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Abstract 

Earlier [I], it was shown that certain reinforced holes 
may be designed for elastic, isotropic plane sheets that 
do not alter the stress state in the cut sheet, for particu- 
lar types of planar loading. In this work, this methodol- 
ogy is extended to symmetrically laminated composite 
plates which are under planar loading, and addition- 
ally pure bending moments. Since these two types of 
loading lead to  uncoupled governing equations, they are 
treated separatly in two parts. The shape of the cutout 
and the cross-sectional area of the reinforcement are 
determined in closed form. The reinforcement is mod- 
eled a s  a one-dimensional rodlbeam type structural el- 
ement. 

1. Introduction 

Since laminated composite plates with openings are 
widely used structural elements in many engineering 
applications, the analysis of such structures has been 
done by numerous researchers. The stress and strain 
state around the openings have been presented for a 
variety of problems. A large number of problem solu- 
tions are presented in the monographs by Lekhnitskii 
[2],[3] and Savin [4]. In the formulation of these prob- 
lems, the material constitutive law, the geometry, load- 
ing and boundary conditions are assumed given and the 
stress and strain state are computed. 

In a particular class of structural optimization, the 
geometry of the body is obtained as a solution t o  a 
particular problem, for known states of stress, strain, 
boundary condition and appropriate constraints (some- 
times called inverse problems for some specific cases). 
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In the latter category, either stress concentrations 
are reduced (optimized) by determining the shape of 
the openings (harmonic holes), or stress states in the 
cut structures with reinforcement are maintained un- 
changed to that of the uncut structures (neutral holes). 

All previous solutions ([1],[5]), for neutral holes have 
been obtained for elastic, isotropic sheets under planar 
states of stress. In [5], the reinforcing member is as- 
sumed to be additionally under a planar moment also, 
but the solution is still sought as a plane problem. In 
the present research, the methodology outlined in [I], is 
extended t o  symmetrically laminated composite plates 
which are under planar loading. In addition, the case 
of a symmetrically laminated plate subjected to  pure 
bending moments is also considered. Since these two 
types of loadings lead t o  uncoupled governing equa- 
tions, they are treated separatly in two parts. 

In the first part, laminated plates are assumed sub- 
jected to loading that induce planar states of stress for 
a given symmetric lay up and loading. The shape and 
cross-sectional area of the reinforcement are determined 
in closed form. The reinforcement is assumed to be 
made of the ply material that is used to  construct the 
laminate, although this assumption is not necessary. 
It is used here t o  generate example results, to be pre- 
sented later. In addition, the fiber direction in the re- 
inforcement is assumed to be tangential to the edge of 
the cutout. Since the sectional areas of the reinforcing 
member are small compared to the other dimensions of 
the plate, they are treated within the framework of one 
dimensional technical rod/beam theories. 

A number of examples are solved for different fiber 
angles and loading conditions. Solutions in which the 
circumferential strain around the hole changes sign are 
impractical for some lay ups and fiber angles. This 
situation is treated by changing the fiber angle of the 
plates or just the outer layers. Under some types of 
loading, closed holes are found not to  be possible and 
this is acknowledged here. 



In the second part, classical plate theory assumptions 
are employed to the pure bending problem of laminated 
plates. In t!lis case, the reinforcement is assumed as a 
beam element which is under torsional and bending mo- 
ments. This is a new treatment of neutral hole problems 
in which flexural plate response is taken into account. 
The shape and cross-sectional area of the reinforcement 
are presented for two separate cases. In the first, a re- 
striction is placed, forcing a relation between the tor- 
sional and bending moments of the reinforcing mem- 
ber. This is done so that the shape of the hole could 
be determined by considering the equations of statics 
alone for a small element adjacent to the cutout and 
containing a part of the reinforcement. Extreme cases 
such as a reinforcement infinitly rigid against rotation, 
or infinitly rigid against bending, are examined. In the 
second case, a solution is sought which combines the 
equations of equilibrium of the small element adjacent 
to the cutout and containg a part of the reinforcement 
with the kinematics of the reinforcement. This solution 
does not employ any simplifying assumptions and is ob- 
tained in closed form. The governing equation for this 
case is solved numerically, and results for the shape of 
the hole and reinforcement distribution are computed 
for example cases. Notice that the notion of a neutral 
hole in the context of plate flexure assumes a new mean- 
ing. Here, the purpose is to  introduce a cutout into a 
plate that will maintain the same moment and curva- 
ture distributions as of the uncut plate throughout. 

