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Optimal Path Planning for Unmanned Combat
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Pierre T. Kabamba,∗ Semyon M. Meerkov,† and Frederick H. Zeitz III‡

University of Michigan, Ann Arbor, Michigan 48109

The problem of path planning for unmanned combat aerial vehicles (UCAVs) in the presence of radar-guided
surface-to-air missiles is treated. The problem is formulated in the framework of the interaction between three
subsystems: the aircraft, the radar, and the missile. The main features of this integrated model are as follows. The
aircraft radar cross section (RCS) depends explicitly on both the aspect and bank angles; hence, the RCS and
aircraft dynamics are coupled. The probabilistic nature of radar tracking is accounted for, namely, the probability
that the aircraft has been continuously tracked depends on the aircraft RCS and range. Finally, the requirement
to maintain tracking before missile launch and during missile flyout are also modeled. Based on this model, the
problem of UCAV path planning is formulated as a minimax optimal control problem, with the aircraft lateral
acceleration serving as control. Necessary conditions of optimality for this minimax problem are derived and used
as a basis for an efficient numerical solution. Illustrative examples are considered that confirm the standard flying
tactics of “denying range, aspect, and aim,” by yielding flight paths that weave to avoid long exposures of aspects
with large RCS.

I. Introduction

T HIS paper is devoted to the problem of automated path planning
for unmanned combat aerial vehicles (UCAVs) in the presence

of radar-guided surface-to-air missiles (SAMs). This problem fea-
tures the interaction between three subsystems: the aircraft and its
characteristics, the radar and its capabilities, and the missile and its
lethality. Therefore, the solution of the UCAV path-planning prob-
lem requires realistic models of these three subsystems. Although
the current literature offers models for each of them separately, there
is no approach that integrates models of the three subsystems in a
unified framework. The purpose of this paper is to propose such an
integrated model and present results on its use.

The UCAV considered in this paper is distinguished from the un-
manned aerial vehicle (UAV) by the mission it flies. Specifically, the
UCAV mission, such as suppression of enemy air defense, may dic-
tate more exposure to the SAM threat than a reconnaissance mission
flown by a UAV. The current literature does not distinguish between
mission types and uses the term UAV to refer to any unmanned aerial
vehicle. However, this paper addresses the problem of planning for
the high-threat mission and, therefore, uses the term UCAV.

Although the current literature on UAV path planning does not
contain models that integrate aircraft, radar, and missile subsystems,
a vast literature is available on each of these subsystems separately.
A brief review of standard relevant results in this literature is as fol-
lows. Modeling of aircraft dynamics and radar cross section (RCS)
have been widely discussed, for example, see Refs. 1–15 and the
references therein. In particular, the dependence of aircraft RCS on
aspect and bank angles is a well-documented phenomenon.16−18

Aircraft detection by a radar is treated as a random event de-
pending on the signal-to-noise ratio of the radar return.19−21 Air-
craft tracking by a radar after detection and missile guidance to
interception have been discussed in Refs. 22–25. The focus of
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the literature in this area is on the analysis and design of radar
systems.

The literature on UAV path planning can be divided in two groups.
The first group treats the problem under the assumption of isotropic,
that is, independent of aspect and bank angles, RCS, whereas the
second assumes nonisotropic RCS. Representative publications in
the first group include Refs. 1–11. Specifically, in Refs. 1–3, results
are presented on minimizing the total reflected energy received by
the radar, whereas in Refs. 4–7 using Voronoi diagrams for threat
avoidance is suggested. In Refs. 8–10 the method of singular per-
turbations is used, and in Ref. 11 wavelets are used to address three-
dimensional path planning, but without referring to variations in
RCS with aspect and bank angles. Coordinated planning for multi-
ple aircraft is treated in Refs. 2, 6, 7, and 11 using optimal resource
allocation techniques.

UAV path-planning problems with nonisotropic RCSs are consid-
ered in Refs. 12–15. Of these, in Ref. 12, a potential field is utilized
in the presence of multiple radars but a bank-to-turn model is not
used; in Ref. 13, both aircraft bank and yaw angles are optimized
within aerodynamic restrictions for a given route; in Ref. 14, virtual
forces are used but these forces are modified to account for varying
RCS; and in Ref. 15, the detection probability is modeled as being
dependent on azimuth, elevation, and slant range, but a bank-to-turn
model is not used. Hence, with the exception of Refs. 13 and 14,
none of the cited references account for the coupling between the
RCS and dynamics through the aspect and bank angles. Moreover,
only in Ref. 15 is the probabilistic nature of aircraft detection by a
radar taken into account.

The recent work of Misovec et al.15 merits special mention. They
treat path planning as a nonlinear optimization problem and present
numerical solutions. They feature a nonlinear trajectory-generation
method, based on sequential quadratic programming, which has the
capability to model temporal constraints. This allows the authors
to account for a condition called lock-loss, in which the radar sys-
tem loses track of the target after a specified time of no detection.
Although the model used in this work is quite accurate, it does not
use bank-to-turn kinematics and, therefore, does not account for
coupling between the RCS and aircraft dynamics.

The present work addresses this and other issues. Specifically,
the integrated model of the aircraft, radar, and missile subsystems
presented here has the following original features. First, the aircraft
RCS depends on both the aspect and bank angles. Moreover, the turn
rate of the aircraft is determined by its bank angle. Hence, the RCS
and aircraft dynamics are coupled through the aspect and bank an-
gles. Second, the probabilistic nature of radar tracking is considered.
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Specifically, a conservative estimate of the probability of tracking is
derived from the aircraft RCS and range. Third, the decision process
for launching a SAM and the requirement to maintain tracking dur-
ing missile flyout are also included. Specifically, the probability that
the UCAV is shot down is bounded from above by the probability
of tracking, averaged over a time interval of length Tresp + Tfo. Here,
Tresp is the response time of the radar and Tfo the flyout time of the
missile.

