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Abstract

The possibility of improving aircraft cruise
by periodic motion is investigated for subsonic
alrcraft with jet engines. A realistic point-mass
wmodel is formulated and the potential for improve-
ment Iin specific range 1s studied using analytical
and computational techniques. The methods of
analysis, which are based on special classes of
trajectories, give results which support those ob-
tained previously using a less realistic energy-
state model. Specifically, significant improve~
ments are possible if a constraint is imposed on
the maximum altitude. This conclusion is further
substantiated by the computation of optimal periodic
trajectories for a wide variety of aircraft char-
acteristics and constraint altitudes. Conditions
which favor significant improvement are: large
thrust reserve at the constraint altitude, reason-
ably high lift-to-drag ratio, low constraint alti-
tude, and low wing loading. The trajectory opti-~
mization algorithm, which 1s described in some
detall, is especially efficient and may be useful
in other applications.

Nomenclature .
A Amplitude of sinuscidal motion
CDo Viscous drag coefficient
C1, Lift coefficient
CL Lift coefficient for maximum lift-to~drag
‘D, (D) Aerodynamic drag, (scaled)
E, (E) Energy-height, (scaled)
g Acceleration duye to gravity
Gl,G2 = o descent and ascent ares of two-piece -
- analysis
h, (h) Altitude, (scaled)
hm Maximum altitude constraint
hs Scale height
i _ Cost integrand less dv/dx
J, (I Cost function
bt L
J, {3} Augmented cost function (5.4)
k Order of polynomial spline
K Induced drag coefficient
Kl Velocity scale factor
K2 Distance scale factor "
K Cost scale factor
L (_) Lift, (scaled)
m, (m) Vehicle mass, (scaled)
N Rumber of points on a spline

This research was supported by the Air Force Office
of Scientific Research, AF Systems Command, USAF,
under Grant AFOSR-77-3158.

*
Professor, Department of Aerospace Engineering.

Y Member of Technical Staff, Defense and Space

Systems Group. This work was performed while at
the University of Michigan.

Copyright © American Institute of Aeronautics and
Astronautles, Inc., 1981, All rights reserved.

Cilberp
The University of Michigan,: Ann Arbor, Michigan 48109

1l

L ————

19

t

S _  Wing area

t, (£t} Time, (scaled)

T, (T) Thrust, (scaled)

'I‘H Maximum thrust limit

E:s 48/Y3, scaled optimal steady-state thrust
v, ﬁb Velocity, (scaled)

v Speed for maximum endurance

W ._ Vehicle weight
%, (x) Range, (scaled)
X Range period (scaled)
X, °  Range for minimum altitude of piecewise
1
linear function
[V} Angle of attack .
B Inverse of non-dimensional scale height
Y Flight path angle
8 1/2 min (D/L)
£ Thrust offset angle
in Penalty coefficient
P Atmospheric density
Py Atmospheric density at reference altitude
6, (@) Thrust-speciflc~fuel-consumption {scaled)
T Time period
0w Frequency of sinusoidal motlon
v Velocity set
Subscripts
( )RSS Relaxed Steady State value
( )SS Steady-state value
( )i Denotes which linear piece:
l=descent, Z=ascent
( )o Reference value
(), Haximm value
' Superscripts
) Implies scaled variable
( )* Implies optimum with respect to
: Specific Range
(» Implies d{ )/dx
(G Implies d( )/dt ,

1. Introduction

For many years, it was generally assumed that
fuel-optimal, fixed-range aircraft trajectories con-~
sist of three subarcs: an efficlent powered climb,
a steady-state constant-altitude cruise (assuming
negligible mass change due to fuel copsumption),
and an efficient glide back to earth, It is known
that the steady-state crulse arc is not necessarily
optimal [1]. The analysis which shows this is
subtle and highly dependent on the model of air-
craft motion %2,3,4,5]. It 18 not unlikely that
the three—arc trajectory 1s optimal for most air-
eraft. Even when it is not, it may give near
optimal performance [6] .