The formulation for the laminated plate presented in 
the first part is shown to reduce to that of the solution 
for the isotropic case [I], by making appropriate substi- 
tution for the elastic constants. The solutions for the 
second part are novel and similar issues have not been 
dealth with before. 

2. Formulation 
2.1. Laminated  p la te  u n d e r  p l ana r  loading 
2.1.1. The s h a p e  of a n e u t r a l  hole 

The derivation given here follows along the lines of 
presentation in [I], and is given here for completness. 
Consider the uncut, uniformly thick, laminated plate 
in a planar state of stress. Let a set of cartesian CCP 

ordinates be situated in the mid plane of the laminate 
(symmetrically laminated about the mid plane) such 
that the xy plane coincides with the lamination plane. 
For a two dimensional planar state of stress, the equi- 
librium equations, in terms of plate resultants are 

These equations are satisfied by the introduction of a 
stress function defined as below. 

Thus, a knowledge of 4(x, y) completely specifies the 
planar state of stress in the plate. 

With reference to  Fig.1 and Fig.2, which show the cut 
sheet and the reinforcement, consider the equilibrium 
of an element adjacent to  the cutout and including a 
part of the reinforcement. Assuming that the reinforc- 
ing member can be treated as a one dimensional rod 
element, the equilibrium equations are as follows. 

d ( P  sincu) = Ny dx - N,, dy 

d ( P  coscr) = N,, dx - N,dy (3) 

where P is positive in tension. Upon substituting (2) 
into (3) the following is derived. 

a2 4 d ( P  cosa) = -- a2 4 dx - -dy axay ay2 (4) 

Integration of (4) leads to; 

a 4 PCOSCY = -- - b  
ay  

where a and b are integral constants. F'rom (5) P may 
be eliminated, by setting for tanu (see Fig.2 where 
u is marked) and integrating to obtain, 

4 + a x + b y + c = O  ( 6 )  

as the equation to determine the shape of the hole. 
Terms of the type (ax + by + c) do not alter the 

stresses, so without loss of generality (6) can be written 
as 



Equation (7) is obtained purely from a consideration 2.2. Laminated plate under bending 
of static equilibrium of the small element at the hole. 2.2.1. The shape of the hole 

Let a cartesian coordinate system be located in the 
2.1.2. Section area of the reinforcement mid plane of the laminate, about which the plate is lam- 

The total force in the reinforcing member is deter- inated symmetrically, such that the xy plane coincides 
mined from equation (5), by eliminating a .  with the lamination plane and the t. axis is perpendic- 

ular to  that plane. Under Classical Laminate Theory 
assumptions, the lateral force and moment equilibrium 

P = [(g)' + (z)'] * (8) equations are the following [7], 

The well known constitutive relation, derived on the 
aQz aQ 
- + - + q  = 0 ax ay 

basis of classical lamination plate theory (CLT) is [6], a ~ ,  aMZy - 
ax +- a~ = Qz 

N = A E + B K .  
(16) 

(9)  MY + ~ M S Y  
= Qy . - 

For a symmetric layup [B] = [O] , and solving for E from a y  a x  
(9) yields 

E = A-'N = A*N. (10) 
Here, M,, My and Mzy are the moment resultants (mo- 
ment per unit length), Q,, Q, are the shear forces per 

Equation (10) in expanded form is given as, unit length, and q  is the lateral surface force per unit 
area acting on the laminate. From (16) the following 

All* AlZ* A16* 
can be deduced in the absence of a lateral force q. In 
this way, the equilibrium is represented with one equa- [::I = [Al2* Azz* 

[$y] . ("1 tion. 
€ 2 ~  A16* A26* A66 

Thus, equation (11) describes the strain state in the 
a2Mz a2My a2MZy +- a x ~  ayz +2-=O 

plate in terms of plate stress resultants. By making use dxay  
(17) 

of equation (2), the relation between the stress func- The reinforcing member is assumed as  a beam ele- 

tion 4(x, y) and the strain state is obtained via (10). ment which has flexural as well as torsional rigidity. 