Based on this integrated model, the problem of UCAV path plan-
ning is formulated as a minimax optimal control problem, with
moving average functional, in which the aircraft lateral acceleration
serves as control. The current paper treats this optimization problem
and provides the following original contributions. Necessary con-
ditions of optimality for the minimax optimal control problem with
moving average functional are formulated. Based on these neces-
sary conditions, properties of the optimal paths are derived. Finally,
an efficient numerical optimization procedure is proposed that uses
the described properties of optimal paths.

Our results on UCAV path planning using this integrated model
are encouraging in that they confirm standard flying tactics. Indeed,
they suggest that, in the presence of SAM threats, an aircraft should
“deny range, aspect, and aim.”26

The remainder of the paper is as follows. In Sec. II, our model
is presented. In Sec. III the dynamic optimization problem is for-
mulated for threat avoidance. In Sec. IV, the necessary conditions
of optimality are used to characterize the optimal control, whereas
in Sec. V the qualitative properties of optimal paths using these
optimal controls are discussed. In Sec. VI, an efficient numerical
procedure that utilizes the properties of the optimal paths is de-
scribed, whereas in Sec. VII our results with several examples are
given. Section VII provides the conclusions. The necessary condi-
tions of optimality for the minimax problem formulated in Sec. III
are derived in Appendices A and B.

II. Modeling
In this section, the model we used throughout this paper is pre-

sented. The model consists of three subsystems: aircraft dynamics
and RCS, radar tracking, and missile launch and lethality. We present
in detail each of these subsystems.

A. Aircraft Model
The bank-to-turn aircraft is assumed to move in a horizontal plane

at a constant altitude according to the equations

ẋ = v cos ψ, ẏ = v sin ψ, ψ̇ = u/v, |u| < U (1)

where x and y are the Cartesian coordinates of the aircraft, ψ is the
heading angle as shown in Fig. 1, v is the constant speed, u is the
input signal and is the acceleration normal to the flight path vector,
and U is the maximum allowable lateral acceleration.

Fig. 1 Aircraft position, velocity, azimuth, heading, and aspect angles.

a) RCS as a function of aspect
angle

b) RCS as a function of bank
angle

Fig. 2 Dependence of RCS on aspect and bank angles.

Let

θ = arctan(y/x), λ = θ − ψ + π

φ = arctan
(
z
/√

x2 + y2
)

(2)

be the azimuth, aspect, and elevation angles, respectively, where z
is the aircraft altitude. (See Fig. 1 for a projection onto the x − y
plane.) Let the bank angle μ be given by

μ = arctan(u/g) (3)

where g is the acceleration of gravity.
We model the RCS of the aircraft as a function of the aspect angle

λ, the elevation angle φ, and the bank angle μ, so that

RCS = σ(λ, φ, μ) (4)

As an example, real aircraft RCS measurements as functions of
aspect and bank angles are shown in Fig. 2 (Ref. 13).

B. Radar Model
The radar model will be presented in terms of its inputs (aircraft

range and RCS) and output (an estimate of the probability that an
aircraft can be tracked for an interval of time).

For the sake of simplicity, assume that the radar is located
at the origin of the Cartesian coordinate system (x, y, z). Let
R = √

(x2 + y2 + z2) be the slant range from the radar to the air-
craft, that is, the aircraft range. The radar detects the aircraft by
receiving a sequence of radio frequency pulses reflected from it at
fixed observation times. The azimuth and range detected by the radar
serve as inputs to a tracking system, typically based on one or more
Kalman filters. The purpose of this tracking system is to provide
a predicted aircraft position and velocity so that a decision can be
made to launch a missile and guide it to intercept.

At each observation time, aircraft detection is probabilistic.18−21

A consequence of probabilistic detection is that tracking must be
considered probabilistic as well.22−24 It has been shown27 that the
instantaneous probability of tracking an aircraft is approximated by

Pt = 1
/[

1 + (
c2 R4

/
σ
)c1] (5)

where R is the slant range and σ is the RCS. The constants c1 and
c2 are defined by the type of radar, specifically by its power, signal
processing capability, and operational settings. Based on Eq. (5),
the estimated probability that the radar tracks the aircraft over an
interval [t − �T, t] is

1

�T

∫ t

t − �T

Pt (τ ) dτ (6)

C. Missile Model
Before missile launch, the radar must continuously track the air-

craft during some response time Tresp. For example, the Russian
SA-6 system is documented as having a response time of 20–22 s
(Refs. 28 and 29).
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Table 1 Model parameters

Parameter Meaning

Aircraft
v Speed of aircraft
σ(λ, φ, u) RCS function
U Maximum allowable bank angle

Radar
c1, c2 Tracking constants
Tresp Radar response time

Missile
Tfo Missile flyout time

After launch, accurate missile guidance requires that the radar
system maintain track on the aircraft during the time of flight of the
missile.25 Assume that the launch site of the missile is collocated
with the radar, and let R be the aircraft range at the time the missile
is fired and vm be the average missile speed. When it is assumed that
the aircraft range does not change significantly while the missile is
in flight, the missile flyout time is given by

Tfo = R/vm (7)

Although Tfo depends explicitly on R and vm , for the sake of sim-
plicity, we assume in this paper that Tfo is a constant.

