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A numerical and experimental study is performed to investigate unsteady, two-
dimensional, incompressible laminar flow over both sides of a slot-perforated flat surface,
which is placed in a narrow channel. Emphasis is placed on the effect of the blockage factor,
i.e., the ratio of plate thickness, d, to channel width, W, on the heat transfer performance
and the velocity and thermal fields. It is found from the study that: (i) when the slot width is
increased, the alternating change in the fluid flow disturbs the thermal boundary layer
formed along the plate and induces mixing of the upper and lower streams of the plate
downstream from the slot, resulting in an amplification of heat transfer performance; (ii)
heat transfer performance at the rear plate is induced with an increase in slot-width and Re;
and (iii) by contrast, heat transfer performance is attenuated with an increase in the
blockage factor, whose effect becomes larger in the lower region of the Reynolds number.
These results are confirmed by the flow visualization using ion-exchange resins.

Nomenclature
B = channel length, m
d = slot width, m
1751
h = local heat transfer coefficient on the plate, W/m/K, = —@/
Tw— Tinter
kq = blockage factor, &/W
L = length of plate, m
Nu = local Nusselt number on the plate, hd/A
Nu = time-averaged Nusselt number on the plate
P, AP’ = pressure and dimensionless pressure drop, =AP/(0.5pU?), respectively
Re = Reynolds number, u,6/v
t = time, sec.
T = temperature, K
U; = velocity component in i directions
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X = icoordinate, m

AX,AY = meshsize, m

X,y = coordinate, m

W = channel width, m

o = thermal diffusivity, m%/s

p = density, kg/m3

v = molecular viscosity, m2/s

) = plate thickness, m

A = thermal conductivity, W/m/K
0

= dimensionless temperature, g — T-Tpe
T;v - ];rzlel
Subscripts
inlet = inlet
w = wall surface of the plate

I. Introduction

he heat exchanger is an essential unit in heat extraction and recovery systems. With increasing emphasis on

economic and energy saving considerations, a great deal of research effort is devoted to develop more efficient
heat-transfer surfaces. In the design of advanced heat exchangers, louver-fins, strip-fins, wavy-fins and perforated-
fins are widely used to achieve high heat transfer efficiency and compactness. A comparison of performances
among these surfaces was made by Wong et al.". Kays® reported that perforation results in a substantial increase in
heat-transfer performance without introducing a pronounced form drag. Heat exchangers with perforated fins may
be made either in small size and light weight as air-cooled condensers or in large size as air-cooled heat exchangers.
This viewpoint was supported by some investigators'-.

In general, perforated plates may be employed as an extended surface for internal cooling of turbine blades.
They are compact and high in heat-transfer performance induced by boundary layer interruption due to perforations
without the salient penalty of the form drag*’. Liang'’and Liang et al."'studied the effects of geometry and
arrangement of the perforations on fluid flow behavior and disclosed that the ratio of slot length, in the flow
direction, to its thickness plays a very important role in flow behavior. In order to investigate the effects of the
Reynolds number and the ratio of the slot width, d, to the plate thickness, 8, on the velocity field, the corresponding
numerical analysis was carried out by Torii and Yang'>'">. They reported that the flow pattern between two plates
placed in a free stream or two-dimensional channel can be classified into four categories depending on the
combination of Re and d/d. In particular, at a certain combination of Re and d/J, an alternating crossing of flow of
the fluid streams takes place through the slot from one side to the other side of the plate in the flow direction, so that
the heat transfer performance from a surface wall of the rear plate is intensified". Amon and Mikic"® performed
numerical investigation of the flow pattern and forced convective heat transfer in slotted channels, in which
numerical results are compared with the results with plane-channel flow. They disclosed that over a certain
Reynolds number the flow exhibits laminar self-sustained oscillations, which cause significant heat transfer
enhancement. Suzuki et al.'® and Nigen and Amon'’ dealt with thermal fluid flow transport phenomenon in a plane
channel with an in-line fin array and in a grooved channel, respectively. They reported that heat transfer
performance is induced due to the self-sustained oscillatory flow.

