS data tn Section II1, this
ratio is only 1 and thus extraction of the velocity field is
more difficult.
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Figure 1. A sample three-dimensional data volume, from a turbulent
Jjet with outer scale Re, = 3700; from Southerland and Dahm'®,

B. Formulation of the variational problem

The relation between the scalar field and the
underlying velocity field comes solely through u- V{ in
(1) Previously! ' 7, we have inverted this equation
directly to obtain the local projection u,(x,r) of the velocity
vector onto the scalar gradient unit vector, namely

VE{x,t)
Vx|
The full vector velocity field u(x,f} was then uniquely
determined from the Vi (x.¢) field via an iterative scheme
incorporating a smoothness assumption that becomes
increasingly valid as Sc increases. The zeroth iteration
estimate u9(x,n) was found by direct inversion, at each
point in the domain, of the local 3 x 3 linear system formed
by writing (2) for triplets of closely spaced points having
sufficiently noncolinear scalar gradients. Subsequent
iterations incorporated the velocity gradients Vur/(x.2)
obtained from the previous iteration in the calculation of
the n-th estimate w*(x,z). Convergence was rapid, with
the final result for w(x,#) typically achieved for Sc » |
after just two or three iterations. This direct inversion
implementation was shown to produce accurate results
for a wide range of test cases — for details see Ref. [,

(. ) =u(x,1t)-

(2)

Despite the high resolution and signal quality of the
underlying scalar field measurements from Ref. 14, small
but unavoidable errors will be introduced in the various
scalar field derivatives in (1) and (2). As a consequence,
even if the true u(x,r) were introduced in (1), the right
hand side would not be exactly zero, as a direct result of
these small errors in the {(x,f) derivative tields. Strict
enforcement of the zero right side in (1) thus introduces
errors in the velocity field obtained from this direct
inversion appreoach. These considerations naturally
motivate a variational approach to the inversion problem,
in which the right side in (1) is not forced to zero, but is
minimized over the space of possible velocity fields,
subject to a smoothness constraint as before. That is, we
take the velocity field u(x,?) that minimizes the integral
of the right side of (1) over the entire domain as an optimal
representation of the true velocity field. Formally, we
minimize the integral of a function E over the domain D
as

3 ,
jE(u,,uz,u3;xl,x2,x3)d X = min, €)]
where E is composed of residuals representing deviations
from conserved quantities, including (1), as well as



conditions measuring the smoothness in the u(x.)
solution.

C.  Specification of the variational equations

As noted above, the integral minimization in (3} aims
to find the one velocity field that best satisfies the scalar
transport equation in (1) while at the same time satisfying
an ‘appropriate smoothness condition, In general, the
function £ can be written as a sum of an arbitrary number
ot such conditions

E=E, +a’E,+BYE; + ..., (4)
where each of the E; = 0 represents a local condition
involving the velocity field and, possibly, the scalar field,
The adjustable factors (02, 2, ... > 0) allow control over
the relative weights assigned to these individual conditions
in the minimization tunction £. In our case, the term E,
is chosen as the right side in (1), namely the condition
that the (known) scalar field derivatives and any candidate
velocity field be in “good” agreement with the scalar
transport equation (1). Thus formally

2
d 1 2
E == V= \Y . 5
f {[E)I-HI ReSc }g’(x,t)} ®)

The smoothness condition, as well as any additional
conditions, must be specified in a manner consistent with
the numerical scheme by which the minimum in (4) is to
be found. In particular, writing (4) for a set of N discrete
points in the domain D leads to a system of 3N
simuitaneous equations for the velocity components , for
i=1{1,2, 3} ateach of the N points. In general this system
will be very large. Consequently, we confine our interest
to conditions that will produce a linear system, so that the
simplicity afforded by linear inversion methods can be
employed in the solution for u(x,#}. This, in turn, demands
that the derivatives (an/aui) should be linear in the
components #, and thus that the conditions be at most
second-order inu. Among this restricted set of conditions,
one is immediately obvious, namely the incompressibility
condition V- u = 0. This is represented in non-negative
form as