If the radar system loses track of the UCAV during the response
time, a missile will not be launched unless the UCAV is again tracked
for an interval of Tresp. Similarly, if the radar system loses track of the
UCAV during missile flyout, then another missile must be launched.
Furthermore, this missile launch occurs only after the UCAV is again
tracked for an interval of Tresp. Hence, for the UCAV to be shot down
at time t , the radar system must have continuously tracked the UCAV
during the interval [t − (Tresp + Tfo), t].

Let Pd(t) be the probability that the UCAV will be shot down
at time t , and define the threat window as T

�= Tresp + Tfo. Because
downing of the aircraft at time t requires continuous tracking over
the time interval [t − T, t], expression (6) yields

Pd(t) ≤ 1

T

∫ t

t − T

Pt (τ ) dτ (8)

that is, the probability that the UCAV be downed at time t is bounded
from above by the probability that, just before time t , it be tracked
over a time interval whose length is the threat window.

D. Model Summary
In summary, our integrated model of the aircraft–radar–missile

system is as follows. The lateral acceleration u determines the posi-
tion of the aircraft through Eqs. (1), its aspect angle through Eqs. (2),
and its bank angle through Eq. (3). The aspect, bank, and elevation
angles determine the RCS through Eq. (4). The RCS and range de-
termine the instantaneous probability of tracking through Eq. (5).
Averaging the probability of tracking over the threat window through
inequality (8) provides an upper bound on the probability that the
UCAV is shot down.

As follows from Eqs. (1–8), the integrated model is specified by
one functional and six numerical parameters listed in Table 1.

The preceding dynamic model can be made nondimensional by
normalizing the aircraft speed as v = 1 and the threat window as
T = 1.

III. Problem Formulation
A. Mission Description

The missions considered in this paper are to fly from a given initial
location to a given destination, in a given mission time TM , while
avoiding being downed by radar-guided SAMs. Our formulation
allows the specification of a sequence of waypoints that the UCAV
must fly over. The heading angles of the UCAV at the waypoints
and the flight times between consecutive waypoints may be free or
given. Hence, the mission is specified by initial and final conditions,
mission time, waypoints, and flight times between waypoints.

B. Dynamic Optimization Problem
Inequality (8) provides the motivation for the dynamic optimiza-

tion problem that we pose and solve in this paper. We seek to min-
imize the maximum with respect to time of the right-hand side of
inequality (8) subject to aircraft dynamics and boundary conditions.
In other words,

min
u

max
t ∈ [0,TM ]

1

T

∫ t

t − T

Pt (τ ) dτ (9)

subject to Eqs. (1–5) and boundary conditions, including initial con-
ditions, final conditions, and waypoints.

Clearly, a small value of objective function (9) guarantees, as per
inequality (8), a safe flight path, that is, one in which the probability
that the UCAV be downed is small at all times.

IV. Optimal Control
In this section, we use the necessary conditions of optimality

for the minimax problem with moving average functional to derive
qualitative properties of aircraft optimal control and characteristics
of the optimal trajectory.

A. Application of Necessary Condition
The necessary conditions of optimality for minimax optimization

problem (9) are derived in Appendices A and B. Here we apply
these necessary conditions to problem at hand. To accomplish this,
augment the state space of Eqs. (1) with

ξ̇ (t) = [Pt (t) − Pt (t − T )]/T (10)

Then problem (9) becomes

min
u

max
t ∈ [0,TM ]

ξ(t) (11)

subject to Eqs. (1–5) and boundary conditions, including initial con-
ditions, final conditions, and waypoints.

The resulting system, with states [x, y, ψ, ξ ]T , is the same as that
of Eqs. (1), with the addition of a state described by the time-delay
differential equation (10). The Hamiltonian for this problem is

H = px (t)v cos ψ(t) + py(t)v sin ψ(t) + pψ(t)[u(t)/v]

+ pξ {[Pt (t) − Pt (t − T )]/T } (12)

where px , py , pψ , and pξ are the costates.
We now consider the case in which the maximum occurs at a finite

number of isolated points t1, t2, . . . , tk , although similar arguments
apply, with minor changes, to the case that the minimax occurs over
finite intervals. As shown in Appendices A and B for the case of
isolated maxima, the necessary conditions of optimality define two
different optimization problems. Each will be addressed in turn.

B. Optimization Problem 1
Let ti be the time at which ξ(t) achieves a maximum. We refer to

the optimization problem during the interval [ti −T, ti ] as optimiza-
tion problem 1. For this problem, the costate equations become

ṗx = μi

T

∂ Pt (t)

∂x
, ṗy = μi

T

∂ Pt (t)

∂y

ṗψ = px (t)v sin ψ(t) − py(t)v cos ψ(t) + μi

T

∂ Pt (t)

∂ψ
, ṗξ =0

(13)

and when ∂ Pt/∂u �= 0, the optimal control is found as the solution
to

pψ

v
− μi

T

∂ Pt

∂u
= 0 (14)

where μi > 0 and

k∑
i = 1

μi = 1
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When ∂ Pt/∂u = 0, the optimal control is found by maximizing
H , that is, by choosing

u = U sign(pψ) (15)

In addition, a singular solution is possible when pψ = 0 and ṗψ = 0.
This occurs when

px (t)v sin ψ(t) − py(t)v cos ψ(t) + μi

T

∂ Pt (t)

∂ψ
= 0 (16)

As an example, if the current state [x, y, ψ, ξ ]T results in
∂ Pt (t)/∂ψ = 0 and if

tan ψ = py/px (17)

then the condition for a singular solution is satisfied. Thus, when
∂ Pt/∂u = 0, the optimum control is either bang–bang, as given by
Eq. (15), or bang–singular–bang when a singular condition exists,
as in Eq. (16).30 On the other hand, if the current state results in
∂ Pt (t)/∂u �= 0, the optimal control is defined by Eq. (14).