In [7], a different point of view [8] is
taken. Cruise is modelled as an optimal periodic
control problem in which conventional steady-state
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cruise is compared to time-dependent periodic
crulse. This allows the application of techniques
from periedic control [9,10,11]. For example, the
Il-test [12] may be used in Speyer's example tl]
to show that a steady-state cruise arc is not
optimal, Using the energy-state model [13,14,15]
for alrcraft motion and the idea of relaxed steady~
state control [8,10,11], it was shown ir [7] that
time-dependent periodic contrel gives better cruise
performance for the F-4 aircraft and a class of
subsonic aircraft models. Additional examples and
a further discussion of relaxed steady-state cruilse
are given in [16]. Unfortunately, these results
are inconclusive becawse the requlred “chattering"
controls can only be approximated by physically
realistic controls. The most interesting contri-
butian of [7,16) 4s that an upper constraint on
aircraft altitude inereases the potential for re-
duced fuel consumption. With no constraint on
altitude the suboptimal example in [1] shows an
improvement of about .08% whereas the improvements
in {7], which assume an altitude constraint, can
exceed 30%.

The main objective of this paper is to show
that these large improvements are possible when the
engrgy-state model is replaced by a realistie
polnt-mass model. First, simple analytical tech-
nigues based on special classes of periodic trajec~-
tories are introduced. - Subject to certain limita-
tions, they confirm that substantial improvements
are possible when the maximum altitude is con-
strained., Second, optimal period trajectories are
computed for a wide variety of aircraft character-
istics and constraint altitudes. Although the com~
putations are expensive and generate less insight
than the analytical methods, they show conclusively
that improved specific range is possible.

A crucial part of the optimization studies is
a special computational technique. As Speyer [1]
has discovered, conventional gradient descent algo-
rithms applied in the space of control functions
are Ineffective because it is difficult to meet the
. periodicity conditions accurately. The approach
taken here and in [17] is ro specify the altitude
and speed by perlodic spline functions. Equations
of motion are satisfied exactly without integration
by solving them for the centrol functions in terms
of the spline functions. Gradient descent occurs
in the (finite-dimensional) spline spaces. Thus
discretization and the imposition of the periodicity
constraints is automatic, Control and altitude con-
straints are implemented by penalty functions. The
appreoach has proved effective. It is beldeved that
it will be valuable in other optimal control prob-
lems, Including those which are not periodic.

The paper is arranged as follows. 1In Section
2, the alrcraft model is developed and the periodic
cruise problem is formulated. The basic assumptions
include: a classical (subsonic) 1ift-drag model,
an exponential atmosphere, congtant thrust-specific
fuel consumption, limits on maximum a2ltitude and
engine thrust. All aircraft satisfying these
agsumptions are characterized by three non-dimension-
al parameters. Section 3 reviews the energy-state
model and gilves the relaxed steady-state cruise
results for the assumptions of this paper. The
analytical techniques are discussed in Section 4.
Using the model of Section 2, it fs ghown that a
family of periodic trajectories may be generated by
specifying the altitude of the trajectory. ‘Two
altitude functions (sinusoidal, pilecewise linear)
are considered and the fuel consumption for each 1s
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determined. The results are compared with those of
Section 3. Seckion 5 describes the numerical pro-
cedure and reviews computational experience. The
results of many computations are summarized in
S8ection 6. TIncluded are: a typical near-optimal
solution, a discussion of the physical mechanisms
by which improvement is obtained, and a figure
glving performance improvement as a function of the
three non-dimensional parameters. In additiomn, a
few results are presented for a more realistic
model of thrust specific fuel consumption. Section
7 summarizes the key results and mentions some
extensions.

2. The Periodic Cruise Problem

The two-degree-of-freedom, point-mass model
commonly used in aircraft performance analysis [141
is

mV = T cos (a+te) - D(V,h,a)-mg siny,

y mVy= T sin (at+e) + L{V,h,a)-mg cosy, (2.1)
h = ¥V siny, x = V cosy, x(0) = 0,
vhere: m = aircraft wass (assumed constant),
V = speed, y = flight path angle, h = altitude,
x = range, T = thrust, o = angle of attack,
€ = thrust offset angle, g = acceleration due to

gravity, D = drag, L = lift.
cruise requires a time v > 0

Periodicity of the
and

V(0) = V(z}, v(0Q}

"

y{t), h(0) = hit) (2.2)
Constraints on thrust and altitude,

0 T{) < T, h(t) < b, (2.3)
are imposed, but it is assumed that the stall con~
straint (on a) and the ground constraint (h(t) > 0}
are inactive. ZLet 6{(V,h,T) be the thrust-specific
fuel consumption of the engine. Then the cost

index (fuel weight/distance covered = (specific
range)~1) is

1 T
J = Py (]—[ o{V,h,T) T dt

The periodic cruise problem is: Minimize J with
respect to the controls T and o and the period T,
subiect to the constraints (2.1) - (2.3).

