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Abstract
Over the past six decades the science of CFD has created a
versatile computational toolbox. Still, enough barriers remain;
for aeronautical CFD one of the highest ones is slow conver-
gence to steady flow solutions. The importance of reducing
method complexity to O(N) is discussed in the light of future
massively parallel computing. In the same light a vision is out-
lined of CFD based on PDEs of the lowest possible order, i.e.,
the first order. Such a methodology will allow significant func-
tional decomposition in addition to domain decomposition. To
reap this benefit, a parallel architecture of distributed, sizable
clusters of memory-sharing processors is recommended. Re-
moval of computational barriers, and radical innovation will
require increased fundamental research on algorithms, imply-
ing increased funding for such activity, and continued teaching
of method development.

1 Introduction
In its short existence the science of CFD has created
a computational toolbox with which many a flow-
simulation job can be successfully completed. In fact,
the success of CFD methods when applied to certain
classes of flow problems is so complete, that users
with a limited scope may get the impression all nec-
essary tools are available. Refinement of calculations
seems merely a matter of waiting for yet more pow-
erful computers.

This view may explain why in the mid-1990s

prominent research leaders and program managers
could be heard articulating that "CFD is dead." Im-
plied was that CFD as a living science, an area of
research and development, was finished, just as the
search for the general solution of the quadratic equa-
tion is over. What remained was the toolbox, the
equivalent of the a&c-formula.

I am afraid, though, that behind this statement
was something less innocent than mere ignorance: it
was used as an excuse to steer funding for compu-
tational science away from basic research and in the
direction of High-Performance Computing and Com-
munication (HPCC). There is nothing against a well-
motivated policy of moving funding from one research
area to another, but it need not be sold to the re-
search community on the basis of a fabrication. We
deserve better1.

Meanwhile, CFD continues to be a fabulous science
full of challenging unsolved problems and opportuni-
ties for radical innovation. I hope to convince you of
that in what follows.

And that toolbox? Well, it just keeps getting fuller.

2 CFD: a mature science
Over the past two decades Computational Fluid Dy-
namics (CFD) has earned itself a respectable place
alongside the established disciplines of theoretical
and experimental fluid dynamics. It is a science that
attracts numerical analysts, physicists and engineers
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alike, possibly because of the strong sense of empow-
erment it confers on its practitioners. The developer
of CFD methods creates a virtual reality which users
may populate with anything that flows, regardless of
scale. It could be a trickle of molecules finding its
way through a MEMS microchannel, or the river of
air that lifts an entire airplane; it could be the union
of the earth's restless oceans and atmoshere, or the
gaseous disk of a spiral galaxy. Anything goes, as long
as it flows; moreover, the concept of flowing is broad.
For example, traffic flows over multilane highways [1]
and an ensemble of stars flows through phase space.
CFD methods allow us to experiment in our virtual
laboratory in ways that would be "expensive, diffi-
cult, dangerous or impossible" [2] in the real world.

In the six decades of its existence, CFD has re-
moved many barriers - some of them discouragingly
high - that stood in the way of successful flow simu-
lation.

1. John von Neumann, who may be called the fa-
ther of CFD, contributed two major techniques:
a practical Fourier method of analyzing finite-
difference schemes regarding their stabilty, and
the method of artificial viscosity, enabling the
capturing of shocks that are likely to arise sooner
or later in compressible flow [3].

2. The latter method was significally improved in
the early 1970s [4, 5], when it was discovered how
non-oscillatory shock profiles could be embedded
in smooth flow solutions of high accuracy.

3. Operator splitting [6] gave easy access to multi-
dimensional simulations and the inclusion of ex-
tra physical processes.

4. Grid generation, crucial to aerospace and me-
chanical engineering, came a long way from re-
peated conformal mapping [7] to the fully au-
tomated almost-Cartesian approach [8, 9] with
geometry- and flow-adapted refinement, yielding
practical grids around complex objects in less
than an hour [10].