The strains in the plate are continuous and therefore With reference to  Fig.3 and Fig.4 the out-of-plane force 
the tangential component of strain at the hole edge and moment equlibrium equations for a small   or ti on 
(i.e.,along the reinforcement) is given by the strain of the laminate adjacent t o  the cutout and including 

transformation law the reinforcement are, 

C, = E, cos20 + ey sin20 + cry sina C O S ~ .  (12) dQ Qydx-Qzdy 
d (Tcosa + Msina) = My dx + (Q - Mzy)dy (18) 

Finally, the stress resultant in the reinforcing mem- d ( ~ ~ i ~ ~  - M ~ ~ ~ ~ )  = ~ , d ~  + (-M,. - ~ ) d $  
ber, using a 1D relation, may be written as, 

where M and T are respectively the total bending and 
N = A S S F , .  (13) torsional moments in the reinforcement, and Q is the 

total shearing force in the reinforcement. 
Here, A,, is the axial stiffness of the reinforcement. To proceed with the solution of (18), first consider 
But, (17) and introduce the functions cp  and $ defined as 

below, which satisfy the equlibrium equation (17). - P  N = -  
d (14) 

where d is the width of the reinforcement. Using (8), 
(13) and (14) the width distribution of the reinforce- 
ment is obtained as, 



a$ -Mzy - Q  = - 
dx (20) 

From (19) and (20) MZy and Q are to  be found as; 

Upon substituting (19) and (20) into ( la) ,  and then 
integration of the last two moment equations gives the 
following. 

Tsina - Mcosa = 1C, + e 

Tcoscu + Msina = cp + f (23) 

where e and f are constants of integration. 

An immediate result of equation (23) is M 2  + T2 = 
(TJ + e)' + (cp + f)'. Thus, the Equivalent bending 
moment W is the vectoral sum of M and T at each 
point in the reinforcement, and can be written as, 

Next, consider a cross-section normal to  the axial direc- 
tion of the reinforcement. Let 6' be the angle between 
W and this cross-section (see Fig.5). Then, the follow- 
ing can be written. 

M = W cos6 

T = w sine (25) 

where 6' describes the orientation of W along different 
axial positions of the reinforcement. 

Since 0 is not known, a condition for the neutral hole 
cannot be deduced from equilibrium equations alone, 
unless some additional restrictions are enforced; (such 
as fixing the angle 6'). Thus, to  obtain an exact so- 
lution for the shape of the hole and the reinforcement 
distribution, kinematic relations governig the deforma- 
tion of the reinforcement have to  be used. However, 
combining infromation between the kinematic relations 
and the equilibrium equation leads to  a highly non- 
linear equation for the determination of neutral holes. 
The solution of this equation which leads to  a closed 
form solution for the hole shape and the reinforcement 
distribution is given later in section (2.3). 

First, we seek an approximate solution for the hole 
shape. As noted earlier, the reinforcing edge beams 
around cutouts, which provide a flexible support, are 
assumed to resist the plate deformations by virtue of 
their flexural and torsional stiffnesses. In practice, the 

torsional stiffness is usually much less than the beam's 
flexural stiffness. Using (25), a connection between the 
torsional and bending moments developed in the rein- 
forcement can be a priori prescribed. Then, with small 
6' values weak torsional resistances can be recovered. 

From equation (25) tan0 = T I M  is obtained. For a 
fixed value of 0, introduce a scalar number A such that 
tan0 = X (Here, we are prescribing a relation between 
T and M ,  thus placing a restriction on the orientation 
of W). 
Then, from equation (23), and setting 2 for tancu, the 
following is derived. 

X$dx + $dy - Xcpdy + cpdx = A f dy - Xedx - edy - f dx 

(26) 
Equation (26) gives the condition of the shape of the 
hole in terms of the known functions $ and cp, for a 
known value of A. 

2.2.2. Sectional area of the reinforcing member 
The total bending moment in the reinforcement is 

determined from equation (23) by eliminating a .  

In this case, the constitutive relation M = B E + D K  is 
utilised, and by setting [B] = [O] for symmetric layups, 
K is solved as, 

K = D-'M = D*M. (28) 

In expanded form, equation (28) is the following. 