E,={V.u}l". (6)
However while inclusion of this incompressibility
condition ts certainly desirable, it does not impart the
requisite smoothness on the solution, and, together with
(5). sutfices to determine the solution in two dimensional
tflows only. An explicit smoothness condition is necessary.
[deally, this would be a direct mathematical representation
of a specific physical property of the flow. Unfortunately,

the existence of flow properties which can be represented
as minimizations of integral quantities is very limited —
e.g. to certain simple inviscid, circulation-preserving
tlows; see Truesdell'S. Here we choose to minimize the
velocity gradients by the condition

E,=Vu:Vu. (7)
The physical implications of this condition can be
understood from the kinetic energy transport equation

[a [ 11 5
L u VeV | Zul(x0)=
Jr Re 2 )

1
—u-Vp——(Vu:Vu).
u: Vp——(Vu:Vu)

The first term on the right is the work done by pressure
forces, and the second term represents the net kinetic
energy loss due to viscous stresses. Incorporating (7) as
the smoothness condition thus drives the solution toward
velocity fields for which the kinetic energy lost to viscous
effects tends toward a minimum, as the fluid viscosity
acts to smooth out strong gradients and pursues a condition
of minimized kinetic energy loss.

Note that explicit agreement with these conditions is
not being enforced; rather, we require only that the
deviations from these conditions be minimized in the
weighted sense prescribed in (3) and (4). Since the integral
in (3) invoives the three dependent variables u, and three
independent variables x,, standard variational calculus
leads to the three variational (Euler) equations

ug‘f+v§X§),+w§x§Z—a2(um+vn.+w1,z)
Cmro2,_ (98 1 o ] ©)
prViu= (ar ReSchg‘

ul G+ vg’;‘f +wl, o (un +v, + w}z)
Cptyl,_ (98 1 o J (o
BTV = (a: Rech gL

wl L +vlC +wl? —o? (urz +v,, +wzz)

_B V= —[%—ﬁVZC)CZ

(1)

where subscripts denote spatial derivatives. The solution
of these equations gives the velocity field u(x,!) that
minimizes (3} - {7) for the given scalar field data {(x,7).
Note that these equations are linear in the velocity
components (i, v, w),



Finding the solution for the velocity field involves
discretizing (9) - (11) and writing these three equations
for each of the points in each three-dimensional spatial
data volume. In doing this we order the N points in each
volume by indexing successively in x, ¥, and z. We then
construct three N-dimensional vectors containing the
velocity components u, v, and w at each of these points,
and finally concatenate these to form a single 3NV-
dimensional vector representing the velocity field u(x,f).
The above equations can then be written as a linear system
of the form Au =h, where A is a 3N % 3¥ matrix containing
the (known) scalar field derivatives appearing on the left
in (9)-(11), and b is a 3IN-dimensional vector containing
the scalar field derivatives on the right side in these
equations. Solving for the unknown velocity field u
simply requires inverting the mairix A. However, owing
10 the size of this matrix in the cases presented here, direct
solution methods are impractical. We therefore use
standard linear iterative methods, in this case Gauss-Seidel
and SOR iteration. The iteration is begun with e =0 as
the initial estimate.

Note that minimization of E, and E; in (6) and (7)
can occur by reduction of the average velocity magnitude
over the entire domain, as well as by reduction of the
resulting scaled velocity gradients. The u in these
conditions thus “floats.”” Inclusion of E, and E; in (4)
will therefore reduce the average velocity magnitude by
an amount that depends on orand 8. It is only through E,
that the average velocity magnitude tied to an absclute
level set by the scalar field derivatives. The velocity field
u that results from the above process is therefore finally
reinserted in (3) to determine the uniform multiplicative
constant that minimizes £, over the entire domain.

3. ADNStestforSc=1

In this section, the variational scalar imaging
velocimetry method described above is applied to scalar
tield data obtained from a direct numerical simulation
(DNS) of Sc = | passive scalar mixing in a turbulent flow.
The velocity fields obtained through application of the
scalar imaging velocimetry technique can be compared
with the actual velocity fields used in the simulation,
allowing us o quantify the accuracy of the technique.