5. Searching for steady flow solutions has been
greatly facilitated by multigrid [11, 12] and pre-
conditioning [13, 14] techniques.

6. Multi-fluid dynamics has been made accessible
to anyone by the powerful level-set method [15],
in which the fluid interface is treated as a level
surface of an auxiliary distance function.

7. Grid optimization for the accurate computation
of key functionals such as lift and drag has be-
come straightforward with the use of the adjoint
operator [16].

These are examples; the list is not in any sense com-
plete. Still, enough barriers remain.

3 Some barriers
With the maturing of CFD, our taste for flow prob-
lems has matured. Geometric complexity, physical
complexity and sheer size are now the three key is-
sues by which CFD methodology is challenged.

The modeling of flows in the presence of complex
geometry appears to be in good shape, and I believe it
will continue to develop for some time without major
hurdles to be taken. This is not at all true for the
other issues.

With regard to the issue of size, the computational
cost of computing a steady compressible flow solu-
tion with N unknowns generally is far removed from
the ideal O(N) operation count. One session of this
conference is dedicated solely to that topic: CFD-9,
"Multigrid Methods," put together by Jim Thomas
(LaRC). It must be emphasized here that massively
parallel computing will not bring us any closer to the
above theoretical limit. I will address this complex
matter in a separate section (Section 4).

A challenge in the area of physics is that of turbu-
lence modeling. For most flow configurations there
are no reliable turbulence models, and the turbulence
models that are in use do not always have desirable
numerical properties. While it certainly falls under
the mandate of CFD to mold a turbulence model into
a numerically robust process, it is not at all clear
whether CFD should be given the sole responsibility
for turbulence modeling. In this lecture the subject
will further be ignored.

Related, but fortunately not as hard, is the task of
efficiently representing vorticity in compressible flow.
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This will be the subject of Phil Roe's talk [17] later
in the session.

The last example I want to mention is the chal-
lenge of stiff source terms, such as arise in chemically
reacting or otherwise relaxing flows. It is trivial to
formulate methods that work in the "frozen" limit,
in which even the smallest time scale is adequately
resolved. But developing methods that do not re-
solve all scales, yet produce the proper "equilibrium"
limit, and, moreover, approach this limit along the
proper path [18], is a task we have begun to tackle
only in the last few years. Yet, such methods bear
the promise of a total make-over of CFD in the 21st
century. I will share this vision with you in Section
5.

4 O(N) complexity and parallel
computing

Slow convergence to steady compressible-flow solu-
tions is the main reason for stagnation in the design
cycle in a discipline like aerospace engineering, where
the emphasis is on flow under steady cruising condi-
tions2.

There are two independent strategies for reducing
turn-around time:

1. divide the computational job over more and
more processors;

2. develop more efficient marching algorithms.

The first strategy currently enjoys great popular-
ity among funding agencies and researchers alike, be-
cause it is straightforward, viz. it carries low risk.
For this strategy to be effective, the computational
job must allow distribution over many processors
with limited need for interprocessor communication.
This requirement favors explicit schemes based on the
most compact stencils, as their extreme locality guar-
antees minimal communication.

2 The same convergence problem arises in unsteady-flow cal-
culations, if the physical processes modelled have strongly dis-
parate time scales, and only the largest scales have to be ac-
curately represented.

Today's most successful CFD codes base the dis-
tribution over parallel processors on domain decom-
position. Thus, the operation count will scale well if
the number of computational cells is several orders
of magnitude larger than the number of processors
used. For instance, a vista of applying 106 proces-
sors to a current-size, « 107-cell science/engineering
simulation, is unrealistic, as this is clearly beyond the
saturation point of the scaling law. For efficient appli-
cation of such large numbers of processors to current-
size jobs, additional ways of decomposing must be
developed; I shall refer to these as functional decom-
position.

In particular, we may attempt to assign different
PDEs or groups of PDE's to different processors; this
would yield the greater benefits for the largest sys-
tems. For instance, a system describing chemically
reacting flow may exceed 100 equations because of
the large number of species to be advected.