We will say that when the necessary conditions of optimization
problem 1 apply, the aircraft is under threat.

C. Optimization Problem 2
Let [t j , t ′

j ] be an interval that is disjoint from any interval
[ti −T, ti ] described in optimization problem 1. We refer to the opti-
mization problem during the interval [t j , t ′

j ] as optimization problem
2. During any such interval, the costate equations are

ṗx = 0, ṗy = 0

ṗψ = px (t)v sin ψ(t) − py(t)v cos ψ(t), ṗξ = 0 (18)

The optimal control is either bang–bang as in Eq. (15), or singular
if pψ = 0 and

px (t)v sin ψ(t) − py(t)v cos ψ(t) = 0 (19)

However, this equation is just equivalent to

tan ψ = py/px (20)

Thus, during any interval [t j , t ′
j ] described in this optimization prob-

lem, the optimal control is always bang–bang or bang–singular–
bang.

We will say that when the necessary conditions of optimization
problem 2 apply, the aircraft is not under threat.

V. Properties of Optimal Paths
The exact solution of problem (9) requires that the times ti when

the isolated maxima occur, as well as the boundary conditions at the
beginning and end of each interval [ti − T, ti ], be selected optimally.

Unfortunately, the necessary conditions do not indicate how these
times or boundary conditions are to be chosen. Thus, the necessary
conditions of optimality do not define a unique candidate for the
solution of problem (9). Additionally, an exact solution requires
knowledge of the aircraft RCS because Pt depends on this func-
tion. In spite of these limitations, it is possible to characterize the
qualitative properties of optimal controls for the two optimization
problems and use these properties to develop an efficient numerical
optimization method.

A. Qualitative Properties for Optimization Problem 1:
Aircraft Under Threat

The purpose of this subsection is to show that when the aircraft
is under threat, the optimal control is practically bang–bang. When
optimization problem 1 applies, consider the following assumptions,
which simplify the problem enough to determine the qualitative
nature of the trajectory.

Fig. 3 Pt vs RCS.

1) Assume ∂ Pt/∂u = 0 from the nose or tail aspect.
2) Assume from any aspect angle other than the nose or tail the air-

craft RCS increases monotonically as the magnitude of bank angle
increases. Additionally, ∂σ/∂μ = 0 at μ = 0.

3) Assume Pt is a saturation function of RCS. [See Fig. (3) where
the saturation function and the exact expression (5) are shown.] The
effect of this approximation is to set ∂ Pt/∂σ ≡ 0, hence, ∂ Pt/∂u ≡ 0,
for all but a small range of values of σ .

Under these conditions, the optimal control necessarily has the
following properties:

1) If pψ �= 0 when flying directly toward or away from a radar,
then a turn must be initiated using maximum bank. Indeed, because
∂ Pt/∂u = 0, and pψ �= 0, the control is bang–bang by Eq. (15)

2) If pψ �= 0 and Pt = 1 when flying straight, then a turn must be
initiated using maximum bank. Indeed, the fact that Pt = 1 during
straight flight indicates ∂ Pt/∂u = 0 for all μ. Because pψ �= 0, the
control is bang–bang by Eq. (15).

3) When pψ = 0, no turn is required. Indeed, if pψ = 0 then
∂ Pt/∂u = 0 by Eq. (14). Two conditions that satisfy this require-
ment are when μ = 0 or when Pt , as a function of RCS, is saturated.
In either case, μ = 0 satisfies the necessary conditions.

B. Qualitative Properties for Optimization Problem 2:
Aircraft Not Under Threat

The purpose of this subsection is to show that when the aircraft
is not under threat, the optimal trajectory may be chosen as a se-
quence of maximum rate turns connected by intervals of straight
flight. When the aircraft is not under threat, the necessary condi-
tions are given by Eqs. (18). They are equivalent to the optimal
control problem that results from setting Pt = 0 in the Hamiltonian
(12). When the same reasoning as earlier is used the control is either
bang–bang or bang–singular–bang with singular control occurring
when

tan ψ = py/px (21)

Because, in this case, the cost functional is independent of the control
input, there is no unique solution. However, we choose to treat this
as a minimum-time problem because this results in the minimum
path length, which has the same necessary conditions. Waypoints
are treated as interior-point state constraints that necessitate jump
discontinuities in px , py , and pψ (Ref. 30).

One solution to such a problem is to fly straight from one waypoint
to the next, turning with the maximum possible bank after overfly-
ing the current point. While flying straight, we meet the condition
tan ψ = py/px and choose u = 0. When overflying a waypoint, jump
discontinuities in px , py , and pψ necessitate the use of maximum
bank until heading toward the next point and again meeting the
condition for straight flight.
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VI. Numerical Procedure
The discussion in Sec. V suggests that a reasonable suboptimal

trajectory might be achieved by using only zero bank or maximum
bank. As a result, our numerical method for solving the dynamic op-
timization problem (9) is as follows. The optimization is assumed to
occur over the interval [0, TM ]. An initial path is chosen by specify-
ing a series of waypoints and control points. We distinguish between
these two by requiring that waypoints be fixed, whereas control
points are allowed to move as required for optimality.

The path is determined by requiring overflight of each point, in
turn. Overflight of control points is followed by a maximum bank
turn to roll out on a heading toward the next point. Turns at waypoints
are not required. We then treat the coordinates of the control points
as inputs to a finite dimensional, nonlinear programming problem,
which we solve numerically using the MATLAB® Optimization
Toolbox function fminimax.

In our experience, the optimization problem (9) typically pos-
sesses several local minima, and the particular minimum to which
the algorithm converges depends on the initial choice of control
points. A good initial choice of these control points requires heuris-
tic expertise, which can be codified in a variety of forms, such as
rule-based or table look-up. The development of this initialization
module is a subject of future work. For the examples that follow,
convergence typically occurred within 35 iterations, with each itera-
tion requiring approximately 2 s on a 300-MHz, Pentium II personal
computer.