We use the DNS data of Mell, Kosdly & Riley!®
(1992) for turbulent mixing of a dynamically passive S¢
= | conserved scalar quantity in a decaying, homogeneous,
isotropic, incompressible, turbulent flow. The Taylor scale

Reynolds number Re;, decays from its initial value of 92
to 65 at the time chosen for this test. A sample scalar
field plane from this simulation at this time is shown in
Fig. 2. The computations were performed on a 128}
volume. Scalar field derivatives were computed in 128 x
128 x 13 point sub-volumes, which were then subsampled
to 64 % 64 < 7 point domains for this test. With Ax=Ay =
Az, the limited span in the third {(z-) dimenston was chosen
to be characteristic of available fully resolved
experimental scalar field data. The grid resclution was
Ax = 0.1 A, and the time separation between successive
volumes used in this test was At = 0.07 A /hal__, again to
mimic the characteristics of currently available fully
resolved experimental scalar field data.

The scalar field derivatives 8¢/dt, Vz, and V2 are
the only inputs to the variational formulation in (9) - (11).
These are obtained via linear central differences from the
scalar field data. The velocity field is then obtained by
inverting the linear system of (9) - (11) for the given scalar
derivative matrix A and vector b. For the volume
dimensions used here, the vector b contains 86,016
elements. The Gauss-Seidel iteration on this system
typically required about an hour on an HP9000/735
workstation. The resulting individual velocity vector
component fields are shown in Fig. 3. Shown also in this
figure are the actual DNS velocity vector component fields
tor comparison. It is evident by examining these that the
variational scalar imaging velocimetry method yields

2829

Figure 2. A sample scalar field plane from DNS of S¢ = | scalar
mixing in homogeneous, isotropic turbulence.



results for the velocity vector tield which are in good
agreement with the exact values. To quantify this
agreement, we use the conventional fluctuation correlation

¢

Baltg

() 5,0
FHiS Iy

where the primes denote fluctuations, and the subscripts
Aand B refer to the SIV and DNS fields. The correlations
obtained for the u, v, and w fields are 0.94, 0.94 and 0.91,
respectively, where 1.00 represents perfect correlation.
That the w component has the poorest correlation is not
surprising, given that the data volume has only one-tenth
the extent in the z-direction that it has in the x- and y-
directions. Thus the one-sided velocity derivatives
required at the limits of the volume are more likely to
affect the accuracy of the z-direction velocity component
than the others. Nevertheless, the correlation levels
obtained are quite high. The departures from perfect
correlation would appear to result primarily from the
smoothness condition £, in (7), since the other two
conditions in (3) should be [dentically zero.

Rag = (12)

(a)

(b)

Figure 3. («0) - {c) are the SIV results for the velocity field components
corresponding to the scalar field of Fig. 2. (o) - {f) are the exact DNS
values for these component fields, shown for comparison..

(c)

(d)
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As a further demonstration of the agreement between
the DNS fields and the scalar imaging velocimetry results,
Fig. 4 presents distributions of the values of the velocity
components «, v and w for both the DNS and STV fields.
To emphasize that the important comparison is of the
torms of the distributions, the velocity component values
for each field have been normailzed by their respective
second moments. The similarity in the shapes of the
distributions is evident.

It is salient to emphasize that this Sc = | test case is
extremely demanding for any scalar-based velocimetry
technique, since the scalar and velocity fields in this case
have the same spatial length scales. The velocity field
being sought therefore has the same degree of detail as
does the scalar tield, i.e. there is no redundancy of scalar
field information. By comparison, at Sc » | the
information content in the scalar field far exceeds that in
the velocity field, and this redundancy should make
extraction of the underlying velocity field even more
accurate.

The primary interest in this scalar imaging
velocimetry technique is the access it offers to the spatial
structure and temporal dynamics of the full nine-
component velocity gradient tensor. Accordingly Fig. §
compares three typical components of Vu(x,) with their
DNS counterparts, Note that the structure and magnitudes
of these tensor components is very similar in both cases,
Indeed the visual comparison appears better than that in
Fig. 3, however the quantitative correlations are actually
fower. The complete tensor correlation R, defined as

ou | [ 9w
ax.]‘ A a'xf B
7" 3
9y 9y
ax; dx ;
A LB

Rap = (13)

2

is 0.783. For the dw/dy, dv/dz, and dw/dx component fields
in Fig. 5 the correlations are 0.79, 0.83 and 0.75
respectively. The surprisingly better visual comparisons
than in Fig. 3, for which the correlations are in fact
significantly higher, apparently result from the larger
number of features available as landmarks for comparison
in the gradient fields.