Therefore, functional decomposition may buy us
one or two orders of speed-up. I will revisit this sub-
ject in Section 5.3.

The second strategy is largely neglected these days,
but is crucial to success if one wants to go beyond
current-size problems.. This strategy has as its ulti-
mate goal the realization of optimal marching meth-
ods, which yield a solution with N unknowns in O(N)
operations. This property implies scalability with re-
gard to number of unknowns, and works indepen-
dently of scalability with regard to number of proces-
sors. Convergence in O(N) operations has long been
realized for the solution of elliptic equations, owing to
the technique of multigrid relaxation [19]. However,
for steady solutions to the Euler equations, which
include hyperbolic (advective) components, only re-
cently some successes have been reported, e. g., by
Darmofal and Siu [20].

In order to make multigrid relaxation yield optimal
convergence to Euler and NS solutions, some form of
directionality needs to be introduced into the pro-
cess, to account for the flow direction. How to do
this efficiently is still a subject of research. More-
over, implementing multigrid relaxation on parallel
processors is not trivial either, because of a difficulty
with load balancing. Last but not least, the technique
of local preconditioning, needed to equalize advective
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and dissipative time scales before applying multigrid
relaxation, is not sufficiently understood and devel-
oped for the NS equations [21]..

To capture directional effects, Darmofal and Siu
use semi-coarsening in two dimensions, after Mulder
[22]. This technique is certainly effective, but consid-
ered "over-kill": in 3-D it would increase the work
by a factor 7 over full coarsening. This does not
detract from their most significant result: switching
back to full coarsening increases the complexity of
the method from O(N) to O(N)%] see Figure 1.

For steady Navier-Stokes (NS) solutions the op-
eration count is rather O(7V2) or even worse. Such
method complexity ruthlessly disables massively par-
allel computers: a factor 1,000 increase in the number
of processors will allow only a factor y^OOO « 32
more computational cells. Such detail could be ob-
tained in the same wall-clock time by an optimal
method with only a 32-fold increase in the number of
processors, indicating that the sub-optimal method
wastes 96.8% of the processors, e.g., 968,000 out of
1,000,000 processors. Hardware manufacurers may
not mind; users, again, deserve better.

It is instructive to linger a while with this example.
Assume that we are currently satisfied with the reso-
lution and turn-around time of a 3-D NS computation
when carried out on a 1000-processor supercomputer.
Will PetaFLOPs computing on 106 parallel proces-
sors buy us an order of magnitude of grid-refinement
in each dimension? If the complexity of the NS meth-
ods remains O(JV2), the answer is negative: we will
have to wait for ExaFLOPs computing on 109 parallel
processors.

Now suppose an O(N) method does become avail-
able. That immediately makes our current comput-
ers more powerful. Assuming the O(N2) method was
competitive with the O(N) method for problems fit-
ting on a single workstation, it follows we may now
obtain on a 32-processor workstation those 3-D NS
solutions that used to require the power of 1000 pro-
cessors. Resolution improvement of an order of mag-
nitude in each dimension will be feasible in constant
wall-clock time on just 32,000 processors. That kind
of hardware may appear relatively soon.

Throughout this example I have assumed, for sim-
plicity, that the computations scale perfectly with the

number of processors. That sort of scalability is in
a pretty good shape, which has been achieved even
on self-adaptive grids Just wait for Ken Powell's talk
[23] in this session, describing almost perfect scala-
bility up to 1490 processors for MHD computations
on blockwise self-adapting grids. My point is that
we equally need scalability with regard to number of
unknowns, and we haven't got it yet.

5 A Vision

5.1 Scalable CFD
PDE's

by First-Order

Computational Fluid Dynamics (CFD) may be due
for a new generation of algorithms that will extract
the maximum benefit from future massively parallel
computer architectures. Even though today's CFD
techniques already are quite well geared for parallel
processing (cf. Powell's contribution [23]), I believe
that there is still much to be gained by rethinking
CFD algorithms.