(2.4)
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To simplify this preoblem, some familiar approx-
imations are made: (a) cos{ote) = 1, sinfate) x 0;
(b) L & Y%o(h) V25 C (@), D = Ya(h) V28 (Cp #KCE (o))

where 8 = surface area, p(h) = air density;

{c} p(h) = Po exp(h-ho)/hS where hy = reference
altitude (arbitrary), py = density at reference
altitude, hg = scale he?ght of atmosphere;

(d) o(V,h,T) % 0y = copstant. For subsonic £light
with a }et engine, the approximations are reasonably
accurate and capture the essential nonlinear .~
dependencies. Approximation (d) is the least rea-
listic, but it is im a certain sense a conservative
approximation. See Section & for additional comment.
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An equivalent normalized cruise problem of
relatively simple form can be obtained with these
approximations as follows. Since stall is avoided
there is a one-to-one correspondence between L and
@ so L can replace & as a control, Also, cosy > 0
in cruise. Thus dt = dx(V cosy)}™l can be used to
substitute range as the Independent variable, _
Scaled variables are_introduced: V = KiV,_y = Y,

h-h =KF x= K%, x{r) nxzi, J=X17,
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L= mg I, T=mgT. Setting hy = h and choosing

Kl, 20 K3 appropriately gives:
T = (V cosy)” [T-D(V,h,L) - sin v], (2.5)
7=V T o)™ [T - cos 71, (2.6
h' = tan vy, (2.7

F(0) = V(E), T(0) = YX), K(0) = B  (2.8)

0<T&) < T, h(x) < 0, (2.9)

( coé?)-l T dx (2.10)

where the ' denotes differentiation with respect
to x and

EICAN! - 6[¥2 o BN 2 BB 12 (2.11)
Here & and B are non-dimensional parameters
5 = V& ¢, = min @, (2.12)
B
B = 2u(p § C, h) L= (gh)1v2 (2.13)
0" "L s N

where C; = lift coefficient at min (D/L) and

Vg = speed for maximum endurance at the constraint
altitude hy. For low-drag aircraft § < .03. The

parameter B depends primarily on wing loading and

the constraint altitude {po = density at the con—

straint altitude) and falls in the range .02<g<.7.

In solving the periodic cruise problem
(€2.1) - (2.4) or (2.5} - {2.10)), the principal
issue is whether or not the optimal cost (J* or J¥%)
is less than the optimal cost for steady—state
cruise (J&g or Jfg). To obtain JSS consider a
ggneral steady-state cruise: V(x) = Vg, v{x)_= 0,
h(x) = hss_ﬁ- o, L(X) 21, T(x) = TSS = ﬁ(vss,hss,l),
0 < Tgg < 3‘ =T, Vgg~l. The optimal
stggdy—state cruise ollows from the minimization
of Jgg with respect to VSS and hSS For T, >4(3)"56
the thrust constraint Is inactive, the altitude
constraint is active; and

3o = 47T s, ?gs = 4(3)" "%
: : 2.14)
25 - (
* = * =
"ss (3777, hgg =0

If T, (TSE) = Tm(T 1, it 1s easy to see that

J (JSS} Thus it s posgible to obtain the cost
ratio in the original problem (2.1) - (2.4) by
computing the cost ratio in the normalized problem
(2.5) ~ (2.10). The original problem is fully
characterized by the three non—dimensional param-—
eters: 8,8, and T, (T§g)~1. Hereafter it is assumed
that T (Tgs) 1> 1 so0 S¢hat the thrust constraint is
inactive in 0ptimal steady-state cruise,

3.  The Energy—sfate Agprdkimation

The energy-state approximation involves two
steps [13,14,15]. First, V is expressed in terms
of the energy height, -

E=Y%7V° +, (3.1)

in the system (2.5) - (2.11). Second, it is
assumed that ¥ and } vary slowly so that 7' = 0
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h' =0 are good approximations. This results in
YT 0,L=1and
B =T (2GR, BD = g ERD, (3.2)

E(0) = E(®D) 3.3

X = X
= 1 T — 1 e —
J=z —dx == g.{(E,h,T)dx (3.4)

X of V2 (E-) 3 of z

In this system, T and & are viewed as controls
which satlsfy the constraints (2.9).