Results such as those in Figs. 3 and 5 demonstrate
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Figure 4. Pdfs of u/u,, for the SIV results and the DNS ficlds.
(top) the u-component pdf's, (center) the v-component pdf's, and (bottom)

the w-component.pdf's.
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passive Sc = 2075 conserved scalar in the self-similar far
field of an axisymmetric turbulent jet at outer-scale
Reynolds number Rey = 4,200.

Anexample of a typical two-dimensional spatial data
plane from such a four-dimensional spatio-temporal data
space is shown in Fig. 6a. Each such data plane has
nominal dimensions of 256 x 256 data points, and spans
2.2 strain-limited viscous diffusion length scales In on
each side, or approximately [/25-th of the local jet width,
Note that A= 5.9 - A, where A = (v¥e) ¥ is the classical
Kolimogorov scale. With the finest scalar gradient length
scale being Ap, = A, Sc'”2, these scalar field data are fully
resolved in al! three spatial dimensions. In particular, the
in-plane pixel spacing is &x = Ay = 107 mm, and the
etfective interplane spacing is Az = 110 mm, while the
tocal scalar diffusion length scale Ap, is 239 mm. Further,
the time separation between measurements at the same
spatial point in two temporally successive three-

dimensional spatial data volumes is At =0.0332 sec. This

compares with the local scalar gradient advection
timescale An/U of 0.0848 sec, indicating that the data are
essentially resolved in time as well. This level of
resolution, together with the high signal quality attained,
allows accurate differentiation of the measured scalar field
data simultaneously in all three space dimensions and in
time. Examples of typical resulting 9%/9r, VL, and V3
tields are shown in Figs. 6b-d. All derivatives are obtained
here by direct linear central differencing on the measured
scalar field data. Notice that even the second derivatives
in Fig. 6 are relatively free of the effects of noise. The
variational nature of the implementation outlined in
Section I for scalar imaging velocimetry should make
the results obtained relatively insensitive to the errors that
even this low level of noise introduces in (1).

Since Sc = 2073 in these measurements, the ratio of
the tinest gradient length scales in the velocity and scalar
fields is A /Ap, = 43, and as a consequence measurements
such as these that fully resolve the scalar field are highly
oversampled for the velocity field. For this reason we
subsample each of the scalar derivative planes in the four-
dimensional data space to 128 x 128 points. This reduces
considerably the computational work required to find the
velocity fiefd. The resulting u and b vectors each contain
61,440 elements; the same linear iteration algorithm used
in Section I11 then typically requires less than one hour to
solve the linear system for the velocity field u(x,r) in (12)
at each time ¢,

A. Vector vachitfl fields

Fig. 7 shows the resulting , v, and w components of
the velocity vector field in the same scalar field data plane
shown in Fig. 6. For the coordinate orientation used, u
gives the radial component, v the streamwise component,
and w the azimuthal (out of plane) component. The mean
velocity has been subtracted from these components, so
that the instantaneous fluctuation values are shown. The
apparent length scale characteristics of the velocity
gradients in these results is quite consistent with the above
estimate that each data plane spans approximately 2.2
velocity gradient length scales in each direction. It should
be noted that full three-component velocity vector field
measurements such as these have not previously been
available, and thus it is not common to present velocity
field information in the form shown in Fig. 7. More
typically, experimental velocity component fields are
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Figure 6. A turbulent flow scalar field and its derivatives. (a) the
scalar field. (&) o0/dr, (&) VLV, (d) V3L,

presented as projections of the local vectors into a
measurement plane. For this reason, the data from Fig. 7
are shown in this manner in Fig. 8, where the (4,v) and
{1e.w) projections at each point in that particular plane are
given.

[t is apparent from the data in Figs. 7 and 8 that, owing
to the large Sc¢ involved, these measurements allow
examination of the velocity field at the dissipative scales
of turbulent flows. Results for the full vector velocity
field over a larger range of length scales requires similarly
resolved scalar field measurements at a significantly lower
value of Sc, since A, /Ay, = Sc'”2. The class of scalars for
which practical measurements of the type required here
are feasible is quite limited. The most promising among
these appears to be the temperature field, which can be
measured via the temperature-dependent collisional de-
excitation rate of certain laser dyes. In that case S¢ =7,

and thus the range of length scales in the velocity field
accessible to the measurements is over 17 times larger
than in Figs. 7 and 8. This would allow spatial
measurements over length scales extending from the
dissipative range into the inertial range. For the moment,
we concentrate on the velocity gradient fields associated

with vector velocity field measurements of the type in
Figs. 7 and 8.
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Q

Figure 7. SIV results for the experimental scalar field measurements
of Fig. 6. (top) the u-component of the velocity field. (center) the v-
component, with the mean streamwise component subtzacted. (hottom)
the w-component.
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Figure 8. Projections of the SIV velocity vector results of Fig. 7 onto the x-y plane. (left) the 4- and v- components, (right) the u- and v-

components.