VII. Numerical Optimization Results
A. RCS Example

A simplified example of an RCS model for an aircraft is that
of an ellipsoid. Although this model does not represent the RCS
of a particular aircraft, it captures three important characteristics:
1) relatively small frontal RCS, 2) larger beam aspect RCS, and
3) relatively large RCS when viewed from above or below.

Following Ref. 18, the RCS of an ellipsoid is given by

σ(λ, φ, μ) = πa2b2c2(
a2 sin2 λe cos2 μe + b2 sin2 λe sin2 μe + c2 cos2 λe

)2

(22)

λe = arccos[cos(φ) cos(λ)] (23)

μe = μ − arctan

[
tan(φ)

sin(λ)

]
(24)

Future research will consider other models that may better approx-
imate actual aircraft RCS. Note, however, that actual aircraft RCSs
are often classified.

B. Common Parameters
The aircraft model assumes that the UCAV has a constant speed

of v = 252 m/s (0.8 M) and its RCS, in Fig. 4, is characterized by
the parameters (a, b, c) = (0.3172, 0.1784, 1.003). The maximum
bank angle is U = 78.5 deg and corresponds to a 5-g level turn. The
radar model assumes that all radars have a response time Tresp = 30 s
and a fixed missile flyout time Tfo = 30 s. Hence, the threat window
of the radar–missile subsystems is 1 min. Numeric calculation will
use the approximation for Pt in Eq. (5). The aircraft altitude is set
to z = 15.1 km and the mission time TM is assumed to be 750 s.

C. Scenario 1
1. Mission Specifications

This mission is specified in terms of the radar position, initial
UCAV position and velocity vector, waypoints, destination, and
the arrival time at each position. Here, and in subsequent sce-
narios, the distance is expressed in kilometers, time is in sec-
onds, and speed is in meters per second. Specifically, we as-
sume radar position = (0, 0); initial position A = (−100, −12),
t = 0; initial velocity (vx , vy) = (252, 0); waypoint B = (−74.1, 0),

a) UAV RCS as function of aspect angle

b) UAV RCS as function of bank angle

Fig. 4 Dependence of UCAV RCS on aspect and bank angles.

Fig. 5 Optimal path based on model (1–8).

t = 135.0; waypoint C = (−51.9, 52.3), t = 522.0; and destination
D = (−31.3, 96.9), t = 750.0.

2. Optimal Path
Using these mission specifications and the optimization approach

outlined in Sec. VI, we have calculated the optimal path shown in
Fig. 5. In Fig. 5 and subsequently the following conventions are
used.
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1) Initial position, waypoints, and destination are alphabetically
labeled large circles, whereas control points are small circles. Under
some circumstances, a turn is required at a waypoint, that is, we treat
the waypoint as a fixed control point. In this case, concentric large
and small circles are used.

2) Radar position is shown by a diamond.
3) The range at which Pt = 0.5, for a target with RCS σ = 1 m2,

is scenario dependent and is shown by a dashed arc of circle.
4) The UCAV ground track is shown by a solid line.
5) The instantaneous Pt is indicated by the darkness of a line of

sight from the radar toward the aircraft as shown in the legends.
On the optimal path, the maximum value of inequality (8) is

0.159, confirming its safety. The optimal path, shown in Fig. 5,
corroborates the tactical recommendation given to fighter pilots fac-
ing SAM threats: “deny range, aspect, and aim.”26 Indeed, consider
the BC leg: Range is denied by flying as far from the radar as the time
constraint allows; aspect is denied by avoiding, as much as possible,
to show the larger RCS beam aspect; aim is denied by making the
periods of time, during which the UCAV is continuously tracked,
short.

This scenario exhibits a characteristic property of optimal paths
for aircraft with non-uniform RCS under threat: The optimal trajec-
tory exploits weaving maneuvers to avoid long continuous exposure
of aspects with large RCS. This property is observed in all scenarios
considered to date.

D. Scenario 2
1. Multiple-Radar Performance Index

When multiple radars are present, the optimization problem (9)
must be modified. If there are two radars, and they operate inde-
pendently, then the UCAV must minimize the maximum value of
the integral in problem (9) for each radar at each instant of time.
Let i ∈ {1, 2} represent the enumeration of the radars. Then the
optimization problem is

min
u

max
t ∈ [0,TM ]

max
i ∈ {1,2}

1

T

∫ t

t − T

Pt i (τ ) dτ (25)

subject to Eqs. (1–5) and boundary conditions, including initial con-
ditions, final conditions, and waypoints, where Pt i is the probability
that the UCAV is tracked by radar i .

2. Mission Specifications
Radar 1 is located at (0, 25) and radar 2 is located at (0, −25), that

is, the separation is 50 km. The initial position A = (−55,0), t = 0;
destination B = (55, 0), t ≤ 750; and flight path must pass between
the radars.

3. Optimal Path
An optimal path for this mission is in Fig. 6. The maximum value

of inequality (8) is 0.0948 for both radars 1 and 2. The flight time
between A and B is 477.0 s.

4. Comparison with the Literature
One recommended method for selecting a path between radars is

to maximize the minimum distance to each of them 4−7. The result
is a path that follows the boundaries of a Voronoi diagram, that is,
it is equidistant from the closest radars. Our comparison is in Fig. 7
and meets the specifications for scenario 2. The recommended path
is the perpendicular bisector of the line connecting the two radars.