The optimum steady-state cruise for (3.2)-(3.4)
is obtained_by setting E' = 0 and minimizing J with
respect to E subject to (0,J} £ y{(E) where

Y(E) = {(g;,8,): 0 < T < T, hz<0} (3.5
is the velocity set corresponding to (3.2) and (3.4).
The result is the same as in the previous section:
(2.14) with B* = .5(3)-3.

The relaxed steady-state (R$S) cruise is
obtained by assuming that the controls chatter
rapidly so that E is essentially constant. The
optimal R3S eruise is obtained by minimizing J
with respect to ] E subject to (0,J) ¢ convex hull
of y(E). If v(E) is not comvex, it is possible
that the optlmal RSS cruise will be more efficlent
(gss < TEs)-

As Figure 1 shows, this is indeed the case.
The details leading to Figure 1 are omitted since
they are similar to those in [7], {(where Ty is
altitude dependent) and [16] (where both T and p
are constant). TFrom the form of 335 and gy it is
not difficult to see that JRgg/Jag does not depend
on §. Large improvements correspond to large thrust
reserve (T, /E§S>>1), low wing loading (8<<1) and
low constraint altitude (B<<1}.
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Figure 1. Cost Improvements for Relaxed
Steady~State Cruise in Energy-
State Model




The optimal RS5S cruise is physically unrea- 52 require h(x) to be twice differentiable. Since i'%
listic and inconsistent with the assumptions of the V' appears in (4.9), wx) must_be three times 4
energy-state approximation because it corresponds continuously differentiable if T(x)} is to be con- E
to jumping rapidly from flight at the constraint tinuous. Step $5 15 not necessary to evaluate the
altitude with zero thrust to flight at a lower al- cost, but may be required to check the satisfaction ¥
titude with maximum thrust. Although the analysis of_the_ thrust constraint (2.9). TFor most functions %
is subject te questien, it is encouraging and pro~ h(x)‘ H(x V(x)) is not an elementary functiom of ;
vides a simple physical explanation for improvement; x. Thus {4.7) must be evaluated by a numerical
thrusting 1s more efficient at lower altitudes procedure.
where (for the same energy) speed 1is higher and — *
energy addition more efficlent. Since the sub- A simple choice for h(x) is i
sequent sections utilize the point-mass model of - &
Section 2, their results are more realistic. hix) = A{cos 2—1’5 -1y, A>0, (4.10) {\»‘

X R

4. Analysils of the Point-Mass Model E

This function satisfies the altitude constraint :

_ _ The approach of this section is to choose (2.9) and 1s analytic so that a2ll the functions in 4
h(x)as a periodic function of simple form and then §1-85 are analytic. For A=0, the steps give the “
to optimize J with respect to the remaining func- optimum steady-state cruise (2.14). The integra- 1
tions in the system {2.5)-(2.8). The constraints tion (4.8) cannot be carried out in closed form 2
(%-2)(_?1’,‘8 satisfied by appropriate parameterization but a very j_e’ngthy calculation shows that .
of h{x). =

As a first step J is expressed in a different I(E*)"lz 1+ £ A+(..3_32+ 28 2(§.3+ L2 1)) A =
way. Solving (2.5) for T and substituting into 2 16 16 ° 8 64 *
{2,10) gives X + 0(A3) w = 2n (4.11) i

T =g f nv,y.5.5) d (4.1) k3 7
X 0 The first order term in A is positive, which means =
where 1 that for small A cruise performance is degraded. bt

Vo n Ty =T AT TT — However, the second order term in A is negative {f .

MY, = ¥ M (eos) T DR, Dany) . (4.2 § is small and X is chosen properly. Thuz, 1f A is
The term V' which appears In the integrand after sufficlently 13‘"39» it may be possible to improve %
the substitution, disappears on integration because crulse performance. For large A, the higher order i
V is periodie. Thus, the integral of V' does not terms in A may become important and the thrust i
appear in (4.1). . constraint (2.9) may be violated, §

Given a periodic function h(x) the minimum of Figure 2 summarizes the results of numerical §
T with respect to the funcrions T,L,V,y is obtained evaluations of (4.8). Comp"tations show that the T
by the following steps: constraint T > 0 limits A when T /TS > 2. Because g