Both in industrial heat exchangers and in most experimental rigs, the tubes are placed in channels. The effect of
the channel walls is expressed by the blockage factor, which is the ratio of the cylinder diameter to the channel
width. A higher blockage factor leads to a higher velocity outside the boundary layer, and to different distributions
of pressure and velocity on the cylinder circumferences. Consequently, variations of the shell-cylinder distances
lead to change in the local heat transfer. The effect of the blockage factor on heat transfer performance around the
cylinder in the channel was summarized by Zukauskas and Ziugzda'®. By contrast, the corresponding effect on heat
transfer from the perforated plate placed in a channel has not been considered.

The present study investigates unsteady thermal and fluid flow transport phenomena over both sides of a slot-
perforated surface, which is placed in the narrow channel. Emphasis is placed on the effect of the blockage factor,
kq on heat transfer performance and velocity and thermal fields. In this study the flow is assumed to be two
dimensional, to keep the computational time manageable. Three-dimensional computations, in general, will require
extensive CPU times to conduct parametric tests such as those conducted here. Thus, the effect of three
dimensionality, which arises due to either secondary instabilities or end walls, is not taken into account.
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II. Conservation Equations and Numerical Method

The present study deals with a forced flow over a single-slot perforated surface heated with constant wall
temperature in the channel, which consists of two plain straight plates (i.c., the front and rear plates), of length, L,
and thickness, 9, aligned in the flow direction with a spacing of d. Here two plates are set at y=W/2. Figure 1
depicts the proposed physical model and the coordinate system. The following assumptions are imposed in the
formulation of the problem: incompressible, laminar, unsteady flow; constant fluid properties; uniform inlet velocity
and uniform inlet fluid temperature; and negligible axial conduction (due to the high Peclet number). Under these
assumptions, the simplified governing equations for mass, momentum and energy read:

U,

—=0, 1

o, (1)

U, . oU 1P J [aU,J

Sy — =t y— 2
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respectively. Initially, the fluid is quiescent and a uniform temperature at T=T;,. Then, the plate surface
temperature is suddenly changed to T=T,,. Non-slip condition is employed at the plate surface and the channel walls.
At the exit, the boundary conditions for the dependent variables are obtained by setting the first derivatives in the
axial direction equal to zero. This is because the same use in other flow conditions is permissible for computational
convenience if the outlet boundary is located in a flow region, which is sufficiently far downstream from the region
of interest. Notice that the above boundary condition at the exit is strictly valid only when the flow is fully
developed.

The discretization method employed in the present study uses a finite difference formulation and the discretized
forms of the above governing equations read as:

M1
Ut =UL + A —(P,{_“, Pl )-FUX"-FUY" + VISX”} @)
n+l1 n n—|
y = +AtLE ~P", )~ FVX" - FVY" + VISY | )
T =T + Af|~FTX" — FTY" + VIST" | ©)
- B -

X
Figure 1. A schematic of physical system and coordinate
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The subscript and superscript correspond to the cell location and time level, respectively. A detailed description of
the above discretization method and FUXR, FUYT, VISXD, FVXT FVYD, and VISY™ in Egs. (4) and (5), are

available in the literatures'**° and thus are not repeated here. FTXT, FTYD, and VIST™ in Eq. (6) are also expressed
in the literatures®*>. The system variables P, U, V and T are calculated with a staggered grid proposed by Harlow
and Welch". The processes involved in completing one calculation cycle at an arbitrary time-step are as follows: (i)
by solving Egs. (4)-(6) for U, V and T, subject to the appropriate boundary conditions, the new velocities, which
involve the values for the contributing pressure and velocities at the precious time-step, are predicted for the entire
mesh to be solved; (ii) these velocities are iteratively adjusted to satisfy the continuity equation, Eq. (1), by making
appropriate changes in the cell pressures, that is, each cell in the iteration is considered successively and is given a
pressure change that drives its instantaneous velocity divergence to zero™; (iii) when convergence has been reached
with a maximum relative change in the values between successive iterations of less 10, the velocity and pressure
fields are determined at the advanced time level and are used as starting values at next time-step. These processes
are repeated until t reaches a prescribed time, say, t=120 sec after the calculation is initiated. Note that at this time,
the thermal transport phenomenon becomes periodic, that is, a steady time-periodic solution is obtained, as shown in
the following.