It is my view of the future that the most efficient,
most generally useful numerical methods for flow sim-
ulation will continue to be based on a description of
the flow physics by PDE's, discretized on a compu-
tational grid. At present I see no reason to aban-
don such methods in favor of more exotic simula-
tion methods. Cellular automata, lattice-Boltzmann
methods and other discrete-particle methods all have
special-purpose uses, but their intrinsic low accuracy
and statistical noise make them unsuited for general
problem-solving in fluid dynamics; see, e. g., Lockard
et al. [24].

What distinguishes my vision and that of my col-
laborators is that we believe the flow physics should
be expressed in PDE's of the lowest possible order,
that is, the first order. Such PDEs only contain ad-
vection terms and local, possibly stiff source terms;
these are called hyperbolic-relaxation equations. The
source terms are responsible for attenuation, tradi-
tionally the role of second-order and higher-even-
order dissipation terms. How to develop such a de-
scription is not trivial and will be addressed further
below.
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Figure 1: CPU seconds versus number of cells, N. NACA 0012 flow with preconditioned Jacobi at M^ = 0.1.
x : full-coarsening; o: semi-coarsening. Curve fits are given by CPUfuu = (8.2 x 10~4)JVi and CPUsemi —
(3.8 x W~2)N. From Darmofal and Siu [20].

A first-order system generated this way is always
larger than the equivalent traditional system of con-
servation laws; for instance, a well-posed hyperbolic
first-order system equivalent to the 3-D Navier-Stokes
(NS) equations includes separate evolutionary equa-
tions for the 6 different elements of the pressure ten-
sor and the 3 heat fluxes. This seeming computa-
tional disadvantage is only superficial: much of the
additional updating amounts to evaluating NS terms
under a different name, yielding comparable update
timings [25]. Moreover, any overhead is handsomely
compensated for by a host of computational advan-
tages of the first-order formulation, especially in a fu-
ture of massively parallel computing on non-smooth
grids.

1. First-order PDE's require the smallest possible
stencil for accurate discretization, therefore the
least need for internodal communication. This
is an obvious advantage in parallel computing.

2. Whereas traditional viscosity and conduction
terms cause global stiffness that calls for a
globally implicit integration, stiffness of a lo-
cal source term can be overcome by a local im-

plicit integration, without any need for intern-
odal communication.

3. Discretized first-order systems may be easier to
drive to convergence than equivalent higher-order
systems, some evidence in this regard can be
found in the steady-shock calculations of Brown
[25].

4. First-order PDE's yield the highest potential dis-
cretization accuracy on non-smooth, adaptively
refined grids. It has been known for some time
that second-order dissipation terms can not be
discretized on a non-smooth grid without loss
of accuracy (or even consistency), compactness
and/or positivity [26]; this problem is avoided
with the use of first-order PDE's.

5. The larger systems of first-order PDE's are bet-
ter suited for functional decomposition than the
traditional higher-order systems, specifically, for
decomposition by equations or groups of equa-
tions. This type of decomposition would work
in tandem with domain decomposition, allowing
the use of more processors on a fixed-size job.
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Thus, the increased system size may even lead
to reduced wall-clock time. Necessary for such
decomposition to work is a multilevel parallel ar-
chitecture, i. e., distributed, sizable clusters of
memory-sharing processors.

6. First-order PDE's can be used to describe ex-
tended hydrodynamics, i. e., flow at intermedi-
ate Knudsen numbers [27], encountered in minia-
ture MEMS devices as well as around spacecraft.
Traditional descriptions based on higher-order
PDE's (Burnett and Super-Burnett equations)
require larger stencils, reducing accuracy on non-
smooth grids and parallelizability, while Direct-
Simulation Monte-Carlo (DSMC) methods are
suited only for high-speed flow.

For the sake of completeness, below are presented
some technical details about hyperbolic-relaxation
systems and their numerical approximation (Section
5.2), followed by a discussion of the use and imple-
mentation of functional decomposition (Section 5.3).