Jisa decreasing funection of A at this limit, A is =
81. Solve (2.7) for v. This leads to determined by T > 0. While the results in Figure 2 b
— -1 —, — are not startling, they do prove that a simple 5
v{x) = tan ~ h'(x), (4.3) periodic motion gives better performance than i
- _ — 0 =5 aptimum steady-state cruise. They also give some %
cos y(x} = (I +h'(x)7) (4.4) additional information. Small values of B are :
. - — 2.1 desirable and the effect of & is relatively unim- ]
Y x) = WL+ 0’ (1)) (4.5) portant. When the optimum period is scaled by § it

52. Solve (2.6) for L:
TE) = cos TEI(L + TGO v G (4.6)

S3. Substitute {4.3),(4.4),(4.6) into (4.2). This
gives H in terms of h(x) and V{x). Choose
Vix) so that for each X, H is minimized, i.e.,

V(x) = V where V minimizes
2ED = V7 [(cosy G DI, RG), cosy () 4
A+ 7 E) + B @] .7

S4. Evaluate J:
- 3 . _ __ _
71 f HE V) dx (4.8)
X 0
55, Solve (2.5) for T:

T(x) = cosy(x) V' (X)V(I+h' @)
+ DOVE),BGO,T()) (4.9

is not strongly influenced by 6 » .02, 4s g =+ 0Q,
the optimum period becomes large. For § < .05, the
optimum periocd 1s large compared to the phugoid
period (V/61) [see Yigure 7).

00,25

1.2

eerivd {2 1)

Figure 2. Cost Improvements for Sinusoidal
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“BEcause 3H/3ax = O givea a quadratic equation in V,

Altitude Funetion {(4.10). 5
V(%) is determined explicitly 1in §3., Steps 51 and

5.3
'rm/TSS > 2.
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Another cholce for-ﬁfzj is the continuous
plecewise linear function

G
- _— -
hix) = Glx, Of_xixl _G—z—:G-; X, Gl < 0,

= 6,x-X), ¥<xK, 6, > 0.

This funection is completely determined by the
pericd X the descent slope Gl and the ascent slope
Gy. The function can only approximate a real _
trajectory because it has "corners” at x = 0, Xy.
The approximation is good if the actual trajectory
which it models has smooth transitions between the
constant slope segments and the period 1s large so
that the transition phases can be neglected. This
is precisely the idea used In quasl-steady-state
analysis of optimal perioedic control problems
[8,11]. The steps 81~55_yield rather complex for-
mulas for the functions V(x), H(x V(x)) T(x), but
an expression for J in terms of X, G1, Gp can be
found [18). The results are most interesting when
BX<<l. For this situation J can be approximated
more $imply by assuming f = 0« This iz dome in
what follows.

- _ _Applying §51-55 it can be seen that V(x),

H{x,V¥(x)) and T(x) are plecewise constant functions

with Jump discontinuities at x = 0,X;. Let V4, Hy,

Ty be the constant values where i=I denotes the
descent interval and i=2 denotes the ascent interval.
Then

V, = (8a, )"5(1+c 2y 25 ’ (6.13)
- 2 25 .5 5.2 1 5
Hy <1+G ) (B, THGAL TTHTA T (4. 14)
T, = vi(1+ci) Hi (_4.15)
where
2 2,.5,~1
Ap = 2(6,+(6,"+1267)"7) (4.16)
This gives
G -G
= 2 = 1
J = B —t— 3 H —— (4.17) .
16,76, 7 72 G,~G;

Note that X does not appear in J. This is a con-
sequence of g = 0,

A simple graphical interpretation of (4.17) 1is
given In Figure 3. The dependence of H; on Gj has
the general form indicated by the curve. For slopes
G3 and G2, the point A has the ordinate value J.
Since JSS is given by the point B {(where Gy = Go=0)
it is clear that J < J8s. The thrust T, increases
as a parameter along the curve starting at the point
C where Ti w (0, Thus if Ty is Sufficientlx large,
the point E gives the lowest cost. Since T; # 2
implies a thrust teo weight ratio of 2, the point D
cannot be realized in practice and the lowest cost
is obtained from a straight line which joins the
point C and some point, dependent on T,, lying be-
tween B and D. Hence the form of the best piece-
wise linear trajectory is a zero thrust glide
folloved by a_maximum thrust climb. Since H; is
minimized at Ty = 0, it follows that the glide is
a maximum range glide, For small &, G; & -25,