Under the assumptions of our model, this recommended path
results in a high probability that the UCAV is downed. As can be
seen in Fig. 7, the instantaneous value of Pt remains high for quite
a long time. This results in a high value for the right-hand side of
inequality (8), which is identical for both radars and equals 0.9644.
The danger of this path is due to the long exposure of a relatively
large RCS to both radars.

Our model accounts for the combined effects of nonisotropic
aircraft RCS, the coupling between aircraft dynamics and the RCS
presented to each radar the radars’ tracking capabilities, and the

Fig. 6 Optimal path between two radars separated by 50 km.

Fig. 7 Flight path based on Refs. 4–7.

requirement for the radars to maintain tracking before missile launch
and during missile flyout. In our experience, any failure to account
for these effects yields paths that may lead to long exposures of
relatively large RCS, thereby being unacceptably dangerous.

E. Scenario 3
1. Motivation and Specifications

The preceding two scenarios assumed that the location of each
threat was known at the time the path was planned. We now consider
the case where the location or even the existence of a threat cannot be
determined during mission planning, but this information becomes
available during the mission.

Our scenario assumes two radars and that the existence and loca-
tion of one of them are known. The solution to problem (9) yields an
optimal path considering this single radar threat. During the mission,
however, the other radar is detected. The problem then becomes one
of optimizing the path from the point of detection forward to the des-
tination, taking into account this new pop-up threat, that is, solving
problem (25). The critical question to be answered is whether the
mission can still be safely accomplished, satisfying all constraints.
A secondary question is whether relaxing a constraint, for example,
allowing the UCAV to bypass a waypoint or arrive at the destination
late, would allow the mission to be completed on a safer path. Most
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important, these questions must be answered, and the new flight path
must be determined, quickly. These questions will be considered in
two separate cases.

Formally, the specifications for this scenario are as follows. The
pop-up threat, radar 1, is located at (0, 25) and is detected at
t = 146.5; radar 2, known at the time of mission planning, is located
at (0, −25); initial position A = (−55, 0), t = 0; and destination
B = (55, 0), 146.5 < t ≤ 750.

2. Optimal Path Based on a Single Radar
An optimal path, considering only radar 2, is shown in Fig. 8. It is

safe in that the optimization of problem (9) yields a value of 0.0082.
The flight time from A to B is 566.7 s.

3. Case 1
In this case, we consider the arrival time at the destination fixed

at the value determined by the initial optimal path. A new path, op-
timized to account for radar 1, is shown in Fig. 9. The optimization
routine need only replan the path between the point of detection and
the destination. This new path is not as safe as the original path, with
optimization of problem (25) yielding 0.6025. Furthermore, replan-
ning required selection of a new initial path for the optimization
routine.

Fig. 8 Initial optimal path.

Fig. 9 Replanned path with timing constraint.

Fig. 10 Initial optimal path and replanned path with no timing
constraint.

In the case of an actual pop-up threat, the selection of a new path
and the subsequent replanning process may require more time than
is available inflight while the UCAV is subject to the threat of radar
1. Therefore, we consider another case with free arrival time.

4. Case 2
In this case, we assume that the arrival time at the destination

is not fixed. We would like to know whether a path can be found
that is safer than the new path shown in Fig. 9. Additionally, we
would like to know this answer quickly. We know, from scenario
2, that the optimal path between two radars separated by 50 km is
as shown in Fig. 6. This path information could be stored onboard
the UCAV. When radar 1 is detected, replanning would be based
on the stored information. The optimization routine need only find
a safe path from the point when radar 1 is detected to any point
on the stored path. Because this inflight optimization is done over
a relatively short connecting path consisting of two control points,
this can be done more quickly. Such a resulting replanned path is
shown in Fig. 10. Notice that the stored optimal path originally
shown in Fig. 6 is now shown as a series of waypoints where turns
are required (concentric circles). These points cannot be changed
by the optimization algorithm. The two control points subject to
optimization are the ones depicted by small circles.

In this example, the flight time from A to B on the new path is
686.1 s, or 119.4 s longer than before. However, only two control
points needed to be optimized. The time required to replan was
reduced by a factor of 10. Additionally, this new path is much safer
than that of the earlier example, with optimization of problem (25)
yielding 0.0948 as it was in scenario 2.

Case 2 demonstrates another method for inflight replanning that
is more responsive to changes in the threat. Because we used stored
information from scenario 2 as an initial path, we were able to replan
a new path much more quickly than if we had to consider the entire
path to the destination. This suggests that a scheme of precalculat-
ing and storing the optimal paths for a variety of conditions, then
recalling the information when needed, may allow quicker flight
planning than recalculating the entire optimal path for each change
in the threat.

VIII. Conclusions
We have presented a new, integrated model for optimal path plan-

ning for UCAVs in the presence of radar-guided missile threats.
This model accounts for the combined effects of nonisotropic air-
craft RCS, the coupling between aircraft dynamics and the RCS
presented to a radar, the radar’s tracking capability, and the require-
ment for the radar to maintain tracking before missile launch and
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during missile flyout. The danger to the UCAV for a given path is
quantified as an upper bound on the probability that the radar is able
to track the UCAV long enough to guide a missile to intercept. On
the basis of this model, a major conclusion of the present study is
that an accurate quantification of the danger to the UCAV indeed
requires accounting for the combination of the effects outlined.

Our analysis has also shed light on properties of optimal paths,
that is, paths that minimize the danger to the UCAV. These properties
have been shown to enable discretized approximation of the paths
and to facilitate efficient numerical optimization.

Most important, this paper provides a scientific basis for the flying
tactics inculcated to combat pilots. Indeed, optimal flight paths deny
range, aspect, and aim by avoiding long exposures of aspects with
large RCS.