5.2 Hyperbolic-relaxation equations
A model for hyperbolizing a diffusion equation is the
two-equation system called the hyperbolic heat equa-
tion:

= 0,
K
-

qq-;
(1)
(2)

here T and q represent temperature and heat flux, K is
the conductivity, and r is the relaxation time. When
r is very small, the PDE for the heat flux reduces to
the classical relation

q = -KTX (3)

which reduces the evolution equation for the temper-
ature to the standard diffusion equation

Tt = KT~. (4)

Solutions of this system show undamped waves mov-
ing at speeds ±-^/(/c/r) for times short compared to
T (the "frozen" limit), and a diffuse distribution for
large times (the "equilibrium" limit) .

Accurate numerical integration of the hyperbolic
system (2) can be accomplished with an explicit high-
resolution scheme, provided the time step used is
sufficiently shorter than the relaxation time scale r.
However, if one is interested only in the longer time
scales, use of large time steps would be desirable. To
keep the integration stable, an obvious but naive ap-
proach would be to treat the stiff source term implic-
itly. However, as indicated already by Arora [28] this
does not necessarily yield an accurate equilibrium so-
lution, i. e., one satisfying Eq. (4). To achieve such
accuracy, source term and fluxes must be strongly
coupled; using fluxes based on the frozen physics is
not adequate.

One way to establish the coupling between source
and fluxes is through a change of state variables that
removes the source term. The transformation

q = e rr

reduces the system (2) to

r* - 0,

r, - o;

(5)

(6)
(7)

the source term has disappeared but the relaxation
time now shows up as a weighting factor in state vari-
ables and fluxes. Numerical fluxes based on this for-
mulation have the potential of achieving solution ac-
curacy in both asymptotic regimes, and in between.

A model closer to fluid dynamics is the more gen-
eral linear system analyzed by Hittinger [18]:

+ vx = 0,

CLFUX =
— V

(8)

(9)

where ap is the signal speed according to the frozen
physics, and &E is the equilibrium signal speed. Ig-
noring the source term, we find the characteristic
speeds of the system are ±a/r; the second equation,
though, tends to the equilibrium relation

v = (10)

which makes the first equation tend to the advection
equation

ut + (IEUX = 0, (11)
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with advection speed CLE- Hittinger presents exact
solutions to Riemann initial-value problems for (9);
an example is given in Figure 2. He also analyzes
the solution to the Riemann problem for the general
linear hyperbolic-relaxation system

+ Ails = Qu, (12)

where A is an m x m matrix with a complete set of
real eigenvectors, and Q is of rank n < m, with non-
positive eigenvalues. This leads to ra — n equilibrium
equations. Since a closed-form exact solution can not
be given, Hittinger derives leading terms of the asym-
totic equilibrium solution. He shows that an approx-
imate equilibrium solution can be combined with the
frozen Riemann solution for the development of a nu-
merical flux function valid in all regimes. This is il-
lustrated with numerical solutions to discontinuous
initial-value problems.

All systems discussed so far are linear; fluid-
dynamical conservation laws, though, are nonlin-
ear. This complicates the application of the trans-
formation (5), which is now ruled by the solution-
dependent matrix exp[—Q(u)t/r]. Averaging and lo-
cal linearization are required at each time level, mak-
ing the calculation of numerical fluxes costly. Hit-
tinger indicates that flux functions of the Harten-
Lax-Van Leer (HLL) [29] type, which use only very
limited information about the exact solution, may
be the most practical way to go for nonlinear gas-
dynamics. Linde [30] recently presented an highly
promising HLL-type flux formula that recognizes sin-
gle discontinuities (just as Roe's [31]) at a cost per
equation independent of the system size. At present,
developing an asymptotically correct HLL flux is the
key research issue in the hyperbolic-relaxation ap-
proach to CFD.

Another important issue, though less pressing, is
how to make high-resolution schemes for these sys-
tems monotonicity preserving over the entire range of
the relaxation parameter. It is comparatively easy to
achieve this for schemes intended solely for marching
to steady solutions; for this purpose the use of locally
steady subcell distributions [32] has proved successful.
However, for general acceptance of the hyperbolic-
relaxation approach we must insist on equally good
performance when computing transient flows.