The cost improvements, which can be appreciable,
are_| summarized in Figure 4. They depend mostly on
m/TSS and only slightly on §. The parameter r

denotes the fraction of the trajectory spent on

the downward glide, For Tm/Tgs large the glide

23

segment is long. In general, the improvements in
Figure 4 are larger than those im Figure 2. This
is because the sinusoidal function (4.10) does not
allow the thrust to change as rapidly between the
lower and upper values as does the piecewise approx-

imation, For B_= O, Figure 2 gives J/JSS .%4 as

X+ =, For Tm!TSS = 2, which is the effective
thrust reserve in Figure 2, Figure 4 gives

J/J = .91. Thus for this rather small value of
Tp/TEg the two trajectory forms produce similar
results. Based on Figures 1 and 4 one might guess
that for § > 0 improvements much greater than those
given in Figure 2 are possible. The best way of
pursuing this conjecture is to compute optimal
periodie trajectories.

k4

13

i

Figure 3, Graphical Interpretation of Cost for
Piecewise Linear Altitude Function

(4.12)
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Figure 4. Cost Improvements for Piecewise
Linear Altitude Function (4.12)




5.  The Numérical Optimization Procedure

The class of perilodic polynomial splines f£(x)
which are used in the numerical procedure are
specified by: the degree of the polynomials k, the
period X = Xy the locations of the N joints
{0,%3,...,%y_1}, #nd the values of f at the joints
{£9,f7,..4,fy_1}. More specifically, 0 = % <Ry
<Hy-1 <%y and for 1 = 0,...,N-1 the following con-
ditions are satisfied: '

f(xi) = fi, (5.1)
B — - df —4

L Gy =£L & H, 5=0,....k-1  (5.2)
v B s B

£G) = p, (), Ky %< xyy (5.3)

where p, (x) 1s a paolynomial of degree k,xi+ and x4
denote Tespectively upper and lower limits at x,
and %y = X . The system (5.1)-(5.3) constitutes
(k+1)N linear equations in the (k+1)N coefficients
which determine the polynomials pj(x). The system
of_linear equations has full rank [19] and thus
f(x) is uniquely determined by (5.1)-(5.3). The
computation of f(x) must be arranged carefully to
minimize the effect of numerical érrvors [18]. When
£(x) is extended outside_[0,X] by the pericdicity
condition £{(x)} = f(x + £X), £ = integer, it is k-1
times continuously differentiable and has a piece-
wise constant kth derivative with jump discontinui-
ties at the joints.

The pumerical optimization procedure depends
on specifying V(x) and h{x) as periodic splines,
solving (2.5)-(2.8) by choice of L{x) and Tix) and
evaluating (2.10) numerically. Take the joints of
V(x} and H(X) to be the
- The degrees of V(x) and h{x) are respectively lky
and ky. The required steps for evaluating J are:

51.

-

Specify v {vol:;:,vﬁ_ll.gpd b= {hgse.a,yogd
and determine V(x) and h(x) so that V{x;)=vy
and h(xi) = hy for £ = 0,..,,N-1.

$2. Solve (2.7) to obtain Y(x), cos ¥(x), 7' (x) by
(4.3) - (4.5).

53. Solve (2.6) to obtain L(x) by (4.6).

$4. Solve (2.5) to obtain T(x) by (4.9).

55. Evaluate the integral (2.10) by numerical

quadrature on the subintervale [0,%;1,...,
[?N_l,ﬁj using values of the integrand on the
points of ¥ = {0,x3,...,%y} where 0 < %)< aen
“xy = X and I is a subset of L. _Denote the
resulting approximation of J by J(v,h).

— _ Some comments are in order. The functions_
h',h",V' are easily evaluated from the splines h
and V. The solution of (2.5)_-_ (2.8)_1is exact.
Although the functions ¥(x), L(x), T(x) are not
plecewice polynomials, they are easily evaluated

on the grid I which may_be taken as fine as desired.