D l l*  0 1 2 .  D16* [ :: ] = [Dl.* D22* [ I ]  (29) ICzy Die* D26* D66* 

Since the curvatures in the plate are also continuous, 
the tangential and twisting components of the curva- 
ture are given by the curvature transformation law [8], 

E ,  = K, cos2a + Ky sin2a + 2tcZy sina cosa 

is,, = (nY - K ~ )  sinacosa + 
K,, (cos2a - sin2a) (30) 

The bending moment resultant in the reinforcement 
may be given as, 

M = D,, n, (31) 

where D,, is the bending stiffness of the reinforcing 
member. But, 



where 2 is the width of the reinforcement in this case. 
Finally, the combination of (27), (31) and (32) gives 

the reinforcement width distribution as, 

2.3. Plate bending solution including reinforce- 
ment kinematics 

In this section, we present the more complicated but 
exact solution for the shape of the hole and reinforce- 
ment distribution incorporating kinematics of the rein- 
forcing member. An exact solution is obtained within 
Classical Laminate Theory assumptions. Consider a 
small element of laminate including a portion of the 
reinforcement. Then, (see Fig. 2), as before, the equi- 
librium of this element reduce to (23). i.e., 

T = gsina + cpcosa 

M = psina - gcosa (34) 

The torsional and bending moment in the reinforcement 
are related to  the reinforcement twist and reinforcement 
curvature respectively (the constitutive equations for 
the reinforcement). These are, 

where E,I and G,,J are the bending and torsional 
rigidities of the reinforcement respectively (see Fig. 6). 
To proceed and demonstrate the complete solution con- 
sider a rectangular cross-section for the reinforcement. 
Let h denote the reinforcement thickness and d the 
width. Then, the I and J values are found as, 

Combining equations (34),(35) and (36), the follow- 
ing is derived. 

0.3h3d3 - 
G,, h2dz~,n = +sin& + pcosa 

Eliminating d from (37) leads to  the condition for the 
shape of the neutral hole in terms of a(s)  and h(s). 

3 0.3Gn, 123(psina - +cosa) - 
P i s  = E, ($sincx+pcosa) - 

~ , ~ h ~ r t :  + 122((cpsina - gcosa) t i s r i  

(38) 
The solution t o  equation (38), i.e. obtaining a (s ) ,  
for a chosen h (choosing the reinforcement thickness 
to  be uniform and a certain multiple of the laminate 
thickness, say) will give the exact neutral hole shape. 
Finally, the reinforcement width distribution is deter- 
mined from (37) as, 

3. Examples 
3.1. Plate under biaxiaI planar loading 

In general, the stress function (as a solution to (2)) 
is in the form of a conic. 

where Pl and P2 are the tension forces per unit length 
in x and y directions respectivly, and S is the shear 
force per unit length in the xy plane. The constants 
a ,  b and c merely determine the position and the size 
of the hole. In order t o  have a closed hole, the condi- 
tion S2 - PlP2 < 0 must be satisfied (a rotated conic is 
obtained in the presence of shear). If there is no shear 
then clearly, Pl and Pz must have the same sign. Fur- 
ther, in the absense of tensile (compressive) forces with 
shear alone, no closed holes are possible. For combined 
loads, the above inequality determines the existence of 
closed holes. If x and y axes are chosen a s  the principal 
axes, then the S x y  term in (40) is eliminated, and the 
remaining part gives an ellipse with lengths of major 
axes in the ratio d m .  Since there are no restric- 
tions on the constants a ,  b ,  c a large variety of holes may 
be chosen. 

Under the loading, as defined above, the plate resul- 
tants are Nx = PI, Ny = P2, Nxy = S .  The strain 
state, then by (11) in terms of the material properties 
and the known loading, becomes 

From (5), (12) and (15) d(s) is determined in terms 
of the known stress function and strain components as 
follows. 



Equation (42) (along with (41)) gives the reinforcement 
width distribution in terms of the material properties 
and the stress function which is found in the uncut state 
of the plate. 

As an example, consider a plate under forces PI and 
P2 applied in the principal axes system as explained 
above. The stress function is 4 = +(Ply2 + P2x2) + c. 
Then the hole shape (from (7)) is given by; 

By using the relations 2 = P2 x,. = Pl y, and from 
(42), the width distribution d(s) is found as, 

d(s) = - [ ( p z ~ ) ~  + ( ~ I Y ) ~ I ~  
A,, [E, (ply)' + cy ( ~ 2 2 ) ~  - fzy PI PZXY] 

. (44) 

If y is solved from (43) and substituted into (44), along 
with (41), the width distribution is obtained as a func- 
tion of x only. A typical numerical example is given 
below. 