Appendix A: Summary of Results Derived
in Reference 31

We begin by summarizing in Appendix A the necessary con-
ditions of optimality for the minimax optimal control problem as
developed in Ref. 31 and applied in Refs. 32–35. Results are then
extended in Appendix B to the moving average functional used in
this paper.

Let F[x(t)] be a function depending on the states x of a dynamic
system

ẋ = f (x, u) (A1)

where u is a scalar control defined over a time interval [t0, t f ]. The
boundary conditions are

x(t0) = x0 (A2)

ω f [x(t f )] = 0 (A3)

where t f can be given implicitly by Eq. (28) or explicitly. The min-
imax optimal control problem is stated as

min
u

max
t ∈ [t0,t f ]

F[x(t)] (A4)

Conditions for existence of a solution to problem (A4) are well
known in the literature36 and will not be restated here. Additionally,
we recognize, as has been documented,31 that the minimax solution
is generally not unique.

The approach in Ref. 31 is to augment the states of the system
with

ẋn + 1 = 0 (A5)

then minimize the constant xn + 1 subject to the inequality constraint

F[x(t)] − xn + 1 ≤ 0, t0 ≤ t ≤ t f (A6)

Note that minimizing xn + 1 and satisfying the constraint (A6) ac-
count for the minimization and maximization in problem (A4). This
approach transforms the minimax optimization problem (A4) into a
Mayer-type optimal control problem subject to the inequality con-
straint (A6), for which necessary conditions are readily available
(see Ref. 37). The Hamiltonian for such a problem is

H(x, p, u) = pT f (x, u) + pn + 1 fn + 1(x, u)

= pT f (x, u) (A7)

because fn + 1(x, u) = 0 by Eq. (30).
The necessary conditions of optimality require the consideration

of two cases. In the first case, the maximum value of F(x) occurs at a
finite number of isolated points, whereas in the second, it occurs over
some finite intervals, that is, a flat maximum. In other words, this
means that, in the first case, equality (A6) is achieved at a set of iso-
lated points, whereas, in the second case, equality is achieved on a set
of intervals. A solution may have instances of both cases. The neces-
sary conditions differ for these two cases, and it must first be deter-
mined which case takes place before the conditions can be applied.

For the first case, suppose that, for an optimal pair u(t) and x(t),
t0 ≤ t ≤ t f , F[x(t)] attains its maximum k times at isolated points
t1, t2, . . . , tk . Then, according to Ref. 31, there exists an adjoint
vector p(t) such that the following conditions are satisfied:

ṗ(t) = −∂ H

∂x
, t ∈ [t0, t1)(t1, t2), . . . , (tk, t f ] (A8)

H(x, p, u) = max
v ∈ U

H(x, p, v) = C (A9)

p
(
t+
i

) = p
(
t−
i

) + μi

[
∂ F(x)

∂x

]
(A10)

pn + 1

(
t+
i

) = pn + 1

(
t−
i

) − μi (A11)

k∑
i = 1

μi = 1 (A12)

μi > 0, i = 1, 2, . . . , k (A13)

where C in Eq. (A9) is a constant and is equal to zero if t f is
unspecified.

For the second case, suppose F(x) attains its maximum value over
the intervals (t1, t ′

1), . . . , (tk, t ′
k). Assume that the so-called regular-

ity condition is met, that is,

∂ Ḟ(x, u)

∂u
�= 0, ∀t ∈ (ti , t ′

i ), i = 1, . . . , k (A14)

Then, in accordance with Ref. 31, outside the intervals
(t1, t ′

1), . . . , (tk, t ′
k), Eqs. (A8) and (A9) apply. During the intervals

(ti , t ′
i ), the necessary conditions of optimality are

ṗ(t) = −∂ H

∂x
+ νi

[
∂ Ḟ(x, u)

∂x

]
(A15)

H(x, p, u) = max
v ∈ ωi (x)

H(x, p, v) = C (A16)

where νi (t) is a scalar function satisfying

∂ H(x(t), p(t), u(t))

∂u
= νi (t)

[
∂ Ḟ(x(t), u(t))

∂u

]
(A17)

Furthermore, the jump conditions given by Eqs. (A10–A13) remain
applicable.

Appendix B: Extension to Moving Average Functional
The minimax optimal control problem with moving average func-

tional is stated as

min
u

max
t ∈ [t0,t f ]

1

T

∫ t

t − T

ρ[x(τ ), u(τ )] dτ (B1)

where x(t), u(t), and [t0, t f ] are as in Eqs. (A1–A4), ρ[x(t), u(t)] ≥
0 is a cost function, and T is the time interval over which the moving
average is considered.

To obtain the necessary conditions, we augment the state space
with two new components,

ẋn + 1 = ρ{[x(t), u(t)] − ρ[x(t − T ), u(t − T )]}/T (B2)

ẋn + 2 = 0 (B3)

Clearly,

xn + 1 = 1

T

∫ t

t − T

ρ[x(τ ), u(τ )] dτ (B4)
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and the optimization problem becomes

min
u

max
t ∈ [t0,t f ]

xn + 1 (B5)

Analogously to the method in Appendix A, we minimize xn + 2

subject to the inequality constraint

xn + 1 − xn + 2 ≤ 0 (B6)

Our system differs from that of Appendix A because we include the
time-delay differential equation (B2).