B. Velocity gradient tensor fields

Velocity vector field measurements in any given
three-dimensional spatial data volume, formed from
parallel planes of the type in Figs. 7 and 8, allow
simultaneous differentiation of each of the u, v, and w
components in x, y, and z to determine the full nine-
component velocity gradient tensor. Of particular interest
for dynamical studies of the small scales of turbulence
are the symmetric and antisymmetric parts of this tensor.
Fig. 9 shows the normal strain rate tensor field components
g,(x.0) in the same plane for which results were given in
Figs. 7-8. The vorticity vector field components m,(x.¢)
in the same plane, formed from the antisymmetric velocity
gradient tensor components, are also shown in Fig. 9.
From such individual velocity and velocity gradient
component fields, we can examine dynamical quantities
of interest such as the kinetic energy density field k(x,7) =
/2 - u{x.t}, and the kinetic energy dissipation rate field
d(x.) =2V £, B, (X.1). Moreover, interactions between
the symmetric and antisymmetric tensor components, such
as the enstrophy production rate W(x.1) = @, €; w(x.f)
and the scalar dissipation production rate Z{x.r) = #C‘. €;

VCj(x,!), are of particular dynamical interest and can be
examined with very high resolution from measurements
such as those in Figs. 6-9.

Studies of all these fields require knowledge of the
full nine-component velocity gradient tensor field, which
can be found easily from the STV velocity field results;
sample components of the tensor field are given in Fig. 9.
Such laboratory measurements of the velocity gradient
field on the small scales of a turbulent flow have not
previously been possible. There are four key aspects of
the present measurements that collectively make them
unique. Firstly, the scalar imaging velocimetry
measurements demonstrated here, giving the velocity
gradient tensor at the small scales of turbulent flows, are
fully resolved. Previous measurements with similar aims
have been limited to significantly coarser resolution levels,
which at least partially corrupt the gradient tensor
components, since these are highly sensitive to resolution.
(it should be noted that the experimentally measured
velocity gradient fields in Fig. 9 are highly resolved even
in comparison with those typically obtained from direct
numerical simulation (DNS) studies of the small scales
of turbulence. This is evident by comparing the fields in



Figs. 7-9 with typical DNS fields.] Secondly, the present
measurements are entirely noninvasive, in contrast to
earlier measurements based on multiple hot wire probes,
As a consequence, the measurements themselves do not
alter the quantities being measured. Thirdly, unlike most
previous measurements of the gradient tensor components,
the present scalar imaging velocimetry technigue
inherently produces afl nine components of this tensor.
Most previous probe-based measurements as well as
optically based techniques have been limited to some
subset of these. Finally, in contrast to probe-based
methods, which are inherently single-point techniques
producing time series data for the gradient components at
asingle point, the present measurements produce these at
a very farge number of points sufficiently closely spaced
in both space and time to define the continuum fields.
These are thus field measurements, as opposed to point
measurements, and allow experimental examination not
only of statistics of the velocity gradient components, but
of the underlying spatiotemporal structure and dynamics
in these dynamical fields at the small scales of turbulence,

C. Temporal evolution of the velocity gradient field

Results presented in the previous sections have been
for the spatial structure of the velocity gradient tensor field
at a tixed instant in time. However, the four-dimensional
nature of the scalar field data on which these velocity field
measurements are based allows the system defined by (9)
- {11) to be solved at each time step At. Accordingly, the
time evolution of any of the fields in the previous section
can be examined by repeating the solution of (9) - (11) at
the requisite times and assembling the fields of interest in
time as shown, for instance, in Fig. 10, This figure presents
the time-varying kinetic energy density field &(x,f) and
the corresponding kinetic energy dissipation rate field
®(x.r) in the same spatial plane for which results were
shown in Figs. 7-9, at 10 sequential instants in titne. The
time axis is measured in the inner variable (r-v/A, %), where
t =0 corresponds to the instant for which the results were
shown in Figs. 7-9,