Example: Lay-up: [+40/ - 4012, 

Ply Properties: E1=133 GPa, E2=9 GPa, G12=3 GPa, 
~ ~ ~ = O . 2 6 .  

Ply Thickness: 1 mrn. 

Shape of Hole (from above solution): Ellipse, 200y2 + 
150x2 - 15.10~ = 0 

Equation describing the reinforcement Distribution: 

In the above solution the reinforcement thickness(h) is 
chosen to be twice the thickness of the plate (see Figs.7a 
and 7b). 

For some stacking sequences and fiber angles, the 
strain in the reinforcing member changes sign, which 
leads to  a solution with very large reinforcement at that 
material point. This situation can be eliminated by 
changing either the stacking sequence or fiber angles in 
some layers, i.e., outer layers for example. 

In the case of equal loading in the x and y directions 
a circular hole is obtained. The reinforcement distribu- 
tion is easily found by setting PI =P2 in (44). 

I t  should be mentioned that,  in the case of having lin- 
early varying loads a t  the edges of the plate, the most 
general form for 4 is x3 + + ax  + by + c, so that the 
shape of a neutral hole is, in general, a cubic. Here, 
the coefficients a ,  b,  c no longer refer directly to  the po- 
sition and size of the hole. However, the coefficients 
may be chosen specially so that 4 may be factorized. 
This makes possible t o  obtain a closed form for the 
shape of the neutral hole. For example, considering 
x3 + y3 - r2(x + y) = (2: + y)(x2 - xy + y2 - r2)  factor- 
ization, and choosing the second factor as the shape of 
the hole give a solution to  the problem. The sectional 
area could then be determined by going through the 
same procedures as explained before in Section (2.1.2). 

3.2. P l a t e  u n d e r  bend ing  m o m e n t s  
3.2.1 Res t r i c t ed  solut ion 

In this case, let the plate be under pure bending mo- 
ments M1 and M2 applied at the edges of the plate 
whose normals are x and y axes respectivly. Mt is 
the twisting moment defined in the same system. The 
well known plate equlibrium equations give M,=M1, 
M y  =M2 and Mz,=Mt. Then, from equations (19), (20) 
and (22) the functions cp and I) are determined. 

where cl and cz are constants of integration. Combin- 
ing (46) and (26), and integrating gives the hole shape, 
as; 

where C is a constant. This equation is in the form 
of a conic. The constants c l ,  c2,e, f do not affect the 
moment distribution, and they are chosen zero in (47) 
without loss of generality. Then, the governing equation 
for the hole becomes, 

(M2 - XM~)X '  + (Mi + XMt)y2 + 2A(M1 - M2)xY = C. 
(48) 

The condition A2(Ml - M ~ ) '  - (M2 - XMt)(Ml + 
XMt) < 0 is necessary for a closed hole. The type of 



curves given by (47) with this restriction are the rotated 
ellipses. If ,B is the angle of rotation measured from the 
positive x axis, its value is given by, 

In order to  determine the sectional area of the rein- 
forcement, consider the state of curvature in the plate 
given by (29) as; 

Then, combining (24), (30), and (33) yields the rein- 
forcement distribution, as the following. 

A typical numerical example case is stated below. 

Example: [+40/ - 40],, 

Ply Properties: E1=133 GPa,  E2=9 GPa, Glz=3 GPa, 
u12=0.26. 

Ply Thickness: 1 mm. 

Restriction: A =  a chosen constant. 

Shape of Neutral Hole: Rotated ellipse, 1 5 0 ~ ~ + 2 0 0 ~ ~ +  
60xy - 75.104 = 0 

Reinforcement Distribution: 

where = 5700.74, K ,  = 0.0620703, tcy = 0.0627094 
and K~~ = 0.0427512. Here, the reinforcement thick- 
ness is chosen to be twice the thickness of the plate 

(see Figs. 8a and 8b). 