In summary, the resulting Mayer-type optimal control problem is
as follows:

min xn + 2 (B7)

subject to

ẋ = f (x, u) (B8)

ẋn + 1 = {ρ[x(t), u(t)] − ρ[x(t − T ), u(t − T )]}/T (B9)

ẋn + 2 = 0 (B10)

u(t) ∈ U (B11)

and the inequality constraint

xn + 1 − xn + 2 ≤ 0 (B12)

with boundary conditions

x(t0) = x0 (B13)

ω f (x f ) = 0 (B14)

ρ[x(τ ), u(τ )] given, −T ≤ τ ≤ 0 (B15)

xn + 1(t0) = 1

T

∫ 0

−T

ρ[x(τ ), u(τ )] dτ (B16)

xn + 2(t0) free (B17)

In general, the necessary conditions for this problem have been
derived in Ref. 38. However, to obtain these conditions in a form
more convenient for the current study, we rederive them.

Introduce the Hamiltonian,

H = pT f (x, u)+ pn + 1(({ρ[x(t), u(t)]−ρ[x(t −T ), u(t −T )]}/T ))

(B18)

When xn + 1 − xn + 2 < 0, standard results of optimal control with
time delay37,39 give

ẋ = ∂ H

∂p
(B19)

ẋn + 1 = {ρ[x(t), u(t)] − ρ[x(t − T ), u(t − T )]}/T (B20)

ẋn + 2 = 0 (B21)

ṗ = − ∂

∂x
H(·) − ∂

∂xd
H(·, s)|s = t + T , t0 < t < t f − T (B22)

= − ∂

∂x
H(·), t f − T < t < t f (B23)

ṗn + 1 = 0 (B24)

ṗn + 2 = 0 (B25)

where the subscripted variable xd indicates differentiation with re-
spect to the delayed states. It is possible to rewrite the expression
for the costate dynamics, Eqs. (B22), in the form

ṗ = −∂
(
pT f (x, u)

)
∂x

+ ∂ρ(x(t), u(t))

∂x

[
pn+1(t + T ) − pn+1(t)

]
T

t0 < t < t f − T (B26)

The optimal control u(t) maximizes H and is found as the solution
to

∂
[
pT f (x, u)

]
∂u

= ∂ρ[x(t), u(t)]

∂u
[pn + 1(t + T ) − pn + 1(t)]

T
(B27)

when the indicated partial derivatives are nonzero. Thus, the state
and costate dynamics are given by Eqs. (B19–B26) whereas the
optimum control is given by Eq. (B27).

Consider now the first of the two cases presented in Appendix A,
that is, when xn + 1 − xn + 2 = 0 at a finite number of isolated points
t1, t2, . . . , tk . We have that the costate equations (B26) apply during
t ∈ [t0, t1)(t1, t2), . . . , (tk, t f ], and Eq. (A9) holds. Recognize that
the inequality constraint (A6) in Appendix A is equivalent to that
of inequality constraint (B12), so that F(x) is simply xn + 1. Thus,
∂ F(x)/∂x of Eq. (A10) is given by

∂ F(x)

∂x
= [0, 0, . . . , 0, 1, 0]T (B28)

and the jump conditions of Eq. (A10) are

p+
n + 1 = p−

n + 1 + μi (B29)

where Eqs. (A12) and (A13) hold.
It is possible to simplify Eqs. (B26) and (B27) by recognizing

Eq. (B29) implies

[pn + 1(t + T ) − pn + 1(t)] = μi , ti − T < t ≤ ti (B30)

[pn + 1(t + T ) − pn + 1(t)] = 0, else (B31)

This result is significant because it indicates that the necessary con-
ditions switch between two optimization problems: For each isolated
maximum occurring at ti , while ti − T < t ≤ ti , Eqs. (B26) and (B27)
are

ṗ = −∂[pT f (x, u)]

∂x
+ μi

T

∂ρ[x(t), u(t)]

∂x
(B32)

∂[pT f (x, u)]

∂u
= μi

T

∂ρ[x(t), u(t)]

∂u
(B33)

On the other hand, when outside of all intervals (ti − T, ti ],
Eqs. (B26) and (B27) become

ṗ = −∂[pT f (x, u)]

∂x
(B34)

∂[pT f (x, u)]

∂u
= 0 (B35)

The interpretation of these two optimization problems is that, from
ti − T to ti , the solution is equivalent to the standard Lagrange op-
timal control problem,

min
u

μi

T

∫ t

t − T

ρ[x(τ ), u(τ )] dτ (B36)

which would result in an equivalent Hamiltonian,

H1 = pT f (x, u) − (μi/T )ρ[x(t), u(t)] (B37)

where the subscript 1 on H indicates that it would apply to the first
optimization problem.
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The second optimization problem occurs when not in the interval
(ti − T, ti ]. For this problem, the necessary conditions do not contain
the cost function ρ[x(t), u(t)] and would result in an equivalent
Hamilonian,

H2 = pT f (x, u) (B38)

where the subscript 2 on H indicates that it would apply to the
second optimization problem. Note that this Hamiltonian is that of
a minimum-time problem with interior-point constraints at times
ti − T and ti . Because Eqs. (B34) and (B35) do not contain the cost
function ρ[x(t), u(t)], singular solutions are possible.

It is possible to consider the case that F(x) attains it maximum
over some finite intervals (t1, t ′

1), . . . , (tk, t ′
k), as in Appendix A for

systems without time delay. Details may be found in Ref. 27, but
will not be presented in this paper.

As has been shown, the necessary conditions for the minimax
of a moving average functional are natural extensions of those that
apply to a functional without time delay.

For the case of an isolated maximum, the necessary conditions
can be summarized by the following observations.

1) For t ∈ (ti − T, ti ], where ti is the time that an isolated max-
imum occurs, the quantity [pn + 1(t + T ) − pn + 1(t)] = μi and the
necessary conditions are identical to those of a Lagrange optimal
control problem with fixed boundary conditions.

2) For t not in an interval (ti − T, ti ], the cost function is not
considered in the equations for necessary conditions.
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