Hyperbolic-relaxation systems for gas dynamics
and their numerical implementation have been stud-
ied intensively at the University of Michigan, by
Arora, Brown [25, 33], Groth [27] and Hittinger. The
best-known system to date is that of the 10-moment
equations; it describes viscous nonconducting flow.
The equations are obtained by taking 10 different
moments of the Boltzmann equation, using a gener-
alized Gaussian distribution function (following Lev-
ermore [34]), and evaluating the collision integrals in
the BGK approximation. The usual energy equation
is replaced by 6 equations for the different elements
of the pressure tensor. Hittinger has extended the
equations to include relaxation of both translational
and rotational degrees of freedom, for the description
of gases like air.

Brown used an explicit high-resolution scheme to
compute steady shock profiles for the 10-moment
equations. He showed this requires less CPU time
(from a factor 1/2 at Mach 1.1 down to 1/16 for Mach
10) than for the NS equations. Groth [27] computed
shock structures for a rarefied gas at intermediate
Knudsen numbers, and showed that these match the
structures computed at much greater expense with a
DSMC method.

For a well-posed description of 3-D viscous con-
ducting flow at least 14 equations are needed. Up to
35 equations [25] have been used in describing larger
deviations from thermodynamic equilibrium3. These
are sizable systems, pre-eminently suited for func-
tional decomposition of the kind described in the next
subsection.

5.3 Domain and functional decompo-
sition for parallel computing

For distributed-memory MIMD architectures, do-
main decomposition and message passing have proved
to be very effective means of achieving parallelism in
CFD computations on thousands of processors (cf.
Powell's contribution [23] to this session). As men-
tioned in Section 3, though, this approach will reach
the limit of saturation rather easily on future, mas-

3 Brown has also calculated steady-shock profiles for the 35-
moment system.
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sively parallel machines. This means we have to ex-
plore other roads to parallelism.

As to shared-memory machines, currently one can
readily buy boards with 2 and 4 processors sharing
memory; however, there appears to be a major tech-
nical barrier when trying to push shared-memory ar-
chitecture beyond 32 processors.

Besides shared-memory and distributed-memory
architectures there are multilevel-memory architec-
tures, in which some processors have both private
and shared memories. We believe future massively
parallel computers, with w 1 million processors, will
fall into this category.

In the detailed example given further below we as-
sume the availability of 100-processor shared-memory
clusters4, in order to illustrate all different levels of
parallelism allowed by our approach to CFD. We shall
map a 10-million-cell problem (typical for, e. g., a
full-aircraft design) onto 1 million processors. The
following strategy fully utilize the processors in pur-
suit of minimizing turn-around time.

Step 1. Domain and processor decomposition.
The domain is partitioned into about 10,000
zones with the cells equally distributed over the
zones, i.e., about 1,000 cells per zone. This is
large enough a size to have a good preponder-
ance of interior cells, where the work is done,
over ghost cells (copies of cells from neighboring
zones) needed for updates near the zone boun-
daties. (For example, the MHD code [35] that
performed the calculation of Coronal Mass Ejec-
tion (CME) to be presented by Powell, assigns
one or more blocks of 1000 cells to each proces-
sor.) Care must be taken to minimize the num-
ber of interfaces, so as to reduce communication
overhead. A variety of algorithms such as the
Recursive Spectral Bisection algorithm [36] can
be used for domain partitioning. Alternatively,
as in Powell's CME calculation, the zones may
be automatically generated as a result of adap-
tive grid refinement.
Meanwhile, the 1 million processors are parti-

tioned into 10,000 groups, each group contain-
ing 100 processors. Each processor group will be
assigned to a different zone with 1000 cells. It
is essential now that each processor in a group
keeps all data computed for the zone by the en-
tire group, so that data communication (if any)
is minimal; this will allow functional decomposi-
tion within each group of processors. Thus, the
100 processors in each group must have shared
memory, while the inter-group memory may be
distributed. Such an architecture is ideal for par-
allelizing a CFD code based on first-order PDE's.