3.2.2 Plate bend ing  i nco rpo ra t i ng  re inforcemal t  
k inemat ics  

In this example, the same bending problem consid- 
ered above is solved numerically, by considering rein- 
forcement kinematics (as described in section 2.3) to 
arrive at an exact solution for the hole shape and re- 
inforcement distribution. Corresponding t o  the previ- 
ously solved problem, we have, 

When these values are substituted in equation (38) 
and after some algebraic manipulation, a 7th order poly- 
narnial in t ana  is obtained. The roots of this poly- 
narnial are obtained to describe the shape of the neutral 
hole. The procedure is as follows. A starting point in 
the plate is identified. Then the equations are cast into 
cylidrical polar coordinates, where, a radius vector R(0) 
is chosen to describe the equation for the neutral hole 
as R = R(0). At some initial point Ro, Bo, in the R - 0 
plane the roots of equation (38) are used to  obtain %. 
Then, 0 is incremented in a forward difference scheme 
to  obtain a new R. At this R ,  0, the above step is re- 
peated. Inspection of the terms in (38) cast in the R-0 
plane reveals that R(0) = R(O + 27r), thus describing a 
closed hole. In fact, (38) can be used t o  determine the 
conditions under which a closed hole is possible. Once 
the neutral hole shape is determined, the reinforcement 
distribution is easily computed from (39). To demon- 
strate this procedure the following numerical example 
is presented. 
Example: [+40/ - 4012, 

Ply Properties: E1=133 GPa, E2=9 GPa, G12=3 GPa, 
Gz3=5 GPa, v12=0.26. 

Ply Thickness: 1 mm. 

Shape of Neutral Hole: The above explained solution 
scheme is implemented to  obtain cr(s). 

Reinforcement Distribution: from equation (39) with 
prescribed thickness (chosen to be the same as the lam- 
inate thickness, 8 mm.) 
Results : Presented in Figs. 9a and 9b. 

4. Conclusions 

In this paper we have presented a method to design 
the shape of a cutout and the cutout edge reinforcement 



distribution for a symmetrically laminated plate, when 
it is remotely loaded by uniform planar loads or uniform 
bending moments. It should be noted that in the realm 
of classical linear plate theory, the in-plane and out-of- 
plane plate responses are uncoupled. This has led us to  
two different solutions as expected. 

In the laminated plates we studied, the fibers are 
straight in each layer of the plate, and they are tan- 
gential to the edge of the cutout in the reinforcement. 
This is not a restriction, as the solution presented could 
very well accommodate other types of constitutive mod- 
els for the reinforcement. Classical laminate theory 
to  model the laminate and technical beam theory to  
model the reinforcement are used. In many practi- 
cal constructions, it has been shown before that the 
bending-stretching coupling diminishes as the laminate 
gets thicker. We have developed the solutions for these 
unsymmetrical layups (not reported here) and found 
that the material coupling has a small effect on the re- 
inforcement distribution in many cases. Neglecting this 
material coupling and using the procedures developed 
here leads to  a solution for unsymmetrically laminated 
plates. The case of strong coupling (few layers) is re- 
ported elsewhere [9]. 

Example results have been presented for two prob- 
lems. For purposes of comparison, the same lay-up and 
material properties have been used in both cases. For 
the case of remotely applied moments, two different so- 
lution methods are presented. One is simple and ap- 
proximate, relying on practicality, while the other is 
more refined and exact within the context of classical 
laminate theory. As mentioned in the introduction, all 
previous attempts to  obtain a neutral hole have been 
done without accounting for flexural plate response, 
and assuming material isotropy. Here, both of these 
restrictions are relaxed. The solutions reported here 
are novel and their extension t o  the more complex case 
of laminated cylidrical panels and laminated shells is 
underway. 
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Figure 1 : Plate with a cutout 

PSin a + dPSin a 

PCos cr. + dPCosa i- 
PSin w. t 

Y 

Figure 2:Forces on the small element 'ABC' indicated 
in figure 1. 

Figure 3: Out-of-plane forces 

Figure 4: Moments acting on the element ABC. 



F igure 5: Moments in the reinforcement 
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Figure 7a: Reinforcement distribution for planar loading. 

Figure 6: Coordinates used to define reinforcement Figure 7b: Reinforcement distribution and hole shape for 
properties. planar loading. 
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Figure 8a: Reinforcement distribution for moment loading; Figure 9a: Reinforcement distribution for moment loading; 

restricted solution. exact solution. 
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Figure 8b: Reinforcement distribution and hole shape for Figure gb: Reinforcement distribution and hole shape for 
moment loading; restricted solution. moment loading; exact solution. 