For ky = 1 and k, = 2, T and L are pilecewise ana-
lytie with jumps possible at the points in I. For
ky > ky, ~ 1> 1, T and L are (kp~2) times contin-
uously differentiable. Since the integrand of
10} is analytic on the intervals [%i,¥141], the
for J(v,h) -~ J can be made very small (without
great expense) by choosing M large. For instance,

points of I = {0,x1,..,xN_1L
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with Simpson's rule it is the order of (A;)& where

4X bounds |%j41-%4[, 1 = 0,...,4-1,

To incorporate the constraints (2.9) a cost
function

J(v,h)=T{v,h)+ £ [ulMl(T(xi))+u2M2(h(xi))} (5.4)
iel
is introduced, where M) and M are continuously
differentiable functions which measure the con-
straint wvielations and wy,uy > 0 are penalty
coefficients. The numerical optimization is then
based on an unconstrained minimization of J.
Since J is continuously differentiable, many
efficient optimization programs are available.
Because the formulas for the gradient of J are
rather complex, it is convenient to choose a pro-
gram which doesn't require evaluation of the
gradient,

The results given in the next section were
obtained under the follewing conditions. The grid
I was uniform with M = 50. This gives an accurate
evaluation_of J and a detailed tabulation of the
functions ¥, T, L. To assure a smooth trajectoery
and smooth controls, both V and h were cubic splines
(kv =k, = 3), The Functions M,y and M, measured
the square of the constraint viclations and large
values of p; and p, effected accurate constraint
satisfaction without apparent numerical difficul-~
ties.

The optimization program was PRAXIS {20], a
well developed FORTRAN subroutine not requiring
derivatives. The number of fupction evaluations
for “convergence" grows rapidly with N, To save
on the number of evaluations, & two stage approach
was employed: first, the trajectory was optiwmized
for ¥ = 6; then the resulting trajectory was used
to generate an initial guess for an optimization
with N = 15. Typical numbers of function ewvalua-
tions were: 1000 for the first stage, 2000 for the
second stage. In some cases distinct local winima
were observed and several starting guesses were
needed to get the best local minimum.

The grid I was nonuniform and was chosen to
better represent the rapidly varying portions of
the trajectory, Rather than incorporating X in
the minimization process, it was optimized by inter-
polating optimization results for several wvalues of
X. Thus, the sensitivity of the optimal cost with
respect to X could be ascertained.

Note that gteps 81 - S5 in Sectiom 4 can also
be used as the basis for an optimization procedure.
This has the advantage that only one spline h(x)} is
needed, The approach has been tried and works well
for 8 » .2. PFor smaller values of B the minimiza-
tion algorithm was slow and erratic. Also note
that the method of this section extends directly ;
to the case where the thrust-specific fuel consump-
tion 1s not constant:

X
f (Vv cosy) 1
¢

The procedure of Section 4 does mot work in this
tage because the elimipation of V' from the inte-
grand of (4.1) depends on the integrand of (2.10)
being linear in T.

T2 [°F ol 5@ 5, DT (5.5)
X




6, Results of Numerical Optimization

Figure 5 shows a computed solution for

T (T8)~! = Tp(Tls) = 8, §_= .0232, B = .05. The
w55 m * - ok

cost ratio 1f J*(JEg)~1 = J#(J8g)-1 = .743 which
represents a fuel reduction of over 25%. The in-
cluded data indicate the unscaled physical units
that are assoclated with a hypothetical aircraft
having the same values of Tm(Tgs)*l, 6, B. This

airecraft was designed using GASP[21] and is believed

to be a physically realistic aircraft. It features
a high-aspect-ratio, large-area wing which produces
low drag and wing loading. The minimum and maximum
values of altitude and thrust are given. Note that
the specified constraints on h and T are violated
slightly, confirming the effectiveness of the
penalty functicn. By chance, the minimum altitude
1s -187 ft., so that the ignored ground constraint
1s slightly exceeded.
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Figure 5. Optimal solution for Tm(Tgs)—l = 8.,
g = 0,05, § = 0.0232. Parameters for
hy = 7679.2 ft., mg = 13,000 lbs.,

T = 5572.0 lbs., V&, = 289.1 ft/sec.,
m 85
x{t) = 194,000 ft., h = 7671 ft.,
max
hmin = ~187.4 ft., Tmax = 5574,6 1bs.,
T = -7,97 1bs,
" min

The general behavior of the optimal motions is
a long, unpowered glide followed by a shorter,
powered dive and climb where the speed increases

rapidly and the aircraft returns to maximum altitude.

Energy addition is proportional to the product of
speed and thrust. Since fuel-consumption is pro-—
portional to thrust, efficiency is improved by
thrusting at higher speeds. This improved efficien-~
cy more than offsets the losses asgociated with the
powered portion of flight (increased drag from in-
creased 1ift and speed). Note the powered dive
just before the minimum altitude is reached. It
increases rthe speed of the aircraft more rapidly.
While the trajectory is not a "joy ride” it secems
attainable: period = 36,7 miles, amplitude = 1.5
miles, normal force = (i+.25) mg.