Step 2. Functional decomposition. The most
obvious functional decomposition is to let each
of the 100 processors in a group solve a differ-
ent PDE of the first-order PDE system. Thus,
the more equations there are in the system, the
greater the potential for this type of parallelism.
The five 3-D NS equations can be rewritten as a
first-order system of fourteen equations, a con-
siderable gain in size, but still a factor « 7 short
of providing a task for each processor. In this
case one could simply assign seven zones to each
group5. Another solution lies in outer-loop par-
allelization,not further discussed here. If, how-
ever, we consider flow with chemical reactions,
we may easily have a hundred or more equations
governing the evolution of all species. In this
case, the 100 processors in each group will have
plenty to work on just by functional decomposi-
tion. No data exchange is necessary at any time
between the processors in the group because they
share the same memory and data.
In order to achieve the best performance, the
functional decomposition must be fine-tuned for
optimal load balance. For example, depending
on the computational intensity of each equation,
we may assign several equations to one processor
or solve one equation on several processors.
If it becomes necessary to split the load of solving

4Note that a network of 14-processor shared-memory work-
stations would already allow full functional decomposition for
simulations of viscous conducting flow using first-order PDE's.

5The alternative, further decomposition of one zone into 7
subzones, is not practical because the ratio of ghost cells to
interior cells per subzone gets too large. Even with shared
memory this will cause loss of efficiency due to excessive data
migration.
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one equation over several processors, outer-loop
parallelization is a further possibility. Details are
omitted here.

In summary, with domain decomposition and func-
tional decomposition (and, possibly, outer-loop par-
allelization) we are confident to be able to achieve
near-optimum efficiency on tomorrow's parallel ma-
chines. Using the largest possible PDE systems in-
stead of the traditional smaller sets of flow equations
will be a significant advantage.

6 Conclusions and outlook
In this lecture I have attempted to show by example
that CFD as a science is alive and well.

I have indicated one big hurdle, the high complex-
ity of steady-flow methods. Its removal will require
all of our ingenuity, and considerably greater man-
power, i. e., increased funding for basic research.

If massively parallel computing is realized without
a significant reduction in method complexity, the
power of most processors, hundreds of thousands of
them, will be wasted. In contrast, if a reduction in
complexity is achieved soon, we won't have to wait
for the arrival of PetaFLOPs computing in order to
achieve a quantum jump improvement in resolution.

I have also sketched an opportunity for a radical in-
novation of CFD, with particular regard to a future of
massively parallel computing on adaptive grids. It is
a vision of CFD based on large systems of first-order
hyperbolic-relaxation PDEs. Such systems combine
well with functional decomposition, needed to sup-
plement domain decomposition when distributing a
computational job over many processors. Realizing
this vision will require substantial fundamental re-
search in both numerical analysis and computer sci-
ence.

A general shift toward the above CFD method-
ology will not only transform CFD but also have a
profound impact on research and learning in fluid
dynamics, since it calls for adopting a non-traditional
fluid description. While the motivation for this shift
is rooted in part in information technology, it will

in turn influence IT research, as the new method-
ology offers the broadest possible proving ground
(within the bounds of PDE-solving) for massively
parallel computing. I even submit that the apparent
symbiosis between the first-order description and
multilevel parallel architectures may contribute
to the evolution of scientific computers toward a
parallel architecture of distributed, sizable clusters
of memory-sharing processors.

Now, back to reality. The funding emphasis on
HPCC applications, rather than on basic research,
persists to this day6. It is unlikely that this situa-
tion will change as long as most users of CFD tools
have yet to encounter the practical limit to massively
parallel computing.

Until that day, advances in CFD will be expected
to come mainly from advances in hardware. I hope
that by that time there will still be some individuals
left with the knowledge to develop a new generation
of CFD methods. Better yet, let us prepare for that
day by continuing to educate CFD students in the
area of method development.
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