The grid system is changed from 200x400 to 400x800 to obtain a grid-independent solution. Numerical
computation was performed on a personal computer at time interval At=0.00001 sec. Here, the maximum time
interval employed is determined to ensure the numerical stability. Based on the dataset obtained here, visualization
of the flow and thermal fields is carried out using a commercially available 2-D graphics software tool.

In general, heat transport phenomenon in a channel flow is affected by three dimensionless parameters, i.e., Re
(=umd/v), Pr, and k,. In the present study, L/3 is fixed at 2, and water is used as the working fluid (Pr=0.71), while
Re is ranged from 100 to 1200, and k, is varied from 0.05 to 0.50. d/3 is fixed at 3.0. Note that for d/6=3.0, the
alternating change in the fluid flow disturbs the thermal boundary layer formed along the plate and induces mixing of
the upper and lower streams of the plate downstream from the slot, resulting in an amplification of heat transfer
performance®.

Simulations with grids of various degrees of coarseness, as mentioned earlier, were conducted to determine the
required resolution for grid-independent solutions. Throughout the Reynolds number range considered here, the
maximum relative error was estimated to be about 2% by comparing the solutions on regular and fine grids with
twice the grid points. Although a few solutions were computed with half the time step to ensure consistency and
time-step independence, there was no substantial discrepancy between two different time intervals.

III. Results and Discussion

The structure of the flow over the single-slot perforated plate and the wake of the rear plate are discussed
through the use of computed instantaneous velocity vectors. Figure 2, for Re=120 and t=100 sec., depicts the
instantaneous maps of fluctuating velocity vector for the different blockage factor. Notice that velocity components
are normalized by dividing by inlet velocity. Figures 2(a)-(c) show the numerical results at k,=0.1, k;=0.2, and
k.=0.5, respectively. The corresponding temperature distributions, i.e., isotherms, are illustrated in Fig. 3, in which
6=1 and 0 correspond to the heated-plate temperature and the fluid temperature in free stream, respectively. It is
observed in (a) and (b) of Figs. 2 and 3 that (i) mixing of the upper and lower streams of the plate downstream from
the slot is stimulated, and (ii) this increase induces the alternating change in the flow direction across the slot,
resulting in amplification of the thermal diffusion from the plate along the flow. This change is suppressed by the
flow acceleration due to a decrease in the channel width and, as seen in Figs. 2(c) and 3(c). The alternating change
in the flow direction across the slot yields an increase in thermal diffusion from the rear plate, which is effected by
the blockage factor. This thermal behavior becomes clearer for heat transfer performance from the rear plate.

Figure 4 illustrates, for Re=120, illustrates the time history of the Nusselt number, Nu, at one side wall of the
rear plate. Note that numerical results during arbitrary time interval, i.e., of t=100 sec. to t=110 sec. are depicted in
the figure, because the thermal transport phenomenon, from the calculation results, becomes periodic after about
t=80 sec. Here, Nu implies the averaged Nusselt number over one side wall of the plate at each time, t. The
oscillation of the heat transfer rate with time is caused by the alternating changes in the fluid flow across the slot, as
mentioned previously. This mechanism of heat transfer enhancement is described in reference’. The Nusselt
number is suppressed by a decrease in the channel width, i.e., an increase in the blockage factor, because the
alternating changes in the fluid flow across the slot is attenuated due to the presence of the channel walls. In
contrast, hat transfer rate is intensified in the narrow channel due to the substantial flow acceleration, in spite of the
suppression of the alternating changes in the fluid flow. Furthermore, the oscillation of the heat transfer rate with
time disappears in comparison with the wider channel flow case, as seen in Fig. 4. Heat transfer characteristics
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become clearer for the timewise variation of flow patterns and isotherms over both sides of the single-slot perforated

plate.
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Figure 8. Timewise variation of temperature field around the perforated plate at a time interval of t=1.0 sec.,
for k,=0.5 and Re=120.