Figure 6 tabulates the results of many opti-
mizations and gives the cost ratioc as a function of
the three non-dimensional parameters. The cubic
splines limit the cost improvement; T is continuous
rather than discontinuous as necessary conditions
for optimality require. Thus the cost ratios shown
are somewhat greater than the theoretical best. For
B < .05 the spline approximation is especially in~--
effective because h(x) tends to a trajectory of the
form (4.12) which has corners at the points of
minfomun and maximum altitude. It is believed that
the costs given in ¥Fipure &4 represent optimal costs
as B+ 0, Thus the £ = 0 cost values given in
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Figure 6 are those obtained from the plecewise
linear altitude function.
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Figure 6. Computed Costs for Periodic Cruise

The results of the R5S cruise of Section 3 and
the sinusoidal altitude function (4,10) are shown
also in Figure 6. As might be expected, the RSS
ecruise results are generally better. For B < .05
they do give rough estimates of the optimal costs.
The costs corresponding to the sinusoidal altitude
function should be compared with the optimal costs
for T,/T8g = 2. The agreement is quite good but
the costs are slightly larger because of the more
restricted form of the sinusoidal trajectories.

] The dependence of J on the periocd X is shown
in Figure 7. The optimal periods fall in the range
obtained from the sinusoidal altitude function
(4.10) and are much longer than the indicated phy-
gold periods. The sensitivity of J with respect

to X tends tc be greater for the larger values of R.

Since many modern alrcraft have rather small
values of 6, the critical parameters affecting
improvement are B and Tm(Tgs)‘l. Improvement does
not oceur for Tp(Tg)-1 < 1 and is slight for
T, (T3g)~1 < 2. "With 6 = .03, T, = 8T3g = .554 mg.
Thus Tm(Tgs)_l = 8 represents a large thrust ratio.
The value of B 1is proportional to wing loading
(mg/8) and inversely proportional to the air dersity
at the constraint altitude {p,). Thus, rather
special alrcraft, such as hypothetical aircraft
described above or the U-2, are more likely to
give interesting (small) values of g,

A number of optimal trajectories have been
computed for a more realistic_thrust-specific fuel
consumption. The function o(V,h,T) was obtained
from GASP for the hypothetical aircraft, and gives
a fuel congumption which is typical of a small con-
temporary jet engine [18,21], In general o(V,h,T)

is larger at partial throttle settings than near
The main influence on the optimal

full throttle.




e

_thrust,

trajectories is that fuel consumption is greater
during the transitions between low thrust and high
Thus there is a tendency toward shorter
transition times, 1.e., steepr dives from glide

to ¢limb. The gualitative nature of the cptimal
trajectories 1s very similar to those for constant
thrust-specific fuel consumption and the optimal
cogtes are about the same. At lower constraint
altitudes steady-state cruise requires partial
throttle settings where o{V,h,T) 1s large. Thus_
steady-state cruise is more expensive than when ¢

is constant. For this reason, the fractional cost
improvements are greater than indicated in Figure 6.
Figure 8 shows the difference in performance be-
tween the optimal steady-state gruise and the
optimal periodic cruise, When ¢ is constant similar
dependencies on the constraint altitude occur,
although the differences between steady-state cruise
and periodic cruise are less.
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Figure 7. Dependence of Optimal Cost on

Period (X) for § = 0,0232

7. Conclusions

The possibility of improving aircraft specific
range by periodic motion has been investigated for
subsonic afircraft with jet engines. From computa-
tions based on a realistic point mass model it
appears that appreciable improvements (25% or more)
are possible if the maximum altitude is constrained.
Several simplified methods of analysis are presented
in Sections 3 and 4. They give useful information
on improvement trends and lend additional imsight
into the mechanisms which lead té fuel reductien,

Similar methode of analysis and numerieal
optimization apply to the improvement of flight
endurance [1B8]., These results will be reported in
the future.

Questions cencerning the computational appreach
remain. They include: the nature of the approxi-
mation provided by the splines, the effects of
using different spline functions, methods for

26

efficlent evaluation of cost gradients, the use of
gradient dependent minimization algerithms and
other techniques for implementing constraints such
as methods of augmented Lagrangians, and methods
for treating problems in which the equatlons of
motion cannot be sclved by selecting the control

functions. Such gquestions are presently belng
explored.
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