Note that, just as the fully resolved Sc» 1 scalar field
data oversamples the velocity field in space, the requisite
time resolution demanded of the scalar field measurements
leads to a At between successive three-dimensional spatial
data volumes that is smaller than needed to resolve fully
the time evolution of u(x,s). The results in Fig. 10 are
thus shown at time intervals spaced 3 Ar apart. Clearly
the structure in these planes is well correlated from one
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Figure 9. The normal strain components for the SIV results of Figs.
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Figure 9 {cont.). The components of the vorticity vector o, from
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time step to the next, and further, the planes describe a
clear temporal evolution of the flow. This is significant
because, for this spacing in time, there is no common
scalar field data involved in any of these time steps. No
two planes share scalar field information in the scalar
imaging velocimetry implementation in (3)-(11). Thus
noise in the scalar field data is uncorrelated from one time
step to the next. As a consequence, if the formulation
implemented here to find the velocity field were sensitive
to noise, there would be no a priori reason why the same
tield at two successive times in Fig. 10 should demonstrate
a strong correlation or a clear evolution. The strong
correlation of the results therefore must be ascribed to
the fundamental well-posedness of the variational
formulation. Moreover, while the results shown are
spaced 3 At apart, the availability of the velocity gradient
field components at all intermediate times permits accurate
differentiation of the results to yield the detailed time
evolution of the fine scales of turbulent flows.

5. Concluding remarks

This scalar imaging velocimetry technique offers
experimental access to the spatial structure and time
evolution of the full nine-component velocity gradient
tensor in turbulent flows. These experimental results
allow a level of detailed investigation of the dynamics of
the small scales of turbulent flows that has previously been
conceivable only through DNS studies. For high Schmidt
number, the STV results actually provide higher resolution
of the fine scales than is currently possible by such direct
numerical simulations. The availability of experimental
techniques for measuring the requisite scalar field
information has been well documented. The scalar
imaging velocimetry technique thus is currently well
suited to investigations of the fine structure and dynamics
of the inner scales of turbulent flows.

Comparisons of the DNS and experimental scalar
fields (Figs. 2 and 6, respectively) and the corresponding
velocity fields (Figs. 3, 7) demonstrate clearly the differing
character of the low and high Schmidt number limits.
While the experimental scalar field appears to have finer
characteristic length scales than the DNS scalar tield, the
DNS velocity field clearly has much finer length scales
than does the experimental field. In particular, comparison
of the fields emphasizes the variance in characteristic
velocity and scalar length scales, which goes as Sc!/2, and
also shows the degree to which the Sc¢ = | limit is a
demanding one for the SIV technique.
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At present, scalar field data which is sufficiently
resolved to permit application of the scalar imaging
velocimetry technique is only available for flows with S¢
» 1. Thus the realm of Sc = | flows, e.g. the gas phase
tlows of particular interest in combustion applications,
remains inaccessible to this velocimetry method.
However, the lack of suitable scalar tield diagnostics is
the only limitation; as shown in §4, fully resolved Sc =1
scalar tteld information is fully amenable to the scalar
imaging velocimetry technique.

Currently, we are working to obtain spatially and
temporally resolved measurements of the temperature
field in turbulent flows. Preliminary results suggest that
these temperature field measurements are feasible using
the same approach used here to obtain measurements of
the dissipative scales of motion in turbulent flows, though
special issues attendant to the use of dyes with
temnperature-dependent fluorescence properties need to be
addressed before fully resolved temperature field
measurements in turbulent tlows become practical.
Temperature has a Schmidt number in water of
approximately 7, so in the context of scalar imaging
velocimetry the attractiveness of using temperature
information is clear. Temperature field measurements
would yield a view of the flow field that is (2075/7)/2 =
17 times larger than that for the results presented here for
Se = 2075, given an equivalent level of scalar field
rescolution.  That would permit experimental
measurements of the full velocity gradient tensor over
length scales extending from the dissipative scales into
the inertial range, thereby allowing laboratory studies of
subgrid scale dynamics.
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