Figures 5 and 6 depict the timewise variation of flow patterns over both sides of the single-slot perforated plate.
Consecutive images in Figs. 5 and 6 correspond to the numerical results for kg=0.2 and kq=0.5, respectively, and are
obtained at a time interval of 1.0 sec. Notice that velocity components are normalized by dividing by inlet velocity,
as mentioned previously. Figure 6 shows a sequence of alternating crossing of flow streaklines from one side of the
plate to the other through the slot. On the contrary, the tirmwise variation of the flow streaklines is substantially
attenuated due to the narrow channel, as shown in Fig. 6. The corresponding temperature distributions, i.e.,
isotherms are illustrated in Figs. 7 and 8. It is observed in Fig. 8 that the alternating change in the flow direction
across the slot yields an increase in thermal diffusion from the rear plate. This results in a regular change in
temperature distributions in the flow direction, particularly behind the rear plate. In contrast, such regular change
occurs in the narrow channel flow (Fig. 8). It is found that (i) the alternating changes in the fluid flow, for kq=0.2,
result in an amplification of the heat transfer performance at the rear wall, as seen in Fig. 4, and (ii) further
enhancement of heat transfer rate yields in the narrow channel flow, i.e., for kq=0.5. This is because the flow is
locally accelerated at the minimum cross-sectional area in the channel, so that the temperature gradient is
substantially intensified in the vicinity of the heated plate.

Next task is to discuss the effect of the blockage factor on heat transfer performance from the slot-perforated
plate. Figure 9 illustrates the time-averaged Nusselt number versus the Reynolds number with the blockage factor
kg, as a parameter. Although the Nusselt number is attenuated with an increase in the blockage factor, heat transfer
performance is intensified in the substantially narrow channel, i.e., for k;=0.5. This trend becomes larger in the
lower Reynolds number region plotted. In other words, the effect of the blockage factor on heat-transfer
performance becomes minor in the higher Reynolds number region. It is found that (i) as the channel width
becomes narrow, an alternating change in the velocity and temperature fields is suppressed, resulting in deterioration
of heat transfer performance, and (ii) however, heat transfer enhancement is stimulated for larger blockage factor
due to local acceleration at the minimum cross-sectional area in the channel. Notice that for lager blockage factor,
the substantial pressure drop is needed to obtain the accelerated flow effect, that is the pressure loss increases.

) ky=0.5
| E 6 I kq=().l
)
0 - I
100 600 1200

Re

Figure 9. Time-averaged Nusselt numbers for different blockage factor for d/6=4.
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Attempt is made to obtain the optimum heat transfer performance by taking the pumping power into account.
Figure 10, for Re=100, depicts the time-averaged Nusselt number on the plate fin against blockage factor, kq and the
corresponding dimensionless pressure drop AP’ is superimposed in the same figure. It is observed that Nu increase
with an increase in the blockage factor and the similar curve is shown for the pressure drop. In other words, the
pressure drop is induced in the narrow space of the plate fins, as expected and its trend is attenuated in the wider
spacing. It is noted, for the kq range considered here, that the Nusselt number increases to 20%, while the pressure
drop amplifies to 240%. This indicates that the optimum heat transfer performance is obtained by suppressing an
increase in the pressure drop, that is, higher thermal performance yields at kq=0.4

(x1P)
1

Iz >
Z 0.5 5
5 L
0 | | | 0
0.1 0.3 0.5

kq

Figure 10. Hydrodynamic and thermal performance for Re=100

IV.  Summary

A numerical and experimental study has been performed on unsteady thermal-fluid flow over a perforated plate
(consisting of two plates spaced at an interval of d in the flow direction) installed in channels with different widths.
Consideration was given to the roles of the Reynolds number and the blockage factor on the flow and temperature
fields. It was found that:

1. An alternating changes in the fluid flow results in an amplification of the heat-transfer performance at the rear
wall.

2. When the channel becomes narrower, the alternating change in the fluid flow is suppressed, resulting in an
attenuation of the heat-transfer performance at the rear wall of the rear plate.

3. Heat transfer enhancement is stimulated for larger blockage factor due to local acceleration at the minimum
cross-sectional area in the channel, whose trend becomes larger in the lower Reynolds number region considered
here.
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